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2  DENKEN IN MATHEMATISCHEN  

 MÖGLICHKE ITSRÄUMEN 

In der diskutierten Literatur wird auf verschiedene epistemische und for-
schungspraktische Kennzeichen von Simulationen hingewiesen. Vor 
allem die Prozesshaftigkeit von Simulationen und ihre Erweiterungs-
funktion mathematischer Erkenntnis sowie die Grenzüberschreitungen 
zwischen Theorie und Experiment, indem mit Theorie experimentell 
umgegangen wird, werden thematisiert.1 Dennoch ist es schwierig, den 
Erkenntniswert, die epistemische Neuheit sowie die Folgen für die wis-
senschaftliche Erfahrung und das damit verbundene wissenschaftliche 
Weltbild zu erfassen. Unter Umständen liegt dies daran, dass Simulatio-
nen aus der falschen Blickrichtung untersucht werden. Der Blick richtet 
sich dabei ausgehend von den traditionellen Verfahren – Theorie, Mo-
dell, Messung, Beobachtung – auf die Simulation. Vielleicht ist dies der 
Grund, dass der Computer im Kontext der Computersimulationen so 
augenfällig marginalisiert, dass die Simulation allzu bereitwillig dem 
Modell untergeordnet und dass versucht wird, die grenzüberschreitende 
Funktion von Simulationen klassisch zu fassen. Ein Wechsel der Blick-
richtung ist dringend erforderlich, damit Simulationen aus der Perspek-
tive des Computers als notwendiger Bedingung computerbasierter Wis-
senschaft hinterfragt werden können.  

                                              
1  Vielleicht könnte man noch hinzufügen, dass Simulationen datenbasierte 

Schnittstellen zwischen Theorie und Experiment respektive Messung sind 
(vgl. Gramelsberger 2004: 48ff), dass sie Bilder von Theorien generieren 
(vgl. Gramelsberger 2001: 148ff) und dass sie semiotisch gesehen Techno-
logien des Überschreibens sind (vgl. Gramelsberger 2001, 2004a). 

https://doi.org/10.14361/9783839409862-008 - am 13.02.2026, 18:34:39. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839409862-008
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


III PHILOSOPHISCHE VERORTUNG 

 234

 Ein solcher Perspektivwechsel soll nun vorgenommen werden. Das 
Ziel ist es dabei, den epistemischen Kern des Wandels der Wissenschaft 
im Zeitalter des Computers zu erfassen, diesen Kern als Medienwende 
in der Mathematik zu beschreiben, die den mathematischen Anschau-
ungs- und Handlungsraum erweitert, und Simulationen respektive Com-
puterexperimente dabei als neue symbolische Form von Forschung in 
Anlehnung an Ernst Cassirers Philosophie der Symbolischen Formen zu 
verstehen (vgl. Cassirer 1923, 1929). Vor dem Hintergrund des Wech-
sels der Blickrichtung ergeben sich drei Fragen: Nach der Rolle des 
Computers, nach dem Verhältnis von mathematischem Modell und Si-
mulation und schließlich nach dem Status der klassischen erkenntnisge-
nerierenden Verfahren im Zeitalter des Computers. 
 
 
Extreme Welten I  
 
Der Computer wird als Instrument angesehen, das theoretische Modelle 
in dynamische wandelt, das dank seiner unglaublichen Schnelligkeit die 
numerischen Möglichkeiten erhöht und das aus diesem quantitativen 
Vorteil einen qualitativen generiert. Qualitativ, indem mit theoretischen 
Modellen durch Visualisierung auf Phänomenebene, im Sinne eines Be-
obachtens des simulierten Systemverhaltens, gearbeitet werden kann. 
Vor allem hierin wird die Erweiterungsfunktion des Computers gesehen, 
ähnlich dem Mikroskop. Er gibt neue Einblicke in neue Welten.2 Doch 
auch wenn der Computer in seiner Erweiterungsfunktion hoch geschätzt 
wird, noch fehlt eine konkrete Analyse dieses „third type of empirical 
extension“ (Humphreys 2004: 5), die den Computers als das ermögli-
chende Medium berücksichtigt. Denn die grundlegende Bedingung die-
ser neuen Wahrnehmungsform ist die Algorithmierung der theoretischen 
Modelle, also die Codierung von Theorie. Eine Analyse des Codes oder 
der Praktiken des wissenschaftlichen Programmierens findet man jedoch 
in keinem der Beiträge über Computersimulationen.3 Dies kann nur be-

                                              
2  Dieser „third type of empirical extension“ (Humphreys 2004: 5) ist es, der 

Wissenschaftsphilosophen inspiriert, Empiristen hingegen herausfordert. 
Denn der Computer wird als Weltengenerator wahrgenommen, aber als 
einer, der lediglich virtuelle Welten generiert – im Unterschied zu Mess- 
und Experimentierinstumenten. Daher widmet Paul Humphreys einen 
Großteil seines Buches dem wissenschaftlichen Empirismus in seiner ins-
trumentenvermittelten Form, um diese Einschätzung zu relativieren. 

3  Einige konkrete Hinweise zur wissenschaftlichen Programmierung lassen 
sich bei Martina Merz und Mikaela Sundberg finden und in sehr allgemei-
ner Beschreibung bei Eric Winsberg (vgl. Merz 1999, 2002; Sundberg 
2005; Winsberg 1999, 1999a). 
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deuten, dass entweder davon ausgegangen wird, dass das mathematische 
Modell sich ohne größere Probleme in ein Programm übersetzen lässt. 
Oder dass der Computer nur als eine theoretische Größe im Sinne der 
Ermöglichung der Berechenbarkeit verstanden wird und es daher zuläs-
sig erscheint, nur sehr allgemein über bestimmte Eigenschaften zu spre-
chen. Doch beide Marginalisierungen sind nicht zutreffend, und dies soll 
anhand des Antagonismus zwischen der epistemischen Komplexität wis-
senschaftlicher Forschung und der jeweils unterschiedlich gelagerten 
Extremalität mathematischer wie programmierter Modelle näher unter-
sucht werden.  
 Die Grundvoraussetzung für Simulationen, so wird es einhellig ge-
sehen, sind die mathematischen Modelle. Dies gilt es weder theoretisch 
noch forschungspraktisch in Zweifel zu ziehen, doch mathematische 
Modelle sind extreme Gebilde, die einer anderen Logik folgen als die 
programmierten Modelle, und dies nicht nur aus Gründen der Numerik 
oder der effizienten Berechenbarkeit. Dieser Unterschied wird deutlich, 
wenn man die Praktiken der mathematischen Modellierung mit denen 
der wissenschaftlichen Programmierung vergleicht. In dem schon etwas 
älteren, aber in seiner Konzeption einzigartigen Buch, Angewandte Ma-
thematik. Gegenstand, Logik, Besonderheiten von 1976 (deutsche Über-
setzung von 1984), analysieren die Mathematiker Ilja Blechmann, Ana-
tolij D. Myskis und Jakow G. Panovko die Vorgehensweise der Model-
lierung in der angewandten Mathematik, zumeist an Beispielen aus der 
Physik.4  
 
„Die spekulativen [theoretischen] physikalischen Modelle simulieren das reale 
Objekt mit Hilfe abstrakter Darstellungen in physikalischer Sprache, und das 
nicht selten unter breiter Nutzung der Sprachen und der Mittel der Mathema-
tik. Sie liefern eine mehr oder weniger vereinfachte Beschreibung des Objekts. 
[…] Zum Beispiel werden in der Mechanik bei der spekulativen Modellbil-
dung solche Begriffe wie Massenpunkte, absolut starre Körper, elastisches 
oder plastisches Medium, zähe Flüssigkeit u.a. verwendet. Diese Abstraktio-
nen erlangten die Bedeutung von fundamentalen Modellen in der Mechanik. 
Bei der Modellierung von Aufgabenstellungen verwendet man Vorstellungen 
der absolut glatten oder der absolut unebenen Fläche, der Unbegrenztheit des 
betrachteten Objekts […] oder zweckmäßige Vereinfachungen kinematischer 
Art (zum Beispiel: die Flüssigkeitsströmung in einem Rohr ist eindimensional; 
die Querschnitte eines Balkens bleiben bei der Biegung eben)“ (Blechmann, 
Myskis, Panovko 1984: 145, 146). 
                                              
