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Kurzfassung

Für die Materialcharakterisierung und Parameteridentifikation von technischen Elastome-
ren werden homogene Probekörper benötigt. Eine besonders wichtige Beanspruchungsart
ist dabei der einachsige Zug/Druck. Für Versuche dieser Art findet die Standard-Hantel
Anwendung, die für kombinierte Zug-/Druckversuche geeignet ist. Allerdings lässt sich
hier schon bei geringen Druckbelastungen ein inhomogener Messbereich detektieren. Ein
Ziel dieser Arbeit besteht in der Entwicklung eines neuen und verbesserten Probekörpers,
der für hochpräzise Zug-/Druckversuche geeignet ist. Im Gegensatz zur Standard-Hantel
wird der für Messungen zugänglich gemachte homogene Messbereich deutlich verbessert.
Darüber hinaus soll der Bereich der maximal erreichbaren Stauchung signifikant erhöht
werden. Der Probekörper selbst weist dabei eine verhältnismäßig einfache Hantelgeometrie
mit verlängertem Mittelteil auf. Durch ein spezielles Design der Halterungsgeometrie kann
sowohl ein homogenes Verzerrungsfeld erreicht als auch eine hohe Knickstabilität gewähr-
leistet werden. Die Grundidee besteht dabei darin, dass der Probekörper mit zunehmender
Stauchung immer weiter mit der Halterungsgeometrie in Kontakt tritt und dadurch seine
knickgefährdete Länge reduziert wird. Mit Hilfe eines speziellen Halterungsalgorithmus
kann eine neue, verbesserte Halterungsgeometrie berechnet werden. Mit dem entwickel-
ten Probekörper-Setup (bestehend aus Hantel- und Halterungsgeometrie) lassen sich dann
eine Vielzahl phänomenologischer Eigenschaften von technischen Elastomeren wie Payne-
Effekt, Mullins-Effekt, Erholungs- und Relaxationsverhalten vorzugsweise bei extremen
Stauchungen (bis zu 70 %) untersuchen.

Ein weiteres Ziel dieser Arbeit besteht in der Entwicklung eines Scherprobekörpers zur
Realisierung präziser Schermessungen. Das Design soll dabei auf einem flächigen Probekör-
per (Elastomermatte) beruhen, um Alterungsuntersuchungen, Untersuchungen mit faser-
verstärkten Materialien und Versuche mit Vorreckungen realisieren zu können. Im Gegen-
satz zu herkömmlichen Scherprobekörpern soll dabei auf eine stoffschlüssige Verbindung
mittels Kleben oder Anvulkanisieren aufgrund von Materialirritationen oder Schrumpf
verzichtet werden. Im Rahmen dieser Arbeit wurde diesbezüglich ein spezielles Fixierde-
sign mit Stiften entwickelt, welches zur Ausbildung nahezu homogener Scherdeformationen
führt. Damit lassen sich eine Vielzahl wichtiger Eigenschaften bei einer annähernd homo-
genen Scherdeformation untersuchen.

Schlagworte
Zug-/Druckmessungen, Probekörper-Setup, Probekörper Optimierung, Schermessungen,
Schervorrichtung, homogener Messbereich, Gummiwerkstoffe, Gummi-Phänomenologie
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Abstract

Homogeneous test specimens are required for material characterization and model para-
meter identification. An important kind of loading is uniaxial tension/compression. For
this, a standard dumbbell is available for combined tension-compression tests. But even
for small compressive strains the standard dumbbell leads to an inhomogeneous stress
state in the measuring zone. One aim of this work is the development of a new test spe-
cimen, which is suitable for high-precision tension/compression tests. In comparison to
the standard dumbbell the homogeneity in the measuring zone is significantly improved.
Furthermore, the range of maximal compression is increased substantially. The test spe-
cimen itself consists of a slender dumbbell structure. By a special design of the mounting
geometry, homogeneous stress and strain fields as well as a high stability can be achieved.
For an increasing compression, the test specimen comes into contact with the mounting
geometry and the critical length is reduced. By means of dynamic analysis, the mounting
geometry was calculated and optimized. This method is a powerful tool for developing
new mounting geometries, by taking into account both the stability and the homogeneity
characteristic. With the developed specimen-setup (consisting of dumbbell and mounting
geometry), the phenomenological characteristics of rubber like Payne effect, Mullins effect,
recovery and relaxation behavior can be investigated up to a compressive strain of 70 %.

Another aim of this work is the development of a shear specimen, which enables precision
shear measurements for large shear values. The design is based on a planar test specimen
(rubber mat) in order to enable ageing tests, tests with fibre-reinforced materials and tests
with pre-stretching. In contrast to other shear specimens, a material-locking connection by
gluing or vulcanizing sould be avoided in consequence of material irritation or shrinkage.
For this, a special fixing design was developed, which enables a uniform initiation of shear
deformation for different rubber thicknesses. Finally, the new shear specimen enables the
investigation of typical rubber properties.

Keywords
Tension-/compression tests, specimen-setup, specimen optimization, shear tests, shear de-
vice, homogeneous measuring zone, rubber materials, rubber phenomenology
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1 Einleitung

1.1 Motivation der Arbeit

Trotz modernster Simulationswerkzeuge, wie die Finite-Elemente-Methode (Fem), hat der
experimentelle Versuch nichts an seiner Bedeutung und Relevanz verloren. Ausgehend von
komplexen Materialverhalten, wie es technische Elastomere zeigen, werden verschiedene
Probekörper benötigt, um die grundlegenden Eigenschaften untersuchen zu können. Da
sowohl für die phänomenologische Charakterisierung als auch für die Parameteridentifi-
kation von Stoffgesetzen Messdaten, die aus homogenen Versuchen resultieren, benötigt
werden, entstehen hohe Anforderungen bezüglich der Probekörperentwicklung.

Eine besonders wichtige Grundbeanspruchungsart für viele technische Anwendungsfälle
ist der einachsige Zug/Druck. Gerade der Zugversuch kann dabei als einer der bekann-
testen Standardversuche angesehen werden (vgl. Brown 2006). Demgegenüber ist der ein-
achsige homogene Druckversuch mit großen Herausforderungen verbunden. In der Abbil-
dung 1.1 ist dazu exemplarisch die Geometrie eines Hantelprobekörpers dargestellt, wie
er zur Untersuchung kombinierter einachsiger Zug-/Druckversuche verwendet wird. Die
Dehnungsmessung erfolgt dabei beispielsweise optisch mittels Laserextensometer, welches
den Abstand zweier reflektierender Punkte bestimmt. In der Mitte der Abbildung ist
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Abb. 1.1 – Zug-/Druckprobekörper (links) Probengeometrie (Abbildung aus
der Arbeit von Lion 2000, S. 73) und (rechts) Fe-Simulation mit Auswertung
(Abbildungen aus der Veröffentlichung von Alshuth u. a. 2007)

das Ergebnis einer Fe-Simulation mit dem Hantelprobekörper und zugehöriger Halterung
dargestellt (vgl. Alshuth u. a. 2007). Aus dem Diagramm (Abbildung 1.1, rechts) wird
deutlich, dass der Probekörper schon bei Stauchungen größer 30 % zu großen Abweichun-
gen gegenüber der homogenen Lösung führt. Hinzu kommt, dass bei Druckversuchen mit

1
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1 Einleitung

unerwünschten Effekten wie Knicken zu rechnen ist. All diese Aspekte lassen erahnen, wie
schwierig der homogene Druckversuch zu realisieren ist.

Einer der Hauptschwerpunkte dieser Arbeit besteht in der Entwicklung eines neuen verbes-
serten Probekörper-Setups (bestehend aus Probekörper und Halterung) zur Realisierung
hochpräziser einachsiger Zug-/Druckversuche. Dabei soll sowohl die Homogenität im Mess-
bereich als auch die maximal zu erreichenden Stauchungen wesentlich verbessert werden.
Erreicht wird diese herausragende Eigenschaftskombination durch ein spezielles Design der
Halterungskontur. Der Probekörper selbst soll dabei seine vergleichsweise einfache Hantel-
form beibehalten und lediglich einen verlängerten Mittelteil aufweisen. Die Geometrie der
Halterung wird dagegen auf Basis spezieller Dynamik-Fem-Simulationen ermittelt, wel-
che eine quantifizierbare und über den Stauchprozess genau zu erfassende Größe darstellt.
Damit können nun erstmals hochpräzise Stauchungen bis 70 % realisiert und gemessen
werden, was ganz neue Möglichkeiten im Bereich der Materialcharakterisierung eröffnet.

Neben dem einachsigen Zug/Druck stellt die einfache Scherung eine weitere elementa-
re Grundbeanspruchungsart dar. Beispielsweise erfahren wichtige Funktionselemente aus
Gummi wie Fahrwerksbuchsen oder Erdbebendämpfer in hohem Maße Scherdeformatio-
nen. Die exakte Charakterisierung eines homogen gescherten Materialbereiches ist also
von größtem Interesse für die Bestimmung wichtiger Materialparameter, insbesondere bei
dynamischen Untersuchungen. Der dabei am häufigsten zur Anwendung kommende Scher-
probekörper ist in Form eines doppelt zylindrischen Designs konzipiert (vgl. Abbildung 2.3,
links). Eines der großen Nachteile dieses Scherprobekörpers liegt in der Problematik, dass
er an den Deckflächen angeklebt oder anvulkanisiert wird. Diese stoffschlüssige Verbindung
hat den entscheidenden Nachteil, dass sie zu Materialirritationen in den Grenzbereichen,
sowohl als auch zu Schrumpfverhalten innerhalb des Messbereiches (beispielsweise beim
Anvulkanisieren) führt. Hinzu kommt, dass der Probekörper aufgrund seiner kompakten
Struktur in keiner Weise für Alterungsuntersuchungen geeignet ist. Aus diesem Grund soll
im Rahmen dieser Arbeit auch ein verbesserter Scherprobekörper zur Realisierung präziser
Schermessungen entwickelt werden. Das Design soll dabei auf einem flächigen Probekör-
per beruhen. Diese Grundgeometrie hat dabei eine Reihe ganz wesentlicher Vorteile. Zum
einen können Matten aus der Serienproduktion verwendet werden, zum anderen lassen sich
Alterungsuntersuchungen, Untersuchungen mit faserverstärkten Materialien und Versuche
mit Vorreckungen realisieren. Demgegenüber besteht eines der Grundprobleme von flächi-
gen Scherprobekörpern darin, dass sich eine gleichmäßige Lasteinleitung vergleichsweise
schwierig realisieren lässt. Aus diesem Grund soll diesbezüglich ein geeigneter Klemm-
bzw. Spannmechanismus entwickelt werden, der es ermöglicht Elastomermatten präzise
zu scheren. Die dazu entwickelte Schervorrichtung wird getestet und zur Untersuchung
grundlegender Eigenschaften technischer Elastomere eingesetzt.
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1.2 Zielsetzung und Einordnung der eigenen Arbeit

1.2 Zielsetzung und Einordnung der eigenen Arbeit

Das angestrebte Ziel dieser Arbeit besteht in der Weiterentwicklung bestehender Pro-
bekörperkonzepte. Ein Schwerpunkt soll dabei die grundlegende Auseinandersetzung mit
der Problematik von Zug/Druck sowie Scherung als Hauptbeanspruchungsarten sein. Auf-
bauend auf diesen Erkenntnissen sollen neue verbesserte Probekörperkonzepte entwickelt
werden. Dabei sind ganz unterschiedliche Zielsetzungen zu berücksichtigen. Zum einen
sollen die Probekörper in ihrer Homogenität, zum anderen in den maximal zu erreichen-
den Dehnungen bzw. Stauchungen deutlich verbessert werden. Außerdem spielen Aspekte
wie Handhabbarkeit und Wirtschaftlichkeit eine ebenso wichtige Rolle wie die universelle
Einsetzbarkeit für Materialcharakterisierungen und die Identifikation von Materialpara-
metern.

In Kapitel 2 werden zunächst die wichtigsten kontinuumsmechanischen Grundlagen, die
zum Verständnis dieser Arbeit beitragen erläutert. Ein besonderer Schwerpunkt liegt dabei
auf der Einführung hyperelastischer Stoffgesetze mit quasi-inkompressibler Formulierung,
welche zur Definition von Fehlermaßen verwendet werden. Weiterhin gibt das Kapitel eine
Übersicht über bisherige Prüfkörper, wie sie zur phänomenologischen Charakterisierung
technischer Elastomere eingesetzt werden. Diesbezüglich werden in besonderer Weise bis-
herige Zug-/Druck und Scherprobekörper näher beleuchtet.

In Kapitel 3 erfolgt dann die experimentell-numerische Weiterentwicklung eines hochprä-
zisen Zug-/Druckprobekörpers. Zu Beginn des Kapitels werden theoretische Grundlagen
zur Untersuchung der Knickstabilität von Stäben und Balken erarbeitet. Mit Hilfe der
Finite-Elemente-Methode lassen sich dabei zum einen die analytischen Lösungen überprü-
fen, zum anderen können die verwendeten Verfahren für beliebige Strukturen erweitert
werden. Eine besonders geeignete Größe zur Beschreibung des Stabilitätsverhaltens stellt
dabei die erste Eigenfrequenz dar. In der Arbeit von Naumann (2010) wird ein Algorithmus
zur Berechnung von Halterungskonturen vorgestellt, der es ermöglicht über die Vorgabe
von Eigenfrequenzverläufen Halterungsgeometrien zu berechnen. Darauf aufbauend erfolgt
die Optimierung der Halterungskontur mittels eingeführter Fehler- und Instabilitätsma-
ße. Der letzte große Abschnitt beschäftigt sich mit der experimentellen Validierung des
neuen Probekörper-Setups. Dabei wird in besonderer Weise auf den Versuchsaufbau, die
Messmethodik und einer erweiterten Prüfmaschinensteuerung eingegangen. Mit Hilfe der
neuen Messstrategie, die ebenfalls in diesem Kapitel eingeführt wird, kann gezeigt werden,
dass sich extreme Stauchungen bis 70 % realisieren und messen lassen. Nach Abschluss
verschiedener Qualitätstests erfolgt die Untersuchung phänomenologischer Eigenschaften
technischer Elastomere, vorzugsweise bei großen Stauchungen.

Das Kapitel 4 beschäftigt sich mit der numerischen Entwicklung eines präzisen Scherpro-
bekörpers. Im Gegensatz zu herkömmlichen Scherprobekörpern soll dieser weder geklebt
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1 Einleitung

noch anvulkanisiert werden. Mittels eingeführter Fehler- und Inhomogenitätsmaße werden
verschiedene Einspanndesigns getestet und validiert. Dabei wird ersichtlich, dass beson-
ders der Einfluss der Randbedingungen in Dickenrichtung einen erheblichen Einfluss auf
die zu übertragende Scherdeformation ausübt. Mit einem speziellen Fixierdesign lassen
sich Gummimatten unterschiedlicher Stärken einspannen und anschließend präzise sche-
ren. Nach Abschluss der numerischen Entwicklung erfolgt die experimentelle Realisierung
und die Durchführung präziser Schermessungen. Mit diesen Ergebnissen wird eine erste
Validierung mit Simulationsdaten vorgenommen.

In Kapitel 5 werden die entwickelten Probekörperkonzepte für spezielle Anwendungs-
beispiele eingesetzt. Neben der Identifikation von Parametern eines viskoelastoplastischen
Stoffgesetzes bei der auf die homogenen Zug-/Druckversuche zurückgegriffen wird, soll eine
Probekörpersimulation mit dem Stoffgesetz durchgeführt werden, um das hohe Potenzial
des Probekörpers aufzeigen zu können. Weiterhin wird mit Hilfe der entwickelten hoch-
präzisen Probekörper und einer erweiterten Prüfmaschinensteuerung das ratenabhängige
Materialverhalten von technischen Elastomeren untersucht. Damit wird insbesondere für
die Entwicklung neuer Materialmodelle ein Zugang eröffnet, in dem die spezielle Phäno-
menologie technischer Elastomere sehr präzise untersucht werden kann. Zum Abschluss
des Kapitels erfolgt die Implementierung des entwickelten Probekörper-Setups in den In-
dustriealltag.

In Kapitel 6 werden die wichtigsten Ergebnisse dieser Arbeit zusammengefasst. Dabei
kann in besonderer Weise dargelegt werden, dass sich nun erstmalig extreme Stauchun-
gen bis einschließlich 70 % realisieren lassen. Demgegenüber zeigt auch der entwickelte
Scherprobekörper eine Vielzahl interessanter Anwendungsmöglichkeiten. Mit einem Aus-
blick hinsichtlich Lebensdaueruntersuchungen für das neu entwickelte Probekörper-Setup,
vorzugsweise im Druckbereich, endet die Ausgestaltung dieser Arbeit.
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2 Grundlagen

2.1 Grundbegriffe der Kontinuumsmechanik

Zum Verständnis dieser Arbeit sollen im Folgenden die wichtigsten kontinuumsmechani-
schen Grundlagen erläutert werden. Dabei wird auf grundlegende Größen und Definitionen
der Kontinuumsmechanik eingegangen. Die nachfolgenden Abschnitte erheben hierbei kei-
nen Anspruch auf Vollständigkeit. Für weiterführende Ergänzungen wird auf die Arbeiten
von Bergström (1999), Holzapfel (2000), Lion (2000), Haupt (2002) und Ihlemann (2003
& 2014) verwiesen.

2.1.1 Tensoralgebra

Die im Rahmen dieser Arbeit benötigten Vektoren und Tensoren werden durch Unter-
striche pro Stufe gekennzeichnet. Beispielsweise stellt der Tensor X einen Tensor 2. Stufe
dar. Dieser setzt sich aus dem Koeffizient Xab und der dyadischen Verknüpfung der Ba-
sisvektoren ea und eb zusammen. Die Indizes a und b kennzeichnen dabei ein kartesisches
Basisvektorsystem. Nach der Einstein’schen Summationskonvention wird dabei über dop-
pelt auftretende Indizes summiert:

X =
z∑

a=x

z∑
b=x

Xabea ◦ eb = Xabea ◦ eb mit: a, b = x, y, z . (2-1)

Die Koeffizienten eines Tensors 2. Stufe [Xab ] werden, wenn nicht anders angegeben, in
einer 3x3-Matrix angeordnet:

[Xab ] =


Xxx Xxy Xxz

Xyx Xyy Xyz

Xzx Xzy Xzz

 . (2-2)

Um Tensoren miteinander verrechnen zu können, wird zunächst das Kronecker-Symbol
δab als Punktprodukt zweier Basisvektoren desselben Systems eingeführt. Mit dessen Hilfe
lassen sich auch die Koeffizienten eines zweistufigen Einheitstensors I (auch Metriktensor
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2 Grundlagen

genannt) beschreiben.

ea · eb = δab =

0 für: a 6= b

1 für: a = b
→ I = δabea ◦ eb = ea ◦ ea mit: [ δab ] =


1 0 0

0 1 0

0 0 1


(2-3)

Im Folgenden werden die verschiedenen Rechenregeln von Tensoren eingeführt. Bei der
Addition bzw. Subtraktion von Tensoren werden lediglich die Koeffizienten miteinander
verrechnet. Führt man hingegen das einfache Punktprodukt zwischen zwei Tensoren 2.
Stufe aus, so entsteht wiederum ein Tensor der 2. Stufe. Im Vergleich dazu ergibt sich
beim doppelten Punktprodukt zweier Tensoren 2. Stufe eine skalare Größe. Verwendet
man hingegen das dyadische Produkt, so werden die Basisvektoren nicht miteinander ver-
rechnet, sondern bleiben in ihrer Reihenfolge unverändert stehen. Es ergibt sich hier ein
Tensor der 4. Stufe.

X ± Y = Xabea ◦ eb ± Yabea ◦ eb = (Xab ± Yab)ea ◦ eb

X · Y = Xabea ◦ eb · Ycdec ◦ ed = XabYbdea ◦ ed

X ·· Y = Xabea ◦ eb ·· Ycdec ◦ ed = XabYba

X ◦ Y = Xabea ◦ eb ◦ Ycdec ◦ ed = XabYcdea ◦ eb ◦ ec ◦ ed

(2-4)

Da in der Literatur häufig in Verbindung mit dem doppelten Punktprodukt die Opera-
tion „:“ verwendet wird, soll der Zusammenhang zu der hier verwendeten Operation „··“
hergestellt werden:

X : Y = XabYab ⇒ X ·· Y = X : Y T . (2-5)

Um weiterhin besondere Eigenschaften von Tensoren genauer charakterisieren zu können,
sollen im Folgenden einige Anteile näher betrachtet werden. Eine spezielle Form stellt dabei
der symmetrische Tensor dar. Dieser hat als Tensor zweiter Stufe nur sechs voneinander
unabhängige Koeffizienten. Im Vergleich dazu besitzt ein unsymmetrischer Tensor neun
unabhängige Koeffizienten (vgl. Gleichung (2-2)). Dieser unsymmetrische Tensor X kann
stets in einen symmetrischen Anteil

S
X und einen antisymmetrischen Anteil

A
X zerlegt

werden.

X =
S
X +

A
X mit:


S
X = 1

2(X +XT )
A
X = 1

2(X −XT )
(2-6)
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2.1 Grundbegriffe der Kontinuumsmechanik

Der Tensor XT beschreibt dabei einen transponierten Tensor 2. Stufe, bei dem lediglich
die Basisvektoren vertauscht werden.

XT = ea ·X ◦ ea = ea ·Xcbec ◦ eb ◦ ea = Xabeb ◦ ea (2-7)

Ein weiterer wichtiger Operator für Tensoren zweiter Stufe stellt die Invertierung eines
Tensors X 1 dar. Im einfachen Punktprodukt mit dem Tensor X ergibt sich dabei wieder
der Einheitstensor I (vgl. Gleichung (2-3)). Dessen Koeffizienten verhalten sich invariant,
sind also identisch bei allen Darstellungen in orthonormierten Basissystemen.

X ·X 1 != I (2-8)

Neben der symmetrischen und antisymmetrischen Zerlegung lässt sich ein Tensor auch in
einen hydrostatischen Anteil

h
X und einen deviatorischen Anteil X ′ zerlegen.

X =
h
X +X ′ mit:


h
X = 1

3(X ·· I) I

X ′ = X − 1
3(X ·· I) I

(2-9)

Im Weiteren lassen sich aus einem TensorX Invarianten berechnen. Die etablierten Hauptin-
varianten I1, I2 und I3 sind wie folgt definiert:

I1
(
X
)

= X ·· I = spur
[
Xab

]
, (2-10)

I2
(
X
)

= 1
2
[
I1
(
X
)2

− I1
(
X2
) ]
, (2-11)

I3
(
X
)

= I1
(
X
)
I2
(
X
)

− 1
3
[
I1
(
X
)3

− I1
(
X3
) ]

= det
[
Xab

]
. (2-12)

Mittels der Hauptinvarianten können über das charakteristische Polynom die Eigenwerte
XA eines Tensors X berechnet werden:

X3
A − I1

(
X
)
X2

A + I2
(
X
)
XA − I3

(
X
)

= 0 . (2-13)

Sind die drei Eigenwerte XA eines Tensors 2. Stufe von Null verschieden, so lässt sich der
Tensor invertieren. Sind die Eigenwerte darüber hinaus noch reell, so liegt ein symmetri-
scher Tensor vor. Eine weitere Klasse von Invarianten stellen die Vergleichsspannungen,
die aus einem allgemeinen dreiachsigen Spannungszustand (siehe nächster Abschnitt 2.1.2)
einen skalaren Vergleichswert liefern, dar. Ein bekannter Vertreter ist dabei die Formän-
derungsenergiehypothese, die auch als Von-Mises-Vergleichsmaß bezeichnet wird:

IVM
(
X
)

=
√

3
2
(
X ′ ··X ′T

)
=
√

1
2
[(
XI −XII

)2 +
(
XII −XIII

)2 +
(
XI −XIII

)2]
. (2-14)
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2 Grundlagen

Eine weitere Invariante aus der Grundlagenmechanik ist das Vergleichsmaß nach Tresca:

IVT
(
X
)

= max
[∣∣XI −XII

∣∣, ∣∣XII −XIII
∣∣, ∣∣XI −XIII

∣∣] . (2-15)

2.1.2 Verzerrungs- und Spannungstensoren

Um Materialdeformationen kontinuumsmechanisch beschreiben zu können, werden ver-
schiedene tensorielle Verformungsgrößen benötigt. Eine der wichtigsten Ausgangsgrößen
ist dabei der Deformationsgradient F , welcher die Verknüpfung zwischen Referenz- und
aktueller Konfiguration eines Kontinuums beschreibt.

F = ∂r

∂r̃
=
(
∇̃ ◦ r

)T
=
(
ea ◦ ∂r

∂x̃a

)T

= ∂xb

∂x̃a

eb ◦ ea mit: ∇̃ = ea

∂

∂x̃a

(2-16)

Über den Deformationsgradienten lassen sich im Weiteren die verschiedenen eulerschen
und lagrangeschen Verzerrungsmaße berechnen. Die Bezeichnung Euler bzw. Lagrange ist
dabei auf die Beobachterabhängigkeit der Verzerrungsmaße zurückzuführen. Beispielsweise
stellen eulersche Größen beobachterunabhängige und lagrangesche Größen beobachterab-
hängige Tensoren dar (im Sinne von Ihlemann 2014). Dort findet sich zudem eine detail-
liertere Übersicht zur Beobachterabhängigkeit von Verzerrungsgrößen. Im Rahmen dieser
Arbeit werden zunächst die wichtigsten eulerschen und lagrangeschen Verzerrungsmaße
zusammengetragen. Die eulerschen Größen lauten dabei wie folgt:

V =
√
F · F T Linker Strecktensor (2-17)

b = F · F T = V 2 Linker Cauchy-Green-Tensor (2-18)

ε = 1
2
(
I − b 1

)
Almansischer Verzerrungstensor (2-19)

h = 1
2 ln

((
b
))

= ln
((
V
))

Eulerscher Hencky-Tensor (2-20)

Demgegenüber sind die lagrangeschen Verzerrungsmaße wie folgt definiert:

U =
√
F T · F Rechter Strecktensor (2-21)

C = F T · F = U2 Rechter Cauchy-Green-Tensor (2-22)

γ = 1
2
(
C − I

)
Greenscher Verzerrungstensor (2-23)

H = 1
2 ln

((
C
))

= ln
((
U
))

Lagrangescher Hencky-Tensor (2-24)

Analog zu den Verzerrungsmaßen lassen sich auch Spannungstensoren eulerschen und la-
grangeschen Beobachtern zuordnen. Dabei stellt der Cauchy-Spannungstensor σ den Ver-
treter der eulerschen und der 2. Piola-Kirchhoff-Spannungstensor T̃ den Vertreter der
lagrangeschen Betrachtungsweise dar. Der symmetrische Cauchy-Spannungstensor wird

8

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


2.1 Grundbegriffe der Kontinuumsmechanik

dabei über den Normalenvektor n und den Spannungsvektor s wie folgt eingeführt:

s = n · σ . (2-25)

Mit Hilfe der pull-back-Operation (vgl. Holzapfel 2000), welche einen Wechsel zwischen
verschiedenen Konfigurationen ermöglicht, kann der ebenfalls symmetrische 2. Piola-Kirch-
hoff-Spannungstensor wie folgt angegeben werden:

T̃ = ρ̃

ρ
F 1 · σ · F T . (2-26)

Ähnlich wie beim Deformationsgradienten, der keiner Betrachtungsweise zuzuordnen ist,
gibt es noch eine Mischform: den 1. Piola-Kirchhoff-Spannungstensor T . Dieser in der
Regel oft unsymmetrische Spannungstensor ist wie folgt definiert:

T = ρ̃

ρ
F 1 · σ . (2-27)

Zusammenfassend können die verschiedenen Spannungsmaße über den Deformationsgra-
dienten wie folgt umgerechnet werden:

σ = ρ

ρ̃
F · T = ρ

ρ̃
F · T̃ · F T . (2-28)

Um auch Aussagen über zeitliche Änderungen von Verzerrungs- und Spannungstensoren
treffen zu können, sollen im Folgenden Zeitableitungen näher betrachtet werden. Eine
besondere Rolle nimmt dabei die substantielle oder auch materielle Zeitableitung ein. Diese
beschreibt die Änderung eines materiellen Punktes über den Deformationsprozess:

4
X := lim

∆t→0

X(xa, t+ ∆t) −X(xa, t− ∆t)
2∆t . (2-29)

Wird die substantielle Zeitableitung auf lagrangesche Tensoren angewendet, so entstehen
stets lagrangesche Größen. Im Folgenden wird die lagrangesche Zeitableitung durch ein
hochgestelltes „4“ gekennzeichnet.

4
X = Ẋabea ◦ eb (2-30)

Um verschiedene eulersche Zeitableitungen angeben zu können, werden hingegen spezielle
Berechnungsvorschriften benötigt (vgl. Ihlemann 2003 & 2014). Eine in diesem Zusam-
menhang wichtige Größe stellt der Geschwindigkeitsgradient L dar.

L = (∇ ◦ v)T =
4
F · F 1 = D + W mit:


D = 1

2(L+ LT )

W = 1
2(L− LT )

(2-31)
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2 Grundlagen

Hierbei wird der Tensor D als Tensor der Formänderungsgeschwindigkeit und der Tensor
W als Wirbeltensor bezeichnet.

2.1.3 Trennung von Gestalt- und Volumenänderung

Für technische Elastomere ist die Annahme von nahezu inkompressiblem Materialverhal-
ten, aufgrund des Unterschiedes um einige Größenordnungen zwischen Kompressions- und
Schubmodul K/G � 1, gemeinhin anerkannt (vgl. Lion 2000, Wriggers 2001, Stommel
& Zimmermann 2011). Um dies zu modellieren, bietet es sich an, die Deformation als
Volumen- und Gestaltänderung separat zu formulieren. Ein Zugang bietet hier die mul-
tiplikative Zerlegung des Deformationsgradienten (vgl. Kröner 1958, Sussman & Bathe
1987). In der Gleichung (2-32) sind die zwei aufeinanderfolgenden Teildeformationen dar-
gestellt.

F =
G
F ·

V
F (2-32)

Dabei beschreibt
V
F die reine Volumenänderung und

G
F die Gestaltänderung. Da eine reine

Volumenänderung nur dazu führt, dass alle materialfesten Linien entweder gleichmäßig
gestaucht oder gestreckt werden, kann auch von einem hydrostatischen Tensor gespro-
chen werden (vgl. Ihlemann 2003). Der Gestaltänderungsanteil lässt sich dann über die
Gesamtdeformation bestimmen.

V
F = µI ⇒

G
F = 1

µ
F (2-33)

Der Streckungsfaktor µ entspricht der dritten Hauptinvariante des Deformationsgradien-
ten.

µ = 3
√
I3(F ) = J

1
3

3 (2-34)

Nachfolgend können über die Zerlegung des Deformationsgradienten die Cauchy-Green-
Tensoren berechnet werden.

G
C =

G
F T ·

G
F = 1

µ2C = J
− 2

3
3 C ;

V
C =

V
F T ·

V
F = µ2 I = J

2
3

3 I (2-35)

G
b =

G
F ·

G
F T = 1

µ2 b = J
− 2

3
3 b ;

V
b =

V
F ·

V
F T = µ2 I = J

2
3

3 I (2-36)

Abschließend werden noch die ersten beiden Hauptinvarianten, wie sie beispielsweise zur
Herleitung hyperelastischer Stoffgesetze mit quasi-inkompressibler Formulierung benötigt
werden (siehe nächster Abschnitt 2.1.4), mit J1 und J2 angegeben.

J1 = I1
( G
C
)

= I1
(G
b
)

= J
− 2

3
3 I1

(
C
)

; J2 = I2
( G
C
)

= I2
(G
b
)

= J
− 4

3
3 I2

(
C
)

(2-37)
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2.1 Grundbegriffe der Kontinuumsmechanik

2.1.4 Hyperelastische Stoffgesetze mit quasi-inkompressibler Formulierung

Ausgangspunkt zur Herleitung von Stoffgesetzen bilden die Hauptsätze der Thermody-
namik. Eine umfassende Darstellung der verschiedenen Bilanzgleichungen kann dabei ein-
schlägiger Literatur entnommen werden (vgl. Holzapfel 2000, Haupt 2002). Eine besondere
Stellung nimmt die Clausius-Duhem-Ungleichung ein, die auch als lokale Form des zweiten
Hauptsatzes der Thermodynamik bezeichnet wird.[

T̃ ·· 4
γ − ρ̃

(
ψ̇ + θ̇η

)]
− 1
θ
q̃ · ∇̃θ ≥ 0 (2-38)

Die Größen ψ̇ und θ̇ kennzeichnen hierbei die zeitlichen Ableitungen der freien Helmholtz-
Energie und der absoluten Temperatur. Die Variable η beschreibt die spezifische Entropie
und die Größe q̃ die Wärmestromdichte in der Referenzkonfiguration. Für den Sonderfall,
dass nur mechanische Dissipation stattfindet, erhält man die Clausius-Planck-Ungleichung.
Da im Folgenden hyperelastische Stoffgesetze mit Beschränkung auf isothermen und adia-
baten Vorgängen hergeleitet werden (keine Energiedissipation), kann aus der Clausius-
Planck-Ungleichung eine Gleichgewichtsgleichung formuliert werden:

1
2 T̃ ··

4
C − ρ̃ψ̇

!= 0 mit: 4
γ = 1

2
4
C . (2-39)

Neben der lagrangeschen Zeitableitung für den Rechten Cauchy-Green-Tensor wird auch
die zeitliche Ableitung der freien Energiedichte benötigt. Für Stoffgesetze mit schwacher
Kompressibilität wird die Energiedichte additiv aus einem Gestalt- und einem Volumen-
änderungsanteil zusammengesetzt:

ρ̃ψ = ρ̃ψG(J1, J2) + ρ̃ψV (J3) . (2-40)

Die partielle Ableitung der freien Energiedichte nimmt dabei folgende Form an:

ρ̃ψ̇ = ∂ρ̃ψG

∂J1

.
J1 + ∂ρ̃ψG

∂J2

.
J2 + ∂ρ̃ψV

∂J3

.
J3 mit: (2-41)

.
J1 =

(
C 1 ·

G
C ′
)

··
4
C ;

.
J2 = −

(
C 1 ·

( G
C 1

)′)
··

4
C ;

.
J3 = J3

2 C 1 ··
4
C . (2-42)

Setzt man diese Ableitung der freien Energiedichte und die Ableitungen der J-Invarianten
.
J1,

.
J2,

.
J3 (s. Ihlemann 2003) in die Claudius-Planck-Gleichung ein, so entsteht folgender

Ausdruck:

[
1
2 T̃ −

(
∂ρ̃ψG

∂J1

G
C ′ − ∂ρ̃ψG

∂J2

(
G
C 1

)′)
· C 1 − J3

2
∂ρ̃ψV

∂J3
C 1

]
··

4
C = 0 . (2-43)
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2 Grundlagen

Da diese Gleichung für beliebige Belastungen
4
C erfüllt sein muss, kann der eckige Klam-

merausdruck zu Null gesetzt werden. Es entsteht folgende Gleichung:

∀
4
C : T̃ = 2

(
∂ρ̃ψG

∂J1

G
C − ∂ρ̃ψG

∂J2

G
C 1

)′

· C 1 + J3
∂ρ̃ψV

∂J3
C 1 . (2-44)

Mit Hilfe des Übertragungsoperators, der in Ihlemann (2003) eingeführt wurde, kann eine
Größe aus der Referenzkonfiguration in die aktuelle Konfiguration übertragen werden:
S 1((X)) = F ·X ·F 1. Somit kann der 2. Piola-Kirchhoff-Spannungstensor in den Cauchy-
Spannungstensor überführt werden:

σ = 2
J3

(
∂ρ̃ψG

∂J1

G
b − ∂ρ̃ψG

∂J2

G
b 1

)′

+ ∂ρ̃ψV

∂J3
I . (2-45)

Im Weiteren sollen Ansätze für isotrope hyperelastische Stoffgesetze mit schwacher Kom-
pressibilität vorgestellt und diskutiert werden. Zunächst wird dazu ein Energiedichte-
Ansatz gewählt, aus dem sich verschiedenen Grundformen ableiten lassen (vgl. Rivlin
& Saunders 1951):

ρ̃ψG =
m∑

i=0

n∑
j=0

cij

(
J1 − 3

)i(
J2 − 3

)j
. (2-46)

Mit dem alleinigen Parameter: c10 erhält man den Ansatz für Neo-Hooke (1943), für
c10, c01 den für Mooney-Rivlin (1940) und für c10, c20, c30 den für Yeoh (1993). Zur
Berücksichtigung der Volumenänderung gibt es eine Vielzahl verschiedener Energiedichte-
Ansätze, welche in Hartmann (2003) aufgelistet sind. Die dabei in der Literatur am Häu-
figsten zur Anwendung kommende Vertreter sind mit ρ̃ψV 1 und ρ̃ψV 2 angegeben. Für das
im Rahmen dieser Arbeit verwendete Fe-Programm Msc.Marc kommt standardmäßig der
Ansatz ρ̃ψV 3 zum Einsatz:

ρ̃ψV 1 = K

2
(
J3 − 1

)2
; ρ̃ψV 2 = K

2
(

ln J3
)2

; ρ̃ψV 3 = 9K
2
(
J

1/3
3 − 1

)2
. (2-47)

Exemplarisch wird der Energiedichte-Ansatz von Yeoh mit schwacher Kompressibilität
(Ansatz: ρ̃ψV 3) weiter verwendet. Die Gesamtenergiedichte nimmt dabei folgende Form
an (mit Berücksichtigung des Volumenanteils):

ρ̃ψ = c10
(
J1 − 3

)
+ c20

(
J1 − 3

)2
+ c30

(
J1 − 3

)3
+ 9K

2
(
J

1/3
3 − 1

)2
. (2-48)

Die benötigten Ableitungen ergeben sich dabei zu:

∂ρ̃ψG

∂J1
= c10 + 2c20

(
J1 − 3

)
+ 3c30

(
J1 − 3

)2
; ∂ρ̃ψG

∂J2
= 0; ∂ρ̃ψV

∂J3
= 3K

(
J

1/3
3 − 1

)
J

−2/3
3 .

