

Fortschritt-Berichte VDI

M.Sc. Constantin Wagner,
Karben

Nr. 1266

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

Konzept zur Unter-
stützung der
dezentralen Wieder-
verwendung in
komponentenbasierten
Systemen der
operativen Leittechnik

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

PI
TS
TO
PS
ER

VE
R

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

“Konzept zur Unterstützung der dezentralen Wiederverwendung in
komponentenbasierten Systemen der operativen Leittechnik“

Von der Fakultät für Georessourcen und Materialtechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von M. Sc.

Constantin August Wilhelm Wagner

aus Berlin.

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Alexander Fay

Tag der mündlichen Prüfung: 17. Mai 2019

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

II

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Fortschritt-Berichte VDI

Konzept zur Unter-
stützung der
dezentralen Wieder-
verwendung in
komponentenbasierten
Systemen der
operativen Leittechnik

M.Sc. Constantin Wagner,
Karben

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1266

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

D82 (Diss. RWTH Aachen University, 2019)
Tag der mündlichen Prüfung: 17. Mai 2019

© VDI Verlag GmbH · Düsseldorf 2019
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-526608-9

Wagner, Constantin
Konzept zur Unterstützung der dezentralen Wiederverwendung in
komponentenbasierten Systemen der operativen Leittechnik
Fortschr.-Ber. VDI Reihe 08 Nr. 1266. Düsseldorf: VDI Verlag 2019.
160 Seiten, 54 Bilder, 3 Tabellen.
ISBN 978-3-18-526608-9 ISSN 0178-9546,
€ 57,00/VDI-Mitgliederpreis € 51,30.
Für die Dokumentation: Prozessleittechnik – Wiederverwendung – Variantenmodell – Kompo-
nentensysteme – Delta-Modellierung

Die Wiederverwendung von Teillösungen in komponentenbasierten Systemen der Automatisie-
rungstechnik findet in der Praxis, wenn überhaupt, wenig systematisch statt. In dieser Arbeit wird
ein Konzept zur Beschreibung und Wiederverwendung von Komponentensystemen vorgestellt.
Grundlagen des Konzepts sind eine auf Delta-Modellen basierende Variantenbeschreibung und
ein Modell zur Abstraktion von Komponentensystemen. Dadurch ist es möglich, Komponenten-
systeme unabhängig von deren konkreter Realisierung zu beschreiben und wiederzuverwen-
den. Für die Anwendung in der Praxis wird zusätzlich ein Mechanismus zur Bekanntmachung
und Verteilung der Wiederverwendungsgegenstände vorgestellt. Dieser besteht aus Prozessen
zur Anwendung der Modelle sowie der dafür notwendigen Dienste. Das Konzept wurde proto-
typisch realisiert und an Software- und hybriden Systemen erprobt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als Mitarbeiter am Lehrstuhl für
Prozessleittechnik der RWTH Aachen. Auf diese Jahre blicke ich mit Dankbarkeit für die
Unterstützung und die gewährten Chancen zurück. Ich möchte mich an dieser Stelle bei
allen bedanken, die mir während dieser Zeit zur Seite gestanden haben.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. Ulrich Epple für die Unterstützung
meines Promotionsvorhabens. Die konstruktive Atmosphäre am Lehrstuhl und der ausge-
zeichnete fachliche Austausch mit ihm bildeten die Basis für den erfolgreichen Abschluss
meiner Arbeit. Durch die gebotenen Freiräume konnte ich unterschiedliche Facetten der
Automatisierungstechnik kennenlernen und so meinen Horizont erweitern.

Bei Herrn Professor Dr.-Ing. Alexander Fay, Inhaber der Professur für Automatisierungs-
technik der Helmut-Schmidt-Universität / Universität der Bundeswehr, möchte ich mich
für die Übernahme der Rolle des Zweitgutachters und lehrreichen Gespräche bedanken.

Ich danke meinen Kollegen für die gute Zusammenarbeit und die interessanten, teils auch
kontroversen, Diskussionen. Bei Frau Milescu bedanke ich mich insbesondere für die orga-
nisatorische Hilfe und die gute Zusammenarbeit bei der Lehrstuhlverwaltung.

Bei den Mitgliedern des Arbeitskreises 2.2 „Prozessführung“ der NAMUR bedanke ich
mich für den lehrreichen fachlichen Austausch. Durch die Gespräche habe ich wertvolle
Einblicke in die Praxis erhalten.

Bei meiner Freundin Katharina Schüller möchte ich mich für die Unterstützung während
der vergangenen Jahre bedanken. Insbesondere während der intensiven Phasen war sie mir
ein großer Rückhalt.

Abschließend danke ich meinen Eltern Albertine und Michael Wagner sowie meiner Schwe-
ster Charlotte für die Unterstützung während meines Studiums und anschließend während
meiner Promotion. Immer standen sie mir mit Rat und Tat zur Seite.

Karben, im Mai 2019
Constantin Wagner

III

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

IV

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Inhaltsverzeichnis

Abkürzungen VII

Kurzfassung VIII

Abstract X

1 Einführung 1
1.1 Motivation . 1
1.2 Problemdefinition und Lösungsweg . 5
1.3 Aufbau der Arbeit . 6

2 Grundlagen und Stand der Technik 8
2.1 Grundlagen der Automatisierungstechnik 8

2.1.1 Aufbau von Dezentralen Prozessleitsystemen 10
2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie . . . 17
2.1.3 Engineering von automatisierten Systemen 19
2.1.4 Quo vadis Automatisierungstechnik? – Ein Ausblick im Zeitalter von

Industrie 4.0 . 22
2.2 Komponentenbasierte Architekturen . 24

2.2.1 Der Komponentenbegriff . 24
2.2.2 Komponentenbasierte Architekturen in der Automatisierungstechnik 30

2.3 Zwischenfazit . 32

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik 34
3.1 Besonderheiten in der Automatisierungstechnik 34
3.2 Anforderungen an das Konzept . 36

4 Stand der Wissenschaft 39
4.1 Eigene Vorarbeiten . 39
4.2 Grundlagen der Wiederverwendung . 40

4.2.1 Gegenstand der systematischen Wiederverwendung 41
4.2.2 Arten der Wiederverwendung . 43
4.2.3 Versionen und Versionierung . 43
4.2.4 Wiederverwendung in der Automatisierungstechnik 45

4.3 Grundlagen der Variantenbeschreibung . 46
4.3.1 Varianten und Variabilität . 47
4.3.2 Variabilitätsmodelle . 51
4.3.3 Delta-Modelle in der Softwaretechnik 55

V

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Inhaltsverzeichnis

4.4 Modellierungsgrundlagen . 59
4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der Inter-

operabilität . 61
4.4.2 Modellierungssichten . 67
4.4.3 Modelle in der Automatisierungstechnik 69

4.5 Diskussion des Stands der Wissenschaft . 74

5 Wiederverwendung in komponentenbasierten Architekturen 76
5.1 Komponenten-Metamodell - Basis für die Wiederverwendung 78

5.1.1 Modellbeschreibung . 78
5.1.2 Anwendungsregeln für die Komponenten-Metamodelle 82
5.1.3 Einordnung des Komponenten-Metamodells 84
5.1.4 Abgebildete Implementierungen . 84

5.2 ∆ – Metamodell . 87
5.2.1 Modellbeschreibung . 88
5.2.2 Variantenbeschreibung mit Delta-Modellen 90
5.2.3 Verketten von Delta-Modellen . 92
5.2.4 Visualisierung . 95
5.2.5 Mapping in den Problemraum . 96

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung 97
5.3.1 Überblick über das Konzept . 97
5.3.2 Modelltransformationen . 100
5.3.3 Gegenstand der Wiederverwendung 104
5.3.4 Die verteilte Nutzung der Modelle 105
5.3.5 Verwendung in der Praxis . 108

5.4 Kritische Betrachtung des Konzepts . 111
5.4.1 Added Values . 111
5.4.2 Randbedingungen . 112
5.4.3 Handlungsempfehlungen . 113

6 Prototypische Realisierung und Anwendungsfälle 115
6.1 Implementierung in ACPLT/RTE . 115

6.1.1 Umsetzung der Modelle . 116
6.1.2 Realisierung der dezentralen Struktur 117

6.2 Anwendungsfälle . 120
6.2.1 PID-Regler-Baustein . 120
6.2.2 Prozessführungskomponenten . 121
6.2.3 Modulare Anlage M4P.AC . 125

6.3 Evaluierung der Implementierung . 126

7 Diskussion der Ergebnisse 129

8 Zusammenfassung und Ausblick 132

Literaturverzeichnis 133

VI

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Abkürzungen

DDS Data Distribution Service

ERP Enterprise Resource Planning

I4.0 Industrie 4.0

MES Manufacturing Execution System

MTP Module Type Package

MPC Model Predictive Control

NAMUR Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

OMG Object Management Group

OPC UA OPC Unified Architecture

PLS Prozessleitsystem

POE Programmorganisationseinheit

SOA Service orientierte Architektur

SPS Speicherprogrammierbare Steuerung

UML Unified Modeling Language

VII

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Kurzfassung

Im Rahmen der Entwicklung von Automatisierungslösungen sind der überwiegende Anteil
der durchgeführten Arbeiten repetitiver Art. Diese wiederholenden Arbeiten sind fehler-
anfällig und entscheiden nur in geringem Maße über den Projekterfolg. Daher lohnt es
sich, die Mitarbeiter bei diesen Arbeiten zu unterstützen, so dass mehr Ressourcen für
andere Tätigkeiten zur Verfügung stehen. Die entwickelten Automatisierungslösungen äh-
neln sich sehr häufig funktional oder auch ihre Implementierung betreffend. Dies führt zur
Wiederverwendung von Lösungen bzw. Teillösungen. Diese Wiederverwendung ist meist
unsystematisch und nicht explizit dokumentiert. Daraus ergeben sich Herausforderungen
für die Erweiterung oder Änderung von mehrfach genutzten Lösungen. Im Zuge des demo-
grafischen Wandels und der damit einhergehenden Verknappung von qualifizierten Arbeits-
kräften muss die Arbeit effizienter werden. Eine Möglichkeit die Effizienz zu verbessern ist
die Nutzung von Methoden und Tools zur Unterstützung der Wiederverwendung.

In der Automatisierungstechnik ist der Einsatz von komponentenbasierten Systemen (z. B.
Funktionsbausteine IEC 61131 oder Package Units) sehr verbreitet. Dabei handelt es sich
um hybride Systeme, d.h. sowohl um Hard- als auch um Softwaresysteme. Der Fokus der
Automatisierungstechnik liegt auf der Betrachtung von hybriden Systemen.

In der vorliegenden Arbeit wird ein Konzept zur Unterstützung der Wiederverwendung
in komponentenbasierten Architekturen vorgestellt. Als erstes wird dafür der Begriff der
Komponente sowohl für Hard- als auch für Softwarekomponenten gleichermaßen definiert.
Damit ist es möglich, die unterschiedlichen Komponentenarten gleich zu behandeln. Ergeb-
nis dieser Betrachtung ist ein Metamodell für die Beschreibung von Komponentensystemen.
Das Komponenten-Modell besteht aus einem Teil zur Beschreibung von Komponententy-
pen und einem zweiten Teil zur Beschreibung von Systemen, die aus Instanzen zusam-
mengesetzt sind. Kern des Konzepts zur Unterstützung der Wiederverwendung ist das
Delta-Modell aus der Informatik. Dieser Ansatz beschreibt die Variabilität im Problem-
raum. So können implementierungsspezifische Unterschiede zwischen Varianten modelliert
werden. Für die Beschreibung der Delta-Modelle wird ein objektorientiertes Delta-Modell
vorgestellt. Auf Basis des Delta-Modells wird ein Abstandsmaß für die Beschreibung der
Unterschiedlichkeit von Varianten vorgestellt.