4  Es geht den Autoren um eine Grundlegung des rationalen Schließens in 

der angewandten Mathematik in Abgrenzung zum deduktiven Schließen 
der reinen Mathematik. Dabei entspricht der Begriff des rationalen Schlie-
ßens George Polyas Begriff des plausiblen Schließens (vgl. Polya 1954).  
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Diese Idealisierungen der Physiker kreieren bereits im Hinblick auf ihre 
Mathematisierung extreme Welten, welche sich in mathematischen Ver-
fahren, beispielsweise der Bestimmung von Minima und Maxima einer 
Funktion, in der Periodisierung von Bewegungen oder in der Linearisie-
rung von Beziehungen zweier Größen fortsetzen. Diese Idealisierungen 
im physikalischen und später im mathematischen Modell dokumentieren 
die begrenzten Darstellungsmöglichkeiten der Mathematik als Modellie-
rungssprache, deren Elemente „eine geometrische Form, eine Funktion, 
ein Vektor, eine Matrix, eine skalare Größe oder sogar eine konkrete 
Zahl“ sind (Blechmann, Myskis, Panovko 1984: 146). Es wird zwar von 
den Autoren behauptet, dass das physikalische Modell mehr oder weni-
ger die Struktur des mathematischen vorgibt. Doch dabei wird überse-
hen, dass dies vor einem sich seit Jahrhunderten vollziehenden Co-
Evolutionsprozess stattfindet, der Naturlehre in mathematische Physik 
transformierte. Physikalisch zu denken und zu modellieren bedeutet 
automatisch, sich in der Sprache der Mathematik zu bewegen und die 
Phänomene und Objekte aus der Perspektive der Grammatik dieser 
Sprache zu sehen.5 Was sich dabei mathematisch nicht fassen lässt, ent-
zieht sich (zumindest fürs Erste) der Untersuchbarkeit und Beschreib-
barkeit, solange nicht eine neue mathematische Darstellungsform gefun-
den ist. Die Geschichte des Differentialkalküls, wie von Herman H. 
Goldstine eindrucksvoll rekonstruiert, ist ein gutes Beispiel dafür (vgl. 
Goldstine 1977, 1980). Ein vielleicht noch besseres Beispiel ist die Re-
lativitätstheorie. Provokant schreibt Albert Einstein 1938: „Es gibt keine 
induktive Methode, welche zu den Grundbegriffen der Physik führen 
kann. Die Verkennung dieser Tatsache war der Grundirrtum so mancher 
Forscher des 19. Jahrhunderts“ (Einstein 1938: 1). Auch wenn Einsteins 
Behauptung aus epistemologischen Gründen hinterfragt werden kann, so 
macht sie doch deutlich, dass hier auf der selbstverständlichen Grundla-
ge der Mathematisierung der Physik argumentiert wird. Das ist kein Zu-
fall, denn wie Einstein selbst berichtet, war es die Vereinheitlichung von 
mathematisch formulierten Inertialsystemen, die letztendlich dazu führ-
te, dass „die Zeit ihren absoluten Charakter [verlor] und […] den ‚räum-
lichen‘ Koordinaten als algebraisch (nahezu) gleichartige Bestimmungs-
größe zugeordnet“ wurde (Einstein 1938: 2).  
 Die Grammatik der mathematischen Sprache hat die Naturwissen-
schaft voll im Griff und produziert extreme Welten, die unter dem Be-

                                              
5  Ein weiteres Motiv der Idealisierung und Abstraktion ist sicherlich die von 

René Descartes geforderte Einfachheit als Voraussetzung der Analyse von 
Phänomenen (vgl. Descartes 1637). 
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griff der mathematischen Modelle gehandelt werden.6 Losgelöst vom 
extrasymbolischen Kontext einer Physik, einer Chemie oder einer Me-
teorologie, lassen sich weitere Idealisierungen vornehmen, die der einfa-
cheren mathematischen Zugänglichkeit der Modelle verpflichtet sind. 
„Manchmal können in den Gleichungen das eine Glied beibehalten und 
das andere vernachlässigt werden; nichtlineare Abhängigkeiten können 
linearisiert, komplizierte geometrische Formen durch einfachere ersetzt 
werden usw.“ (Blechmann, Myskis, Panovko 1984: 148). Allerdings 
sind die Folgen eines ‚un-sachgemäßen‘ Umgangs mit den mathemati-
schen Modellen nicht nur anwendungsferne Idealisierungen wie in Eu-
lers Bewegungsgleichung, sondern es können auch „gewisse ‚Monster‘ 
auftreten, d.h. parasitäre Ergebnisse mit dem Charakter von rein logi-
schen Folgerungen, die keine reale Interpretation zulassen“ (Blechmann, 
Myskis, Panovko 1984: 65).7 Auch wenn sich zahlreiche unsachgemäße 
Fälle mathematischer Modellierung finden lassen, so ist die Adäquatheit 
des Modells in Hinblick auf das zu untersuchende Objekt oder Phäno-
men erste Priorität. Da es keine allgemeine Methode zur Überprüfung 
der Adäquatheit eines Modells gibt, behilft man sich mit verschiedenen 
mathematischen Strategien. Blechmann, Myskis und Panovko sprechen 
von „Regeln der begleitenden Selbstkontrolle“ des mathematischen Mo-
dells. Dazu gehören die Kontrollen der Dimensionen, der Größenord-
nungen, des Charakters der Abhängigkeiten, des Definitionsgebiets der 
Randbedingungen, der mathematischen Abgeschlossenheit und extremer 
Situationen. Bei einer sorgfältigen Analyse bestätigt sich nicht nur die 
Adäquatheit, sondern es zeigt sich auch, dass das Modell Nebenad-
äquatheit aufweisen kann. Das bedeutet, „es ermöglicht eine richtige 

                                              
6  Von der Semantik der mathematischen Sprache zu sprechen würde falsche 

Vorstellungen wecken, denn diese Semantik taugt lediglich zur Konkreti-
sierung von Kalkülsystemen anhand erzeugter Zeichenfolgen. Der Gewinn 
der ersten Medienwende der Mathematik vom Material zum Zeichen führ-
te im 16. und 17. Jahrhundert zur Loslösung von extrasymbolischen Bezü-
gen, die üblicherweise als Semantik eines natürlich-sprachlichen Zeichen-
systems bezeichnet werden. Die Semantik eines künstlichen Zeichensys-
tems wie das der Mathematik wird hingegen rein intrasymbolisch geregelt. 
Durch diese Formalisierung, die Voraussetzung der Kalkülisierung ist, ist 
überhaupt die Mechanisierung der Mathematik in Form berechenbarer 
Funktionen denkbar (vgl. Krämer 1991, Gramelsberger 2001, 2005a).  

7  Ein solches ‚Monster‘ wurde bereits erwähnt, nämlich dass, basierend auf 
Hermann von Helmholtz’ Postulat von 1858, in idealisierten Fluiden Wir-
bel existieren können, die aber weder vergehen noch entstehen können. 
Dies führte zu eigenartigen Schlussfolgerungen wie etwa der: Wirbel seien 
in universalen Fluiden wie dem Äther „‚as permanent as the solid hard 
atoms assumed by Lucretuis’, [as] Kelvin wrote to Helmholtz in a letter in 
1867” (Eckert 2006: 20). 
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qualitative und quantitative Beschreibung nicht nur der Charakteristiken, 
für die es gebildet wurde, sondern auch noch einer Reihe anderer unab-
hängiger Nebencharakteristiken, deren Untersuchung sich erst im weite-
ren als notwendig erweisen kann“ (Blechmann, Myskis, Panovko 1984: 
155).8  
 
Diese kurze und sicherlich bezüglich der Adäquatheitsprüfung unbefrie-
digende Darstellung – beispielsweise können im Laufe der Modellierung 
unberücksichtigte Faktoren eine große Rolle spielen – zeigt, dass ma-
thematische Modelle idealisierte Darstellungen generieren, die man als 
extreme Welten bezeichnen kann. Die Vereinheitlichung des zugrunde-
liegenden wissenschaftlichen Kontexts hat jedoch noch weitere Folgen. 
Mathematische Modelle bestehen aus den bereits genannten mathemati-
schen Elementen und aus Beziehungen zwischen diesen Elementen. 
Wovon sie dabei vollständig abstrahieren, ist die epistemische Komple-
xität der zugrundeliegenden wissenschaftlichen Kontexte. Diese zeigt 
sich in den unterschiedlichen epistemischen Quellen der mathematisier-
ten Beziehungen. Diese Quellen können physikalische (first principles) 
und phänomenologische Gesetze sein. Letztere sind zwar hinreichend 
begründet, haben aber nur einen eingeschränkten Gültigkeitsbereich, wie 
beispielsweise das Hooksche Gesetz. Quellen können aber auch halb-
empirische Hypothesen sein, die auf theoretischen Überlegungen basie-
ren, jedoch nur empirisch überprüfbar sind. Schließlich fließen in die 
mathematischen Modelle auch rein empirische Hypothesen ein, die aus 
experimentellen Untersuchungen stammen und nur lokale Gültigkeit 
besitzen. 9 Die Rede vom mathematischen Modell als dem theoretischen 
Modell einer wissenschaftlichen Simulation ist also mit Vorsicht zu ge-
nießen. Das mathematische Modell ist ein Sammelsurium theoretischer, 
phänomenologischer und empirischer Versatzstücke, deren unterschied-
liche Gültigkeitsbereiche durch die mathematische Struktur nivelliert 
                                              
8  Diese Nebenadäquatheit eines mathematischen Modells erweist sich als 

wichtiger Faktor. „Je größer die Nebenadäquatheit, desto breiter ist der 
Anwendungsbereich des Modells und desto ‚zuverlässiger‘, ‚dauerhafter‘ 
ist das Modell. Die Nebenadäquatheit eines Modells erhöht sich mit Ver-
stärkung der Rolle, die in ihm universelle physikalische Gesetze (wie zum 
Beispiel der Energieerhaltungssatz), geometrische Sätze, im untersuchten 
Bereich bewährte Anwendungsformen der mathematischen Analysis u.a. 
spielen“ (Blechmann, Myskis, Panovko 1984: 155). 

