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b label variable
b optimal labeling
b optimal label
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Symbols and Notation X

k set of possible labels
Ly perimeter of superpixel b
l triangle index
AF smoothness regularization constant for the optical flow field
Ag label consistency weight
ﬂg superpixel color center
i superpixel spatial center
" set of superpixel centers
ﬁ‘;t spatial center of a temporally consistent superpixel
ﬁbf f weighted average flow of superpixel b in frame ¢
N number of pixels in an image
n set of pixels or sites
ny, set of pixels in superpixel with label b
Tt set of pixel in superpixel with label b at time ¢
n;‘t hidden fraction of superpixel b in frame ¢
o set of observations
0 observation
o optical flow vector
5] optical flow vector in homogeneous coordinates
P number of past frames
P() probability function
D(+) potential function
U,(+) non-quadratic penalty function
Qp iso-perimetric quotient of superpixel b
S average superpixel edge length
SA 3D segmentation accuracy
o% variance of the average flow weighting function
T total number of frames
t time index
T local frame index
UE 3D undersegmentation error
V., (b,d) pairwise energy for assigning labels b, d to the pixels 7, j
VoA variance of area
W length of the sliding window
% color vector of a pixel
I spatial vector of a pixel
Z number of iterations
z iteration index
Con averaged benchmark result m
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Abstract

A wide variety of computer vision applications rely on superpixel or supervoxel
algorithms as a preprocessing step. This underlines the overall importance that
these approaches have gained in recent years. However, most methods show a lack
of temporal consistency or fail in producing temporally stable segmentations.

In this regard, this thesis presents a highly competitive approach for tempo-
rally consistent superpixels for video content. The approach is based on energy-
minimizing clustering utilizing a novel hybrid clustering strategy for a multidimen-
sional feature space. By working in a joint global color space, but keeping the
positions of the superpixels localized to the frame level, the framework allows for
arbitrary large displacements of the superpixels along the image plane over time.
By applying a contour-based optimization the spatial coherency of the pixels of
each superpixel is ensured while obeying the optimization target at all times. A
sliding window technique enables the approach to process videos of arbitrary length
in a streaming fashion. To propagate the superpixel segmentation while shifting
the sliding window over the video volume, this thesis proposed two novel prop-
agation methods. While the first approach is trimmed for efficiency and utilizes
sparse optical flow vectors in combination with a Delaunay triangulation, the sec-
ond approach individually propagates the shape of each superpixel. The individual
propagation enables the detection of occluded and disoccluded image regions. In
order to provide equally sized superpixels, this thesis further proposes a novel ap-
proach to handle structural changes in the video volume by utilizing the collected
dis-/occlusion information.

For a thorough evaluation, the proposed approach is compared to state-of-the-
art spatio-temporal oversegmentation algorithms using established benchmark met-
rics. The benchmark results show that the proposed framework produces the lowest
spatio-temporal segmentation error of all approaches. Thereby, creating longer tem-
poral superpixel trajectories than approaches with a comparable segmentation error.
This shows that the proposed method extracts the temporal connections of the im-
age regions inherent in the video volume to a higher extent than previous methods.
Simultaneously, its run time scales better than approaches of comparable quality, as
it only depends linearly on the number of pixels as well as the number of superpixels.

The effectiveness of the proposed method is further evaluated by showing its ap-
plication to the task of interactive video segmentation using graph cut techniques.
When compared to a voxel level processing of the video material the proposed over-
segmentation method decreases the initial segmentation error by over 47 %. Addi-
tionally, its application reduces the average run time of the performed graph cut
from 31 minutes to under 7 ms per sequence.

Keywords: superpixels, temporal consistency, supervoxels, oversegmentation,
occlusion, interactive video segmentation
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Kurzfassung

Eine grofile Anzahl Computer Vision Applikationen basiert auf der Verwendung von
Superpixeln oder Supervoxeln als Vorverarbeitungsschritt. Dies unterstreicht die
Wichtigkeit, welche diese Ansétze in den letzten Jahren erlangt haben. Viele dieser
Methoden erzeugen allerdings zeitlich inkonsistente oder instabile Segmentierungen.

Ziel dieser Arbeit ist die Beschreibung eines Systems zur Erzeugung zeitkonsis-
tenter Superpixelsegmentierungen fiir Videos. Der Ansatz basiert auf einem ener-
gieminimierenden Verfahren zur Cluster Analyse und nutzt einen neuen, hybriden
Ansatz fiir den multidimensionalen Merkmalsraum. Dabei kommt ein globaler, zu-
sammengefasster Farbraum zur Anwendung, wiahrend die rdumlichen Positionen der
Superpixel auf den Einzelbildern betrachtet werden. Somit lassen sich beliebig grofie
Bewegungen von Bildregionen entlang der Bildebene durch die Superpixel abbilden.
Indem eine konturbasierte Optimierung Anwendung findet, wird der raumliche Zu-
sammenhalt der Pixel jedes Superpixels garantiert, wihrend das Optimierungskrite-
rium zu jedem Zeitpunkt Berticksichtigung findet. Durch den Einsatz einer Fenste-
rungstechnik lassen sich dabei beliebig lange Videosequenzen sukzessiv verarbeiten.
Um die Segmentierung wiahrend der sukzessiven Verarbeitung zu propagieren, wer-
den in dieser Arbeit zwei neue Ansitze hierfir vorgestellt. Wahrend beim Ersten
grofles Augenmerk auf die Effektivitat gelegt wird und eine Delaunay Triangulati-
on in Kombination mit einzelnen, verfolgten Merkmalspunkten Anwendung findet,
propagiert der Zweite jeden Superpixel einzeln. Hierbei lassen sich Riickschliisse auf
verdeckte und aufgedeckte Bildregionen ziehen. Diese Informationen werden im wei-
teren Verlauf dazu genutzt, um auf strukturelle Anderungen im Videovolumen zu
reagieren und hierdurch moglichst gleichgrofle Superpixel zu generieren.

In einer umrangreichen Evaluierung mit etablierten Testverfahren wird das vorg-
stellte System mit aktuellen Verfahren zur Videoiibersegmentierung verglichen. Die
Ergebnisse zeigen, dass das vorgeschlagene Verfahren den geringsten Segmentie-
rungsfehler aufweist. Gleichzeitig werden zeitlich langere Superpixeltrajektorien er-
zeugt als von Verfahren vergleichbarer Segmentierungsqualitét. Dies zeigt, dass das
vorgestellte Verfahren die im Video enthaltenen zeitlichen Verbindungen der Bild-
regionen besser extrahiert als frithere Anséitze. Gleichzeit skaliert die Laufzeit des
Verfahrens besser, da sie nur linear mit der Anzahl der Pixel und Superpixel ansteigt.

Dartiber hinaus wid die Leistungsféhigkeit des Verfahren am Beispiel der inter-
aktiven Videosegmentierung mittels des Graph-Cut Algorithmus demonstriert. Ver-
glichen mit einer pixelweisen Verarbeitung des Videomaterials veringert sich der
initiale Segmentierungsfehler bei Anwendung des vorgestellten Verfahrens um tiber
47 %. Zusatzlich verkiirzt sich die durchschnittliche Ausfiihrungszeit des Graph-Cut
Algorithmus von 31 Minuten auf unter 7 ms pro Sequenz.

Stichworte: Superpixel, Zeitkonsistenz, Supervoxel, Ubersegmentierung, Verde-
ckung, interaktive Videosegmentierung
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