Aufbauend auf dem Komponenten- und dem Delta-Modell wird ein Mechanismus zur Nut-
zung der beschriebenen Varianten in der dezentralen Entwicklung und Verwendung von Au-
tomatisierungslösungen vorgestellt. Grundlage für den Mechanismus ist eine Server-Client
Architektur. Auf dem Server werden alle für den Kontext relevanten Typ- und Delta-
Modelle gespeichert. Aus diesen können für den konkreten Anwendungsfall die Instanz-
Modelle gebildet und auf den Client heruntergeladen werden. Mit den auf dem Client
vorhandenen Typ-Modellen, den darin enthaltenen Referenzen zwischen Komponenten-
Typ-Modellen und ihren Implementierungen können die konkreten Komponentensysteme

VIII

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

aufgebaut werden. Der Manager des Clients führt eine Liste der verwendeten Varianten
und bietet die Möglichkeit, nach neueren Varianten auf dem Server zu suchen und diese
herunterzuladen.

Das Konzept unterstützt den Nutzer bei der Wiederverwendung in komponentenbasierten
Systemen. Es bietet mit dem Delta-Modell einen Mechanismus zur abstrakten Beschrei-
bung des Wiederverwendungsgegenstands. Durch das Komponenten-Modell können sowohl
die Komponenten-Typen als auch die Systeme aus Instanzen unabhängig von ihrer konkre-
ten Implementierung beschrieben werden. Durch diese Trennung zwischen dem konkreten
System und der Variabilitätsbeschreibung wird das in den Komponentensystemen enthal-
tene Wissen leicht in neue Systeme übertragbar. Dazu müssen die Typ-Modelle auf die
jeweiligen Implementierungen projiziert werden. Zusätzlich wird eine Trennung zwischen
den Versionen einer Komponente und den Varianten eines Komponentensystems geschaf-
fen.

Für die Wiederverwendung von Lösungen ist es erforderlich, dass der potentielle Nutzer
von einer bereits bestehenden Lösung Kenntnis hat. Zur Förderung der Bekanntheit von
bestehenden Lösungen und zur Unterstützung von deren Austausch zwischen verschie-
denen Systemen dient der Mechanismus zur dezentralen Nutzung. Nutzer können so die
vorhandenen Lösungen erkunden und die Zusammenhänge zwischen ihnen erkennen.

Das vorgestellte Konzept wurde in am Lehrstuhl für Prozessleittechnik der RWTH Aa-
chen entwickelten Laufzeitumgebung ACPLT/RTE prototypisch umgesetzt und erprobt.
Die beschriebenen Modelle wurden in Bibliotheken der Laufzeitumgebung realisiert. Die
Architektur mit den Managern für Server und Client, sowie die notwendigen Transforma-
tionen der Modelle, wurden ebenso implementiert. An drei Anwendungsfällen wurde das
Konzept erprobt. Erster Anwendungsfall ist die Beschreibung von Bausteinen für PID-
Regler. Die verschiedenen Ausprägungen der Prozessführungskomponenten des Lehrstuhls
sind der zweite Anwendungsfall. Als Testfall für ein hybrides System diente die modulare
Anlage des Lehrstuhls für Prozessleittechnik.

IX

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Abstract

A huge part of the tasks conducted in the development of automation solutions is repetitive.
Those repetitive work is error-prone and mostly not that relevant for the success of projects.
Hence, it is beneficial to support the user to fulfill these repetitive tasks such that more
resources can be used for tasks that are more relevant for the project’s success. Most
of the developed automation solutions are similar regarding their functionality or their
implementation. This leads to the reuse of solutions or solution parts. Nowadays, this reuse
is mostly unsystematic and not documented explicitly. As a result, extending or modifying
solutions that are used more than once is challenging. Considering the demographic change
and the resulting reduction of manpower, working must be more efficient. One way to
increase the efficiency is to use methods and tools to support the reuse of solutions in an
appropriate way.

Component-based systems are very much used in the automation domain. Examples are
function blocks of the IEC 61131 or package units. Regarding the focus of the automation
domain, most systems are hybrid systems. Those systems can consist of hard and software
components.

In this thesis, a concept to support the reuse in component-based architectures is introdu-
ced. First, the definition for components used in this thesis are presented. These cover both
hard and software components. Starting from the definition a metamodel for the descripti-
on of component systems. It consists of a part for describing component types and another
part to describe the systems built of the instances. Core element of the concept to support
the reusability is the delta model that is well-known in the software development domain.
Those delta models are used to describe the variability in the solution space. The great
advantage of these models is that implementation specific differences between variants can
be considered. The delta models are described by an object-oriented model and are the
basis for an approach to calculate the differences between variants.

Additionally to the component and delta model, a mechanism to use the variants of au-
tomation solutions in a decentralized development and usage is presented. Basis for this
mechanism is a server- client architecture. Inside the server, all relevant type and delta
models are stored. By combining these models, the concrete instance models describing
a specific variant can be generated and sent to a client. By mapping between the types
and corresponding components on the client, the instance model can be transformed in
a component model. The client’s manager holds a list of all variants used on the client
and provides the feature to search for new variants on the server. Found variants can be
downloaded from the server by the client manager.

This concept supports users with the reuse in component-based systems. The delta model
is provided as a mechanism for the abstract description of the subject of reusability. The
component model allows it to handle solutions in an abstract manner, independent from

X

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

their concrete realization. By this separation, the knowledge included in component-based
systems can easily be transferred into new systems. Only the transformation of types into
new implementations is required. Additionally, the concept supports the separation bet-
ween variants and versions. Different realizations of the same component type are versions
of the component. Because those realizations are compatible to each other their change
has no effect on a component system. Change in the structure or the types of components
in a component system leads to a new variant.

In order to reuse solutions, it is necessary that a potential user is aware of an existing
solution. To support the prominence of existing solutions and their exchange between dif-
ferent systems the mechanism for the decentralized usage is introduced. Users can explore
existing solutions and the relations between them.

The concept was prototypically implemented in the runtime environment of the Chair of
Process Control Engineering at RWTH Aachen University. The introduced models have
been implemented in the object-oriented structure of the runtime environment. The de-
centralized approach along with the managers for the server and client have been realized
as well. Three use cases have been used to test the concept. The first one is modeling and
handling the different variants of a PID control block. The description of the various types
of process control blocks of the Chair of Process Control Engineering is the second use
case. As the third testcase for hybrid systems the chairs modular plant was utilized.

XI

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1 Einführung

Die vorliegende Arbeit stellt ein Konzept zur Unterstützung der dezentralen Wiederver-
wendung in komponentenbasierten Systemen der operativen Leittechnik vor. Dazu werden
in diesem Kapitel zunächst die Motivation und der Aufbau der Arbeit erläutert. Zunächst
wird erklärt, warum es notwendig ist, sich mit der Wiederverwendung in der Automatisie-
rungstechnik zu befassen. Danach erfolgt die Vorstellung der konkreten Problemstellung
und des gewählten Lösungswegs. Abschließend wird die Struktur der Arbeit erklärt.

1.1 Motivation

Aktuell besteht die Herausforderung der Automatisierung nicht in der Herstellung von
Produkten, sondern darin, die dafür nötigen Anlagen wirtschaftlich zu betreiben und die
Produktion an die Marktanforderungen anzupassen [SAG+17]. Die Herstellung der Pro-
dukte ist technisch möglich. Allerdings stellt die wirtschaftliche Produktion von kleinen
Stückzahlen und der Wechsel zwischen Produkten in kurzen Zeiträumen eine große He-
rausforderung dar. Im Folgenden werden die Motive für die Beschäftigung mit Wiederver-
wendung aufgezählt und anschließend genauer beschrieben:

1. Die Automatisierungstechnik wird durch neue Anforderungen zunehmend komplexer.
Dies sind beispielsweise die Produktion kleiner Stückzahlen oder die Sicherstellung
einer höheren Anlagenverfügbarkeit.

2. Ein hoher Anteil der Tätigkeiten im Engineering ist repetitiv. Diese Arbeiten sind
nötig für die Umsetzung der Projekte, bestimmen allerdings nicht den Projekterfolg.

3. Der steigende Kostendruck in der Produktion führt zu einem ebenso steigenden Kos-
tendruck in der Automatisierungstechnik. Dadurch müssen die Aufwände für die
Entwicklung und Wartung der Automatisierungslösungen reduziert werden.

4. Ähnliche, d. h. sich leicht unterscheidende Problemstellungen, führen zu Lösungen
für Aufgaben in der Automatisierungstechnik, die sich nur marginal voneinander
unterscheiden.

5. Komponentenorientierte Architekturen, z. B. nach der IEC 61131 [IEC14b], werden
auch in einer von Servicearchitekturen geprägten Automatisierungstechnik die Basis
für die Entwicklung von Lösungen bilden.

6. Die großen Hindernisse bei der Wiederverwendung von Lösungen sind weniger tech-
nischer, sondern vielmehr organisatorischer Natur. Zudem findet in der Prozessin-
dustrie eine systematische Wiederverwendung bestehender Komponentensysteme in
den meisten Fällen nicht statt.

1

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1 Einführung

Zunehmnde Komplexität in der Automatisierungstechnik
Die Automatisierungstechnik hat die Aufgabe, Maschinen in die Lage zu versetzen,
(Produktions-) Prozesse teilweise oder vollständig autonom durchführen zu können. An-
trieb für den Einsatz von Automatisierung können verschiedene Gründe sein, z. B., dass ein
Prozess nicht von Menschen durchgeführt werden kann oder dass die Durchführung nicht
ökonomisch sinnvoll ist. Zur Realisierung der gestellten Aufgaben greifen Automatisie-
rungstechniker neben den Methoden der Regelungstechnik auf Konzepte und Technologien
aus anderen Domänen zurück. Der klassische Aufbau der Automatisierungstechnik wird
in Form einer geschichteten Pyramide beschrieben (Abbildung 1.1). Im unteren Bereich
ist das Feld, d. h. die Maschinen und Anlagen, die den (Produktions-) Prozess umsetzen,
zu erkennen. In den darüber liegenden Schichten werden die Automatisierungsfunktionen
realisiert. Zwischen den Ebenen werden Prozess- und Planungsinformationen ausgetauscht.
Die Planungsinformationen fließen von oben nach unten und die Prozessinformationen von
unten nach oben, wobei keine Ebene übersprungen wird. Jede Ebene aggregiert die Infor-
mationen bzw. Funktionalitäten der Ebenen darunter. Dies wird durch die spitz zulaufende
Pyramide verdeutlicht.

ERP

MES

Leitebene

Steuerungsebene

Feldebene

P
ro
ze
ss
in
fo
rm

at
io
n
en

P
la
n
u
n
gs
in
fo
rm

at
io
n
en

Steuerungsebene

Abbildung 1.1: Automatisierungspyramide nach [SEE09]

Der strikt in Ebenen unterteilte Aufbau hat sich in der Vergangenheit bei der Entwicklung
von sicheren und zuverlässigen Lösungen von Aufgaben der Automatisierungstechnik be-
währt. Durch Industrie 4.0 (I4.0) wird die industrielle Produktion weiterentwickelt, indem
Geräte oder Softwaresysteme miteinander interagieren, auch wenn diese nicht derselben
oder benachbarten Ebenen angehören. Zusätzlich dazu treiben moderne Kommunikations-
protokolle wie OPC Unified Architecture (OPC UA) [PGP+15] und Data Distribution Ser-
vice (DDS) [AE17] die Entwicklung der industriellen Produktion voran. Dies führt zu einer
Flexibilisierung der Automatisierungstechnik und der industriellen Produktion [SAG+17].
Dadurch wird eine wirtschaftliche Produktion von kleinen Stückzahlen bis hin zur Losgröße
eins möglich.