(2-49)
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2.2 Stand der Technik zu Elastomer-Probekörpern

Setzt man diese Ableitungen in die Gleichung (2-45) ein, so erhält man das Yeoh-Stoffgesetz
mit quasi-inkompressibler Formulierung:

σ = 2
J3

(
c10 + 2 c20(J1 − 3) + 3 c30(J1 − 3)2

)G
b ′ + 3K

(
J

1/3
3 − 1

)
J

−2/3
3 I . (2-50)

In späteren Abschnitten werden diese analytischen Gleichungen für die Berechnung von
Fehlermaßen benötigt. Beispielsweise kann ein Spannungsmaß definiert werden, welches
die Abweichung zwischen aktuell vorliegender und theoretisch exakter Lösung beschreibt.
Dadurch können in direkter Weise Aussagen zur Güte eines Messbereiches getroffen wer-
den.

2.2 Stand der Technik zu Elastomer-Probekörpern

Die Bestimmung der physikalischen Eigenschaften von Elastomeren lässt sich bis in die
frühen 60er Jahre zu J.R. Scott zurückführen. Seitdem existieren eine Vielzahl von Prüf-
methoden, internationalen Standards und Probekörpern, die es ermöglichen die komplexen
Eigenschaften von Elastomeren zu erfassen. In Brown (2006) befindet sich eine ausführ-
liche Beschreibung zur Präparation von Probekörpern, deren Versuchsdurchführung und
Auswertung. Dabei werden grundlegende Zusammenhänge zur Charakterisierung von tech-
nischen Elastomeren erläutert, Messstrategien beschrieben und die verschiedenen Herange-
hensweisen diskutiert. Die darin beschriebenen nationalen und internationalen Standards
legen wichtige Grundsteine für die Verbesserung von Produkten im Industriealltag, die
Sicherstellung der Qualität im Herstellungsprozess und die Sammlung von Kennwerten
für Materialdatenbanken (vgl. Brown 2006).

2.2.1 Probekörper für einachsige Zug-/Druckversuche

Im Folgenden werden eine Reihe von Probekörpern vorgestellt, wie sie zur Charakteri-
sierung von technischen Elastomeren Anwendung finden. Dazu soll zunächst ein Über-
blick über die Hauptvertreter der verschiedenen Belastungsarten gegeben werden. Einer
der Grundversuche stellt dabei der einachsige Zug- bzw. Druckversuch dar. In der Ab-
bildung 2.1 sind zum besseren Verständnis verschiedene Zug- oder/und Druckprobekör-
per dargestellt. Der S2-Stab ist einer der bekanntesten Vertreter zur Untersuchung des
Materialverhaltens im Zugbereich. Seine Geometrie ist dahingehend optimiert, dass ein
möglichst großer homogener Messbereich vorhanden ist (vgl. Brown 2006, Kottner u. a.
2018). Idealerweise erfolgt die Dehnungsmessung in dem verjüngten Bereich mittels eines
Längenänderungsaufnehmers. Hierfür eignet sich als berührendes System beispielsweise
der MultiXtens der Firma Zwick/Roell. Analog dazu bieten sich auch optische Metho-
den, wie die Dehnungsmessung mittels Laserextensometer oder Grauwertkorrelation an.
Die verschiedenen Messsysteme weisen dabei ganz unterschiedliche Vor- und Nachteile
auf und sollten daher je nach Anforderungsprofil der Messaufgabe ausgewählt werden.
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S2-Stab Standard-Hantel Gummizylinder

Mess-
bereich

Mess-
bereich

Mess-
bereich

Abb. 2.1 – Gegenüberstellung verschiedener Probekörper für einachsige Zug-
/Druckversuche. Die Abbildung ist in leicht modifizierter Form Kanzenbach
u. a. (2018) entnommen. Wiederverwendung mit Genehmigung. © 2018 Else-
vier Ltd.

Neben Vorteilen wie der einfachen Geometrie und dem großen homogenen Messbereich
besitzt der S2-Stab einen entscheidenden Nachteil. Der Probekörper ist in keiner Weise
für Druckbeanspruchung geeignet. Dabei stellt aber gerade diese eine wichtige Beanspru-
chungsart dar. In der Arbeit von Bergström (1999) wird die vereinfachte Geometrie eines
Druckprobekörpers vorgestellt. Dieser Gummizylinder (siehe Abbildung 2.1, rechts) be-
sitzt aufgrund seiner kompakten Struktur den entscheidenden Vorteil, dass er auch für
größere Druckbelastungen geeignet ist. Allerdings kann dieser Probekörper nicht für Zug-
versuche herangezogen werden. Hinzu kommt, dass die Stirnflächen des Probekörpers sehr
gut geschmiert sein müssen, da sich sonst aufgrund der hohen Reibung ein sehr inhomoge-
ner Deformationszustand einstellt (vgl. Stańco & Działak 2018). Um sowohl Zug- als auch
Druckversuche realisieren zu können, empfiehlt sich die Verwendung einer hantelförmigen
Probekörpergeometrie. In der Arbeit von Lion (2000), als auch in der Veröffentlichung
von Alshuth u. a. (2007) werden dazu zwei verschiedene Ausführungen der Einspannung
vorgestellt (vgl. Abbildung 1.1). Bei Lion (2000) erfolgt die Einspannung der Probenen-
den durch Kleben in Metalltöpfe, die dann spielfrei in die dafür vorgesehenen Halterungen
der Prüfmaschine eingebaut werden. Im Vergleich dazu wird bei Alshuth u. a. (2007) der
Kopf der Standard-Hantel über Halterungsadapter mit der Prüfmaschine verbunden. Der
große Vorteil beider Ausführungen besteht darin, dass jetzt erstmals kombinierte Zug-
Druckversuche realisiert werden können. Allerdings sei hier explizit darauf hingewiesen,
dass der Probekörper bei Stauchungen größer 30 % zu sehr inhomogenen Deformationen
führt (vgl. Abbildung 1.1, rechts).

2.2.2 Probekörper für biaxiale Versuche

Eine weitere interessante Beanspruchungsart stellt der äquibiaxiale Zug dar. Diese Belas-
tungsart führt im Idealfall zu identischen Verzerrungszuständen wie der einachsige Druck-
versuch. In der Veröffentlichung von Alshuth u. a. (2007) erfolgte der Vergleich zwischen
einem umgerechneten äquibiaxialen Zugversuch und einem Druckversuch mittels Hantel-
probekörper. Hierbei stellte sich heraus, dass beim Äquibiaxialversuch schmalere Hyste-
resen zu verzeichnen sind und damit eine geringere Energiedissipation stattfindet. Diese
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2.2 Stand der Technik zu Elastomer-Probekörpern

Abweichungen können aus dem Äquibiaxialversuch selbst resultieren oder aus dem Druck-
versuch mit dem Hantelprobekörper, der bei größeren Stauchungen inhomogene Deforma-
tionen aufweist. In den Veröffentlichungen von Johlitz & Diebels (2011) und Seibert u. a.
(2014) wird ein verbesserter biaxialer Zugprobekörper vorgestellt (vgl. Abbildung 2.2).
Die Probekörpergeometrie (Kreuzform mit parametrisiertem Radius) wurde dabei mittels

Abb. 2.2 – Biaxialer Zugprobekörper (Abbildung aus der Veröffentlichung
von Seibert u. a. 2014)

verschiedener Qualitätskriterien experimentell optimiert.

2.2.3 Scherprobekörper

Eine ganz andere Grundbeanspruchungsart stellt die einfache Scherung dar. Als einer
der bekanntesten Vertreter ist der zylindrische Double-Shear-Probekörper, wie er im For-
schungsinstitut TARRC (Hertford) eingesetzt wird, zu nennen. In den Veröffentlichungen
von Besdo u. a. (2003 & 2005) und Ahmadi u. a. (2007) ist dieser symmetrische Scherprobe-
körper abgebildet. Das Design beruht auf einer Zylindergeometrie, die an den Stirnflächen
anvulkanisiert oder angeklebt wird. Der Aufbau erfolgt in doppelt symmetrischer Form,
um auftretende Querkräfte zu kompensieren (vgl. Abbildung 2.3). In den oben genannten
Veröffentlichungen finden sich weiterhin eine Vielzahl von Versuchen zur Untersuchung
des Relaxations- und Erholungsverhaltens technischer Elastomere (vgl. auch Lampe u. a.
2018). Eine Weiterentwicklung dieses Scherprobekörpers für Lebensdaueruntersuchungen
findet sich in Freund (2007). Die Probekörpergeometrie wurde hierbei durch eine geeignete
Kombination der beiden Rundungsradien der Kontakt- und Manteloberfläche angepasst,
um einen möglichst homogenen Bereich mit maximalen Spannungen im Innern des Kör-
pers zu erzielen. In der Arbeit von Klauke (2015) wird dieser optimierte Scherprobekörper
dann zur Lebensdauervorhersage unter Berücksichtigung rotierender Beanspruchungsrich-
tungen angewendet.

Ein weiterer Vertreter ist der Scherprobekörper von der Firma Akzo Nobel. Das De-
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2 Grundlagen

sign beruht hier auf einem flächigen Scherprobekörper, der zwischen drei Metallleisten
eingeklemmt wird. Die mittlere Metallleiste dient zur Lasteinleitung und wird demzu-
folge von der Traverse verfahren. In der Abbildung 2.3 sind die vorgestellten Scherpro-
bekörper dargestellt. Im Weiteren soll auf die verschiedenen Vor- und Nachteile der be-

Abb. 2.3 – Gegenüberstellung zweier Scherprobekörper (links) zylindrischer
Double-Shear-Probekörper (Abbildung aus der Veröffentlichung von Besdo
u. a. 2003) und (rechts) flächiger Scherprobekörper von der Firma Akzo Nobel
(Abbildung aus der Arbeit von Ihlemann 2003)

schriebenen Scherprobekörper näher eingegangen werden. Dabei soll zunächst besonderes
Augenmerk auf die Grundgeometrie der Scherprobekörper gelegt werden. Der Double-
Shear-Probekörper bietet den großen Vorteil, dass er aufgrund seiner kompakten Struktur
(geringes Höhen-Durchmesserverhältnis) sehr gut an den Stirnflächen anvulkainsiert oder
geklebt werden kann. Dadurch wird die Scherdeformation in einem hohem Maße sehr
gut übertragen. In der Arbeit von Freund (2007) konnte gezeigt werden, dass der Pro-
bekörper über weite Bereiche homogen deformiert wird. Lediglich in den Randbereichen
sind größer werdende Inhomogenitäten der Von-Mises-Vergleichsspannung zu verzeichnen.
Als wesentlicher Nachteil ist das Auftreten von hohen Spannungen im Kontaktbereich zu
nennen. Aus diesem Grund schlägt Freund (2007) eine Taillierung der Stirn- und Zylinder-
flächen vor. Nachteilig bleibt aber, dass durch die Klebe- oder Vulkanisationsverbindung
zwischen dem Probekörper und den metallischen Anschlussteilen eine Beeinflussung der
Materialeigenschaften im Kontaktbereich stattfindet. Ein weiterer Nachteil ist das Entste-
hen von Schrumpf und das Auftreten von Eigenspannungen nach dem Anvulkanisieren.
Diese Einflüsse können nur bedingt minimiert werden.

Als nächstes werden die prinzipiellen Vor- und Nachteile von flächigen Scherprobekör-
pern beschrieben. Hierbei wird zunächst auf die verschiedenen Anwendungsmöglichkeiten
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2.2 Stand der Technik zu Elastomer-Probekörpern

näher eingegangen. Flächige Scherprobekörper besitzen den großen Vorteil, dass mit ver-
gleichsweise geringem Aufwand Scherversuche mit Normalkraft Null durchgeführt werden
können. Weiterhin ermöglichen flächige Scherprobekörper aufgrund der großen freien Ober-
flächen homogene Alterungsuntersuchungen. Solche Untersuchungen sollten beispielsweise
mit dem Double-Shear-Probekörper vermieden werden, da hier große Bereiche anvulka-
nisiert oder geklebt sind und dadurch kein Sauerstoff mit der Oberfläche reagieren kann.
Demzufolge stellt sich hier eine sehr inhomogene Alterung ein, die auf bestimmte Bereiche
nahe der freien Oberfläche beschränkt ist. Flächige Scherprobekörper besitzen darüber
hinaus den Vorteil, dass der Einfluss der Anisotropie nach einer Vorreckung auf Zug un-
tersucht werden kann. Ebenso ist es denkbar, aus den gescherten Gummimatten S2-Stäbe
für einen anschließenden Zugversuch zu entnehmen, bzw. parallel zu den Scherversuchen
gleich Zugversuche aus dem gleichen Material durchzuführen. Durch die Verwendung kon-
ventioneller Gummimatten bietet sich auch die Möglichkeit an, faserverstärkte Materialien
zu testen. Ein prinzipieller Nachteil von flächigen Scherprobekörpern ist, dass bei größeren
Deformationen ein erhöhtes Risiko von Beulerscheinungen besteht. Diesem Umstand kann
aber durch ein optimiertes Breiten-Dickenverhältnis begegnet werden. Allerdings sollte bei
der Dimensionierung der Dicke darauf geachtet werden, dass noch eine homogene Alterung
stattfinden kann. Die Verwendung von herkömmlichen Gummimatten hat auch den ganz
praktischen Vorteil, dass die Herstellung von Probekörpern verhältnismäßig einfach und
kostengünstig ist. Die Gummimatten können beispielsweise dem Serienmaterial entnom-
men oder als Platten gepresst werden.
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3 Probekörperdesign für hochpräzise
Zug-/Druckmessungen

Das Kapitel beschäftigt sich mit der Entwicklung eines hochpräzisen Zug-/Druckprobekör-
pers für die Charakterisierung von Elastomerwerkstoffen. Von der Idee des speziellen De-
signs der Halterungen, bis hin zur Geometrieoptimierung des Probekörpers und der expe-
rimentellen Erprobung, ist der komplette Entwicklungszyklus aufgeführt. Mit der industri-
ellen Anwendung des Probekörper-Setups findet die Entwicklung einen erfolgreichen Ab-
schluss. Das spezielle Design der Halterungen ermöglicht es, auch bei extremen Stauchun-
gen ein nahezu homogenes Materialverhalten zu messen. Der neu entwickelte Probekörper
eignet sich somit ideal für die phänomenologische Untersuchung von Elastomerwerkstof-
fen.

3.1 Motivation für die Entwicklung kombinierter
Zug-/Druckprobekörper

Die Anforderungen an neue Probekörper hinsichtlich Funktionalität, Präzision, Homoge-
nität und Wirtschaftlichkeit, wachsen in gleichem Maße wie die Notwendigkeit neuer Stoff-
gesetze. Dabei finden Probekörper in ganz unterschiedlichen Bereichen Anwendung:

• Überprüfung des Produktionsprozesses

• Identifikation von Materialparametern

• Untersuchung grundlegender phänomenologischer Eigenschaften

• Funktionstauglichkeit bei der Produktentwicklung

Elastomerwerkstoffe sind aus vielen Bereichen der Automobilindustrie nicht mehr wegzu-
denken, beispielhaft dafür sind Fahrwerksbuchsen, Reifen oder Dämpfer. Von besonderem
Interesse sind Probekörper, die für kombinierte Zug- und Druckbelastungen geeignet sind.
Solche Probekörper können dann zur Untersuchung des Materialverhaltens von Elastome-
ren als auch bei der Identifikation von Materialparametern genutzt werden. Die Erhöhung
der Homogenität der Spannungs- und Verzerrungsverteilung im Messbereich stellt eine
genauso wichtige Optimierungsgröße wie die der Stauchung dar. Für einachsige homogene
Zugbeanspruchungen kann beispielsweise ein S2-Stab verwendet werden.
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3.2 Analytische Untersuchungen zur Knickstabilität von Stäben und Balken

Der große Nachteil besteht darin, dass der Probekörper in keiner Weise für Druckbeanspru-
chungen geeignet ist. In vielen technischen Anwendungen spielen aber gerade Druckbean-
spruchungen eine wichtige Rolle, beispielhaft dafür sind Fahrwerksbuchsen oder Erdbeben-
dämpfer. Um eine geeignete Materialprüfung und Identifizierung von Materialparametern
durchführen zu können, benötigt man also einen Probekörper, der auch für Druckbean-
spruchungen geeignet ist. Hier liegt die Idee nahe, einen Hantelprobekörper zu verwenden.
Allerdings treten dabei zwei gegensätzliche Phänomene auf. Einerseits soll der Probekörper
möglichst lang gestaltet sein, um eine möglichst homogene Deformation im Mittelbereich
zu erzielen dies führt aber schon bei kleinsten Imperfektionen zum Knicken. Andererseits
würde ein Probekörper mit sehr großem Durchmesser und geringer/kleiner Höhe zwar
eine hohe Knicksicherheit aufweisen, dafür aber zu einer inhomogenen Deformation im
Messbereich führen. Ziel ist es also, einen Probekörper zu gestalten, der sowohl für große
Stauchungen als auch für eine homogene Deformation im Messbereich geeignet ist. Erreicht
werden soll diese herausragende Eigenschaftskombination durch ein spezielles Design der
Probekörperhalterungen. In der Veröffentlichung von Alshuth u. a. (2007) beschreiben die
Autoren den Hantelprobekörper, wie er zurzeit im Deutschen Institut für Kautschuktech-
nologie e.V. verwendet wird.

3.2 Analytische Untersuchungen zur Knickstabilität von Stäben
und Balken

3.2.1 Differentialgleichung der Balkenschwingung

Im Folgenden werden eine Reihe analytischer Untersuchungen zur Knickstabilität von Stä-
ben und Balken durchgeführt. Dabei soll insbesondere analysiert werden, was charakteris-
tische Größen zur Beschreibung der Knicksicherheit bzw. Knickstabilität sind. Diese analy-
tischen Untersuchungen dienen als Vorbereitung und Überprüfung numerischer Verfahren
zur Entwicklung von Halterungsgeometrien, wie sie in Kapitel 3.3 vorgestellt werden. Dafür
wird zunächst die Differentialgleichung für den allgemeinen Fall einer Balkenschwingung
hergeleitet. Mit Hilfe dieser Differentialgleichung sollen eine Reihe von Sonderfällen, wie
sie für diese Arbeit interessant sind, näher untersucht werden. In der Abbildung 3.1 ist
das Freikörperbild für ein infinitesimales Balkenelement dargestellt. Stellt man nun die
Gleichgewichtsbedingung in vertikaler Richtung und das Momentengleichgewicht um den
Schwerpunkt auf, so erhält man folgende Gleichungen (vgl. Dresig u. a. 2007, Gross u. a.
2007):

dmẅ = (Qz + dQz) cos(α+ dα) −Qz cosα+ (N + dN) sin(α+ dα) −N sinα+ qz ds

(3-1)

dJα̈ = (My + dMy) −My − ds
2 (Qz + dQz) − ds

2 Qz . (3-2)
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

Abb. 3.1 – Freikörperbild eines infinitesimalen Balkenelements

Unter der Annahme kleiner Winkel und der Vernachlässigung von Größen zweiter Ordnung
erhält man mit Hilfe von Additionstheoremen für den Schwerpunktsatz und den Drallsatz
folgende Zusammenhänge:

ρAẅ = (Nw′)′ +Q′
z + qz (3-3)

ρIyẅ
′ = M ′

y −Qz . (3-4)

Die Querkraft Qz kann durch Ortsableitung des Drallsatzes und dessen Einsetzung in die
Schwerpunktgleichung eliminiert werden. Es entsteht eine partielle Differentialgleichung
der Ordnung 2:

ρAẅ = (Nw′)′ +M ′′
y − (ρIyẅ

′)′ + qz . (3-5)

Einfache Materialbeziehungen wie das Hooke’sche Stoffgesetz oder das Zener-Modell lassen
sich über Äquivalenzbedingungen in die partielle Differentialgleichung integrieren (vgl.
Gross u. a. 2007, Lei u. a. 2013):

My = −EIyw
′′ → Hooke’sches Stoffgesetz (3-6)

My = −E∞Iyw
′′ −

t∫
−∞

E1Iye
−(t−s)/τ1 ∂w

′′

∂s
ds . → Zener-Modell (3-7)

Setzt man nun die Äquivalenzbedingung (3-6) in die Gleichung (3-5) ein, so erhält man
die allgemeine Differentialgleichung der Balkenschwingung. Mit Hilfe der Gleichung (3-8)
sollen nun einige Sonderfälle diskutiert werden.

ρAẅ = −(EIyw
′′)′′ − (ρIyẅ

′)′ + (Nw′)′ + qz (3-8)
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3.2 Analytische Untersuchungen zur Knickstabilität von Stäben und Balken

Sonderfall 1: Differentialgleichung der Saitenschwingung
Um die allgemeine Differentialgleichung der Saitenschwingung zu erhalten, muss der Grenz-
fall EIy → 0 betrachtet werden. Neben der Biegesteifigkeit des Balkens in der Schwin-
gungsebene (EIy = 0) muss weiterhin die Rotationsträgheit (ρIy = 0) aus Gleichung (3-8)
vernachlässigt werden. Wird die Normalkraft als konstant vorausgesetzt (N = F = konst.),
so entsteht die gesuchte Differentialgleichung:

ρAẅ − Fw′′ − qz = 0 . (3-9)

Sonderfall 2: Differentialgleichung der freien Balkenschwingung
Als nächstes soll die Differentialgleichung der freien Balkenschwingung hergeleitet und
diskutiert werden. Dazu wird die Rotationsträgheit (ρIy = 0) und die Flächenlast qz

vernachlässigt. Es entsteht bei konstanter Normalkraft (N = −F = konst.) folgender
Zusammenhang:

EIyw
′′′′ + ρAẅ + Fw′′ = 0 . (3-10)

Aus Gleichung (3-10) kann erschlossen werden, dass Zugkräfte zu einer Erhöhung der Ei-
genfrequenzen des Balkens führen und Druckkräfte diese senken (vgl. Dresig u. a. 2007).

Sonderfall 3: Differentialgleichung für die Stabilitätsanalyse von Balken bzw.
Stäben
Als letzter Sonderfall, zur Untersuchung des Stabilitätsverhaltens von Balken bzw. Stäben,
wird zusätzlich der Trägheitsterm (ρA = 0, Masse je Längeneinheit) vernachlässigt:

EIyw
′′′′ + Fw′′ = 0 . (3-11)

3.2.2 Störkraftuntersuchungen am Euler-IV-Druckstab

Im Weiteren soll auf analytischem Wege untersucht werden, ob sich mit Hilfe von Störkräf-
ten ein Kriterium für die Sicherheit gegenüber Ausknicken definieren lässt. Um grundlegen-
de Vergleiche (zu dem später auf numerischem Wege entwickelten Zug-/Druckprobekörper)
zu ermöglichen, werden die Randbedingungen des Euler-IV Druckstabes gewählt. Für eine
weitere Gegenüberstellung werden zunächst folgende Grundfälle unterschieden:

• einfacher Biegebalken (Fall 1)

• einfache Euler-IV-Knickung ohne Störkraft (Fall 2)

• einfache Euler-IV-Knickung mit Störkraft (Fall 3)

Einfacher Biegebalken (Fall 1)
Für den einfachen Fall des Biegebalkens kann die homogene Differentialgleichung der Form
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

w′′′′ = 0 durch triviale Integration gelöst werden. Die charakteristische Gleichung lautet
wie folgt:

w′′′′ = 0 ⇒ w(x) = C1 + C2x+ C3x
2 + C4x

3 . (3-12)

Die unbekannten Größen C1 bis C4 können über entsprechende Randbedingungen, siehe
Euler-IV-Druckstab, gelöst werden:

w(0) = 0 = C1

w′(0) = 0 = C2

w′
(
l

2

)
= 0 = C3l + 3

4C4l
2

Q

(
l

2

)
= S = −EI6C4 .

Für den einfachen Fall des Biegebalkens entsteht folgende Form der Biegelinie mit der
horizontalen Störkraft 2S in der Symmetrieebene:

w1(x) = Sl3

EI

[
1
8

(
x

l

)2
− 1

6

(
x

l

)3]
. (3-13)

Einfache Euler-IV-Knickung ohne Störkraft (Fall 2)
Als nächstes soll der Fall der einfachen Euler-IV-Knickung ohne Störkraft betrachtet wer-
den. Die Differentialgleichung wurde bereits als Sonderfall 3 hergeleitet, siehe Gleichung
(3-11):

w′′′′ + λ2w′′ = 0 mit: λ2 = F

EI
. (3-14)

Solche gewöhnlichen Differentialgleichungen können über den Ansatz:

w(x) = C1 cos(λx) + C2 sin(λx) + C3λx+ C4

w′(x) = −C1λ sin(λx) + C2λ cos(λx) + C3λ

w′′(x) = −C1λ
2 cos(λx) − C2λ

2 sin(λx)

w′′′(x) = C1λ
3 sin(λx) − C2λ

3 cos(λx)

w′′′′(x) = C1λ
4 cos(λx) + C2λ

4 sin(λx)

gelöst werden (vgl. Gross u. a. 2007). Setzt man nun die Randbedingungen wie oben ein,
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3.2 Analytische Untersuchungen zur Knickstabilität von Stäben und Balken

so ergibt sich folgender Zusammenhang:

w(0) = 0 = C1 + C4

w′(0) = 0 = C2λ+ C3λ

w′
(
l

2

)
= 0 = −C1λ sin

(
λ
l

2

)
+ C2λ cos

(
λ
l

2

)
+ C3λ

Q

(
l

2

)
= 0 = −EIw′′′

(
l

2

)
− Fw′

(
l

2

)
= −FC3λ ⇒ C3 = 0 ⇒ C2 = 0 .

Aus der dritten Randbedingung kann für die nicht trivialen Fälle:

−C1λ sin
(
λ
l

2

)
= 0 ⇒ λ

l

2 = nπ

gesetzt werden. Für die erste Knickform (n = 1) entsteht folgende Charakteristik der
Biegelinie (einfache Euler-IV-Knickung ohne Störkraft):

w2(x) = C1

[
cos

(
2πx

l

)
− 1

]
. (3-15)

Ist man an der maximalen Verschiebung in Querrichtung interessiert, so erhält man die
unbestimmte Größe der Auslenkung C1:

w2,max = w2

(
l

2

)
= −2C1 = C1 .

Die kritische Kraft kann für den ersten auftretenden nichttrivialen Fall λkritl/2 = π mit
der Beziehung λ2 = F/EI wie folgt berechnet werden:

F2,krit = 4π2

l2
EI . (3-16)

Einfache Euler-IV-Knickung mit Störkraft (Fall 3)
Als letztes soll der Fall der einfachen Euler-IV-Knickung mit Störkraft betrachtet werden.
Es sei für die Herleitung dieser Gleichungen darauf hingewiesen, dass die Annahme kleiner
Verformungen berücksichtigt wurde. Für große Verformungen, wie sie nach dem Knicken
auftreten, sei auf die geometrisch exakte Beschreibung Eulerscher Elastika verwiesen. In
der Arbeit von Virgin (2007) finden sich beispielsweise ausführliche Untersuchungen zum
Nachbeulverhalten (engl. post buckling). Für die hier durchgeführten Untersuchungen wird
im Weiteren die Differentialgleichung, siehe Gleichung (3-14), verwendet. Die ersten drei
Randbedingungen haben dabei die gleiche Form wie bei der Euler-IV-Knickung ohne Stör-
kraft. Lediglich die Querkraft-Randbedingung hat die Störkraftgröße S, woraus sich von
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Null verschiedene Größen für die Unbekannten C3 und C2 ergeben:

Q

(
l

2

)
= S = −FC3λ ⇒ C3 = − S

EIλ3 ⇒ C2 = S

EIλ3 .

Aus der dritten Randbedingung kann nun der nicht länger unbestimmte Faktor C1 be-
rechnet werden:

C1 = S

EIλ3
cos

(
λ l

2
)

− 1
sin
(
λ l

2
) .

Die Biegelinie der gestörten Knickform nimmt dabei folgende Charakteristik an:

w3(x) = S

F

[
cos

(
λ l

2
)

− 1
λ sin

(
λ l

2
) ( cos(λx) − 1

)
+ 1
λ

sin(λx) − x

]
. (3-17)

Die maximale Auslenkung tritt an der Stelle x = l/2 auf:

w3,max = w3

(
l

2

)
= S

F

[
2
(

1 − cos
(
λ
l

2

))
− λ

l

2 sin
(
λ
l

2

)] 1
λ sin

(
λ l

2
) . (3-18)

Aus der Gleichung (3-18) wird ersichtlich, dass die Auslenkung in der Mitte des Stabes
beliebig anwächst, wenn der Nenner verschwindet λkritl/2 = π.

F3,krit = 4π2

l2
EI (3-19)

Die kritische Kraft hat offensichtlich das gleiche Maß wie bei der Euler-IV-Knickung ohne
Störkraft. Unterschiede ergeben sich bei Betrachtung der auftretenden Verschiebungen in
Querrichtung. Hier kann festgestellt werden, dass für den Euler-IV-Druckstab ohne Stör-
kraft, unterhalb der kritischen Kraft keinerlei Verschiebung in Querrichtung auftritt und
für den Euler-IV-Druckstab mit Störkraft dagegen große Verschiebungen. Aus den darge-
stellten Knickfällen lassen sich eine Reihe interessanter Schlussfolgerungen ziehen, die im
Folgenden näher diskutiert werden sollen.

Schlussfolgerungen der Stabilitätsanalysen:
Zunächst kann festgestellt werden, dass die Größe der kritischen Kraft gänzlich unab-
hängig von der Größe der Störung S ist. In Abbildung 3.2 ist dieser Sachverhalt für drei
verschiedene Störgrößen grafisch dargestellt. Aus der Abbildung lässt sich entnehmen,
dass die Störkraft einen Einfluss auf die Auslenkung in der Stabmitte hat, jedoch nicht
auf die kritische Kraft selbst. Alle drei Kurven schmiegen sich asymptotisch an den hori-
zontalen Verlauf der kritischen Kraft an. Als nächstes sollen die verschiedenen Verläufe der
Biegelinien miteinander verglichen und diskutiert werden. Um eine einheitliche Darstel-
lung der gestörten und ungestörten Knickverläufe zu ermöglichen, werden die Biegelinien
durch ihren betragsmäßig größten Wert geteilt. Die normierten Verläufe nehmen dabei
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Abb. 3.2 – Störgröße S als Maß zum Erreichen der kritischen Kraft (Simula-
tionsergebnisse)
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Abb. 3.3 – Darstellung der normierten Verschiebungsverläufe unter Ausnut-
zung der Symmetrie (Simulationsergebnisse, die Kurven schwarz und grün fal-
len zusammen)

folgende Form an:

w1,norm = w1(x)
w1,max

= 96
[

1
8

(
x

l

)2
− 1

6

(
x

l

)3]
(3-20)
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

w2,norm = w2(x)
w2,max

= 1
2

[
1 − cos

(
2πx

l

)]
(3-21)

w3,norm = w3(x)
w3,max

=
(
1 − cos(λl/2)

)(
1 − cos(λx)

)
+ sin(λl/2)

(
sin(λx) − λx

)
2
(
1 − cos(λl/2)

)
− λl/2 sin(λl/2)

. (3-22)

In Abbildung 3.3 sind alle drei normierten Verläufe dargestellt. Obwohl die Biegelinien
mathematisch gesehen sehr unterschiedliche Formen haben, zeichnen sie sich durch eine
große Ähnlichkeit aus. Alle drei weichen nur sehr geringfügig voneinander ab. Weiterhin
kann festgestellt werden, dass die normierten Verläufe nicht von der Störkraft S abhän-
gig sind. Es sei an dieser Stelle aber nochmal ausdrücklich darauf hingewiesen, dass die
hier hergeleiteten Gleichungen nur bis zum Bereich des Knickens angewendet werden dür-
fen. Um das Nachbeulverhalten zu untersuchen, wird auf die Arbeit von Virgin (2007)
verwiesen.

3.2.3 Eigenfrequenzanalyse am Euler-Bernoulli-Balken

In diesem Abschnitt erfolgt die Eigenfrequenzanalyse am Beispiel eines Euler-Bernoulli-
Balkens. Dabei soll untersucht werden, ob sich mit Hilfe von Eigenfrequenzen Aussagen
über das Stabilitätsverhalten von schlanken Strukturen treffen lassen. Aus den analyti-
schen Lösungen sollen wichtige Erkenntnisse abgeleitet werden, wie sie später für die nu-
merische Umsetzung benötigt werden. Die hier hergeleiteten Lösungen dienen der quanti-
tativen Kontrolle und erlauben ein besseres Verständnis bezüglich Knicksicherheit und
Stabilität. Für die Eigenfrequenzanalyse eines Euler-Bernoulli-Balkens wird die Diffe-
rentialgleichung der freien Balkenschwingung herangezogen, siehe Gleichung (3-10) mit
EI = konst.:

EIw′′′′(x, t) + ρAẅ(x, t) + Fw′′(x, t) = 0 .

Solche partiellen Differentialgleichungen lassen sich in der Regel mit Hilfe eines Separa-
tionsansatzes oder eines Produktansatzes, der eine Trennung der Zeit- und Ortsfunktion
vornimmt, lösen (vgl. Dresig u. a. 2007, Gross u. a. 2007). Der hier verwendete Produkt-
ansatz mit seiner örtlichen und seiner zeitlichen Ableitung lautet:

w(x, t) = W (x) cos(ωt− α)

w′′(x, t) = W ′′(x) cos(ωt− α)

w′′′′(x, t) = W ′′′′(x) cos(ωt− α)

ẅ(x, t) = −W (x)ω2 cos(ωt− α) .

Setzt man nun die verschiedenen Ableitungen des Produktansatzes in Gleichung (3-10)
ein, so lässt sich der zeitabhängige Term: cos(ωt− α) wie folgt separieren:[

EIW ′′′′(x) − ρAω2W (x) + FW ′′(x)
]

cos(ωt− α) = 0 . (3-23)

26

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3.2 Analytische Untersuchungen zur Knickstabilität von Stäben und Balken

Da die Gleichung (3-23) für beliebige zeitabhängige Terme erfüllt sein soll, wird gefordert,
dass der Klammerausdruck Null sein muss. Es entsteht eine gewöhnliche Differentialglei-
chung vierter Ordnung in der Form:

EIW ′′′′(x) − ρAω2W (x) + FW ′′(x) = 0 . (3-24)

Solche gewöhnlichen Differentialgleichungen können mit Ansätzen des Typs: W (x) =
eλx gelöst werden: (

EIλ4 − ρAω2 + Fλ2
)
eλx = 0 . (3-25)

Die charakteristische Gleichung mit der Substitution κ4 = ω2 ρA

EI
lautet dabei:

λ4 − κ4 + F

EI
λ2 = 0 . (3-26)

Mit Hilfe von Additionstheoremen
(
cosh(λx) ± sinh(λx) = e±λx, cos(λx) ± i sin(λx) =

e±iλx
)

können die Fundamentallösungen der e-Funktion in einer Reihe aus Sinus- und
Cosinus-Anteilen dargestellt werden. Die allgemeine Lösung nimmt damit folgende Form
an (vgl. Gross u. a. 2007):

w(x) = C1 sinh(λ1x) + C2 cosh(λ1x) + C3 sin(λ2x) + C4 cos(λ2x) . (3-27)

Die Ortskoordinate x des Euler-Bernoulli-Balkens wird über die Variable ζ = x/l normiert
(mit: ζ ∈ [0, 1]), um mit dimensionslosen Nullstellen M und N arbeiten zu können:

M = λ1l = l

[
− 1

2
F

EI
+
[

1
4

(
F

EI

)2

+ κ4
] 1

2
] 1

2

(3-28)

N = λ2l = l

[
1
2
F

EI
+
[

1
4

(
F

EI

)2

+ κ4
] 1

2
] 1

2

. (3-29)

Gleichung (3-27) nimmt dabei folgende Form an:

w(ζl) = C1 sinh(Mζ) + C2 cosh(Mζ) + C3 sin(Nζ) + C4 cos(Nζ) . (3-30)

Die Randbedingungen werden wie in den vorherigen Abschnitten entsprechend dem Euler-
IV Knickfall gewählt:

w(ζl = 0) = 0, w′(ζl = 0) = 0

w(ζl = l) = 0, w′(ζl = l) = 0 .
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Zur Bestimmung der unbekannten Konstanten wird ein Gleichungssystem der Form[
A
][
x
]

=
[
b
]

erstellt und nach
[
x
]

=
[
A
]−1[

b
]

gelöst:


0 1 0 1

M 0 N 0

sinh(M) cosh(M) sin(N) cos(N)

M cosh(M) M sinh(M) N cos(N) −N sin(N)




C1

C2

C3

C4

 =


0

0

0

0

 . (3-31)

Aus der Determinante von
[
A
]

lässt sich eine Entwicklungsgleichung g(ω) für die Berech-
nung der Eigenfrequenz ω bestimmen:

g(ω) := det
[
A
]

= 1
2e

−M(ω)
[(
M2(ω) sin(N(ω)) − 2M(ω)N(ω) cos(N(ω))

−N2(ω) sin(N(ω))
)
e2M(ω) + 4M(ω)eM(ω)N(ω) −M2(ω) sin(N(ω))

− 2M(ω)N(ω) cos(N(ω)) +N2(ω) sin(N(ω))
]
.

Mit Hilfe des Newton-Verfahrens kann die niedrigste Eigenfrequenz ω (Grundfrequenz)
iterativ wie folgt ermittelt werden:

ωn+1 = ωn − g(ω)
g′(ω) .

