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Control Variables in Marketing Research
By Martin Klarmann and Sven Feurer

In empirical marketing research that does not
rely on fully randomized experiments, control
variables are an important tool to rule out rival
alternative explanations for the observed re-
lationships. Despite their importance for caus-
al inference, control variables often receive lit-
tle attention from either applied researchers
or methodologists. At the same time, over-
views of control variable practices in neigh-
boring disciplines demonstrate that research-
ers struggle with selecting, analyzing, and in-
terpreting control variable results. In re-
sponse, this article combines a synthesis of
the theoretical knowledge on control vari-
ables with a review of control variable prac-
tices. Against this background, we develop
and discuss sixteen recommendations for
control variable use in marketing research.

1. Introduction

In recent years, marketing researchers have become pro-
gressively more interested in whether their empirical re-
sults can be interpreted causally. For instance, “Quantita-
tive models to understand causality, levers, and influ-
ences in a complex world” is one of the Marketing Sci-
ence Institute’s 2016–2018 top research priorities (Mar-

keting Science Institute 2016). Marketing is not alone in
this quest: “In many scientific fields such as economics,
psychology, education, and environmental science, sta-
tistical models are used almost exclusively for causal ex-
planation” (Shmueli 2010, p. 289). In this vein, major
textbooks on causal inference have been published re-
cently, covering the social sciences in general (Morgan
and Winship 2015), economics (Angrist and Prischke
2015; Imbens and Rubin 2015), and epidemiology (Van-
derWeele 2015). For marketing, causal inference is par-
ticularly important, because researchers are asked to
come up with “actionable implications that would cap-
ture the attention of the practitioner community” (Kumar
2016, p. 6). The causal statement “Action A leads to out-
come B” is more actionable than the correlational state-
ment “Action A is positively related to outcome B.”

The benchmark for causal inference is the randomized
experiment (Koschate-Fischer and Schandelmeier 2014).
However, in many important research fields in marketing
– including marketing strategy, B2B marketing, sales,
and marketing-mix modeling – conducting experiments
is typically not feasible. Consider, for instance, organiza-
tional downsizing (e. g., Habel and Klarmann 2015;
Homburg et al. 2012b). Researchers obviously cannot
randomly assign firms to conditions such that firms in
one condition must lay off employees, whereas firms in
the other condition must not. Hence, researchers in these
fields turn to next best alternatives, such as examining
survey data, archival data, data from social media, and
data from quasi-experiments.

In all these settings, control variables are an important
tool for researchers to meet one criterion for causal infer-
ence (of many): the exclusion of alternative explanations
for the observed relationship. The idea is that by adding
control variables to the model, hypothesized effects are
estimated at constant levels of the control variables. If
hypothesized relationships still hold after adding the con-
trols, alternative causal explanations involving the con-
trol variables can be ruled out. Reversely, if alternative
explanations are not accounted for in the model, the anal-
ysis suffers from “omitted variable bias” or “endogenei-
ty” (Ebbes et al. 2017).

Hence, theoretically, the case for including control vari-
ables to improve causal interpretability is straightfor-
ward. However, from a practical perspective little seems
to be clear. As Carlson and Wu (2012, p. 414) note, is-
sues surrounding control variables “may not be widely
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understood or are systematically ignored by authors and
reviewers.” A number of recent studies (mostly in orga-
nizational behavior) seeking to improve researchers’
control variable use list several practical uncertainties
(e. g., Atinc et al. 2012; Bernerth and Aguinis 2016;
Spector and Brannick 2011). Additionally, in their much-
cited study on false positive psychology, Simmons et al.
(2011) identify control variable selection as an aspect of
„researcher degrees of freedom.” As which control vari-
ables need to be included is often unclear, researchers
may play around with different sets of control variables
until they receive the results they like – a practice some-
times referred to as “p-hacking” (Simonsohn et al. 2014,
p. 670).

Against this backdrop, our goal is to develop recommen-
dations for good control variable use in marketing re-
search. Instead of relegating control variables to a short
paragraph – the usual treatment in empirical studies and
textbooks – we make control variables the focus of our
paper. The paper’s primary contribution lies in combin-
ing formal analysis with a discussion of practical issues
surrounding control variable use. A formalized and nor-
mative discussion of control variables can often be found
in textbooks on econometrics, but practical concerns are
rarely addressed. At the same time, review studies of
control variable use in empirical research practice typi-
cally take a more descriptive empirical approach.

The principal field of application of our paper is cross-
sectional survey research, where claims about causality
are most difficult (Bono and McNamara 2011; Sande and
Ghosh 2018). However, many of our recommendations
generalize to other forms of data, some even to random-
ized experiments. Moreover, while our paper analyzes
the problem from the perspective of OLS regression,
many findings generalize to other multivariate methods,
particularly analysis of (co-)variance and maximum-like-
lihood estimation of structural equation models.

To achieve our goal, we begin by adopting a theoretical
stance. Drawing on econometrics and causal graph anal-
ysis, we analyze what control variables can and cannot
accomplish. Subsequently, we review the relevant litera-
ture on current control variable practice in the social sci-
ences. This review guides us in identifying applied issues
in control variable use. Finally, we derive recommenda-
tions for good control variable use in marketing research.

2. Control variable theory

From a theoretical perspective, two motivations support
adding variables to an empirical model that are not di-
rectly evoked by the hypotheses of the researchers. First
and foremost, including control variables allows for an
improved causal interpretability of the estimated coeffi-
cients. Theorists on causal inference typically list several
criteria for a causal interpretation of observed relation-
ships. Drawing on a synthesis of the literature, Edwards

and Bagozzi (2000) define four: (1) cause and effect
must be distinct phenomena, (2) cause and effect must be
associated, (3) the cause must precede the effect in time,
and (4) alternative causal explanations of the observed
relationship must be ruled out. Control variables are used
to meet the fourth criterion. They capture rival causal ex-
planations for a study’s focal relationships.

As an illustrative application of control variables, con-
sider the study of Germann et al. (2015). The authors are
interested in whether firms with a chief marketing officer
(CMO) outperform firms without this officer. However,
having a strong corporate brand quite possibly increases
both the probability of having a CMO and the firm’s per-
formance. A strong brand could therefore imply a posi-
tive correlation between CMO presence and perfor-
mance, without any causal link. As a response, Germann
et al. (2015) include “corporate branding” as a control
variable (along with many others). They still find a sig-
nificant effect of CMO presence on firm performance,
and conclude that “the chief marketing officer matters!”

While this paper is mostly interested in how this first mo-
tivation extends to improving the interpretability of main
effects of the independent variable x on a dependent vari-
able y, several related applications are worth noting. Im-
portantly, a well-established practice in applied market-
ing research is the inclusion of the simple effect of a
moderator variable in a model that involves an interac-
tion between moderator and independent variable. Other-
wise, the effect of the interaction term may wrongfully
capture the effect of the component that is omitted (e. g.,
Irwin and McClelland 2001). Moreover, the general log-
ic behind the use of control variables also extends to var-
iables that are included in a model to justify the missing-
at-random assumption some approaches require for deal-
ing with missing data (Thoemmes and Rose 2014).

Of note is that this causal logic extends only to research
that aims to explain (vs. predict) why certain phenomena
are linked (Shmueli 2010). In predictive applications
(such as many machine learning tasks; Hofman et al.
2017), this reasoning does not apply.