Die stärkere Vernetzung kann durch ein Aufbrechen der festen Strukturen der Pyramide
zugunsten einer flexibleren Servicearchitektur [EE13, WE17] entstehen. Alternativ kann
die Servicearchitektur zum bestehenden Ausbau hinzugefügt werden [LU17]. Dadurch wird
die Hard- und Software der Automatisierungstechnik insgesamt komplexer und der Auf-
wand, sie zu entwickeln und zu betreiben, steigt. Analog dazu werden die Aufwände für
das Engineering von Automatisierungslösungen und die Integration der einzelnen Anwen-
dungen in ein Gesamtsystem (Systemengineering) [DMG+17] größer.

2

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1.1 Motivation

Hoher Anteil repetitiver Tätigkeiten im Engineering
Bei der Mehrzahl der Tätigkeiten im Engineering, d. h. in der Erstellung von Lösungen
von Automatisierungsaufgaben, handelt es sich um repetitive Tätigkeiten [Web14]. Ledig-
lich ein kleiner Anteil der Tätigkeiten ist für den Erfolg oder Misserfolg von Projekten
verantwortlich. Die Bearbeiter müssen sich daher auf diese Tätigkeiten konzentrieren und
dafür von den repetitiven Tätigkeiten entlastet werden. Das folgende Zitat von [Web14]
verdeutlicht den beschriebenen Sachverhalt:

Ungefähr 90 Prozent der Engineeringleistungen sind normale, wiederkehren-
de Ingenieurtätigkeiten. Die restlichen 10 Prozent Engineeringleistungen aber
sind das Besondere, das Wichtige. Sie sind der Erfahrungsschatz oder das In-
novative und nicht selten auch das Firmen-Know-how. Von der gewissenhaften
Umsetzung dieser 10 Prozent Planungsvorgaben hängt aber i. d. R. wesentlich
der Projekterfolg ab. [Web14]

Steigender Kostendruck
Im Rahmen der angesprochenen Flexibilisierung der Produktion rücken nicht-funktionale
Anforderungen in den Fokus [BUN, Lee08]. Beispiele dafür sind die Reduktion von Kosten
für die Erstellung undWartung einer Automatisierungslösung oder die Möglichkeit, sich auf
eine sich schnell ändernde Produktpalette einzustellen [MB00]. Diese Herausforderungen
sind insbesondere unter ökonomischen Gesichtspunkten und in Anbetracht einer alternden
Gesellschaft von großer Relevanz, da in einer alternden Gesellschaft weniger Arbeitskräfte
zur Verfügung stehen.

Die Erstellung von Automatisierungslösungen, d. h. die Kombination von elektrischen,
mechanischen und Software (Teil-)Systemen, unterliegt einem immer stärkeren Kosten-
druck [VHDF+14]. Durch die fortschreitende Integration von zusätzlichen Gewerken und
Komponenten in die Automatisierungstechnik wird diese komplexer und damit schwerer
zu beherrschen [MB00]. Dies führt zu einem steigenden Anteil der Engineeringkosten im
Maschinen- und Anlagenbau. Zusätzliche Faktoren sind hohe Personalkosten in Deutsch-
land oder der Bau von Unikaten, die immer wieder eine neue Planung und Entwicklung
verlangen.

Ähnliche Problemstellungen
Wie beschrieben treten in der Automatisierungstechnik in verschiedenen Zusammenhängen
wiederkehrende Problemstellungen auf, die sich mit den gleichen Prinzipien lösen lassen.
Dies führt dazu, dass Implementierungen entstehen, die sich sehr ähneln, jedoch in wesent-
lichen Punkten voneinander abweichen. Im Rahmen der Arbeit des Arbeitskreises 2.2 der
NAMUR1 wurde festgestellt, dass es gängige Praxis ist, diese ähnlichen Lösungen neben-
einander zu entwickeln. Bestenfalls sind sich die Entwickler der Existenz der benachbarten
Lösungen bewusst. Nicht ungewöhnlich ist allerdings auch, dass entstandene Implementie-
rungen nur einem begrenzten Personenkreis bekannt sind. Folgen dieser Praxis sind:

• Duplizierung von Code,

• schlechte Wartbarkeit,

• hoher Aufwand bei der Lösungsentwicklung und -implementierung.
1Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

3

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1 Einführung

Im Sinne der modernen Softwareentwicklung sind diese Folgen nicht erwünscht und stellen
eine behebbare Herausforderung dar.

Komponentenbasierte Architekturen sind in der Automatisierungstechnik verbreitet
Aufgrund der komponentenbasierten Architekturen in der Automatisierungstechnik pas-
siert es häufig, dass Komponenten oder ganze Subsysteme weiterentwickelt und damit
verändert werden. Dies kann im ungünstigsten Fall dazu führen, dass die Gesamtlösung
mit der neuen Version von verwendeten Komponenten nicht mehr funktionsfähig ist. Eine
Konsequenz daraus ist, dass viel Zeit und Aufwand in die Entwicklung von sogenannten
Migrationspfaden und Migrationstools investiert wird. Diese haben die Aufgabe, Automati-
sierungslösungen mit neuen Versionen von Komponenten oder Teilsystemen funktionsfähig
zu halten. Wenn selbst entwickelte Komponenten verwendet werden, fehlen diese Hilfsmit-
tel oft und die Aktualisierung der Automatisierung gestaltet sich schwierig.

Organisatorische Hindernisse bei der Wiederverwendung
Bei der Einführung eines Wiederverwendungskonzepts muss der Mensch berücksichtigt
werden [Mey88]. Die besten Mechanismen und Werkzeuge sind wertlos, wenn die Nutzer
sie nicht verwenden. Durch die Heterogenität der Nutzer in der Automatisierungstechnik ist
die Sicherstellung der Akzeptanz besonders schwierig und wichtig. Bestehende Ansätze aus
anderen Domänen (z. B. der Softwaretechnik) können nicht einfach übernommen, sondern
müssen angepasst werden.

Die Herausforderungen bei der Wiederverwendung von Implementierungen sind sowohl
technischer als auch organisatorischer Natur. Durch die Nutzung geeigneter Tools in Ver-
bindung mit der Vorgabe, bestehende Implementierungen zu verwenden, können die or-
ganisatorischen Defizite teilweise durch technische Ansätze behoben werden. Mit dem in
dieser Arbeit vorgestellten Konzept sollen die technischen und organisatorischen Herausfor-
derungen gleichermaßen adressiert werden. Dies ist erforderlich, da die Fokussierung auf die
Bearbeitung der technischen Herausforderung nicht zu einer Verbreitung von Implementie-
rungen führt. Die potentiellen Nutzer müssen durch einen Mechanismus von bestehenden
Implementierungen erfahren.

Diese aufkommenden Herausforderungen zu bewältigen, ist das Ziel vieler Initiativen und
Arbeiten. Ein Ansatz dabei ist es, die Automation der Automation weiterzuentwickeln.
Das bedeutet, dass nicht nur der (Produktions-)Prozess selbst automatisiert wird, son-
dern auch die Erstellung der Automatisierungslösung teil- oder vollautomatisiert abläuft.
Modellbasierte Ansätze, mit denen z. B. die Struktur von Anlagen, Designpatterns für
Lösungen oder Eigenschaften von Produkten beschrieben werden, sind ein möglicher
Weg [FVHF+15, WKS+16]. Unter Einbeziehung und Kombination dieser Modelle wird
die spezifische Automatisierungslösung generiert.

Allerdings ist auch die Verbesserung der Wiederverwendung und der Verbreitung beste-
hender Lösungen sinnvoll. Nur leicht unterschiedliche und sehr strukturiert aufgebaute
Lösungen stellen eine gute Ausgangsbasis für die Wiederverwendung in der Automatisie-
rungstechnik dar. Die Nutzung eines Variantenmanagements ist eine Möglichkeit für die
Umsetzung der Wiederverwendung [VHDF+14]. Ebenso ist die Bekanntmachung und Ver-
breitung von bestehenden Lösungen eine Grundvoraussetzung für die Wiederverwendung,
die typischerweise in der Automatisierungstechnik nicht gegeben ist und hergestellt werden
muss.

4

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1.2 Problemdefinition und Lösungsweg

1.2 Problemdefinition und Lösungsweg

Ziel der vorliegenden Arbeit ist die Entwicklung eines Konzepts zur Unterstützung der Wie-
derverwendung in komponentenbasierten Systemen. Die Komponenten selbst stellen durch
ihren Einsatz in unterschiedlichen Systemen ein Mittel zur Wiederverwendung dar. Neben
der Entwicklung von Komponenten wird ein hoher Aufwand in die Lösung von Automa-
tisierungsaufgaben durch die Verknüpfung von Komponenten investiert. Der Fokus dieser
Arbeit liegt daher auf der Wiederverwendung von Strukturen in komponentenbasierten Sy-
stemen. Da die Arbeiten an der Entwicklung von Automatisierungslösungen in der Regel
nicht an einem Ort und nicht von einer Person durchgeführt werden, berücksichtigt das
Konzept die dezentrale Wiederverwendung. Darunter ist die örtliche und/oder organisa-
torisch getrennte Entwicklung und Wiederverwendung von Automatisierungslösungen zu
verstehen.

Damit die Wiederverwendung von Lösungen gelingt, müssen die folgenden drei Fragen, die
an die Ausführungen in [Mey09] angelehnt sind, beantwortet werden:

• Wie sieht ein Mechanismus für komponentenbasierte (Teil-)Lösungen aus, so dass sie
wiederverwendet und auf andere Anwendungsfälle übertragen werden können?

• Wie wird der Wiederverwendungsmechanismus in bestehende Tools und Prozesse
integriert, so dass der Nutzer ihn verwendet?

• Wie erfährt der Nutzer, dass eine geeignete Lösung existiert?

Diese drei Fragen werden in der vorliegenden Arbeit für die komponentenbasierten Archi-
tekturen der Automatisierungstechnik beantwortet. Es wird dafür ein Konzept zur Wieder-
verwendung vorgestellt. Das Konzept besteht aus einem Mechanismus zur Wiederverwen-
dung und einer Architektur für dessen Anwendung. Im Folgenden wird das Konzept anhand
der drei Fragen vorgestellt und ein Überblick über den gewählten Weg zur Unterstützung
der Wiederverwendung gegeben.

Die Beschreibung der Variabilität von Produkten ist in der Softwaretechnik und dem Au-
tomobilbau eine bewährte Methode, die Wiederverwendung zu unterstützen. Die Varia-
bilität kann auf verschiedene Arten beschrieben werden. Diese Arbeit stützt sich auf die
Delta-Modellierung als theoretische Basis für die Beschreibung von Variabilität. Die Delta-
Modellierung ist für die Anwendung in der Automatisierungstechnik besonders geeignet,
da sie gut in bestehende Systeme integriert werden kann. Delta-Modelle beschreiben durch
Operationen die Transformation eines Produkts in ein anderes. Als Operationen können
das Hinzufügen, Entfernen und Konfigurieren der Komponenten des Produkts verwendet
werden. Zusätzlich können Verbindungen zwischen den Komponenten angelegt und ge-
löscht werden. Die Delta-Modelle stammen aus der Softwaretechnik und werden in diesem
Bereich direkt auf Komponenten angewendet. Für die Nutzung in den hybriden Systemen
der Automatisierungstechnik wird in dieser Arbeit ein Modell für die Beschreibung von
Komponenten verwendet. Dieses stellt die Basis dar, auf der die Delta-Modelle angewendet
werden. Durch die Beschreibung der Produkte (Lösungen von Automatisierungsaufgaben)
durch Delta-Modelle existiert ein Mechanismus für die Wiederverwendung von Strukturen.
Die durch Delta-Modelle dargestellten Strukturen können auf andere Anwendungsfälle an-
gewendet werden und tragen so zur Wiederverwendung bei. Die Verwendung von Modellen

5

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1 Einführung

für die Lösung von Problemen ist in der Automatisierungstechnik ein erprobter Ansatz, der
auch in dieser Arbeit Verwendung findet. Die Komponenten- und Delta-Modelle werden
dafür in Laufzeitumgebungen realisiert, die eine Erkundung und Manipulation der Modelle
ermöglichen.