In Abbildung 3.4 ist der absolute Eigenfrequenzverlauf des Euler-Bernoulli-Balkens für
eine gewählte Länge von l = 50 mm dargestellt. Für diese Länge ergibt sich ein Instabili-
tätspunkt (ω = 0) bei ca. 22 % Stauchung. Das bedeutet, dass die Steifigkeitsmatrix des
Systems hier singulär wird und die Struktur knickt. Um die hergeleitete und berechnete
Lösung der Balken Differentialgleichung zu überprüfen, wird weiterhin das Verfahren von
Hamilton verwendet (vgl. Gross u. a. 2007, Hagedorn & DasGupta 2007). Bei dieser Me-
thode erfolgt die Lösung über das Aufstellen eines zeitlichen Integrals über die sogenannte
Lagrangefunktion L = T − V (Differenz zwischen kinetischer Energie T und potentieller
Energie V ) und der virtuellen Arbeit δW nc (hier: δW nc = 0):

δ

t1∫
t0

(
T − V

)
dt+

t1∫
t0

δW ncdt = 0 (3-32)

δ

t1∫
t0

l∫
0

[
1
2ρAẇ

2(x, t) − 1
2EIw

′′2(x, t) + 1
2Fw

′2(x, t)
]
dx dt = 0 . (3-33)

Über die Variation der Gleichung (3-33) und der Verwendung eines Produktansatzes:
w(x, t) = W (x) Tw(t), kann eine Gleichung zur Bestimmung von ω hergeleitet werden
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(vgl. Gross u. a. 2007, Hagedorn & DasGupta 2007):

ω2 =

l∫
0

[
EIW ′′2(x) − FW ′2(x)

]
dx

l∫
0

[
ρAW 2(x)

]
dx

. (3-34)

Die Formfunktion W (x) kann entsprechend Gleichung (3-15) gewählt werden. Die gute
Übereinstimmung zwischen der Lösung der Balken-Differentialgleichung (rot) und der Lö-
sung resultierend dem Rayleigh-Ritz-Prinzip (blau) kann der Abbildung 3.4 entnommen
werden. Um unabhängig von der gewählten Materialsteifigkeit (hier: dem E-Modul) zu
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Abb. 3.4 – Darstellung der absoluten Eigenfrequenzverläufe eines Euler-
Bernoulli-Balkens über der Dehnung ε aufgrund der Normalkräfte (Simula-
tionsergebnisse)

sein, wird der Eigenfrequenzverlauf mit ω0 normiert, siehe Abbildung 3.5. Aus diesen Ei-
genfrequenzanalysen lassen sich eine Reihe interessanter Schlussfolgerungen ziehen, die im
Folgenden zusammengefasst werden sollen.

Zusammenfassung der elastischen Eigenfrequenzanalysen:
Mit Hilfe des Eigenfrequenzverlaufes lassen sich Aussagen zum Stabilitätsverhalten von
schlanken Strukturen treffen. Beispielsweise beschreibt der Nulldurchgang des Eigenfre-
quenzverlaufes den Punkt der Instabilität, wo die Struktur zu knicken beginnt. Anders
ausgedrückt, die Steifigkeitsmatrix des elastischen Systems wird an diesem Punkt singu-
lär. Der Verlauf der Eigenfrequenz kann somit als ein Maß für die Sicherheit gegenüber
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Abb. 3.5 – Darstellung der normierten Eigenfrequenzverläufe eines Euler-
Bernoulli-Balkens über der Dehnung ε aufgrund der Normalkräfte (Simulati-
onsergebnisse, vgl. Abbildung 3.4)

Ausknicken angesehen werden. Gelingt es nun den Eigenfrequenzverlauf in der Weise zu
manipulieren, dass dieser keinen Nulldurchgang erfährt, so erhält man als Ergebnis end-
liche Knickstabilität. Ziel sollte es daher sein, den Eigenfrequenzverlauf in der Weise zu
modifizieren, dass ein frühes Ausknicken (momentan bei 22 % Stauchung) verhindert wird
und die Struktur noch genügend Reserve gegenüber Knicken besitzt. Weiterhin ist fest-
zuhalten, dass die Knicksicherheit bzw. -stabilität entscheidend von der Knicklänge und
dem Flächenträgheitsmoment abhängt.

3.2.4 Erweiterung der Eigenfrequenzanalyse für viskoelastische Strukturen

Im Folgenden soll die Eigenfrequenzanalyse für einen viskoelastischen Euler-Bernoulli-
Balken durchgeführt werden. Hierbei soll insbesondere untersucht werden, welchen Einfluss
viskoelastische Effekte auf das Stabilitätsverhalten von Balken ausüben. Eine elegante
Methode zur Berücksichtigung der Dämpfung ist das Rayleigh-Ritz-Prinzip. Die Energien
und die virtuelle Arbeit lauten dabei wie folgt (Verwendung des Zener-Modells):

T =
l∫

0

1
2ρAẇ

2(x, t)dx (3-35)

V =
l∫

0

[
1
2E∞Iw

′′2(x, t) + 1
2E1I

(
w′′(x, t) − v′′(x, t)

)2
− 1

2Fw
′2(x, t)

]
dx (3-36)
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δW nc = −
l∫

0

ηIv̇′′(x, t)δv′′(x, t)dx . (3-37)

Die innere Dehnung γ des Zener-Modells (vgl. Abbildung 3.6) wird kinematisch genauso
behandelt wie die Gesamtdehnung: ε = −w′′(x, t) z → γ = −v′′(x, t) z. Es sei an dieser
Stelle darauf hingewiesen, dass das hier aufgestellte Modell nur für eine konstante Druck-
kraft F = konst. anwendbar ist. Für eine zeitlich veränderliche Druckkraft F (t) müsste
eine Längsdehn-Biegeschwingung betrachtet werden, was zu einer gekoppelten partiellen
Differentialgleichung mit zwei Verschiebungen u(x, t), w(x, t) und zwei inneren Variablen
s(x, t), v(x, t) führen würde (vgl. Hagedorn & DasGupta 2007, Virgin 2007). Da diese Mo-
dellerweiterung den Rahmen der hier durchzuführenden Untersuchungen sprengen würde,
soll mit dem statischen Grenzfall F = konst. weiter gearbeitet werden. Über die Gleichung
(3-32) erhält man für die oben beschriebenen Terme folgenden Ausdruck:

δ

t1∫
t0

l∫
0

1
2

[
ρAẇ2(x, t) − E∞Iw

′′2(x, t) − E1I
(
w′′(x, t) − v′′(x, t)

)2
+ Fw′2(x, t)

]
dx dt

−
t1∫

t0

l∫
0

ηIv̇′′(x, t)δv′′(x, t)dx dt = 0 .

Mit Hilfe der Produktansätze: w(x, t) = W (x) Tw(t); v(x, t) = V (x) Tv(t) und der Aus-
führung der Variation entsteht folgender Zusammenhang:

t1∫
t0

l∫
0

[
− ρAW 2(x)T̈w(t)δTw(t) − E∞IW

′′2(x)Tw(t)δTw(t)

− E1I
(
W ′′(x)Tw(t) − V ′′(x)Tv(t)

)(
W ′′(x)δTw(t) − V ′′(x)δTv(t)

)
+ FW ′2(x)Tw(t)δTw(t) − ηIV ′′2(x)Ṫv(t)δTv(t)

]
dx dt = 0 .

Über einen Koeffizientenvergleich erhält man die Bewegungsgleichung:[
M
] [

T̈w

T̈v

]
+
[

D
] [

Ṫw

Ṫv

]
+
[

K
] [

Tw

Tv

]
=
[

0
]

(3-38)

mit den Matrixeinträgen:

[ M ] =

−ρA
l∫

0

W 2(x)dx 0

0 0

 ; [ D ] =

 0 0

0 −ηI
l∫

0

V ′′2(x)dx

 ;
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[ K ] =


−(E∞ + E1)I

l∫
0

W ′′2(x)dx+ F

l∫
0

W ′2(x)dx E1I

l∫
0

W ′′(x)V ′′(x)dx

E1I

l∫
0

W ′′(x)V ′′(x)dx −E1I

l∫
0
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Zur besseren Lösbarkeit wird die Bewegungsgleichung zweiter Ordnung (3-38) in ein Sys-
tem erster Ordnung überführt. Das Differentialgleichungssystem lautet dabei wie folgt:
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⇒ Bż = Az . (3-39)

Mit dem Exponentialansatz: z = ẑeλt erhält man ein generalisiertes Eigenwertproblem:

Aẑ = λBẑ . (3-40)

Die Eigenwerte λ1,2 ergeben zusammen ein konjugiert komplexes Eigenwertpaar (schwin-
gende Lösung) und λ3 beschreibt den reelen Eigenwert (auf- oder abklingende Lösung).
Der vierte Eigenwert ist unendlich, weil für die interne Variable γ eine massefreie Hilfs-
koordinate eingeführt wurde. Zur Überprüfung der korrekten Implementierung des vis-
koelastischen Balkens werden in Abbildung 3.6 die zwei Grenzfälle des Zener-Modells
(weicher und quasi starrer Dämpfer) mit den jeweiligen elastischen Lösungen verglichen.
Aus der Abbildung wird deutlich, dass eine sehr niedrige Viskosität (unterer Grenzfall):
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Abb. 3.6 – Darstellung der absoluten Eigenfrequenzverläufe eines viskoelasti-
schen Euler-Bernoulli-Balkens zur Überprüfung der zwei Grenzfälle (Simulati-
onsergebnisse, die ersten beiden Kurven und die letzten beiden Kurven fallen
zusammen)

32

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3.2 Analytische Untersuchungen zur Knickstabilität von Stäben und Balken

E∞ = 8 MPa, E1 = 2 MPa, η = 0.00001 mm2/s zu dem gleichen Ergebnis führt wie
die rein elastische Lösung mit: E∞ = 8 MPa, E1 = 0 MPa, η = 0 mm2/s. Das be-
deutet, dass die niedrige Viskosität des Dämpfers die Feder E1 komplett neutralisiert.
Als nächstes soll der Grenzfall eines quasi starren Dämpfers näher untersucht werden.
Hier zeigt sich, dass das Zener-Modell mit einer sehr hohen Viskosität (oberer Grenzfall):
E∞ = 8 MPa, E1 = 2 MPa, η = 1000 mm2/s zu dem gleichen Ergebnis führt wie die rein
elastische Lösung: E∞ = 10 MPa, E1 = 0 MPa, η = 0 mm2/s. Die Steifigkeit der beiden
Federn wird hier aufsummiert (Prinzip einer Parallelschaltung).

Im Weiteren wird die Viskosität zwischen den Grenzbereichen variiert. Dabei soll der
Einfluss auf den Eigenfrequenzverlauf näher untersucht werden. In der Abbildung 3.7 sind
dazu einige ausgewählte Größen dargestellt. Anhand der Abbildung wird deutlich, dass
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Abb. 3.7 – Darstellung der absoluten Eigenfrequenzverläufe eines viskoelas-
tischen Euler-Bernoulli-Balkens unter Variation der Viskosität (Simulationser-
gebnisse, vgl. Abbildung 3.6, die letzten beiden Kurven fallen zusammen)

die Viskosität in direkter Weise Einfluss auf die Höhe der Eigenfrequenz des unbelasteten
Stabes nimmt. Weiterhin ist zu erkennen, dass bei einer Viskosität von η = 0.001 mm2/s
ein detektierbarer Unterschied zu dem oberen Grenzfall auftritt. Im Vergleich dazu führt
eine Viskosität von η = 0.0001 mm2/s zu einem starken Abfall der Eigenfrequenz nahe des
unteren Grenzfalls. Als nächstes soll auf den Knickpunkt näher eingegangen werden. Hier
wird deutlich, dass sich für sehr hohe und sehr niedrige Viskositäten der gleiche Instabili-
tätspunkt wie bei der elastischen Lösung ergibt. Für Viskositäten nahe η = 0.001 mm2/s
ist gegen Ende der Beanspruchung ein leicht abweichender Verlauf zu erkennen, der über
die vollständige Analyse aller Eigenwerte zu erklären ist. Für geplante Fe-Berechnungen
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

kann festgehalten werden, dass die elastische Lösung zur Bestimmung der kritischen Stau-
chung, bei der Knicken auftritt, völlig ausreichend ist.

3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

3.3.1 Grundidee des Halterungsdesigns

Im vorherigen Abschnitt wurde bereits gezeigt, dass sich mit Hilfe von Eigenfrequenzen
Aussagen zum Stabilitätsverhalten von schlanken Strukturen treffen lassen. In diesem Ab-
schnitt soll die Untersuchung auf numerischem Wege mittels Fem fortgesetzt werden. Im
Gegensatz zu analytischen Untersuchungen lassen sich hier beliebige komplexe Struktu-
ren berechnen und analysieren. Bevor allerdings mit der Untersuchung dieser Strukturen
begonnen werden kann, soll zunächst der Eigenfrequenzverlauf der Abbildung 3.5 auf nu-
merischem Wege überprüft werden. Als Materialmodell findet hier das hyperelastische
Stoffgesetz nach Mooney-Rivlin Anwendung (vgl. dazu Abschnitt 2.1.4 und Tabelle 3.1).
In Fe-Programmen können Eigenfrequenzen und Eigenschwingungsformen einer beliebi-

Tabelle 3.1 – Materialparameter für Mooney-Rivlin (vgl. Naumann 2010)

c10 in MPa c01 in MPa K in MPa
1.0 0.1 1000

gen Struktur mittels Modalanalyse berechnet werden. Um den Effekt der Spannungsver-
steifung mit zu berücksichtigen, ist eine vorgespannte Modalanalyse nötig (vgl. Stelzmann
u. a. 2002). In der Gleichung (3-41) ist der mathematische Zusammenhang zur Ermittlung
der Eigenfrequenzen dargestellt (vgl. Dresig u. a. 2007):(

[ KL ] + [ KNL ] − ω2
j (u) [ M ]

)
[ϕj ] = [ 0 ] . (3-41)

Darin beschreibt [ KL ] den linearen und [ KNL ] den nichtlinearen Anteil der Steifigkeits-
matrix. [ M ] gibt die Massenmatrix an und ωj(u) die Eigenfrequenz in Abhängigkeit der
Belastung u. An dieser Formulierung wird auch der intuitive Zugang deutlich, d. h. dass
die Berechnung der Nullstelle der Gleichung (3-41) gleichzusetzen ist, mit der Suche nach
dem Punkt der Instabilität. Diese Überlegung führt zu der Schlussfolgerung, dass die erste
Eigenfrequenz ω1 (niedrigste Eigenfrequenz) für die Stabilitätsuntersuchungen von beson-
derer Bedeutung ist. In Abbildung 3.8 ist der Eigenfrequenzverlauf für einen Stab der
Länge l0 = 50 mm mit einem Durchmesser d = 15 mm dargestellt (rote Kurve). Für
diese Abmessungen erreicht der Eigenfrequenzverlauf einen Nulldurchgang bei 22 % Stau-
chung. Die Dehnung ε wird dabei über die Längenänderung ∆l und die Messlänge lM

bestimmt. Vergleicht man dieses Ergebnis mit der Abbildung 3.5, dann erhält man eine
sehr gute Übereinstimmung mit den analytischen Lösungen. Als nächstes wird die Cha-
rakterisierung der Eigenfrequenzverläufe für komplexere Strukturen fortgesetzt. Dazu wird
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers
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Abb. 3.8 – Modalanalyse zur Untersuchung der Eigenfrequenzverläufe der
Standard-Hantel für verschiedene Ausgangslängen (Simulationsergebnisse vgl.
Tabelle 3.1, Abbildung in Anlehnung an die Arbeit von Naumann 2010)

der standardmäßige Hantelprobekörper (l0 = 22 mm) näher untersucht. In Abbildung 1.1
ist der Hantelprobekörper schematisch dargestellt. Aus der Veröffentlichung von Alshuth
u. a.(2007) wird ersichtlich, dass der Hantelprobekörper im Messbereich mit zunehmender
Stauchung eine inhomogene Belastungsverteilung aufweist. Im Folgenden soll mittels einer
vorgespannten Modalanalyse der Eigenfrequenzverlauf der Standard-Hantel (l0 = 22 mm)
mit zugehöriger Halterung berechnet werden. Der Verlauf ist zum besseren Vergleich eben-
falls in Abbildung 3.8 dargestellt (dunkelblaue Kurve). Aus dieser wird ersichtlich, dass
die Hantelgeometrie mit zugehöriger Halterung zu keinem Nulldurchgang des Eigenfre-
quenzverlaufes führt. Das bedeutet, dass der aktuelle Probekörper zu keinem Zeitpunkt
knickgefährdet ist bzw. kein Instabilitätspunkt vorhanden ist. Es ist weiterhin zu erkennen,
dass bei 20 % Stauchung ein abrupter Anstieg des Eigenfrequenzverlaufes zu beobachten
ist. Dieser abrupte Anstieg lässt sich auf den unmittelbaren Kontakt der Hantel mit der
Halterungsgeometrie zurückführen. Diese Kontaktierung hat zunächst eine stabilisieren-
de Wirkung auf den Hantelprobekörper (Anstieg des Eigenfrequenzverlaufes), allerdings
nimmt dieser Einfluss über 30 % Stauchung wieder ab. Der Anstieg am Ende kann dadurch
erklärt werden, dass der Hantelprobekörper mittlerweile soweit gestaucht ist, dass keine
Knickgefahr mehr besteht. Wie in der Veröffentlichung von Alshuth u. a. gezeigt, besitzt
die Hantel für diese kurze Abmessung ein sehr inhomogenes Verzerrungsfeld im Messbe-
reich. Um die Homogenität im Messbereich zu erhöhen, empfiehlt sich die Verwendung
von längeren Hantelprobekörpern. Der Grundgedanke dabei ist, dass eine Verlängerung
des Mittelteils auch zu einem größeren Abstand zwischen Messbereich und zugehöriger
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

Halterung führt. Die Analysen werden für die Standard-Hantel mit der Mittelteillänge
l0 = 27 mm und l0 = 32 mm erweitert. Aus der Abbildung 3.8 wird ersichtlich, dass schon
eine Erhöhung der Mittelteillänge um 5 mm zu einem starken Abfall des Eigenfrequenzver-
laufes führt und ein Nulldurchgang erreicht wird. Aus den Analysen werden zwei wichtige
Sachverhalte deutlich. Zum einen ist eine längere Mittelteillänge zur Verbesserung der Ho-
mogenität zu empfehlen, was sich wiederum nachteilig auf die Knicksicherheit auswirkt.
Zum anderen hat eine kürzere Mittelteillänge eine wesentlich höhere Knicksicherheit mit
dafür nachteilig inhomogenem Verzerrungsfeld im Messbereich. Im Rahmen der Arbeit von
Naumann (2010) wurde ein Konzept entwickelt, welches es ermöglicht, auf der Grundlage
von Eigenfrequenzverläufen neue Halterungsgeometrien zu berechnen.

Im Folgenden soll diese Grundidee des neuen Halterungsdesigns näher vorgestellt wer-
den. In Abbildung 3.9 ist der schematische Ablaufplan zur Entwicklung neuer Halterungs-
geometrien dargestellt (vgl. Naumann 2010). Auf der linken Seite der Abbildung 3.9 ist

Abb. 3.9 – Grundidee des Halterungsalgorithmus (Simulationsergebnisse vgl.
Tabelle 3.1, Abbildung in Anlehnung an die Arbeit von Naumann 2010)

der axialsymmetrische Ausschnitt der Standard-Hantel mit zugehöriger Halterung zu se-
hen. Bei einer Stauchung erfährt der Hantelprobekörper mit der bisherigen Halterung
eine schlagartige Kontaktierung. Das bedeutet, dass der Probekörper nicht allmählich mit
der Halterung in Kontakt tritt, sondern sehr abrupt. Mittels vorgespannter Modalanaly-
se kann der zugehörige Eigenfrequenzverlauf berechnet werden, vgl. dazu Abbildung 3.8
(dunkelblaue Kurve). Die Grundidee besteht darin, den Eigenfrequenzverlauf ω∗ vorzuge-
ben und invers dazu die zugehörige Halterungsgeometrie zu berechnen. Diese Methode,
die im Rahmen der Arbeit von Naumann (2010) entwickelt worden ist, stellt ein wichtiges
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

Werkzeug in der Probekörperentwicklung dar. Beispielsweise kann durch einen konstan-
ten Eigenfrequenzverlauf eine allmähliche Kontaktierung zwischen Probekörper und neuer
Halterungsgeometrie sichergestellt werden. Somit kann über die Eigenfrequenzvorgabe ω∗

in indirektem Maße Einfluss auf die Knicksicherheit und die Homogenität des Probekörpers
genommen werden.

3.3.2 Algorithmus zur Berechnung von Halterungsgeometrien

In diesem Abschnitt wird der Algorithmus, wie er für die Berechnung verschiedener Halte-
rungsgeometrien verwendet wird, vorgestellt. Der Algorithmus ist im Rahmen der Arbeit
von Naumann (2010) entwickelt worden. Im Folgenden werden die wichtigsten Schritte,
die zum Verständnis beitragen sollen, erläutert. In Abbildung 3.10 ist der schematische
Ablaufplan des Halterungsalgorithmus dargestellt. Zu Beginn wird mit Hilfe einer Mo-
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Abb. 3.10 – Algorithmus zur Berechnung von Halterungskonturen (Abbildung
aus der Arbeit von Naumann 2010)

dalanalyse die Eigenfrequenz der unbelasteten Struktur berechnet. Im nächsten Schritt
wird die Belastung inkrementell erhöht und das statische Problem gelöst. Im Anschluss
daran wird für die nun vorgespannte Struktur eine Modalanalyse durchgeführt. Die aktu-
ell berechnete Eigenfrequenz ω1 wird mit der Eigenfrequenzvorgabe ω∗ verglichen. Wenn
der berechnete Eigenfrequenzverlauf kleiner als der vorgegebene ist, muss die Steifigkeit
des Systems erhöht werden. Dies erfolgt in der Fixierung der äußeren Knoten auf der Zy-
linderstruktur in radialer und tangentialer Richtung. In der Abbildung 3.10 ist dies auf
der linken Seite anhand der grün gekennzeichneten Knoten dargestellt. Ist der berechne-
te Eigenfrequenzverlauf größer als der vorgegebene, kann die Last weiter erhöht werden
und der nächste Berechnungsschritt starten. Die Berechnung endet, wenn die maximale
Verschiebung erreicht ist. Über diesen Algorithmus kann sukzessive die gesuchte Halte-
rungskontur berechnet werden. Es sei an dieser Stelle darauf hingewiesen, dass sowohl
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

die Zylindergeometrie als auch die Belastung selber hinreichend fein diskretisiert sein soll-
te. Dadurch wird gewährleistet, dass die Halterungskontur sehr genau abgebildet werden
kann. Im nächsten Abschnitt soll mit Hilfe des hier vorgestellten Halterungsalgorithmus
eine Parameterstudie durchgeführt werden.

3.3.3 Parameterstudie zur Halterungsberechnung

Anhand des entwickelten Halterungsalgorithmus soll im Folgenden eine Parameterstudie
zur Untersuchung der Sensitivität der Halterungsberechnung durchgeführt werden. Die
dafür benötigten Eigenfrequenzvorgaben sollen in der Weise modelliert werden, dass ein
möglichst großer Anwendungsbereich abgedeckt wird. Im Weiteren soll überprüft werden,
wie gut das Halterungskonzept allgemein funktioniert und wie sensitiv sich die model-
lierten Eigenfrequenzverläufe auf die Halterungsberechnung auswirken. In Abbildung 3.11
sind die normierten vorgegebenen Eigenfrequenzverläufe ω∗(ε)/ω0, die zur Berechnung
von Halterungsgeometrien benötigt werden, dargestellt. Die schwarzen Zickzackkurven
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Abb. 3.11 – Parameterstudie zur Eigenfrequenzvorgabe für die Halterungs-
berechnung (Simulationsergebnisse vgl. Tabelle 3.1)

beschreiben dabei die tatsächlich vom Halterungsalgorithmus berechneten Verläufe. Wird
beispielsweise die Eigenfrequenzvorgabe nicht erfüllt, so erfolgt eine weitere Fixierung von
äußeren Knoten auf der Zylindergeometrie (vgl. Abbildung 3.10), was zu einem kurzzei-
tigen Anstieg des Eigenfrequenzverlaufes führt. Die Abweichungen des Zickzackverlaufes
von der Eigenfrequenzvorgabe bei größeren Stauchungen lassen sich dadurch erklären,
dass die knickgefährdete Länge immer stärker reduziert wird, was eine abnehmende Fi-
xierung von Knoten nach sich zieht. Die Eigenfrequenzmodellierung erfolgte in der Weise,
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

dass unterschiedliche Reserven bezüglich Homogenität als auch Stabilität vorausgesetzt
sind. Beispielsweise stellt der blaue Eigenfrequenzverlauf, der im Folgenden als Standard-
Eigenfrequenzverlauf bezeichnet wird, eine mittlere Variante zur Halterungsberechnung
dar. Bei diesem Eigenfrequenzverlauf wird gefordert, dass die aktuelle Eigenfrequenz nie-
mals die Starteigenfrequenz ω∗(ε)/ω0 = 1 unterschreiten darf. Anhand der schwarzen
Zickzackkurve in der Abbildung 3.11 kann der Verlauf sehr gut nachvollzogen werden.
Für den grünen Eigenfrequenzverlauf (sicherer Eigenfrequenzverlauf) wird dagegen gefor-
dert, dass mit zunehmender Stauchung die Sicherheit gegenüber Knicken zunehmen muss.
Dies führt zwangsweise zu einer sehr starken Kontaktierung im Anfangsbereich (kleine
aufeinanderfolgende Zickzack-Verläufe). Als letztes wird der kritische Eigenfrequenzver-
lauf eingeführt. Hier darf der Eigenfrequenzverlauf mit zunehmender Stauchung leicht
abnehmen. Unter rein theoretischen Gesichtspunkten dürfte dieser Eigenfrequenzverlauf
nie zum Knicken führen, weil kein Schnittpunkt mit der Abszisse vorhanden ist. Ob sich
dieser Sachverhalt bestätigt, wird im nächsten Abschnitt 3.3.4 diskutiert. Mit Hilfe die-
ser unterschiedlichen Eigenfrequenzvorgaben werden im Folgenden die zugehörigen Hal-
terungsgeometrien berechnet. In der Abbildung 3.12 sind diese im axialsymmetrischen
Schnitt dargestellt. Um ein besseres Verständnis von der gesamten Probekörpergeome-
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Abb. 3.12 – Parameterstudie für die Halterungskonturen (Simulationsergeb-
nisse)

trie zu bekommen, sei an dieser Stelle der Hantelkopf bereits mit dargestellt. Die spezielle
Form des Hantelkopfes dient im Wesentlichen der Realisierung von Zugversuchen. Anhand
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der Abbildung 3.12 wird intuitiv deutlich, dass die sichere Halterung den engsten Verlauf
und die kritische Halterung den weitesten Verlauf darstellt. Die Standard-Halterung stellt
dabei eine mittlere Lösung dar. Im Weiteren soll der Einfluss der verschiedenen Halterun-
gen im Spannungs-Dehnungsdiagramm untersucht werden. In Abbildung 3.13 werden die
Halterungskonturen aus der Parameterstudie mit der homogenen Lösung (Simulation mit
einem finiten Element) und der Standard-Hantel (vgl. Alshuth u. a. 2007) verglichen. An-
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Abb. 3.13 – Spannungs-Dehnungsdiagramm für die verschiedenen Halte-
rungskonturen (Simulationsergebnisse vgl. Tabelle 3.1)

hand der Abbildung 3.13 werden eine Reihe interessanter Punkte deutlich. Zunächst kann
festgestellt werden, dass die Standard-Hantel die mit Abstand schlechtesten Ergebnisse
im Spannungs-Dehnungsdiagramm liefert. Im Gegensatz dazu zeigen die Halterungen, die
im Rahmen der Parameterstudie entwickelt worden sind, eine erhebliche Verbesserung.
Dies wird zum einen an der verbesserten Homogenität selbst deutlich, zum anderen an der
maximal erreichbaren Stauchung.

3.3.4 Fehler- und Instabilitätsmaße

Um in direkter Weise Abweichungen zur theoretisch vorliegenden Lösung als auch zum
Stabilitätsverhalten der verschiedenen Halterungskonturen angeben zu können, sollen im
Folgenden Fehler- und Instabilitätsmaße eingeführt werden. Ziel dabei ist es, die unter-
schiedlichen Halterungskonturen quantitativ miteinander vergleichen zu können. Zunächst
werden die Abweichungen im Spannungs-Dehnungsdiagramm (vergleiche dazu Abbildung
3.13) für die verschiedenen Halterungskonturen zur homogenen Lösung näher betrachtet.
Dafür wird das globale Fehlermaß ηT eingeführt, welches die relative Differenz zwischen
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

der aktuell im Probekörper vorliegenden Spannung
FE
T zz(ε) und der theoretisch vorhanden

Spannung
th
T zz(ε), dividiert durch die theoretische Spannung beschreibt. In der Gleichung

(3-42) ist der Ausdruck dargestellt:

ηT :=

∣∣∣∣∣∣
FE
T zz(ε) −

th
T zz(ε)

th
T zz(ε)

∣∣∣∣∣∣ mit:
FE
T zz(ε) := Fz(ε)

A0
. (3-42)

Grafisch interpretiert entspricht das globale Fehlermaß dem relativen senkrechten Abstand
zwischen homogener Lösung und vorliegender Spannung im Probekörper bei gleicher Stau-
chung. In der Abbildung 3.14 sind die Fehlermaße ηT für die verschiedenen Halterungskon-
turen dargestellt. Anhand der Abbildung wird deutlich, dass die Standard-Hantel schon
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Standard-Halterung
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Abb. 3.14 – Darstellung des globalen Fehlermaßes ηT für die verschiedenen
Halterungskonturen (Simulationsergebnisse vgl. Tabelle 3.1)

bei einer Stauchung von 30 % einen relativen Fehler von über 10 % aufweist. Im Ge-
gensatz dazu besitzen die Halterungen, die im Rahmen der Parameterstudie entwickelt
worden sind, signifikant bessere Fehlermaße, selbst bei größeren Stauchungen. Bei einem
direkten Vergleich der entwickelten Halterungen untereinander wird deutlich, dass die kri-
tische Halterung das beste Ergebnis erzielt und die sichere Halterung das schlechteste.
Dies lässt sich nicht zuletzt auf die gewählten Eigenfrequenzvorgaben zurückführen. Zu-
sammenfassend lässt sich sagen, dass das globale Fehlermaß ηT den relativen Messfehler
zur homogen Lösung beschreibt und als Maß zur Bewertung des Probekörpers verwendet
werden kann.
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

Um Aussagen über lokale Abweichungen zur homogenen Druckdeformation treffen zu
können, soll im Folgenden ein lokales Fehlermaß verwendet werden. Dieses Maß, das im
Rahmen der Arbeit von Naumann (2010) eingeführt worden ist, basiert auf der Grundla-
ge tensorieller Größen und besitzt den Vorteil, dass selbst mehrachsige und inhomogene
Spannungszustände mit einer homogenen Druckdeformation verglichen werden können. Es
wird dazu das Spannungsmaß ς definiert, das die Differenz zwischen dem lokal vorherr-
schenden Spannungszustand FE

σ (ε) und dem theoretisch vorhandenen Spannungszustand
th
σ (ε) beschreibt:

ς := FE
σ (ε) − th

σ (ε) . (3-43)

Zum besseren Verständnis werden die Koeffizientenmatrizen mit angegeben:

[ FE
σ ab ] =


FE
σ xx

FE
σ xy

FE
σ xz

FE
σ xy

FE
σ yy

FE
σ yz

FE
σ xz

FE
σ yz

FE
σ zz

 , [ th
σ ab ] =


0 0 0

0 0 0

0 0 th
σ zz

 . (3-44)

Um ein lokales Vergleichsmaß zu erhalten, soll analog zur Von-Mises-Vergleichsspannung
σeqv, die wie folgt definiert ist:

σeqv =
√

3
2
√
σ′ ·· σ′ , (3-45)

ein Vergleichsmaß ςeqv eingeführt werden:

ςeqv =
√

3
2
√
ς ′ ·· ς ′ . (3-46)

Um das lokale Fehlermaß ησ zu erhalten, wird das vorliegende Vergleichsmaß ςeqv mit dem
theoretisch vorhandenen Vergleichsmaß th

σ eqv normiert. Für den Sonderfall des einachsigen
Spannungszustandes th

σ zz kann das lokale Fehlermaß wie folgt vereinfacht werden:

ησ := ςeqv
th
σ eqv

= ςeqv
th
σ zz

. (3-47)

In der Abbildung 3.15 ist das lokale Fehlermaß ησ für die verschiedenen Halterungskon-
turen dargestellt. Aus der Abbildung wird ersichtlich, dass die Standard-Hantel mit der
vorliegenden Halterung bei einer Stauchung von 40 % die größten Abweichungen im Mess-
bereich aufzeigt. Bei einer Dehnungsbestimmung mittels Extensometer führt der inhomo-
gene Randbereich zu großen Fehlern gegenüber der homogenen Druckdeformation. Dies
kann zum einen auf die vorliegende Halterung selbst zurückgeführt werden, zum ande-
ren auf den geringen Abstand zwischen Halterung und Extensometer. Vergleicht man die
Abbildung 3.15 mit der Abbildung 3.14, dann kann der eben beschriebene Einfluss an-
hand der schwarz gestrichelten Linie (Standard-Hantel) sehr gut nachvollzogen werden.
Im Vergleich dazu zeigen die Halterungskonturen, die im Rahmen der Parameterstudie

42

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

Standard-Hantel Neuer Hantelprobekörper

Standard-HalterungKritische Halterung Sichere Halterung
Vorliegende
Halterung

Abb. 3.15 – Darstellung des lokalen Fehlermaßes ησ für die verschiedenen
Halterungskonturen bei einer Stauchung von 40 % (Abbildung in Anlehnung
an die Arbeit von Naumann 2010)

entwickelt worden sind, einen Messbereich mit wesentlich kleineren Abweichungen, siehe
Abbildung 3.15. Interessanterweise ist bei allen Hanteln und Halterungskonturen das lo-
kale Fehlermaß ησ im Innern des Probekörpers verhältnismäßig niedrig. Eine Erklärung
dafür bietet der Abstand zu den Halterungskonturen, die in direkter Weise Einfluss auf
das Fehlermaß nehmen. Bei genauerer Betrachtung des Innern der Standard-Hantel wird
der etwas erhöhte Fehlerbereich deutlich.

Abschließend soll neben den eingeführten Fehlergrößen ein Maß zur Erfassung der Stabili-
tät des Probekörpers definiert werden. Dazu soll zunächst geklärt werden, woher Störungen
oder Instabilitäten kommen und wie sie global am besten erfasst werden können. Für reale
Probekörper treten unterschiedliche Arten von Störungen bzw. Imperfektionen auf. Dazu
zählen neben Geometrieimperfektionen auch Materialinhomogenitäten und der Einfluss
unsymmetrischer Randbedingungen. All diese Faktoren wirken sich in unterschiedlicher
Art und Weise auf die Homogenität und hier insbesondere auf die Knicksicherheit aus.
Demzufolge ist ein Instabilitätsmaß gesucht, welches alle oben beschriebenen Sonderfäl-
le abdeckt und bei beliebigen Stauchungen Auskunft über die Knicksicherheit gibt. Eine
sich hierfür eignende Größe stellt die Kinematik der Mittelebene dar (Erste Knickform ist
hier von besonderem Interesse). Beispielsweise kann über die Betrachtung der Mittelebene
direkt Auskunft gegeben werden, ob der Probekörper sich in einem stabilen oder instabi-
len Zustand befindet. In der Abbildung 3.16 sind verschiedene Sonderfälle zur Kinematik
der Mittelebene (gleichmäßige Aufweitung, Auslenkung und Kombination aus beidem)
dargestellt. Anhand der Abbildung 3.16 wird grafisch sehr deutlich, dass eine gleichmä-
ßige Aufweitung der Mittelebene zu keiner Instabilität führen kann. Da es sich später
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

Gleichmäßige Auf-
weitung der Mittelebene

Auslenkung der
Mittelebene

Auslenkung und Auf-
weitung der Mittelebene

Allgemeiner Fall

Abb. 3.16 – Darstellung der Verschiebung uL und uR für verschiedene Son-
derfälle

um kleine Imperfektionen handelt, kann in guter Näherung davon ausgegangen werden,
dass der Probekörper seinen Kreisquerschnitt beibehält. Im Gegensatz zur gleichmäßigen
Aufweitung ist eine reine Auslenkung der Mittelebene auf das Knicken zurückzuführen
(erste Knickform). Das Instabilitätsmaß κ wird dabei als Summe der äußeren Verschie-
bungen uL und uR, dividiert durch den Ausgangsradius r0, definiert. Bei Kenntnis des
Mittelpunktversatzes uM ergibt sich folgender Zusammenhang:

κ :=
∣∣∣∣∣uL + uR

r0

∣∣∣∣∣ =
∣∣∣∣∣2 uM
r0

∣∣∣∣∣ . (3-48)

Um die verschiedenen Halterungskonturen miteinander vergleichen und auf ihre Knicksi-
cherheit hin testen zu können, muss eine definierte Anfangsstörung vorgegeben werden.
Diese wird in Form einer Geometrieimperfektion erstellt. Im Folgenden wird dies durch eine
initiale Auslenkung der Mittelebene um den Betrag uS = ι r0 realisiert. Dabei beschreibt
die Größe ι den prozentualen Anteil der Auslenkung in Abhängigkeit des Referenzradius.
Bei einer nachfolgend aufgebrachten Druckbeanspruchung kann dann das Auswandern der
Mittelebene beobachtet werden. Weiterhin wurde neben der Geometrieimperfektion von
ι = 0.01 ein Schrumpf von 1 % der Probe gegenüber der Halterung realisiert. Diese Grö-
ßen sollen reale Störungen durch den Herstellungs- oder Vulkanisationsprozess abbilden.
In Abbildung 3.17 sind die Instabilitätsmaße für die verschiedenen Halterungskonturen
dargestellt. Anhand der Abbildung 3.17 werden folgende Sachverhalte deutlich: Die siche-
re Halterung besitzt das mit Abstand niedrigste Instabilitätsmaß, weist also die größte
Sicherheit gegenüber Geometrieimperfektionen und Schrumpf auf. Im Gegensatz dazu be-
sitzt die kritische Halterung das größte Instabilitätsmaß, verhält sich also sehr sensitiv
gegenüber Imperfektionen. Vergleicht man die Farbverläufe mit der Abbildung 3.14, so ist
ein gegenläufiger Trend festzustellen. Hier besitzt die kritische Halterung das niedrigste
und die sichere Halterung das größte Fehlermaß. Die Standard-Halterung stellt in bei-
den Abbildungen eine mittlere Lösung dar. Zusammenfassend lässt sich sagen, dass mit
Hilfe der entwickelten Maße qualitative Aussagen über die Abweichung zu einer theore-
tisch vorhandenen Lösung (Simulation mit einem finiten Element) und zur Stabilität der
verschiedenen Halterungskonturen getroffen werden können. Die in der Parameterstudie
designten Halterungskonturen weisen diesbezüglich unterschiedliche Vor- und Nachteile

44

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

-0.5 -0.4 -0.3 -0.2 -0.1 0
0

0.1

0.2

0.3

0.4

0.5
Sichere Halterung
Standard-Halterung
Kritische Halterung

Abb. 3.17 – Darstellung des Instabilitätsmaßes κ für die verschiedenen Hal-
terungskonturen (Simulationsergebnisse vgl. Tabelle 3.1)

auf. Ziel der nachfolgenden Abschnitte ist zum einen die Optimierung der Probekörper-
länge, zum anderen die Formoptimierung der Halterungskontur mittels der eingeführten
Fehler- und Instabilitätsmaße.