The second motivation for using control variables is to
improve the precision of the estimated coefficients. The
additional variables in the model are thought to be im-
portant explanatory variables for the dependent variable
while being uncorrelated with the hypothesized indepen-
dent variables. Their inclusion in the model explains sta-
tistical noise in the dependent variable, increasing the
precision of the estimated coefficients of the hypothe-
sized effects.

In applied marketing research, these additional variables
are typically referred to as “control variables,” “con-
founding variables,” and “covariates.” Sometimes they
are also referred to as “nuisance variables” (Kirk 1995),
„disturbers” (Steyer and Schmitt 1994), and “concomi-
tant variables” (Pratt and Schlaifer 1988). Strictly speak-
ing, the term “control variables” seems appropriate only
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for variables added for the first reason. However, applied
research is flexible in this regard, and so are we.

In the following two subsections, we formally analyze
these two motivations that are driving control variable
use in marketing research. As marketing researchers put
more emphasis on the causal meaning of their claims
than on the precision of estimated effect sizes, the first
subsection is more detailed.

2.1. Control variables to improve the causal
interpretability of results

2.1.1. Econometric analysis of omitted variable bias

A good way of looking formally at this motivation be-
hind control variable use is to analyze how well regres-
sion coefficients recover true causal relationships. We
follow the approach that is presented in Cameron (2006).
We assume that a researcher is interested in the causal ef-
fect β of an independent variable x on the dependent var-
iable y. The true causal model (often also referred to as
„data-generating process”) linking x to y is

y = α + βx + ε (1)

where α is the expected value for y if x is zero and ε are
the residuals that capture the variation in y that x does
not explain. The bivariate regression model that is actu-
ally analyzed is

y = a + bx + e with the OLS estimate (2)

b =
Cov(x,y)
Var(x)

(3)

Notably, ε in (1) is a disturbance term, and e in equation
(2) is a residual term. Conceptually, both are quite differ-
ent. In particular, by construction, e is uncorrelated with
x after OLS estimation. Hence, it becomes important to
see to what extent b recovers the true effect β . For that
purpose, we can insert (1) into (3), leading to:

b =
Cov(x,α + βx + ε )

Var(x)
=

Cov(x,α ) + Cov(x,βx) + Cov(x,ε )
Var(x) (4)

As α is a constant, Cov(x,α ) = 0. Moreover, Cov(x,βx)
= βVar(x). Hence, (4) becomes:

b = β +
Cov(x,ε )

Var(x)
(5)

Hence, β recovers the true effect of x on y only if
Cov(x,ε ) = 0. This is the well-known exogeneity as-
sumption of OLS regression (e. g., Ebbes et al. 2017).
Importantly, it is practically impossible to test whether
this assumption is violated without making other untest-
able assumptions about the data-generating process.

Omitting variables that are linked to both x and y („com-
mon causes”) from the regression creates a situation in
which Cov(x,ε ) ≠ 0. It needs to be emphasized that omit-
ted variables are not the only reason for endogeneity. Eb-
bes et al. (2017) discuss other potential reasons.

To better understand omitted variable bias (and the use of
control variables), we analyze how omitting a common
cause of y and z can create a non-zero covariance be-
tween x and ε (we are following Bollen 1989, pp. 45–
56).

Let us assume that a third variable z is the cause of x.
Moreover, in addition to x, z is also a cause of y. Hence,
we have:

y = α y + β 1x + β 2z + ε y and (6)

x = α x + γ z + ε x (7)

If we omit z from the model in (6), β 2z becomes part of
the disturbance term. That is, ε y,new = β 2z + ε y. If we as-
sume that Cov(z, ε y=0), then we also know from (7) that
Cov(x,z) = γVar(z). Hence,

Cov(x,ε y,new) = Cov(x,β 2z) + Cov(x,ε y)
= β 2γVar(z) + Cov(x,ε y) ≠ 0i

= α x + γzi + ε x,i

(8)

In other words, if we omit z from the regression and just
estimate (2), b will not recover the true effect β 1. Instead,
b will be biased:

b = β 1 + β 2γ Var(z)
Var(x)

(9)

Equation (9) has a number of important implications for
how omitted variables can create bias. In particular, b
captures multiple effects, not only β 1. This effect can
create situations in which b is substantial, even if β 1 = 0.
At the same time, if β 2 < 0 and β 1 > 0 (or vice versa), b
could be estimated as zero, even if x has a causal effect.
Possibly, including a variable may even change the sign
of b, a phenomenon that has received quite a bit of atten-
tion as “Simpson’s paradox” (e. g., Pearl 2014). In short,
we can no longer rely on b if we omit z.

As (9) shows, the bias will disappear under only two
conditions. First, if z is unrelated to y, then β 2 = 0 and no
bias is present. Omitting covariates of x that are unrelat-
ed to y will not bias the estimate for the effect of x on y.
Intuitively, this is clear: A variable that does not affect y
cannot be an alternative explanation for any observed re-
lationship between x and y. This condition has implica-
tions for the control variable selection process: Only var-
iables that can plausibly affect y should be included as
controls.

Second, if z is unrelated to x, then γ = 0 and no bias is
present. In other words, omitting variables that are unre-
lated to x will not bias the estimate for the effect of x on
y. Again, this circumstance has implications for the con-
trol variable selection process. Only variables that can
plausibly affect x should be included as controls.

2.1.2. Econometric motivation of control variable use

The purpose of using control variables is to remove the
bias shown in (9) by including z in the model that is ana-
lyzed. When we add z to the analyzed model, the bias in
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b (then: b1) disappears. The model that is analyzed in this
case is:

y = a + b1x + b2z + e with the OLS estimate (10)

b1 =
sy

sx

ryx – ryzrxz

1 – rxz
2 (11)

(Eid et al. 2010, p. 608)

To simplify the analysis, we look at the case where
Var(x) = Var(z) = Var(y) = 1. The formulas are then less
complex, but the implications of control variable use do
not change.

We continue to assume Cov(z, ε y=0), implying that
rxz=γ . By substituting y in (11) with (6) and by substitut-
ing rxz with γ we get:

b1 =
β 1 + β 2γ + Cov(x,ε y) – (β 2 + β 1γ + Cov(z,ε y))γ

1 – γ 2

= β 1 +
Cov(x,ε y)

1 – γ 2 –
γCov(z,ε y)

1 – γ 2 (12)

Thus, by including z in the regression of y on x, b1 is un-
biased. This basic motivation underlies the use of control
variables to improve the causal interpretability of param-
eters.

Three assumptions need to be addressed. To get b1=β 1,
the first assumption that is needed is (Cov(x,ε y) = 0).
Thus, when controlling for z, x needs to be exogenous
to y. This requirement may be violated if there are other
omitted variables or if other sources of endogeneity are
present (e. g., reverse causality). The second assumption
is that (Cov(z,ε y) = 0). Hence, z needs to be exogenous
to y so that b1 estimates β 1. This assumption has more
important implications for control variable selection. It
means that common causes of x and y included in the
model need to be “last” in the sense that no other phe-
nomena cause z and y. Also, a reciprocal relationship
must not exist between y and the common causes.

A third assumption that we made before deriving these
results is that z is exogenous to x (Cov(z,ε x) = 0). How-
ever, this assumption can be relaxed somewhat. If omit-
ted common causes of z and x cause z and ε x to covary,
of sole importance is that the covariance between z and x
captures all variation in x explained by the external cause
that also causes the control variable. Thus, if a common
cause explains both x and z, then Cov(z,ε x) ≠ 0 is im-
plied. While γ will be biased as an estimate for the causal
effect of z on x, b1 will still be unbiased. (We return to
this issue in subsection 2.1.6 when describing causal path
analysis as a tool to identify suitable controls.)

