2 DENKEN IN MATHEMATISCHEN
MOGLICHKEITSRAUMEN

In der diskutierten Literatur wird auf verschiedene epistemische und for-
schungspraktische Kennzeichen von Simulationen hingewiesen. Vor
allem die Prozesshaftigkeit von Simulationen und ihre Erweiterungs-
funktion mathematischer Erkenntnis sowie die Grenziiberschreitungen
zwischen Theorie und Experiment, indem mit Theorie experimentell
umgegangen wird, werden thematisiert.' Dennoch ist es schwierig, den
Erkenntniswert, die epistemische Neuheit sowie die Folgen fiir die wis-
senschaftliche Erfahrung und das damit verbundene wissenschaftliche
Weltbild zu erfassen. Unter Umstinden liegt dies daran, dass Simulatio-
nen aus der falschen Blickrichtung untersucht werden. Der Blick richtet
sich dabei ausgehend von den traditionellen Verfahren — Theorie, Mo-
dell, Messung, Beobachtung — auf die Simulation. Vielleicht ist dies der
Grund, dass der Computer im Kontext der Computersimulationen so
augenfillig marginalisiert, dass die Simulation allzu bereitwillig dem
Modell untergeordnet und dass versucht wird, die grenziiberschreitende
Funktion von Simulationen klassisch zu fassen. Ein Wechsel der Blick-
richtung ist dringend erforderlich, damit Simulationen aus der Perspek-
tive des Computers als notwendiger Bedingung computerbasierter Wis-
senschaft hinterfragt werden konnen.

1 Vielleicht kénnte man noch hinzufiigen, dass Simulationen datenbasierte
Schnittstellen zwischen Theorie und Experiment respektive Messung sind
(vgl. Gramelsberger 2004: 48ff), dass sie Bilder von Theorien generieren
(vgl. Gramelsberger 2001: 148ff) und dass sie semiotisch gesehen Techno-
logien des Uberschreibens sind (vgl. Gramelsberger 2001, 2004a).
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Ein solcher Perspektivwechsel soll nun vorgenommen werden. Das
Ziel ist es dabei, den epistemischen Kern des Wandels der Wissenschaft
im Zeitalter des Computers zu erfassen, diesen Kern als Medienwende
in der Mathematik zu beschreiben, die den mathematischen Anschau-
ungs- und Handlungsraum erweitert, und Simulationen respektive Com-
puterexperimente dabei als neue symbolische Form von Forschung in
Anlehnung an Ernst Cassirers Philosophie der Symbolischen Formen zu
verstehen (vgl. Cassirer 1923, 1929). Vor dem Hintergrund des Wech-
sels der Blickrichtung ergeben sich drei Fragen: Nach der Rolle des
Computers, nach dem Verhéltnis von mathematischem Modell und Si-
mulation und schlie8lich nach dem Status der klassischen erkenntnisge-
nerierenden Verfahren im Zeitalter des Computers.

Extreme Welten |

Der Computer wird als Instrument angesehen, das theoretische Modelle
in dynamische wandelt, das dank seiner unglaublichen Schnelligkeit die
numerischen Moglichkeiten erhoht und das aus diesem quantitativen
Vorteil einen qualitativen generiert. Qualitativ, indem mit theoretischen
Modellen durch Visualisierung auf Phanomenebene, im Sinne eines Be-
obachtens des simulierten Systemverhaltens, gearbeitet werden kann.
Vor allem hierin wird die Erweiterungsfunktion des Computers gesehen,
ghnlich dem Mikroskop. Er gibt neue Einblicke in neue Welten.” Doch
auch wenn der Computer in seiner Erweiterungsfunktion hoch geschitzt
wird, noch fehlt eine konkrete Analyse dieses ,,third type of empirical
extension” (Humphreys 2004: 5), die den Computers als das ermogli-
chende Medium beriicksichtigt. Denn die grundlegende Bedingung die-
ser neuen Wahrnehmungsform ist die Algorithmierung der theoretischen
Modelle, also die Codierung von Theorie. Eine Analyse des Codes oder
der Praktiken des wissenschaftlichen Programmierens findet man jedoch
in keinem der Beitriige iiber Computersimulationen.’ Dies kann nur be-

2 Dieser ,,third type of empirical extension* (Humphreys 2004: 5) ist es, der
Wissenschaftsphilosophen inspiriert, Empiristen hingegen herausfordert.
Denn der Computer wird als Weltengenerator wahrgenommen, aber als
einer, der lediglich virtuelle Welten generiert — im Unterschied zu Mess-
und Experimentierinstumenten. Daher widmet Paul Humphreys einen
Grofiteil seines Buches dem wissenschaftlichen Empirismus in seiner ins-
trumentenvermittelten Form, um diese Einschitzung zu relativieren.

3 Einige konkrete Hinweise zur wissenschaftlichen Programmierung lassen
sich bei Martina Merz und Mikaela Sundberg finden und in sehr allgemei-
ner Beschreibung bei Eric Winsberg (vgl. Merz 1999, 2002; Sundberg
2005; Winsberg 1999, 1999a).
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deuten, dass entweder davon ausgegangen wird, dass das mathematische
Modell sich ohne groflere Probleme in ein Programm iibersetzen lésst.
Oder dass der Computer nur als eine theoretische Grofie im Sinne der
Ermoglichung der Berechenbarkeit verstanden wird und es daher zulés-
sig erscheint, nur sehr allgemein iiber bestimmte Eigenschaften zu spre-
chen. Doch beide Marginalisierungen sind nicht zutreffend, und dies soll
anhand des Antagonismus zwischen der epistemischen Komplexitit wis-
senschaftlicher Forschung und der jeweils unterschiedlich gelagerten
Extremalitdt mathematischer wie programmierter Modelle niher unter-
sucht werden.

Die Grundvoraussetzung flir Simulationen, so wird es einhellig ge-
sehen, sind die mathematischen Modelle. Dies gilt es weder theoretisch
noch forschungspraktisch in Zweifel zu ziehen, doch mathematische
Modelle sind extreme Gebilde, die einer anderen Logik folgen als die
programmierten Modelle, und dies nicht nur aus Griinden der Numerik
oder der effizienten Berechenbarkeit. Dieser Unterschied wird deutlich,
wenn man die Praktiken der mathematischen Modellierung mit denen
der wissenschaftlichen Programmierung vergleicht. In dem schon etwas
alteren, aber in seiner Konzeption einzigartigen Buch, Angewandte Ma-
thematik. Gegenstand, Logik, Besonderheiten von 1976 (deutsche Uber-
setzung von 1984), analysieren die Mathematiker Ilja Blechmann, Ana-
tolij D. Myskis und Jakow G. Panovko die Vorgehensweise der Model-
lierung in der angewandten Mathematik, zumeist an Beispielen aus der
Physik.*

,Die spekulativen [theoretischen] physikalischen Modelle simulieren das reale
Objekt mit Hilfe abstrakter Darstellungen in physikalischer Sprache, und das
nicht selten unter breiter Nutzung der Sprachen und der Mittel der Mathema-
tik. Sie liefern eine mehr oder weniger vereinfachte Beschreibung des Objekts.
[...] Zum Beispiel werden in der Mechanik bei der spekulativen Modellbil-
dung solche Begriffe wie Massenpunkte, absolut starre Korper, elastisches
oder plastisches Medium, zidhe Flissigkeit u.a. verwendet. Diese Abstraktio-
nen erlangten die Bedeutung von fundamentalen Modellen in der Mechanik.
Bei der Modellierung von Aufgabenstellungen verwendet man Vorstellungen
der absolut glatten oder der absolut unebenen Fliache, der Unbegrenztheit des
betrachteten Objekts [...] oder zweckmifige Vereinfachungen kinematischer
Art (zum Beispiel: die Fliissigkeitsstromung in einem Rohr ist eindimensional;
die Querschnitte eines Balkens bleiben bei der Biegung eben)* (Blechmann,
Myskis, Panovko 1984: 145, 146).