3.3.5 Optimierung der Probekörperlänge

In diesem Abschnitt soll die Optimierung der Probekörperlänge l0 bei Verwendung des
entwickelten Halterungsalgorithmus erfolgen. Die Optimierung soll in der Weise durch-
geführt werden, dass die Probekörperlänge ideale Eigenschaften hinsichtlich auftretender
Fehlergrößen als auch Stabilität besitzt. Die Zielfunktion wird dabei wie folgt formuliert:

f := α

ε∫
0

ηT(ε)dε+ (1 − α)
ε∫

0

κ(ε)dε . (3-49)

Der erste Term beschreibt dabei den globalen Messfehler ηT, welcher die relative Abwei-
chung zur theoretisch vorhandenen Lösung angibt. Der zweite Term beschreibt das Maß
der Instabilität κ, welches die Gefahr gegenüber Knicken angibt. Somit sind beide Terme
in der Zielfunktion als globale Größen definiert, welche einen direkten Einfluss auf die
Probekörperlänge selbst ausüben. Über den Faktor α ∈ [0, 1] kann eine entsprechende
Gewichtung der beiden Zielfunktionswerte vorgenommen werden. Die Zielfunktion wird
innerhalb einer Matlab-Umgebung implementiert und mit Hilfe der Optimierungstoolbox
(Simplex-Verfahren nach Nelder und Mead) gelöst. In Abbildung 3.18 ist der schemati-
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sche Ablaufplan zur Identifizierung der idealen Probekörperlänge dargestellt. Neben dem

Anpassung des Startwertes

2D Simulation zur Berechnung
des globalen Fehlermaßes    

Start

Berechnung der Halterungskontur
für die neue Startlänge aus vorge-
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Abb. 3.18 – Ablaufplan für die Optimierung der Probekörperlänge

Startwert l0 muss weiterhin ein vorgegebener Eigenfrequenzverlauf für die Halterungsbe-
rechnung angegeben werden. Da dieser gewählte Eigenfrequenzverlauf einen signifikanten
Einfluss auf die nachfolgende Optimierung hat, soll im nächsten Unterabschnitt geson-
dert darauf eingegangen werden. Nach der Berechnung der Halterungskontur erfolgen die
Simulationen zur Bestimmung des Fehlermaßes ηT und des Instabilitätsmaßes κ. Die bei-
den Funktionswerte werden entsprechend ihrer Grenzen aufintegriert und im Anschluss
mit der gewählten Gewichtung zum Zielfunktionswert verrechnet. Mit Hilfe des Simplex-
Verfahrens nach Nelder und Mead (vgl. Nelder & Mead 1965) kann dann der nächste
Iterationsschritt durchgeführt werden. Die Optimierung endet, wenn der Zielfunktions-
wert f kleiner als die vorgegebene Toleranz ist.

Untersuchung der Eigenfrequenzvorgaben für die Optimierung
Da die vorgegebenen Eigenfrequenzverläufe einen entscheidenden Einfluss auf die Halte-
rungsberechnung und die damit verbundene Optimierung haben, soll im Folgenden geson-
dert darauf eingegangen werden. Hierfür werden zunächst zwei verschiedene Designvari-
anten vorgestellt und im Anschluss miteinander verglichen. Die erste Variante, die hier
vorgeschlagen werden soll und für eine Optimierung herangezogenen werden kann, ist die
Verwendung von konstanten Eigenfrequenzverläufen ω∗/ω0 = 1. Diese Variante zeichnet
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sich unter anderem dadurch aus, dass die Eigenfrequenz, die zu Beginn der Modalanalyse
berechnet worden ist, über den kompletten Stauchprozess konstant gehalten wird. In der
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Abb. 3.19 – Darstellung der konstanten Eigenfrequenzvorgaben für unter-
schiedliche Probekörperlängen l0 ∈ [40, 100] mm sowie der aus dem Hal-
terungsalgorithmus berechneten Eigenfrequenzverläufe (Simulationsergebnisse
vgl. Tabelle 3.1)

Abbildung 3.19 ist dies zum besseren Verständnis dargestellt. Es ist hierbei zu beachten,
dass die Eigenfrequenz abhängig von der jeweiligen Ausgangslänge konstant gehalten wird.
Dies führt zwangsweise zu Halterungskonturen, die schon zu Beginn der Berechnung ganz
unterschiedliche Reserven bezüglich auftretender Fehlergrößen als auch Stabilität besit-
zen. In nachfolgenden Untersuchungen soll geklärt werden, ob die Halterungskonturen, die
aus diesen Eigenfrequenzverläufen berechnet werden, in direkter Weise miteinander ver-
glichen werden dürfen. Beispielsweise besitzt eine Probekörperlänge l0 = 40 mm schon zu
Beginn der Berechnung eine ganz andere Knicksicherheit als eine Probekörperlänge mit
l0 = 100 mm. Umgekehrt verhält es sich mit dem relativen Messfehler ηT.

Aus diesem Grund soll für die zweite Designvariante ein Verlauf vorgeschlagen werden,
der auf ein identisches Eigenfrequenzniveau führt. Dies soll im Weiteren mit identischen
asymptotischen Eigenfrequenzverläufen bezeichnet werden. In der Abbildung 3.20 ist dies
für die oben gezeigten Ausgangslängen dargestellt. Die Anpassung auf ein identisches Ei-
genfrequenzniveau (hier: Mittelteillänge l0 = 50 mm) erfolgte in der Weise, dass bei ei-
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Abb. 3.20 – Darstellung der identischen asymptotischen Eigenfrequenzvor-
gaben für unterschiedliche Probekörperlängen l0 ∈ [40, 100] mm sowie der aus
dem Halterungsalgorithmus berechneten Eigenfrequenzverläufe (Simulations-
ergebnisse vgl. Tabelle 3.1)

ner Stauchung von 30 % die Verläufe ineinander übergehen. Für den Übergangsbereich
ε ∈ [−0.3, 0] werden Sinusfunktionen verwendet, die tangential am Umkehrpunkt ab-
schließen. Der abgebildete Eigenfrequenzverlauf der Mittelteillänge l0 = 100 mm dient
als Grenzfall des Algorithmus zur Halterungsberechnung. Hieran kann gezeigt werden,
dass eine weitere Erhöhung der Mittelteillänge nur dazu führt, dass die Halterungskontur
sich einem beliebig langen rohrförmigen Abschnitt anschmiegt. In Abbildung 3.21 sind
die verschiedenen Halterungskonturen, die aus den oben gezeigten Eigenfrequenzvorga-
ben berechnet worden sind, dargestellt. Um eine bessere Vergleichbarkeit zu ermöglichen,
sind die Konturen um die jeweils fehlende Mittelteillänge verschoben worden. Der na-
hezu horizontale Verlauf der Halterungskontur für l0 = 100 mm lässt darauf schließen,
dass eine kontinuierliche Fixierung von Knoten in der Halterungsberechnung stattgefun-
den hat. Vergleicht man dazu die entsprechende Eigenfrequenzvorgabe in der Abbildung
3.20, dann kann dies anhand der sehr kleinen Zickzack-Verläufe sehr gut nachvollzogen
werden (siehe l0 = 100 mm im Anfangsbereich). Aus der Abbildung 3.21 ist weiterhin gut
zu erkennen, dass sich alle Halterungskonturen in ihrem prinzipiellen Verlauf stark ähneln.
Alle hier dargestellten Konturen schmiegen sich, beginnend von ihrem Startpunkt, sehr gut
asymptotisch aneinander an. Dies ist nicht zuletzt auf die geforderte Eigenfrequenzvorgabe
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Abb. 3.21 – Gegenüberstellung der berechneten Halterungskonturen die aus
den vorgegebenen Eigenfrequenzverläufen ermittelt worden sind (Simulations-
ergebnisse)

zurückzuführen. Um abschließende Aussagen über die Eignung der Eigenfrequenzvorgaben
treffen zu können, sollen im Weiteren beide Varianten für die Optimierung herangezogen
werden. Im Folgenden wird dazu der Verlauf der Zielfunktionslandschaft näher betrachtet.

Darstellung der Zielfunktionslandschaft
Auf der Grundlage der verschiedenen Eigenfrequenzvorgaben soll nun die Zielfunktions-
landschaft näher untersucht werden. Das prinzipielle Vorgehen kann dabei der Abbildung
3.18 entnommen werden. Da die zu optimierende Größe (Probekörperlänge) nicht unab-
hängig vom Radius bestimmt werden kann, soll dieser zunächst festgelegt werden. Ausge-
hend von der Standard-Hantel (vgl. Alshuth u. a.) bietet es sich an den Radius, auch aus
herstellungsbedingten Gründen, mit r0 = 7.5 mm festzulegen (unter Berücksichtigung von
3 % Schrumpf ergibt sich ein Radius r = 7.275 mm). Ein sinnvoller Bereich zur Darstellung
der Zielfunktionslandschaft, in Abhängigkeit des zuvor festgelegten Radius, bewegt sich in
den Grenzen von l0 ∈ [35, 60] mm. Eine Mittelteillänge die kleiner als 35 mm ist führt nur
zu großen Abweichungen im Messbereich (vgl. Abbildung 3.14). Eine Mittelteillänge größer
60 mm macht aus stabilitätstechnischen Gründen wenig Sinn, da sich die daraus ergebende
Halterungskontur nur noch einem rohrförmigen Abschnitt anfügt (vgl. Abbildung 3.21).
Die Zielfunktionslandschaft wird in 0.5 mm Schritten diskretisiert. Eine feinere Auflösung
der Probekörperlänge ist aus herstellungsbedingten Gründen nicht praktikabel. Es sei an
dieser Stelle darauf hingewiesen, dass eine Skalierung der Zylindergeometrie bezüglich des
Längen-Durchmesser-Verhältnisses für andere Anwendungsfälle mit den hier dargestellten
Methoden ebenso denkbar wäre.

Für ein besseres Verständnis der Zielfunktionslandschaft werden zunächst die einzelnen
Bestandteile der Zielfunktion (siehe Gleichung (3-49)) dargestellt. In der Abbildung 3.22
und der Abbildung 3.24 ist dies jeweils für konstante und identische asymptotische Eigen-
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

frequenzvorgaben zu sehen. Zunächst soll die Abbildung 3.22 näher betrachtet werden.
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Abb. 3.22 – Darstellung der Zielfunktionsanteile ηT und κ für konstante
Eigenfrequenzvorgaben (Simulationsergebnisse vgl. Tabelle 3.1, Gewichtung
α = 0.6)
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Abb. 3.23 – Darstellung der Zielfunktion f für konstante Eigenfrequenzvor-
gaben (Simulationsergebnis vgl. Tabelle 3.1)
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

Die konstanten Eigenfrequenzvorgaben führen, wie bereits vermutet, zu gegensätzlichen
Verläufen der Zielfunktionswerte. Es wird hier ersichtlich, dass mit zunehmender Pro-
bekörperlänge das globale Fehlermaß abnimmt und das Maß der Instabilität anwächst.
Beide Verläufe lassen sich dadurch erklären, dass die Eigenfrequenz, die zu Beginn der
Modalanalyse berechnet worden ist, über den kompletten Stauchprozess konstant gehal-
ten wird. Die verschiedenen Probekörperlängen starten so mit unterschiedlichen Reserven
bezüglich auftretender Fehlergrößen und auch Stabilität. In Abbildung 3.23 ist der kom-
plette Zielfunktionsverlauf für eine Gewichtung von α = 0.6 dargestellt. Um Fluktuation
zu vermeiden, wurden die α-Werte in 0.1 Schritten variiert. Dabei kam heraus, dass bei
α = 0.6 ähnlich große Zielfunktionsanteile vorhanden sind. Aus dem Zielfunktionsver-
lauf f kann die optimale Probekörperlänge bei l0 = 45.5 mm abgelesen werden. Es sei
an dieser Stelle darauf hingewiesen, dass sich das Minimum der Optimierung in einer
nahezu horizontalen Senke für l0 ∈ [45, 48.5] mm befindet. Dieses Ergebnis ist insofern
interessant, als dass eine leichte Abweichung des Zielfunktionswertes nicht gleich zu si-
gnifikant schlechteren Resultaten führt. Im Folgenden soll nun die Abbildung 3.24 näher
betrachtet werden. Zunächst wird deutlich, dass identische asymptotische Eigenfrequenz-
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Abb. 3.24 – Darstellung der Zielfunktionsanteile ηT und κ für identische
asymptotische Eigenfrequenzvorgaben (Simulationsergebnisse vgl. Tabelle 3.1,
Gewichtung α = 0.6)

vorgaben zu einem nahezu horizontalen Verlauf der Zielfunktionswerte führen. Erst bei
einer Probekörperlänge kleiner 40 mm wird das globale Fehlermaß zunehmend größer. Für
die hier gewählte Eigenfrequenzvorgabe bedeutet dies, dass die Halterung den Anforde-
rungen bezüglich auftretender Messfehler nicht mehr nachkommen kann und somit das
globale Fehlermaß ansteigt. In der Abbildung 3.25 ist der gesamte Zielfunktionsverlauf für
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Abb. 3.25 – Darstellung der Zielfunktion f für identische asymptotische Ei-
genfrequenzvorgaben (Simulationsergebnis vgl. Tabelle 3.1)

eine Gewichtung von α = 0.6 dargestellt. Die Gewichtung erfolgte wieder in der Weise,
dass zum einen die einzelnen Zielfunktionswerte die gleiche Größenordnung besitzen (vgl.
dazu Abbildung 3.22 und Abbildung 3.24) und zum anderen die Zielfunktionslandschaften
auch untereinander direkt miteinander verglichen werden können. Aus dem Zielfunktions-
verlauf wird deutlich, dass unterschiedliche Probekörperlängen bei der hier verwendeten
Eigenfrequenzstrategie nahezu identisch aufeinander abgestimmt werden können. Soll der
Probekörper auch unter den Gesichtspunkten der Materialersparnis optimiert werden, so
kristallisiert sich ein Maß von l0 = 40 mm heraus. Größere Probekörperlängen besitzen bei
der hier gewählten Eigenfrequenzvorgabe keinen merklichen Vorteil. In der Abbildung 3.26
sollen dazu abschließend einige ausgewählte Probekörperlängen mit zugehörigen Halterun-
gen dargestellt und verglichen werden. Um eine bessere Vergleichbarkeit zu ermöglichen,
wird hier das lokale Fehlermaß ησ dargestellt. Dieses Maß gibt die lokale Abweichung
zwischen einer homogenen Stauchung und der aktuellen Stauchung des Probekörper an,
vgl. Gleichung (3-47). Die Betrachtung der einzelnen Probekörperlängen bestätigt das Er-
gebnis der Zielfunktionslandschaft in Abbildung 3.25. Die Mittelteillänge l0 = 100 mm
mit entsprechender Halterungskontur dient hier als Grenzfall der Untersuchung. Deutlich
wird, dass für die nächsten Mittelteillängen keine signifikanten Unterschiede zu verzeich-
nen sind. Erst bei einer weiteren Reduzierung der Mittelteillänge l0 ≤ 40 mm sind im
Randbereich, aufgrund des verkleinerten Messbereichs, größer werdende Abweichungen zu
erkennen. Dieser Fehlerbereich wächst bei noch größeren Stauchungen weiter an, weswegen
die Probekörperlänge l0 = 40 mm als unterster Grenzfall der verwendeten Eigenfrequenz-
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3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

Abb. 3.26 – Darstellung des lokalen Fehlermaßes ησ für verschiedene Probe-
körperlängen l0 ∈ [100, 30] mm bei einer Stauchung von 40 %

strategie angesehen werden sollte. Hinzu kommt, dass bei Mittelteillängen l0 ≤ 40 mm ab
größeren Stauchungen das virtuelle Extensometer von der Halterungskontur verdeckt wird.

Zusammenfassung der Optimierung der Probekörperlänge:
Aus den Analysen der verschiedenen Zielfunktionslandschaften lassen sich eine Reihe inter-
essanter Schlussfolgerungen ziehen. Bei der Modellierung mit identischen asymptotischen
Eigenfrequenzvorgaben kann festgestellt werden, dass unterschiedliche Mittelteillängen na-
hezu beliebig aufeinander abgestimmt werden können. Erst bei einer Mittelteillänge kleiner
l0 = 40 mm treten merkliche Unterschiede im Messbereich auf. Unter dem Gesichtspunkt
der Materialersparnis sollte die kleinstmögliche Mittelteillänge bei Beibehaltung des gerin-
gen Messfehlers bevorzugt werden. In weiteren Analysen wurde untersucht, inwieweit die
Zielfunktionslandschaft ihre Charakteristik beibehält, wenn das identische Eigenfrequenz-
niveau als auch der Schnittpunkt des Übergangs variiert wird. Dazu wurde das identische
Eigenfrequenzniveau für Ausgangslängen von l0 = 45 mm bzw. l0 = 55 mm sowie der
Schnittpunkt, an dem die Eigenfrequenzverläufe ineinander übergehen, angepasst (hier bei
20% bzw. 40% Stauchung). Alle Variationen führten zu ähnlichen Verläufen der Zielfunk-
tionslandschaft, womit die Charakteristik der Funktion in Abbildung 3.25 bestätigt wird.
Im Anhang sind dazu einige ausgewählte Beispiele dargestellt, siehe Abbildung A.1 und
Abbildung A.2. Aus den Analysen der Zielfunktionslandschaft mit konstanten Eigenfre-
quenzvorgaben ergab sich ein Optimum bei l0 = 45.5 mm. Es muss an dieser Stelle darauf
hingewiesen werden, dass die Verwendung von konstanten Eigenfrequenzvorgaben zu ei-
nem ungünstig konditionierten Zielfunktionsverlauf führt und besonderes an den Grenzen
schlechte Zielfunktionswerte liefert. Für weitere Untersuchungen sollte auf diese Eigenfre-
quenzvorgabe verzichtet werden.
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

Die ideale Probekörperlänge wird anhand der oben genannten Gesichtspunkte bei l0 =
45.5 mm festgelegt. Diese Länge stellt bei Betrachtung der Abbildung 3.23 als auch
der Abbildung 3.25 und unter dem Aspekt der Materialersparnis das beste Ergebnis
der Optimierung dar. Es ist dabei zu beachten, dass die ideale Probekörperlänge un-
ter Abhängigkeit des zuvor festgelegten Radius ermittelt worden ist. Alle Untersuchun-
gen und Schlussfolgerungen die hier angestellt wurden, lassen sich problemlos auf andere
Längen-Durchmesser-Verhältnisse übertragen. Beispielsweise wäre es denkbar, dass kom-
plette Probekörper-Setup zu miniaturisieren, um damit homogene Alterungsversuche im
Druckbereich zu ermöglichen (vgl. Abbildung A.6).

3.3.6 Formoptimierung der Halterungskontur

Aufbauend auf den Erkenntnissen aus der Optimierung der Probekörperlänge soll nun
die ideale Halterungskontur ermittelt werden. Dazu wird mit Hilfe der Zielfunktion (Glei-
chung (3-49)) die Halterungskontur in der Weise optimiert, dass sie ideale Eigenschaften
bezüglich auftretender Fehlergrößen und Stabilität besitzt. Die Formoptimierung der Hal-
terungskontur wird hier exemplarisch für die Mittelteillänge l0 = 50 mm durchgeführt. Der
Grund für die Wahl dieser Länge ist, dass für die ideale Probekörperlänge aus 3.3.5 keine
neue Vulkanisationsform zur Verfügung steht. Da auf die vorhandene Vulkanisationsform
(Mittelteillänge l0 = 50 mm) zurückgegriffen werden muss, soll auch die Formoptimierung
der Halterungskontur auf diese Länge angepasst werden. In der Abbildung 3.27 ist der
Ablaufplan zur Ermittlung der idealen Halterungskontur dargestellt. Der Ablaufplan äh-
nelt in seiner Grundstruktur dem der Optimierung der Probekörperlänge. Da sich viele
Schritte ähneln, soll hier insbesondere auf die Modifikationen eingegangen werden. Der ers-
te Schritt besteht in der Wahl einer geeigneten Eigenfrequenzvorgabe zur Berechnung der
Starthalterungskontur. Natürlich lässt sich ebenso eine bereits vorhandene Halterungskon-
tur als Startkontur für die Formoptimierung nutzen. Die Kontur wird im Anschluss daran
mit einem Polynom 5. Grades approximiert. Dieser Polynomgrad eignet sich sehr gut,
um die Halterungskonturen abzubilden. Die Verwendung kleinerer Polynomgrade sollte
aus Gründen der Abbildungsgenauigkeit vermieden werden. Bei der Verwendung höherer
Polynomgrade (sinnvoll bis 8. Grades) steigt die Abbildungsgenauigkeit nur minimal, au-
ßerdem führt dies zwangsweise zu längeren Berechnungszeiten aufgrund der zusätzlich zu
optimierenden Parameter. Mit Hilfe der approximierten Halterungskontur kann dann das
Fehler- und das Instabilitätsmaß berechnet werden. Mittels dieser Werte und der Gewich-
tung α lässt sich dann die Zielfunktion bestimmen. Diese kann dann mit der Optimie-
rungstoolbox von Matlab minimiert werden. Für die hier durchgeführte Formoptimierung
findet die Simplex-Methode nach Nelder und Mead als gradientenfreies Verfahren seine
Anwendung. Die Formoptimierung endet, wenn die Toleranz eingehalten ist. In der Abbil-
dung 3.28 sind zum besseren Verständnis einige Iterationsschritte des Simplex-Verfahrens
nach Nelder und Mead dargestellt.
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Abb. 3.28 – Iterationsschritte des
Nelder Mead Simplex-Verfahrens

Zunächst soll anhand zweier Halterungskonturen aus der Parameterstudie, die als Start-
konturen dienen sollen, eine Formoptimierung durchgeführt werden. In Abbildung 3.29
sind die Halterungskonturen aus der Parameterstudie zu sehen und in Abbildung 3.30 die
Ergebnisse der Formoptimierungen. Dabei stellt die grün-gestrichelte Kontur das Ergebnis
dar, welches aus der sicheren Halterungskontur berechnet wurde und die blau-gestrichelte
Kontur die Lösung aus der Standard-Halterung. Aus diesen Ergebnissen lassen sich fol-
gende Erkenntnisse gewinnen: Beide Formoptimierungen konvergieren in einen ähnlichen
Bereich hinein, liegen jedoch nicht exakt aufeinander. Daraus lässt sich schließen, dass
zumindest eine der beiden Konturen in einem lokalen Minimum gelandet ist. Es bleibt
zu überprüfen, ob sich das globale Minimum zwischen den Kurven der sicheren und der
Standard-Halterung befindet oder sogar zwischen den Kurven der beiden optimierten Lö-
sungen. Die kritische Halterungskontur wurde hier der Vollständigkeit halber mit dar-
gestellt. Da diese Halterungskontur sehr ungünstige Zielfunktionswerte besitzt, sollte sie
nicht als Startkontur für eine Optimierung herangezogen werden. Um das Optimierungs-
problem zielgerichteter lösen zu können, soll in einem nächsten Schritt ein besser geeigne-
ter Startbereich für die Formoptimierung festgelegt werden. Dazu soll anhand einer Pa-
rameterstudie der Eigenfrequenzbereich, der zur Halterungsberechnung dient, abgetastet
werden. Mit Hilfe dieser Verläufe kann dann ein idealer Startbereich für die Halterungs-
optimierung festgelegt werden. In der Abbildung 3.31 ist der Parameterraum mit den
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Abb. 3.29 – Halterungen aus der Parameterstudie
(Simulationsergebnisse)
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Abb. 3.30 – Lösungen der Optimierung 1 und 2
(Simulationsergebnisse)
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Abb. 3.31 – Normierte Eigenfrequenzverläufe für die Halterungsberechnung
(Simulationsergebnisse vgl. Tabelle 3.1, vgl. Abbildung 3.11)

normierten Eigenfrequenzverläufen dargestellt. Dabei bilden der kritische und der sichere
Eigenfrequenzverlauf die Grenzen für alle weiteren Untersuchungen. Um geeignete Start-

56

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182
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verläufe zu generieren, wird der Parameterraum hinreichend klein abgetastet, danach die
Halterungskontur berechnet und der Zielfunktionswert bestimmt. In Abbildung 3.31 ist
die Abtastung anhand der grau hinterlegten Eigenfrequenzverläufe dargestellt. Die Abtas-
tung erfolgte in der Weise, dass Bereiche in denen günstige Zielfunktionswerte auftreten in
einem weiteren Schritt nochmals feiner abgetastet wurden. Die in Abbildung 3.31 magen-
tafarben gezeichneten Verläufe stellen die drei ermittelten Minima der Parameterstudie
dar. Mit diesen drei Startverläufen sollen im Folgenden die Formoptimierungen erneut
durchgeführt werden. In Abbildung 3.32 sind die optimierten Halterungskonturen, die aus
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Abb. 3.32 – Lösungen der Optimierung 3 bis 5
(Simulationsergebnisse)

0 2 4 6
-12

-10

-8

-6

-4

-2

0
Sichere Halterung

Standard-Halterung

Kritische Halterung

Optimierung 1

Optimierung 2

Optimierung 3

Abb. 3.33 – Gegenüberstellung aller Konturen
(Simulationsergebnisse)

den Eigenfrequenzverläufen der Abbildung 3.31 berechnet worden sind, dargestellt. Aus
der Abbildung wird ersichtlich, dass die optimierten Verläufe sehr gut übereinander liegen
und in ein gemeinsames Minimum konvergieren. Bei Betrachtung der Zielfunktionswerte
kann davon ausgegangen werden, dass das globale Minimum eindeutig identifiziert wur-
de. In Tabelle 3.2 sind die wichtigsten Zielfunktionswerte aus der Halterungsoptimierung
zusammengefasst. Anhand der Zielfunktionswerte wird die sehr gute Übereinstimmung
der Optimierung 3 bis 5 deutlich. Im Folgenden wird eine der drei optimierten Lösungen
mit den Konturen aus der ersten Formoptimierung verglichen. In Abbildung 3.33 ist dieser
Vergleich dargestellt. Dabei befindet sich die Kontur mit zugehörigem globalen Minimum
der Optimierung innerhalb der Konturen aus den ersten Formoptimierungen. Der untere
Abschnitt der Halterungskontur stimmt bei allen Formoptimierungen sehr gut überein.
Lediglich im Anfangsbereich der Halterungskonturen sind etwas größere Abweichungen zu
erkennen. Ein Grund dafür kann die sehr geringe Sensitivität der Halterung in diesem
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Tabelle 3.2 – Gegenüberstellung der Zielfunktionswerte aus der Halterungs-
optimierung

Halterung ηT - Term κ - Term Gewichtung α Zielfunktionswert f
Sichere Halterung 0.017478 0.002715 0.6 0.011573

Standard-Halterung 0.007549 0.012534 0.6 0.009543
Kritische Halterung 0.003511 0.036936 0.6 0.016881

Optimierung 1 0.010923 0.006131 0.6 0.009006
Optimierung 2 0.009273 0.009671 0.6 0.009432
Optimierung 3 0.009682 0.007269 0.6 0.008717
Optimierung 4 0.009816 0.007178 0.6 0.008761
Optimierung 5 0.009867 0.007084 0.6 0.008753

Bereich sein. Die Zielfunktion, die das Maß des relativen Messfehlers und der Instabi-
lität aufsummiert, hat in diesem anfänglichen Bereich nur sehr geringe Funktionswerte.
Eine logarithmische Verteilung der Stützstellen der Halterungskontur führte zu keiner
nennenswerten Verbesserung. Das bedeutet, dass die Halterungskontur und der sich dar-
aus ergebende Zielfunktionswert nur minimal ändern. Um ein besseres Verständnis für
die optimierte Halterungskontur zu bekommen, soll im Weiteren das globale Fehlermaß
und Instabilitätsmaß mit den bisherigen Halterungen verglichen werden. In Abbildung 3.34
und Abbildung 3.35 sind die entsprechenden Kurven dargestellt. Aus Abbildung 3.34 lässt
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Abb. 3.34 – Darstellung des globalen Fehlermaßes ηT für die verschiedenen
Halterungskonturen (Simulationsergebnisse vgl. Tabelle 3.1, vgl. Abbildung
3.14)
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Abb. 3.35 – Darstellung des Instabilitätsmaßes κ für die verschiedenen Hal-
terungskonturen (Simulationsergebnisse vgl. Tabelle 3.1, vgl. Abbildung 3.17)

sich entnehmen, dass die optimierte Halterung qualitativ zu ähnlichen Ergebnissen wie die
Standard-Halterung führt, aber deutlich bessere Werte als die sichere Halterung liefert.
In Abbildung 3.35 befindet sich die optimierte Halterung zwischen der sicheren und der
Standard-Halterung, besitzt aber in der Gesamtheit die beste Performance bezüglich Sta-
bilität und Abweichung zur theoretisch vorhandenen Lösung. In Abschnitt 3.4 erfolgt die
experimentelle Validierung und Gegenüberstellung der verschiedenen Halterungskonturen.

Abschließend soll der Ablaufplan für die Formoptimierung der Halterungskontur auch
für andere Mittelteillängen angewendet werden. Ziel der Untersuchung ist, dass über-
prüft werden soll, wie gut der Zielfunktionsverlauf der Abbildung 3.25 mit den Lösungen
der Formoptimierungen übereinstimmt. In Abbildung 3.36 ist der Zielfunktionsverlauf mit
ausgewählten Lösungen der Formoptimierungen (magentafarbene Kreuze) dargestellt. Aus
der Abbildung wird ersichtlich, dass die optimierten Halterungskonturen zwar zu besse-
ren Ergebnissen führen, der prinzipielle Zielfunktionsverlauf in seiner Charakteristik aber
erhalten bleibt. Das bedeutet, dass die Vorgehensweise, die zur Ermittlung der idealen
Halterungskontur angewendet wurde, mit diesen Ergebnissen bestätigt werden kann.

Zusammenfassung der Halterungsoptimierung:
Als eines der wichtigsten Erkenntnisse kann zusammengefasst werden, dass sich mit Hilfe
von Eigenfrequenzverläufen Halterungsgeometrien berechnen und optimieren lassen. An-
hand des Ablaufplanes 3.27 kann eine Formoptimierung zur Berechnung der idealen Hal-
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Abb. 3.36 – Vergleich der Zielfunktion für identische asymptotische Eigen-
frequenzvorgaben mit ausgewählten Lösungen der Formoptimierungen (Simu-
lationsergebnisse vgl. Tabelle 3.1, vgl. Abbildung 3.25)

terungskontur durchgeführt werden. Dabei sollte darauf geachtet werden, dass geeignete
Startverläufe für die Optimierung ausgewählt werden. Mittels einer vorgeschalteten Pa-
rameterstudie (vgl. dazu Abbildung 3.31) lässt sich die Halterungskontur eindeutig iden-
tifizieren. Obwohl die verwendeten Eigenfrequenzverläufe ganz unterschiedliche Formen
annehmen, zeigen die zugehörigen Halterungskonturen quantitativ sehr ähnliche Verläufe.
Diese Verläufe lassen sich wiederum mittels Polynomen gut approximieren und optimie-
ren. Das hier dargestellte Verfahren lässt sich für beliebige Mittelteillängen anwenden und
wurde hier beispielhaft für die Mittelteillänge l0 = 50 mm durchgeführt.

3.3.7 Erweiterung des Probekörperdesigns für extreme Stauchungen

Im Folgenden soll für spezielle Anwendungen das Probekörperdesign auf extreme Stau-
chungen (bis zu 70 %) erweitert werden. Dazu soll zunächst auf einige prinzipielle Her-
ausforderungen, mit denen bei extremen Stauchungen zu rechnen ist, näher eingegangen
werden:

• Für extreme Stauchungen werden längere Halterungskonturen benötigt.

• Der zur Verfügung stehende Messbereich wird immer kleiner.

• Es muss mit zunehmenden Fehlergrößen im Messbereich gerechnet werden.
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• Die Abweichung vom einachsigen Spannungszustand wird mit zunehmender Stau-
chung immer größer.

Die Reduktion des Messbereiches führt dazu, dass die Messstrecke lM ab einer gewissen
Stauchung von der Halterungskontur verdeckt wird. Eine mögliche Idee bestünde in der
Verkleinerung der Messstrecke lM, damit diese erst zu einem späteren Zeitpunkt mit der
Halterung in Kontakt tritt. In Abbildung 3.37 ist die axiale Dehnung für verschiedene
Messlängen lM dargestellt. Die Dehnungsverläufe (lM = 20 mm und lM = 15 mm) sind bis

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-30

-25

-20

-15

-10

-5

0

Abb. 3.37 – Darstellung der axialen Dehnungsmessung für unterschiedliche
Messstrecken lM (Simulationsergebnisse vgl. Tabelle 3.1, vgl. Abbildung 3.13)

zu der Stauchung dargestellt, bei der eine Kontaktierung mit der Halterung stattfinden
würde. Anhand der Abbildung 3.37 wird weiterhin deutlich, dass eine Verkleinerung der
Messlänge zwar prinzipiell eine Messung hin zu größeren Stauchungen ermöglicht, aber
selbst diese Herangehensweise ihre Grenzen aufzeigt. Für die Messlänge lM = 10 mm und
lM = 2 mm ist interessanterweise sogar ein Richtungswechsel der Dehnungskurven zu
verzeichnen. Dieser Effekt lässt sich dadurch erklären, dass bei extremen Druckbeanspru-
chungen das Material immer stärker in radialer Richtung aufgeweitet wird und dadurch
keine reine Stauchung in axialer Richtung an der Probenoberfläche mehr stattfindet. Ein
weiterer Nachteil in der Reduzierung der Messstrecke liegt in der Vergrößerung des re-
lativen Messfehlers. Die direkte axiale Dehnungsmessung scheint unter den gegebenen
Gesichtspunkten ihre Grenzen zu erreichen.

Im Folgenden soll ein alternativer Zugang zur Messung der Dehnungen (in der Symme-
trieebene) vorgestellt werden. Der Kerngedanke der neuen Messstrategie besteht darin,
über die Messung der Umfangsstreckung auf eine gemittelte Streckung in axialer Rich-
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tung schließen zu können. Dieser Ansatz, der auf M. Sc. Schlomka und M. Sc. Gelke an
der Professur Festkörpermechanik zurückzuführen ist (vgl. Kanzenbach u. a. 2019b), soll
im Weiteren näher betrachtet und auf seine Anwendungsmöglichkeiten hin getestet werden.
Zur Herleitung der neuen Messstrategie wird zunächst das Volumen einer Materialschicht
infinitesimaler Höhe in der Symmetrieebene betrachtet. Als nächstes wird das Volumen-
verhältnis zwischen verformter und unverformter Lage aufgestellt (in der unverformten
Lage kann die infinitesimale Höhe h̃ als konstant angesehen werden):

V

Ṽ
=

∫
h(r) dA

h̃ Ã
= 1
Ã

∫
h(r)
h̃

dA . (3-50)

Hierbei lassen sich bekannte Größen wie folgt durch Streckungen ersetzen:

h(r)
h̃

= λz und A

Ã
= d2

d̃
2 = λ2

u . (3-51)

Über die Definition der gemittelten axialen Streckung λz,m ergibt sich dann folgender
Zusammenhang:

V

Ṽ
= λ2

u λz,m mit: λz,m = 1
A

∫
λz dA . (3-52)

Für den Fall idealer Inkompressibilität dV
dṼ

= J3
!= 1 kann die Auswertegleichung (3-52)

weiter vereinfacht werden:

λz,m = 1
λ2

u

. (3-53)

Zum besseren Vergleich mit der herkömmlichen Dehnungsmessung via Extensometer soll
die gemittelte axiale Streckung als technische Dehnung dargestellt werden:

εzz,m = λz,m − 1 = 1
λ2

u

− 1 =
(
d̃

d

)2

− 1 . (3-54)

Abschließend soll das hergeleitete Dehnungsmaß in Gleichung (3-54) numerisch überprüft
werden. Hierfür wird der rechte Ausdruck der Gleichung 3-52 hinreichend fein diskretisiert
mittels einer gewichteten axialen Dehnungsmessung in der Symmetrieebene. Die dabei
vorgenommene Gewichtung erfolgt in der Weise, dass die axialen Dehnungen in radialer
Richtung aufsummiert und anhand der zugehörigen Kreisringfläche gemittelt werden:

εzz,M =

1
2

n∑
i=1

(
εi+1 + εi

)(
r2

i+1 − r2
i

)
r2

max
. (3-55)

In Abbildung 3.38 werden die verschiedenen Dehnungsvarianten gegenübergestellt und
mit der homogenen Lösung verglichen. Anhand der Abbildung wird deutlich, dass die

62

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3.3 FE gestützte Entwicklung eines Zug-/Druckprobekörpers

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-30

-25

-20

-15

-10

-5

0

Abb. 3.38 – Vergleich der verschiedenen Messstrategien (Simulationsergeb-
nisse vgl. Tabelle 3.1, vgl. Abbildung 3.13, die letzten beiden Kurven fallen
zusammen)

neue Messstrategie (Messung der Umfangsstreckung) zu übereinstimmenden Ergebnissen
führt wie die Mittelung der Dehnungen in radialer Richtung über die jeweiligen Kreis-
ringflächen, siehe Gleichung (3-55). Um diesen Sachverhalt noch eingehender untersuchen
zu können, soll im Folgenden der Verlauf der axialen Dehnungen in der Symmetrieebe-
ne in radialer Richtung dargestellt werden, siehe Abbildung 3.39. Weiterhin ist in der
Abbildung der Mittelwert der axialen Dehnung (Gleichung (3-55)) und das Ergebnis der
neuen Messstrategie dargestellt. Als eine Erkenntnis kann festgehalten werden, dass mit
zunehmender Stauchung (hier exemplarisch für: 50 %) der Verlauf der axialen Dehnung
in radialer Richtung immer inhomogener wird. Weiterhin kann bestätigt werden, dass die
neue Messstrategie einen indirekten Zugang liefert, um bei großen bzw. extremen Stau-
chungen (bis 70 %) messen zu können.