However, if Cov(z,ε x) ≠ 0 owing to other forms of endo-
geneity, this is a problem. Of particular importance is
that Cov(z,x) does not capture any causal influence of x
on z. This issue has received some attention in the litera-
ture in the form of a distinction between pre-treatment
control variables and post-treatment control variables
(e. g., Angrist and Prischke 2015, pp. 214–217; Gelman
and Hill 2007, pp. 188–190). The idea is that to aid caus-

al inference, control variables need to be measured
before x. Otherwise they could be affected by x. This
measurement is particularly important for experiments,
where – in principle – all controls should be measured
before the treatment.

2.1.3. Consequences of measurement error in control
variables

As will become evident in section 3, control variables
used in applied empirical business research do not al-
ways meet the requirements we have laid out. Moreover,
researchers often exercise less care in measuring control
variables reliably than they do in measuring their focal
variables. In this subsection, we are interested in the ex-
tent to which the presence of random measurement error
in control variables constitutes a problem. Systematic
measurement error in control variables is of lesser inter-
est – not because the consequences are less problematic
(they are not), but because the presence of systematic
measurement error clearly results in an unpredictable bi-
as such that any attempts to infer causality will fail
(Homburg et al. 2012c).

For the following analysis in the tradition of the classical
true score model, we assume that z (but not x) is mea-
sured with error. The degree to which z is free of mea-
surement error is typically referred to as reliability ρ zz’,
which is defined as (e. g., McDonald 1999, p. 65):

ρ zz� =
Var(ξ )
Var(z)

(13)

Now, z is the observed variable that measures the true
common cause of x and y: ξ . In particular, z measures ξ
with random error δ that we assume has a mean of zero
and is random in the sense that it is not linked to any phe-
nomenon of interest in the context of the study ( ` δ
= Cov(δ ,ξ ) = Cov(δ ,x) = Cov(δ ,y) = Cov(δ ,ε y) =
Cov(δ ,ε x) = 0).

Further, ρ zz’ indicates the percentage of variance of z that
is attributable to the true value ξ . It can be simply
thought of as the composite reliability (e. g., Cronbach
α ; Homburg and Giering 1997) of the control variable. If
the control is measured using only one item, then ρ zz’ is
similar to what is typically referred to as indicator reli-
ability (e. g., Klarmann and Homburg 2018).

To understand how the less-than-perfect reliability of the
control affects the estimation of the effect of x (!) on y,
we continue to look at the case in which all variables in-
volved have a standard deviation of 1. If ξ , δ , and z are
to have a standard deviation of 1, this implies:

z = ρ zz�ξ + (1 – ρ zz�)δ z (14)

As a result, the correlation between x and z becomes:

rxz = Cov(α x + γξ + ε x, ρ zz�ξ + 1 – ρ zz�δ z) = γ ρ zz� (15)

This result is, of course, the classical measurement atten-
uation result (e. g., Bollen 1989, p. 157): Random mea-
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surement error leads to correlations between observed
variables that are smaller than the true correlations. Of
importance is that measuring the control variable with er-
ror will also affect the estimate for the effect of x on y –
even if both variables are not measured with error. In par-
ticular, by entering (14) and (15) into (12), we get:

b1 =
β 1 + β 2γ + Cov(x,ε y) – (β 2 ρ zz� + β 1 ρ zz�γ + ρ zz�Cov(z,ε y)) ρ zz�γ

1 – ρ zz�γ 2

= β 1 +
1 – ρ zz�

1 – ρ zz�γ 2 β 2γ +
Cov(x,ε y)

1 – ρ zz�γ 2 –
ρ zz�γCov(z,ε y)

1 – ρ zz�γ 2
(16)

This result shows that b1 will be a biased estimate of the
causal effect of x on y if the control z measures ξ with er-
ror. We cannot say whether the bias is positive or nega-
tive, as the direction depends on the causal pattern that is
confounded (i. e., β 2γ ). However, the bias is largest
when ρ = 0, whereas the bias disappears when ρ = 1.
Hence, only control variables that are measured well will
improve the causal interpretability of results. It is worth
noting that measurement error in z will also attenuate the
estimated relationship between z and y.

2.1.4. Control variables and statistical testing

In most marketing research, the main interest does not lie
in the parameter estimates as such, but in their statistical
significance. Therefore, in this subsection we analyze
how the common t-test for regression coefficients is af-
fected if a common cause of x and y is omitted from the
regression model. We do so without considering mea-
surement error.

The starting point for hypothesis testing is the precision
of the parameter estimates, measured through the stan-
dard error. In the bivariate case (and under the assump-
tion of normal errors and homoskedastaticity), the stan-
dard error is defined as (e. g., Cameron 2006):

s.e.b =
Var(e)

(n – 1)Var(x)
. (17)

As Var(x) will not be affected by endogeneity, the ques-
tion is whether endogeneity affects the residual variance
Var(ε ). The residual variance is that part of the variance
of y that is not explained by the regression equation. This
is Var(ε ) in the true bivariate model linking x to y:

Var(y) = Var(α + β 1x + ε )

Var(y) = β 1
2 Var(x) + Var(ε ) + 2β 1Cov(x,ε ) (18)

Var(ε ) = Var(y) – β 1
2 Var(x) – 2β 1β 2γVar(z)

With regard to OLS estimates, we know b from equation
(9) when there is an omitted common cause. With that
knowledge we can derive how Var(e) and Var(ε ) are re-
lated:

Var(y) = Var(a + bx + e)

Var(y) = b2Var(x) + Var(e)

Var(ey) = Var(y) –


β 1 + β 2γ Var(z)

Var(x)



2

Var(x)

Var(e) = Var(y) – β 1
2 Var(x) – 2β 1β 2γVar(z)

– β 2
2 γ 2Var(z)2

Var(x)

(19)

Var(e) = Var(ε ) – β 2
2 γ 2Var(z)2

Var(x)

From (19), we can see that the estimated residual vari-
ance in the model without the control variable will al-
ways be smaller than what it should be (Ebbes et al.
2017, p. 5). This result is to be expected. Since OLS min-
imizes residual variance by design, any solution that dif-
fers from the OLS solution must have a larger residual
variance. Consequently, standard errors with omitted
variables will be too small.

However, how the smaller standard errors affect hypoth-
esis testing in total is unclear. In particular, the common
t-test statistic to test hypotheses of the type H0: b = 0
with H1: b ≠ 0 is defined as t = b/(s.e.b). While the de-
nominator will be too small, whether the numerator is
smaller or larger than it should be will depend on the di-
rection of the bias. As a result, we can only learn that
null-hypothesis-significance testing can no longer be
trusted for causal effects if common causes are omitted
from the model.

2.1.5. Dealing with unobserved common causes

In everyday marketing research, situations often arise
where the common cause is unobserved – that is, re-
searchers do not have access to any measure of it. Impor-
tantly, common causes cannot be unobservable per se. In
fact, any discussion of phenomena that cannot be mea-
sured at least in principle is meaningless (e. g., Carnap
1931).