4 Es geht den Autoren um eine Grundlegung des rationalen Schlieens in
der angewandten Mathematik in Abgrenzung zum deduktiven Schlielen
der reinen Mathematik. Dabei entspricht der Begriff des rationalen Schlie-
Bens George Polyas Begriff des plausiblen Schlieens (vgl. Polya 1954).
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Diese Idealisierungen der Physiker kreieren bereits im Hinblick auf ihre
Mathematisierung extreme Welten, welche sich in mathematischen Ver-
fahren, beispielsweise der Bestimmung von Minima und Maxima einer
Funktion, in der Periodisierung von Bewegungen oder in der Linearisie-
rung von Beziehungen zweier GroBen fortsetzen. Diese Idealisierungen
im physikalischen und spéiter im mathematischen Modell dokumentieren
die begrenzten Darstellungsmoglichkeiten der Mathematik als Modellie-
rungssprache, deren Elemente ,,eine geometrische Form, eine Funktion,
ein Vektor, eine Matrix, eine skalare GroBe oder sogar eine konkrete
Zahl“ sind (Blechmann, Myskis, Panovko 1984: 146). Es wird zwar von
den Autoren behauptet, dass das physikalische Modell mehr oder weni-
ger die Struktur des mathematischen vorgibt. Doch dabei wird iiberse-
hen, dass dies vor einem sich seit Jahrhunderten vollziehenden Co-
Evolutionsprozess stattfindet, der Naturlehre in mathematische Physik
transformierte. Physikalisch zu denken und zu modellieren bedeutet
automatisch, sich in der Sprache der Mathematik zu bewegen und die
Phénomene und Objekte aus der Perspektive der Grammatik dieser
Sprache zu sehen.” Was sich dabei mathematisch nicht fassen lisst, ent-
zieht sich (zumindest fiirs Erste) der Untersuchbarkeit und Beschreib-
barkeit, solange nicht eine neue mathematische Darstellungsform gefun-
den ist. Die Geschichte des Differentialkalkiils, wie von Herman H.
Goldstine eindrucksvoll rekonstruiert, ist ein gutes Beispiel dafiir (vgl.
Goldstine 1977, 1980). Ein vielleicht noch besseres Beispiel ist die Re-
lativitédtstheorie. Provokant schreibt Albert Einstein 1938: ,,Es gibt keine
induktive Methode, welche zu den Grundbegriffen der Physik fiihren
kann. Die Verkennung dieser Tatsache war der Grundirrtum so mancher
Forscher des 19. Jahrhunderts* (Einstein 1938: 1). Auch wenn Einsteins
Behauptung aus epistemologischen Griinden hinterfragt werden kann, so
macht sie doch deutlich, dass hier auf der selbstverstindlichen Grundla-
ge der Mathematisierung der Physik argumentiert wird. Das ist kein Zu-
fall, denn wie Einstein selbst berichtet, war es die Vereinheitlichung von
mathematisch formulierten Inertialsystemen, die letztendlich dazu fiihr-
te, dass ,,die Zeit ihren absoluten Charakter [verlor] und [...] den ,rdum-
lichen® Koordinaten als algebraisch (nahezu) gleichartige Bestimmungs-
grofBe zugeordnet™ wurde (Einstein 1938: 2).

Die Grammatik der mathematischen Sprache hat die Naturwissen-
schaft voll im Griff und produziert extreme Welten, die unter dem Be-

5 Ein weiteres Motiv der Idealisierung und Abstraktion ist sicherlich die von
René Descartes geforderte Einfachheit als Voraussetzung der Analyse von
Phinomenen (vgl. Descartes 1637).

236

https://dol.org/10.14361/9783839409862-008 - am 13.02.2026, 18:34:39, i@ - |



https://doi.org/10.14361/9783839409862-008
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 DENKEN IN MATHEMATISCHEN MOGLICHKEITSRAUMEN

griff der mathematischen Modelle gehandelt werden.® Losgeldst vom
extrasymbolischen Kontext einer Physik, einer Chemie oder einer Me-
teorologie, lassen sich weitere Idealisierungen vornehmen, die der einfa-
cheren mathematischen Zuginglichkeit der Modelle verpflichtet sind.
»Manchmal konnen in den Gleichungen das eine Glied beibehalten und
das andere vernachléssigt werden; nichtlineare Abhéngigkeiten kdnnen
linearisiert, komplizierte geometrische Formen durch einfachere ersetzt
werden usw.” (Blechmann, Myskis, Panovko 1984: 148). Allerdings
sind die Folgen eines ,un-sachgemiflen’ Umgangs mit den mathemati-
schen Modellen nicht nur anwendungsferne Idealisierungen wie in Eu-
lers Bewegungsgleichung, sondern es konnen auch ,,gewisse ,Monster*
auftreten, d.h. parasitiire Ergebnisse mit dem Charakter von rein logi-
schen Folgerungen, die keine reale Interpretation zulassen* (Blechmann,
Myskis, Panovko 1984: 65).7 Auch wenn sich zahlreiche unsachgemaéfe
Fille mathematischer Modellierung finden lassen, so ist die Addquatheit
des Modells in Hinblick auf das zu untersuchende Objekt oder Phéno-
men erste Prioritit. Da es keine allgemeine Methode zur Uberpriifung
der Addquatheit eines Modells gibt, behilft man sich mit verschiedenen
mathematischen Strategien. Blechmann, Myskis und Panovko sprechen
von ,,Regeln der begleitenden Selbstkontrolle* des mathematischen Mo-
dells. Dazu gehoren die Kontrollen der Dimensionen, der GréfBenord-
nungen, des Charakters der Abhdngigkeiten, des Definitionsgebiets der
Randbedingungen, der mathematischen Abgeschlossenheit und extremer
Situationen. Bei einer sorgfiltigen Analyse bestdtigt sich nicht nur die
Adéquatheit, sondern es zeigt sich auch, dass das Modell Nebenad-
dquatheit aufweisen kann. Das bedeutet, ,,es ermdglicht eine richtige

6  Von der Semantik der mathematischen Sprache zu sprechen wiirde falsche
Vorstellungen wecken, denn diese Semantik taugt lediglich zur Konkreti-
sierung von Kalkiilsystemen anhand erzeugter Zeichenfolgen. Der Gewinn
der ersten Medienwende der Mathematik vom Material zum Zeichen fiihr-
te im 16. und 17. Jahrhundert zur Loslgsung von extrasymbolischen Bezii-
gen, die tiblicherweise als Semantik eines natiirlich-sprachlichen Zeichen-
systems bezeichnet werden. Die Semantik eines kiinstlichen Zeichensys-
tems wie das der Mathematik wird hingegen rein intrasymbolisch geregelt.
Durch diese Formalisierung, die Voraussetzung der Kalkiilisierung ist, ist
iberhaupt die Mechanisierung der Mathematik in Form berechenbarer
Funktionen denkbar (vgl. Krdmer 1991, Gramelsberger 2001, 2005a).

7 Ein solches ,Monster* wurde bereits erwihnt, namlich dass, basierend auf
Hermann von Helmholtz’ Postulat von 1858, in idealisierten Fluiden Wir-
bel existieren konnen, die aber weder vergehen noch entstehen kénnen.
Dies fiihrte zu eigenartigen Schlussfolgerungen wie etwa der: Wirbel seien
in universalen Fluiden wie dem Ather ,,,as permanent as the solid hard
atoms assumed by Lucretuis’, [as] Kelvin wrote to Helmholtz in a letter in
1867 (Eckert 2006: 20).
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qualitative und quantitative Beschreibung nicht nur der Charakteristiken,
fur die es gebildet wurde, sondern auch noch einer Reihe anderer unab-
héngiger Nebencharakteristiken, deren Untersuchung sich erst im weite-
ren als notwendig erweisen kann“ (Blechmann, Myskis, Panovko 1984:
155).8

Diese kurze und sicherlich beziiglich der Adédquatheitspriifung unbefrie-
digende Darstellung — beispielsweise konnen im Laufe der Modellierung
unberiicksichtigte Faktoren eine groBle Rolle spielen — zeigt, dass ma-
thematische Modelle idealisierte Darstellungen generieren, die man als
extreme Welten bezeichnen kann. Die Vereinheitlichung des zugrunde-
liegenden wissenschaftlichen Kontexts hat jedoch noch weitere Folgen.
Mathematische Modelle bestehen aus den bereits genannten mathemati-
schen Elementen und aus Beziehungen zwischen diesen Elementen.
Wovon sie dabei vollstindig abstrahieren, ist die epistemische Komple-
xitdt der zugrundeliegenden wissenschaftlichen Kontexte. Diese zeigt
sich in den unterschiedlichen epistemischen Quellen der mathematisier-
ten Beziehungen. Diese Quellen konnen physikalische (first principles)
und phianomenologische Gesetze sein. Letztere sind zwar hinreichend
begriindet, haben aber nur einen eingeschrinkten Giiltigkeitsbereich, wie
beispielsweise das Hooksche Gesetz. Quellen konnen aber auch halb-
empirische Hypothesen sein, die auf theoretischen Uberlegungen basie-
ren, jedoch nur empirisch tberpriifbar sind. SchlieBlich flieBen in die
mathematischen Modelle auch rein empirische Hypothesen ein, die aus
experimentellen Untersuchungen stammen und nur lokale Giiltigkeit
besitzen. ° Die Rede vom mathematischen Modell als dem theoretischen
Modell einer wissenschaftlichen Simulation ist also mit Vorsicht zu ge-
nieen. Das mathematische Modell ist ein Sammelsurium theoretischer,
phanomenologischer und empirischer Versatzstiicke, deren unterschied-
liche Giiltigkeitsbereiche durch die mathematische Struktur nivelliert

8 Diese Nebenadidquatheit eines mathematischen Modells erweist sich als
wichtiger Faktor. ,,Je grofler die Nebenaddquatheit, desto breiter ist der
Anwendungsbereich des Modells und desto ,zuverlédssiger‘, ,dauerhafter
ist das Modell. Die Nebenadédquatheit eines Modells erhoht sich mit Ver-
stiarkung der Rolle, die in ihm universelle physikalische Gesetze (wie zum
Beispiel der Energieerhaltungssatz), geometrische Sétze, im untersuchten
Bereich bewihrte Anwendungsformen der mathematischen Analysis u.a.
spielen (Blechmann, Myskis, Panovko 1984: 155).