Die größer werdenden Abweichungen von der homogenen Lösung im Spannungs-Dehnungs-
diagramm (Abbildung 3.38) lassen sich dadurch erklären, dass bei großen Stauchungen die
Annahme einer homogenen Druckdeformation immer stärker verletzt wird. Das äußert sich
auch im inhomogenen Verlauf der axialen Dehnung in radialer Richtung. An dieser Stelle
sei aber nochmal ausdrücklich auf den Umstand hingewiesen, dass die neue Messstrategie
überhaupt einen Zugang liefert, um bei solchen extremen Stauchungen messen zu können.
Abgesehen davon soll auf den großen messtechnischen Vorteil eingegangen werden, dass
die neue Messstrategie (Messung der Umfangsstreckung in horizontaler Richtung) sehr
platzsparend auf einen kleinen Messbereich zwischen den Halterungskonturen angewandt
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Abb. 3.39 – Auswertung der axialen Dehnungen in radialer Richtung für den
Querschnitt in der Symmetrieebene (Simulationsergebnisse vgl. Tabelle 3.1)

werden kann (vgl. Gleichung (3-54)).

Untersuchung der Anwendungsmöglichkeiten und Fehlergrenzen der neuen
Messstrategie
Im Weiteren soll die neue Messstrategie auf ihre Anwendungsmöglichkeiten und Grenzen
hin getestet werden. Dabei soll auch der Fehler untersucht werden, der entsteht, wenn die
Annahmen, die bei der Herleitung der neuen Messstrategie getroffen wurden, nur nähe-
rungsweise erfüllt sind:

• Anwendung der neuen Messstrategie außerhalb der Symmetrieebene

• Einfluss der Reibung und des Kompressionsmoduls auf die Auswertegleichung

• Einfluss einer gestörten Kreisgeometrie des Querschnitts auf die Auswertegleichung
Zunächst soll überprüft werden, wie sensitiv die neue Messstrategie darauf reagiert, wenn
außerhalb der Symmetrieebene gemessen wird. Da der zur Verfügung stehende Messbereich
für extreme Stauchungen sehr begrenzt ist (hier: 3.2 mm), reicht es die Untersuchungen für
einen Offset von ∆z = 2 mm zur Symmetrieebene durchzuführen. In Abbildung 3.40 sind
die relativen Fehlerkurven, verglichen mit der idealen Lösung bei ∆z = 0 mm, dargestellt.
Aus Abbildung 3.40 wird ersichtlich, dass der maximale Messfehler im Bereich von 0 bis
70 % Stauchung bei unter f < 0.4 % liegt. Das Minimum der Fehlerkurven bei ca. 57 %
Stauchung lässt sich dadurch erklären, dass die axialen Dehnungen in Oberflächennähe
infolge der Materialauswölbung beim Übergang zu extremen Stauchungen einen Umkehr-
punkt durchlaufen (vgl. Abbildung 3.37). Zum besseren Verständnis ist dazu in Abbildung
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Abb. 3.40 – Darstellung des relativen Messfehlers f bei Messung außerhalb
der Symmetrieebene mit der neuen Messstrategie (Simulationsergebnisse vgl.
Tabelle 3.1)

3.40 ein Symmetrieschnitt des Probekörpers dargestellt. Betrachtet man die unterste Ele-
mentschicht in radialer Richtung, dann wird anhand der im unverformten Zustand hori-
zontalen Gitterlinien deutlich, dass die äußeren Elemente immer stärker aufgeweitet statt
komprimiert werden. Zusammenfassend lässt sich sagen, dass auch ein minimaler Offset
von wenigen Millimetern nicht zu signifikant schlechteren Messergebnissen führt und die
neue Messstrategie auch dafür geeignet ist.

Als nächstes soll der Einfluss der Reibung und des Kompressionsmoduls auf die neue
Messstrategie hin untersucht werden. Es soll dabei überprüft werden, ob die Annahme
der Inkompressibilität für die neue Messstrategie zulässig ist oder ob eine schwache Kom-
pressibilität berücksichtigt werden muss. In den Veröffentlichungen von Stommel & Zim-
mermann (2011), Zimmermann & Stommel (2013) und Kanzenbach u. a. (2017) werden
verschiedene Verfahren zur experimentellen Bestimmung des Kompressionsmoduls tech-
nischer Elastomere vorgestellt. Der darin ermittelte Kompressionsmodul liegt in der Grö-
ßenordnung von 2500 MPa. Für die hier numerisch durchgeführten Untersuchungen wird
der Kompressionsmodul im Bereich von K ∈ [100, 10000] MPa variiert. Somit kann die
neue Messstrategie für diesen Bereich hinreichend getestet werden. Die Variation der Rei-
bung erfolgt dabei im Bereich von µ ∈ [0, 1]. In Abbildung 3.41 sind die berechneten
Dehnungskurven für die Variation des Kompressionsmoduls und der Reibung dargestellt.
Im Folgenden soll der relative Fehler der berechneten Dehnungskurven im Vergleich zuein-

65

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


3 Probekörperdesign für hochpräzise Zug-/Druckmessungen

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
ε

-30

-25

-20

-15

-10

-5

0

T
=

F
/A

0
in

M
P
a

Homogene Lösung

K = 100 MPa und µ = 0.0
K = 100 MPa und µ = 0.5
K = 100 MPa und µ = 1.0
K = 1000 MPa und µ = 0.0
K = 1000 MPa und µ = 0.5
K = 1000 MPa und µ = 1.0
K = 10000 MPa und µ = 0.0
K = 10000 MPa und µ = 0.5
K = 10000 MPa und µ = 1.0

Abb. 3.41 – Überprüfung der neuen Messstrategie bei Variation des Kom-
pressionsmoduls und der Reibung (Simulationsergebnisse vgl. Tabelle 3.1, die
farbigen Kurven überlagern sich)
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Abb. 3.42 – Darstellung des relativen Messfehlers f bei Variation der Reibung
und des Kompressionsmoduls (Simulationsergebnisse vgl. Tabelle 3.1)

ander ermittelt werden (vgl. Abbildung 3.42). Die Paarung K = 10000 MPa und µ = 1.0
(oberer Grenzbereich) stellt dabei eine theoretische Vergleichslösung dar. Aus Abbildung
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3.42 wird ersichtlich, dass die Reibung bis 30 % Stauchung keinen abweichenden Einfluss
auf die neue Messstrategie ausübt. Erst bei größeren Stauchungen ist ein abweichendes
Reibverhalten zu verzeichnen, was zu einem maximalen Fehler von 3 % führt. Dieser Ef-
fekt kann dadurch erklärt werden, dass der Probekörper in radialer Richtung, aufgrund der
abflachenden Halterungskontur, immer stärker aufgeweitet wird und dadurch ein Gleiten
begünstigt. Die unterschiedlichen Offsets für die Fehlerkurven lassen sich auf den jeweils
gewählten Kompressionsmodul zurückführen. Durch die Veränderung des Kompressions-
moduls im hyperelastischen Stoffgesetz wird zwangsweise die Materialsteifigkeit verändert,
was sich wiederum auf die Berechnung des relativen Fehlers auswirkt. Der stärkste Einfluss
ist dabei für einen Kompressionsmodul von 100 MPa zu verzeichnen. Da dieser Wert für
technische Elastomere alles andere als repräsentativ ist, dient er hier lediglich als theo-
retischer Grenzfall. Hingegen liegt der relative Fehler für Werte des Kompressionsmoduls
zwischen 1000 und 10000 MPa durchgehend unter f < 2 % (bei gleichem Reibwert sogar
unter f < 0.2 %). Mit dieser Überprüfung kann sichergestellt werden, dass die Annahme
der Inkompressibilität für die neue Messstrategie verwendet werden darf.

Abschließend soll überprüft werden, wie sensitiv sich die neue Messstrategie bei einem
unrunden Querschnitt verhält. Die Störung wird dabei in Form einer Geometrieimperfek-
tion uS = ι r0 aufgebracht mit ι ∈ [0.01, 0.02] (initiale Auslenkung der Mittelebene um
den Betrag uS). Neben der Imperfektion wird auch der Schrumpf des Probekörpers variiert
∆r ∈ [1, 2] %. Der zu ermittelnde relative Fehler f wird dabei aus der gewichteten axialen
Dehnungsmessung εzz,M und der Dehnungsmessung via Umfangsstreckung εzz,m bestimmt.
Aufgrund der Geometrieimperfektion wird die Umfangsstreckung an drei verschiedenen
Stellen entlang des Umfangs ermittelt ϕ ∈ [0, 180]◦. Dies bietet den großen Vorteil, dass
in direkter Weise überprüft werden kann, wie sich eine Messung mit der neuen Messstra-
tegie in Knickrichtung, 90◦ dazu versetzt oder entgegen der Knickrichtung verhält. In der
Abbildung 3.43 ist die relative Abweichung über der gewichteten axialen Dehnungsmes-
sung dargestellt. Zunächst wird deutlich, dass eine Geometrieimperfektion einen größeren
Einfluss auf das Fehlermaß ausübt als der Schrumpf des Probekörpers. Weiterhin ist zu
erkennen, dass die Messfehler in der Knickebene (Messpunkt links: 180◦ und Messpunkt
rechts: 0◦) am größten und 90◦ dazu versetzt am kleinsten sind. Interessanterweise liegen
die Fehlerkurven resultierend aus dem Messpunkt in der Mitte (90◦ zur Knickrichtung ver-
setzt) für alle Imperfektionen nahezu aufeinander. Als eine der wichtigsten Erkenntnisse
kann festgehalten werden, dass selbst bei einer Geometrieimperfektion von ι = 0.02 und
einem Schrumpf von ∆r = 1 % der maximale Messfehler unter f < 3.6 % liegt. Somit
ist gewährleistet, dass die neue Messstrategie auch bei kleinen Störungen der Kreisgeome-
trie zu genauen Ergebnissen führt. Bei einer späteren experimentellen Realisierung sollte
trotzdem darauf geachtet werden, dass der Probekörper möglichst koaxial eingebaut und
der Schrumpf bestmöglich durch einen entsprechenden Halterungsring kompensiert wird.
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Abb. 3.43 – Darstellung des relativen Messfehlers f für die neue Messstrategie
bei unrundem Querschnitt (Simulationsergebnisse vgl. Tabelle 3.1)

Zusammenfassung der neuen Messstrategie:
In diesem Abschnitt konnte mit Hilfe der neuen Messstrategie (Messung der Umfangs-
streckung zur Bestimmung der gemittelten axialen Dehnung) ein Werkzeug bereitgestellt
werden, dass es in Kombination mit längeren Halterungskonturen ermöglicht, Stauchun-
gen bis 70 % zu realisieren und zu messen. Da die gemittelte axiale Dehnung nur indirekt
über die Umfangsstreckung bestimmt werden kann, wurde eine ausführliche Sensitivitäts-
analyse der neuen Messstrategie durchgeführt. Die Untersuchungen haben ergeben, dass
selbst bei kleinen Störungen der getroffenen Annahmen die gemittelte axiale Dehnung zu-
verlässig bestimmt werden kann. Die experimentelle Validierung der neuen Messstrategie
erfolgt im letzten Abschnitt von 3.4.4.
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3.4 Experimentelle Validierung des neuen Probekörper-Setups

3.4.1 Versuchsaufbau des Probekörper-Setups in der Prüfmaschine

In diesem Abschnitt erfolgt die experimentelle Validierung des neuen Probekörper-Setups.
Dazu werden die entwickelten Halterungskonturen entsprechend ihrer Geometrie präzise
gefertigt und im Anschluss getestet (vgl. die vier Konturen in Abbildung 3.32). Zum bes-
seren Verständnis soll zunächst auf den prinzipiellen Versuchsaufbau eingegangen werden.
In Abbildung 3.44 ist der allgemeine Versuchsaufbau mit allen wichtigen Komponenten
dargestellt und in Abbildung 3.45 sind die Einzelkomponenten für den Zusammenbau des
Probekörper-Setups zu sehen. Die Montage des Probekörper-Setups (1) erfolgt über zwei

Ausrichteinheit

Kraftmessdose

Halterungs-
kontur

Adapter

Probekörper

3D DIC-
Messsystem

Traverse

Abb. 3.44 – Versuchsaufbau des Probekörper-Setups mit Messsystem

Adapter (2), die jeweils einen Halterungsring (3), die Halterungskonturen (4) mit Schrau-
ben (5) und den Probekörper umfassen. Die Adapter besitzen eine Bohrung mit Spielpas-
sung (6) und können jeweils über einen Stift (7) und eine Kontermutter (8) mit der Prüf-
maschine verbunden werden. Das Probekörper-Setup wird in Reihe mit einer Kraftmess-
dose (Nennlast: 20 kN) und einer Ausrichteinheit verbunden. Insbesondere für hochpräzise
Druckmessungen spielt die Ausrichteinheit eine entscheidende Rolle. Da die verschiedenen
in Reihe geschalteten Anbauteile keine zufriedenstellende Koaxialität besitzen, wird eine
Ausrichteinheit zur Korrektur von Exzentrizitäten und Winkelabweichungen benötigt. Die
durchgeführte Winkel- und Positionskorrektur kann mit Hilfe von Parallelendmaßen am
Probekörper-Setup kontrolliert werden. In der Abbildung 3.46 ist ein schematischer Ver-
suchsaufbau dargestellt, der die Notwendigkeit einer Ausrichteinheit verdeutlicht. Über die
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Abb. 3.45 – Zusammenbau des Probekörper-Setups

Versuchsaufbau ohne Ausrichteinheit Versuchsaufbau mit Ausrichteinheit

Kraftmessdose Kraftmessdose

Probekörper-SetupProbekörper-Setup

Ausrichteinheit

Traverse
Traverse

Maschinentisch Maschinentisch

αΔs

Abb. 3.46 – Versuchsaufbau mit und ohne Ausrichteinheit

Traverse können weg- oder kraftgesteuerte Versuche gefahren werden. Die Standardunter-
suchungen werden mit einer elektromechanischen Zug-/Druckprüfmaschine von der Firma
Zwick/Roell durchgeführt. Für dynamische Untersuchungen steht eine servo-hydraulische
Prüfmaschine von der Firma Instron zur Verfügung. Auf die Prüfmaschinensteuerung und
deren Erweiterung soll im nächsten Abschnitt gesondert Bezug genommen werden. Die
Verschiebungsmessung am Probekörper erfolgt, wenn nicht anders angegeben, optisch mit
einem 3D Digital Image Correlation-Messsystem (DIC-Messsystem) von der Firma GOM
(Aramis 3D 4M-System). Auf die Besonderheiten und Feineinstellungen des hochpräzisen
3D Messsystems, wird an entsprechender Stelle eingegangen. Das Prinzip der DIC-Messung
kann dem Buch von Sutton u. a. (2009) entnommen werden.
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3.4.2 Erweiterte Prüfmaschinensteuerung

Standardmäßig besitzen moderne Prüfmaschinen (z.B. Zwick/Roell) einen grafischen Ab-
laufeditor (ein Teil von testXpert II) mit dessen Hilfe Prüfabläufe in Blöcken programmiert
werden können. Diese Herangehensweise bietet für Standarduntersuchungen und einfache
Prüfsequenzen eine komfortable Handhabbarkeit. Der große Nachteil besteht aber darin,
dass keine beliebigen freien Funktionsverläufe generiert werden können. Die standardmäßig
zur Verfügung stehenden grafischen Blöcke sind für solche Anwendungsfälle nicht geeig-
net. Es lassen sich beispielsweise keine kontinuierlichen Übergänge zwischen verschiedenen
Sinusbausteinen programmieren. Diese Übergänge werden automatisch mit Haltezeiten
und Anfahrrampen verbunden (vgl. Abbildung 3.47 oben). Gerade im Bereich der Ma-

1. Sinusbaustein 2. Sinusbaustein 3. Sinusbaustein

grafischer Ablaufeditor von Zwick/Roell

Verwendung der externen Sollwertsteuerung

Abb. 3.47 – Gegenüberstellung: grafischer Ablaufeditor von Zwick/Roell und
Erweiterung mit der externen Sollwertsteuerung. Die Abbildung ist in leicht
modifizierter Form Kanzenbach u. a. (2016a) entnommen. Wiederverwendung
mit Genehmigung. © 2016 Elsevier Ltd.

terialcharakterisierung, wo kontinuierliche Übergänge sehr wichtig sind, stellt dies einen
großen Nachteil dar. Das Ziel besteht in der Erweiterung bzw. Modifizierung der stan-
dardmäßigen Steuerung zur Modellierung freier Funktionsverläufe. Mit Hilfe einer exter-
nen Sollwertsteuerung soll dieses Ziel realisiert werden. Die Grundidee besteht darin, der
Prüfmaschine extern ein vordefiniertes Steuersignal vorzugeben, was dann von der Traverse
verfahren wird. In der Abbildung 3.48 ist das Blockdiagramm zur Realisierung der exter-
nen Sollwertsteuerung dargestellt. Zu Beginn wird mit Hilfe einer Mathematik-Software
(z.B. Matlab) der gewünschte Funktionsverlauf erstellt. Dieser Funktionsverlauf wird im
Anschluss in LabVIEW verarbeitet und in ein analoges Ausgangssignal umgewandelt.
Dieses Signal, welches in einem Bereich von ±10 V aufgelöst ist, steuert dann die Traver-
se. Die Implementierung wurde so realisiert, dass die Standardsoftware von Zwick/Roell
weiterhin genutzt werden kann, es aber jederzeit möglich ist, über einen neuen Software-
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Abb. 3.48 – Blockdiagramm zur Realisierung der externen Sollwertsteuerung.
Die Abbildung ist in leicht modifizierter Form Kanzenbach u. a. (2016a) ent-
nommen. Wiederverwendung mit Genehmigung. © 2016 Elsevier Ltd.

baustein das gewünschte Funktionssignal zu verfahren (vgl. Abbildung 3.47 unten). Durch
diese Erweiterung entsteht eine Modellierungsfreiheit, die im Bereich der Materialcharak-
terisierung ganz neue Untersuchungsmöglichkeiten eröffnet. Mit der erweiterten Prüfma-
schinensteuerung wurde ein Werkzeug geschaffen, mit dem nun beliebige Amplituden-,
Frequenz-, und/oder Offsetwechsel erstellt und verfahren werden können. Damit erlaubt
die Prüfmaschine neben der Steuerung vorgegebener Funktionsmodule auch die direkte
Vorgabe der Traversenbewegung durch freie analoge Eingangssignale. Dadurch kann die
Bewegung komplett frei gesteuert werden und ist nur noch durch „harte“ interne Größen
wie Trägheits- und Antriebskräfte begrenzt. Sämtliche nur denkbare Funktionsverläufe
im Rahmen der physikalischen Möglichkeiten der Maschine lassen sich somit modellieren
und abfahren. In der Veröffentlichung von Kanzenbach u. a. (2016a) sind weitere Ein-
zelheiten und ein Anwendungsbeispiel zur externen Sollwertsteuerung vorgestellt. In den
nachfolgenden Abschnitten kann nun auf die erweiterte Prüfmaschinensteuerung zur phä-
nomenologischen Untersuchung von technischen Elastomeren zurückgegriffen werden.

3.4.3 Voruntersuchungen und Qualitätsprüfungen

Bevor mit der phänomenologischen Untersuchung technischer Elastomere begonnen wer-
den kann, soll das Probekörper-Setup auf seine Funktionstauglichkeit hin getestet werden.
Weiterhin werden Standards für die Messprozedur festgelegt, die es später erlauben, gezielt
messen und reproduzierbar Eigenschaften von Elastomeren untersuchen zu können. Die
Messergebnisse sollen im Anschluss den Simulationsdaten gegenübergestellt und die Vor-
hersagegenauigkeit abgeschätzt werden. Durch diese systematische Vorgehensweise kön-
nen Fehlerquellen eliminiert und das Probekörper-Setup für die industrielle Anwendung
nutzbar gemacht werden. Folgende Kriterien/Aspekte sollen zunächst näher untersucht
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werden:
• Homogenität im Messbereich bei großen Stauchungen

• Einfluss von Imperfektionen im Druckversuch

• Einfluss der Reibung zwischen Probekörper und Halterungskontur

• Validierung der verschiedenen Halterungskonturen
Um diese Kriterien genau erfassen und charakterisieren zu können, bedarf es einer geeigne-
ten Messstrategie. Dabei lassen sich die verschiedenen Messsysteme zunächst in berührende
und nicht berührende Verfahren einteilen. Vertreter für berührende Messsysteme wären der
Clip Gage oder der MultiXtens (Zwick/Roell-Messsystem, welches in das Prüfmaschinen-
Setup integriert wird). Beide Systeme funktionieren nach dem Prinzip eines Längenände-
rungsaufnehmers (Extensometer). Für die nicht berührenden Systeme bietet sich z.B. ein
Laserextensometer oder die Grauwertkorrelation an (im Folgenden abgekürzt mit DIC).
Da die berührenden Systeme gerade für große Stauchungen aufgrund des sich stetig ver-
ringernden Messbereiches und der Verstärkung von Imperfektionen ungeeignet sind, soll
weitestgehend auf diese Systeme verzichtet werden. Es sei an dieser Stelle aber darauf hin-
gewiesen, dass für reine Zugversuche und Druckversuche bis maximal 20 % Stauchung ein
MultiXtens verwendet werden kann. Im direkten Vergleich zwischen Laserextensometer
und einem DIC-System besitzt letzteres den großen Vorteil, dass es als Feldmessverfahren
einsetzbar ist. Dadurch kann ein großer Messbereich des Probekörpers erfasst und ausge-
wertet werden. Für die hier durchgeführten Messungen mittels DIC (wenn nicht anders
angegeben) erfolgt die axiale Dehnungsberechnung über einen Extensometer: ε = ∆l/lM
mit lM = 20 mm (vgl. Abbildung 1.1). In Abbildung 3.49 sind diesbezüglich zwei beschich-

Abb. 3.49 – Hantelprobekörper (gefüllter EPDM) mit unterschiedlicher Be-
schichtung in Vorbereitung für die Messung mittels DIC (Abbildung in Anleh-
nung an die Arbeit von Oelsch (2017) durchgeführt an der Professur Festkör-
permechanik, TU Chemnitz)

tete Hantelprobekörper dargestellt, die für die DIC-Messung genutzt werden können. Die
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unterschiedliche Beschichtung, die im Rahmen der Arbeit von Oelsch (2017) optimiert
wurde, ist auf das verwendete Messvolumen des Aramis-Systems zurückzuführen. Je nach
gewähltem Kalibrierobjekt stehen unterschiedliche Messvolumina zur Verfügung, die auf
verschieden feine Muster angewiesen sind. Es sei an dieser Stelle mit erwähnt, dass be-
sonders für große Stauchungen eine saubere Präparation der Oberfläche sehr wichtig ist,
damit sich bei der Messung keine Beschichtung ablöst und dadurch Facetten ausfallen. Ne-
ben der Präparation ist aber auch besonderes Augenmerk auf den spannungsfreien Einbau
des Probekörpers in die Prüfmaschine zu legen. Hierbei empfiehlt es sich, die Referenzlän-
ge nach der Montage des Probekörper-Setups zu bestimmen und beim Einbau einzustellen.

Bevor aber die Messung großer Stauchungen erfolgt, soll zunächst ein Stauchversuch oh-
ne Halterungskonturen durchgeführt werden. Dadurch kann zum einen überprüft werden,
wie gut der kritische Knickpunkt mit der Vorhersage aus der Simulation übereinstimmt.
Zum anderen wird dadurch in sehr praktischer Art und Weise deutlich, wie wichtig die
entwickelten Halterungskonturen zur Realisierung hochpräziser Stauchungen sind. In der
Abbildung 3.50 ist ein Stauchversuch ohne Halterungskonturen dargestellt. Der Hantelkopf
(oben und unten) wird dabei jeweils durch einen Halterungsring geführt (vgl. Euler-IV-
Knickung). Aus der Abbildung wird deutlich, dass der Knickpunkt bei ca. 22 % Stauchung
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-400
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Abb. 3.50 – Stauchversuch ohne Halterungskonturen (Messung für gefüll-
ten EPDM), Messsystem DIC. Quelle der Gesamtabbildung: Kanzenbach u. a.
(2019a). Wiederverwendung mit Genehmigung. © 2019 Elsevier Ltd.

liegt. Dieser Wert stimmt sehr gut mit den Ergebnissen aus Abbildung 3.5 und Abbildung
3.8 überein. Damit kann der berechnete Instabilitätspunkt mittels vorgespannter Modal-
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analyse bestätigt werden. Um den Knickprozess weiterhin gut nachvollziehen zu können,
sind in der Abbildung 3.50 verschiedene Druckstufen (I bis III) dargestellt. Anhand des
Farbverlaufes (Verschiebung u in horizontaler Richtung) wird deutlich, wie sich die erste
Knickform symmetrisch ausbildet. Es sei an dieser Stelle mit erwähnt, dass die Knickung
etwa senkrecht zur Blickrichtung der Kameras erfolgt.

Homogenität im Messbereich bei großen Stauchungen
Im Folgenden wird ein Druckversuch mit Halterungskonturen zur Untersuchung der Ho-
mogenität im Messbereich bei großen Stauchungen durchgeführt. In Abbildung 3.51 ist ein
Druckversuch bei einer Stauchung von 50 % dargestellt (links Darstellung der Referenzkon-
figuration und rechts Darstellung der aktuellen Deformation, vgl. auch Kanzenbach u. a.
2018). Zunächst einmal kann festgehalten werden, dass der Probekörper gleichmäßig ge-

0.0 -0.1 -0.2 -0.3 -0.4 -0.5
Technische Dehnung

Abb. 3.51 – Stauchversuch des Hantelprobekörpers (gefüllter EPDM) mit
Halterungskonturen. Die Abbildung ist in leicht modifizierter Form Kanzen-
bach u. a. (2018) entnommen. Wiederverwendung mit Genehmigung. © 2018
Elsevier Ltd.

staucht wird und damit die Funktionstauglichkeit des Setups gewährleistet ist. Für diesen
Funktionstest wurde die sichere Halterungskontur verwendet. Anhand des Dehnungsfel-
des wird deutlich, dass der Probekörper nahezu homogen deformiert wurde. Die Dehnung
wird lokal mittels der ausgewerteten Facetten berechnet und dargestellt. Für eine globale
Dehnungsauswertung wird das Verschiebungsfeld mit einem optischen Extensometer aus-
gewertet. Aus Abbildung 3.51 wird weiterhin deutlich, dass der deformierte Probekörper
eine leicht tonnenförmige Außenkontur aufzeigt. Diese Kontur stimmt mit Simulationsda-
ten einer nahezu homogenen Stauchung sehr gut überein. Ein Ausbeulen oder gar Knicken
des Probekörpers (vgl. Abbildung 3.50) ist dabei nicht zu erkennen.

Einfluss von Imperfektionen im Druckversuch
Zur Überprüfung der Knicksicherheit wird als nächstes der Einfluss von Imperfektionen
im Stauchprozess untersucht. Dazu wird über den ausgewählten Messbereich des Probe-
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körpers (Zylindersegment) eine Zylinderextrapolation durchgeführt und der Mittelpunkt-
versatz berechnet. Es wird die Annahme zugrunde gelegt, dass der Probekörper seinen
Kreisquerschnitt näherungsweise beibehält. Bei einer idealen Stauchung weitet sich der
Probekörper in alle Richtungen gleichmäßig aus, was zu einem Mittelpunktversatz von
Null führt. In der Abbildung 3.52 ist der Mittelpunktversatz von dem eben gezeigten
Druckversuch (Abbildung 3.51) dargestellt. Das Polardiagramm gibt dabei die Richtung
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Abb. 3.52 – Darstellung des Mittelpunktversatzes des Hantelprobekörpers
(Messung für gefüllten EPDM)

und den Betrag des Auswanderns des Mittelpunktes an. Der blau markierte Sektor kenn-
zeichnet dabei das Blickfeld des 3D DIC-Messsystems. Weiterhin ist in der Abbildung
3.52 die technische Dehnung in axialer Richtung und der Mittelpunktversatz über der
Zeit dargestellt. Der größte Mittelpunktversatz beträgt bei der hier verwendeten Halte-
rungskontur uM ≈ 0.4 mm. Verglichen mit dem Referenzradius führt dies zu einem sehr
geringen Instabilitätsmaß κ. Die Ermittlung des Mittelpunktversatzes stellt somit ein wich-
tiges Qualitätsmaß für den Stauchprozess dar. Folglich kann festgehalten werden, dass das
Probekörper-Setup große Stauchungen ermöglicht und sich mittels der hier verwendeten
Halterungskontur präzise deformieren lässt. Der sehr geringe Mittelpunktversatz der Probe
unterstreicht zudem die hohe Qualität des gesamten Versuchsaufbaus und der numerischen
Vorentwicklung.

Einfluss der Reibung zwischen Probekörper und Halterungskontur
Für dynamische Untersuchungen, wie beispielsweise die Bestimmung des Speicher- und
Verlustmoduls oder die dynamischen Verhärtung, ist es von großem Interesse zu wissen,
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3.4 Experimentelle Validierung des neuen Probekörper-Setups

ob zwischen dem Probekörper und der Halterungskontur ein Haftgleiteffekt (Stick-Slip-
Effekt) auftreten kann. Dieser Effekt würde bei einer dynamischen Belastung zu einer
selbsterregten Reibschwingung führen, die das gemessene Materialverhalten verfälschen
würde. Im Folgenden werden an einer servo-hydraulischen Prüfmaschine entsprechende
Untersuchungen durchgeführt, um den Einfluss unterschiedlicher Reibpaarungen zu cha-
rakterisieren. In der Abbildung 3.53 ist der Versuchsaufbau des Probekörper-Setups an
einer servo-hydraulischen Prüfmaschine von der Firma INSTRON dargestellt. Besonderes

3D DIC-Messsystem

Probekörper-Setup
INSTRON Prüfmaschine

Zusatzbeleuchtung für
dynamische Messungen

Halterungskontur 
mit Grafitpaste

Kraftmessdose
(Nennlast: 5 kN)

Abb. 3.53 – Versuchsaufbau zur Untersuchung des Reibeinflusses

Augenmerk soll zunächst auf die Messmethodik bei höheren Prüffrequenzen gelegt werden.
Im Gegensatz zu quasi-statischen Versuchen muss bei dynamischen Versuchen mit einer
Zusatzbeleuchtung (Typ MultiLED PT von der Firma GS Vitec) gearbeitet werden, um
die Belichtungszeit des 3D DIC-Messsystems zu verringern. Soll beispielsweise bei einer
Belastungsfrequenz von 10 Hz eine Sinusschwingung mit 20 Messpunkten abgetastet wer-
den, so wird eine Messfrequenz von 200 Hz benötigt. Bei voller Auflösung des DIC-Systems
ist eine maximale Messfrequenz von 168 Hz möglich. Durch eine weitere Reduzierung des
Bildbereiches auf 1/2 oder 1/4 kann die benötigte Messfrequenz erreicht werden. Mit
Hilfe der Zusatzbeleuchtung lässt sich dann die benötigte kurze Belichtungszeit realisie-
ren. Die Versuche sollen im Folgenden so gestaffelt sein, dass zuerst zwei Versuche ohne
Grafitpaste (Schmiermittel) durchgeführt werden, um die Wiederholgenauigkeit der Mes-
sungen zu erfassen. Im Anschluss daran erfolgt ein Wiederholungsversuch mit Umbau des
Probekörper-Setups, um den Einfluss der Montage zu ermitteln. Abschließend erfolgen zwei
Versuche, bei denen die Halterungskonturen mit Grafitpaste präpariert sind. In Abbildung
3.53 (rechts) ist der Umbau und die präparierte Halterungskontur mit Grafitpaste darge-
stellt. Die Ergebnisse der durchgeführten Reibuntersuchungen sind in der Abbildung 3.54
zusammengestellt. Hierbei wurde der dynamische Modul über der Frequenz aufgetragen,
um Unterschiede besser veranschaulichen zu können. Aus der Abbildung 3.54 wird deut-
lich, dass die Versuche mit Grafitpaste zu keiner nennenswerten Änderung des absoluten
Niveaus und des Anstieges führen. Der Effekt der dynamischen Verhärtung (Material-
versteifung über der Frequenz) kann sowohl mit als auch ohne Grafitpaste sehr präzise
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Abb. 3.54 – Darstellung des dynamischen Moduls über der Frequenz zur
Untersuchung des Einflusses der Reibung (Messungen für gefüllten EPDM)

erfasst werden. Durch diese Untersuchungen kann sichergestellt werden, dass unterschied-
liche Reibpaarungen zwischen Probekörper und Halterungskontur zu keiner Verfälschung
der Messergebnisse führen.

Validierung der verschiedenen Halterungskonturen
Als nächstes werden die Messergebnisse der verschiedenen Halterungskonturen miteinan-
der verglichen und den Simulationsdaten gegenübergestellt. Dazu wird mit jeder Halte-
rungskontur und jeweils mit einem neuen Probekörper (gefüllter EPDM) ein separater
Druckversuch bis ca. 50 % Stauchung durchgeführt. In Abbildung 3.55 sind die Druckver-
suche für die verschiedenen Halterungen dargestellt. Zunächst soll auf die Halterungskon-
turen aus der Parameterstudie eingegangen werden. Aus der Abbildung 3.55 wird deutlich,
dass die Spannungs-Dehnungskurven bis 30 % Stauchung zu sehr ähnlichen Ergebnissen
führen. Erst bei größeren Stauchungen sind die Einflüsse der verschiedenen Halterungskon-
turen sichtbar. Hier zeigt sich, dass die sichere Halterung bei gleicher Stauchung größere
Spannungswerte aufweist als die kritische Halterung. Legt man die Überlegung zugrunde,
dass bei einem erfolgreichen Druckversuch (niedriger Mittelpunktversatz) die Spannungs-
Dehnungskurven der kritischen Halterung am dichtesten an der homogenen Lösung liegen,
so zeigt sich, dass die sichere Halterung den stärksten Einfluss auf die Kurven ausübt.
Die Standard-Halterung liegt mit ihrem Verlauf zwischen der sicheren und der kritischen
Halterungskontur. Diese Reihung passt sehr gut mit den Simulationsergebnissen aus der
Abbildung 3.13 zusammen. Die Spannungs-Dehnungskurve, welche aus der optimierten
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Abb. 3.55 – Vergleich der Halterungskonturen bei einer Stauchung von ca.
50 % (Messungen für gefüllten EPDM), Messsystem DIC

Halterung resultiert, liegt zunächst zwischen dem Verlauf der sicheren und der Standard-
Halterung. Bei genauerer Betrachtung wird deutlich, dass die optimierte Halterung anfäng-
lich nah an dem Verlauf der sicheren Halterungskontur liegt und sich dann dem Verlauf
der Standard-Halterung anpasst. Dieser Trend stimmt ebenfalls gut mit den Simulations-
daten überein. Es bleibt zu prüfen, ob sich neben den verbesserten Eigenschaften in der
Homogenität, auch das Stabilitätsverhalten dem der sicheren Halterung angepasst hat. In
Abbildung 3.56 sind die Mittelpunktabweichungen der verschiedenen Halterungskonturen
gegenübergestellt. Zunächst sollen wieder die Halterungskonturen aus der Parameterstudie
diskutiert werden. Aus der unteren Abbildung wird deutlich, dass die kritische Halterung
zum größten Mittelpunktversatz führt (uM ≈ 0.6 mm) und die sichere Halterung zum
zweitniedrigsten (uM = 0.4 mm). Die Standard-Halterung liegt mit ihren Werten wieder
im mittleren Bereich. Diese Reihung stimmt quantitativ gut mit den bisherigen Simulatio-
nen überein. Für die optimierte Halterung ergibt sich sogar ein niedrigerer Mittelpunktver-
satz als für die sichere Halterungskontur. Die als positiv zu wertenden Unterschiede sind
aber nur marginal. Entscheidend ist, dass die optimierte Halterung die Vorzüge aus der
Standard-Halterung (Homogenität) und der sicheren Halterung (Stabilität) vereinigt. An
dieser Stelle soll nochmal auf die Bedeutung der Ausrichteinheit und der ganzen Versuchs-
methodik hingewiesen werden, die insgesamt zu sehr guten Messergebnissen führt. Da das
hier entwickelte Probekörper-Setup später für die industrielle Anwendung genutzt werden
soll, ist ein besonderer Schwerpunkt auf die Knicksicherheit und die damit verbundene
Reduzierung des Mittelpunktversatzes gelegt.
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Abb. 3.56 – Darstellung des Mittelpunktversatzes für die verschiedenen Hal-
terungskonturen (Messungen für gefüllten EPDM)

Fazit der Voruntersuchungen und Qualitätsprüfungen:
Nach Abschluss aller Voruntersuchungen kann festgehalten werden, dass das Probekörper-
Setup den gewünschten Anforderungen gerecht wird. Die Homogenität bei großen Stau-
chungen ist experimentell gewährleistet und mit Hilfe der Messung des Mittelpunktver-
satzes kann der Einfluss von Imperfektionen überprüft werden. Darüber hinaus zeigt die
optimierte Halterungskontur die beste Performance bezüglich Homogenität und Stabili-
tät.