Die dritte Frage beschäftigt sich mit der Information der Nutzer über vorhandene Lö-
sungen. Diese Lösungen sind die Komponentensysteme, die eine Automatisierungsaufgabe
lösen. Das beste Verfahren zur Wiederverwendung ist unwirksam, wenn existierende Lö-
sungen nicht bekannt sind. In der vorliegenden Arbeit wird dafür ein zentraler Server
für die Verwaltung der Komponentensysteme vorgeschlagen. Dieser Server verkörpert die
„Gelben Seiten“ für die bestehenden Lösungen. Nutzer können dort nach Lösungen für ihre
Probleme suchen und diese wiederverwenden. Kann keine passende Lösung gefunden wer-
den, besteht die Möglichkeit, eine bestehende Lösung für den konkreten Anwendungsfall
anzupassen. Ein Anwendungsfall ist der konkrete Kontext in dem eine Lösung verwendet
oder wiederverwendet wird. Diese neue Lösung wird auf den Server geladen und steht für
die erneute Nutzung bereit. Auf dem Server werden die Lösungen durch Delta-Modelle
und Komponenten-Modelle in einer implementierungsunabhängigen Form abgelegt. Jedes
Delta-Modell repräsentiert ein Produkt bzw. eine Lösung. Die Delta-Modelle werden dafür
als Baum verknüpft. Die initialen Produkte bilden die Wurzeln des Baums. Die von diesen
abgeleiteten Produkte werden in Form von Delta-Modellen gespeichert. Für die Erzeugung
eines Produkts werden die Operationen aller Delta-Modelle von einer Wurzel aus angewen-
det. Dafür werden die Komponenten-Modelle genutzt. Komponenten-Modelle bestehen aus
einem Teil, der die Komponenten-Typen beschreibt und einem anderen Teil, der die daraus
verbundenen Instanzen beschreibt. Diese beinhalten die vorhandenen Komponenten-Typen
und ermöglichen durch die Anwendung der Delta-Modelle, die dazugehörigen Instanz-
Modelle zu erzeugen.

Zur Integration der beschriebenen Mechanismen in die bestehenden Systeme (Frage 2),
wird ein Client vorgeschlagen. Dieser ermöglicht es, die Produkte (Lösungen der Automa-
tisierungsaufgaben) vom Server herunterzuladen und in den lokalen Kontext einzubinden.
Dafür wird auf dem Server das Instanz-Modell aus den Delta-Modellen erzeugt und auf
den Client übertragen. Für die Übertragung werden die Instanz-Modelle serialisiert und
de-serialisiert. Auf dem Client existiert ein lokales Modell, das beschreibt, wie die Kom-
ponenten des Modells realisiert werden. Durch Nutzung dieses Zusammenhangs wird das
lokale Komponentensystem erzeugt.

Das vorgestellte Konzept wurde für das Laufzeitsystem des Lehrstuhls für Prozessleit-
technik ACPLT/RTE realisiert. Zur Demonstration der Funktionsfähigkeit des Konzepts
wird es auf PID-Regler, auf die Prozessführungskomponenten des Lehrstuhls und für die
modulare Anlage des Lehrstuhls angewendet.

1.3 Aufbau der Arbeit

Die Gliederung der vorliegenden Arbeit ist in Abbildung 1.2 dargestellt. In Kapitel 2 wer-
den die Grundlagen der Automatisierungstechnik und der Stand der Technik im Hinblick
auf komponentenbasierte Architekturen erläutert. In diesem Rahmen wird die in dieser

6

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

1.3 Aufbau der Arbeit

Einführung und Motivation
(Kap. 1)

Grundlagen der
Automatisierungstechnik

(Kap. 2.1) Anforderungen an ein
Konzept zur

Wiederverwendung in
komponentenbasierten

Architekturen der
Automatisierungstechnik

(Kap. 3)Komponentenbasierte
Architekturen

(Kap. 2.2)

Bestehende Konzepte zur
Wiederverwendung

(Kap. 4.2/4.3)

Modelle als Grundlage für
die Lösungsentwicklung

(Kap. 4.4)

Delta-Modell und
Komponenten-Modell

(Kap. 5.1/5.2)

Gesamtkonzept für die
Wiederverwendung in

komponentenbasierten
Architekturen der

Automatisierungstechnik
(Kap. 5.3)

Prototypische Realisierung
(Kap. 6)

Zusammenfassung und
Ausblick
(Kap. 8)

Kritische Diskussion des
Konzepts
(Kap. 7)

Abbildung 1.2: Darstellung des Aufbaus der vorliegenden Arbeit.

Arbeit verwendete Definition einer Komponente vorgestellt und mit anderen Definitionen
aus der Domäne und der Softwaretechnik in Verbindung gesetzt. Es wird gezeigt, dass
komponentenbasierte Architekturen in der Automatisierungstechnik weit verbreitet sind.

Die Anforderungen an das Konzept zu Wiederverwendung werden in Kapitel 3 vorgestellt.
Ausgangspunkt der Betrachtung sind die Besonderheiten der Automatisierungstechnik. Im
Anschluss daran werden die funktionalen und nicht-funktionalen Anforderungen an das
Konzept eingeführt.

Kapitel 4 bietet einen Überblick über den aktuellen Stand der Wissenschaft. Ausgehend
von einer Vorstellung der eigenen Vorarbeiten werden zunächst die Grundlagen der Wieder-
verwendung vorgestellt. Der Schwerpunkt liegt auf den Arten der Wiederverwendung und
der Betrachtung der Versionierung. Dem schließt sich ein Überblick über die Grundlagen
der Variantenbeschreibung an. Anschließend werden die Delta-Modelle aus der Software-
technik vorgestellt. Am Ende des Kapitels werden die Grundlagen der Modellierung und
Beispiele aus der Automatisierungstechnik dargestellt.

Das Konzept für die Wiederverwendung in komponentenbasierten Architekturen wird in
Kapitel 5 eingeführt. Am Anfang des Kapitels werden das Komponenten- und das Delta-
Modell vorgestellt. Danach wird deren Verwendung in einem Gesamtkonzept dargestellt.
Dabei wird auf die dezentrale Wiederverwendung und die dafür nötigen Prozesse eingegan-
gen. Abschließend werden die Randbedingungen und die Vorteile des Konzepts betrachtet.

In Kapitel 6 wird die prototypische Realisierung vorgestellt und anhand von drei Anwen-
dungsfällen der Nutzen des Konzepts verdeutlicht. Kern der in ACPLT/RTE umgesetzten
Implementierung sind die vorgestellten Metamodelle und die Transformationen zur auto-
matisieren Erzeugung der Modelle.

Ein Überblick und die Diskussion der Ergebnisse der Arbeit ist in Kapitel 7 zu finden.
Abschließend wird in Kapitel 8 ein Ausblick auf mögliche weiterführende Arbeiten gegeben.

7

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

In diesem Kapitel wird ein Überblick über die relevanten Arbeiten und über den Stand der
Technik gegeben. Zunächst werden die Grundlagen der Automatisierungstechnik erläutert.
Dabei wird auf die dezentralen Leitsysteme und modulare Anlagen in der Prozessindustrie
näher eingegangen, bevor die Prozesse zum Bau einer Anlage näher erläutert werden.

2.1 Grundlagen der Automatisierungstechnik

Es ist das Ziel der Automatisierungstechnik, Systeme so zu steuern, dass sie
autonom arbeiten. [Lun03]

Aus diesem Zitat von Lunze geht hervor, dass sich die Automatisierungstechnik mit dem
Steuern von Systemen beschäftigt. Die Art der Systeme wird dabei nicht eingeschränkt. Die
Automatisierungstechnik kann anhand des betrachteten Systems klassifiziert werden. Eine
gängige Klassifikation ist die Unterteilung in Produktautomatisierung und Produktionsau-
tomatisierung. Die erst genannte beschäftigt sich mit Produkten (z. B. Autos, Flugzeugen,
Hausgeräte). Gegenstand der Produktionsautomatisierung ist die Automation der Herstel-
lungsprozesse von Produkten. In der nächst feineren Klassifikation wird die Produktions-
automatisierung in Fertigungsautomation (Fertigung von Stückgütern) und Prozessauto-
matisierung (Batch- und Konti- Prozesse, z. B. mit Gasen, Schüttgut, Flüssigkeiten oder
Aluminiumbändern) unterteilt. Jede der beiden Gruppen hat spezifische Eigenschaften
und Anforderungen an die Automatisierungssysteme [FA09]. Gegenstand der vorliegenden
Arbeit ist die Produktionsautomatisierung mit dem Schwerpunkt auf der Prozessautoma-
tisierung.

Nach Lunze ist das Ziel der Steuerung von Systemen, die Autonomie des Systems zu er-
reichen. Der Grad der Autonomie hängt vom jeweiligen Anwendungsszenario ab und kann
ebenso zur Klassifikation genutzt werden [TE18, Gas12]. Die Bandbreite reicht von einem
System ohne Automation bis hin zu einem System, das ohne menschliche Unterstützung
funktioniert. Allerdings ist der Mensch weiterhin ein wichtiger Bestandteil der Automati-
sierung [VHDB13, Lun03]. Steigt der Grad der Autonomie, wird zwar die Selbstständigkeit
der Systeme erhöht, jedoch ist der Nutzer weiterhin in überwachender Funktion erforder-
lich. Zusätzlich wird der Mensch für die Entwicklung und den Aufbau von Automatisie-
rungslösungen benötigt. Dies gilt gleichermaßen für die Wartung und Instandhaltung der
verbauten Systeme.

In Abbildung 2.1 ist der Aufbau eines automatisierten Systems dargestellt. Das System
besteht aus dem Nutzer, der Nutzerschnittstelle (Mensch-Prozess-Kommunikation), dem
Automatisierungssystem und dem technischen Prozess. Bestandteil des Automatisierungs-

8

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

systems ist mindestens eine Hardwarekomponente, auf der das Steuerungsprogramm aus-
geführt wird. Die Hardware verfügt über Ein- und Ausgänge zum technischen Prozess. Die
Sensoren und Aktoren werden als Schnittstelle zum technischen Prozess [Lun03] bzw. zwi-
schen physischer Welt und Informationswelt [KE12] verstanden. In [HSF+13] wird heraus-
gestellt, dass das Besondere an der Automatisierungstechnik die Domänen-übergreifende
Betrachtung des Systems ist. So müssen alle Bestandteile perfekt zusammen funktionie-
ren, damit das Gesamtsystem wie geplant arbeitet [VHDF+14]. Jede Domäne verfügt über
eine andere Sicht auf den Betrachtungsgegenstand. Die Verfahrenstechnik hat die Aufgabe
Anlagen zu planen und kann so den Aufbau der Anlage beeinflussen [HSF+13]. Für die
Automatisierungstechnik ist beispielsweise der Anlagenaufbau eine Randbedingung, die
berücksichtigt werden muss. Dadurch steigt die Komplexität dieser Systeme zunehmend
an [VHDF+14].