9  Die Strömungsdynamik als empirische Wissenschaft wurde bereits als 
typisches Beispiel genannt: „In 1896 a textbook on ballistics lists in 
chronological order 20 different ‚laws of air resistance,’ each one further 
divided into various formulae for different ranges of velocity. […] No 
physical theory could provide a logical framework for justifying these em-
pirical ‚laws’“ (Eckert 2006: 26).  
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werden. Zwar ist sich jeder gute Modellierer dieser Nivellierung bewusst 
und wird ihr auch in Form von Limitierungen des Modells Rechnung 
tragen – beispielsweise indem er das Modell adäquat bezeichnet und 
damit auf gängige Idealisierungen und Abstraktionen verweist (z.B. 
elastisches Modell oder Modell des laminaren Flusses). Doch mit den 
rein empirischen Annahmen verändert sich die epistemische Struktur des 
mathematischen Modells, sofern funktionale Module in das Modell inte-
griert werden, die das aktuale, vor Ort beobachtete oder gemessene Ver-
hältnis von Eingabe- und Ausgabeparamatern modellieren. Wie sich 
Änderungen der Eingabeparameter auswirken können, ist bei diesen 
Modulen nicht bekannt, da keine Kenntnis der Transformationsprozesse 
zwischen Eingabe- und Ausgabeparamatern vorhanden sind. Die Aus-
wirkungen dieser rein empirischen Annahmen auf das Gesamtmodell 
sind daher nur schwer einzuschätzen.  
 Ein weiterer Aspekt der epistemischen Komplexität der zugrundelie-
genden wissenschaftlichen Kontexte zeigt sich in der Wahl der bestim-
menden Zustandsgrößen eines Modells und in der Hierarchie dieser 
Größen. Die Wahl der bestimmenden Größen charakterisiert den Zu-
stand des Modells. Die Veränderungen dieser Größen ergeben dessen 
räumliche und zeitliche Entwicklung. So wurden für das grundlegende 
Modell der globalen Zirkulation der Atmosphäre von Vilhelm Bjerknes 
sieben bestimmende Zustandsgrößen identifiziert (vgl. Bjerknes 1904). 
Zu diesen Zustandsgrößen können weitere hinzukommen, um das Mo-
dell realitätsnaher zu gestalten. Beispielsweise können neben rein me-
chanischen Größen physikalische oder chemische Zustandsgrößen in das 
Modell integriert werden. Doch diese Zustandsgrößen besitzen ihre 
eigene epistemische Komplexität, die sich in Form räumlich und zeitlich 
unterschiedlicher Skalierungen zeigt. Zustandsgrößen können lokal oder 
global wirken, sie können langsam oder schnell veränderliche Größen 
sein. Aus dieser Durchmischung von Wirkungsreichweiten und Verän-
derungstempi beziehen die Modelle ihre Skalenprobleme. Vor allem 
Klimamodelle sind von solchen Skalenproblemen betroffen, denn die 
atmosphärischen Bewegungsvorgänge reichen von Mikroturbulenzen im 
Sekunden- und Millimeterbereich bis zu Planetarischen Wellen im Jah-
resgang und in Größenordnungen von Tausenden von Kilometern. Diese 
unterschiedlichen Bewegungen ergeben in ihrem Zusammenwirken die 
globalen und regionalen Bewegungsmuster der Atmosphäre. Eine ad-
äquate Analyse des mathematischen Modells untersucht daher die 
Grundgrößen sowie deren Abängigkeiten und erstellt eine Hierarchie der 
Zustandsgrößen eines Modells. Anhand dieser Hierarchie lassen sich 
Entscheidungen über die weitere Handhabung treffen: Langsam verän-
derliche Größen können als Parameter vorgegeben und schnell veränder-
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liche durch Mittelwerte berücksichtigt werden, während die normal ver-
änderlichen Zustandsgrößen im Modell berechnet werden. Durch eine 
solche Analyse lässt sich ein mathematisches Modell wesentlich verein-
fachen, insofern „sich ein geschlossenes System mathematischer Bezie-
hungen ergibt, durch das die Grundvariablen verknüpft sind. Diese Be-
ziehungen bilden dann das mathematische Modell erster Näherung. Ein 
mathematisches Modell in den Grundveränderlichen und Grundabhän-
gigkeiten stellt die einfachste Variante dar und hat im allgemeinen eine 
bedeutend geringere Dimension, (d.h. es wird durch eine kleinere Zahl 
wesentlicher Freiheitsgrade charakterisiert) als ein Modell, das ohne Be-
rücksichtigung der Hierarchie der Veränderlichen aufgestellt wurde“ 
(Blechmann, Myskis, Panovko 1984: 179, 180). 
 
Worin genau liegt nun die Arbeit der mathematischen Modellierer? In 
der Regel werden mehrere mathematische Modelle generiert, die unter-
schiedlich komplex sind und unterschiedlichen mathematischen Zwe-
cken dienen. Blechmann, Myskis und Panovko ziehen einen illustrativen 
Vergleich zum Modedesign. „Es gibt die künstlerischen Modegestalter, 
d.h. diejenigen, die für irgendwelche abstrakten Personen Modelle kreie-
ren, und die Schneider, die nach Modealben mehr oder weniger erfolg-
reich den Schnitt für den betreffenden Kunden auswählen“ (Blechmann, 
Myskis, Panovko 1984: 204). Hieran zeigt sich die Art der mathemati-
schen Modellierungspraktik, nämlich zwischen verschiedenen Abstrak-
tionsniveaus zu wechseln. Die Modellierungspraktik besteht darin, mit 
Hilfe kalkülisierter Zeichensysteme Beziehungsmuster zu kreieren und 
diese dann qualitativ zu untersuchen, auch in Hinblick auf die Adäquat-
heit hinsichtlich des konkreten Untersuchungsbereichs. Diese qualitative 
Untersuchung schließt die Deduktion von Aussagen, Schlussfolgerungen 
und Lösungen mit ein, wie sie die Analysis ermöglicht. Um solche qua-
litativen Modelluntersuchungen vornehmen zu können, wenden Mathe-
matiker wiederum extreme Praktiken an, die zu weiteren Vereinfachun-
gen führen. So kann beispielsweise die Zahl der Freiheitsgrade eines 
Modells begrenzt werden.10 Oder es kann nützlich sein „zu verfolgen, 
welche Form die Ausgangs- als auch die Zwischenbeziehungen wie 
auch die Ergebnisse der Modelluntersuchung annehmen, wenn die Mo-

                                              
10  Um die Freiheitsgrade eines Modells einzuschränken lässt sich beispiels-

weise bei der Modellierung von Schiffsbewegungen für niederfrequente 
Schwingungen das Schiff als starrer Körper behandeln. Dadurch werden 
die Freiheitsgrade des Modells auf sechs begrenzt. Für hochfrequente 
Schwingungen wird das Schiff als elastischer Balken modelliert, was un-
endlich viele Freiheitsgrade zur Folge hat. Im ersten Fall erhält man als 
Resultat ein Schwanken, im zweiten Fall eine Vibration des Schiffes. 
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dellparameter oder deren charakteristische Kombinationen ihre zulässi-
gen Grenzwerte annehmen – meistens null oder unendlich. In solchen 
extremen Situationen vereinfacht sich die Aufgabe oder sie entartet, wo-
bei die Beziehungen übersichtlicher werden und daher leichter kontrol-
lierbar werden können“ (Blechmann, Myskis, Panovko 1984: 202). 
Einer der häufigsten Aussagetypen mathematischer Vereinbarungen in 
Modelluntersuchungen lautet wohl, „wir definieren: x = 0“.11 
 