3.4.4 Phänomenologische Untersuchung technischer Elastomere

Mit Hilfe des entwickelten Probekörper-Setups sollen im Folgenden eine Reihe phäno-
menologischer Eigenschaften von Elastomerwerkstoffen untersucht werden. In den voran-
gegangenen Abschnitten wurde bereits anhand von Fe-Simulationen gezeigt, dass sich
der Probekörper im Messbereich homogen deformieren lässt. Somit stellt er einen idea-
len Probekörper für die Untersuchung großer Zug- und Druckbelastungen dar. Darüber
hinaus können eine Vielzahl von Prüfabläufen wie kombinierte Zug-/Druckversuche, Multi-
Hystereseversuche, Relaxations- und Kriechversuche gefahren werden.
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3.4 Experimentelle Validierung des neuen Probekörper-Setups

Gestufte Zugversuche

Anhand eines mehrstufigen zyklischen Zugversuches (drei Zyklen pro Laststufe) können
die grundlegenden Eigenschaften von Elastomeren beschrieben werden. In der Abbildung
3.57 ist ein vollständiger Zugversuch an gefülltem EPDM dargestellt und in der Abbildung
3.58 einer für gefüllten Naturkautschuk (vgl. dazu auch Kanzenbach u. a. 2016b & 2018).
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Abb. 3.57 – Mehrstufiger Zugversuch (Messungen für gefüllten EPDM), Mess-
system MultiXtens (Die Kurven schwarz und blau fallen zusammen)

Anhand der Abbildungen lassen sich verschiedene Entfestigungs-Effekte detektieren. Zum
einen tritt Entfestigung bei wiederholter Deformation, also Lastwiederholung auf, zum an-
deren lässt sich eine Entfestigung durch Vorreckung erkennen. Beide Entfestigungs-Effekte
werden in dieser Arbeit als Aspekte des Mullins-Effekt bezeichnet (vgl. Mullins 1948). Für
eine Vertiefung zur Begrifflichkeit und Zuordnung des Mullins-Effekts sei auf die Arbeit
von Ihlemann (2003) verwiesen. Charakteristisch für gefüllten EPDM und gefüllten Natur-
kautschuk sind die großen Hysteresen. Der Inhalt der Hysteresen gibt dabei die dissipierte
Energie des jeweiligen Belastungszyklus an. Hieran wird deutlich, dass für eine erstmalige
Belastung viel mehr Arbeit benötigt wird. Als letztes soll auf die bleibende Dehnung im
Ursprung eingegangen werden. Der mehrstufige Zugversuch wurde dabei so konzipiert,
dass nach einer Belastung wieder auf Kraft Null zurückgefahren wird. Hierbei wird er-
kennbar, dass der Probekörper nicht wieder in seine Ursprungsform zurückgeht, sondern
eine neue Referenzlage aufweist. Bei ausreichend langer Ruhezeit ist dieser Effekt der blei-
benden Restdehnung teilweise reversibel. Es sei an dieser Stelle schon darauf hingewiesen,
dass das neu entwickelte Probekörper-Setup auch für nachfolgende Druckbeanspruchungen
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Abb. 3.58 – Mehrstufiger Zugversuch (Messungen für gefüllten NR), Mess-
system MultiXtens (Die Kurven schwarz und blau fallen zusammen). Die Ab-
bildung ist in leicht modifizierter Form Kanzenbach u. a. (2016b) entnommen.
Wiederverwendung mit Genehmigung. © 2016 Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim

geeignet ist. Der hier verwendete Prüfablauf eignet sich hingegen auch für Versuche mit S2-
Stäben, welche nicht auf Druck beansprucht werden können. Zusammenfassend lässt sich
sagen, dass das Probekörper-Setup einem herkömmlichen S2-Stab in nichts nachsteht und
darüber hinaus Druckbeanspruchungen ermöglicht, die im Folgenden untersucht werden
sollen.

Gestufte Zug-Druckversuche

Im Weiteren sollen mit gefüllten EPDM und gefüllten Naturkautschuk gestufte Zug-
Druckversuche (drei Zyklen pro Laststufe) durchgeführt werden. Die Versuche erfolgen
in der Weise, dass zuerst eine reine Druck- gefolgt von einer reinen Zugbeanspruchung
realisiert wird (schwarzer Verlauf). Im Anschluss daran wird der Versuchsablauf umge-
dreht (blauer Verlauf) und die Ergebnisse der Druck-/Zugbeanspruchung werden mit der
Zug-/Druckbeanspruchung verglichen. In Abbildung 3.59 und Abbildung 3.60 sind die
eben beschriebenen Versuche dargestellt. Anhand der Abbildungen wird zunächst einmal
der starke Unterschied der Grundsteifigkeiten der beiden Mischungen von gefüllten EPDM
und gefüllten Naturkautschuk deutlich. Es wurden bewusst Mischungen gewählt, die in
ihrer Zusammensetzung sehr unterschiedlich sind, um so ein breites Anwendungsspektrum
abdecken zu können. Aus der Abbildung 3.59 wird deutlich, dass eine Vorkonditionierung
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Abb. 3.59 – Vergleich von Druck-Zug (schwarz) und Zug-Druckversuchen
(rot) (Messungen für gefüllten EPDM), Messsystem DIC. Die Abbildung ist
in leicht modifizierter Form Kanzenbach u. a. (2018) entnommen. Wiederver-
wendung mit Genehmigung. © 2018 Elsevier Ltd.
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Abb. 3.60 – Vergleich von Druck-Zug (schwarz) und Zug-Druckversuchen
(rot) (Messungen für gefüllten NR), Messsystem DIC. Die Abbildung ist in
leicht modifizierter Form Kanzenbach u. a. (2018) entnommen. Wiederverwen-
dung mit Genehmigung. © 2018 Elsevier Ltd.
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im Druckbereich einen nicht zu vernachlässigenden Einfluss auf den Zugbereich hat. Die-
ser Effekt, der die Steifigkeit in der entgegengesetzten Belastungsrichtung herabsetzt, wird
auch als belastungsinduzierte Anisotropie bezeichnet (vgl. Ihlemann 2003, Wulf 2016). Im
Vergleich dazu scheint die Vorkonditionierung im Zugbereich (blauer Verlauf) nur einen
sehr geringen Einfluss auf den Druckbereich auszuüben. Die belastungsinduzierte Aniso-
tropie tritt hier wesentlich abgeschwächt auf. Im Gegensatz zu symmetrischen Scherver-
suchen (vgl. Wulf 2016), wo sich im stationären Zustand eine Punktsymmetrie der beiden
Scherrichtungen herausbildet, ist diese Symmetrie im einachsigen Zug-Druckversuch nicht
wiederzufinden. Ein Grund dafür ist der Einfluss der Halterungen im Druckbereich, welche
die Homogenität im Messbereich leicht beeinflussen. Der Effekt der belastungsinduzierten
Anisotropie ist in Abbildung 3.60 aufgrund der sehr gering ausgeprägten Hysterese nicht
klar detektierbar. Der Vollständigkeit halber wurde aber der gleiche Versuchsplan wie bei
gefülltem EPDM gefahren.

Grenzen gestufter Zug-Druckversuche

In diesem Abschnitt soll der Einfluss einer starken Vorkonditionierung im Zugbereich auf
den Druckbereich hin untersucht werden. Hintergrund dieser Charakterisierung ist, dass
der Probekörper nach großen Deformationen bleibende Dehnungen aufweist, was mit einer
Veränderung der Ausgangsgeometrie einhergeht. Ziel des Versuchs ist es, zu überprüfen,
wie weit der Probekörper zunächst im Zugbereich belastet werden darf, um anschließend
problemlos eine Druckbeanspruchung realisieren zu können. In der Abbildung 3.61 ist
ein Multi-Hystereseversuch bis zu einer Zugbeanspruchung von 140 % dargestellt. Aus
der Abbildung wird deutlich, dass die realisierten Zugbelastungen zu keiner signifikanten
Änderung des Druckzustandes führen. Für Zugbeanspruchungen > 140 % wird der Mit-
telpunktversatz für gefüllten Naturkautschuk und die damit einhergehende Abweichung
der homogenen Druckdeformation signifikant größer, weshalb für diese Versuchsmethodik
eine Grenze empfohlen wird.

Extreme Stauchungen

Abschließend soll untersucht werden, inwieweit sich mit dem entwickelten Probekörper-
Setup und der neuen Messstrategie extreme Stauchungen (Stauchungen bis 70 %) rea-
lisieren lassen. In Abschnitt 3.3.7 wurden dazu die theoretischen Grundlagen erläutert.
Nachfolgend soll die experimentelle Validierung mit Hilfe der neuen Messstrategie für ge-
füllten EPDM und gefüllten Naturkautschuk durchgeführt werden. Für die Bestimmung
der Umfangsstreckung wird ein Extensometer in Umfangsrichtung eingesetzt. Aufgrund
der optischen Auswertung mittels DIC bei extremen Deformationen wird der Versuchsab-
lauf so konzipiert, dass nicht gleich die maximale Verschiebung angefahren wird, sondern
eine gestufte Belastung erfolgt. Dadurch ist sichergestellt, dass bei eventuellem Versagen
der Facettenauswertung (die ideale Facette hat ein möglichst stochastisches Muster) vor-
herige Druckstufen sauber detektiert werden können (Korrelation von Stufe zu Stufe).
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Abb. 3.61 – Multi-Hystereseversuche (Messungen für gefüllten NR), Messsys-
tem DIC (Messungen aus der Arbeit von Oelsch (2017) durchgeführt an der
Professur Festkörpermechanik, TU Chemnitz)

In der Abbildung 3.62 sind die extremen Stauchungen für gefüllten EPDM dargestellt.
Aus der Abbildung wird deutlich, dass sich diese bis einschließlich 72 % realisieren las-
sen. Dieses Ergebnis unterstreicht das Potenzial des neuen Probekörper-Setups und er-
öffnet damit ganz neue Anwendungsmöglichkeiten in der Materialcharakterisierung. Zur
Validierung der neuen Messstrategie werden drei verschiedene Probekörper miteinander
verglichen. Die Abbildung 3.62 zeigt für die durchgeführten Versuche eine gute Repro-
duzierbarkeit. Weiterhin ist in der Abbildung 3.62 ein Polardiagramm eingezeichnet, das
die Entwicklung des Mittelpunktversatzes der Probekörper beschreibt. Obwohl der Pro-
bekörper bis einschließlich 72 % gestaucht wird, beträgt der maximale Mittelpunktversatz
nur uM = 0.4 mm. Dieser Wert, der im Vergleich zur maximalen Durchmesseraufweitung
von ca. 25 mm sehr gering ist, bestätigt die Qualität des gesamten Probekörper-Setups
einschließlich Messmethodik.

Als nächstes werden extreme Stauchungen für gefüllten Naturkautschuk durchgeführt.
In der Abbildung 3.63 ist der gestufte Druckversuch dargestellt. Im Vergleich zu gefülltem
EPDM fallen neben den kleineren Hysteresen für gefüllten Naturkautschuk die größeren
Abweichungen im Spannungs-Dehnungsdiagramm auf. Um die Abweichungen besser inter-
pretieren zu können, soll im Folgenden der Mittelpunktversatz im Polardiagramm näher
betrachtet werden. Hier wird zunächst deutlich, dass die absoluten Werte wesentlich größer
ausfallen als für gefüllten EPDM. Der größte Mittelpunktversatz beträgt uM = 1.2 mm,
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3 Probekörperdesign für hochpräzise Zug-/Druckmessungen
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Abb. 3.62 – Darstellung der extremen Stauchung (Messungen für gefüllten
EPDM), ermittelt über die Messung der Umfangsstreckung via DIC

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-30

-25

-20

-15

-10

-5

0

5

Probe 1
Probe 2
Probe 3

0.5

1

1.5

30

210

60

240

90

270

120

300

150

330

180 0

Abb. 3.63 – Darstellung der extremen Stauchung (Messungen für gefüllten
NR), ermittelt über die Messung der Umfangsstreckung via DIC

was aber im Vergleich zur maximalen Durchmesseraufweitung immer noch verhältnismä-
ßig gering ist. Nichtsdestotrotz scheint gefüllter Naturkautschuk viel sensitiver auf extre-
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3.4 Experimentelle Validierung des neuen Probekörper-Setups

me Stauchungen zu reagieren als gefüllter EPDM. Für den ersten gestuften Druckversuch
(schwarzer Verlauf), der die größten Abweichungen aufzeigt, sollen im Folgenden verschie-
dene Druckstufen näher betrachtet werden. In der Abbildung 3.64 sind die verschiede-
nen Druckstufen als Bilder dargestellt (von links nach rechts, von oben nach unten). Die

Abb. 3.64 – Entwicklung der lokalen Faltenbildung bei extremen Stauchungen
für gefüllten NR

Außenkontur wurde zur besseren Veranschaulichung mit einer roten Linie nachgezeich-
net. Anhand der Abbildung 3.64 wird deutlich, dass sich mit zunehmender Stauchung
an der rechten Außenkontur eine lokale Falte bildet, die bei noch größeren Stauchungen
zugedrückt wird. Diese Faltenbildung ist reproduzierbar für alle durchgeführten extremen
Stauchungen mit gefülltem Naturkautschuk (MAA50-00). Es sei an dieser Stelle darauf
hingewiesen, dass hier bewusst ein Druckversuch ausgewählt worden ist, bei dem die Fal-
tenbildung seitlich detektiert werden kann. Diese Materialinhomogenität, die bisher nur bei
gefülltem Naturkautschuk (MAA50-00) im Zusammenhang mit extremen Stauchungen be-
obachtet werden kann, erklärt die Abweichungen im Spannungs-Dehnungsdiagramm, siehe
Abbildung 3.63. Gefüllter Naturkautschuk scheint bei solchen extremen Belastungen sehr
sensitiv auf lokale Störungen zu reagieren, welche leicht im Material durch den Herstel-
lungsprozess entstehen können. Beispielsweise können bei der Herstellung von MAA50-00
Endmischungseffekte auftreten, die aus dem Compound der zwei Basispolymere resul-
tieren. Es bleibt in weiterführenden Arbeiten zu klären, inwieweit sich diese Material-
inhomogenität beheben lässt. Zusammenfassend kann gesagt werden, dass sich extreme
Stauchungen realisieren lassen, trotz der Einschränkungen bei gefülltem Naturkautschuk.
Besonders bei gefülltem EPDM werden sehr gut reproduzierbare Messergebnisse erzielt.
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4 Entwicklung eines Scherprobekörpers für
präzise Schermessungen

In diesem Kapitel erfolgt die numerische Entwicklung eines präzisen Scherprobekörpers zur
Realisierung homogener einfacher Scherungen. Ein besonderer Schwerpunkt liegt dabei auf
der Entwicklung eines speziellen Klemmdesigns, welches zur Ausbildung nahezu homogener
Scherdeformationen führt. Im Anschluss erfolgt die experimentelle Validierung und der
Abgleich mit Simulationsergebnissen.

4.1 Grundlegendes zu einfachen Scherversuchen

Im vorherigen Kapitel wurde bereits ein neu konzipiertes Probekörper-Setup vorgestellt,
welches nun erstmalig hochpräzise einachsige Zug-/Druckversuche ermöglicht. Dabei konn-
ten grundlegende elastomertypische Effekte auch bei extremen Stauchungen untersucht
werden. Neben der einachsigen Zug-/Druckbeanspruchung spielen aber auch andere Be-
anspruchungsarten, wie die einfache Scherung, eine elementare Rolle bei der phänome-
nologischen Untersuchung technischer Elastomere. Beispielsweise können hier Aussagen
zur belastungsinduzierten Anisotropie getroffen werden. Neben der phänomenologischen
Untersuchung grundlegender Effekte werden die neu entwickelten homogenen Probekörper
auch für die Identifikation von Materialparametern benötigt. Zum Beispiel treten bei Fahr-
werksbuchsen eine Vielzahl von Belastungsarten auf, wofür Anpassungen an verschiedenen
homogenen Probekörpern benötigt werden (vgl. Schellenberg 2017). Um unterschiedliche
Belastungsarten in einem Abbildungsraum miteinander vergleichen zu können, empfiehlt
sich eine Darstellung mittels der Hauptinvarianten I1 und I2:

I1
(
C
)

= λ2
1 + λ2

2 + λ2
3 , I2

(
C
)

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 . (4-1)

Da technische Elastomere in erster Näherung als inkompressibel angesehen werden kön-
nen, kann die dritte Hauptinvariante zu I3

(
F
)

= 1 gesetzt werden. Die Hauptstreckungen
λ1, λ2 und λ3 ergeben sich je nach Belastungsrichtung wie folgt:

• einachsiger Zug-/Druckversuch mit λ1 = λ und λ2 = λ3 = 1√
λ
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4.1 Grundlegendes zu einfachen Scherversuchen

• biaxialer Zugversuch mit λ1 = λ2 = λ und λ3 = 1
λ2

• ebener Zugversuch (engl. pure shear) mit λ1 = λ, λ2 = 1 und λ3 = 1
λ

• einfacher Scherversuch mit dem Schermaß s: λ1,2 =

√
1 + s2

4 ± s

2 und λ3 = 1 .

In der Abbildung 4.1 sind für einen Materialpunkt verschiedene Beanspruchungsarten
dargestellt. Anhand der Abbildung wird deutlich, dass der einachsige Zug- bzw. Druck

0 2 4 6 8 10
0

2

4

6

8

10
Einachsiger Druck
Einfache Scherung
Einachsiger Zug

Abb. 4.1 – Darstellung der Hauptinvarianten I1 und I2 bei verschiedenen
Beanspruchungsarten (vgl. Krawietz 1986)

den Grenzbereich angibt. Die graue Fläche kennzeichnet dabei den zulässigen Bereich
möglicher Beanspruchungsarten. Die einfache Scherung stellt insofern einen Sonderfall als
Beanspruchungsart dar, weil hier die Hauptinvarianten I1 und I2 identisch sind. Insbe-
sondere bei einer Stoffgesetzanpassung sollte darauf geachtet werden, dass verschiedene
Belastungsarten in der Parameteridentifikation mit berücksichtigt werden (vgl. Schellen-
berg 2017).

Die Hauptinvarianten können im Weiteren auch für die Definition von Fehlermaßen ver-
wendet werden. Beispielsweise kann über die euklidische Norm der senkrechte Abstand
zwischen der theoretisch vorliegenden Scherung und der aktuell vorhandenen Scherung
berechnet werden. In der Gleichung (4-2) ist das Fehlermaß ηI als normierte Größe darge-
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

stellt:

ηI :=

√(th
I 1 −

FE
I 1

)2
+
(th
I 2 −

FE
I 2

)2
+
(th
I 3 −

FE
I 3

)2

√
th
I 2

1 +
th
I 2

2 +
th
I 2

3

. (4-2)

An dieser Stelle sei explizit darauf hingewiesen, dass die Invarianten für das hier definierte
Fehlermaß dimensionslos sein müssen. Andernfalls ergeben sich Probleme mit der Dimen-
sion. In Abschnitt 4.4.1 erfolgt die Einführung weiterer Fehler- und Inhomogenitätsmaße,
die zur Bewertung der entwickelten Scherprobekörper benötigt werden.

4.2 Motivation für die Verwendung flächiger Scherprobekörper
zur Realisierung präziser Schermessungen

In Abschnitt 2.2.3 erfolgte der Vergleich zwischen flächigen und zylindrischen Scherpro-
bekörpern. Dabei konnte gezeigt werden, dass flächige Scherprobekörper eine Reihe ganz
prinzipieller Vorteile aufweisen. Die Wichtigsten seien hier nochmal zusammengestellt:

• homogene Alterungsuntersuchungen sind möglich

• faserverstärkte Materialien können getestet werden

• Scherversuche mit Normalkraft Null durchführbar

• anisotrope Einflüsse (Vorreckung auf Zug) können untersucht werden

• Verwendung von Serienmaterial in Matten

Nachteilig ist dabei das Risiko von Rutsch- und Beuleffekten (vgl. Gross u. a. 2007). Die-
ser Tatsache kann aber durch konstruktive Maßnahmen bzw. einer geeigneten Dimensio-
nierung der Probekörpergeometrie begegnet werden. In Abschnitt 4.4.1 werden deshalb
Störungsrechnungen zur Untersuchung der Knickstabilität durchgeführt.

Nachdem die Vorzüge von flächigen Scherprobekörpern dargelegt sind, besteht nun eines
der Hauptziele in der Entwicklung eines geeigneten Klemmdesigns, welches zur Ausbildung
nahezu homogener einfacher Schedeformationen führt. Da gerade die Lasteinleitung dabei
eine große Herausforderung darstellt, soll im nächsten Abschnitt gesondert darauf einge-
gangen werden. Das andere Ziel besteht in der Realisierung großer Scherdeformationen
Fxy ≥ 2.0.

4.3 Grundproblem Lasteinleitung

Im Folgenden wird auf eine Grundproblematik der einfachen Scherdeformation hingewie-
sen: die gleichmäßige Lasteinleitung. In der Abbildung 4.2 ist die einfache Scherung un-
ter Annahme idealer Inkompressibilität für einen Einheitswürfel schematisch dargestellt.
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4.3 Grundproblem Lasteinleitung

Abb. 4.2 – Darstellung der einfachen Scherung unter Annahme idealer In-
kompressibilität

Um diesen Deformationszustand auch mit einem realen flächigen Probekörper zu erzie-
len, bedarf es spezieller Anforderungen bzgl. der Lasteinleitung. Die dabei zur Verfügung
stehenden Grundprinzipien lauten wie folgt:

• stoffschlüssige Verbindung (Kleben/Anvulkanisieren)

• kraftschlüssige Verbindung (mechanische Klemmung durch Normalkräfte/Reibung)

• formschlüssige Verbindung (Profilleisten, Löcher und Stifte) .

Eine stoffschlüssige Verbindung mittels Kleben oder Anvulkanisieren hat den prinzipiellen
Vorteil, dass die Last über die Stirn- oder Deckflächen eingeleitet werden kann. Der große
Nachteil besteht aber darin, dass die Grenzschicht (Elastomer/Metall-Verbund) zum einen
große Beanspruchungen des Elastomers aufnehmen muss und zum anderen starr an das
Metall angebunden ist (vgl. Ballhorn 2007). Dadurch treten im Übergangsbereich örtlich
sehr große Spannungen auf, die alle durch die Bindeschicht aufgenommen werden müssen.
Somit bildet der Kontaktbereich zwischen Elastomer und Metall immer eine Schwachstelle.
Ein weiterer prinzipieller Nachteil besteht darin, dass der Vernetzer (der im Bindemittel
vorhanden ist) in die Kautschukmischung diffundiert und es dadurch zu Materialirritatio-
nen in der Grenzschicht kommt. In der Veröffentlichung von Ballhorn (2007) sind weitere
Einflussparameter beschrieben, die sich nachteilig auf den Elastomer/Metall-Verbund aus-
wirken können. Demgegenüber besteht beim Anvulkanisieren der große Nachteil, dass der
Probekörper einem Schrumpfprozess ausgesetzt ist. Hinzu kommt, dass durch den Abkühl-
prozess nach der Vulkanisation Eigenspannungen auftreten, die zu einer Beeinträchtigung
der Homogenität im Messbereich führen. Dieser Verzug wirkt sich weiterhin nachteilig auf
die Versuchsvorrichtung aus und erschwert den kraft- bzw. momentenfreien Einbau.

Eine kraftschlüssige Verbindung kann beispielsweise durch eine mechanische Klemmung
der Elastomermatte zwischen zwei Metallleisten realisiert werden. Über die dabei auftre-
tenden Normalkräfte kann ein Reibschluss erzeugt werden. Der Nachteil, der sich hieraus
ergeben kann, liegt in dem Umstand, dass das Material innerhalb des Klemmbereiches in
den relevanten Messbereich verdrängt wird. Ein ganz anderes Problem kann dann entste-
hen, wenn der Reibschluss nicht mehr gewährleistet ist und die Elastomermatte zwischen
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

den Metallleisten rausrutscht.

Als letztes soll auf die Vor- und Nachteile einer formschlüssigen Verbindungstechnik ein-
gegangen werden. Hier ergeben sich eine Reihe interessanter Möglichkeiten. Beispielsweise
kann eine formschlüssige Verbindung dadurch realisiert werden, dass sowohl die Elas-
tomermatte selbst als auch die umschließende Metallleiste einer Profilform folgen. Eine
andere Möglichkeit könnte beispielsweise aus einer Kombination aus Kraft- und Form-
schluss bestehen, indem eine spezielle Profilkontur in die Elastomermatte gedrückt wird.
Die Nachteile, die sich hieraus ergeben können, wären beispielsweise eine komplexere Pro-
benpräparation und gegebenenfalls eine separate Vulkanisationsform, falls die Elastomer-
matte ein spezielles Profil aufweisen muss. Zusammenfassend lässt sich sagen, dass für die
Realisierung präziser Schermessungen auf eine kraft- und/oder formschlüssige Verbindung
zurückgegriffen werden soll.

4.4 Numerische Entwicklung einer Schervorrichtung zur
Realisierung präziser Schermessungen

4.4.1 Fehler- und Inhomogenitätsmaße

Aufbauend auf den Erkenntnissen aus Abschnitt 3.3.4 sollen im Folgenden die verschiede-
nen Fehler- und Inhomogenitätsmaße zur Bewertung der Scherprobekörper definiert wer-
den. Diese Maße werden dann zunächst an einem idealisierten Scherprobekörper (Scher-
probekörper mit idealen Randbedingungen) getestet. Die Maße sollen dabei in der Weise
definiert werden, dass sie zum einen Auskunft über die Abweichung zur theoretisch vorlie-
genden Spannung liefern, zum anderen die Abweichungen zur Homogenität selbst angeben.
In der Abbildung 4.2 wurde die einfache Scherung unter Annahme idealer Inkompressi-
bilität für einen Einheitswürfel bereits dargestellt. Der zugehörige Deformationsgradient
nimmt dabei folgende Form an:

[Fab ] =


1 s 0

0 1 0

0 0 1

 mit: s = tan(ϕ) . (4-3)

Die Größe s beschreibt dabei das Schermaß, welches auch durch den Tangens des Scher-
winkels angegeben werden kann (vgl. Ihlemann 2003). Über den Deformationsgradienten
und den Cauchy-Spannungstensor kann dann der 1. Piola-Kirchhoff-Spannungstensor be-
rechnet werden (siehe Gleichung (2-28)).

[ σab ] =


σxx σxy 0

σyx σyy 0

0 0 σzz

 ⇒ [Tab ] =


σxx − sσxy σxy − sσyy 0

σyx σyy 0

0 0 σzz

 (4-4)
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4.4 Numerische Entwicklung einer Schervorrichtung zur Realisierung präziser
Schermessungen

Dabei ist zu berücksichtigen, dass der 1. Piola-Kirchhoff-Spannungstensor im allgemeinen
unsymmetrisch ist (vgl. Gleichung (4-4)). Als nächstes wird das Spannungsmaß ς einge-
führt, welches sich aus der Differenz des aktuell vorliegenden Cauchy-Spannungstensors FE

σ

(aus Fe-Simulation) und des theoretisch vorhandenen Spannungstensors th
σ (bei gleichem

Schermaß s) zusammensetzt. Über die Definition der Von-Mises-Vergleichsspannung kann
aus dem Spannungsmaß ς ein skalares Vergleichsmaß ςeqv berechnet werden. Das lokale
Fehlermaß ηs ergibt sich dann aus dem Verhältnis der berechneten Vergleichsspannung
ςeqv und der theoretisch vorhandenen Vergleichsspannung th

σ eqv (vgl. Gleichung (3-47)):

ς := FE
σ (s) − th

σ (s) ⇒ ςeqv =
√

3
2
√
ς ′ ·· ς ′ ⇒ ηs := ςeqv

th
σ eqv

. (4-5)

Über die Subroutine PLOTV in der Fe-Software Msc.Marc wird die theoretische Lösung
th
σ und das entwickelte Fehlermaß ηs berechnet. Als Stoffgesetz findet das hyperelastische
Yeoh-Modell mit schwacher Kompressibilität Anwendung (vgl. Gleichung (2-50)). Die Ma-
terialparameter sind der Veröffentlichung von Schellenberg u. a. (2012) entnommen (vgl.
Tabelle 4.1). Für weiterführende Informationen zur Implementierung selbst entwickelter

Tabelle 4.1 – Materialparameter für Yeoh (vgl. Schellenberg u. a. 2012)

c10 in MPa c20 in MPa c30 in MPa K in MPa
0.359 −0.0115 0.00454 5000

Ausgabegrößen über die Subroutine PLOTV wird auf das Manual der Msc. Software 2017
Volume A: Theory and User Information verwiesen. In der Abbildung 4.3 ist das lokale
Fehlermaß ηs für den idealisierten Scherprobekörper dargestellt. Anhand des Farbverlaufes
wird deutlich, dass die einfache Scherung entlang der Scherrichtung x sehr gut übertra-
gen werden kann. Die roten Außenbereiche (in der xz-Ebene) veranschaulichen dabei sehr
deutlich den Kontrast zwischen ungeschertem und geschertem Material. Im Vergleich zum
mittleren Bereich sind an den freien Rändern größer werdende Fehlermaße zu verzeichnen.
Inwiefern diese freien Ränder (oben und unten) einen Einfluss auf das globale Verhalten
ausüben, soll mit Hilfe des nächsten Fehlermaßes näher untersucht werden.

Im Folgenden wird dazu das globale Fehlermaß ηT eingeführt, welches den relativen Feh-
ler zwischen vorliegender und theoretischer 1. Piola-Kirchhoff-Spannung für die einfache
Scherung angibt (in Anlehnung an Gleichung (3-42)):

ηT :=

∣∣∣∣∣∣∣
FE
T yx(s) −

th
T yx(s)

th
T yx(s)

∣∣∣∣∣∣∣ mit:
FE
T yx(s) := Fx(s)

A0
. (4-6)

Für die yx-Komponente des Spannungstensors gilt die Besonderheit:
FE
T yx = FE

σ yx (vgl.
Gleichung (4-4)). Somit kann über die Referenzfläche A0 und die gemessene Scherkraft Fx
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

Abb. 4.3 – Darstellung des lokalen Fehlermaßes ηs für den idealisierten Scher-
probekörper mit den Abmaßen: 10 × 100 × 2 bei einem Schermaß von s = 1

auch die Cauchy-Spannung berechnet werden. In der Abbildung 4.4 ist das Spannungs-
Schermaßdiagramm und in der Abbildung 4.5 das globale Fehlerdiagramm ηT dargestellt.
Aus der Abbildung 4.4 wird ersichtlich, dass die freien Ränder des idealisierten Scher-
probekörpers zu keiner signifikanten Beeinflussung des globalen Kraftverhaltens führen.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

Abb. 4.4 – Spannungs-Schermaßdiagramm für den idealisierten Scherprobe-
körper (Simulationsergebnisse vgl. Tabelle 4.1)
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4.4 Numerische Entwicklung einer Schervorrichtung zur Realisierung präziser
Schermessungen
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Abb. 4.5 – Globaler Messfehler ηT für den idealisierten Scherprobekörper
(Simulationsergebnis vgl. Tabelle 4.1)

Betrachtet man dazu das globale Fehlerdiagramm genauer (vgl. Abbildung 4.5), so kann
ein Fehler ηT ≤ 2.75 % detektiert werden. Auffallend ist, dass die Fehlergröße ηT über das
Schermaß s einen nicht monotonen Verlauf annimmt, der bei s = 1.6 ein Minimum findet.
Eine feinere Diskretisierung des freien Randes führt zu keiner prinzipiellen Änderung des
Fehlerverlaufes. Da der globale Fehler, der durch die freien Ränder entsteht, verhältnismä-
ßig gering ausfällt, soll hier nicht weiter darauf eingegangen werden. Gegebenenfalls kann
in einem späteren Optimierungsschritt durch eine leichte Taillierung der freien Ränder der
Fehler weiter reduziert werden. Es sei an dieser Stelle auch auf den Sachverhalt hinge-
wiesen, dass sich die Fehler an den Rändern nicht wie in einer Reihenschaltung verhalten
(vgl. Randeffekte beim Zug-/Druckprobekörper), sondern sich wie in einer Parallelschal-
tung aufsummieren.

Im Weiteren wird ein globales Maß definiert, welches sich zur Bewertung der Spannungsin-
homogenität im Messbereich eignet. Dieses soll im Gegensatz zu den eingeführten Fehler-
maßen nicht auf die Abweichung zu einer theoretisch vorhandenen Lösung Bezug nehmen,
sondern die Abweichungen im Messbereich zu einem berechneten Mittelwert selbst bewer-
ten. Dazu wird auf eine bekannte Größe aus der Statistik zurückgegriffen. Das Inhomoge-
nitätsmaß ξs wird als Standardabweichung der Von-Mises-Vergleichsspannung definiert:

ξs :=

√√√√ 1
n− 1

n∑
i=1

(
σeqvi

− σeqv
)2

mit: σeqv = 1
n

n∑
i=1

σeqvi
. (4-7)
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

Die Größe σeqvi
gibt dabei die Vergleichsspannung an einem Knoten i an. Weiterhin be-

schreibt das Maß σeqv den Mittelwert für die Vergleichsspannung für einen ausgewählten
Messbereich. In der Abbildung 4.6 ist dieser in Abhängigkeit des Schermaßes s für den
idealisierten Scherprobekörper (zum besseren Verständnis vergleiche Scherbereich in Ab-
bildung 4.3 ohne roten Außenbereich) dargestellt. Anhand der Abbildung werden einige
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Abb. 4.6 – Mittelwert σeqv für den idealisierten Scherprobekörper (Simulati-
onsergebnisse vgl. Tabelle 4.1)

Sachverhalte deutlich, die im Folgenden näher diskutiert werden sollen. Zunächst wird
ersichtlich, dass sich der Median (rote horizontale Linie) und der untere Whisker (2.5 %-
Quantil) bzw. der obere Whisker (97.5 %-Quantil) sehr eng beieinander befinden. Dies
bedeutet, dass sich 95 % aller Messwerte sehr nah um den Mittelwert aufhalten. Lediglich
die hier rot dargestellten Pluszeichen stellen Ausreißer dar, die aus den freien Rändern des
idealisierten Scherprobekörpers resultieren. Da diese wenigen Ausreißer aber verhältnis-
mäßig groß ausfallen (Abweichungen bis 250 %), haben sie einen starken Einfluss auf die
Berechnung des Inhomogenitätsmaßes ξs (vgl. Gleichung (4-7)). Da mit Hilfe des Inhomo-
genitätsmaßes primär der Einfluss der verschiedenen Klemmdesigns auf die Homogenität
untersucht werden soll, werden im Folgenden die freien Ränder bei der Auswertung nicht
mit betrachtet. In der Abbildung 4.7 ist das Inhomogenitätsmaß ξs für den vollständigen
(10 × 100 × 2) und reduzierten Auswertebereich (10 × 80 × 2) des idealisierten Scherprobe-
körpers dargestellt. Anhand der Verläufe wird qualitativ deutlich, wie stark sich die freien
Ränder auf die Inhomogenitätsberechnung auswirken. Es sei nochmal darauf verwiesen,
dass bei der globalen Kraftauswertung (vgl. Gleichung (4-6)) die freien Ränder mit be-
rücksichtigt werden und die daraus resultierenden Abweichungen nur gering ausfallen.
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4.4 Numerische Entwicklung einer Schervorrichtung zur Realisierung präziser
Schermessungen
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Abb. 4.7 – Inhomogenitätsmaß ξs für den idealisierten Scherprobekörper für
unterschiedliche Auswertebereiche (Simulationsergebnisse vgl. Tabelle 4.1)

Für die Untersuchung von Beuleffekten an Schermatten soll in Anlehnung an Gleichung
(3-48) ein modifiziertes Instabilitätsmaß κ eingeführt werden:

κ :=
∣∣∣∣∣uz,max − uz,min

t0

∣∣∣∣∣ . (4-8)

Dieses ist in der Weise definiert, dass die Differenz der maximalen zur minimalen z-
Verschiebung, dividiert durch die Probekörperdicke t0 angegeben wird. Damit kann in ein-
facher Art und Weise überprüft werden, wann ein Beulen einsetzt. Für die Charakterisie-
rung von Schermatten der Abmessung: 10×100 wird im Folgenden die Dicke t0 ∈ [2, 4] mm
und die Winkelimperfektion ϕ ∈

[
2.5, 10

]◦ variiert (vgl. Skizze in Abbildung 4.8). Da die
Variation der Winkelimperfektion nur zu verhältnismäßig geringen Abweichungen führt,
soll der besseren Veranschaulichung halber nur die Winkelimperfektion von ϕ = 5◦ darge-
stellt werden. In der Abbildung 4.8 ist das Instabilitätsmaß κ für die verschiedenen Pro-
bekörperdicken dargestellt. Da das Auftreten von Beuleffekten im Messbereich zu einer
extremen Spannungsinhomogenität führt, müsste das Inhomogenitätsmaß ξs in ähnlicher
Weise wie das Instabilitätsmaß κ den Beulpunkt voraussagen können. Bei genauerer Be-
trachtung der Abbildung 4.8 wird erkennbar, dass beide Maße den gleichen Beulpunkt
vorhersagen. Die Ergebnisse machen deutlich, dass mit den aktuellen Probekörperabmes-
sungen: 10 × 100 nur für die Schermattendicke von 4 mm ein Schermaß von s = 2 erzielt
werden kann. Eine Variation der hyperelastischen Stoffgesetzparameter führte zu der glei-
chen Beul-Charakteristik. Im Anhang A.3 ist exemplarisch das Beulverhalten für eine
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen
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Abb. 4.8 – Beuluntersuchungen für den idealisierten Scherprobekörper unter
Variation der Dicke t0 ∈ [2, 4] mm bei einer Winkelimperfektion von ϕ = 5◦

(Simulationsergebnisse vgl. Tabelle 4.1)

Schermatte mit der Dicke t0 = 2 mm dargestellt. Es bleibt in nachfolgenden experimen-
tellen Untersuchungen zu überprüfen, ob sich diese Beulpunkte bestätigen lassen.