Automatisiertes System

Nutzer

Mensch-Prozess-
Kommunikation

Automatisierungssystem

Technischer Prozess in technischem
System

Programm
-system 1

Hardware
1

Programm
-system n

Hardware
n

…

Bedienelemente Anzeigeelemente

Abbildung 2.1: Aufbau eines automatisierten Systems nach [VHDFG13, VHDB13]

Im Folgenden wird der Aufbau von Automatisierungssystemen in der Prozessindustrie, d. h.
von (Prozess-) Leitsystemen, näher beschrieben. Anwendungszweck eines Leitsystems ist
die Führung eines Prozesses entsprechend gegebener Randbedingungen (d. h. die Umset-
zung der Prozessführung). Unter Prozessführung sind nicht nur die Regelung und Optimie-
rung einer Anlage zu verstehen, sondern darüber hinaus alle zielgerichteten Maßnahmen,
um den jeweiligen Produktionsprozess zu beherrschen und entsprechend ihrer Zielvorgaben
zu fahren. Diese Definition schließt ausdrücklich die Tätigkeit des Anlagenfahrers ein und
erklärt die Prozessführung zu einer Aufgabe, an der unterschiedliche technische Disziplinen,
u. a. die Verfahrenstechnik und die Automatisierungstechnik (vgl. [KBD+08, PE94]), betei-
ligt sind. Im Folgenden werden Systeme zur Prozessführung und Automatisierungslösung
synonym verwendet.

Zunächst werden die in der industriellen Anwendung verbreiteten dezentralen Prozessleit-
systeme beschrieben. Anschließend wird auf die aufkommenden modularen Anlagen und
damit die Package Units in der Prozessindustrie als Beispiel für die Modularisierung der
Produktion eingegangen.

9

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

2.1.1 Aufbau von Dezentralen Prozessleitsystemen

Dezentrale Prozessleitsysteme bilden die Grundlage der modernen Industrieautomation.
Nachfolgend wird erst der Aufbau der Hardwarekomponenten beschrieben, anschließend
wird ein Überblick über die Softwareseite der Automatisierungssysteme gegeben. Der Fokus
liegt dabei auf der Architektur der Software und der Sprachen aus der IEC 61131 [IEC14b].
Zusätzlich wird ein Blick auf die IEC 61499 [IEC05] geworfen und deren Softwarearchitek-
tur vorgestellt.

Aufbau der Hardwarekomponenten

PANTA R HEI

20 M3%S

PANTA R HEI

20 M3%S

Prozess Prozess

Feldebene

Prozessleitebene

Betriebs-
leitebene

PNK,
z. B. SPS

Remote IO

SPS

4..20 mA
HART, …

Feldbus

PFK,
z. B. PLS

Intranet,
Betriebsbus

BuBSCADA
Engineering-

Station

Unternehmens-
netzwerk

Abbildung 2.2: Architektur eines Prozessleitsystems nach [KCJ+10]

In Abbildung 2.2 ist schematisch der Aufbau eines dezentralen Prozessleitsystems darge-
stellt. Die Abbildung ist analog zur Automatisierungspyramide aufgebaut und beginnt am
unteren Ende mit dem zu automatisierenden Prozess. Direkten Kontakt mit dem Prozess
haben die Sensoren und Aktoren. Die Sensoren haben die Aufgabe, Informationen über den
aktuellen Zustand des Prozesses zu sammeln. Beispiele für Sensoren sind Füllstands- oder
Durchflussmessgeräte. Die Aktoren werden verwendet, um den Prozess zu beeinflussen.
Ventile oder Pumpen sind beispielsweise Aktoren.

Die von Sensoren gemessenen Werte und die Vorgaben, wie sich die Aktoren zu verhal-
ten haben, werden über Kommunikationssysteme an bzw. von prozessnahen Komponenten
übermittelt. Verwendung findet die Zweidrahtanbindung, bei der die Feldgeräte direkt mit

10

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

den prozessnahen Komponenten verbunden sind und Messwerte und Stellwerte als ana-
loges Stromsignal (4 bis 20 mA) übertragen werden. Das HART Protokoll ermöglicht es,
zusätzlich zu den analogen Werten Konfigurationsdaten der Feldgeräte zu übermitteln und
so Informationen über die Feldgeräte zu erhalten oder sie zu parametrieren. Eine weite-
re Form der Anbindung sind Feldbusse. Hierbei werden die Feldgeräte mit prozessnahen
Komponenten über einen digitalen Bus verbunden. Die Feldbusanbindung ermöglicht es,
die Feldgeräte mit erweiterten Funktionen auszustatten und so zu intelligenten Geräten
aufzuwerten.

Prozessnahe Komponenten sind heutzutage fast ausnahmslos Speicherprogrammierbare
Steuerungen (SPS) oder Remote-IOs. Die SPS verfügen über Schnittstellen für die Bus-
se oder die Zweidrahtanbindung. Die Feldgeräte sind entweder direkt an die SPS oder die
Remote-IO angeschlossen. Eine Remote-IO hat die Aufgabe, die Signale von und zu Feldge-
räten über die Zweidrahtanbindung aufzunehmen und in ein Bussignal umzuwandeln. Über
diesen Feldbus ist die Remote-IO mit einer SPS verbunden, die die Weiterverarbeitung der
Werte übernimmt. Verglichen mit Feldbussen stellen Systembusse höhere Anforderungen
an die verfügbare Bandbreite. Im Gegensatz dazu sind die Echtzeitanforderungen nicht so
hoch [FA09, ASE08].

Steuerungs- und Regelungsaufgaben werden von prozessnahen Komponenten realisiert.
Aufgaben, die mit dem Koordinieren und Optimieren des Prozesses assoziiert sind, werden
dagegen von prozessfernen Komponenten (z. B. Prozessleitsystem (PLS)) ausgeführt. Das
können höhere Regelungskonzepte, wie Model Predictive Control (MPC) oder andere Op-
timierungsverfahren sein. Zu den prozessfernen Komponenten gehören auch Systeme, die
für die Aufzeichnung und Archivierung von Mess- und Stellwerten verantwortlich sind.

Die Komponenten oberhalb der Feldgeräte bis hin zu den prozessfernen Komponenten bil-
den die Prozessleitebene in der Automatisierungspyramide. Oberhalb der prozessfernen
Komponenten beginnt mit der Verwendung des Betriebsbusses bzw. des Intranets die Be-
triebsleitebene. Auf dieser Ebene sind die Engineeringstationen für das Konfigurieren und
Warten des Leitsystems und die Stationen für das Bedienen und Beobachten (BuB) des
Prozesses angesiedelt. Daneben stehen auch leistungsfähige Manufacturing Execution Sy-
stems (MES) und Enterprise Resource Planning (ERP) Systeme zur Verfügung. Das Intra-
net bzw. der Betriebsbus sind über Firewalls an Büronetze und an das Internet angeschlos-
sen [KCJ+10]. Dies ermöglicht einen kontrollierten lesenden Zugriff, damit beispielsweise
eine Fernwartung oder Analysen und Optimierungen von ortsfernen Experten durchgeführt
werden können. Zusätzlich können so, über die Grenzen von Standorten hinweg, Leistungs-
indikatoren sichtbar gemacht werden und Prozesse und Produktionsanweisungen (Rezepte)
im Unternehmen verbreitet werden.

Speicherprogrammierbare Steuerungen und Laufzeitsysteme

Die SPS entwickelten sich aus den verbindungsprogrammierten Steuerungen, bei denen die
Funktionalität mittels Schütz- und Relaistechnik realisiert wird [FA09]. Aktuell sind SPS
sowohl in der Prozess- als auch in der Fertigungsautomation sehr verbreitet und es gibt sie
in verschiedenen Leistungsklassen. Durch die zunehmende Verteilung von Funktionalität
direkt ins Feld und die zunehmende Verwendung von PCs (Soft-SPS) für das Steuern und

11

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Regeln geht die Bedeutung von großen SPS zurück. Kleinere SPS kommen als Steuerungen
von einzelnen Prozessmodulen zum Einsatz.

Funktion der
Stromversorgung

Kommunikations-
funktion

Funktionen der
Mensch-Maschine-

Schnittstelle

Programmier- und
Testfunktion

Signalverarbeitungs-
funktion

Anwendungs-
programm-

verarbeitung

Funktion des
Betriebssystems

Funktionen des
Anwendungs-

programmspeichers

Funktion des
Datenspeichers

Funktion der Schnittstelle für Aktoren und Sensoren

Maschine / Prozess

Andere Systeme

Bediener

Anwendungs-
programmierer

Strom-
versorgung

Abbildung 2.3: Darstellung des funktionalen Aufbaus einer SPS nach [IEC04]

Abbildung 2.3 zeigt den funktionalen Aufbau einer SPS. Es sind die vier großen Funktions-
bereiche zu erkennen: Stromversorgung, Schnittstelle zu Sensoren und Aktoren (Feld),
Kommunikation und Signalverarbeitung. Wie beschrieben, gibt es unterschiedliche Mög-
lichkeiten, eine SPS an die Sensoren anzubinden. Für die interne Verwendung der Pro-
zessinformationen bzw. der Beeinflussung der Aktoren abstrahiert die Schnittstelle zu den
Sensoren und Aktoren von den unterschiedlichen Anbindungsarten und stellt ein einheitli-
ches Interface zur Verfügung. Die Signalverarbeitungsfunktion ist das eigentliche Herzstück
der SPS. Sie besteht aus der Anwendungsprogrammverarbeitung, die unter Einbeziehung
des Betriebssystems und des Datenspeichers die Anwendungsprogramme ausführt. Dabei
findet eine zyklische Auswertung der Eingänge zum Feld statt und es werden durch die
Anwendungsprogramme die Ausgänge gesetzt. Die Kommunikation zu anderen Systemen,
sowie zum Bediener und Anwendungsprogrammierer, erfolgt über die Kommunikations-
funktion.

Nach [NAM02] setzt sich das Betriebssystem von Leitsystemen (SPS) aus einem Standard-
betriebssystem und einem Leitsystem-Betriebssystem zusammen. Ein Betriebssystem- oder
Leitsystemhersteller stellt das Standardbetriebssystem bereit. Dieses stellt die Basis der
Software dar. Auf ihm arbeitet das Leitsystem-Betriebssystem des Leitsystemherstellers,
in dem die Anwendungen für die Automatisierung ausgeführt werden. Das Leitsystem-
Betriebssystem kann auch als Laufzeitumgebung (runtime system oder runtime environ-
ment) bezeichnet werden. Dieser Begriff stammt aus der Informatik und beschreibt ein

12

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

System, das eine Schicht zwischen dem Betriebssystem und der Applikation des Anwen-
ders bildet [App90, Grü17]. Das Laufzeitsystem stellt Funktionen für den Zugriff auf die
Hardware, für das Speicherhandling (Allokation und Freigabe), für die Interaktion mit dem
System (z. B. Debuggen), für die Introspektion und für die Reflexion bereit (vgl. [Grü17]).
Laufzeitsysteme sind nicht zwingend mit PLS und SPS assoziiert, sondern finden auch,
sofern es die Randbedingungen zulassen, in Soft-SPS oder als Applikation auf einem nor-
malen PC Verwendung.

Softwarearchitekturen

Konfiguration

Ressource

Task Task

Programm Programm

FB FB

Ressource

Task Task

Programm Programm

FB FB

Zugriffspfad

Globale und direkt dargestellte Variablen und
instanzspezifische Initialisierungen

Abbildung 2.4: Darstellung des Softwarearchitektur einer SPS nach [IEC14b].