 
Extreme Welten I I  
 
Doch es wären keine mathematischen Modelle, wenn sich diese nicht 
auch quantitativ untersuchen ließen. Hier beginnt der Bereich der Simu-
lation, auch wenn dabei Computer noch nicht zwingend ins Spiel kom-
men müssen. Überschlagsrechnungen oder Berechnungen für sehr einfa-
che Fälle lassen sich allemal mit Bleistift und Papier oder mit Rechen-
schiebern ausführen. Wie auch immer die Berechnungen vollzogen wer-
den, die mathematischen Modelle geben keine Rechenvorschriften dafür 
an. Ein Mathematiker oder ein mathematisch geschulter Wissenschaftler 
hat diese im Kopf. Hier liegt der maßgebliche Unterschied zwischen 
einem mathematischen Modell und dem Modell, das einer Simulation 
zugrunde liegt. Letzteres ist das Modell einer Rechenvorschrift für ein 
bestimmtes mathematisches Modell. Es ist eine komplett neue Darstel-
lung des mathematischen Modells aus Perspektive seiner quantitativen 
Berechenbarkeit. Hier zeigt sich in der Forschungspraxis der Perspek-
tivwechsel, den Wissenschaftler vollziehen, wenn sie als Untersu-
chungsmethode ihrer mathematischen Modelle deren numerische Be-
rechnung wählen. Denn nun kommen Bedingungen der Berechnung ins 
Spiel, die heutzutage Bedingungen der automatischen elektronischen 
Rechenmaschinen, also der Computer sind. Diese Bedingungen sind 
nicht nur hinreichend, sondern notwendig, um ein mathematisches Mo-
dell numerisch zu simulieren. Ein wissenschaftlicher Programmierer 
muss daher weniger Beziehungsmuster zwischen Zustandsgrößen kreie-
ren und diese qualitativ untersuchen, als vielmehr diese Beziehungsmus-
ter in die Bedingungen der Berechenbarkeit einpassen und dadurch prak-

                                              
11  Die Verkehrung des Blicks auf die Welt aus extremer Perspektive zeigt 

sich an folgender Anekdote. „Wie verfährt denn der Mathematiker [auf die 
Frage, wie man einen Löwen in der Wüste fängt]? […] Er definiert zu-
nächst, was es heißt einen Löwen zu fangen. Das bedeutet, den Löwen von 
sich durch ein Gitter abzutrennen. Ich setze mich hinter das Gitter, und der 
Löwe ist, nach Definition, gefangen“ (Blechmann, Myskis, Panovko 1984: 
136). 
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tikable Rechenvorschriften mit möglichst geringen strukturellen Verlus-
ten gegenüber dem mathematischen Modell erzeugen. Seine Aufgabe ist 
also eine andere, als die der mathematischen Modellierer, und sie greift 
auf ein anders gelagertes Repertoire an Praktiken zurück. Neben mathe-
matischen Bedingungen gilt es informatische zu berücksichtigen.12 Die-
se informatischen Bedingungen umfassen die Diskretisierung des ma-
thematischen Modells (Rechenvorschriften), die dynamischen Formie-
rung dieser Rechenvorschriften in einen maschinentauglichen Ablauf 
(Programm) und die numerische Explizierung für die konkrete Berech-
nung (Computerexperiment). 
 
Bevor auf einige der Praktiken der wissenschaftlichen Programmierung 
näher eingegangen wird, muss auf ein fundamentales Problem der Dis-
kretisierung hingewiesen werden. „Da die Diskretisierung nicht eindeu-
tig ist, muß die gewählte Differenzenapproximation nicht unbedingt zur 
richtigen Lösung führen. Die Eindeutigkeit einer Differenzenlösung oder 
einer anderen finiten Approximation kann heute in der Regel nur für 
lineare Probleme nachgewiesen werden“ (Krause 1996: 15). Dies bedeu-
tet, dass es für die meisten Fälle keinen Beweis gibt, dass das mathema-
tische Modell (meist in Form von Differentialgleichungen) und das Mo-
dell der Rechenvorschrift (oft in Form von Differenzengleichungen) 
identisch sind. Das Modell der Rechenvorschrift muss daher als ein neu-
es Modell angesehen werden, von dem man nur hoffen kann, dass es mit 
dem mathematischen Modell strukturell korrespondiert. Da es zudem 
verschiedene Diskretisierungsverfahren gibt, muss ein Modellierer sich 
für das seiner Meinung und Erfahrung nach am besten geeignete Verfah-
ren entscheiden. Doch das Wissen um die Diskretisierung von Differen-
tialgleichungen gehört nicht unbedingt zum Handwerkszeug eines Na-
tur- oder Ingenieurswissenschaftlers. Diskretisierungen sind aufwendige 
Verfahren, die oft viele Monate bis einige Jahre Modellierungs- und 
Programmierungszeit in Anspruch nehmen können, wie beispielsweise 
für die Dynamik der globalen Atmosphärenmodelle. Daher wird in der 
Forschungspraxis öfter auf fertige Programme und Subroutinen, soge-
nannte PDE Partial Differential Equation Löser, für bestimmte Probleme 
zurückgegriffen.  
 

                                              
12  Beide Bereiche lassen sich in der Forschungspraxis kaum trennen und 

werden heute in Ausbildungsgängen wie Technomathematik oder Scienti-
fic Computing gelehrt. Doch die Trennung zwischen mathematischer Mo-
dellierung und wissenschaftlicher Programmierung bleibt in den Arbeits-
schritten erhalten, die einer Simulation vorausgehen.  
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„So findet man z.B. schon 1988 […] über 950 verschiedene Finite-Elemente 
Codes. […] Da man davon ausgehen muß, daß er [Anwender von PDE-
Lösern] in seinem eigenen Studium kaum Ausbildung in Theorie und Numerik 
partieller Differentialgleichungen erhalten hat, und seine Kenntnisse über 
PDEs daher nicht sehr groß sind, muß man mit zwei sich gegenseitig verstär-
kenden Schwierigkeiten rechnen: Einmal muß man annehmen, daß ein guter 
Überblick über die aktuelle Methodenlandschaft fehlt, so daß nicht selten in 
unbekümmerter Weise die exotischsten Gleichungskombinationen aufgestellt 
werden, für die dann anschließend nur sehr schwer geeignete Software zu fin-
den ist (wenn es sie denn überhaupt gibt). Zum zweiten verleitet die fehlende 
Kenntnis dazu, die jeweils zuerst gefundene halbwegs funktionierende nume-
rische Methode zu verwenden, was zu einer ineffizienten und unsicheren Nu-
merik führen kann sowie in der Folge zur Verschwendung personeller Res-
sourcen und Rechenzeit“ (Fuhrmann, Kleis, Mackens 1996: 119, 120). 
 