4.4.2 Untersuchung von Klemmdesigns

Mit Hilfe der eingeführten Fehler- und Inhomogenitätsmaße sollen im Folgenden verschie-
dene Klemmdesigns getestet und qualitativ miteinander verglichen werden. Als Ausgangs-
punkt soll zunächst der Akzo Nobel Scherprobekörper (vgl. Abbildung 2.3) näher un-
tersucht werden. Dieser Scherprobekörper wird standardmäßig über Klemmleisten ver-
spannt und anschließend geschert. Um für spätere Vergleiche einheitliche Ausgangsgrößen
zu haben, wird mit den Abmessungen: 10 × 100 × 2 gerechnet. Aufbauend auf diesen Er-
kenntnissen sollen neue Designkonzepte entwickelt und simulativ getestet werden. In der
Abbildung 4.9 ist das lokale Fehlermaß ηs für den Akzo Nobel Scherprobekörper für un-
terschiedliche Stauchungen durch die Klemmleisten dargestellt. Als Scherbelastung wurde
eine Verschiebung von ux = 10 mm vorgegebenen, die einem theoretischen Schermaß von
s = 1 entspricht. Für die Klemmleisten wurde ein Reibwert von µ = 1 angenommen.
Anhand der Abbildung 4.9 wird deutlich, dass ohne eine Stauchung keine zufriedenstel-
lende Scherdeformation eingeleitet werden kann. Der lokale Messfehler ηs im Zentrum des
Auswertebereiches beträgt rund 0.5. Vergleicht man dazu den mittleren Bereich der sich
bei einer Klemmbelastung von 5 % bzw. 10 % Stauchung einstellt, so wird deutlich, dass
die Scherdeformation wesentlich besser übertragen werden kann. Der lokale Messfehler
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0% Stauchung 5% Stauchung 10% Stauchung

Abb. 4.9 – Darstellung des lokalen Fehlermaßes ηs für den Akzo Nobel Scher-
probekörper mit den Abmaßen: 10 × 100 × 2 bei einer Scherbelastung von
ux = 10 mm

der sich hier ergibt, liegt im Bereich von 0.2. Auffallend ist, dass sich im Zentrum des
Messbereiches schwankende Fehlergrößen ausbilden.

Als nächstes soll das Spannungs-Schermaßdiagramm in Abbildung 4.10 und das sich daraus
ergebende globale Messfehler-Schermaßdiagramm in Abbildung 4.11 näher betrachtet wer-
den (bei einer Klemmbelastung von 5 % Stauchung). Anhand der zweiten Abbildung wird
deutlich, dass der globale Messfehler schon zu Beginn der Scherung eine Fehlergröße von
ca. 0.25 aufweist. Damit liegt der Fehlerwert in der gleichen Größenordnung wie der eben
beschriebene lokale Messfehler. Weiterhin wird ersichtlich, dass mit zunehmender Scherung
ein monotoner Anstieg des globalen Messfehlers zu verzeichnen ist. Eine Erklärung kann
darin gefunden werden, dass die Mattendicke (hier: t0 = 2 mm) mit zunehmender Scherung
leicht abnimmt, sich dadurch die Kontaktzonen verlagern und die Klemmleisten zwangs-
weise die Scherdeformation schlechter übertragen. Diese Überlegungen legen nahe, dass
besonders der Einfluss der Randbedingungen in Tiefenrichtung (z-Richtung) maßgebend
für die Übertragung der Scherdeformation ist. Aus diesem Grund wird in einem nächsten
Schritt der Deformationsverlauf über der Tiefe näher untersucht. Um weiterhin Einflüsse,
die aus den freien Rändern resultieren zu umgehen, wird mit einem repräsentativen Mate-
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Abb. 4.10 – Spannungs-Schermaßdiagramm für den Akzo Nobel Scherprobe-
körper (Simulationsergebnisse vgl. Tabelle 4.1, vgl. Abbildung 4.4)
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Abb. 4.11 – Globaler Messfehler ηT für den Akzo Nobel Scherprobekörper
(Simulationsergebnisse vgl. Tabelle 4.1, vgl. Abbildung 4.5)

rialstreifen mit periodischen Randbedingungen gearbeitet. Eine ausführliche Beschreibung
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der Besonderheiten von repräsentativen Volumenelementen (RVE) und der Erstellung von
periodischen Randbedingungen (engl. periodic boundary conditions = PBC) findet sich
in der Arbeit von Donner (2017). In der Gleichung (4-9) ist der Zusammenhang der Orts-
vektoren zwischen der Referenz- und der Momentankonfiguration dargestellt:

rk+ − rk− = F ·
(
r̃ k+ − r̃ k−) ∀ r ∈ Ak . (4-9)

Die Indizes k+ und k− beschreiben dabei die zugeordneten Flächenpaare (vgl. auch Pahr
& Zysset 2008). In der Abbildung 4.12 ist ein repräsentativer Materialstreifen mit peri-
odischen Randbedingungen in x-Richtung dargestellt. Dies bedeutet, dass man sich den

Abb. 4.12 – Darstellung des lokalen Fehlermaßes ηs an einem repräsentativen
Materialstreifen mit fixierten Stirnflächen bei einem Schermaß von s = 1

Materialstreifen in x-Richtung beliebig oft periodisch fortgesetzt vorstellen kann. Solche
Randbedingungen besitzen den entscheidenden Vorteil, dass sich gegenüberliegende Flä-
chen in gleicher Weise deformieren und dadurch Einflüsse, die Flächenverwölbungen her-
vorrufen, berücksichtigt werden können. Für den hier dargestellten Materialstreifen wird
weiterhin in der xy-Ebene Symmetrie ausgenutzt. Die Einleitung der Scherdeformation
erfolgt über Verschiebungsrandbedingungen, die an den Deckflächen des Materialstrei-
fens aufgebracht werden (siehe quadratische Fläche in positiver z-Richtung). Anhand des
oberen Ausschnittes in der Abbildung 4.12 wird deutlich, dass sich über der Tiefe ein
inhomogenes Verzerrungsfeld einstellt. Weiterhin wird anhand der mittleren Darstellung
deutlich, dass sich nahe des Einspannbereiches eine Verwölbung in x-Richtung ausbildet.
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

Die wichtigsten Erkenntnisse aus den bisherigen Untersuchungen sollen kompakt zusam-
mengetragen werden:

• Ein Kraftschluss der Außenbereiche führt zu keiner zufriedenstellenden Scherdefor-
mation. Weiterhin wird Material aus dem Klemmbereich in den Auswertebereich
gedrückt, was zu Spannungsinhomogenitäten führt.

• Verschiebungsrandbedingungen auf den Deckflächen des Materialstreifens führen zu
einem inhomogenen Verzerrungsfeld über der Tiefe.

• Das sich dabei einstellende Inhomogenitätsprofil wird mit zunehmender Fixierung
von Knoten in z-Richtung kleiner (numerisch getestet, aber nicht mit dargestellt).

• Idealerweise wäre ein Klemm- bzw. Spannmechanismus, der gleichmäßig über der
Tiefe einsetzbar ist, wünschenswert.

4.4.3 Numerische Entwicklung eines Scherprobekörpers mit formschlüssiger
Lasteinleitung

Aufbauend auf den bisherigen Erkenntnissen wird ein neues Designkonzept vorgestellt,
welches eine gleichmäßige Einleitung der Scherdeformation über der Tiefe ermöglicht. Der
Grundgedanke basiert dabei auf einer formschlüssigen Verbindung zwischen einer gleich-
mäßig gelochten Elastomermatte und dafür speziell vorgesehenen Stiften, welche die Matte
führen. Durch diese Herangehensweise soll sichergestellt werden, dass der messtechnisch
relevante Bereich homogen deformiert wird. In der Abbildung 4.13 ist zum besseren Ver-
ständnis eine Prinzipskizze dargestellt. Dieses Designkonzept bietet eine Reihe ganz prin-
zipieller Vorteile (aber auch Nachteile), die im Weiteren näher diskutiert werden sollen.
Der große Vorteil dieses Designs besteht darin, dass die Scherdeformation sehr präzise
über der gesamten Tiefe der Elastomermatte eingeleitet werden kann. Weiterhin wird,
im Vergleich zu bisherigen mechanischen Klemmungen, kein Material in den Messbereich
gedrückt bzw. verdrängt. Die Verwendung von Stiften hat auch den ganz praktischen Vor-
teil, dass auf eine stoffschlüssige Verbindung wie Kleben oder Anvulkanisieren verzichtet
werden kann (vgl. Abschnitt 2.2.3). Gerade bei größeren Scherdeformationen s > 1 kann
es bei speziellen Kautschukmischungen dazu kommen, dass die Grenzschicht (bestehend
aus Haftvermittler und Bindemittel) versagt und ein Einreißen stattfindet (vgl. Ballhorn
2007). Eine formschlüssige Verbindung könnte hier signifikante Vorteile aufweisen, voraus-
gesetzt, dass die Stifte nicht zu einem Einreißen der zuvor präparierten Elastomermatte
führen. Als definitiven Nachteil kann aber angegeben werden, dass das neue Designkon-
zept in keiner Weise für Lebensdaueruntersuchungen geeignet ist. Da diese Anwendung
aber kein vordergründiges Ziel darstellt, soll diese Einschränkung zunächst hingenommen
werden.

Um das Potenzial dieses Designkonzepts abschätzen zu können, ist in der Abbildung 4.14
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Abb. 4.13 – Prinzipskizze eines Scherprobekörpers mit formschlüssiger Ver-
bindung mittels Stiften (Grundgeometrie in Anlehnung an den Scherprobekör-
per der Firma Akzo Nobel, siehe Ihlemann 2003)

Abb. 4.14 – Darstellung des lokalen Fehlermaßes ηs für einen repräsentativen
Materialstreifen (Pin-Durchmesser d = 0.5 mm) bei einem Schermaß von s = 1

ein repräsentativer Materialstreifen mit Stiften (im Weiteren auch als Pins bezeichnet) dar-
gestellt. Bei der Modellierung des Materialstreifens mit periodischen Randbedingungen ist
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

darauf zu achten, dass sich auf jeder Seite zwei Pins befinden müssen, um den Drehfrei-
heitsgrad um die z-Achse zu unterbinden. Anhand der Abbildung 4.14 werden folgende
Sachverhalte deutlich. Zunächst ist zu erkennen, dass sich über der Tiefe (z-Richtung)
ein gleichmäßig deformierter Bereich einstellt. Im Vergleich zum Materialstreifen, der nur
an den Deckflächen fixiert wurde, bleibt das sich hier ausbildende Verzerrungsfeld auch
bei dickeren Elastomermatten erhalten. Weiterhin wird im direkten Vergleich mit dem
Scherprobekörper von der Firma Akzo Nobel deutlich, dass das lokale Fehlermaß ηs im
Messbereich wesentlich kleiner ausfällt.

Um nun auch globale Aussagen zum neuen Designkonzept treffen zu können, soll die Me-
thode für eine Elastomermatte der Dimension: 10×100×2 getestet werden. Dabei kommen
zwei verschiedene Pin-Abmessungen und Stückzahlen zum Einsatz: dPin ∈ [0.5, 1] mm und
nPin ∈ [25, 50]. Beide Parameterkonstellationen sollen zunächst eine erste Abschätzung
zum Potenzial des neuen Designkonzepts angeben. In der Abbildung 4.15 ist der globale
Messfehler ηT und in der Abbildung 4.16 das Inhomogenitätsmaß ξs dargestellt. Anhand
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Abb. 4.15 – Darstellung des globalen Messfehlers ηT für verschiedene flächige
Scherprobekörper (Simulationsergebnisse vgl. Tabelle 4.1, vgl. Abbildung 4.11)

der Abbildung 4.15 wird deutlich, dass der globale Messfehler für die Pin-Varianten sehr
viel geringer ausfällt als bei dem Scherprobekörper von der Firma Akzo Nobel. Dies zeigt
sich insbesondere bei größeren Scherdeformationen (vgl. Traversenverschiebung/Proben-
breite). Als nächstes soll das Inhomogenitätsdiagramm in Abbildung 4.16 näher betrach-
tet werden. Hier zeigt sich, dass das neue Designkonzept (bis Schermaße nahe eins) sehr
geringe Abweichungen zum idealisierten Scherprobekörper aufweist. Erst bei größeren De-
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Abb. 4.16 – Darstellung des Inhomogenitätsmaßes ξs für verschiedene flächige
Scherprobekörper (Simulationsergebnisse vgl. Tabelle 4.1, vgl. Abbildung 4.7)

formationen sind zunehmende Abweichungen zu verzeichnen. Ein direkter Vergleich mit
dem Scherprobekörper von der Firma Akzo Nobel zeigt aber auch hier eine deutliche Ver-
besserung. Im Anhang ist in der Abbildung A.4 das lokale Fehlermaß ηs für den Scherpro-
bekörper mit Pins dargestellt. Der Vollständigkeit halber sei an dieser Stelle erwähnt, dass
andere entwickelte Einspann- bzw. Klemmvarianten mit unterschiedlichen Profilformen zu
keiner wesentlichen Verbesserung der zu übertragenden Scherdeformation beigetragen ha-
ben. Aus diesem Grund wurde diesbezüglich auf eine weiterführende Vertiefung verzichtet.

Zusammenfassung des neuen Designkonzepts:
Das eingeführte Designkonzept, bestehend aus gelochter Elastomermatte und Pins zur
Übertragung der Scherdeformation, zeigt eine deutliche Verbesserung gegenüber den her-
kömmlichen Klemmvarianten. Anhand numerischer Untersuchungen konnte gezeigt wer-
den, dass die Pins zur formschlüssigen Lasteinleitung verwendet werden können. Diese Her-
angehensweise bringt den großen Vorteil mit sich, dass nun erstmalig flächige Elastomer-
matten nahezu homogen geschert werden können. Dies bietet insbesondere für Alterungs-
untersuchungen, Versuche mit faserverstärkten Materialien und Versuche mit Vorreckung
signifikante Vorteile. In experimentellen Untersuchungen bleibt zu klären, inwieweit das
Designkonzept zu einem Einreißen der zuvor präparierten Elastomermatte führen kann.
Eine weitere Herausforderung stellt die technologische Umsetzung der zu lochenden Matte
und deren Monatge mit der Schervorrichtung über Stifte dar. Im nachfolgenden Abschnitt
soll diesbezüglich eine erste experimentelle Umsetzung des Konzepts erfolgen.

105

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

4.5 Experimentelle Realisierung einer Schervorrichtung mit
formschlüssiger Lasteinleitung

4.5.1 Versuchsaufbau der Schervorrichtung

In diesem Abschnitt erfolgt die experimentelle Validierung des entwickelten Scherprobe-
körpers mittels Pins. Zunächst soll dazu näher auf den prinzipiellen Versuchsaufbau ein-
gegangen werden. In der Abbildung 4.17 ist die Prüfmaschine mit eingebauter Schervor-
richtung und 3D DIC-Messsystem dargestellt. Die Schervorrichtung lässt sich weiterhin in

Traverse

3D DIC-
Messsystem

Ausrichteinheit

Kraftmessdose

Schervorrich-
tung mit Pins

Präparierte
Elastomermatte

Adapter

Abb. 4.17 – Versuchsaufbau der Schervorrichtung mit Messsystem

eine untere und eine obere Apparatur einteilen. Die untere Apparatur setzt sich dabei aus
einem vorderen und einem hinterem U-Profil zusammen, welches für die starre Fixierung
der Elastomermatte verantwortlich ist. Die obere Apparatur besteht ebenfalls aus einem
vorderen und einem hinterem I-Profil, welches die verfahrbare Fixierung an der Traverse
darstellt. Die präparierte Elastomermatte wird dabei lediglich über Pins mit der Schervor-
richtung verbunden. Auf die spezielle Lochung der Elastomermatte soll im nächsten Ab-
schnitt gesondert eingegangen werden. Um einen kraftfreien Einbau der Elastomermatte
in die Prüfmaschine zu ermöglichen, kann auf dem hinteren U- und I-Profil eine Montage-
platte befestigt werden. Diese gewährleistet beim Einbau eine starre Verbindung zwischen
der unteren und der oberen Apparatur und ist insbesondere für sehr dünne Elastomermat-
ten essenziell (vor der Messung zu entfernen). Die Schervorrichtung wird dabei in gleicher
Weise wie das Probekörper-Setup über Adapter mit der Kraftmessdose (Nennlast: 20 kN)
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4.5 Experimentelle Realisierung einer Schervorrichtung mit formschlüssiger
Lasteinleitung

und der Ausrichteinheit verbunden. Letzteres spielt insbesondere bei der Korrektur von
Positions- und Winkelabweichungen eine wichtige Rolle (vgl. dazu Abbildung 3.46). Die
Verschiebungsmessung erfolgt auch hier optisch mittels eines 3D DIC-Messsystems (vgl.
Abschnitt 3.4). Eine Besonderheit stellt hier lediglich der vertikale Versuchsaufbau des
3D DIC-Messsystems dar. Dieser ist darauf zurückzuführen, dass zum einen ein größerer
Messbereich zur Verfügung steht, zum anderen eine bessere Ausleuchtung des Messbe-
reiches möglich ist. Aufgrund der speziellen Geometrie der Schervorrichtung würde eine
horizontale Beleuchtung zu einem kleineren detektierbaren Messbereich führen.

4.5.2 Technologische Überlegungen zur Locherzeugung in Elastomermatten

Im Folgenden soll auf die spezielle Lochung der Elastomermatte eingegangen werden. Wie
in den numerischen Untersuchungen bereits gezeigt, wird die Scherdeformation mittels
Pins über die Tiefe der Elastomermatte eingeleitet. Um die Vielzahl an Pins in die Elas-
tomermatte einführen zu können, muss diese zuvor gelocht werden. Dies soll im Weiteren
mit Hilfe spezieller Stanzwerkzeuge realisiert werden. In der Abbildung 4.18 ist die Ma-
trix, in welche die einzelnen Stanzwerkzeuge eingesetzt werden können, dargestellt. Die

Stahlrahmen für
die Elastomermatte Stanzmatrix

Deckel für
Krafteinleitung

Abb. 4.18 – Lochung der Elastomermatte mittels Stanzmatrix

Matrix wurde dabei so konzipiert, dass verschiedene Stanzwerkzeuge mit unterschiedli-
chen Lochgrößen d ∈ [1, 2] mm eingesetzt werden können. Eine weitere Besonderheit stellt
das spezielle Muster der Bohrungen in der Matrix dar. Dieses wurde so erstellt, dass nach
dem ersten Stanzvorgang die komplette Matrix um 180◦ gedreht werden kann. Mittels ei-
nes Stahlrahmens, der als Führung dient, wird sichergestellt, dass alle Löcher symmetrisch
gestanzt werden. Diese Herangehensweise bietet zwei prinzipielle Vorteile. Zum einen wird
damit nur die Hälfte der Stanzkraft benötigt, was besonders für Mattendicken größer 6 mm
empfehlenswert ist, zum anderen kann aufgrund der speziellen Geometrie der Stanzwerk-
zeuge die feine Reihung (hier Lochabstand 5 mm) mit handelsüblichen Kaufteilen realisiert
werden. Für den Deckel der Matrix wurde eine Kegelbohrung vorgesehen, damit durch eine

107

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

Stahlkugel eine symmetrische Krafteinleitung erfolgen kann. Weiterhin befinden sich im
Deckel kleine Durchgangsbohrungen, die einen Materialauswurf ermöglichen. Nach abge-
schlossenem Stanzprozess wird die Elastomermatte für die DIC Messung beschichtet (vgl.
Abbildung 3.49).

4.5.3 Schermessungen mit Elastomermatten

In diesem Abschnitt erfolgt die experimentelle Validierung der entwickelten Schervorrich-
tung mit der präparierten Elastomermatte (vgl. Abbildung 4.17). Um die Schervorrichtung
auf ihre Funktionstauglichkeit testen zu können, wird zunächst ein zweiseitiger, gestufter
Scherversuch durchgeführt. Dabei kann schrittweise überprüft werden, ob das Funktions-
prinzip des Pin-Designs gewährleistet ist oder es zum Einreißen und damit frühzeitigen
Versagen des Scherprobekörpers kommt. In Abbildung 4.19 ist der gestufte Versuch in
einem Spannungs-Schermaßdiagramm für eine Matte aus gefülltem EPDM (t0 = 4 mm)
dargestellt. Zunächst fällt der nahezu punktsymmetrische Spannungsverlauf auf, der für

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-5

-3.75

-2.5

-1.25

0

1.25

2.5

3.75

5

Abb. 4.19 – Symmetrischer Scherversuch mit der neuen Schervorrichtung
(Messungen für gefüllten EPDM)

zweiseitig gestufte Scherversuche charakteristisch ist (vgl. Ahmadi u. a. 2007). Bei genaue-
rer Betrachtung der Umkehrpunkte wird jedoch der Einfluss der belastungsinduzierten
Anisotropie deutlich. Dieses Phänomen lässt sich dadurch erklären, dass bei der rechts-
seitigen Scherung das Material erstmalig entfestigt wird, bevor die linksseitige Scherung
erfolgt. Dadurch hat das Material bereits teilweise eine Entfestigung bei gleichem Scher-
maß erfahren, weshalb für die linksseitige Scherung weniger Kraft bei gleicher Deformation
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benötigt wird (vgl. auch Ihlemann 2003, Wulf 2016). Demgegenüber würde bei einer iso-
tropen Entfestigung das Material nach der rechtsseitigen Scherung linksseitig komplett
entfestigt sein. Weiterhin lassen sich aus der Abbildung 4.19 wichtige Eigenschaften wie
Hysteresenform und bleibende Verzerrungen ableiten. Aus dem dargestellten Spannungs-
Verzerrungsdiagramm kann zunächst kein Einreißen oder frühzeitiges Versagen des Pin-
Designs festgestellt werden. Eine Demontage der Schervorrichtung bestätigt diesen Sach-
verhalt. Um die Schervorrichtung mit der Elastomermatte auf ihre Reproduzierbarkeit
testen zu können, wird ein Wiederholungsversuch mit der gleichen Probe durchgeführt.
Da die Probe bereits bis zu einem Schermaß von s = 2.0 entfestigt wurde, müssten die sta-
tionären Zyklen der höchsten Laststufe aufeinanderliegen. Ein Vergleich zwischen Versuch
1 und 2 bestätigt diese Annahme. Damit kann sichergestellt werden, dass das Funktions-
prinzip auch bei Wiederholungsversuchen gewährleistet ist. Anhand der Versuche 1 und
2 werden auch die verschiedenen Aspekte des Mullins-Effekt deutlich (Entfestigung durch
Lastwiederholung und Entfestigung durch Vorreckung).

Als nächstes soll die Homogenität der Verzerrungen im Messbereich näher untersucht
werden. Dafür erfolgt zunächst die Verschiebungsmessung optisch mittels eines 3D DIC-
Messsystems. Um das Schermaß s darzustellen, muss entweder auf die Schubverzerrung
εxy = s/2.0 oder den Scherwinkel ϕ = arctan(s) zurückgegriffen werden. Da in der Soft-
ware von GOM Correlate die Schubverzerrungen aus dem jeweils lokal betrachteten Ko-
ordinatensystem berechnet werden und diese bei großen Schubverzerrungen stark vom
Ausgangssystem abweichen können, wird der Scherwinkel ϕ zur Schermaßberechnung her-
angezogen. In der Abbildung 4.20 sind die Messbereiche für zwei verschiedene Scherstufen

I II

I II

Schermaß

Abb. 4.20 – Lokale Darstellung des Schermaßes s für verschiedene Laststufen
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4 Entwicklung eines Scherprobekörpers für präzise Schermessungen

dargestellt. Aus der linken Darstellung wird ersichtlich, dass sich bei einer Verschiebung
von ux = 15 mm (vgl. Diagramm in Abbildung 4.20) immer noch ein nahezu homogenes
Verzerrungsfeld einstellt. Lediglich im Übergangsbereich zwischen gestanztem Loch und
Pin sind größer werdende Inhomogenitäten der Verzerrung zu verzeichnen. Im Vergleich
dazu sind die Inhomogenitäten in der rechten Darstellung (Verschiebung ux = 20 mm) im
Übergangsbereich stärker ausgeprägt. Hier sollte insbesondere für eine globale Auswertung
darauf geachtet werden, dass im Zentrum des Messbereiches gemessen wird. Nichtsdesto-
trotz zeigt der Scherprobekörper bei diesen großen Scherdeformationen (vgl. Abbildung
4.19 bei einem Schermaß von s = 1.6) eine verhältnismäßig homogene Verzerrungsvertei-
lung und bietet somit Potential für Weiterentwicklungen. Diesbezüglich sei darauf hinge-
wiesen, dass diese Schervorrichtung ein erster Prototyp ist und zunächst die Funktions-
weise des Pin-Konzepts sicherstellen soll. In weiterführenden Arbeiten wäre es überaus
empfehlenswert sowohl den Pin-Durchmesser, als auch die Pin-Anzahl zur Verbesserung
der Homogenität zu optimieren.

Zusammenfassung der präzisen Schermessungen:
Generell kann festgehalten werden, dass sich das Pin-Design für präzise Schermessungen
eignet und sich dadurch eine Reihe interessanter Anwendungsmöglichkeiten wie Alterungs-
untersuchungen mit Matten, Versuche mit faserverstärkten Materialien und Versuche mit
Vorreckung auf Zug eröffnen. Weiterhin bietet eine automatisierte Stanz-/Fixiervorrich-
tung die Möglichkeit einer standardisierten Implementierung in den Industriealltag, bei der
gänzlich auf aufwändige Vorarbeiten wie Kleben oder Anvulkaniseren verzichtet werden
kann.

Beuluntersuchungen

Abschließend wird das Beulverhalten für verschiedene Mattendicken charakterisiert. In
Abschnitt 4.4.1 wurden dazu bereits erste Simulationsergebnisse gezeigt (vgl. Abbildung
4.8). Diese numerischen Untersuchungen sollen im Folgenden durch experimentelle Daten
validiert werden. Hierfür werden Elastomermatten unterschiedlicher Dicke präpariert und
in die Schervorrichtung eingebaut. Die Scherversuche werden dabei so realisiert, dass so-
lange in eine Richtung geschert wird, bis ein eindeutiges Beulen zu verzeichnen ist. Im
Anschluss daran wird auf Verschiebung Null zurückgefahren. In der Abbildung 4.21 ist
das Spannungs-Schermaßdiagramm für drei verschiedene Mattendicken dargestellt. Da-
bei kann der grüne Verlauf (Mattendicke t0 = 4.4 mm) bis zu einem Schermaß nahe
s = 3.0 als Referenzkurve angesehen werden. Die Abweichung der anderen beiden Ver-
läufe (Mattendicke t0 = 2.3 mm und t0 = 3.4 mm) zu dieser Referenzkurve kennzeichnet
dabei den vermuteten Beulpunkt. Demzufolge scheint die Elastomermatte mit der Dicke
t0 = 2.3 mm bei einem Schermaß von s = 1.1 zu beulen und die Elastomermatte mit der
Dicke t0 = 3.4 mm bei einem Schermaß von s = 2.0. Für die Mattendicke t0 = 4.4 mm
kann der Beulpunkt zunächst nur nahe dem Schermaß s = 3.0 abgeschätzt werden. Um
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Abb. 4.21 – Spannungs-Schermaßdiagramm für verschiedene Mattendicken
(Messungen für gefüllten EPDM)

diese Annahmen zu überprüfen, soll im Weiteren für die hier dargestellten Elastomermat-
ten das Instabilitätsmaß κ berechnet werden. Dies soll mit Hilfe der gemessenen „out-of-
plane“-Komponente eines 3D DIC-Messsystems realisiert werden. In der Abbildung 4.22
ist das berechnete Instabilitätsmaß für die drei verschiedenen Mattendicken dargestellt.
Zur besseren Vergleichbarkeit wurden ebenso die aus der Simulation berechneten Instabi-
litätsmaße mit abgebildet. Für den roten Verlauf der Mattendicke t0 = 2.3 mm ergibt sich
ein signifikanter Anstieg des Instabilitätsmaßes bei s = 0.9. Damit stimmt die Messung
mit den simulierten Ergebnissen sehr gut überein. Für die Elastomermatte mit der Dicke
t0 = 3.4 mm ist ein signifikanter Anstieg ab s = 1.6 zu detektieren. Auch dieses Ergebnis
kann gut mit den Vorhersagen aus der Simulation bestätigt werden. Als letztes soll der
Verlauf der Mattendicke t0 = 4.4 mm näher betrachtet werden. Hier wird deutlich, dass
bei einem Schermaß ab s = 2.6 ein monoton steigender Verlauf des Instabilitätsmaßes zu
verzeichnen ist. Dieses Ergebnis zeigt die größte Abweichung zu den simulierten Vorher-
sagen, welche den Beulpunkt bei s = 2.25 angeben. Eine Erklärung kann darin gefunden
werden, dass die hier verwendeten Elastomermatten herstellungsbedingt ein leichtes Über-
maß aufweisen, welches sich im Bereich weniger Zehntel Millimeter bewegt. Dies würde
auch erklären, warum die simulierten Daten eine leichte Unterschätzung der Beulpunkte
angeben. Zusammenfassend kann aber festgehalten werden, dass sich die Beulpunkte in
erster Näherung gut mit hyperelastischen Stoffgesetzen vorhersagen lassen.
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Abb. 4.22 – Kappa-Schermaßdiagramm für verschiedene Mattendicken (Si-
mulationsergebnisse vgl. Tabelle 4.1 und Messungen für gefüllten EPDM, vgl.
Abbildung 4.8)
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5 Anwendungsbeispiele für die entwickelten
homogenen Probekörper

In diesem Kapitel werden mit Hilfe der entwickelten homogenen Probekörper einige ausge-
wählte Anwendungsbeispiele vorgestellt. Nach einer Parameteranpassung eines viskoelas-
toplastischen Stoffgesetzes, vorzugsweise bei großen Stauchungen, kann eine Probekörper-
simulation unter Berücksichtigung inelastischer Effekte durchgeführt werden. Als nächstes
Anwendungsbeispiel soll das ratenabhängige Materialverhalten im Zug-/Druckbereich mit
Hilfe ausgewählter Funktionssignale untersucht werden. Abschließend wird das Probekörper-
Setup mittels einer automatischen Einspannvorrichtung für den Industriealltag zugänglich
gemacht.

5.1 Homogene Standardversuche zur Identifikation von
Materialparametern

Homogene Standardversuche werden sowohl für die phänomenologische Untersuchung tech-
nischer Elastomere als auch für die Parameteranpassung von Stoffgesetzen benötigt. In
diesem Abschnitt soll zunächst ein viskoelastoplastisches Stoffgesetz, welches die kom-
plexe Phänomenologie von technischen Elastomeren sehr gut beschreibt, vorgestellt wer-
den. Im Anschluss daran erfolgt eine Parameteranpassung anhand der homogenen Zug-
/Druckversuche. Durch den Vergleich einer homogenen Simulation (Simulation mit einem
finiten Element) mit einer Probekörpersimulation kann in direkter Weise das große Poten-
tial des Probekörper-Setups aufgezeigt werden. Dadurch wird auch einmal mehr ersichtlich,
wie eng die Stoffgesetzentwicklung mit der experimentellen Versuchsdurchführung verbun-
den ist. Abschließend wird das im Experiment gemessene globale Kraft-Wegverhalten mit
der Vorhersage einer Probekörpersimulation verglichen.

Im Folgenden soll das viskoelastoplastische Stoffgesetz, welches in Kooperation mit der
Firma Vibracoustic SE unter den Vorarbeiten von Michael Rabkin entwickelt wurde, sehr
kompakt vorgestellt werden (nachfolgend als Rabkin-Modell bezeichnet). Das Stoffgesetz
gliedert sich dabei phänomenologisch in drei Spannungsanteile auf, die additiv miteinan-
der verrechnet werden. In der Gleichung (5-1) sind die verschiedenen Spannungsanteile als
hyperelastisch, elastoplastisch und viskoelastisch gekennzeichnet:

T = The + Tep + Tve . (5-1)
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Zur Beschreibung des hyperelastischen Anteils wird einer Gleichgewichtsfeder das nicht-
affine Röhrenmodell von Heinrich u. a. (1988) zugrunde gelegt. Bei diesem Modell erfolgt
eine Berücksichtigung der Behinderung von Netzwerkketten durch die Verschlaufung mit
benachbarten Ketten. Der Begriff „nicht-affine Röhre“ ist dabei auf die topologische Be-
hinderung der Netzwerkkette innerhalb einer virtuellen Röhre zurückzuführen (vgl. Stau-
dinger 2007). Der elastoplastische Anteil des Rabkin-Modells beruht auf einem Modell
von Palmov (1998), welches aus einer Parallelschaltung unendlich vieler Prandtl-Elemente
(Reihenschaltung einer Hooke’schen Feder und eines Saint-Venant-Reibelements) besteht.
Zur Berücksichtigung von zeitabhängigen Effekten wird ein weiterer viskoelastischer An-
teil ergänzt. Dieser setzt sich aus einem generalisierten Maxwell-Modell zusammen. Für
eine weiterführende Vertiefung des Rabkin-Modells wird auf die Arbeit von Freund (2013)
und die Veröffentlichung von Gelke & Ihlemann (2016) verwiesen. Dort finden sich neben
einer detaillierten Beschreibung aller wichtigen Materialgleichungen, auch Anpassungen
zum Speicher- und Verlustmodul.

Nachfolgend wird ein Parametersatz des Rabkin-Modells verwendet, der von M. Sc. Gel-
ke an der Professur Festkörpermechanik mit Hilfe der Optimierungstoolbox von Matlab
(Levenberg-Marquardt-Verfahren) indentifiziert wurde. In der Abbildung 5.1 sind sowohl
die Messdaten für gefüllten EPDM (schwarzer Kurvenverlauf) als auch die zugehörige
Anpassung (roter Kurvenverlauf) dargestellt. Zur besseren Veranschaulichung der großen
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Abb. 5.1 – Parameteranpassung des Rabkin-Modells an die homogenen Zug-
/Druckversuche (Messungen für gefüllten EPDM, Anpassung von M. Sc. Gelke
an der Professur Festkörpermechanik, TU Chemnitz)
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5.1 Homogene Standardversuche zur Identifikation von Materialparametern

Zug- bzw. Druckstufen wird hier das logarithmische Hencky-Dehnungsmaß h = ln(ε + 1)
aufgetragen. Für eine Anpassung des Rabkin-Modells können dabei verschiedene Kom-
plexitätsstufen ausgewählt werden. Die Anpassung, die hier durchgeführt wurde, erfolgte
bei der höchsten Komplexitätsstufe (mit Berücksichtigung der Elastoplastizität, der Vis-
koelastizität und des Mullins-Effekts). Es sei an dieser Stelle darauf hingewiesen, dass der
Druckbereich etwas stärker gewichtet wurde als der Zugbereich. Dies erklärt auch, warum
die Anpassung im Druckbereich (vgl. Abbildung 5.1) wesentlich besser ausgefallen ist als
im Zugbereich. Hier sind insbesondere bei den größten Zugstufen zunehmende Abweichun-
gen in den Hysteresespitzen zu verzeichnen. Nichtsdestotrotz besitzt die Anpassung einen
hohen Gütegrad, bei der alle grundlegenden Eigenschaften von Elastomeren wie Hysterese,
Mullins-Effekt und bleibende Dehnung sehr gut abgebildet werden.

Als nächstes wird mit dem angepassten Stoffgesetz eine Probekörpersimulation durchge-
führt. Es soll dabei überprüft werden welche Abweichung bei Verwendung der neuen Mess-
strategie im Vergleich zur homogenen Simulation mit einem finiten Element (entspricht
der Anpassung in Abbildung 5.1) entsteht. Bei einem idealen Probekörper dürfte zwischen
der Probekörpersimulation und der homogenen Simulation mit einem Element kein Unter-
schied mehr auftreten. In der Abbildung 5.2 ist der Vergleich zwischen Probekörper- und
homogener Simulation mit einem Element dargestellt. Anhand der Abbildung wird deut-
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Abb. 5.2 – Vergleich der Probekörper und der homogenen Simulation (Mes-
sung für gefüllten EPDM, vgl. Abbildung 5.1)

lich, dass das Probekörper-Setup im Druckbereich eine zutreffende Prognose liefert. Die
Abweichungen, die hier noch auftreten, sollen im Folgenden näher diskutiert werden. Zu-
nächst kann festgehalten werden, dass erst bei einer Stauchung größer 40 % Unterschiede
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper

zur homogenen Lösung (Simulation mit einem Element) sichtbar sind. Mit zunehmender
Stauchung wird die Annahme der homogenen Druckdeformation immer stärker verletzt,
was die leicht anwachsenden Abweichungen erklärt. Abgesehen davon liefert das entwickel-
te Probekörper-Setup aber hervorragende Messkurven für diesen großen Druckbereich. Mit
dem angepassten Stoffgesetz können weiterhin in direkter Weise inelastische Effekte mit
dem Probekörper-Setup simuliert werden. Zum Beispiel kann der Einfluss der Restver-
formung untersucht werden. Durch das veränderte Längen-Durchmesserverhältnis wirken
sich Imperfektionen unterschiedlich stark auf das Stabilitätsverhalten des Probekörpers
aus.

Im Weiteren soll anhand einer Simulation überprüft werden, wie gut sich das globale
Kraft-Wegverhalten (Traversenweg) im Vergleich zur realen Messung vorhersagen lässt. In
der Abbildung 5.3 ist der globale Vergleich dargestellt. Aus der Abbildung wird deutlich,
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Abb. 5.3 – Vergleich des globalen Kraft-Wegverhaltens (Traversenweg) zwi-
schen Messung für gefüllten EPDM und Simulation

dass das globale Verhalten nur näherungsweise wiedergegeben werden kann. Die Abwei-
chungen, die aus dem Kraftverhalten resultieren, sollen im Folgenden näher diskutiert
werden. Zunächst einmal muss darauf hingewiesen werden, dass die Probekörper, die für
die Identifikation von Materialparametern und für die Vergleichsmessung verwendet wur-
den, aus nachfolgenden Materialchargen stammen. Erfahrungsgemäß können hier leichte
Abweichungen durch den Herstellungsprozess auftreten. Diese Vermutung wird auch da-
durch gestützt, dass schon bei kleinen Verschiebungen die Grundsteifigkeit leicht abweicht.
Weiterhin muss berücksichtigt werden, dass die Probekörpersimulation bewusst mit einem
vereinfachten axialsymmetrischen Modell ohne Hantelkopf durchgeführt wurde. Mit dieser

116

https://doi.org/10.51202/9783186357182 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:46:01. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186357182


5.1 Homogene Standardversuche zur Identifikation von Materialparametern

Abstraktionsstufe und der Tatsache, dass keine weitere Anpassung an diesen Messdaten
vorgenommen wurde, lässt sich das globale Kraft-Wegverhalten in erster Näherung gut
abschätzen. Als besonderes Augenmerk sei hier die Vorhersage der bleibenden Dehnung
im Nulldurchgang zu nennen, die erstaunlich gut wiedergegeben wird (vgl. dazu Abbildung
5.1, wo diesbezüglich keine Anpassung stattfand).