In der Automatisierung ist die in Abbildung 2.4 dargestellte Softwarearchitektur aus der
IEC 61131 weit verbreitet. Die Architektur stellt die Softwaresicht auf eine Norm-konforme
Umgebung für die Realisierung von Automatisierungsfunktionen dar. Die Konfiguration
ist mit einer SPS assoziiert. Innerhalb der Konfiguration existieren Ressourcen, die die
beschriebenen Funktionen des Laufzeitsystems bereitstellen. Die Ressource ist die Umge-
bung für die Programme und Tasks. Programme enthalten die ausführbare Logik (z. B. als
Netz von Funktionsbausteinen) und durch sie erfolgt der Zugriff auf den Speicher bzw. die
Peripherie. Einer oder mehrere Tasks koordinieren die Ausführung der Programme bzw.
der einzelnen Funktionsbausteine. Die Ausführung erfolgt zyklisch, wobei die Zykluszeit
durch die Wahl der Tasks vom Anwender eingestellt werden kann. Nach [JT00] existiert in
der Norm zusätzlich der Begriff der Programmorganisationseinheit (POE). Darunter wird
die kleinste unabhängige Softwareanwendung in dieser Architektur verstanden [Grü17].

Der Austausch von Informationen innerhalb von Programmen erfolgt durch die direkte
Verknüpfung von beispielsweise Funktionsbausteinen. Für die Kommunikation zwischen
Programmen derselben Ressource und zwischen verschiedenen Ressourcen stehen globale
Variablen zur Verfügung, die von allen Programmen in einer Konfiguration gelesen und
geschrieben werden können.

Als Erweiterung der vorgestellten Softwarearchitektur ist die IEC 61499 [IEC05] zu sehen.
Sie definiert eine Architektur für verteilte Systeme, bei der eine Anwendung auf mehr als

13

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

einer SPS ausgeführt werden kann. Im Gegensatz zu den beschriebenen Tasks, die eine
zyklische Abarbeitung der Programmlogik vorsehen, werden Funktionsbausteine nach der
IEC 61499 Ereignis-gesteuert ausgeführt. Zusätzlich dazu definiert die Norm, additiv zu
den Verbindungen für den Informationsfluss, Verbindungen für Ereignisse (Events) zwi-
schen Funktionsbausteinen. Die dritte Neuerung ist die Definition von Diensten für die
Interaktion mit und zwischen Ressourcen. Hierzu werden Konfigurations- und Kommuni-
kationsdienste sowie Interfaces für die entsprechenden Bausteine festgelegt.

Sprachen der IEC 61131

Für die Programmierung der benötigten Funktionalitäten stehen in einer IEC 61131 kon-
formen Umgebung fünf Programmiersprachen zur Verfügung. Anweisungsliste (AWL) und
Strukturierter Text (ST) sind zwei textuelle Programmiersprachen. Im Gegensatz dazu
sind die Funktionsbausteinsprache (FBS), der Kontaktplan (KOP) und die Ablaufspra-
che (AS) grafische Programmiersprachen. Die folgende Vorstellung der Programmierspra-
chen ist [JT00, Grü17, Kam17] entnommen.

Anweisungsliste: AWL wird als maschinennahe Programmiersprache eingestuft. Eine An-
weisung besteht aus einem Operator und einem Operanden. Für die Festlegung des Pro-
grammablaufes werden Sprungmarken am Anfang der Zeilen verwendet. AWL dient als
gemeinsame „Zwischensprache“ für sowohl die textuellen als auch die grafischen Sprachen
der IEC 61131.

Strukturierter Text: ST wird im Kontext der IEC 61131 als Hochsprache bezeichnet und
besteht aus Anweisungen zum Programmablauf (z. B. FOR- und WHILE-Schleifen), sowie
Operatoren/Funktionen und Operanden. Im Vergleich zu AWL hat ST die Vorteile, dass
eine sehr kompakte Formulierung und einen übersichtlichen Aufbau des Programms erlaubt
wird. Nachteilig ist, dass die Übersetzung in Maschinencode nicht direkt beeinflussbar ist
und dass es durch die höhere Abstraktionsstufe zu einem Verlust an Effizienz kommen
kann.

Funktionsbausteinsprache: FBS stammt aus der Einzelgerätetechnik bzw. der Signal-
verarbeitung und ist im Gegensatz zu AWL und ST eine grafische Programmiersprache.
Grafische Elemente der Sprache sind die Bausteine, Verbindungen, Konnektoren und Ele-
mente für die Ausführungssteuerung. Die Bausteine werden in Funktionen (ohne internen
Speicher) und Funktionsbausteine (mit internem Speicher) unterteilt. Offene Eingänge von
Bausteinen können mit Variablen oder Konstanten beschaltet werden. Die Elemente der
Sprache werden zu Funktionsbausteinnetzen zusammengefasst.

Kontaktplan: Analog zu der Funktionsbausteinsprache kommt KOP historisch aus dem
Bereich der elektromechanischen Relaissysteme. Daher wird der „Stromfluss“ durch die
Netzwerke beschrieben und es werden im Wesentlichen boolesche Signale verarbeitet. Die
Basis der KOP-Netzwerke sind zwei „Stromschienen“, die auf der linken und rechten Seite
die Pläne begrenzen. Auf der linken Schiene herrscht der logische Zustand 1 und durch
Verbindungen zwischen den Schienen kann der Strom abhängig vom Zustand von Variablen
fließen. So können logische Bedingungen aus Parallel- und Reihenschaltungen aufgebaut
werden.

14

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

Ablaufsprache: Die AS dient dazu, eine komplexe Aufgabe in überschaubare Unterauf-
gaben zu zerlegen. Ein Beispiel für ein derartiges Vorgehen sind chemische Prozesse, die
aus Zwischenschritten aufgebaut sind. In der Prozessindustrie könnten das beispielsweise
die folgenden Schritte sein: Befüllen, Heizen, Rühren, Ablassen. Dafür werden durch die
Sprache Schritte und Transitionen bereitgestellt. In den Schritten können Aktionen (z. B.
das Setzen von Variablen) ausgeführt werden. In den Transitionen werden Bedingungen
für den Wechsel von einem Schritt in den anderen geprüft. Diese Bedingungen können das
Ablaufen eines Timers oder der Zustand einer Variablen, also der Zustand des Prozesses,
sein.

Prozessführungsarchitekturen

Das übergeordnete Ziel der Automatisierungstechnik ist die Steuerung und Überwachung
von Prozessen durch die Automatisierungslösung. Die Grundlage dafür bilden die beschrie-
bene Hard- und Software. Für den Gesamterfolg muss unter deren Verwendung eine so-
genannte Prozessführung entwickelt werden. Die wesentliche Aufgabe der Prozessführung
ist die Bereitstellung der Steuerungslogik für die jeweilige Aufgabe. Im Folgenden wird der
schematische Aufbau dieser Steuerungslogik aus einer funktionalen Sicht vorgestellt.

Field

Single
Control

Unit

Group
Control

Unit

Next Measure
Active

Measure

TU 30
Controller

TU 10
Controller

TU 40
Controller

TU 20
Controller

Database
SCADA/
Archive

instantiate activate archive

YO01

M

NI02

M

NO01

M

NI03 YO02

GCU CH4 GCU Air

Abbildung 2.5: Darstellung einer hierarchischen Prozessführung [WTPE17].

In [PE94] wird ausgehend von einem hierarchischen Führungsmodell eine Prozessführungs-
architektur vorgestellt. Deren fundamentale Bestandteile sind die Prozessführungseinhei-
ten. Diese kapseln die jeweiligen Funktionalitäten und bieten eine Schnittstelle an, um Pro-

15

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

zessführungsaufträge entgegenzunehmen bzw. zu versenden. Je nach Position innerhalb der
Hierarchie werden diese Prozessführungseinheiten als Einzelsteuereinheiten oder Gruppen-
steuereinheiten bezeichnet. Einzelsteuereinheiten kapseln einzelne Aktoren im Leitsystem.
Gruppensteuereinheiten aggregieren die Funktionalitäten und synchronisieren die Aktionen
der ihnen zugeordneten Einzelsteuereinheiten.

In Abbildung 2.5 ist der Aufbau einer hierarchischen Prozessführung dargestellt. Am un-
teren Rand sind die Aktoren der Feldebene zu erkennen. Diese werden im Leitsystem
durch sogenannte Einzelsteuereinheiten (Single Control Unit) repräsentiert (z. B. YO01).
Neben der untersten Ebene der Steuerung, beispielsweise Verriegelungen1, bilden die Ein-
zelsteuereinheiten zusätzlich auch den Zugangspunkt für die Interaktion mit dem Aktor
aus dem Leitsystem heraus. Alle Vorgaben, wie Sollwerte oder Parameter, werden über
die Einzelsteuereinheiten eingestellt. Wenn Informationen über den Aktor benötigt wer-
den, stellt sie die Einzelsteuereinheit bereit. Oberhalb der Einzelsteuereinheiten befinden
sich die Gruppensteuereinheiten (Group Control Units). Ihre Aufgabe ist es, die von ihnen
kontrollierten Einzelsteuereinheiten zu koordinieren. In diesem Beispiel (Abbildung 2.5)
kontrolliert GCU_CH4 den Motor NI03 und das Ventil YO01. Durch die Aggregation der
Funktionalitäten kann der Durchfluss eingestellt werden. Die Gruppensteuereinheit fun-
giert als virtueller Aktor und kapselt nach oben diese Funktionalität. Gruppensteuerungen
können beliebig hoch übereinandergestapelt, d. h. deren Funktionalität aggregiert, werden.
In Abbildung 2.5 wird eine Gruppensteuereinheit für die Teilanlage TU10 (TU10 Control-
ler) umgesetzt. In der Abbildung sind zwei Arten der Verbindung zwischen Prozessfüh-
rungskomponenten zu erkennen. Von GCU_CH4 nach unten zu YO01 wird eine feste
Verdrahtung verwendet. Nach oben zu TU10 Controller werden Prozessführungsaufträge
bzw. Prozessführungsdienste genutzt. Zur Realisierung von prozeduralen Produktionspro-
zessen, die ein Produkt unter Einbeziehung verschiedener Anlagenteile produzieren, sind
sogenannte Maßnahmen vorgesehen. In der Prozessindustrie werden diese auch als Rezepte
bezeichnet. Eine Maßnahme beinhaltet eine Prozedur und die Schnittstellen zur Interak-
tion mit den Prozessführungskomponenten. Maßnahmen können nach ihrer Durchführung
zu Dokumentationszwecken zusammen mit den relevanten Prozessparametern gespeichert
werden.

Die lose Kopplung durch die Verwendung von Prozessführungsdiensten schafft einen ho-
hen Freiheitsgrad bei der Verteilung der Komponenten auf unterschiedliche Hardware.
Die Verteilung von Einzelsteuereinheiten ist jedoch nur eingeschränkt möglich, da diese
einen Zugang zum jeweiligen Aktor benötigen. In [WE15a] wird eine Realisierung dieser
Schnittelle auf Basis von Nachrichten vorgestellt. Dabei werden die Aufträge in Klartext
verschickt und ermöglichen so eine einfachere Nachverfolgung und Fehlerbehebung.

Die so aufgebaute Prozessführung kann in einen prozessnahen Teil (Maßnahmen) und einen
anlagennahen Teil (Steuereinheiten) aufgeteilt werden. Die Steuereinheiten aggregieren die
Funktionalität der Einheiten unter ihnen und die Maßnahmen zerlegen den Prozess in von
der Anlage bearbeitbare Teilaufgaben. In der Phase des Entwurfs muss festgelegt werden,
welche Aufgaben von welchem Teil realisiert werden. Denkbar ist, dass die Steuereinhei-
ten die Funktionalität so weit aggregieren, dass die Anlage durch die oberste Steuerein-
heit komplett gesteuert werden kann. Alternativ können die Maßnahmen direkt auf die
Geräte wirken. Theoretisch sind alle Abstufungen zwischen diesen Extremen denkbar, je-

1Verriegelung bedeutet das Festhalten oder Überführen eines Aktors in einen sicheren Zustand.