Wie gut auch immer das mathematische Modell sein mag, bereits die 
Diskretisierung kann es in ein unzulängliches Modell verwandeln. Da 
das Diskretisierungsverfahren jedoch eine notwendige Voraussetzung 
der Simulationen ist, sind die anschließenden Berechnungen mit Vor-
sicht zu genießen. Doch bis zur Berechnung ist es ein weiter Weg. Die 
Diskretisierung muss in ein Computerprogramm übersetzt werden, so-
fern auf keine fertigen Softwareprogramme zurückgegriffen wird. Auch 
wenn Programmierer heute keine Rechenvorschriften mehr in Maschi-
nensprache formulieren, so ist die Aufgabe der Codierung immer noch 
dieselbe wie vor gut sechzig Jahren. „These equations and conditions, 
which are usually of an analytical and possibly of an implicit nature, 
must be replaced by arithmetical and explicit procedures. [… This] step 
has, at least, nothing to do with mechanization: It would be equally nec-
essary if the problems were to be computed ‚by hand’. […] Coding be-
gins with the drawing of the flow diagrams“ (Goldstine, von Neumann 
1947: 99, 100). Die Codierung transformiert das statische Konzept der 
Rechenvorschrift eines mathematischen Modells in dynamische Abläu-
fe. Dazu werden die bislang durch mathematische Zeichenkonventionen 
dargestellten Operationen in abarbeitbare Anweisungen übersetzt, wobei 
jede Anweisung sich aus der vorherigen ergeben muss. Codierung be-
deutet die Ausbuchstabierung der mathematisch notierten Operationen 
in Form maschinentauglicher Anweisungen. Zwar muss sich jede An-
weisung eines Programms aus der vorherigen ergeben, doch sind hier 
keine logischen Folgerungen oder Deduktionen gemeint, sondern expli-
zite Prozeduren der Art ‚do (if … then … else … end if)n end do, re-
turn‘. Hier liegt ein weiterer, sehr entscheidender Unterschied zum ma-
thematischen Modell. Die Codierung des Modells der Rechenvorschrift 
folgt zwar der logischen Struktur des mathematischen, aber eben nicht in 
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einem deduktiven Sinne. Die mathematische Struktur wird in Hinblick 
auf die Berechnung des Modells informatisch rekonstruiert. 
 Die Ausbuchstabierung der mathematischen Operationen in maschi-
nentaugliche Anweisungen wiederum verlangt die Ausbuchstabierung 
der veränderlichen Zustandsgrößen und Parameter eines Modells für den 
kompletten, diskreten Berechnungsraum. Das bedeutet, dass die Zu-
standsgrößen und Parameter – im mathematischen Modell einfache 
Symbole wie etwa Qmli für das Schmelzen des Eises in einer Wolke – 
nun für sämtliche Knotenpunkte eines Berechnungsrasters berücksichtigt 
werden müssen. Beide Arten der Ausbuchstabierung sind im Ergebnis 
extrem, denn sie lösen die eleganten Notationen, die sich unter Umstän-
den auf ein Blatt Papier schreiben lassen, in Tausende von Codezeilen 
und Tausende von Berechnungspunkten auf.13 Generieren sich die ex-
tremen Welten der mathematischen Modelle aus den Formalismen, die 
in extrem abgekürzter und allgemeiner Form notiert werden, so lösen die 
extremen Welten der codierten Rechenvorschriften diese Abkürzungen 
in zahllose Einzelanweisungen und Konkretisierungen auf. Dabei tritt 
ein semiotisches Paradox zu Tage, denn der symbolische Umgang mit 
Unendlichkeiten muss in endliche Anweisungen aufgelöst werden oder 
durch Abbruchkriterien erzwungen werden, wenn man am Ende effekti-
ve Rechenvorschriften für die konkrete Ausführung haben möchte. Un-
endlichkeit wird durch Iteration und Rekursion faktisch simuliert. Die 
extremen Welten der codierten Rechenvorschriften sind durch semioti-
sche Explizitheit und iterative Selbstbezüglichkeit charakterisiert. 
 Doch es ist nicht nur die Menge der einzelnen Anweisungen und 
Berechnungspunkte, in die ein komplexes Problem wie das der Klima-
projektion zerlegt werden muss, um ein codiertes Modell seiner Rechen-
vorschriften zu erhalten. Die einzelnen Anweisungen müssen in Form 
einer komplexen Choreographie von Abläufen, Schleifen und Entschei-
dungspfaden strukturiert werden. Diese Choreographie zerlegt die Si-

                                              
13  Diese Aufteilung darf nicht willkürlich sein, wie bereits Vilhelm Bjerknes 

1904 angemahnt hat. „Alles wird darauf ankommen, daß es gelingt, in 
zweckmäßiger Weise dies als ein ganzes, überwältigend schwieriges Pro-
blem in eine Reihe von Partialproblemen zu zerlegen, deren keines un-
überwindliche Schwierigkeiten darbietet. […] Vor allem wird dabei [bei 
der Diskretisierung mithilfe der endlichen Differenzenrechnung] die erste 
Zerlegung grundlegend sein. Sie muß einer natürlichen Teilungslinie im 
Hauptproblem folgen. Eine solche natürliche Teilungslinie läßt sich auch 
angeben. Sie folgt der Grenzlinie zwischen den speziell dynamischen und 
den speziell physikalischen Prozessen, aus welchen die atmosphärischen 
Prozesse zusammengesetzt sind. Die Zerlegung längs dieser Grenzlinie 
gibt eine Zerlegung des Hauptproblems in rein hydrodynamische und rein 
thermodynamische Partialprobleme“ (Bjerknes 1904: 4). 
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multanität der Prozesse, die ein Phänomen wie den Zustand der Atmo-
sphäre ausmachen, in nacheinander abarbeitbare Teilprozesse, die Zeit-
schritt für Zeitschritt für die Menge aller Berechnungspunkte das Phä-
nomen iterativ erzeugen. Erst diese Choreographie ergibt das Programm. 
Das, was John von Neumann 1947 graphisch mit Flow Charts darstellte, 
indem er ein Programm als eine Folge von Operationsboxen zeichnete, 
die linear oder in Schleifen durchlaufen werden, wird in einem Pro-
gramm durch explizite Anweisungen vorgegeben. Welche Pfade dabei 
durchlaufen werden und ob diese der mathematischen wie der beobach-
teten und gemessenen empirischen Struktur nahekommen, hängt von der 
Qualität der Programmierung ab. Die in Abbildung 15 (Dateiendurch-
lauf) und Abbildung 16 (Flow Chart der Prozesse der cloud.f90 Datei) 
dargestellte Zerlegung und Choreographie eines Atmosphärenmodells 
vermitteln einen Eindruck von der Komplexität des wissenschaftlichen 
Programmierens.  
 Auf dem Weg zur Simulation beziehungsweise zum Computerexpe-
riment ist jedoch noch ein weiterer Schritt von Nöten. Denn erst die nu-
merische Explizierung der codierten Rechenvorschriften macht diese 
überhaupt berechenbar. Jede Konstante und jeder Parameter müssen 
numerisch expliziert werden, wie das Codebeispiel des Schmelzvorgan-
ges in stratiformen Wolken zeigte. Jede Zustandsgröße bedarf für jeden 
Berechnungspunkt der numerischen Initialisierung, in der Regel auf Ba-
sis von Messwerten. Diese numerische Explizierung ist heikel, denn hier 
kommt der Nicht-Eindeutigkeit der finiten Approximation eine besonde-
re Bedeutung zu. Der Vorteil der computerbasierten Simulationsmodelle 
liegt zwar in ihrer komplexeren Struktur und damit in der Ent-
Extremalisierung der mathematischen Modelle. Computerbasierte Mo-
delle und deren Simulation erlauben es, mehr Zustandsgrößen und rele-
vante Parameter zu berücksichtigen, Abhängigkeiten nicht eliminieren 
oder linearisieren zu müssen, komplexere geometrische Formen wählen 
zu können und nicht nur extreme Bedingungen studieren zu müssen. 
Kurz gesagt: Der Computer ermöglicht es, die Freiheitsgrade eines Sys-
tems beliebig zu erweitern. Doch durch diese Komplexität und die un-
endlichen Möglichkeiten der Wechselwirkungen in einem System mit 
vielen Freiheitsgraden wird die numerische Lösung sensitiv abhängig 
von ihrer numerischen Initialisierung. Geringfügige Änderungen in der 
Initialisierung können zu vollkommen anderen Resultaten führen und 
von der eigentlichen Lösung wegführen. Da es keinen Nachweis der 
Eindeutigkeit der finiten Approximation gibt, kann man nicht beurteilen, 
ob die Resultate des berechneten Systems dem mathematischen Modell 
überhaupt entsprechen. Forschungspraktisch wird mit diesem prinzipiel-
len Problem wie bereits dargestellt verfahren. „Der Laxsche Äquiva-
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lenzsatz sagt aus, daß der Nachweis der numerischen Stabilität die not-
wendige und hinreichende Bedingung für die Konvergenz der Lösung 
darstellt, wenn die Differenzenapproximation konsistent formuliert ist. 
Unter einer konsistenten Formulierung versteht man, daß die Differen-
zenapproximation wieder in die zu approximierende Differentialglei-
chung übergeht, wenn die Abstände der Gitterpunkte gegen Null stre-
ben. Eine Differenzenapproximation wird numerisch stabil genannt, 
wenn bei der Auflösung der resultierenden Differenzengleichungen Ab-
bruch-, Rundungs- und Verfahrensfehler nicht beliebig anwachsen“ 
(Krause 1996: 15). Doch die Tücke steckt im Detail. Denn die Stabilität, 
welche ein Indiz für die Konsistenz der finiten Approximation ist, lässt 
sich nur empirisch durch Konvergenztests nachweisen. Da das Lösungs-
verhalten der finiten Approximation eines komplexen Systems von den 
Anfangs- und Randbedingungen abhängig ist, lässt sich dieser Nachweis 
der Konvergenz nur für das spezifische Setting eines einzelnen Compu-
terexperiments führen, nicht generell für das zugrunde liegende Modell 
der Rechenvorschriften. Daher wird jeder Simulationslauf eines Compu-
terexperiments mit einem Testlauf in höherer Auflösung auf seine Stabi-
lität hin überprüft. „Anfangsbedingungen gelten jedoch vielfach als kon-
tingent, als nicht zum Kern von Modellen, Gesetzen und Theorien gehö-
rend. Statische und dynamische Instabilitäten beziehen sich auf An-
fangsbedingungen sowie auf die Lösung von Differentialgleichungen, 
auf Trajektorien“ (Schmidt 2008: 93). Dies bedeutet, dass nicht nur die 
Diskretisierung ein gutes mathematisches Modell in ein unzulängliches 
Simulationsmodell verwandeln, sondern auch die Wahl der Anfangs- 
und Randbedingungen die Ergebnisse unbrauchbar machen kann. Auch 
wenn es mittlerweile für zahlreiche Probleme mehr oder weniger gute 
PDE-Löser gibt, für die Wahl der Anfangs- und Randbedingungen sowie 
für Parametrisierungen gibt es keinerlei Anleitung für eine adäquate 
Darstellungsweise. Jede kleinste Änderung im experimentellen Setting 
erfordert eine neue Überprüfung, jedes Ergebnis ist nur in Hinblick auf 
seine numerische Initialisierung gültig. „Damit ist ein möglicherweise 
paradox erscheinender Doppelaspekt der Berechenbarkeit gekennzeich-
net: Einerseits weist die nach-moderne Physik auf prinzipielle Grenzen 
der (quantitativen) Berechenbarkeit hin und fördert damit die Erkennt-
nisskepsis, andererseits erweitert sie (partiell quantitative und insbeson-
dere qualitative) Prognosehorizonte und tritt erkenntnisoptimistisch auf“ 
(Schmidt 2008: 267).14  