Abschließend wird mit dem angepassten Stoffgesetz (Anpassung erfolgte an die Zug-
/Druckkurven) ein symmetrischer Scherversuch durchgeführt, indem die gleichen Scher-
maßstufen wie im Experiment angefahren werden (vgl. Abbildung 4.19). Ziel der Untersu-
chung ist es zu überprüfen, wie gut sich mit einer homogenen Anpassung ein Scherversuch
vorhersagen lässt. In der Abbildung 5.4 ist der Vergleich zwischen dem Experiment und der
Simulation des Scherversuches für gefüllten EPDM (gefüllter EPDM210 72 ShA) darge-
stellt. Anhand der Abbildung wird deutlich, dass der Scherversuch in erster Näherung sehr
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Abb. 5.4 – Vergleich zwischen Scherversuch für gefüllten EPDM (vgl.
Abbildung 4.19) und homogener Simulation (Anpassung erfolgte an Zug-
/Druckkurven)

gut vorhergesagt werden kann. Bei den Belastungskurven ist zu erkennen, dass die Mes-
sung einen leicht progressiven Verlauf und die Simulation einen leicht degressiven Verlauf
aufweist. Demgegenüber zeigen die Entlastungskurven eine sehr gute Übereinstimmung. Es
sei hier aber nochmal explizit darauf hingewiesen, dass für das angepasste Stoffgesetz kein
Scherversuch berücksichtigt worden ist. Für eine spätere Bauteilsimulation, beispielsweise
Fahrwerksbuchsen, sollte jedoch darauf geachtet werden, dass der Anpassung verschiedene
homogene Datensätze mit verschiedenen Belastungsarten zugrunde liegen (vgl. Schellen-
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper

berg 2017).

Zusammenfassung der Anpassung eines Stoffgesetzes:
Mit Hilfe homogener Standardversuche konnte zunächst ein viskoelastoplastisches Stoffge-
setz angepasst werden. Diese Anpassung ermöglicht den qualitativen Vergleich zwischen
der homogenen Simulation mit einem Element und der Simulation mit dem Probekörper-
Setup. Dabei konnte festgehalten werden, dass das Probekörper-Setup auch bei großen
Stauchungen zu nahezu homogenen Messergebnissen führt. Die Anpassung ermöglicht
darüber hinaus auch die Vorhersage von recht komplexen Bauteilverhalten. Beispielsweise
können inelastische Effekte wie Restverformung in einem nächsten Iterationsschritt der
Halterungsentwicklung mit berücksichtigt werden.

5.2 Untersuchung des ratenabhängigen Materialverhaltens von
Elastomeren

Insbesondere bei zyklischen Belastungen zeigen technische Elastomere ein niedriges ra-
tenabhängiges Materialverhalten über einen großen Frequenzbereich. Dieser Effekt lässt
sich sehr gut im direkten Vergleich zwischen einem vorgegebenen Zickzackverlauf und
einem Sinusverlauf veranschaulichen (vgl. Besdo u. a. 2003). Hier zeigt sich an den Um-
kehrpunkten eine unterschiedlich stark ausgeprägte Hysteresespitze. Bei der Modellierung
von Stoffgesetzen für technische Elastomere wird aber oftmals von einem ratenunabhän-
gigen Materialverhalten ausgegangen (vgl. Morph-Modell (Ihlemann 2003) und Rabkin-
Modell (Freund 2013)). Dies führt zwangsweise dazu, dass wichtige geschwindigkeitsab-
hängige Effekte nicht abgebildet werden können. Ziel dieses Abschnittes ist es, mit Hilfe
der erweiterten Prüfmaschinensteuerung (siehe Abschnitt 3.4.2) und dem neu entwickelten
Probekörper-Setup die geschwindigkeitsabhängigen Effekte von technischen Elastomeren
noch eingehender zu untersuchen. Auf der Grundlage dieser Messergebnisse können dann
auch zeit-invariante Materialmodelle getestet und miteinander verglichen werden (vgl.
Donner u. a. 2017). Diese Untersuchungen bilden somit eine wichtige experimentelle Da-
tenbasis für die Entwicklung neuer Stoffgesetze. Zunächst werden mit Hilfe der erweiterten
Prüfmaschinensteuerung Prüfabläufe modelliert, die zu einem ratenabhängigen Material-
verhalten führen. Dazu wird ein harmonischer Sinusverlauf mittels ungerader Potenzen
wie folgt modifiziert:

u(t) = û sinn(ωt) mit n = 1, 3, 5, 7 . (5-2)

In der Abbildung 5.5 sind die Sinusverläufe mit den unterschiedlichen Potenzen darge-
stellt. Anhand der Abbildung wird deutlich, dass die Modifizierung dazu führt, dass es
Bereiche im Sinusverlauf gibt, in denen ein sehr flacher Anstieg entsteht und Bereiche, wo
dieser sehr stark ausgeprägt ist. Diese Prüfverläufe u(t), die im Weiteren mit der Traverse
verfahren werden, sind in der Abbildung 5.5 bereits in der entsprechenden Wegskalierung
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5.2 Untersuchung des ratenabhängigen Materialverhaltens von Elastomeren
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Abb. 5.5 – Darstellung der Sinusverläufe mit unterschiedlichen Potenzen zur
Untersuchung des ratenabhängigen Materialverhaltens (Simulationsergebnis-
se)

dargestellt. Aufgrund der kleinen Verfahrwege wird für das Probekörper-Setup der hoch-
präzise MultiXtens als Messsystem verwendet (vgl. Abbildung 5.6). Da dieses System für
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Abb. 5.6 – Spannungs-Dehnungsantwort der Sinusverläufe mit unterschied-
lichen Potenzen für den Zug-/Druckprobekörper (Messungen für gefüllten
EPDM)
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper

den Scherprobekörper nicht angewendet werden kann, kommt hier das 3D DIC-Messsystem
zum Einsatz. Für ein geringeres Verhältnis von Rauschen zu Messsignal wurden diesbezüg-
lich etwas größere Amplituden verwendet. Zur besseren Übersicht werden in Abbildung 5.6
die experimentellen Spannungs-Dehnungsantworten resultierend aus dem harmonischen Si-
gnal mit dem (resultierenden) Sinusverlauf der Potenz 7 verglichen. Es sei an dieser Stelle
darauf hingewiesen, dass im Spannungs-Dehnungsdiagramm nur die stationären Zyklen
dargestellt sind. Aus der Abbildung 5.6 lassen sich eine Reihe interessanter Erkenntnisse
gewinnen. Zunächst wird deutlich, dass sich im Ursprung eine eingeschnürte Hystereseform
ausbildet, die mit zunehmender Potenz des Eingangssignals immer stärker in den Ursprung
wandert. Dieser Effekt kann dadurch erklärt werden, dass durch die sehr flachen Über-
gangsphasen in den Sinusverläufen (Haltephasen) ein Relaxieren des Materials stattfindet.
Weiterhin ist zu beobachten, dass keine perfekte Punktsymmetrie innerhalb des Ursprun-
ges vorliegt. Diese leichte Asymmetrie ist auf das unterschiedliche Zug-Druckverhalten
von technischen Elastomeren zurückzuführen. Um diese Behauptung zu stützen, sind die
gleichen Sinusverläufe für den Scherprobekörper gefahren worden (siehe Abbildung 5.7).
Betrachtet man die Umkehrpunkte der Hysteresen, so ist für die modifizierten Signale

-0.05 -0.025 0 0.025 0.05
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Abb. 5.7 – Spannungs-Schermaßantwort der Sinusverläufe mit unterschiedli-
chen Potenzen für den Scherprobekörper (Messungen für gefüllten EPDM)

ein steilerer Anstieg der Spitzen zu verzeichnen. Dieser Effekt kann durch den steileren
Anstieg der Amplituden im modifizierten Sinusverlauf erklärt werden (vgl. Abbildung 5.5).

Im Folgenden soll das harmonische Sinussignal in der Weise modifiziert werden, dass sich ei-
ne größtmögliche Ratenabhängigkeit gegenüber dem herkömmlichen Sinusverlauf einstellt
(vgl. Donner u. a. 2017). Dabei ergeben sich zwei prinzipielle Modellierungsvarianten. Bei
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5.2 Untersuchung des ratenabhängigen Materialverhaltens von Elastomeren

der ersten Variante soll ein stark variierender Übergang zwischen den beiden Amplituden-
spitzen erfolgen, im Weiteren als Sägezahnverlauf bezeichnet. In der zweiten Variante soll
ein größtmöglicher Unterschied bei den Amplitudenformen erzielt werden, nachfolgend als
Kettenradverlauf bezeichnet. Die mathematische Beschreibung dieser verzerrten Verläufe
erfolgt in der Gleichung (5-3). Dabei ist zu beachten, dass für den Sägezahnverlauf eine
Sinusfunktion verwendet wird und für den Kettenradverlauf eine Cosinusfunktion:

u(t) = û sin
(
z(ωt)

)


mit: z(ωt) = ωt

v2(1 − 2ωt) + 2ωt für: 0 ≤ ωt ≤ π

mit: z(ωt) = ωt− 1/2
2/v2(1 − ωt) + 2ωt− 1 + 1

2 für: π < ωt < 2π

(5-3)

Der Parameter v beschreibt dabei den Grad der Verzerrung der herkömmlichen Sinus- bzw.
Cosinusfunktion. Beispielsweise führt eine Verzerrung mit Wert v = 1 zu dem harmoni-
schen Ausgangssignal. In der Abbildung 5.8 und der Abbildung 5.10 sind die Sägezahn-
und Kettenradverläufe für die Verzerrungen v = 1 bis 4 dargestellt. Zur besseren Ver-
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Abb. 5.8 – Darstellung der verzerrten Sinusverläufe (Sägezahnverlauf) zur
Untersuchung des ratenabhängigen Materialverhaltens (Simulationsergebnis-
se)

gleichbarkeit werden den verzerrten Eingangssignalen gleich die zugehörigen Spannungs-
Dehnungsantworten beigefügt (vgl. Abbildung 5.9 und Abbildung 5.11). Zunächst soll
dazu auf die Abbildung 5.9 näher eingegangen werden. Hier wird deutlich, dass der Sä-
gezahnverlauf zu einer unsymmetrischen Hystereseform führt. Diese weißt im Zugbereich
einen schmalen und zum Druckbereich einen größer werdenden Hysteresebauch auf. Wei-
terhin ist zu beobachten, dass sich der untere breitere Hysteresebauch auch unterhalb der
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper
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Abb. 5.9 – Spannungs-Dehnungsantwort der verzerrten Sinusverläufe (Säge-
zahnverlauf) für den Zug-/Druckprobekörper (Messungen für gefüllten EPDM)

gewöhnlichen Hysterese, resultierend aus dem harmonischen Sinussignal, befindet. Diese
starke Asymmetrie ist nicht zuletzt auf die stark variierenden Übergangsbereiche zwi-
schen den Amplitudenspitzen zurückzuführen. Es kann dabei ein sehr schneller und ein
sehr langsamer Pfad detektiert werden. Diese großen Geschwindigkeitsunterschiede führen
zwangsweise dazu, dass das Material unterschiedlich stark relaxiert. Zur besseren Über-
sicht wurde hier nur ein verzerrtes Signal (v = 3) dem harmonischen gegenübergestellt.
Es kann jedoch festgehalten werden, dass mit zunehmender Verzerrung v der obere Hys-
teresebauch schmaler und der untere breiter wird. Interessanterweise scheint auch die
dissipierte Energie vom Grad der Verzerrung abzuhängen, weil der Inhalt der Hysterese-
flächen unterschiedlich groß ausgeprägt ist. Im Anhang ist der gleiche Versuchsablauf für
den Scherprobekörper dargestellt (siehe Abbildung A.5). Alle eben beschriebenen Effekte
lassen sich auch hier wiederfinden. Allerdings sind diese in der einfachen Scherung nicht
so stark ausgeprägt.

Als nächstes sollen die Messergebnisse der Abbildung 5.11 näher diskutiert werden. Zu-
nächst wird ersichtlich, dass sich die stationären Hysteresen mit zunehmender Verzerrung
v parallel zur Referenzhysterese nach unten bewegen. Die Hysteresefläche scheint dabei
konstant zu bleiben. Bei genauerer Betrachtung der Abbildung 5.11 fällt auf, dass die obe-
ren Umkehrpunkte enger zusammen liegen als die unteren. Dieser Effekt soll anhand der
Abbildung 5.10 näher untersucht werden. Hier wird deutlich, dass der obere Amplituden-
verlauf aufgrund seiner ausgedehnten Struktur zu einem starken Relaxieren des Materials
im oberen Umkehrbereich führt. Der danach sehr schnell wechselnde Verlauf in den unte-
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Abb. 5.10 – Darstellung der gestreckten Cosinusverläufe (Kettenradverlauf)
zur Untersuchung des ratenabhängigen Materialverhaltens (Simulationsergeb-
nisse)
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Abb. 5.11 – Spannungs-Dehnungsantwort der gestreckten Cosinusverläufe
(Kettenradverlauf) für den Zug-/Druckprobekörper (Messungen für gefüllten
EPDM)

ren Umkehrpunkt verhindert zwangsweise ein langsames Zurückrelaxieren des Materials
zur Referenzhysterese. Die Versuche mit den Sägezahn- bzw. Kettenradverläufen machen
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper

deutlich, wie stark ratenabhängig sich technische Elastomere verhalten.

Zusammenfassung der Untersuchung zur Ratenabhängigkeit:
Anhand der messtechnischen Befunde kann festgehalten werden, dass technische Elasto-
mere (hier: gefüllter EPDM) ein stark ratenabhängiges Materialverhalten zeigen. Obwohl
die gewählte Amplitude und die verwendete Prüffrequenz in allen Versuchen konstant ge-
halten wurde, führen die unterschiedlichen Dehnraten zu einer starken Beeinflussung der
Hystereseform. Mit Hilfe dieser Messergebnisse können unter anderem auch zeit-invariante
Materialmodelle, wie sie in der Veröffentlichung von Donner u. a. (2017) vorgestellt wur-
den, getestet und validiert werden. Die hier zugrunde gelegte Datenbasis bietet somit
eine ideale Vergleichsmöglichkeit für neu entwickelte Stoffgesetze. Es sei an dieser Stelle
nochmal explizit darauf hingewiesen, dass es mit dem neu konzipierten Probekörper-Setup
ebenso denkbar wäre, die Ratenabhängigkeit bei unterschiedlichen Zug- bzw. Druckstu-
fen zu untersuchen. Im Rahmen der messtechnischen Realisierung wird empfohlen, die
gewünschten Zug- bzw. Druckstufen mit der Standardsteuerung anzufahren und dann auf
die erweitere Prüfmaschinensteuerung zu wechseln. Somit ist gewährleistet, dass die ver-
zerrten Eingangssignale bestmöglich in dem Bereich von ±10 V aufgelöst sind.

5.3 Implementierung des Probekörper-Setups in den
Industriealltag

Nachfolgend soll das entwickelte Probekörper-Setup, wie es im Rahmen dieser Arbeit vor-
gestellt wurde, für den Industriealltag zugänglich gemacht werden. Die Zielstellung dabei
ist, dass das Probekörper-Setup zum einen für die tägliche Qualitätskontrolle der verschie-
denen Materialmischungen, zum anderen für die Parameteranpassung von Stoffgesetzen
eingesetzt werden kann. Die wichtigsten Neuerungen dabei sind:

• Die Qualitätskontrolle der verschiedenen Materialmischungen kann auf Grundlage
phänomenologischer Eigenschaften technischer Elastomere durchgeführt werden.

• Bisherige verschiedene Zug- bzw. Druckprobekörper können durch das neue Probekör-
per-Setup ersetzt werden (Reduzierung der Probekörpertypen).

• Der zur Verfügung stehende Messbereich wurde für Zug-/Druckmessungen deutlich
erweitert.

• Die Homogenität im Messbereich, vorzugsweise im Druck, wurde deutlich verbessert.

• Es können in direkter Weise homogene Messdaten für die Stoffgesetzanpassungen
herangezogenen werden.

Um das Probekörper-Setup in den Industriealltag implementieren zu können, muss im
Wesentlichen der gesamte Ein- und Ausbauprozess beschleunigt werden (Minimierung
der Taktzeit für eine standardisierte Prüfung). Dies wird im Folgenden durch eine au-
tomatische Einspannvorrichtung realisiert. In der Abbildung 5.12 ist die automatische
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5.3 Implementierung des Probekörper-Setups in den Industriealltag

Einspannvorrichtung, wie sie bei der Firma Vibracoustic SE eingesetzt wird, dargestellt
(vgl. Tölle u. a. 2018). Die Grundidee zum Einspannen des Probekörpers geht dabei auf

Automatische
Einspannvorrichtung

(offen)

Pneumatik-
vorrichtung
(druckfrei)

Automatische
Einspannvorrichtung

(geschlossen)

ProbekörperPneumatik-
vorrichtung

(Druck liegt an)

Abb. 5.12 – Automatische Einspannvorrichtung zur Implementierung des
Probekörper-Setups in den Industriealltag (Abbildung von Dr. Folke J. Tölle
aus der Firma Vibracoustic SE)

ein Dreibackenfutter von Drehmaschinen zurück. Die Zustellung der Halterungssegmente
wird dabei über eine Pneumatikvorrichtung realisiert. Neben der erheblichen Zeitersparnis
ist durch das Dreibackensystem sichergestellt, dass der Probekörper zentrisch eingebaut
wird. Es sollte allerdings zuvor darauf geachtet werden, dass die automatischen Einspann-
vorrichtungen koaxial in der Prüfmaschine verbaut sind. Gegebenenfalls kann durch eine
Ausrichteinheit eine Korrektur vorgenommen werden (vgl. Abbildung 3.46). Um mit der
automatischen Einspannvorrichtung möglichst universell verschiedene Materialmischun-
gen testen zu können, muss der Schrumpf der Probe bestmöglich kompensiert werden.
Anhand von Untersuchungen mit gefülltem Naturkautschuk, gefülltem EPDM und FKM-
Material konnte gezeigt werden, dass bei einem Solldurchmesser der Vulkanisationsform
von 15 mm ein Schrumpf in der Größenordnung von 2 % auftritt. Dieser Schrumpf wurde
bisher mit entsprechenden Halterungsringen kompensiert. Für zusätzliche Reserven gegen-
über unbekannten Materialmischungen, wird eine Kompensation des Schrumpfes von 3 %
empfohlen. Vergleichsmessungen mit 2 % und 3 % Kompensation des Schrumpfes haben
dabei eine gute Übereinstimmung der Spannungs-Dehnungskurven ergeben.

Abschließend wird für das entwickelte Probekörper-Setup eine automatisierbare Mess-
prozedur vorgestellt, welche für große Zug-/Druckversuche geeignet ist. Das große Ziel
ist dabei zum einen die einfache Handhabbarkeit des Messsystems (Bedienung und Aus-
wertung), zum anderen die Gewährleistung einer schnellen und sicheren Messung im In-
dustriealltag (Taktzeit, Qualitätskontrollen). Im Vergleich zu dem bisher verwendeten 3D
DIC-Messsystem, mit dem eine Vielzahl wichtiger Größen gemessen werden können, besitzt
es die Nachteile, dass es verhältnismäßig aufwendig zu bedienen und sehr kostenintensiv
ist. Hinzu kommt, dass die Probenpräparation, die Justage bzw. Kalibrierung des Messsys-
tems und schlussendlich die Auswertung mit einem gewissen Erfahrungsschatz verbunden
sind. Demgegenüber ist die Bedienung eines Längenänderungsaufnehmers, wie dem Mul-
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5 Anwendungsbeispiele für die entwickelten homogenen Probekörper

tiXtens oder Clip Gage, mit wesentlich weniger Aufwand verbunden. Allerdings eignen sich
diese berührenden Systeme in keiner Weise für große Stauchungen. Aus diesem Grund soll
ein Messsystem ausgewählt werden, was zum einen auf einem berührungslosen Funktions-
prinzip beruht und zum anderen auch eine einfache Handhabbarkeit ermöglicht. Ein sich
hierfür eignendes System stellt das High-Speed 2D optische Mikrometer von der Firma
KEYENCE dar, welches als Durchlichtverfahren angewendet wird. Befindet sich zwischen
der Lichtquelle und einer Abtastplatte ein Probekörper, so kann dessen Außenkontur sehr
präzise vermessen werden. Da der Probekörper im Weiteren rotationssymmetrisch ist und
für die neue Messstrategie (vgl. Abschnitt 3.3.7) lediglich die Durchmesseränderung benö-
tigt wird, eignet sich das Messsystem in idealer Weise für standardisierte Messungen im
Zug-/Druckbereich. In Abbildung 5.13 ist der Versuchsaufbau des Probekörper-Setups mit
dem integrierten KEYENCE-Messsystem für einen ausgewählten Zug- und Druckversuch
dargestellt. An dieser Stelle sei darauf hingewiesen, dass im Zug der minimale und im

Mess-Laptop

Auswertung
im Druckbereich

Auswertung
im Zugbereich

Probekörper-Setup

KEYENCE-Messsystem

Ausrichteinheit

Zwick/Roell Prüfmaschine

Kraftmessdose

Abb. 5.13 – Versuchsaufbau des Probekörper-Setups an einer elektromecha-
nischen Prüfmaschine mit integriertem KEYENCE-Messsystem: (oben) Zug-
versuch, (unten) Druckversuch

Druck der maximale Durchmesser zu bestimmen ist (siehe grüne Linie im Auswertebild-
schirm). Solche Restriktionen lassen sich aber durch vorgefertigte Funktionen innerhalb
der KEYENCE-Software realisieren. Für die Praxis wäre es jetzt denkbar, Hantelproben
aus dem Herstellungsprozess zu entnehmen, diese in die automatische Einspannvorrichtung
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5.3 Implementierung des Probekörper-Setups in den Industriealltag

zu implementieren und Materialeigenschaften mit dem KEYENCE-System zu messen. Da-
durch können wichtige Qualitätskontrollen auf Grundlage phänomenologischer Eigenschaf-
ten von Elastomeren durchgeführt werden. Als letztes soll überprüft werden, inwieweit sich
das Messsystem für dynamische Untersuchungen eignet. In der Abbildung 5.14 ist dazu
der Versuchsaufbau einer servo-hydraulischen Prüfmaschine mit dem Probekörper-Setup
und dem integrierten KEYENCE-Messsystem dargestellt. Die Untersuchungen haben da-

INSTRON Prüfmaschine Auswertebereich

Mess-Laptop

KEYENCE-Messsystem

Probekörper-Setup

Abb. 5.14 – Versuchsaufbau des Probekörper-Setups an einer servo-
hydraulischen Prüfmaschine mit integriertem KEYENCE-Messsystem

bei ergeben, dass bis zu einer Prüffrequenz von 10 Hz die Durchmesseränderungen sehr
präzise gemessen werden können. Erst bei höheren Prüffrequenzen ergeben sich Probleme
mit der Abtastrate. Abhilfe könnte hier ein Mikrometer mit vergrößertem Messbereich
schaffen, bei dem die Reduzierung des Auswertebereiches zu einer Erhöhung der Abta-
strate führt. Zusammenfassend kann gesagt werden, dass das Probekörper-Setup für die
Implementierung in den Industriealltag geeignet ist und gerade im Bereich der Material-
charakterisierung ganz neue Anwendungsmöglichkeiten eröffnet. Beispielsweise wäre gera-
de für Lebensdaueruntersuchungen das KEYENCE-Messsystem sehr vielversprechend, da
hier eine sehr effiziente Messdatenaufzeichnung möglich ist.
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6 Zusammenfassung und Ausblick

Elastomerwerkstoffe stellen in vielen technischen Bereichen, beispielsweise in Form von
Fahrwerksbuchsen, Dämpfern oder Dichtungen, wichtige Funktionselemente dar. Um grund-
legende Eigenschaften technischer Elastomere untersuchen zu können, werden Probekörper
benötigt. Die Qualität der Messergebnisse hängt dabei entscheidend von der Homogenität
des Messbereiches ab. Für die meisten Standardversuche kommt diesbezüglich eine Zug-
probe zum Einsatz (vgl. Brown 2006). Demgegenüber stellt aber gerade die Druckbelas-
tung für viele technische Bauteile eine wichtige Grundbeanspruchungsart dar. Bestehende
Probekörperkonzepte zeigen aber schon bei Stauchungen größer 30 % signifikante Abwei-
chungen gegenüber der homogenen Lösung (vgl. Alshuth u. a. 2007), welche zu erheblichen
Fehlern in der Materialcharakterisierung führen. Vor diesem Hintergrund bestand ein Ziel
dieser Arbeit in der Entwicklung eines verbesserten Zug-/Druckprobekörpers zur Realisie-
rung homogener Stauchungen. Neben dem einachsigen Zug-/Druckversuch stellt aber auch
die einfache Scherung eine weitere wichtige Grundbeanspruchungsart für technische Elas-
tomere dar. Aus diesem Grund erfolgte im Rahmen dieser Arbeit ebenfalls die Entwicklung
einer Schervorrichtung für Elastomermatten zur Realisierung präziser Schermessungen.

Ergebnisse dieser Arbeit

Entwicklung eines Probekörper-Setups für hochpräzise Zug-/Druckmessungen

Für die Entwicklung eines neuen verbesserten Zug-/Druckprobekörpers findet ein spezielles
Design der Halterungskonturen Anwendung. Mit Hilfe eines Berechnungsalgorithmus (vgl.
Naumann 2010), bei dem über einen vorgegebenen Eigenfrequenzverlauf in indirekter Wei-
se Einfluss auf die Homogenität und die Sicherheit gegenüber Knicken Bezug genommen
werden kann, lassen sich neue Halterungsgeometrien bestimmen. Mittels einer Formopti-
mierung konnte dabei die ideale Halterungskontur berechnet werden. Da bei Stauchungen
größer 50 % der Messbereich sehr limitiert ist, was eine Messung mit Extensometer in
axialer Richtung sehr schwierig macht, wurde im Weiteren eine neue Messstrategie für
extreme Stauchungen entwickelt. Über die Messung der Umfangsstreckung kann dabei auf
eine gemittelte axiale Dehnung geschlossenen werden. Experimentelle Voruntersuchungen
und Qualitätsprüfungen haben gezeigt, dass der Probekörper sich nahezu homogen defor-
mieren lässt und hochpräzise Messungen realisiert werden können. Mit dem entwickelten
Probekörper-Setup und der neuen Messstrategie lassen sich nun erstmalig Stauchungen
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bis 70 % realisieren und messen. Der Probekörper bietet dabei eine Vielzahl verschiede-
ner Anwendungsmöglichkeiten. Zum einen lassen sich phänomenologische Eigenschaften
von Elastomeren vorzugsweise bei großen Stauchungen untersuchen, zum anderen können
die nahezu homogenen Messdaten für Stoffgesetzanpassungen verwendet werden. Dadurch
können beispielsweise viskoelastoplastische Stoffgesetze wie das Morph-Modell (vgl. Ihle-
mann 2003) oder das Rabkin-Modell (vgl. Freund 2013) für einen wesentlich größeren
Anwendungsbereich zugänglich gemacht werden. Ein weiterer, ganz praktischer Aspekt
besteht darin, dass die Anzahl bestehender Probekörpertypen im Zug-/Druckbereich re-
duziert werden kann.

Entwicklung einer Schervorrichtung für flächige Elastomermatten zur
Realisierung präziser Schermessungen

Für die Entwicklung eines neuen Scherprobekörpers wurde auf eine stoffschlüssige Ver-
bindung mittels Anvulkanisieren oder Kleben aufgrund von Schrumpf oder Materialirri-
tationen verzichtet (vgl. Ballhorn 2007). Aus diesem Grund lag ein weiterer Schwerpunkt
dieser Arbeit in der Entwicklung eines geeigneten Lasteinleitungsdesigns für Elastomer-
matten zur Realisierung präziser Schermessungen. Als ein sehr vielversprechendes Design
stellte sich dabei die Fixierung der Elastomermatte mit dünnen Stahlstiften heraus, die
zu einer gleichmäßigen Einleitung der Scherdeformation über der Tiefe beitragen. Anhand
von numerischen Untersuchungen konnte gezeigt werden, dass das globale Fehler- und
Inhomogenitätsmaß deutlich niedriger ausfällt als bei bisherigen Schervorrichtungen für
Elastomermatten. Die experimentelle Versuchsdurchführung mit der neuen Schervorrich-
tung bestätigt dieses Ergebnis und ermöglicht nun ganz neue Anwendungsmöglichkeiten
im Bereich der Materialcharakterisierung. Außer der phänomenologischen Untersuchung
grundlegender Eigenschaften können nun auch Versuche mit gealterten oder faserverstärk-
ten Elastomermatten durchgeführt werden. Weiterhin wurde das Beulverhalten bei großen
Scherungen für verschiedene Mattendicken charakterisiert. Dabei zeigte sich eine gute
Übereinstimmung zwischen Simulation und Experiment. Mit Hilfe dieser Erkenntnisse
kann der Scherprobekörper in weiterführenden Arbeiten hinsichtlich Homogenität und Si-
cherheit gegenüber Beulen optimiert werden.

Phänomenologische Charakterisierung technischer Elastomere und
Stoffgesetzanpassungen

Mit den entwickelten homogenen Probekörpern für Zug-/Druck und Scherung lassen sich
viele wichtige Eigenschaften untersuchen, wie zum Beispiel: Payne-Effekt, Mullins-Effekt,
anisotrope Entfestigung, bleibende Verzerrungen, Relaxations- und Kriechverhalten für
technische Elastomere. In dieser Arbeit wurde weiterhin eine externe Sollwertsteuerung
für eine Zwick/Roell Zug-/Druckprüfmaschine entwickelt, mit der sämtliche nur denkbare
Funktionsverläufe im Rahmen der physikalischen Möglichkeiten der Maschine verfahren
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6 Zusammenfassung und Ausblick

werden können. Damit wurde ein Werkzeug zur Verfügung gestellt, mit dem das ratenab-
hängige Materialverhalten von technischen Elastomeren in sehr präziser Weise untersucht
werden konnte. Dabei zeigten sich sehr interessante geschwindigkeitsabhängige Effekte, die
für die Validierung ratenabhängiger Stoffgesetzformulierungen verwendet werden können
(vgl. Donner u. a. 2017). Im Weiteren wurde ein viskoelastoplastisches Stoffgesetz mit Zug-
/Druckdaten angepasst und eine Probekörpersimulation zur Abschätzung des Messfehlers
durchgeführt. Dabei stellte sich heraus, dass der Fehler zwischen Anpassung und Probe-
körpersimulation mit der neuen Messstrategie sehr gering ausfällt, was die hohe Güte des
Zug-/Druckprobekörpers bestätigt. Mit der Implementierung des Probekörper-Setups in
den Industriealltag findet die Entwicklung einen erfolgreichen Abschluss.

Ausblick

Lebensdaueruntersuchungen

Für den neu entwickelten Zug-/Druckprobekörper kann gezeigt werden, dass im Druck-
versuch die maximalen Spannungen im Messbereich auftreten. Eine Erklärung hierfür ist
das spezielle Design der Halterungskonturen, welches zu einer nahezu homogenen Bau-
teildeformation beiträgt. Diese Maximalbeanspruchung im Messbereich prädestiniert den
Zug-/Druckprobekörper in idealer Weise für Lebensdaueruntersuchungen. In einer ersten
Versuchsserie im Zugschwellbereich konnte mit dem neuen Probekörper-Setup bereits be-
stätigt werden, dass die maximale Schädigung (Rissentstehung und Wachstum) im Messbe-
reich auftritt. In weiterführenden Lebensdaueruntersuchungen soll der Probekörper für den
Wechselbereich und den Druckschwellbereich eingesetzt werden. Dieser erweiterte Mess-
bereich bietet insbesondere für die Entwicklung neuer Lebensdauerhypothesen vielfältige
Anwendungsmöglichkeiten. Beispielsweise wäre es denkbar, den Probekörper auf unter-
schiedliche Druckstufen anzufahren und dann mit einer kraftgesteuerten Belastung fort-
zufahren. Darauf aufbauend ergeben sich eine Reihe interessanter Fragestellungen, wie die
der Rissentstehung, der Rissausbreitung und der Versagensmechanismen im Druckbereich.
In der Veröffentlichung von Abraham u. a. (2001) finden sich Lebensdaueruntersuchungen
mit der bisherigen Standard-Hantel und der vorliegenden Halterung, allerdings nur für
den Zugbereich.

Alterungsuntersuchungen

Ein weiterer Anknüpfungspunkt für spätere Arbeiten könnte die Miniaturisierung des
Probekörper-Setups für homogene Alterungsuntersuchungen sein. Beispielsweise hätte ein
skalierter Zug-/Druckprobekörper den großen Vorteil, dass der Sauerstoff gleichmäßig in
das Innere des Probekörpers diffundieren kann und sich dadurch eine weniger inhomogen
gealterte Grenzschicht ausbildet. Im Anhang A.6 ist zur besseren Veranschaulichung das
Probekörper-Setup und ein weiteres, um den Faktor 5 skaliertes, dargestellt. Nach ver-
schiedenen Alterungsphasen könnten dann zyklische Druckversuche gefahren werden, um
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die Phänomenologie gealterter Elastomerproben zu charakterisieren. Diese Erkenntnisse
stellen eine wichtige Grundlage für die Weiterentwicklung bestehender Alterungsmodelle
von Elastomeren dar (vgl. Naumnann 2016). Neben den fertigungsbedingten Herausfor-
derungen ist der Einfluss von Imperfektionen vermutlich die größte Schwierigkeit. Hierbei
ist zu beachten, dass Störungen in Form von Materialinhomogenitäten oder Geometrieim-
perfektionen sich bei einer Miniaturisierung nicht mit skalieren. Demgegenüber wären
Lebensdaueruntersuchungen mit unterschiedlich skalierten Hantelproben sehr reizvoll, da
hier der Einfluss von Fehlstellen auf das Versagen untersucht werden könnte.

Untersuchung faserverstärkter Materialien

Die experimentelle Charakterisierung faserverstärkter Materialien anhand der entwickel-
ten Probekörper ist gleichfalls ein interessanter Aspekt. Beispielsweise wäre es denkbar
in der Vulkanisationsform des Hantelprobekörpers einzelne Garne bzw. Hybridcorde ein-
zubetten (Corde müssten zwischen den Hantelköpfen verspannt werden), bevor das Elas-
tomer eingespritzt wird. Damit könnten wichtige Untersuchungen im Zug-/Druckbereich
durchgeführt werden, um Materialkennwerte für Reifen und Luftfedern zu bestimmen (vgl.
Donner 2017). Eines der Hauptprobleme in der Modellierung faserverstärkter Strukturen
ist der große Steifigkeitsunterschied zwischen weichem Elastomer und steifem Hybridcord.
Das neu entwickelte Probekörper-Setup könnte hier signifikante Vorteile für experimentelle
Untersuchungen aufweisen. Mit der Schervorrichtung ließen sich dann weiterhin faserver-
stärkte Elastomermatten testen. Diese Ergebnisse könnten dann den Zug-/Druckversuchen
gegenübergestellt werden. Ein 3D DIC-Messsystem hätte hier den ganz praktischen Vor-
teil, dass der inhomogene Messbereich (Übergang zwischen Cord und Elastomer) sehr
präzise ausgewertet werden könnte.
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A Anhang
Anhang zur Optimierung der Probekörperlänge
In Abbildung A.1 und A.2 ist der Zielfunktionsverlauf für identische asymptotische Eigen-
frequenzvorgaben der unterschiedlichen Parameterkonstellationen dargestellt. Die Abbil-
dungen zeigen, dass eine Variation dieser Parameter zu keiner signifikanten Änderung des
Zielfunktionsverlaufes führt.
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Abb. A.1 – Darstellung der Zielfunktion f für identische asymptotische Eigen-
frequenzvorgaben l0 = 50 mm, Schnittpunkt ε = −0.4 (Simulationsergebnis)
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Abb. A.2 – Darstellung der Zielfunktion f für identische asymptotische Eigen-
frequenzvorgaben l0 = 55 mm, Schnittpunkt ε = −0.3 (Simulationsergebnis)
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Anhang zur Beuluntersuchung für den idealisierten Scherprobekörper
In Abbildung A.3 ist das Beulverhalten für den idealisierten Scherprobekörper bei einer
Winkelimperfektion von ϕ = 2.5◦ dargestellt.

Abb. A.3 – Darstellung der z-Verschiebung für den idealisierten Scherpro-
bekörper mit den Abmaßen: 10 × 100 × 2 bei einer Winkelimperfektion von
ϕ = 2.5◦

Anhang zur numerischen Entwicklung eines Scherprobekörpers mit
formschlüssiger Lasteinleitung
In Abbildung A.4 ist der neu entwickelte Scherprobekörper mit formschlüssiger Lastein-
leitung dargestellt.

Abb. A.4 – Darstellung des lokalen Fehlermaßes ηs für den neuen Scherpro-
bekörper mit den Abmaßen: 10×100×2 mit Pin-Durchmesser d = 0.5 mm bei
einer Scherbelastung von ux = 10 mm (Symmetrie in negativer z-Richtung)
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A Anhang

Anhang zur Untersuchung des ratenabhängigen Materialverhaltens von
Elastomeren
In Abbildung A.5 ist das Spannungs-Schermaßdiagramm für einen verzerrten Sinusver-
lauf (Sägezahnverlauf) zur Untersuchung des ratenabhängigen Materialverhaltens für den
einfachen Scherversuch dargestellt.
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Abb. A.5 – Spannungs-Schermaßantwort des verzerrten Sinusverlaufes (Säge-
zahnverlauf) für den einfachen Scherversuch (Messungen für gefüllten EPDM)

Anhang zur Miniaturisierung des Probekörper-Setups
In Abbildung A.6 ist die Miniaturisierung des Probekörper-Setups um den Faktor 5 für
homogene Alterungsuntersuchungen dargestellt.

-20 -10 0 10 20
-40

-30

-20

-10

0

10

20

30

40

Abb. A.6 – Miniaturisierung des Probekörper-Setups für homogene Alte-
rungsuntersuchungen (Simulationsergebnisse)
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