Hence, in this section we consider cases where the con-
text prevents researchers from having data on the re-
quired control variable. These situations mainly arise
when researchers are using secondary data for their re-
search, such as archival data or data collected through
web crawlers. These situations are less likely to occur
when researchers collect data themselves, particularly in
survey research (or in experiments where randomization
is expected to be incomplete). However, even in these
contexts, reviewers may ask that the model include an
additional causal control that was not included in the
questionnaire. In this case, the methods presented here
are helpful.

Quite a number of approaches to deal with unobserved
common causes have been identified in the literature. We
provide an overview of four approaches that we perceive
to be especially relevant:

) Instrumental variables

) Fixed-effects regression

) Partitioning the distribution of error variance

) Sensitivity analysis.

The use of instrumental variables may be the most estab-
lished approach when no data is available on the required
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control variable. Briefly, instead of regressing x on y, an-
other variable – called the “instrument” – is regressed on
y (for more extensive explanations, see Ebbes et al. 2017
and Morgan and Winship 2015). If this instrument is
strongly correlated with x (relevance condition), but at
the same time uncorrelated with z (exogeneity condi-
tion), the causal effect of x on y can be estimated accu-
rately.

An important limitation of instrumental variable tech-
niques is that whether the instrument is correlated with
the omitted variable cannot be tested. Instead, it needs to
be argued that this is the case, which may create some
ambiguity. Moreover, many potentially exogenous in-
struments in marketing are not relevant (Rossi 2014),
which leads to effect estimates and standard errors – nei-
ther of which can be trusted. In fact, if instruments are
„only weakly correlated” with x and they are “even
slightly endogenous,” then estimates based on these in-
struments “are more biased and more likely to provide
the wrong statistical inference than simple OLS esti-
mates that make no correction for endogeneity” (Larcker
and Rusticus 2010, p. 187). As a consequence, good in-
struments are not easy to identify.

Approaches that partition the distribution of the error
variance of x are unique in the sense that they do not re-
quire variables beyond x and y to analyze and control for
endogeneity (for overviews, see Ebbes et al. 2009 and
Park and Gupta 2012). The general (and simplified) idea
behind these approaches is that assumptions are possible
about the distribution of the regression residuals in the
true model (e. g., that they are normally distributed and/
or homoskedastic). If a distribution is observed that dif-
fers from the assumed distribution, the difference is at-
tributed to endogeneity. In turn, estimating the degree of
endogeneity and accounting for it in estimating the rela-
tionship between x and y become possible – using tech-
niques such as copulas (Park and Gupta 2012), higher
moments (Erickson and Whited 2002), or latent instru-
mental variables (Ebbes et al. 2005).

For marketing researchers, these approaches are quite
helpful in dealing with unobserved common causes.
However, they do require a certain maturity of the field
in that they replace the exogeneity assumption with an
untestable assumption about the distribution of the true
model residuals.

Fixed effects regression can be used with panel data –
that is, data that include observations at multiple points
in time for each case in the sample. This methodological
staple from econometrics (e. g., Cameron and Trivedi
2005) allows researchers to separate different compo-
nents of the error term. In particular, in fixed effects re-
gression a case-specific error component is estimated.
This error component will reflect the effect of all com-
mon causes to x and y that are left out of the model and
(importantly) that are constant over time. Variables that
are not constant over time still need to be included as
control variables.

The purpose of sensitivity analysis is to be able to make
statements about what types of omitted variables would
alter the results of an analysis. That is, instead of trying
to correct an estimated coefficient for an unobserved var-
iable that is potentially a common cause of x and y, “one
can determine what patterns of correlations result in esti-
mates of this coefficient that are substantially different
from the estimate originally obtained” (Mauro 1990, p.
317).

Mauro (1990) proposes an analytical approach, by which
researchers determine at which point the correlations be-
tween x and z and between y and z are too substantial for
the results to hold. With this approach, researchers need
to provide extensive contingency tables that show the
sensitivity analysis. Frank (2000) and Pan and Frank
(2003) seek to lessen this complexity by reducing the
sensitivity analysis to a single measure, namely the prod-
uct of rxz and ryz. Their idea is to determine at which mag-
nitude of rxz × ryz results change. Smaller values indicate
less robustness to an unobserved omitted cause. Vander-
Weele (2015, pp. 66–97) extensively discusses methods
that operationalize sensitivity as differences in the out-
come variable.

In sum, quite a few promising approaches exist for deal-
ing with situations in which researchers cannot directly
observe common causes of x and y. Importantly, these
approaches cannot outperform control variables that are
validly measured. If data on a potential common cause
are available, their inclusion in the model is preferable to
all of these methods. Otherwise, these methods can be
quite helpful. Given their limitations, they are particular-
ly effective when combined. For instance, Papies et al.
(2016) suggest that instrumental variable-free ap-
proaches using the partition of the distribution of error
variance can well complement the instrumental variable
approach to check the robustness of the findings.

2.1.6. The backdoor criterion

While the previous sections followed the dominant meth-
odological paradigm of econometric analysis, require-
ments for control variables have also been formally de-
rived under a different paradigm: causal graph analysis
(Pearl 2009). Although related to structural equation
modeling (Bollen and Pearl 2013), causal graph analysis
completely separates estimation from identification (El-
wert and Winship 2014). That is, the starting point is not
an estimation method (like OLS in section 2.1.1). In-
stead, a more general understanding of causal identifica-
tion is used: A causal effect is identified if this effect can
be detected at all, given a sufficiently large dataset (Mor-
gan and Winship 2015, p. 78). Causal graph analysis also
does not require any idea about the functional form of the
investigated relationships.

Causal graph analysis proceeds by analyzing the proper-
ties for “directed acyclic graphs” (Morgan and Winship
2015 provide an accessible introduction). Such graphs
(Fig. 1 shows examples) consist of nodes (the variables,
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Fig. 1: Illustrations of Identifi-
cation Analysis Using Causal
Graphs

visualized as dots) and edges (the relationships, visual-
ized as arrows). In causal graph analysis only directed
graphs are considered. That is, one variable is always
„the parent” of an effect (i. e., the origin), and another
variable is the “descendant.” Using arrows to represent
the edges, the direction of these effects is made clear,
with the arrow pointing from the parent to the descen-
dant. The graphs considered are also acyclic, as one vari-
able cannot be its own parent, either directly or indirect-
ly. Additionally – given this tool’s background in artifi-
cial intelligence research – a number of technical as-
sumptions underlie these graphs (Pearl 2009), but can be
ignored for the purposes of this paper.

A key result of this far-reaching research paradigm (ac-
cording to Google Scholar, Pearl 2009 has been cited
over 10,000 times so far) is the “backdoor criterion” to
determine whether a causal effect is identified. Impor-
tantly, this criterion requires that researchers map out the
entire nomological network of their research field in a
causal graph like those shown in Fig. 1. This graph then
allows identification of the required control variables.
Specifically, the backdoor criterion is defined as follows:
„Given an ordered pair of variables (X,Y) in a directed
acyclic graph G, a set of variables Z satisfies the back-
door criterion relative to (X,Y) if no node in Z is a de-
scendant of X, and Z blocks every path between X and Y
that contains an arrow into X” (Pearl et al. 2016, p. 61).

