Systemarchitektur

In diesem Kapitel wird exemplarisch die im Rahmen des NuR.E-Projekts
entwickelte Systemarchitektur beschrieben. Je nach Anforderungen an
das System, kann sich jedoch auch durchaus eine andere Systemarchi-
tektur besser eignen. Die einzelnen Bausteine der in diesem Projekt um-
gesetzten Systemarchitektur und die Zusammenhiange zwischen diesen,
sind in Abbildung 15 schematisch dargestellt.

—> Datenfluss

I Universitit zu Libeck
Bushersteller

Bordcomp
B Verkehrsunternehmen

[HTTPS
UNIVERSITAT ZU LUBECK BUSHERSTELLER

redis Datenstrom Fernwartungs-
server

HTTP

NuR.E
aufbereitung Server

Webserver

Abbildung 15. NuR.E Systemarchitektur

Nicht alle dargestellten Komponenten sind fiir eine korrekte Funktions-
weise des Demonstratorsystems notwendig. Der Fernwartungsserver ist
speziell auf den Bordcomputer abgestimmt und dient nur zur Fehlerana-
lyse bei Problemen mit der Dateniibertragung zwischen dem Bus und

14:02:50. inlt Access - [Tm

39

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Implementierung eines Reichweitenmanagementsystems fiir Elektrobusse

40

der Datenbank des Busherstellers. Aus Sicherheitsgriinden ist diese Funk-
tionalitdt vom Rest des NuR.E-System abgekapselt.

Auch die Daten-Simulation ist keine essentielle Komponente des Sys-
tems. Sie unterstiitzt ausschliefSlich die Entwicklung des Systems, indem
beispielsweise bestimmte Szenarien oder Fahrmandver gezielt getestet
werden konnen. Dies hat sich wihrend der Entwicklung als enorm hilf-
reich erwiesen.

In den folgenden Unterkapiteln werden einzelne Komponenten der Sys-
tems néher beschrieben und wesentliche Konzepte erklart. Zudem wer-
den mégliche alternative Herangehensweisen kurz diskutiert.

Anzeigetablet

Als Anzeigegerat wurde im NuR.E Projekt ein iPad Mini gewihlt. Das

Tablet erfiillt alle oben beschriebenen Anforderungen an Displaygrofle,
Pixeldichte, Helligkeit und Kontrast. Weiterhin bietet Apple mit dem Su-
pervised Mode einen sehr umfangreichen Kiosk-Modus: Schaltet man

diesen Modus tiber die Apple Entwickler- und Management-Tools frei,
stehen umfangreiche administrative Funktionen zur Verfiigung. Der Sin-
gle App Mode erlaubt es beispielsweise, eine App auszuwéhlen, die per-
manent gedfinet bleibt. Der Benutzer hat in diesem Modus keinerlei

Moglichkeiten, die zuvor festgelegte App zu schlieflen. Zudem bietet der
Single App Mode den Vorteil, dass auch nach einem Neustart des Gera-
tes sofort wieder die zuvor festgelegte App automatisch geoffnet wird.
Der Single App Mode funktioniert nur mit Standalone-Applikationen.
Es gibt jedoch eine ganze Reihe an Apps, die in einem integrierten Brow-
ser eine zuvor festgelegte Website anzeigen kénnen. Eine solche App in

Kombination mit dem Single App Mode bietet so die vielversprechends-
te Losung. Als problematisch erwiesen sich jedoch die Updates von Apple,
die regelméflig zu Problemen mit dem Single App Mode gefiihrt haben.
Dabher sollten automatische Updates auf dem Gerit deaktiviert werden.

Auf Android sind derartige Losungen (zum Zeitpunkt dieses Projektes)

leider nicht, beziehungsweise nur in einer eingeschrankten Form, ver-
fugbar.

14:02:50. nli Access

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Systemarchitektur

Im Praxistest hat sich ein iPad Mini im Single App Mode in Kombinati-
on mit der App Kiosk Pro Plus als eine fiir das NuR.E-System geeignete
Grundlage erwiesen. Diese bietet umfangreiche Konfigurationsméglich-
keiten und auch eine JavaScript-API, mit der auch der Zugriff auf ver-
schiedene Gerite-Funktionalititen moglich ist. So konnen {iber die API
beispielsweise verschiedene Sensordaten ausgelesen werden.

Client-Server-Architektur

Dieses Kapitel beschreibt die wesentlichen Konzepte und Ideen der Cli-
ent-Server-Architektur sowie die verwendeten Programmiersprachen.
Dabei wird auch auf deren Vor- und Nachteile eingegangen, sowie mog-
liche Alternativen diskutiert.

Frameworks und Programmiersprachen

Die erste Version der Client App wurde mit purem JavaScript, HTML
und CSS geschrieben. Es kam kein Framework zum Einsatz. Dadurch
konnten zwar recht schnell gute Ergebnisse erzielt werden, die Wartbar-
keit und die Erweiterbarkeit waren jedoch nur bedingt gegeben. Fiir den
Node-Server als Backend verhielt es sich dhnlich.