9 Die Stromungsdynamik als empirische Wissenschaft wurde bereits als
typisches Beispiel genannt: ,,In 1896 a textbook on ballistics lists in
chronological order 20 different ,laws of air resistance,” each one further
divided into various formulae for different ranges of velocity. [...] No
physical theory could provide a logical framework for justifying these em-
pirical ,laws’* (Eckert 2006: 26).
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werden. Zwar ist sich jeder gute Modellierer dieser Nivellierung bewusst
und wird ihr auch in Form von Limitierungen des Modells Rechnung
tragen — beispielsweise indem er das Modell addquat bezeichnet und
damit auf gingige Idealisierungen und Abstraktionen verweist (z.B.
elastisches Modell oder Modell des laminaren Flusses). Doch mit den
rein empirischen Annahmen verindert sich die epistemische Struktur des
mathematischen Modells, sofern funktionale Module in das Modell inte-
griert werden, die das aktuale, vor Ort beobachtete oder gemessene Ver-
hiltnis von Eingabe- und Ausgabeparamatern modellieren. Wie sich
Anderungen der Eingabeparameter auswirken kénnen, ist bei diesen
Modulen nicht bekannt, da keine Kenntnis der Transformationsprozesse
zwischen Eingabe- und Ausgabeparamatern vorhanden sind. Die Aus-
wirkungen dieser rein empirischen Annahmen auf das Gesamtmodell
sind daher nur schwer einzuschétzen.

Ein weiterer Aspekt der epistemischen Komplexitit der zugrundelie-
genden wissenschaftlichen Kontexte zeigt sich in der Wahl der bestim-
menden ZustandsgroBen eines Modells und in der Hierarchie dieser
Groflen. Die Wahl der bestimmenden GréBen charakterisiert den Zu-
stand des Modells. Die Verdnderungen dieser Groflen ergeben dessen
rdaumliche und zeitliche Entwicklung. So wurden fiir das grundlegende
Modell der globalen Zirkulation der Atmosphare von Vilhelm Bjerknes
sieben bestimmende Zustandsgrofien identifiziert (vgl. Bjerknes 1904).
Zu diesen Zustandsgrofen konnen weitere hinzukommen, um das Mo-
dell realititsnaher zu gestalten. Beispielsweise konnen neben rein me-
chanischen Grofen physikalische oder chemische Zustandsgréfen in das
Modell integriert werden. Doch diese Zustandsgréfen besitzen ihre
eigene epistemische Komplexitit, die sich in Form rdumlich und zeitlich
unterschiedlicher Skalierungen zeigt. Zustandsgrofen kénnen lokal oder
global wirken, sie kénnen langsam oder schnell verdnderliche GréBen
sein. Aus dieser Durchmischung von Wirkungsreichweiten und Verén-
derungstempi beziehen die Modelle ihre Skalenprobleme. Vor allem
Klimamodelle sind von solchen Skalenproblemen betroffen, denn die
atmosphérischen Bewegungsvorginge reichen von Mikroturbulenzen im
Sekunden- und Millimeterbereich bis zu Planetarischen Wellen im Jah-
resgang und in Grofenordnungen von Tausenden von Kilometern. Diese
unterschiedlichen Bewegungen ergeben in ihrem Zusammenwirken die
globalen und regionalen Bewegungsmuster der Atmosphére. Eine ad-
dquate Analyse des mathematischen Modells untersucht daher die
GrundgroBen sowie deren Abingigkeiten und erstellt eine Hierarchie der
ZustandsgréBen eines Modells. Anhand dieser Hierarchie lassen sich
Entscheidungen iiber die weitere Handhabung treffen: Langsam verén-
derliche Grofen konnen als Parameter vorgegeben und schnell verdnder-
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liche durch Mittelwerte beriicksichtigt werden, wihrend die normal ver-
anderlichen Zustandsgrofien im Modell berechnet werden. Durch eine
solche Analyse lédsst sich ein mathematisches Modell wesentlich verein-
fachen, insofern ,,sich ein geschlossenes System mathematischer Bezie-
hungen ergibt, durch das die Grundvariablen verkniipft sind. Diese Be-
ziehungen bilden dann das mathematische Modell erster Ndherung. Ein
mathematisches Modell in den Grundveridnderlichen und Grundabhin-
gigkeiten stellt die einfachste Variante dar und hat im allgemeinen eine
bedeutend geringere Dimension, (d.h. es wird durch eine kleinere Zahl
wesentlicher Freiheitsgrade charakterisiert) als ein Modell, das ohne Be-
riicksichtigung der Hierarchie der Verdnderlichen aufgestellt wurde
(Blechmann, Myskis, Panovko 1984: 179, 180).

Worin genau liegt nun die Arbeit der mathematischen Modellierer? In
der Regel werden mehrere mathematische Modelle generiert, die unter-
schiedlich komplex sind und unterschiedlichen mathematischen Zwe-
cken dienen. Blechmann, Myskis und Panovko ziehen einen illustrativen
Vergleich zum Modedesign. ,,Es gibt die kiinstlerischen Modegestalter,
d.h. diejenigen, die fiir irgendwelche abstrakten Personen Modelle kreie-
ren, und die Schneider, die nach Modealben mehr oder weniger erfolg-
reich den Schnitt fiir den betreffenden Kunden auswihlen® (Blechmann,
Myskis, Panovko 1984: 204). Hieran zeigt sich die Art der mathemati-
schen Modellierungspraktik, namlich zwischen verschiedenen Abstrak-
tionsniveaus zu wechseln. Die Modellierungspraktik besteht darin, mit
Hilfe kalkiilisierter Zeichensysteme Beziehungsmuster zu kreieren und
diese dann qualitativ zu untersuchen, auch in Hinblick auf die Adédquat-
heit hinsichtlich des konkreten Untersuchungsbereichs. Diese qualitative
Untersuchung schlie8t die Deduktion von Aussagen, Schlussfolgerungen
und Losungen mit ein, wie sie die Analysis erméglicht. Um solche qua-
litativen Modelluntersuchungen vornehmen zu kénnen, wenden Mathe-
matiker wiederum extreme Praktiken an, die zu weiteren Vereinfachun-
gen fithren. So kann beispielsweise die Zahl der Freiheitsgrade eines
Modells begrenzt werden.'” Oder es kann niitzlich sein ,,zu verfolgen,
welche Form die Ausgangs- als auch die Zwischenbeziehungen wie
auch die Ergebnisse der Modelluntersuchung annehmen, wenn die Mo-

10 Um die Freiheitsgrade eines Modells einzuschrinken ldsst sich beispiels-
weise bei der Modellierung von Schiffsbewegungen fiir niederfrequente
Schwingungen das Schiff als starrer Korper behandeln. Dadurch werden
die Freiheitsgrade des Modells auf sechs begrenzt. Fiir hochfrequente
Schwingungen wird das Schiff als elastischer Balken modelliert, was un-
endlich viele Freiheitsgrade zur Folge hat. Im ersten Fall erhilt man als
Resultat ein Schwanken, im zweiten Fall eine Vibration des Schiffes.
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dellparameter oder deren charakteristische Kombinationen ihre zuléssi-
gen Grenzwerte annehmen — meistens null oder unendlich. In solchen
extremen Situationen vereinfacht sich die Aufgabe oder sie entartet, wo-
bei die Bezichungen {ibersichtlicher werden und daher leichter kontrol-
lierbar werden konnen“ (Blechmann, Myskis, Panovko 1984: 202).
Einer der héufigsten Aussagetypen mathematischer Vereinbarungen in
Modelluntersuchungen lautet wohl, ,,wir definieren: x = 0«