Note that this criterion considers all possible paths from
x to y, even if some edges in the graph in this path con-
tain arrows pointing in the other direction. As in our
econometric analysis in section 2.1.2, it is easy to verify
that including z in the model in the first panel in Fig. 1
satisfies the backdoor criterion. If z is included, every

backdoor path between x and y is blocked, implying that
by controlling for z, the causal effect of x on y is identi-
fied. In the second panel, the causal effect is identified if
we control for z1, z2, or both. The third panel describes a
situation discussed earlier: z2 blocks all paths between x
and y, even if it has a common cause with x that is not in-
cluded in the model.

The model in the fourth panel is more complicated but is
important, because it shows the classical mediation mod-
el (e. g., Zhao et al. 2010). The mediator m is a descen-
dant of x. Hence, according to the backdoor criterion,
controlling for m will no longer causally identify the di-
rect effect of x on y. The reason is that m might share
common causes with y that may in turn also influence the
relationship between x and y in this model. This also mo-
tivates the advice discussed above not to control for post-
treatment variables. Elwert and Winship (2014, pp. 44–
45) provide an extensive discussion of this issue. To close
all backdoor paths in the fourth panel, z also needs to be
included as a control. Importantly, this requirement ex-
tends to experimental research, where only x is random-
ized, but not m (Pieters 2017 synthesizes the literature).

The model in the fifth panel of Fig. 1 highlights the prob-
lem created by including control variables that them-
selves share common causes with y (see Morgan and
Winship 2015, p. 110 for a more extensive discussion).
In the example, this control variable is z3. The causal ef-
fect of x on y is not identified if only z3 is a control. Ac-
cording to the backdoor criterion, in this situation three
sets of control variables identify the causal effect (Pearl
et al. 2016, p. 61): {z1,z3},{z1,z2,z3}, and {z2,z3}.

Using the backdoor criterion to identify a set of control
variables in applied marketing research projects will, of
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course, not be as straightforward as the examples in
Fig. 1, as the relevant nomological networks are likely to
be much more complicated. In this context identifying
the relevant control variables also becomes much more
complex. However, software approaches such as DAGit-
ty are available to analyze graphs (Textor, Hard, and
Knüppel 2011).

While applied researchers in particular will regularly
lack knowledge of the causal graph required for this task,
causal graph analysis can still be very helpful in applied
marketing research. First, it clearly separates identifica-
tion analysis (conceptual work) from model estimation
(statistical work). As we state numerous times through-
out this paper, a best practice in control variable use is to
address control variable selection in the conceptual part
of a manuscript. Second, causal graph analysis clarifies
situations in which control variables increase bias instead
of reducing it (e. g., Elwert and Winship 2014, p. 36). In
particular, controlling for outcomes of x or variables that
are outcomes of x and y („colliders”) will make causal
inference more difficult, not easier.

2.2. Control variables for improving the precision
of estimated effects

In addition to including control variables in a model to
improve the causal interpretability, adding variables to a
model that are not evoked by the hypotheses can be done
for a second plausible reason: to increase the precision of
estimated effects – that is, to reduce the variability of es-
timates by decreasing their standard errors. This goal can
be achieved by adding variables to the model that are
causes of y, but not of x.

As we have seen before, adding these variables to the
model will not affect the estimate of the effects, at least
in larger samples. In small samples, despite x and y being
uncorrelated in theory, sampling error might make them
slightly correlated, which implies some effect on β 1. Im-
bens and Rubin (2015, pp. 122–125) provide a detailed
discussion of this matter. The reduction of the standard
error can be easily verified by looking at the formula for
the standard error in a regression model with two inde-
pendent variables, x and z. In such a model, the standard
error of β 1 is (Cohen et al. 2003, p. 86):

s.e.β 1
=

Var(y)

Var(x)

1
1 – rxz

2

1 – Ry
2

n – 3
(20)

Importantly, (20) makes evident that the standard error is
linked to the R2 of y – that is, the amount of variance in y
explained by x and z together. The higher the R2, the
smaller the standard error. Hence, by explaining more
variance in y, the estimate of β 1 becomes less variable
across samples. Intuitively, what is often referred to as
„statistical noise” is reduced in y, which makes easier the
estimation of the focal effect of x on y.

Equation (20) also makes evident that this increase in
precision will be at least partly lost if x and z are correlat-

ed. Then, the causal relationship and the causal status of
z become relevant again, to ensure that the results are
valid. Only if no correlation exists between x and z can
adding z to the model be motivated through increased
precision.

Since adding controls to improve precision requires un-
correlatedness, this approach is not surprisingly used
most often in research using randomized experiments. In
these experiments, x and z are uncorrelated by design (at
least they should be). A good example for this approach
is experimental research on consumers’ self-control and
indulgent consumption. Here, large shares in the vari-
ances of the outcomes of interest (e. g., the likelihood of
choosing an unhealthy over a healthy option; social con-
sequences of indulgence or restraint) are quite often ex-
plained simply by the participants’ gender and the extent
to which they are hungry at the time of the experimental
study, which is why gender and hunger are frequently in-
cluded as control variables (e. g., Haws and Winterich
2013; Lowe and Haws 2014).

3. Practical perspective and
recommendations

In this section, we review the descriptive empirical liter-
ature on the use of control variables. By combining in-
sights on applied behavior and the theoretical knowledge
from section 2, we derive recommendations for market-
ing researchers. Tab. 1, which is based on an analysis of
published articles in leading journals (mostly in the do-
main of organizational behavior), lists the studies that de-
scribe and discuss the correct use of control variables

Even though these studies differ in focus and provide
recommendations at different specificity, the authors’
opinions on what should be done generally converge.
Synthesis of the observations made in the review articles
mentioned above reveals much room for improvement
regarding control variable use in research practice.

In what follows, we extract from the literature key ques-
tions marketing researchers might ask themselves in
what we call the “control variable process,” and we sug-
gest when these questions should be addressed within the
general research process. Notably, in this framework,
control variable considerations start in the conceptualiza-
tion phase of research – but only after the research ques-
tion is finalized. This timing reflects what distinguishes
control variables from the focal variables in a frame-
work: They are not evoked by the research question it-
self.

The control variable process we propose has six steps
and is depicted in Fig. 2. The process starts with control
variable selection and ends with the interpretation of re-
search results. In the following, we go through these six
steps and discuss important questions that arise in this
phase. Wherever possible, we support our arguments by
providing descriptive statistics about actual control vari-
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Authors (Year) Journal Base Main contribution 

Becker (2005) Organizational 

Research Methods 

60 empirical articles published during 2000-2002 in the Academy 

of Management Journal, Journal of Applied Psychology, Journal 

of Management, and Strategic Management Journal

12 recommendations regarding the 

treatment of control variables 

Breaugh (2008) Human Resource 

Management

Review

59 empirical articles published during 2005-2006 in the Journal

of Applied Psychology and Personnel Psychology

Examples from the literature and 

discussion of the confusion that 

including control variables can cause 

Carlson and Wu (2012) Organizational 

Research Methods 

162 empirical articles published during 2007 in the Academy of 

Management Journal, Journal of Applied Psychology, and 

Strategic Management Journal

7 recommendations regarding the 

treatment of control variables  

Atinc et al. (2012) Organizational 

Research Methods 

812 empirical articles published during 2005-2009 in the 

Academy of Management Journal, Journal of Applied 

Psychology, Journal of Management, and Strategic Management 

Journal

Several specific recommendations for 

both authors and reviewers/editors 

Bernerth and Aguinis 

(2016) 

Personnel 

Psychology 

580 empirical articles published during 2003-2012 in the 

Academy of Management Journal, Administrative Science 

Quarterly, Journal of Applied Psychology, Journal of 

Management, and Personnel Psychology

Decision-making tree summarizing 

sequential steps in the process of 

selecting control variables 

Bernerth et al. (2018) Journal of 

Management

290 empirical articles published during 2003-2014 in the 

Academy of Management Journal, Administrative Science 

Quarterly, Group & Organization Management, Journal of 

Applied Psychology, Journal of Business and Psychology, Journal 

of Organizational Behavior, Journal of Management, The 

Leadership Quarterly, Organizational Behavior and Human 

Decision Processes, and Personnel Psychology

Detailed recommendations for 

justifying selected control variables

Research
Question

Conceptual
Framework

Hypotheses
Development

Data
Collection

Interpretation &
Discussion

Analysis

Selection

Role in
Hypotheses
Development

Choice of
Measurement

Reporting of
Measurement
Results

Interpretation &
Discussion

Control Variable Use Process

Reporting of
Structural
Results

Which and how
many control
variables should
we use?