In einer zweiten Iteration wurden dahingehend groélere Anderungen
vorgenommen. Der Node-Server stellt keine klassische REST-API zur
Verfiigung, sondern setzt auf die noch relativ neue GraphQL-Technolo-
gie. Bei einer GraphQL-API erhilt der Client mehr Kontrolle iiber sei-
ne API-Requests. Die API wurde mit Apollo-Framework umgesetzt.
Apollo stellt zudem automatisch einen GraphQl-Playground zur verfii-
gung, mit dem die Schnittstelle auf einfache Art und Weise und ohne ex-
terne Tools getestet werden kann.

Fiir die Client-App wird das JavaScript-Framework Vue.js genutzt. Al-
ternativ waren auch andere JS-Frameworks, wie zum Beispiel React oder
Angular denkbar gewesen. Vue.js zeichnet sich aber vor allem durch eine
schnelle Erlernbarkeit aus und bietet so einen einfacheren Einstieg fiir
noch wenig erfahrene Entwickler.

14:02:50. nli Access

41

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Implementierung eines Reichweitenmanagementsystems fiir Elektrobusse

42

Die Verwendung eines Frameworks hat zudem das gleichzeitige Arbei-
ten an mehreren Interface-Prototypen deutlich vereinfacht.

Implementierung

Fiir den Einsatz im Bus wird ein iPad Mini genutzt, welches mit einer
speziellen Halterung fest im Bus installiert ist und iiber den Bus durch-
gehend mit Strom versorgt wird. Der Anwendungsserver ist mit Node.
js implementiert und stellt eine GraphQL-API nach auflen zur Verfii-
gung. Neben reguldren HT'TP-Requests ist auch eine Kommunikation
tiber einen Websocket méglich. Dadurch kénnen Nachrichten ohne die
durch ein Polling entstehende Verzogerung direkt vom Server an den
Client gesendet werden. Dies ist vor allem dann sinnvoll und auch not-
wendig, wenn die Client-App auf Echtzeitdaten angewiesen ist.

Durch die strikte Trennung von Client und Server kann die GraphQL-
API natiirlich auch ohne Probleme in Kombination mit einer anderen,
selbst entwickelten, Client-App genutzt werden.

Der Node-Server erhilt die Fahrdaten der Busse iiber eine Redis-Instanz.
Fiir jeden Bus existiert ein separates Topic, in welchem die Fahrdaten ge-
publisht werden. Uber die GraphQL-API kann jeder Client dann ent-
sprechend das fiir ihn relevante Topic subscriben. Durch die Nutzung
von Redis spielt die Herkunft der Daten keine Rolle, es muss nur sicher-
gestellt werden, dass die Fahrdaten in einem bestimmten Format im ent-
sprechenden Topic gepublisht werden. In diesem konkreten Anwen-
dungsfall werden die Fahrdaten vom Bus an den Hersteller gesendet und
dort in einer MySQL-Datenbank gespeichert. Diese Datenbank wird auf
einen Server der Universitit zu Liibeck gespiegelt. Zusitzlich lduft ein
Node-Script, welches ankommende Daten aufbereitet und schlussend-
lich im Redis-Topic veréffentlicht und so dem NuR.E-Anwendungsserver
zur Verfigung stellt. Fiir die Nutzung des Codes muss dementsprechend
moglicherweise zunidchst ein Skript geschrieben werden, welches die
Fahrdaten tiber Redis dem NuR.E-Anwendungsserver zur Verfiigung
stellt. Redis dient somit als Briicke zwischen dem Anwendungsserver
und den Datenquellen. Auch die Simulation ist im Wesentlichen nur eine

14:02:50. nli Access

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Systemarchitektur

weitere Datenquelle und published die Fahrdaten im entsprechenden
Topic.

Datenbankarchitektur

Auf dem MySQL-Server liegen drei Datenbanken: vehicleData,
processedVehicleData und nureData. Die vehicleData-Datenbank bildet
das Gegenstiick zur Datenbank des Busherstellers. Alle Fahrdaten wer-
den automatisch in diese Datenbank iibertragen. Die Daten werden be-
reinigt, aufbereitet und anschlieflend in der processedVehicleData-Da-
tenbank gespeichert. Diese beiden Datenbanken sind ausschlief3lich fiir
die Datentibertragung notwendig und werden gegebenenfalls nicht be-
notigt, sofern die Daten auf eine andere Art und Weise iibertragen wer-
den. Die hier zum Einsatz kommende Art der Dateniibertragung ist in
keinster Weise optimal. Durch die IT-Infrastruktur des Busherstellers
gab es jedoch keine umsetzbaren Alternativen.

Viel wichtiger fiir das NuR.E-System ist die nureData-Datenbank. In die-
ser werden systemrelevante Daten abgelegt. Dazu zéhlen unter anderem
Benutzerdaten, von dem Fahrpersonal iiber das Tablet abgegebenes Feed-
back und vom Tablet aufgezeichneten Sensordaten.

43

14:02:50. nli Access

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

hitps://doi.ong/10.5771/9783828875746-39 - am 23.01.2028, 14:02:50.

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	Anzeigetablet
	Client-Server-Architektur
	Datenbankarchitektur