Extreme Welten |l

Doch es wiren keine mathematischen Modelle, wenn sich diese nicht
auch quantitativ untersuchen lieBen. Hier beginnt der Bereich der Simu-
lation, auch wenn dabei Computer noch nicht zwingend ins Spiel kom-
men miissen. Uberschlagsrechnungen oder Berechnungen fiir sehr einfa-
che Fille lassen sich allemal mit Bleistift und Papier oder mit Rechen-
schiebern ausfithren. Wie auch immer die Berechnungen vollzogen wer-
den, die mathematischen Modelle geben keine Rechenvorschriften dafiir
an. Ein Mathematiker oder ein mathematisch geschulter Wissenschaftler
hat diese im Kopf. Hier liegt der mafBigebliche Unterschied zwischen
einem mathematischen Modell und dem Modell, das einer Simulation
zugrunde liegt. Letzteres ist das Modell einer Rechenvorschrift fiir ein
bestimmtes mathematisches Modell. Es ist eine komplett neue Darstel-
lung des mathematischen Modells aus Perspektive seiner quantitativen
Berechenbarkeit. Hier zeigt sich in der Forschungspraxis der Perspek-
tivwechsel, den Wissenschaftler vollziehen, wenn sie als Untersu-
chungsmethode ihrer mathematischen Modelle deren numerische Be-
rechnung wihlen. Denn nun kommen Bedingungen der Berechnung ins
Spiel, die heutzutage Bedingungen der automatischen elektronischen
Rechenmaschinen, also der Computer sind. Diese Bedingungen sind
nicht nur hinreichend, sondern notwendig, um ein mathematisches Mo-
dell numerisch zu simulieren. Ein wissenschaftlicher Programmierer
muss daher weniger Beziehungsmuster zwischen Zustandsgrofien kreie-
ren und diese qualitativ untersuchen, als vielmehr diese Beziehungsmus-
ter in die Bedingungen der Berechenbarkeit einpassen und dadurch prak-

11 Die Verkehrung des Blicks auf die Welt aus extremer Perspektive zeigt
sich an folgender Anekdote. ,,Wie verfahrt denn der Mathematiker [auf die
Frage, wie man einen Loéwen in der Wiiste féngt]? [...] Er definiert zu-
nichst, was es heilit einen Lowen zu fangen. Das bedeutet, den Léwen von
sich durch ein Gitter abzutrennen. Ich setze mich hinter das Gitter, und der
Lowe ist, nach Definition, gefangen (Blechmann, Myskis, Panovko 1984:
136).
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tikable Rechenvorschriften mit moglichst geringen strukturellen Verlus-
ten gegeniiber dem mathematischen Modell erzeugen. Seine Aufgabe ist
also eine andere, als die der mathematischen Modellierer, und sie greift
auf ein anders gelagertes Repertoire an Praktiken zuriick. Neben mathe-
matischen Bedingungen gilt es informatische zu beriicksichtigen.'? Die-
se informatischen Bedingungen umfassen die Diskretisierung des ma-
thematischen Modells (Rechenvorschriften), die dynamischen Formie-
rung dieser Rechenvorschriften in einen maschinentauglichen Ablauf
(Programm) und die numerische Explizierung fiir die konkrete Berech-
nung (Computerexperiment).

Bevor auf einige der Praktiken der wissenschaftlichen Programmierung
ndher eingegangen wird, muss auf ein fundamentales Problem der Dis-
kretisierung hingewiesen werden. ,,Da die Diskretisierung nicht eindeu-
tig ist, muf die gewéhlte Differenzenapproximation nicht unbedingt zur
richtigen Losung fithren. Die Eindeutigkeit einer Differenzenlosung oder
einer anderen finiten Approximation kann heute in der Regel nur fiir
lineare Probleme nachgewiesen werden® (Krause 1996: 15). Dies bedeu-
tet, dass es fiir die meisten Fille keinen Beweis gibt, dass das mathema-
tische Modell (meist in Form von Differentialgleichungen) und das Mo-
dell der Rechenvorschrift (oft in Form von Differenzengleichungen)
identisch sind. Das Modell der Rechenvorschrift muss daher als ein neu-
es Modell angesehen werden, von dem man nur hoffen kann, dass es mit
dem mathematischen Modell strukturell korrespondiert. Da es zudem
verschiedene Diskretisierungsverfahren gibt, muss ein Modellierer sich
fur das seiner Meinung und Erfahrung nach am besten geeignete Verfah-
ren entscheiden. Doch das Wissen um die Diskretisierung von Differen-
tialgleichungen gehort nicht unbedingt zum Handwerkszeug eines Na-
tur- oder Ingenieurswissenschaftlers. Diskretisierungen sind aufwendige
Verfahren, die oft viele Monate bis einige Jahre Modellierungs- und
Programmierungszeit in Anspruch nehmen koénnen, wie beispielsweise
fir die Dynamik der globalen Atmosphirenmodelle. Daher wird in der
Forschungspraxis ofter auf fertige Programme und Subroutinen, soge-
nannte PDE Partial Differential Equation Loser, fiir bestimmte Probleme
zurtickgegriffen.

12 Beide Bereiche lassen sich in der Forschungspraxis kaum trennen und
werden heute in Ausbildungsgingen wie Technomathematik oder Scienti-
fic Computing gelehrt. Doch die Trennung zwischen mathematischer Mo-
dellierung und wissenschaftlicher Programmierung bleibt in den Arbeits-
schritten erhalten, die einer Simulation vorausgehen.
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,»30 findet man z.B. schon 1988 [...] iiber 950 verschiedene Finite-Elemente
Codes. [...] Da man davon ausgehen muB, daBl er [Anwender von PDE-
Losern] in seinem eigenen Studium kaum Ausbildung in Theorie und Numerik
partieller Differentialgleichungen erhalten hat, und seine Kenntnisse iiber
PDEs daher nicht sehr grof3 sind, mu3 man mit zwei sich gegenseitig verstir-
kenden Schwierigkeiten rechnen: Einmal muf3 man annehmen, daf3 ein guter
Uberblick iiber die aktuelle Methodenlandschaft fehlt, so daB nicht selten in
unbekiimmerter Weise die exotischsten Gleichungskombinationen aufgestellt
werden, fiir die dann anschlielend nur sehr schwer geeignete Software zu fin-
den ist (wenn es sie denn iiberhaupt gibt). Zum zweiten verleitet die fehlende
Kenntnis dazu, die jeweils zuerst gefundene halbwegs funktionierende nume-
rische Methode zu verwenden, was zu einer ineffizienten und unsicheren Nu-
merik fithren kann sowie in der Folge zur Verschwendung personeller Res-
sourcen und Rechenzeit” (Fuhrmann, Kleis, Mackens 1996: 119, 120).

Wie gut auch immer das mathematische Modell sein mag, bereits die
Diskretisierung kann es in ein unzulidngliches Modell verwandeln. Da
das Diskretisierungsverfahren jedoch eine notwendige Voraussetzung
der Simulationen ist, sind die anschlieBenden Berechnungen mit Vor-
sicht zu genieBen. Doch bis zur Berechnung ist es ein weiter Weg. Die
Diskretisierung muss in ein Computerprogramm iibersetzt werden, so-
fern auf keine fertigen Softwareprogramme zuriickgegriffen wird. Auch
wenn Programmierer heute keine Rechenvorschriften mehr in Maschi-
nensprache formulieren, so ist die Aufgabe der Codierung immer noch
dieselbe wie vor gut sechzig Jahren. ,,These equations and conditions,
which are usually of an analytical and possibly of an implicit nature,
must be replaced by arithmetical and explicit procedures. [... This] step
has, at least, nothing to do with mechanization: It would be equally nec-
essary if the problems were to be computed ,by hand’. [...] Coding be-
gins with the drawing of the flow diagrams® (Goldstine, von Neumann
1947: 99, 100). Die Codierung transformiert das statische Konzept der
Rechenvorschrift eines mathematischen Modells in dynamische Abldu-
fe. Dazu werden die bislang durch mathematische Zeichenkonventionen
dargestellten Operationen in abarbeitbare Anweisungen iibersetzt, wobei
jede Anweisung sich aus der vorherigen ergeben muss. Codierung be-
deutet die Ausbuchstabierung der mathematisch notierten Operationen
in Form maschinentauglicher Anweisungen. Zwar muss sich jede An-
weisung eines Programms aus der vorherigen ergeben, doch sind hier
keine logischen Folgerungen oder Deduktionen gemeint, sondern expli-
zite Prozeduren der Art ,do (if ... then ... else ... end if)" end do, re-
turn‘. Hier liegt ein weiterer, sehr entscheidender Unterschied zum ma-
thematischen Modell. Die Codierung des Modells der Rechenvorschrift
folgt zwar der logischen Struktur des mathematischen, aber eben nicht in
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einem deduktiven Sinne. Die mathematische Struktur wird in Hinblick
auf die Berechnung des Modells informatisch rekonstruiert.

