
39

Systemarchitektur

In diesem Kapitel wird exemplarisch die im Rahmen des NuR.E-Projekts
entwickelte Systemarchitektur beschrieben. Je nach Anforderungen an
das System, kann sich jedoch auch durchaus eine andere Systemarchi-
tektur besser eignen. Die einzelnen Bausteine der in diesem Projekt um-
gesetzten Systemarchitektur und die Zusammenhänge zwischen diesen,
sind in Abbildung 15 schematisch dargestellt.

Abbildung 15. NuR.E Systemarchitektur

Nicht alle dargestellten Komponenten sind für eine korrekte Funktions-
weise des Demonstratorsystems notwendig. Der Fernwartungsserver ist
speziell auf den Bordcomputer abgestimmt und dient nur zur Fehlerana-
lyse bei Problemen mit der Datenübertragung zwischen dem Bus und

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

40

Implementierung eines Reichweitenmanagementsystems für Elektrobusse

der Datenbank des Busherstellers. Aus Sicherheitsgründen ist diese Funk-
tionalität vom Rest des NuR.E-System abgekapselt.

Auch die Daten-Simulation ist keine essentielle Komponente des Sys-
tems. Sie unterstützt ausschließlich die Entwicklung des Systems, indem
beispielsweise bestimmte Szenarien oder Fahrmanöver gezielt getestet
werden können. Dies hat sich während der Entwicklung als enorm hilf-
reich erwiesen.

In den folgenden Unterkapiteln werden einzelne Komponenten der Sys-
tems näher beschrieben und wesentliche Konzepte erklärt. Zudem wer-
den mögliche alternative Herangehensweisen kurz diskutiert.

Anzeigetablet

Als Anzeigegerät wurde im NuR.E Projekt ein iPad Mini gewählt. Das
Tablet erfüllt alle oben beschriebenen Anforderungen an Displaygröße,
Pixeldichte, Helligkeit und Kontrast. Weiterhin bietet Apple mit dem Su-
pervised Mode einen sehr umfangreichen Kiosk-Modus: Schaltet man
diesen Modus über die Apple Entwickler- und Management-Tools frei,
stehen umfangreiche administrative Funktionen zur Verfügung. Der Sin-
gle App Mode erlaubt es beispielsweise, eine App auszuwählen, die per-
manent geöffnet bleibt. Der Benutzer hat in diesem Modus keinerlei
Möglichkeiten, die zuvor festgelegte App zu schließen. Zudem bietet der
Single App Mode den Vorteil, dass auch nach einem Neustart des Gerä-
tes sofort wieder die zuvor festgelegte App automatisch geöffnet wird.
Der Single App Mode funktioniert nur mit Standalone-Applikationen.
Es gibt jedoch eine ganze Reihe an Apps, die in einem integrierten Brow-
ser eine zuvor festgelegte Website anzeigen können. Eine solche App in
Kombination mit dem Single App Mode bietet so die vielversprechends-
te Lösung. Als problematisch erwiesen sich jedoch die Updates von Apple,
die regelmäßig zu Problemen mit dem Single App Mode geführt haben.
Daher sollten automatische Updates auf dem Gerät deaktiviert werden.

Auf Android sind derartige Lösungen (zum Zeitpunkt dieses Projektes)
leider nicht, beziehungsweise nur in einer eingeschränkten Form, ver-
fügbar.

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

41

Systemarchitektur

Im Praxistest hat sich ein iPad Mini im Single App Mode in Kombinati-
on mit der App Kiosk Pro Plus als eine für das NuR.E-System geeignete
Grundlage erwiesen. Diese bietet umfangreiche Konfigurationsmöglich-
keiten und auch eine JavaScript-API, mit der auch der Zugriff auf ver-
schiedene Geräte-Funktionalitäten möglich ist. So können über die API
beispielsweise verschiedene Sensordaten ausgelesen werden.

Client-Server-Architektur

Dieses Kapitel beschreibt die wesentlichen Konzepte und Ideen der Cli-
ent-Server-Architektur sowie die verwendeten Programmiersprachen.
Dabei wird auch auf deren Vor- und Nachteile eingegangen, sowie mög-
liche Alternativen diskutiert.

Frameworks und Programmiersprachen

Die erste Version der Client App wurde mit purem JavaScript, HTML
und CSS geschrieben. Es kam kein Framework zum Einsatz. Dadurch
konnten zwar recht schnell gute Ergebnisse erzielt werden, die Wartbar-
keit und die Erweiterbarkeit waren jedoch nur bedingt gegeben. Für den
Node-Server als Backend verhielt es sich ähnlich.