16

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

doch muss die höhere Flexibilität (Maßnahmen) gegen die einfachere Ansteuerung (höhere
Aggregation der Einzelsteuereinheiten) abgewogen werden. In [WTPE17] wird mit dem
Betriebsmittel-Maßnahmen Modell ein Ansatz vorgestellt, diese Entscheidung für jeden
Anwendungsfall spezifisch zu treffen.

In [UDKO12] wird eine Architektur für die Integration von Modulen einer Anlage zu einer
Gesamtanlage beschrieben. Ziel der Architektur ist eine einfache Zusammenfassung der
Module durch die Nutzung einer Dienstschnittstelle. Diese erlaubt den Zugriff auf die
Funktionalität und den Status der einzelnen Module. Dieser Ansatz wird in [BFK+17]
für die Verwendung von Micro-Services ausgebaut. Micro-Services erlauben den Zugriff
auf die Funktionalität durch eine Reihe einfacher Dienste, die vom Client in geeigneter
Weise verwendet werden. Die Dienstaufrufe können so einfach gehalten werden, wohingegen
Server und Client smart sein müssen.

2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie

Als Beispiel für ein System in der Automatisierungstechnik, das mehrfach eingesetzt werden
soll, werden im Folgenden die Package Units und modulare Anlagen vorgestellt. Diese
bestehen aus Software- und Hardwareelementen. Da sie mehrfach eingesetzt werden, bieten
die Module einen guten Anwendungsfall für Wiederverwendungskonzepte.

Der Arbeitskreis 1.6 „Package Unit“ der NAMUR2 definiert Package Units als Anlagentei-
le, die sowohl alleine funktionsfähig als auch abgeschlossen sind und wiederholt die gleiche
Funktionalität bereitstellen [NAM96]. Sie werden dafür von einem Hersteller vertrieben,
können jedoch verschiedene Komponenten anderer Leistungserbringer beinhalten. Package
Units sind vorkonfektioniert und bieten die Möglichkeit, einen abgegrenzten Funktions-
umfang von einer Teilanlage zur Verfügung gestellt zu bekommen. Die Frage, ob die Au-
tomatisierung der Package Units in ein übergeordnetes Leitsystem integriert oder, ob die
Teilanlage separat (vor Ort) gefahren wird, ist nach [NAM96] eine Designentscheidung, die
für jeden Einzelfall erneut abgewogen werden muss. Vorteile der Wiederverwendung von
Package Units sind:

• Günstige Herstellungskosten,

• Große Erfahrung mit den Teilanlagen und entsprechend hohe Garantien für den Be-
treiber,

• Fokussierung auf die Planung des Gesamtprozesses.

Durch die Wiederverwendung entsteht ein spezifisches Wissen und der Hersteller kann sei-
nen Produktionsprozess verbessern. So kann er die Herstellungskosten senken und gleich-
zeitig die Qualität verbessern [Die02, Lim94]. Bei einer höheren Zahl von verwendeten
Package Units können mehr Informationen über das Verhalten und die Leistung der ver-
bauten Einheiten erhoben werden. Dies erlaubt dem Hersteller sein Produkt zu verbessern
und, zusätzlich zur gesteigerten Qualität des Produktionsprozesses, das Produkt selbst

2Die NAMUR ist ein internationaler Verband der Anwender von Automatisierungstechnik der Prozess-
industrie.

17

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

genauer an die Kundenwünsche und den Verwendungszweck anzupassen. Neben den Ver-
besserungen auf der Herstellerseite und den günstigeren Kosten für den Anlagenbetreiber
entsteht auch ein Potential für Verbesserung darin, dass sich der Anlagenplaner auf die
Planung des Gesamtprozesses konzentrieren kann. Eine Standardfunktionalität kann so
einfach und günstig hinzugekauft werden, ohne dass sich der Planer über die Details der
Umsetzung kümmern muss.

Nachteilig ist, dass die zur Verfügung stehenden Package Units nicht auf alle Sonder-
wünsche oder Spezialanforderungen des Anlagenbetreibers eingehen. Auftretende Abwei-
chungen, die bei der Produktion berücksichtigt werden müssen, führen zu einem erhöhten
Entwicklungsaufwand und einem Verlust der skizzierten Vorteile [NAM96].

Ein nächster Schritt, die Vorteile der Package Units in der Verfahrenstechnik besser nutz-
bar zu machen, ist die Verwendung von modularen Anlagen. Modulare Anlagen und die
sich daraus ergebenden neuen Anforderungen an die Automatisierungstechnik sind in der
NAMUR Empfehlung 148 [NAM13] beschrieben.

In modularen Anlagen werden verschiedene sogenannte Module zu Anlagen zusammen-
gefasst. Die Anlage besteht aus dem Backbone, der die gesamte von den Modulen benö-
tigte Infrastruktur umfasst und Möglichkeiten zum Andocken für die Module bereitstellt.
Die Infrastruktur umfasst die Versorgung mit Energie, Informationen und Edukten sowie
den Abtransport der hergestellten Produkte. In den „Backbone“ werden die für den kon-
kreten Anwendungsfall benötigten Module in der erforderlichen Menge und Reihenfolge
eingebracht. Verschiedene Arten von einzelnen Modulen sind in [NAM13] vorgesehen. Es
werden drei Eigenschaften von Modulen unterschieden: autonom, integrierbar und modu-
lar. Diese Eigenschaften sind nicht disjunkt. Autonome Module können autark betrieben
werden und benötigen selbst keine Interaktion mit benachbarten Modulen. Daher muss
der Backbone solch ein Modul von der Umgebung entkoppeln (z. B. durch die Bereit-
stellung von Pufferbehältern). Das Modul verfügt über eine eigene Automatisierung mit
definierten Schnittstellen zur Erfassung von Betriebsdaten und für die Inbetriebnahme der
modularen Anlage. Integrierbare Module sind darüber hinaus in ein übergeordnetes Leitsy-
stem integrierbar, d. h., es existiert nicht nur eine Schnittstelle für die Interaktion, sondern
das Leitsystem kann eine modulübergreifende Steuerung realisieren. Die Integration muss
auf verschiedenen Ebenen der Automatisierung erfolgen und sollte daher im Optimalfall
(teil-)automatisiert durchgeführt werden. Modulare Module sind intern wiederum modular
aufgebaut und stellen wieder eine modulare Anlage dar. Durch die definierten Schnittstellen
zwischen Modulen und Backbone ist die Integration von Modulen verschiedener Hersteller
in eine Anlage möglich.

Ein Vorteil dieser Herangehensweise ist, dass Produkte durch die Verwendung von Stan-
dardkomponenten und durch eine verbesserte Wiederverwendung von einzelnen Modulen
in unterschiedlichen Anlagen schneller in den Markt gebracht werden können. Erreicht eine
modulare Anlage oder einzelne Module die Grenzen der Kapazität, kann diese durch ein
einfaches Numbering-up, d. h. Ergänzung einer weiteren Anlage, anstelle eines Scale-up
(Steigerung der Produktion eines bestehenden Verfahrens) gesteigert werden. Somit muss
nicht die Produktivität eines Prozesses als solcher nach oben skaliert werden, sondern es
wird lediglich die Anzahl der produzierenden Module erhöht. Durch die dezentrale Struktur
steigt insgesamt der Komplexitätsgrad der Automatisierung (vgl. [Die02, Lim94]).

18

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

2.1.3 Engineering von automatisierten Systemen

Unter Anlagen-Engineering (dt. Anlagenplanung) werden die Schritte von der ersten Idee
einer Anlage über den Bau und die Inbetriebnahme bis hin zu deren Nutzung im normalen
Betrieb verstanden [Web14]. Grundlagen des Engineerings sind die Anforderungen des spä-
teren Betreibers. Diese zu sammeln und zu ordnen ist der erste Schritt des Engineerings.
Ausgehend von den ermittelten Anforderungen wird die Anlage geplant. An diesem Prozess
sind alle notwendigen Fachdisziplinen beteiligt (Verfahrenstechnik, Mess- und Regeltech-
nik, etc.). Ergebnis der Planung sind verschiedene Artefakte, beispielsweise Modelle der
Anlagentopologie (R&I Fließbilder), PLT-Stellenblätter und Steuerungscode in den Spra-
chen der IEC 61131 (vgl. Kapitel 2.1.1) [HSF+13]. In der Planungsphase wird ebenso die
Hardware zur Umsetzung der geplanten Funktionalität ausgewählt. Im Rahmen der Um-
setzung wird entsprechend der durchgeführten Planungen die konkrete Anlage errichtet,
anschließend getestet und in Betrieb genommen. Nach der erfolgreichen Abnahme durch
den Betreiber kann diese den Regelbetrieb aufnehmen. Die anschließenden Wartungs- und
Optimierungsarbeiten werden ebenso wie ein möglicher Rückbau als Bestandteil des Engi-
neerings im Anlagenlebenszyklus betrachtet [Web14].

Neben der rein technischen Betrachtung wird unter Engineering auch die Einhaltung von
wirtschaftlichen, rechtlichen und organisatorischen Randbedingungen verstanden [Koe85].
Eine automatisierte Anlage muss mit möglichst geringen Aufwänden (d. h. Personal, Mate-
rial, etc.) errichtet werden. Dabei ist es unerlässlich, die geltenden Vorschriften und Gesetze
einzuhalten [Web14]. Die Abwicklung eines Engineering-Projekts ist durch die Beteiligung
der vielen Personen eine große Herausforderung. Allerdings muss darüber hinaus auch
berücksichtigt werden, dass die Anlage durch die Mitarbeiter der Betreiberorganisation
betrieben werden kann.

Engineering-Prozesse

Zur Durchführung von Engineeringprozessen existieren in der Literatur viele Vorschläge
und Ansätze. Ein bekannter Ansatz ist der im Folgenden vorgestellte Prozess zur „Ab-
wicklung von PLT-Projekten“ aus dem Arbeitsblatt 35 der NAMUR [NAM03]. Anwen-
dungsbereich des Arbeitsblattes ist die Durchführung von leittechnischen Projekten in der
Prozessindustrie. Mit dem Arbeitsblatt wird das Ziel verfolgt, dem wachsenden Kosten-
druck und der zunehmenden Komplexität der Automatisierung zu begegnen. Dafür wird
ein strukturierter Ablauf für die Durchführung von Projekten vorgeschlagen, sowie Em-
pfehlungen für das Qualitäts- und Projektmanagement gemacht.

In Abbildung 2.6 ist der strukturierte Ablauf mit seinen sieben Phasen dargestellt. Inner-
halb der Pfeile ist der Name der jeweiligen Phase zu erkennen und unterhalb des Pfeils
ist das Zwischenziel der Phase angegeben. Die erste Phase (Grundlagenermittlung) be-
steht aus der Festlegung der Projektziele und einer groben Schätzung der zu erwartenden
Kosten auf Basis einer vorliegenden Verfahrensbeschreibung und einer geplanten Anlagen-
kapazität. Das Ergebnis ist eine durchführbare Anlage. Davon ausgehend werden in der
Vorplanung das Anlagenkonzept festgelegt und die Kosten genauer kalkuliert. In dieser
Phase wird das erste Sicherheitsgespräch durchgeführt und eine Wirtschaftlichkeitsberech-
nung erstellt. Das Ergebnis ist ein Anlagenkonzept und die dazugehörige Dokumentation

19

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Die

produktions-

fähige Anlage

Die durchführ-

bare Anlage

Die genehmi-

gungsfähige

Anlage

Die aus-

schreibbare

Anlage

Die errichtbare

Anlage

Die funktions-

fähige Anlage

0101 0202 0303 0404 0505 0606

Grundlagen-

ermittlung

Grundlagen-

ermittlung

Inbetrieb-

setzung

Inbetrieb-

setzung

Ausführungs-

planung

Ausführungs-

planung
VorplanungVorplanung ErrichtungErrichtung

Basis-

Planung

Basis-

Planung

Die bewertete

und abgerech-

nete Anlage

0707

Projekt-

abschluss

Projekt-

abschluss

Abbildung 2.6: Darstellung des Prozesses der Abwicklung eines PLT-Projekts nach [NAM03].