Die Ausbuchstabierung der mathematischen Operationen in maschi-
nentaugliche Anweisungen wiederum verlangt die Ausbuchstabierung
der verdnderlichen Zustandsgrofen und Parameter eines Modells fiir den
kompletten, diskreten Berechnungsraum. Das bedeutet, dass die Zu-
standsgroffen und Parameter — im mathematischen Modell einfache
Symbole wie etwa Qpy; fiir das Schmelzen des Eises in einer Wolke —
nun fiir simtliche Knotenpunkte eines Berechnungsrasters berticksichtigt
werden miissen. Beide Arten der Ausbuchstabierung sind im Ergebnis
extrem, denn sie 16sen die eleganten Notationen, die sich unter Umstén-
den auf ein Blatt Papier schreiben lassen, in Tausende von Codezeilen
und Tausende von Berechnungspunkten auf.'® Generieren sich die ex-
tremen Welten der mathematischen Modelle aus den Formalismen, die
in extrem abgekiirzter und allgemeiner Form notiert werden, so 16sen die
extremen Welten der codierten Rechenvorschriften diese Abkiirzungen
in zahllose Einzelanweisungen und Konkretisierungen auf. Dabei tritt
ein semiotisches Paradox zu Tage, denn der symbolische Umgang mit
Unendlichkeiten muss in endliche Anweisungen aufgelost werden oder
durch Abbruchkriterien erzwungen werden, wenn man am Ende effekti-
ve Rechenvorschriften fiir die konkrete Ausfithrung haben méchte. Un-
endlichkeit wird durch Iteration und Rekursion faktisch simuliert. Die
extremen Welten der codierten Rechenvorschriften sind durch semioti-
sche Explizitheit und iterative Selbstbeziiglichkeit charakterisiert.

Doch es ist nicht nur die Menge der einzelnen Anweisungen und
Berechnungspunkte, in die ein komplexes Problem wie das der Klima-
projektion zerlegt werden muss, um ein codiertes Modell seiner Rechen-
vorschriften zu erhalten. Die einzelnen Anweisungen miissen in Form
einer komplexen Choreographie von Ablédufen, Schleifen und Entschei-
dungspfaden strukturiert werden. Diese Choreographie zerlegt die Si-

13 Diese Aufteilung darf nicht willkiirlich sein, wie bereits Vilhelm Bjerknes
1904 angemahnt hat. ,,Alles wird darauf ankommen, daf3 es gelingt, in
zweckmifiger Weise dies als ein ganzes, iiberwiltigend schwieriges Pro-
blem in eine Reihe von Partialproblemen zu zerlegen, deren keines un-
iberwindliche Schwierigkeiten darbietet. [...] Vor allem wird dabei [bei
der Diskretisierung mithilfe der endlichen Differenzenrechnung] die erste
Zerlegung grundlegend sein. Sie muf} einer natiirlichen Teilungslinie im
Hauptproblem folgen. Eine solche natiirliche Teilungslinie 146t sich auch
angeben. Sie folgt der Grenzlinie zwischen den speziell dynamischen und
den speziell physikalischen Prozessen, aus welchen die atmosphérischen
Prozesse zusammengesetzt sind. Die Zerlegung lings dieser Grenzlinie
gibt eine Zerlegung des Hauptproblems in rein hydrodynamische und rein
thermodynamische Partialprobleme® (Bjerknes 1904: 4).
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multanitit der Prozesse, die ein Phinomen wie den Zustand der Atmo-
sphire ausmachen, in nacheinander abarbeitbare Teilprozesse, die Zeit-
schritt fiir Zeitschritt fir die Menge aller Berechnungspunkte das Pha-
nomen iterativ erzeugen. Erst diese Choreographie ergibt das Programm.
Das, was John von Neumann 1947 graphisch mit Flow Charts darstellte,
indem er ein Programm als eine Folge von Operationsboxen zeichnete,
die linear oder in Schleifen durchlaufen werden, wird in einem Pro-
gramm durch explizite Anweisungen vorgegeben. Welche Pfade dabei
durchlaufen werden und ob diese der mathematischen wie der beobach-
teten und gemessenen empirischen Struktur nahekommen, héngt von der
Qualitdt der Programmierung ab. Die in Abbildung 15 (Dateiendurch-
lauf) und Abbildung 16 (Flow Chart der Prozesse der cloud.f90 Datei)
dargestellte Zerlegung und Choreographie eines Atmosphdrenmodells
vermitteln einen Eindruck von der Komplexitéit des wissenschaftlichen
Programmierens.

Auf dem Weg zur Simulation beziehungsweise zum Computerexpe-
riment ist jedoch noch ein weiterer Schritt von Noten. Denn erst die nu-
merische Explizierung der codierten Rechenvorschriften macht diese
tiberhaupt berechenbar. Jede Konstante und jeder Parameter miissen
numerisch expliziert werden, wie das Codebeispiel des Schmelzvorgan-
ges in stratiformen Wolken zeigte. Jede Zustandsgrofie bedarf fiir jeden
Berechnungspunkt der numerischen Initialisierung, in der Regel auf Ba-
sis von Messwerten. Diese numerische Explizierung ist heikel, denn hier
kommt der Nicht-Eindeutigkeit der finiten Approximation eine besonde-
re Bedeutung zu. Der Vorteil der computerbasierten Simulationsmodelle
liegt zwar in ihrer komplexeren Struktur und damit in der Ent-
Extremalisierung der mathematischen Modelle. Computerbasierte Mo-
delle und deren Simulation erlauben es, mehr Zustandsgréfen und rele-
vante Parameter zu beriicksichtigen, Abhédngigkeiten nicht eliminieren
oder linearisieren zu miissen, komplexere geometrische Formen wihlen
zu kénnen und nicht nur extreme Bedingungen studieren zu miissen.
Kurz gesagt: Der Computer erméglicht es, die Freiheitsgrade eines Sys-
tems beliebig zu erweitern. Doch durch diese Komplexitit und die un-
endlichen Moglichkeiten der Wechselwirkungen in einem System mit
vielen Freiheitsgraden wird die numerische Losung sensitiv abhéngig
von ihrer numerischen Initialisierung. Geringfiigige Anderungen in der
Initialisierung koénnen zu vollkommen anderen Resultaten fithren und
von der eigentlichen Losung wegfithren. Da es keinen Nachweis der
Eindeutigkeit der finiten Approximation gibt, kann man nicht beurteilen,
ob die Resultate des berechneten Systems dem mathematischen Modell
tiberhaupt entsprechen. Forschungspraktisch wird mit diesem prinzipiel-
len Problem wie bereits dargestellt verfahren. ,,Der Laxsche Aquiva-
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lenzsatz sagt aus, dafl der Nachweis der numerischen Stabilitit die not-
wendige und hinreichende Bedingung fiir die Konvergenz der Losung
darstellt, wenn die Differenzenapproximation konsistent formuliert ist.
Unter einer konsistenten Formulierung versteht man, daf3 die Differen-
zenapproximation wieder in die zu approximierende Differentialglei-
chung tibergeht, wenn die Abstinde der Gitterpunkte gegen Null stre-
ben. Eine Differenzenapproximation wird numerisch stabil genannt,
wenn bei der Auflosung der resultierenden Differenzengleichungen Ab-
bruch-, Rundungs- und Verfahrensfehler nicht beliebig anwachsen®
(Krause 1996: 15). Doch die Tiicke steckt im Detail. Denn die Stabilitét,
welche ein Indiz fiir die Konsistenz der finiten Approximation ist, 14sst
sich nur empirisch durch Konvergenztests nachweisen. Da das Losungs-
verhalten der finiten Approximation eines komplexen Systems von den
Anfangs- und Randbedingungen abhingig ist, 14sst sich dieser Nachweis
der Konvergenz nur fiir das spezifische Setting eines einzelnen Compu-
terexperiments fiithren, nicht generell fiir das zugrunde liegende Modell
der Rechenvorschriften. Daher wird jeder Simulationslauf eines Compu-
terexperiments mit einem Testlauf in hoherer Auflosung auf seine Stabi-
litdt hin tiberpriift. ,,Anfangsbedingungen gelten jedoch vielfach als kon-
tingent, als nicht zum Kern von Modellen, Gesetzen und Theorien geho-
rend. Statische und dynamische Instabilititen beziehen sich auf An-
fangsbedingungen sowie auf die Losung von Differentialgleichungen,
auf Trajektorien* (Schmidt 2008: 93). Dies bedeutet, dass nicht nur die
Diskretisierung ein gutes mathematisches Modell in ein unzuldngliches
Simulationsmodell verwandeln, sondern auch die Wahl der Anfangs-
und Randbedingungen die Ergebnisse unbrauchbar machen kann. Auch
wenn es mittlerweile fiir zahlreiche Probleme mehr oder weniger gute
PDE-Loser gibt, fiir die Wahl der Anfangs- und Randbedingungen sowie
fur Parametrisierungen gibt es keinerlei Anleitung fiir eine adidquate
Darstellungsweise. Jede kleinste Anderung im experimentellen Setting
erfordert eine neue Uberpriifung, jedes Ergebnis ist nur in Hinblick auf
seine numerische Initialisierung giiltig. ,,Damit ist ein moglicherweise
paradox erscheinender Doppelaspekt der Berechenbarkeit gekennzeich-
net: Einerseits weist die nach-moderne Physik auf prinzipielle Grenzen
der (quantitativen) Berechenbarkeit hin und fordert damit die Erkennt-
nisskepsis, andererseits erweitert sie (partiell quantitative und insbeson-
dere qualitative) Prognosehorizonte und tritt erkenntnisoptimistisch auf™
(Schmidt 2008: 267)."*

