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Der Druckpuls findet in der Medizin eine breite Anwendung. Er wird z.B. in der Schwanger-
schaftsvorsorge oder auch zur Behandlung von Nierensteinen eingesetzt. Die dabei applizier-
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der Patientensicherheit und des Therapieerfolges muss eine bessere Grundlage für die Therapie-
planung und -kontrolle geschaffen werden. Dazu ist es notwendig, die Parameter, die das 
Druckpulsfeld charakterisieren, zuverlässig zu bestimmen.
Das Hauptziel dieser Arbeit ist es, ein für die Vermessung von Druckpulsfeldern optimiertes op-
tisches Hydrophon nach dem piezooptischen Prinzip zu entwickeln. Der Fokus liegt auf der 
Verbesserung der Messtechnik und der Erweiterung des Systems auf mehrere simultane Messka-
näle. Die Evaluation anhand einer piezoelektrischen, einer ballistischen und einer elektromagne-
tischen Druckpulsquelle konnte eine verzerrungsfreie Wiedergabe des Druckpulsfeldes bestäti-
gen.
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Die Automatisierungstechnik ist ein komplexes und vielfältiges wissenschaftliches Gebiet.
Am Institut für Automatisierungstechnik der Helmut-Schmidt-Universität / Universität
der Bundeswehr Hamburg wird zum einen die Entwicklung neuer automatisierungstechni-
scher Methoden vorangetrieben, zum anderen wird die systemtheoretische Analyse kom-
plexer technischer Prozesse betrachtet, einschließlich der darauf aufbauenden Automati-
sierung. Die erfolgreiche Umsetzung der erzielten theoretischen Ergebnisse, insbesondere
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medizinischen Ultraschall-Aktuatoren untermauert die hohe Relevanz des Themas. Dies
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ortsaufgelösten Druck-Zeitverläufe. Ausgehend von heute verfügbarer Messtechnik zeigt
Herr Dr. Jamshidi Rad zunächst deren Defizite sowie entsprechende Lösungsansätze auf.

Höhepunkt seiner Dissertation sind die Entwicklung und die erfolgreiche Umsetzung ei-
nes quasi rückwirkungsfreien Mehrkanal-Hydrophons. Gegenüber den bis heute üblichen
Einkanal-Hydrophonen ist damit ein erheblicher technischer Fortschritt erzielt.

Die Arbeit entstand in Zusammenarbeit mit Herrn Prof. Dr.-Ing. Friedrich Ueberle von
der Hochschule für angewandte Wissenschaften Hamburg.
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