Should we
integrate control
variables in the
hypotheses
development?

How should we
operationalize
control
variables?

To what extent
should we report
measurement
results for
control
variables?

Which model
specifications(s)
should we
report?

How should we
interpret and discuss
findings in the light
of control variables?

General Research Process

Tab. 1: Selection of Empirical Literature on Control Variable Use

Fig. 2: Important Questions
Arising in the Control Variable
Use Process

able use in research practice. In each section, we develop
specific recommendations, with a focus on feasibility
(e. g., regarding questionnaire length and the review pro-
cess). The recommendations are summarized in Tab. 2 at
the end of this paper.

3.1. Control variable selection

Atinc et al. (2012) find that in a sample of more than 800
management studies, almost one-fifth (18.2 %) of all
studies under investigation provide no rationale for the
inclusion of control variables. Only about half of the
studies (48 %) provide a sound theoretical reason or pri-
or empirical evidence. We have the impression that a
sample of empirical studies in marketing would lead to
similar results. However, consistent with previous rec-
ommendations (and in line with section 2 on control vari-
able theory), researchers should make a compelling case
– ideally based on logic and theory – for which control
variables need to be included (Spector and Brannick
2011).

In particular, we strongly recommend separating causal
identification from model estimation (in line with the lit-
erature presented in section 2.1.6). This recommendation

implies that in any research project aiming at causal in-
ference, control variable selection needs to be a key part
of the conceptualization phase. Consistent with Becker et
al. (2016), we recommend that control variables become
part of the conceptual model guiding the research.

We suggest that researchers sketch a comprehensive
causal graph around the focal variables. The result is a
graphic depiction of all potentially relevant variables and
their assumed interrelations based on considerations of
theory, prior empirical evidence, logic, and plausibility.
This causal graph allows the identification of all com-
mon causes, which if omitted would create bias in the ef-
fect of interest. The graph also makes possible the use of
the backdoor criterion for control variable selection. The
software DAGitty (Textor, Hard, and Knüppel 2011) al-
lows for an automated detection of correct sets of control
variables given a causal graph.

The applied problem, of course, is that in many research
projects – especially those seeking to uncover new phe-
nomena – important aspects of this causal graph may be
based not on sound knowledge but on guesswork. The
reviewers of control variable practice observe a tendency
to include too many rather than too few control variables.
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They attribute this tendency to researchers’ misconcep-
tions that the inclusion of control variables “purifies re-
sults,” is “playing it safe,” and leads to a more “conser-
vative” hypothesis testing (Bernerth and Aguinis 2016;
Carlson and Wu 2012; Meehl 1971; Spector and Bran-
nick 2011). This interpretation has led to the rule of
thumb specifying “when in doubt, leave them out,” stem-
ming from the fear that adding more and more control
variables may render the interpretation of results more
difficult (Becker et al. 2016; Carlson and Wu 2012). Our
view is that this advice might go a little too far. As dis-
cussed in section 2.1.1, excluding important controls
from the model creates more bias than including irrele-
vant ones – at least if these irrelevant variables are uncor-
related with x. This view is in line with Bernerth et al.
(2018), who conclude that when it comes to the inclusion
of control variables, not less is more, but “less of the
nontheoretical type is more” (p. 24). Of course, this con-
clusion implies that researchers need to be up to the task
of adequately interpreting and discussing the results (see
section 3.6).

We recommend basing control variable selection for im-
proving causal inference on the following selection crite-
ria:

) Completeness: All relevant common causes between x
and y should be controlled for.

) Cause of x: All control variables should plausibly af-
fect x.

) Cause of y: All control variables should plausibly af-
fect y.

) Exogeneity with regard to y: The relationship between
z and y should not potentially be explained by com-
mon causes of z and y. Otherwise, these variables also
need to be included as controls.

) No outcome of x: To causally identify a relationship
between x and y, control variables should not be
caused by x.

Every control variable should be introduced in a way that
explains how these five criteria are met. This require-
ment is consistent with advice in the literature to elabo-
rate on a theoretical rationale in a comprehensible man-
ner and allow the rationale the manuscript space it de-
serves (e. g., Becker 2005). Authors are also advised to
support their rationale by citing empirical evidence from
prior research (ideally from meta-analyses) and by in-
cluding a statement regarding the expected direction of
effect of the control variable (e. g., Becker 2005).

Against this backdrop, we suggest that authors explicitly
include the control variables in their theoretical model
and provide at least a short comprehensible justification
based on theory and empirical findings in the theoretical
or conceptual background section. This motivation
should also provide a clear definition of the control vari-
able. Homburg, Jensen, and Hahn’s (2012a) article
serves as a good example for this approach.

3.2. Control variables in hypotheses development

Control variables are rarely mentioned in the hypotheses
section, let alone in the formal hypotheses. This absence
is sometimes seen as problematic because the analyses
typically include control variables, creating the impres-
sion that a mismatch exists between the relationships that
are hypothesized and those that are actually tested. Con-
sequently, some commentators (e. g., Becker et al. 2016;
Spector and Bannick 2011) call for inclusion of control
variables in the hypotheses if they are included in the
analysis (e. g., “H1: Controlling for corporate branding,
CMO presence has a positive effect on firm perfor-
mance”).

However, as prior work suggests (Atinc et al. 2012; Ber-
nerth et al. 2018), this advice is presently only very rare-
ly followed by authors (3.6 % and < 1 %, respectively).
The reason is understandable. Most importantly, even
though control variables are added to the model to im-
prove causal inference, the relationship of interest is
most likely bivariate (the causal effect of x on y). That is,
isolating a causal relationship makes a multivariate anal-
ysis necessary, but the hypothesis is about the variables x
and y. Additionally, unconditionally following the advice
to acknowledge control variables will quickly lead to
very long and unreadable hypotheses if the set of con-
trols is larger than, say, three.

Therefore, we suggest that authors refrain from including
control variables in their hypotheses. Nevertheless, the
causal network surrounding the relationship of interest
should be evoked in the argument leading to the hypothe-
sis. Moreover, we suggest including a brief acknowl-
edgement at the beginning of the hypothesis develop-
ment section, stating that the bivariate character of the
hypotheses reflects the expected causal relationship are
only identified when holding the (previously introduced
and justified) control variables constant.