                                              
14  Allerdings bezieht sich Jan Schmidt hier nicht auf die Konvergenztests, 

sondern auf nichtlineare Zeitreihenanalysen und Analysen der Attraktor-
geometrie zur qualitativen Überprüfung der gewonnenen Resultate (vgl. 
Schmidt 2008). 
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Die Ent-Extremalisierung der mathematischen Modelle, indem durch die 
Simulation komplexere Systeme modelliert und untersucht werden kön-
nen, wird durch einen neuen Typ an Extremalität erkauft.15 Die extre-
men Welten I der mathematischen Modelle werden in abgemilderter 
Form in extreme Welten II transformiert, wobei diese Transformation 
zwar nicht beliebig ist, aber eben auch nicht korrespondierend im Sinne 
einer eindeutigen Abbildung. Der Charakter der extremen Welten II ge-
neriert sich aus der iterativen Selbstbezüglichkeit der ausbuchstabierten 
Operationen in Form maschinentauglicher Anweisungen, deren Neuord-
nung basierend auf komplexen Choreographien und aus der numerischen 
Explizierung jeder einzelnen Konstante wie auch Variable für jeden Be-
rechnungspunkt. Auf diese Weise werden die bereits durch die mathe-
matischen Modelle abstrahierten Phänomene in mehr oder weniger will-
kürliche Prozessabläufe zerlegt und während des Durchlaufs durch die 
einzelnen Prozesse wieder zusammengesetzt.16 Da es lediglich Erfah-
rungswerte gibt, wie eine adäquate Zerlegung eines Problems, wie ein 
optimales Ablaufschema und wie eine gute numerische Explizierung 
auszusehen hat, betritt die computerbasierte Wissenschaft hier Neuland. 
Neben den prinzipiellen Problemen der quantitativen Berechenbarkeit 
sind es die informatischen Praktiken, die Wissen neu organisieren, in-
dem sie mathematisch formuliertes Wissen numerisch zugänglich ma-
chen. Hier liegt die Bedeutung des Computers als Instrument der auto-
matisierten Extrapolation. Dabei handelt es sich um mehr als nur um 
einen anderen Umgang mit mathematischen Modellen. Es handelt sich 
um eine neue mathematische Sprache. „Now mathematics has again 
been given a powerful new language, the language of algorithms and 
data structures, and with it a new vision of mathematical reality“ 
(Greenleaf 1992: 196).17 

                                              
15  Johannes Lenhard beschreibt die Folgen dieser beiden Formen der Extre-

malität für die Wissenschaft als ‚artificiality-for-essence‘ und ‚artificiality-
for-performance‘ (vgl. Lenhard 2010). 

16  Kehrte sich in der Neuzeit und der Moderne die auf Aristoteles gründende 
Methode der Auflösung und Zusammensetzung der Phänomene in eine in-
duktiv-deduktive Rekonstruktion der Phänomene um und führte zum 
hypothetisch-deduktiven Forschungsstil, so findet mit den Computerexpe-
rimenten und ihren Visualisierungen eine neue Art der Auflösung und Zu-
sammensetzung der Phänomene statt. 

17  Newcomb Greenleaf bezieht sich in seinem Artikel Algorithmics: A New 
Paradigm for Mathematics zwar vor allem auf die Bedeutung der algo-
rithmischen Sprache für die reine Mathematik, insbesondere bezüglich de-
duktiver Beweisverfahren und berechenbarer Funktionen. Doch die Wir-
kung dieser neuen Sprache der Mathematik zeigt sich am deutlichsten in 
der angewandten Mathematik und hier als Basis der Computerexperimente 
(vgl. Greenleaf 1992).  
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Erweiterung der  mathematischen Anschauung 
 
Folgt man den bisherigen Überlegungen, so ist die Relation zwischen 
Untersuchungsobjekt, mathematischem Modellm und Lösung (respektive 
Simulation via computerbasiertem Simulationsmodellc) – wie sie den 
Überlegungen von Blechmann, Myskis und Panovko (1) sowie den 
meisten Autoren zum Thema der wissenschaftlichen Simulation zugrun-
de liegt (2) – zu einfach gedacht.18 Aus Perspektive des Computers als 
dem bedingenden Medium betrachtet, stellt sich die Beziehung etwas 
komplexer dar (3), wie in Abbildung 22 dargestellt. Die Relation für (1) 
würde im Idealfalle bedeuten, dass das mathematische Modell und das 
Untersuchungsobjekt strukturell isomorph sind und dass aus dem ma-
thematischen Modell eine eindeutige Lösung deduziert werden kann. 
Dies ist, wenn überhaupt, nur für sehr einfache Systeme der Fall. Da 
Simulationen in der Regel komplexe Systeme zum Untersuchungsobjekt 
haben, sieht die Relation für (2) etwas komplizierter aus. Das mathema-
tische Modell und das Untersuchungsobjekt können zwar als strukturell 
isomorph angesehen werden, dies hängt von der jeweiligen wissen-
schaftstheoretischen Position ab. Da das mathematische Modell in ein 
computertaugliches transformiert werden muss, wird hier meist ange-
nommen, dass sich beide Modelle im Sinne einer strukturellen Abbil-
dung entsprechen. Die Lösung wird als Simulation gewertet, die keine 
eindeutig deduzierte ist, sondern nur eine, mit Unsicherheitsfaktoren 
behaftete approximierte.  
 Trägt man aber nun der Medienwende durch den Computer respekti-
ve der Algorithmierung Rechnung, so verkompliziert sich die Relation 
ein weiteres Mal, wie in (3) dargestellt. Selbst wenn man in allen Punk-
ten der Position (2) folgt, so ist es doch sinnvoll den Übergang von Mo-
dellm zu Modellc näher zu untersuchen.19 Dabei sind vor allem zwei As-
pekte interessant: die Art des Übergangs zwischen I und II sowie dessen 
Erweiterungsfunktion bezüglich der mathematischen Anschauung.  
 

                                              
18  Interessanterweise sorgt der erste Übergang vom Untersuchungsobjekt 

zum Modellm bei Wissenschaftsphilosophen und -theoretikern seit vielen 
Jahrzehnten für Diskussion, während der zweite Übergang von Modellm 
zu Modellc als relativ unproblematisch angesehen wird. Es wird hier nicht 
argumentiert, dass der Übergang von Modellm zu Modellc nicht zur 
Kenntnis genommen würde. Aber er wird in seiner Auswirkung unter-
schätzt.  