14 Allerdings bezieht sich Jan Schmidt hier nicht auf die Konvergenztests,
sondern auf nichtlineare Zeitreihenanalysen und Analysen der Attraktor-
geometrie zur qualitativen Uberpriifung der gewonnenen Resultate (vgl.
Schmidt 2008).
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Die Ent-Extremalisierung der mathematischen Modelle, indem durch die
Simulation komplexere Systeme modelliert und untersucht werden kon-
nen, wird durch einen neuen Typ an Extremalitit erkauft."’ Die extre-
men Welten I der mathematischen Modelle werden in abgemilderter
Form in extreme Welten II transformiert, wobei diese Transformation
zwar nicht beliebig ist, aber eben auch nicht korrespondierend im Sinne
einer eindeutigen Abbildung. Der Charakter der extremen Welten II ge-
neriert sich aus der iterativen Selbstbeziiglichkeit der ausbuchstabierten
Operationen in Form maschinentauglicher Anweisungen, deren Neuord-
nung basierend auf komplexen Choreographien und aus der numerischen
Explizierung jeder einzelnen Konstante wie auch Variable fiir jeden Be-
rechnungspunkt. Auf diese Weise werden die bereits durch die mathe-
matischen Modelle abstrahierten Phdnomene in mehr oder weniger will-
kiirliche Prozessabldufe zerlegt und wiahrend des Durchlaufs durch die
einzelnen Prozesse wieder zusammengesetzt.'® Da es lediglich Erfah-
rungswerte gibt, wie eine addquate Zerlegung eines Problems, wie ein
optimales Ablaufschema und wie eine gute numerische Explizierung
auszusehen hat, betritt die computerbasierte Wissenschaft hier Neuland.
Neben den prinzipiellen Problemen der quantitativen Berechenbarkeit
sind es die informatischen Praktiken, die Wissen neu organisieren, in-
dem sie mathematisch formuliertes Wissen numerisch zugénglich ma-
chen. Hier liegt die Bedeutung des Computers als Instrument der auto-
matisierten Extrapolation. Dabei handelt es sich um mehr als nur um
einen anderen Umgang mit mathematischen Modellen. Es handelt sich
um eine neue mathematische Sprache. ,,Now mathematics has again
been given a powerful new language, the language of algorithms and
data structures, and with it a new vision of mathematical reality*
(Greenleaf 1992: 196)."”

15 Johannes Lenhard beschreibt die Folgen dieser beiden Formen der Extre-
malitdt fiir die Wissenschaft als ,artificiality-for-essence® und ,artificiality-
for-performance* (vgl. Lenhard 2010).

16 Kebhrte sich in der Neuzeit und der Moderne die auf Aristoteles griindende
Methode der Auflésung und Zusammensetzung der Phdnomene in eine in-
duktiv-deduktive Rekonstruktion der Phdnomene um und fithrte zum
hypothetisch-deduktiven Forschungsstil, so findet mit den Computerexpe-
rimenten und ihren Visualisierungen eine neue Art der Auflosung und Zu-
sammensetzung der Phdnomene statt.

17 Newcomb Greenleaf bezieht sich in seinem Artikel Algorithmics: A New
Paradigm for Mathematics zwar vor allem auf die Bedeutung der algo-
rithmischen Sprache fiir die reine Mathematik, insbesondere beziiglich de-
duktiver Beweisverfahren und berechenbarer Funktionen. Doch die Wir-
kung dieser neuen Sprache der Mathematik zeigt sich am deutlichsten in
der angewandten Mathematik und hier als Basis der Computerexperimente
(vgl. Greenleaf 1992).
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Erweiterung der mathematischen Anschauung

Folgt man den bisherigen Uberlegungen, so ist die Relation zwischen
Untersuchungsobjekt, mathematischem Modell,, und Losung (respektive
Simulation via computerbasiertem Simulationsmodell;) — wie sie den
Uberlegungen von Blechmann, Myskis und Panovko (1) sowie den
meisten Autoren zum Thema der wissenschaftlichen Simulation zugrun-
de liegt (2) — zu einfach gedacht."® Aus Perspektive des Computers als
dem bedingenden Medium betrachtet, stellt sich die Beziehung etwas
komplexer dar (3), wie in Abbildung 22 dargestellt. Die Relation fiir (1)
wiirde im Idealfalle bedeuten, dass das mathematische Modell und das
Untersuchungsobjekt strukturell isomorph sind und dass aus dem ma-
thematischen Modell eine eindeutige Losung deduziert werden kann.
Dies ist, wenn tiberhaupt, nur fiir sehr einfache Systeme der Fall. Da
Simulationen in der Regel komplexe Systeme zum Untersuchungsobjekt
haben, sieht die Relation fiir (2) etwas komplizierter aus. Das mathema-
tische Modell und das Untersuchungsobjekt kénnen zwar als strukturell
isomorph angesehen werden, dies hidngt von der jeweiligen wissen-
schaftstheoretischen Position ab. Da das mathematische Modell in ein
computertaugliches transformiert werden muss, wird hier meist ange-
nommen, dass sich beide Modelle im Sinne einer strukturellen Abbil-
dung entsprechen. Die Losung wird als Simulation gewertet, die keine
eindeutig deduzierte ist, sondern nur eine, mit Unsicherheitsfaktoren
behaftete approximierte.

Tréagt man aber nun der Medienwende durch den Computer respekti-
ve der Algorithmierung Rechnung, so verkompliziert sich die Relation
ein weiteres Mal, wie in (3) dargestellt. Selbst wenn man in allen Punk-
ten der Position (2) folgt, so ist es doch sinnvoll den Ubergang von Mo-
dell,, zu Modell, ndher zu untersuchen.'® Dabei sind vor allem zwei As-
pekte interessant: die Art des Ubergangs zwischen I und II sowie dessen
Erweiterungsfunktion beztiglich der mathematischen Anschauung.

18 Interessanterweise sorgt der erste Ubergang vom Untersuchungsobjekt
zum Modell,, bei Wissenschaftsphilosophen und -theoretikern seit vielen
Jahrzehnten fiir Diskussion, wihrend der zweite Ubergang von Modell,,
zu Modell, als relativ unproblematisch angesehen wird. Es wird hier nicht
argumentiert, dass der Ubergang von Modell,, zu Modell. nicht zur
Kenntnis genommen wiirde. Aber er wird in seiner Auswirkung unter-
schatzt.