3.3. Control variable measurement

Researchers usually invest considerable time and effort
in ensuring that the focal variables are not only properly
defined and conceptualized but also reliably and validly
measured (Homburg and Giering 1996). Researchers
typically take less care about measurement issues when it
comes to control variables. As section 2.1.3 described, a
control variable that is measured unreliably will not
completely remove the bias from the relevant coefficient
(see also Bernerth and Aguinis 2016). Hence, researchers
should adopt the same high standard of measuring con-
trol variables as they adopt for their focal variables, espe-
cially using pretesting, multi-item scales, and – if possi-
ble – multiple informants (Homburg et al. 2012c).

Researchers are also advised not to use proxy control
variables (i. e., surrogates for other, meaningful control
variables, such as using firm size as a proxy for the de-
gree of formalization), as the relationship strength be-
tween the proxy control variable and the dependent vari-

Klarmann/Feurer, Control Variables in Marketing Research

MARKETING · ZFP · Issue 2 · 2. Quarter 2018 35

https://doi.org/10.15358/0344-1369-2018-2-26 - am 25.01.2026, 13:38:54. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.15358/0344-1369-2018-2-26
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


able often differs from the relationship strength between
the meaningful control variable and the dependent vari-
able to an unknown extent (Becker et al. 2016; Breaugh
2008). In fact, a proxy control variable may relate to oth-
er focal variables in a way that the more meaningful con-
trol variable does not, and hence, “control for a host of
unintended variables that have substantive effects that
the researcher does not wish to remove” (Becker et al.
2016, p. 161).

Last, while some authors may deem a reliable measure-
ment of control variables as unnecessary in the first
place, in other cases the reporting of which scales were
used to measure control variables may have fallen prey
to the researchers’ efforts to stick to the journal’s page
limits. In 10 % of all studies analyzed by Atinc et al.
(2012), no measurement information whatsoever was
provided for control variables.

We strongly agree with previous commentators that mea-
surement of control variables needs the same level of at-
tention as the measurement of focal variables and that
proxies should be avoided. Fortunately, measuring con-
trol variables with multi-item scales and reporting the ap-
propriate information about measurement adequacy
should be easily defensible in the review process. In-
stead, feasibility may be threatened by the length of the
questionnaire. Given the obvious adverse effects of an
overly long questionnaire on response rates and answer-
ing behavior (especially for busy managers), including a
multi-item measure for each control variable in a ques-
tionnaire is impractical. Diamantopoulos et al. (2012)
and Fuchs and Diamantopoulos (2009) clarify in which
cases single-item measures are sufficient, and we encour-
age authors to follow and cite their arguments. Whatever
the choice is, we agree with prior commentators (e. g.,
Becker 2005) that authors should make fully transparent
which scales were used.

3.4. Control variables and measurement reporting

Researchers’ scant attention to control variables also of-
ten becomes apparent in the inadequate reporting of mea-
surement results as far as they relate to control variables.
Researchers frequently seem to adopt a two-tier ap-
proach to reporting the psychometric properties of con-
trol variables and their impact on variables beyond the
focal variables. In 8 % of studies analyzed by Bernerth et
al. (2018), reliability indices of the control variable mea-
surements were not reported. Furthermore, in 10.5 % of
all studies analyzed by Atinc et al. (2012), control vari-
ables were not included in the correlation table, and in
13.7 % of all studies, descriptive statistics of control var-
iables were not reported.

The literature on best control variable practice is relative-
ly clear on this issue: “Control variables deserve as much
attention and respect as do independent and dependent
variables” (Becker 2005, p. 286). Specifically, research-
ers should report to the same level of detail as they do for
the focal variables – that is, report measurement informa-

tion, include control variables in correlation tables, and
present descriptive statistics (Becker et al. 2016).

We agree with literature proposing that authors should
apply the same care for control variables as for focal var-
iables when it comes to analysis and reporting. In line
with Atinc et al. (2012), we encourage researchers to
conduct confirmatory factor analysis for all control vari-
ables (if applicable), and report the resulting indices and
psychometric properties including indicator reliability,
composite reliability or Cronbach’s α , and average vari-
ance extracted (Homburg and Giering 1996). Control
variables should also be included in correlation/discrimi-
nant validity analyses (Fornell and Larcker 1981; Hense-
ler et al. 2015).

3.5. Control variables and results reporting

The proscription of two-tier reporting of results also per-
tains to the results of the multivariate analysis and the ac-
tual hypotheses testing. Becker (2005) correctly points
out that, from the reader’s perspective, control variables
could be focal variables in future studies, and without
full knowledge about which control variables were in-
cluded and what their effects are, replication studies are
not effective. The question remains as to which is the
„right” model specification to report in the results sec-
tion.

Prior commentators suggest that authors run and report
separate analyses and include results tables for different
models in which control variables are included and ex-
cluded to demonstrate the control variables’ impact on
the relations between the independent variables and the
dependent variable (Atinc et al. 2012; Becker 2005; Be-
cker et al. 2016). However, in Bernerth et al’s (2018)
analysis, only 5 % of all studies followed this recommen-
dation. Again, the reasons are understandable. If control
variables are required for causal identification, results
will differ between causally unidentified models (with-
out any controls or with a wrong subset of controls) and
identified models (with correct subsets of controls).
While differences should be expected, readers and re-
viewers alike might mistake the differences for inconsis-
tencies that limit the credibility of findings. Consider
once more Panel 5 in Fig. 1. In this instance, the possible
models are eight: one without controls, three with one
control each, three with two controls each, and one in-
cluding all controls. From the discussion in section 2.1.2,
we know that only three of these eight models satisfy the
backdoor criterion. If a researcher were to report all eight
models, five would be misspecified, creating a strong im-
balance with regard to the relationships revealed between
x and y. The number of potentially wrong models will be
much higher in larger causal graphs.

Consequently, authors should limit the reporting of alter-
native model specifications to a subset that is causally
identified according to their own conceptual framework.
This subset could for instance be a baseline model that
includes only the control variables and a final model that
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also considers the relationships of interest. If whether
certain control variables are required for causal identifi-
cation is unclear, models with these variables included
should be compared to models without the variables.

Recently, Simonsohn et al. (2015) have proposed an al-
ternative way of comparing model results: specification
curve analysis, which analyzes all possible model speci-
fications (i. e., with all possible combinations of control
variables included in or excluded from the model). Then,
hypothesis tests are done across results from all models.
Nevertheless, the authors warn researchers to include on-
ly model specifications from a subset they consider theo-
retically valid: “Researchers do not need to estimate
specifications they consider redundant, and certainly not
specifications they consider invalid” (p. 3). Again, this
caution points to the necessity of having a sound concep-
tual background guiding control variable inclusion.

3.6. Control variables in the interpretation and
discussion of results

Authors may report the effects of the control variables on
the dependent variable, but often ignore these effects in
the interpretation and discussion of the results. As Atinc
et al.’s (2012) work suggests, this disregard is quite typi-
cal, as 73 % of all studies do not mention control vari-
ables in the discussion section. Consistent with other
commentators, we recommend improvement of this situ-
ation. Most importantly, control variables are added to a
model to improve the causal interpretability of results.
The discussion section must consider whether causal in-
ferences are indeed possible given the data, variables,
and results. Also advisable is some elaboration on the ex-
tent to which conceptual considerations and the underly-
ing causal graph are supported by the data. Here are
some questions that could be addressed: Are the control
variables related to the independent variables and the de-
pendent variables? What does this relationship imply for
future research? Does any evidence show that control
variables are missing? Were some controls ineffective,
owing to measurement error?