In einer zweiten Iteration wurden dahingehend größere Änderungen
vorgenommen. Der Node-Server stellt keine klassische REST-API zur
Verfügung, sondern setzt auf die noch relativ neue GraphQL-Technolo-
gie. Bei einer GraphQL-API erhält der Client mehr Kontrolle über sei-
ne API-Requests. Die API wurde mit Apollo-Framework umgesetzt.
Apollo stellt zudem automatisch einen GraphQl-Playground zur verfü-
gung, mit dem die Schnittstelle auf einfache Art und Weise und ohne ex-
terne Tools getestet werden kann.

Für die Client-App wird das JavaScript-Framework Vue.js genutzt. Al-
ternativ wären auch andere JS-Frameworks, wie zum Beispiel React oder
Angular denkbar gewesen. Vue.js zeichnet sich aber vor allem durch eine
schnelle Erlernbarkeit aus und bietet so einen einfacheren Einstieg für
noch wenig erfahrene Entwickler.

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

42

Implementierung eines Reichweitenmanagementsystems für Elektrobusse

Die Verwendung eines Frameworks hat zudem das gleichzeitige Arbei-
ten an mehreren Interface-Prototypen deutlich vereinfacht.

Implementierung

Für den Einsatz im Bus wird ein iPad Mini genutzt, welches mit einer
speziellen Halterung fest im Bus installiert ist und über den Bus durch-
gehend mit Strom versorgt wird. Der Anwendungsserver ist mit Node.
js implementiert und stellt eine GraphQL-API nach außen zur Verfü-
gung. Neben regulären HTTP-Requests ist auch eine Kommunikation
über einen Websocket möglich. Dadurch können Nachrichten ohne die
durch ein Polling entstehende Verzögerung direkt vom Server an den
Client gesendet werden. Dies ist vor allem dann sinnvoll und auch not-
wendig, wenn die Client-App auf Echtzeitdaten angewiesen ist.

Durch die strikte Trennung von Client und Server kann die GraphQL-
API natürlich auch ohne Probleme in Kombination mit einer anderen,
selbst entwickelten, Client-App genutzt werden.

Der Node-Server erhält die Fahrdaten der Busse über eine Redis-Instanz.
Für jeden Bus existiert ein separates Topic, in welchem die Fahrdaten ge-
publisht werden. Über die GraphQL-API kann jeder Client dann ent-
sprechend das für ihn relevante Topic subscriben. Durch die Nutzung
von Redis spielt die Herkunft der Daten keine Rolle, es muss nur sicher-
gestellt werden, dass die Fahrdaten in einem bestimmten Format im ent-
sprechenden Topic gepublisht werden. In diesem konkreten Anwen-
dungsfall werden die Fahrdaten vom Bus an den Hersteller gesendet und
dort in einer MySQL-Datenbank gespeichert. Diese Datenbank wird auf
einen Server der Universität zu Lübeck gespiegelt. Zusätzlich läuft ein
Node-Script, welches ankommende Daten aufbereitet und schlussend-
lich im Redis-Topic veröffentlicht und so dem NuR.E-Anwendungsserver
zur Verfügung stellt. Für die Nutzung des Codes muss dementsprechend
möglicherweise zunächst ein Skript geschrieben werden, welches die
Fahrdaten über Redis dem NuR.E-Anwendungsserver zur Verfügung
stellt. Redis dient somit als Brücke zwischen dem Anwendungsserver
und den Datenquellen. Auch die Simulation ist im Wesentlichen nur eine

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

43

Systemarchitektur

weitere Datenquelle und published die Fahrdaten im entsprechenden
Topic.

Datenbankarchitektur

Auf dem MySQL-Server liegen drei Datenbanken: vehicleData,
 processedVehicleData und nureData. Die vehicleData-Datenbank bildet
das Gegenstück zur Datenbank des Busherstellers. Alle Fahrdaten wer-
den automatisch in diese Datenbank übertragen. Die Daten werden be-
reinigt, aufbereitet und anschließend in der processedVehicleData-Da-
tenbank gespeichert. Diese beiden Datenbanken sind ausschließlich für
die Datenübertragung notwendig und werden gegebenenfalls nicht be-
nötigt, sofern die Daten auf eine andere Art und Weise übertragen wer-
den. Die hier zum Einsatz kommende Art der Datenübertragung ist in
keinster Weise optimal. Durch die IT-Infrastruktur des Busherstellers
gab es jedoch keine umsetzbaren Alternativen.

Viel wichtiger für das NuR.E-System ist die nureData-Datenbank. In die-
ser werden systemrelevante Daten abgelegt. Dazu zählen unter anderem
Benutzerdaten, von dem Fahrpersonal über das Tablet abgegebenes Feed-
back und vom Tablet aufgezeichneten Sensordaten.

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.5771/9783828875746-39 - am 23.01.2026, 14:02:50. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783828875746-39
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	Anzeigetablet
	Client-Server-Architektur
	Datenbankarchitektur