19 Dieser Ubergang von Modell,, zu Modell, ist hier als Transformation der
extremen Welt I der mathematischen Modelle in die extreme Welt II der
codierten Modelle der Rechenvorschriften, die das in-silico Experimental-
system konstituieren, bezeichnet.
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(1) Untersuchungsobjekt = Modell,, = Lésung
(2) Untersuchungsobjekt = Modell, = Modell, = Simulation

(3) Untersuchungsobjekt — extreme Welt, Il extreme Welt, — Simulation

Abbildung 22: Ubergang vom mathematischen zum computerbasierten
Modell aus unterschiedlichen Blickwinkeln (Gramelsberger 2009)

Der Ubergang von der extremen Welt I der mathematischen Modelle in
die extreme Welt II der codierten Modelle der Rechenvorschriften ist
kein Abbildungsverhiltnis. Der Ubergang initiiert eine semiotische
Transformation der mathematisch symbolisierten Operationen in explizi-
te und choreographierte Anweisungen. Diese semiotische Transforma-
tion ldsst sich auch als Wechsel von der intrasymbolischen Denotation in
die intrasymbolische Indexikalisierungen verstehen. Intrasymbolische
Denotation meint die Denotation von Operationen mittels mathemati-
scher Symbole, beispielsweise durch ein Integralzeichen oder ein Diffe-
rentialzeichen. Sofern sich das mathematische Zeichen auf eine mathe-
matische Operation bezieht und nicht auf einen extrasymbolischen Kon-
text, ist die Denotation als eine intrasymbolische zu verstehen, wie sie
der Formalisierung und Kalkiilisierung von Zeichensystemen ent-
spricht.”” Intrasymbolische Indexikalisierung hingegen meint das Anzei-
gen einer Operation durch ein Zeichen (Code), die von einer Maschine
tatsdchlich ausgefiihrt wird. In dieser doppelten Funktion der Zeichen
eines Computerprogramms — als Symbol, wenn der Code gelesen wird,
wie auch als Index, wenn der Code ausgefiihrt wird — liegt die Bedeu-
tung der Algorithmen als neue Sprache der Mathematik. Algorithmen
sind insofern eine neue Sprache, als sie eine andere Darstellungsweise
der mathematischen Operationen und Elemente bedingen, denn die
symbolisierten Operationen miissen mit automatischen Rechenmaschi-
nen ausfithrbar sein. Dazu bedarf es der Diskretisierung und der Aus-
buchstabierung der Operationen in einzelne, abarbeitbare Anweisungen,
der Choreographie der Abarbeitungsabldufe sowie der numerischen Ex-
plizierung. Man wird also vergeblich nach Integral- oder Differentialzei-
chen im Code Ausschau halten, denn die mathematischen Operations-
zeichen miissen in strukturierte Indexzeichen iibersetzt werden, die wie-
derum den Ablauf der Maschinenanweisungen zur Folge haben. Die Ge-

20 Die verwendeten Zeichen besitzen keine extrasymbolische Bedeutung
mehr, denn ,,die Grundidee der Formalisierung besteht darin, das Manipu-
lieren von Symbolreihen von ihrer Interpretation abzutrennen* (Krdmer
1988: 176).
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samtheit dieser Anweisungen und Indexzeichen stellt die Ubersetzung
des mathematischen Operationszeichens dar.

Die Frage, die sich dabei aufdringt, ist die, ob die symbolisierten
Operationen mit ihren Indexikalisierungen, also ihren Handlungsumset-
zungen, identisch sind. Ob die Rechenvorschriften, die Mathematiker im
Kopf haben und die sie auf Papier anwenden mit den maschinentaugli-
chen Rechenvorschriften identisch sind, in anderen Worten: Ob die
Ubersetzungen gegliickt sind. Dies mag fiir einfache Operationen in be-
stimmten Operationsrdaumen wie die Addition oder die Subtraktion im
Operationsraum der ganzen Zahlen zutreffen. Fiir kompliziertere Opera-
tionen und insbesondere fiir Operationen, die mit Unendlichkeiten han-
tieren, sind Symbolisierung und Indexikalisierung nicht mehr identisch —
wie die Nichteindeutigkeit der finiten Approximationsverfahren doku-
mentiert. Doch ohne eine Identitit, die in mathematischen Welten immer
nur eine strukturelle sein kann, kann der Ubergang vom mathematischen
Modell in das Computermodell kein Abbildungsverhéltnis sein. Es ist
ein mehrdeutiger Ubergang, der das mathematische Modell mit seinem
codierten Modell der Rechenvorschriften locker koppelt. Diese Art der
Kopplung wurde bereits beziiglich des Zusammenhangs zwischen einem
in-silico Experimentalsystem (codiertes Modell der Rechenvorschrift)
und seinen computerexperimentellen Resultaten als kohdsiv beschrie-
ben. Der Begriff der Kohision lédsst sich auch gut auf die Kopplung zwi-
schen mathematischem Modell und dem Modell der Rechenvorschriften
(in-silico Experimentalsystem) anwenden. Da Kohédsion hergestellt wer-
den muss, im Unterschied zur Kohidrenz, die sich zwingend aus dem
Verfahren wie der Deduktion ergibt, bedarf es geeigneter Praktiken. In
der computerbasierten Mathematik sind dies Konvergenztests zur Prii-
fung der Stabilitit, die gemiB des Laxschen Aquivalenzsatzes wiederum
ein Indiz fiir die Konsistenz der finiten Approximation ist. Nichtlineare
Zeitreihenanalysen oder Analysen der Attraktorgeometrie wiren weitere
Praktiken zur Herstellung von Kohision zwischen mathematischem
Modell und Simulationsmodell, die jedoch immer nur anhand der Inter-
pretation der berechneten Resultate moglich sind.

Die Transformation eines mathematischen Modells in ein codiertes Mo-
dell seiner Rechenvorschriften fithrt zwar einerseits weitere Limitierun-
gen ein und transformiert die bereits extremen Welten I in neue extreme
Welten II. Diese Limitierungen verstdrken dabei den Antagonismus zwi-
schen epistemischer Komplexitidt und den extremen Welten 1 und II
durch die numerische Ersetzung algebraischer Strukturen und deren Be-
rechnung. Bereits 1628 wies René Descartes in den Regeln zur Ausrich-
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tung der Erkenntniskraft auf diese Form der Reduktion durch die Arith-
metik hin.

»Wir dagegen [konnen] an dieser Stelle sogar von den Zahlen abstrahieren,
ebenso wie kurz zuvor von den geometrischen Figuren und von jedem beliebi-
gen Gegenstand. Wir tun das einerseits, um zum UberdruB langes und iiber-
fliissiges Rechnen zu vermeiden, andererseits vor allem, damit die Teile des
Gegenstandes, die zur Natur der Schwierigkeiten gehéren, immer getrennt
bleiben und nicht durch unniitze Zahlen verhiillt werden. Wenn z.B. die Basis
des rechtwinkligen Dreiecks gesucht wird, dessen Seiten 9 und 12 gegeben
sind, wird der Rechner sagen, sie sei gleich V225 oder 15; wir aber werden 9
und 12 durch a und b setzen und die Basis als Va? + b* finden. So bleiben die
beiden Teile a* und b* getrennt, die in der Zahl miteinander verschmolzen
sind* (Descartes 1628/1972: 75). Und weiter schreibt Descartes: ,,Dies alles
unterscheiden wir, die wir eine evidente und deutliche Erkenntnis suchen,
nicht aber die Rechner, die zufrieden sind, wenn ihnen das gesuchte Ergebnis
unterlduft, selbst wenn sie nicht sehen, wie es von den Daten abhingt, ob-
gleich allein darin die Wissenschaft eigentlich besteht” (Descartes 1628/1972:
77).

Doch andererseits ermoglicht erst diese Transformation in die Compu-
ternumerik die Erweiterung der mathematischen Anschauung und kons-
tituiert den ,,third type of empirical extension” (Humphreys 2004: 5), der
zunehmend fiir die Forschung genutzt wird.”' Auch wenn der Zusam-
menhang zwischen Resultat und Datenstruktur beim ersten Blick auf die
Simulationsergebnisse verborgen bleibt und in der Datenanalyse rekons-
truiert werden muss — was aufgrund der Nichteindeutigkeit der finiten
Approximation nicht einfach ist — so erdffnen die Computerexperimente
doch neue mathematische Moglichkeitsrdume. Diese neuen Moglich-
keitsrdume erweitern in ihrer visualisierten Sichtbarkeit die mathemati-

21 Diese Transformation wurde bereits vor der Einfithrung der Computer zu
Zwecken der Berechnung per Hand durchgefiihrt, beispielsweise um me-
chanische Quadraturen auszufiihren. ,,Mechanical quadratures, a technique
now called ,numerical integration‘, was an alternative to Newton’s calcu-
lus. It solves a differential equation solely by numerical methods, with no
reference to the original ellipse or any other curve” (Grier 2005: 121). So
genannte ,computing plans® fiir numerische Integrationen wurden bereits
1757 aufgestellt, um das Erscheinungsdatum des Halleyschen Kometen zu
berechnen. David Grier verortet daher den Beginn der Simulation im 18.
Jahrhundert und lokalisiert ihn im Aufkommen arbeitsteiliger Berechnun-
gen und erster Berechnungspléne (vgl. Grier 2005). Allerdings gewinnen
diese Berechnungspline erst durch die elektronischen Computer an weit-
reichender Bedeutung fiir die Wissenschaft. Die Erstellung von Rechen-
vorschriften respektive Berechungsplianen wird erst ab den 1940er Jahren
zu einem mafgeblichen Teil der Forschungspraxis.
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sche Anschauung, allerdings weniger aufgrund ihrer Sichtbarkeit als
aufgrund dessen, was sie zeigen. Doch was zeigt sich?