19  Dieser Übergang von Modellm zu Modellc ist hier als Transformation der 
extremen Welt I der mathematischen Modelle in die extreme Welt II der 
codierten Modelle der Rechenvorschriften, die das in-silico Experimental-
system konstituieren, bezeichnet. 
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Abbildung 22: Übergang vom mathematischen zum computerbasierten 

Modell aus unterschiedlichen Blickwinkeln (Gramelsberger 2009)  

 
Der Übergang von der extremen Welt I der mathematischen Modelle in 

die extreme Welt II der codierten Modelle der Rechenvorschriften ist 

kein Abbildungsverhältnis. Der Übergang initiiert eine semiotische 
Transformation der mathematisch symbolisierten Operationen in explizi-

te und choreographierte Anweisungen. Diese semiotische Transforma-

tion lässt sich auch als Wechsel von der intrasymbolischen Denotation in 
die intrasymbolische Indexikalisierungen verstehen. Intrasymbolische 

Denotation meint die Denotation von Operationen mittels mathemati-

scher Symbole, beispielsweise durch ein Integralzeichen oder ein Diffe-
rentialzeichen. Sofern sich das mathematische Zeichen auf eine mathe-

matische Operation bezieht und nicht auf einen extrasymbolischen Kon-

text, ist die Denotation als eine intrasymbolische zu verstehen, wie sie 
der Formalisierung und Kalkülisierung von Zeichensystemen ent-

spricht.20 Intrasymbolische Indexikalisierung hingegen meint das Anzei-

gen einer Operation durch ein Zeichen (Code), die von einer Maschine 
tatsächlich ausgeführt wird. In dieser doppelten Funktion der Zeichen 

eines Computerprogramms – als Symbol, wenn der Code gelesen wird, 

wie auch als Index, wenn der Code ausgeführt wird – liegt die Bedeu-
tung der Algorithmen als neue Sprache der Mathematik. Algorithmen 

sind insofern eine neue Sprache, als sie eine andere Darstellungsweise 

der mathematischen Operationen und Elemente bedingen, denn die 
symbolisierten Operationen müssen mit automatischen Rechenmaschi-

nen ausführbar sein. Dazu bedarf es der Diskretisierung und der Aus-

buchstabierung der Operationen in einzelne, abarbeitbare Anweisungen, 
der Choreographie der Abarbeitungsabläufe sowie der numerischen Ex-

plizierung. Man wird also vergeblich nach Integral- oder Differentialzei-

chen im Code Ausschau halten, denn die mathematischen Operations-
zeichen müssen in strukturierte Indexzeichen übersetzt werden, die wie-

derum den Ablauf der Maschinenanweisungen zur Folge haben. Die Ge-

                                              
20  Die verwendeten Zeichen besitzen keine extrasymbolische Bedeutung 

mehr, denn „die Grundidee der Formalisierung besteht darin, das Manipu-
lieren von Symbolreihen von ihrer Interpretation abzutrennen“ (Krämer 
1988: 176).  

 (1) Untersuchungsobjekt � Modellm � Lösung 

 

(2) Untersuchungsobjekt � Modellm ≈ Modellc � Simulation 

 

(3) Untersuchungsobjekt � extreme WeltI  II  extreme WeltII � Simulation 
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samtheit dieser Anweisungen und Indexzeichen stellt die Übersetzung 
des mathematischen Operationszeichens dar.  
 Die Frage, die sich dabei aufdrängt, ist die, ob die symbolisierten 
Operationen mit ihren Indexikalisierungen, also ihren Handlungsumset-
zungen, identisch sind. Ob die Rechenvorschriften, die Mathematiker im 
Kopf haben und die sie auf Papier anwenden mit den maschinentaugli-
chen Rechenvorschriften identisch sind, in anderen Worten: Ob die 
Übersetzungen geglückt sind. Dies mag für einfache Operationen in be-
stimmten Operationsräumen wie die Addition oder die Subtraktion im 
Operationsraum der ganzen Zahlen zutreffen. Für kompliziertere Opera-
tionen und insbesondere für Operationen, die mit Unendlichkeiten han-
tieren, sind Symbolisierung und Indexikalisierung nicht mehr identisch – 
wie die Nichteindeutigkeit der finiten Approximationsverfahren doku-
mentiert. Doch ohne eine Identität, die in mathematischen Welten immer 
nur eine strukturelle sein kann, kann der Übergang vom mathematischen 
Modell in das Computermodell kein Abbildungsverhältnis sein. Es ist 
ein mehrdeutiger Übergang, der das mathematische Modell mit seinem 
codierten Modell der Rechenvorschriften locker koppelt. Diese Art der 
Kopplung wurde bereits bezüglich des Zusammenhangs zwischen einem 
in-silico Experimentalsystem (codiertes Modell der Rechenvorschrift) 
und seinen computerexperimentellen Resultaten als kohäsiv beschrie-
ben. Der Begriff der Kohäsion lässt sich auch gut auf die Kopplung zwi-
schen mathematischem Modell und dem Modell der Rechenvorschriften 
(in-silico Experimentalsystem) anwenden. Da Kohäsion hergestellt wer-
den muss, im Unterschied zur Kohärenz, die sich zwingend aus dem 
Verfahren wie der Deduktion ergibt, bedarf es geeigneter Praktiken. In 
der computerbasierten Mathematik sind dies Konvergenztests zur Prü-
fung der Stabilität, die gemäß des Laxschen Äquivalenzsatzes wiederum 
ein Indiz für die Konsistenz der finiten Approximation ist. Nichtlineare 
Zeitreihenanalysen oder Analysen der Attraktorgeometrie wären weitere 
Praktiken zur Herstellung von Kohäsion zwischen mathematischem 
Modell und Simulationsmodell, die jedoch immer nur anhand der Inter-
pretation der berechneten Resultate möglich sind. 
 
Die Transformation eines mathematischen Modells in ein codiertes Mo-
dell seiner Rechenvorschriften führt zwar einerseits weitere Limitierun-
gen ein und transformiert die bereits extremen Welten I in neue extreme 
Welten II. Diese Limitierungen verstärken dabei den Antagonismus zwi-
schen epistemischer Komplexität und den extremen Welten I und II 
durch die numerische Ersetzung algebraischer Strukturen und deren Be-
rechnung. Bereits 1628 wies René Descartes in den Regeln zur Ausrich-
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tung der Erkenntniskraft auf diese Form der Reduktion durch die Arith-
metik hin.  
 
„Wir dagegen [können] an dieser Stelle sogar von den Zahlen abstrahieren, 
ebenso wie kurz zuvor von den geometrischen Figuren und von jedem beliebi-
gen Gegenstand. Wir tun das einerseits, um zum Überdruß langes und über-
flüssiges Rechnen zu vermeiden, andererseits vor allem, damit die Teile des 
Gegenstandes, die zur Natur der Schwierigkeiten gehören, immer getrennt 
bleiben und nicht durch unnütze Zahlen verhüllt werden. Wenn z.B. die Basis 
des rechtwinkligen Dreiecks gesucht wird, dessen Seiten 9 und 12 gegeben 
sind, wird der Rechner sagen, sie sei gleich √225 oder 15; wir aber werden 9 
und 12 durch a und b setzen und die Basis als √a2 + b2 finden. So bleiben die 
beiden Teile a2 und b2 getrennt, die in der Zahl miteinander verschmolzen 
sind“ (Descartes 1628/1972: 75). Und weiter schreibt Descartes: „Dies alles 
unterscheiden wir, die wir eine evidente und deutliche Erkenntnis suchen, 
nicht aber die Rechner, die zufrieden sind, wenn ihnen das gesuchte Ergebnis 
unterläuft, selbst wenn sie nicht sehen, wie es von den Daten abhängt, ob-
gleich allein darin die Wissenschaft eigentlich besteht“ (Descartes 1628/1972: 
77). 
 
Doch andererseits ermöglicht erst diese Transformation in die Compu-
ternumerik die Erweiterung der mathematischen Anschauung und kons-
tituiert den „third type of empirical extension“ (Humphreys 2004: 5), der 
zunehmend für die Forschung genutzt wird.21 Auch wenn der Zusam-
menhang zwischen Resultat und Datenstruktur beim ersten Blick auf die 
Simulationsergebnisse verborgen bleibt und in der Datenanalyse rekons-
truiert werden muss – was aufgrund der Nichteindeutigkeit der finiten 
Approximation nicht einfach ist – so eröffnen die Computerexperimente 
doch neue mathematische Möglichkeitsräume. Diese neuen Möglich-
keitsräume erweitern in ihrer visualisierten Sichtbarkeit die mathemati-

                                              
21  Diese Transformation wurde bereits vor der Einführung der Computer zu 

Zwecken der Berechnung per Hand durchgeführt, beispielsweise um me-
chanische Quadraturen auszuführen. „Mechanical quadratures, a technique 
now called ‚numerical integration‘, was an alternative to Newton´s calcu-
lus. It solves a differential equation solely by numerical methods, with no 
reference to the original ellipse or any other curve” (Grier 2005: 121). So 
genannte ‚computing plans‘ für numerische Integrationen wurden bereits 
1757 aufgestellt, um das Erscheinungsdatum des Halleyschen Kometen zu 
berechnen. David Grier verortet daher den Beginn der Simulation im 18. 
Jahrhundert und lokalisiert ihn im Aufkommen arbeitsteiliger Berechnun-
gen und erster Berechnungspläne (vgl. Grier 2005). Allerdings gewinnen 
diese Berechnungspläne erst durch die elektronischen Computer an weit-
reichender Bedeutung für die Wissenschaft. Die Erstellung von Rechen-
vorschriften respektive Berechungsplänen wird erst ab den 1940er Jahren 
zu einem maßgeblichen Teil der Forschungspraxis. 
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sche Anschauung, allerdings weniger aufgrund ihrer Sichtbarkeit als 
aufgrund dessen, was sie zeigen. Doch was zeigt sich? 
 