We also recommend openly discussing the extent to
which control variables drive the findings. Such a discus-
sion is not disreputable but expected, important, and po-
tentially interesting. The more authors follow our advice
to make the control variables an essential part of the man-
uscript’s story and highlight the multivariate character of
the analysis early on, the more easily they will be able to
follow this recommendation. Ideally, authors should
make an effort to provide specific situations to which the
results of the study do and do not generalize. Again, as
some reviewers may perceive inability to generalize as
undermining the paper’s contribution, more risk-averse
authors should be cautious about generalizing results and
avoid misleading claims regarding generalizability.

Notably, the literature on control variable use from the
management domain raises two concerns about the inter-
pretation of control variable use. Researchers could con-

sider these concerns in their discussion of results based
on the use of control variables. First, prior research on
control variable use observes that researchers generally
ignore the multivariate character of their analysis in dis-
cussing their findings. They suggest emphasizing in the
discussion that the interpretation of the estimated coeffi-
cient refers to situations when the controls are held con-
stant (Becker et al. 2016, Breaugh 2008).

Second, drawing on a handbook chapter by Meehl
(1970), Becker et al. (2016) fear that the isolated effect
measured through regression coefficients in models with
many variables may not generalize well, because in prac-
tice phenomena are strongly interrelated. We at least
partly disagree. Managers are likely to be interested in
isolating the effect of individual measures. Not surpris-
ingly, in his seminal book on causality, Pearl (2009) de-
fines and uses what he calls a “do operator.” Control var-
iables can give findings a causal interpretation that pro-
duces much more actionable implications than simple
correlations. By controlling for common causes, re-
searchers hold these variables constant. If a researcher
finds that a marketing variable has an impact on perfor-
mance while holding firm size, marketing expenditures,
firm age, and industry constant, managers infer that the
marketing variable “works” regardless of firm size, mar-
keting expenditures, firm age, and industry. In our eyes,
this interpretation strengthens the implications rather
than weakening them.

Finally, control variables are, of course, not a general
remedy to all problems related to causal inference. Re-
searchers need to acknowledge and discuss other endo-
geneity issues.

4. Concluding directions for researchers

The overarching goal of our study was to develop recom-
mendations for good control variable use in marketing
research. We were able to do so by combining insights
from econometrics, test theory, causal graph analysis,
and descriptive analyses of control variable practice. Our
recommendations are summarized in Tab. 2, with refer-
ence to the six steps of the control variable process de-
scribed in section 3. We believe that our recommenda-
tions provide feasible, and hence valuable, guidelines for
better control variable use by marketing researchers. We
hope that future research (and reviewers) will embrace at
least some of our recommendations to craft research that
ultimately allows to derive actionable implications that
managers (and editors) desire (e. g., Kumar 2016).

With the increasing emphasis on causal inference in mar-
keting research, future research generations are likely to
require even more knowledge about control variable use
than what is currently available. We offer three more rec-
ommendations for future research that we believe could
be particularly fruitful over and above the recommenda-
tions we provide in Tab 2.
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Control variable use 

process stage 

Recommendation Rationale 

1. Separate causal identification from model estimation and 

move it to the front end of the paper. 

Ensures causal identification independent of the functional 

form of the relationships and assumptions required for 

model estimation. 

Selection  

2. Start out by mapping the causal graph around the focal 

variables. 

Reveals the relations between variables and indicates which 

should cause biased results if omitted. 

 3. Make an effort to include control variables only if a 

sound rationale can be provided. If the evidence is 

unclear, include them and be sure to follow 

recommendation 12. 

Follows the notion that too few control variables are 

potentially more harmful than too many. 

 4. Include control variables in the conceptual framework 

(both text and figures) 

Upgrades control variables to be of conceptual importance. 

 5. Include at least a short motivating statement based on 

theory and empirical findings for each control variable. 

Justify completeness of control variables and show that 

effects on x and y are plausible.  

Discourages random selection of control variables and 

provides reasonable explanation given the page constraints. 

 6. Make sure there are no post-treatment controls and 

endogenous controls. 

Avoids introduction of new biases for causal inference. 

Role in Hypothesis 

Development 

7. Clarify at the beginning of the hypotheses section that  

all hypotheses are stated assuming that control variables 

are held constant. 

Stresses the multivariate character of the study sufficiently 

given the page limits. 

Choice of Measurement
8. Use multi-item scales for latent control variables if 

appropriate.

Demonstrates sophisticated use of measurements. 

9. Avoid proxies. Ensures that only conceptually meaningful control variables 

are included. 

Reporting of Measurement 

Results 

10. Conduct factor analyses for all control variables. Ensures the accuracy of parameter estimates for independent

variables. 

11. Report standard descriptive statistics for control variables 

and include control variables in correlation table 

Enhances understanding of psychometric properties and  

replicability

Reporting of Structural 

Results 

12. Estimate and compare valid models, especially if the 

inclusion of some control variables cannot be soundly 

argued conceptually.  

Demonstrates the impact and importance of control 

variables for the results and the variance explained. 

13. Explicitly report the effects of control variables on the 

dependent variable in results tables.  

Illuminates the impact of control variables on the dependent 

variable. 

14. Discuss strength of causal claims.  Ensures transparency of the role of control variables on the 

focal causal effect(s). 

15. Discuss what the results imply for the underlying causal 

graph. 

Allows other researchers to make more educated choices 

with regard to control variables.  

Interpretation and 

Discussion

16. Discuss whether other types of endogeneity could still be 

a problem.  

Recognizes that control variables are no “silver bullet” to 

solving endogeneity problems.  

Tab. 2: Recommendations

First, as has become evident throughout this paper, to
causally identify a relationship between x and y based on
observational data, knowledge of the causal graph sur-
rounding these variables is essential. However, in many
situations the researcher will lack access to empirical ev-
idence in this regard. Even if meta-analyses in a given
field are available, they tend to focus on bivariate rela-
tionships between variables. In fact, aggregating correla-
tions is how meta-analyses primarily proceed (e. g., Ei-
send 2015). To improve control variable use in a given
field, something resembling a “causal meta-analysis” is
needed. Studies of this type would not focus on the bivar-
iate correlations between two variables alone, but would
seek to restore causal graphs surrounding the phenome-
na.

Second, uncertainty remains as to how to assess the ro-
bustness of results on the basis of control variables. On

the one hand is the fear of false positive research, which
increases the demands on researchers to show that their
results are as robust as possible across multiple model
specifications. On the other hand, is the possibility of
false negative research, because an effect disappears in
some potential control variable constellations that are
misspecifications but are not recognized as such by re-
viewers. Specification curve analysis is a promising ap-
proach to better assess result consistency. It will be im-
portant, though, to develop some joint understanding
about what degree of convergence of estimates across
models is considered as support for a hypothesis – and
what is not. This agreement will increase the transparen-
cy of control variable use and bring the field closer to
causal conclusions, even when using observational data.

Last, we note that our development of recommendations
for marketing researchers is based on critical reviews of
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control variable research in other domains. Even though
we do not expect that current control variable practice in
marketing deviates from control variable practice in or-
ganizational behavior, conceivably it may. We therefore
acknowledge that our recommendations may neglect is-
sues that are of specific concern in the marketing litera-
ture, and it would be interesting to qualitatively and
quantitatively examine control variable practice in lead-
ing marketing journals, similar to the studies listed in
Tab. 1.
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