Die neuen Moglichkeitsraume zeigen, oder besser enthiillen, das, was
die Wissenschaft seit der Neuzeit zum Ziel hat: den Blick ins Innere der
Phinomene. ,,Every natural action depends on things infinitely small, or
at least too small to strike the sense,” schrieb Bacon 1620 im New Or-
ganon. ,,No one can hope to govern or change nature until he has duly
comprehended and observed them* (Bacon 1620: II. Buch VI). Dieser
Blick ins Innere wurde in der Neuzeit als ,Blick fiir Kausales® anhand
instrumentenbasierter Beobachtung und Messung sowie der Mathemati-
sierung von Theorie inauguriert und gestaltete das Sehen und Denken
um. Doch diese Neukonfiguration des Blicks und des Denkens, also der
zweite Typ der empirischen Extension und die physiko-mathematische
Forschungslogik, gingen noch nicht tief genug. Daher monierte Osborn
Reynolds 1877 zu recht: ,Now the reason why mathematicians have
thus been baffled by the internal motions of fluids appear to be very
simple. Of the internal motions of water or air we can see nothing. On
drawing the disc through the water there is no evidence of the water be-
ing in a motion at all, so that those who have tried to explain these re-
sults have had no clue; they have had not only to determine the degree
and direction of the motion, but also its character (Reynolds 1877:
185). Sowohl der experimentelle Blick, wie von Reynolds vorexerziert,
als auch der mathematische Blick mussten tiefer vordringen, wollten sie
den Blick ins Innere der Phdnomene tatsdchlich erweitern. Was zunéchst
im 19. und 20. Jahrhundert experimentell moglich wurde und zur hypo-
thetisch-deduktiven Forschungslogik fiihrte, wurde mit dem Aufkom-
men der Computer komplettiert. Komplettiert insofern nun auch die Ma-
thematik, als Kulturtechnik des Rechnens, der Koordination von Expe-
riment, Messung und Theorie in denselben Darstellungsraum folgte.
Denn durch die diskrete Metrik des Computers bewegt sich die compu-
terbasierte Mathematik ausschlieBlich in dem durch Koordinaten metri-
sierten, rein symbolischen Raum der Mannigfaltigkeiten, dessen Sprache
die Algorithmen sind.** Leitete ,,das Projekt der neuzeitlichen Wissen-
schaft [...] seine Macht aus dem spezifisch technologischen Charakter
der Darstellungsraume her. Die Krifte und die Art von Uberlegungen,

22 Diese Transformation in einen Raum der Mannigfaltigkeiten leistete be-
reits der Funktionsbegriff, der 1694 erstmals bei Leibniz auftaucht und in
den folgenden Diskussionen mit Jakob Bernoulli und spéter durch Leon-
hard Euler allméhlich Gestalt annimmt (vgl. Leibniz 1694; Euler 1748;
Cassirer 1910). Der Computer stellt nun das passende Medium fiir den
automatisierten Umgang mit Mannigfaltigkeiten dar.
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die sie freisetzen, ebenso wie die Regeln, denen sie gehorchen, sind we-
niger die von cartesischen Subjekten als vielmehr die von technologisch-
epistemischen Texturen® (Rheinberger 2001: 243, 244). So leitet das
Projekt der (postymodernen Wissenschaft seine Macht zwar ebenfalls
aus dem spezifisch technologischen Charakter seiner Darstellungsraume
her, allerdings hat sich dieser technologische Charakter durch den Com-
puter grundlegend verdndert. Diese Verdnderung betrifft nicht nur die
Computerexperimente, sondern ist grundsitzlicher Natur, denn jedes
Messinstrument und jeder Detektor im experimentellen Umfeld ist mitt-
lerweile mit Computerchips ausgestattet. Dies macht den Blick auf die
Simulation aus Perspektive der traditionellen Verfahren — Theorie, Mo-
dell, Messung, Beobachtung — unméglich, da die klassischen Verfahren
so nicht mehr existieren, sondern ebenfalls in den verdnderten technolo-
gischen Charakter der wissenschaftlichen Darstellungsrdume eingepasst
wurden. Die Computerisierung dieser Darstellungsrdume entwickelte
sich im Laufe der letzten sechzig Jahre zur grundlegenden Priamisse ak-
tueller Forschung, ob in den in-silico Experimentalsystemen, in den glo-
balen Messkampagnen oder in den Experimentalsystemen der Labore.”

Doch die Frage, was sich zeigt, ist noch nicht ganz beantwortet. Die
grofle mathematische Leistung der Neuzeit war die Auflosung der geo-
metrischen Anschaulichkeit durch die Arithmetik. ,,Die anschauliche
geometrische Linie 16st sich kraft dieses Verfahrens in eine reine Wert-
folge von Zahlen auf, die durch eine bestimmte arithmetische Regel mit-
einander verkniipft sind“ (Cassirer 1910: 95). Dies bedeutet, wie Ernst
Cassirer in Substanzbegriff und Funktionsbegriff schreibt, dass die
Raumbegriffe durch Zahlenbegriffe und infolge dessen durch Reihenbe-
griffe substituiert werden.

,Die Umsetzung der Raumbegriffe in Zahlenbegriffe erhebt daher zugleich
das Ganze der geometrischen Forschung auf ein neues gedankliches Niveau.
Die substantiellen Formbegriffe der antiken Geometrie, die in starre Absonde-
rung einander gegeniiberstanden, verwandeln sich kraft dieser Ubertragung in
reine ,Reihenbegriffe’, die nach bestimmten Grundprinzipien auseinander er-
zeugbar werden. [...] Erst die Umbildung des Gehalts der Geometrie schafft
Raum fiir eine neue Logik der Mannigfaltigkeiten, die iber die Grenzen der
Syllogistik hinausgreift™ (Cassirer 1910: 93). ,,.Die Auflosung der Raumbegrif-
fe in Reihenbegriffe bleibt der leitende Gesichtspunkt; aber das System der
Reihenbegriffe muf derart vertieft und verfeinert werden, dal dadurch nicht

23 Die Experimentallabore sind interessante Hybride traditioneller Experi-
mentalsysteme kombiniert mit computerbasierten Technologien der Mes-
sung und Auswertung.

253

https://dol.org/10.14361/9783839409862-008 - am 13.02.2026, 18:34:39, i@ - |


https://doi.org/10.14361/9783839409862-008
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

11l PHILOSOPHISCHE VERORTUNG

nur, wie bisher, ein enger Ausschnitt, sondern das Gesamtgebiet der mogli-
chen rdumlichen Gestaltungen tibersehbar und beherrschbar wird. Diese For-
derung ist es, kraft deren die Cartesische Geometrie sich mit innerer Notwen-
digkeit zur Infinitesimal-Geometrie erweitert™ (Cassirer 1910: 96).

Dieses Gesamtgebiet der moglichen Gestaltungen der Mannigfaltigkei-
ten konstituiert den mathematischen Mdoglichkeitsraum, der sich erst
durch die enorme Rechenkraft des Computers entfaltet. Dabei miissen
diese Gestaltungen nicht unbedingt anschaulich sein, insbesondere wenn
sie hoher dimensionale Objekte oder andere, fiir unsere Anschauungs-
gewohnheiten exotische Gebilde sind. Doch im wissenschaftlichen An-
wendungskontext geht es um die Erforschung und die Anschaulichkeit
dieser Moglichkeitsrdume, da in physikalisch fundierten Kontexten die
erzeugten Reihenbildungen als Trajektorien Auskunft iiber die Dynamik
der zu untersuchenden Prozesse in Raum und Zeit geben. In dieser Tra-
ditionslinie stehend geben Computer Einblick in das Innere der Phéno-
mene, indem sie das Innere aus Mannigfaltigkeiten rekonstruieren und
es nach auflen kehren, es umstiilpen. Durch diese von Innen nach Auf3en
gekehrten Ansichten entsteht ein interessanter Verfremdungseffekt, der
sich darin zeigt, dass sich gegenwirtig das veréndert, was wissenschaft-
lich als real gilt. Ebenso wie sich durch die charakteristische, symboli-
sche Form der neuzeitlichen Forschung der wissenschaftliche Erfah-
rungsbegriff verdnderte, wandelt er sich aktuell erneut.
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