Die neuen Möglichkeitsräume zeigen, oder besser enthüllen, das, was 
die Wissenschaft seit der Neuzeit zum Ziel hat: den Blick ins Innere der 
Phänomene. „Every natural action depends on things infinitely small, or 
at least too small to strike the sense,“ schrieb Bacon 1620 im New Or-
ganon. „No one can hope to govern or change nature until he has duly 
comprehended and observed them“ (Bacon 1620: II. Buch VI). Dieser 
Blick ins Innere wurde in der Neuzeit als ‚Blick für Kausales‘ anhand 
instrumentenbasierter Beobachtung und Messung sowie der Mathemati-
sierung von Theorie inauguriert und gestaltete das Sehen und Denken 
um. Doch diese Neukonfiguration des Blicks und des Denkens, also der 
zweite Typ der empirischen Extension und die physiko-mathematische 
Forschungslogik, gingen noch nicht tief genug. Daher monierte Osborn 
Reynolds 1877 zu recht: „Now the reason why mathematicians have 
thus been baffled by the internal motions of fluids appear to be very 
simple. Of the internal motions of water or air we can see nothing. On 
drawing the disc through the water there is no evidence of the water be-
ing in a motion at all, so that those who have tried to explain these re-
sults have had no clue; they have had not only to determine the degree 
and direction of the motion, but also its character“ (Reynolds 1877: 
185). Sowohl der experimentelle Blick, wie von Reynolds vorexerziert, 
als auch der mathematische Blick mussten tiefer vordringen, wollten sie 
den Blick ins Innere der Phänomene tatsächlich erweitern. Was zunächst 
im 19. und 20. Jahrhundert experimentell möglich wurde und zur hypo-
thetisch-deduktiven Forschungslogik führte, wurde mit dem Aufkom-
men der Computer komplettiert. Komplettiert insofern nun auch die Ma-
thematik, als Kulturtechnik des Rechnens, der Koordination von Expe-
riment, Messung und Theorie in denselben Darstellungsraum folgte. 
Denn durch die diskrete Metrik des Computers bewegt sich die compu-
terbasierte Mathematik ausschließlich in dem durch Koordinaten metri-
sierten, rein symbolischen Raum der Mannigfaltigkeiten, dessen Sprache 
die Algorithmen sind.22 Leitete „das Projekt der neuzeitlichen Wissen-
schaft […] seine Macht aus dem spezifisch technologischen Charakter 
der Darstellungsräume her. Die Kräfte und die Art von Überlegungen, 

                                              
22  Diese Transformation in einen Raum der Mannigfaltigkeiten leistete be-

reits der Funktionsbegriff, der 1694 erstmals bei Leibniz auftaucht und in 
den folgenden Diskussionen mit Jakob Bernoulli und später durch Leon-
hard Euler allmählich Gestalt annimmt (vgl. Leibniz 1694; Euler 1748; 
Cassirer 1910). Der Computer stellt nun das passende Medium für den 
automatisierten Umgang mit Mannigfaltigkeiten dar.  
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die sie freisetzen, ebenso wie die Regeln, denen sie gehorchen, sind we-
niger die von cartesischen Subjekten als vielmehr die von technologisch-
epistemischen Texturen“ (Rheinberger 2001: 243, 244). So leitet das 
Projekt der (post)modernen Wissenschaft seine Macht zwar ebenfalls 
aus dem spezifisch technologischen Charakter seiner Darstellungsräume 
her, allerdings hat sich dieser technologische Charakter durch den Com-
puter grundlegend verändert. Diese Veränderung betrifft nicht nur die 
Computerexperimente, sondern ist grundsätzlicher Natur, denn jedes 
Messinstrument und jeder Detektor im experimentellen Umfeld ist mitt-
lerweile mit Computerchips ausgestattet. Dies macht den Blick auf die 
Simulation aus Perspektive der traditionellen Verfahren – Theorie, Mo-
dell, Messung, Beobachtung – unmöglich, da die klassischen Verfahren 
so nicht mehr existieren, sondern ebenfalls in den veränderten technolo-
gischen Charakter der wissenschaftlichen Darstellungsräume eingepasst 
wurden. Die Computerisierung dieser Darstellungsräume entwickelte 
sich im Laufe der letzten sechzig Jahre zur grundlegenden Prämisse ak-
tueller Forschung, ob in den in-silico Experimentalsystemen, in den glo-
balen Messkampagnen oder in den Experimentalsystemen der Labore.23 
 
Doch die Frage, was sich zeigt, ist noch nicht ganz beantwortet. Die 
große mathematische Leistung der Neuzeit war die Auflösung der geo-
metrischen Anschaulichkeit durch die Arithmetik. „Die anschauliche 
geometrische Linie löst sich kraft dieses Verfahrens in eine reine Wert-
folge von Zahlen auf, die durch eine bestimmte arithmetische Regel mit-
einander verknüpft sind“ (Cassirer 1910: 95). Dies bedeutet, wie Ernst 
Cassirer in Substanzbegriff und Funktionsbegriff schreibt, dass die 
Raumbegriffe durch Zahlenbegriffe und infolge dessen durch Reihenbe-
griffe substituiert werden.  
 
„Die Umsetzung der Raumbegriffe in Zahlenbegriffe erhebt daher zugleich 
das Ganze der geometrischen Forschung auf ein neues gedankliches Niveau. 
Die substantiellen Formbegriffe der antiken Geometrie, die in starre Absonde-
rung einander gegenüberstanden, verwandeln sich kraft dieser Übertragung in 
reine ‚Reihenbegriffe‘, die nach bestimmten Grundprinzipien auseinander er-
zeugbar werden. […] Erst die Umbildung des Gehalts der Geometrie schafft 
Raum für eine neue Logik der Mannigfaltigkeiten, die über die Grenzen der 
Syllogistik hinausgreift“ (Cassirer 1910: 93). „Die Auflösung der Raumbegrif-
fe in Reihenbegriffe bleibt der leitende Gesichtspunkt; aber das System der 
Reihenbegriffe muß derart vertieft und verfeinert werden, daß dadurch nicht 

                                              
23  Die Experimentallabore sind interessante Hybride traditioneller Experi-

mentalsysteme kombiniert mit computerbasierten Technologien der Mes-
sung und Auswertung. 
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nur, wie bisher, ein enger Ausschnitt, sondern das Gesamtgebiet der mögli-
chen räumlichen Gestaltungen übersehbar und beherrschbar wird. Diese For-
derung ist es, kraft deren die Cartesische Geometrie sich mit innerer Notwen-
digkeit zur Infinitesimal-Geometrie erweitert“ (Cassirer 1910: 96). 
 
Dieses Gesamtgebiet der möglichen Gestaltungen der Mannigfaltigkei-
ten konstituiert den mathematischen Möglichkeitsraum, der sich erst 
durch die enorme Rechenkraft des Computers entfaltet. Dabei müssen 
diese Gestaltungen nicht unbedingt anschaulich sein, insbesondere wenn 
sie höher dimensionale Objekte oder andere, für unsere Anschauungs-
gewohnheiten exotische Gebilde sind. Doch im wissenschaftlichen An-
wendungskontext geht es um die Erforschung und die Anschaulichkeit 
dieser Möglichkeitsräume, da in physikalisch fundierten Kontexten die 
erzeugten Reihenbildungen als Trajektorien Auskunft über die Dynamik 
der zu untersuchenden Prozesse in Raum und Zeit geben. In dieser Tra-
ditionslinie stehend geben Computer Einblick in das Innere der Phäno-
mene, indem sie das Innere aus Mannigfaltigkeiten rekonstruieren und 
es nach außen kehren, es umstülpen. Durch diese von Innen nach Außen 
gekehrten Ansichten entsteht ein interessanter Verfremdungseffekt, der 
sich darin zeigt, dass sich gegenwärtig das verändert, was wissenschaft-
lich als real gilt. Ebenso wie sich durch die charakteristische, symboli-
sche Form der neuzeitlichen Forschung der wissenschaftliche Erfah-
rungsbegriff veränderte, wandelt er sich aktuell erneut. 
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