(z. B. PLT-Stellenblätter und R&I-Fließbilder). Diese Dokumente werden in der Basispla-
nung verfeinert und die Kostenschätzung fortlaufend aktualisiert. Die Verfeinerung betrifft
insbesondere die Beschaffung der verfahrenstechnischen Daten und die Festlegung der tech-
nischen Realisierung der leittechnischen Funktionen. In der Ausführungsplanung werden die
benötigten Geräte und das Leitsystem spezifiziert. Ergebnisse sind u. a. die Stellenfunkti-
onspläne und Montageunterlagen. In der fünften Phase (Errichtung) werden die Aufträge
ausgestellt, deren Durchführung veranlasst und überwacht. In dieser Phase wird ladefähi-
ger Code für die Leitsysteme programmiert und die Dokumentation erstellt. Dieser Code
muss auf Funktionsfähigkeit überprüft und gegebenenfalls müssen Nacharbeiten durchge-
führt werden. Abschließend wird die Funktionsfähigkeit dokumentiert. Während der In-
beriebsetzung wird das Personal ausgebildet, die Anlage in Betrieb genommen und die
Dokumentation auf den aktuellen Stand gebracht. In der letzten Phase (Projektabschluss)
werden der Abschlussbericht und die Abrechnung erstellt.

Der typische Lebenszyklus einer Anlage in der Industrie 3.0 wird in [WGE+17] vorgestellt.
Dieser fokussiert die Behandlung von Assets über den Lebenszyklus. So werden in der ersten
Phase der Grobplanung die Anforderungen und Zusicherungen an ein Gerät festgehalten. In
der zweiten Phase wird ausgehend von den Anforderungen ein Gerätetyp ausgewählt. Diese
Auswahl erfolgt anhand von Katalogen oder von Typenbibliotheken. Mit den vorliegenden
Informationen über die Geräte kann die Detailplanung durchgeführt werden. In diesem
Rahmen werden die Konstruktion, die Steuerung und die Infrastruktur geplant. In der
vierten Phase wird die Anlage gebaut, getestet und in Betrieb genommen. Anschließend
erfolgen die Übergabe und die Aufnahme der Produktion.

Diese beiden Abläufe stehen beispielhaft für die Engineeringprozesse, wie sie aktuell Stand
der Technik sind. Ein Überblick über verschiedene Vorgehensmodelle im Engineering ist
in [Sch16b] zu finden. Wie auch [Web14] kommt der Autor zu dem Schluss, dass viele Tä-
tigkeiten im Engineering repetitiv sind und daher ein großes Potential für die Nutzung von
systematischen Wiederverwendungskonzepten bieten. Die Aufwände für die Planung der
PLT-Stellen und der Konfiguration der Software werden auf etwa 30% der Gesamtaufwände
geschätzt [NAM03]. Zusätzlich wird die Erzeugung der Software als eine der fehleranfäl-
ligsten Projektphasen eingeschätzt. Heutige Automatisierungssystem sind weder fehlerfrei
noch 100% testbar [NAM08].

Die geschilderten Abläufe stellen den Optimalfall dar [WGE+17]. In der Praxis ist mit
undokumentierten Änderungen an der Hard- und Software zu rechnen. Demzufolge ent-

20

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

sprechen wenige Pläne von gebauten Anlagen den jeweiligen Anlagen. Für die einzelnen
Projektphasen und Gewerke existieren jeweils unterschiedliche Tools mit proprietären Aus-
tauschformaten [VHDB13]. Die heterogene Tool-Landschaft zusammen mit fehlenden Kon-
sistenzchecks wird als die Ursache für Inkonsistenzen und Missverständnisse in Anlagen-
plänen angesehen [WGE+17].

Die Notwendigkeit, das Wissen und die entwickelten Artefakte aus Projekten in Folgevorha-
ben nutzbringend einzusetzen, wird in [NAM08] betont. Ausgangspunkt ist die Annahme,
dass ein großer Teil der Arbeiten, insbesondere bei der Erstellung der Pläne und der Um-
setzung in eine Leitsystemprogrammierung, repetitiver Natur ist. Wenn diese Annahme
bejaht wird, so ist es sinnvoll das in den Plänen und der Implementierungen steckende
Wissen in nachfolgende und andere Projekte zu übertragen.

Wiederverwendung in der Praxis der Automatisierung

Ein grundsätzlicher Mechanismus der Wiederverwendung in der Automatisierungstechnik
ist die Entwicklung von z. B. Funktionsbausteinen und deren Nutzung in mehr als ei-
nem Anwendungsfall. Dieser Ansatz wird auch im Bereich der Hardware angewendet, da
Pumpen oder Sensoren in mehr als einer Anlage und in großer Stückzahl zum Einsatz
kommen [DMG+17].

Für Funktionsbausteine wird in [YGE13, WTPE17] der ACPLT Software Development
Process (SDP) vorgestellt. Dieser setzt auf eine strikte Trennung zwischen der Entwick-
lung der Bausteine und deren Nutzung im Engineering von Lösungen konkreter Aufgaben.
Diese Trennung ist nicht nur zeitlich, sondern auch personell zu sehen, da im Rahmen der
Entwicklung eher softwaretechnische und im Engineering mehr anwendungsspezifische Fä-
higkeiten benötigt werden [VHDF+14]. Dieser Prozess ermöglicht es zwar, die Aufwände in
der Entwicklung häufiger zu nutzen, allerdings ist die Kenntnis der entwickelten Bausteine
eine Grundvoraussetzung. Ist diese nicht gegeben, z. B. durch schlechte Kommunikation in
der Organisationseinheit, so kann es zur parallelen Entwicklung funktional gleicher Bau-
steine kommen.

Ein Ergebnis des Engineeringprozesses sind Funktionsbausteinnetzwerke, die sich aus den
vorher entwickelten Bausteinen zusammensetzen [HSF+13]. Diese Netzwerke werden in
mehreren Anwendungsfällen verwendet. Im Änderungsfall (z. B. der Fehlerbehebung) müs-
sen diese oft manuell geändert werden bzw. nachgepflegt werden. Da die Pläne oft struktu-
rell identisch sind, sich jedoch in der Parametrierung unterscheiden, ist eine Propagierung
der Änderungen nicht durch ein Kopieren und Einfügen zu erreichen.

Es gibt unterschiedliche Hersteller, deren Blöcke nicht kompatibel sind. Selbst bei der
Verwendung von Standardbausteinen kann es sein, dass deren Interface nicht gleich ist,
was zu Problemen bei der Übertragung einer Änderung auf das System eines anderen
Herstellers führt. Bei der Verwendung von selbst entwickelten Funktionsbausteinen und
Funktionsbausteinnetzen sind die Lösungen nur eingeschränkt übertragbar. Dies gilt auch
für die Migration von einer Leitsystemversion auf eine andere. Ein Grund für die fehlen-
de Übertragbarkeit ist die unterschiedliche Umsetzung von ST-Befehlen in den Systemen
der einzelnen Hersteller. Dies macht eine Übertragung von Applikationen zwischen den
Herstellern schwierig.

21

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Eine weitere Art der Wiederverwendung ist die Nutzung von einheitlichen Strukturen. Dies
gilt u. a. für die Strukturen von Reglern. Ein Beispiel ist die Verwendung von Kaskaden
oder von Störgrößenaufschaltungen [ASE08]. Durch dieses Vorgehen kann, eine richtige
Auswahl der Struktur vorausgesetzt, die Problemstellung auf die korrekte Parametrierung
der Bausteine reduziert werden.

2.1.4 Quo vadis Automatisierungstechnik? – Ein Ausblick im
Zeitalter von Industrie 4.0

Neben dem aktuellen Stand der Automatisierungstechnik in der Praxis, wird im Folgen-
den die nahe Zukunft betrachtet. Allgemein herrscht die Überzeugung, dass die Automa-
tisierung und mit ihr die gesamte produzierende Industrie vor größeren Veränderungen
steht [SAG+17]. Ein Anzeichen dieser Entwicklung sind Projekte wie die Industrie 4.0
Initiative in Deutschland und das von der Object Management Group (OMG) in den Ver-
einigten Staaten ins Leben gerufene Industrial Internet Consortium. Diese beiden Initiati-
ven sind jeweils eine Sammlung von Vorhaben und Projekten, die von unterschiedlichsten
Beteiligten vorangetrieben werden. Ihnen gemeinsam ist jedoch das übergeordnete Ziel,
die Digitalisierung und Vernetzung der industriellen Produktion voranzutreiben. Damit
ist nicht nur die Vernetzung innerhalb der Betriebe und Unternehmen gemeint, sondern
vor allem die Vernetzung über die Grenzen von Unternehmen hinweg. Ziel ist es, ein in-
tegriertes Wertschöpfungsnetzwerk zu schaffen, das mindestens teil-automatisiert Daten
über Produkte und Aufträge zwischen verschiedenen Teilnehmern austauscht. Damit soll
insbesondere an Hochlohnstandorten eine effizientere Produktion ermöglicht werden.

Zusätzlich zu den beschriebenen Zielen soll die Produktion insgesamt flexibler gestaltet
werden. In diesem Kontext ist eine Produktion mit der Losgröße eins die ultimative Bench-
mark [SAG+17]. Ein Schritt zur Erreichung dieses Ziels ist die Realisierung einer flexiblen
und wandelbaren Produktion in technischen Betrieben. Neben der Entwicklung von neuer
Infrastruktur, die eine variable Anordnung der Produktionsmittel ermöglicht, muss auch
die Automatisierungslösung in die Lage versetzt werden, der Änderung des Produktions-
prozesses zu folgen. Eine Möglichkeit dies umzusetzen ist die Programmierung zu flexibili-
sieren [VHDF+14]. Dies kann beispielsweise durch die Verwendung von Laufzeitsystemen,
die zur Laufzeit rekonfiguriert werden können, erfolgen. Durch das Halten von Enginee-
ringdaten innerhalb der Laufzeitumgebung kann die Automatisierungslösung durch eine
automatisierte Transformation aus einer Problembeschreibung und den Randbedingungen
erzeugt werden. Um die Lücke zwischen der geplanten Änderung und der echten Adapti-
on eines neuen Produktionsprozesses oder neuer Randbedingungen zu schließen, müssen
die Systeme in der Lage sein, ihre Umgebung zu erkennen und die Funktionalität der an-
geschlossenen Geräte zu erkunden [VHDB13]. Zur Realisierung der Erkundbarkeit bietet
sich OPC UA als Kommunikationsprotokoll an. Neben der verbesserten Kommunikation
spezifiziert OPC UA ein Metamodell für die objektorientierte Datenmodellierung. Ausge-
hend davon können Datenmodelle für die unterschiedlichsten Anwendungsfälle entwickelt
werden (z. B. Verwaltungsschalen [PE17]).

Flexibilität von Produktionssystemen bedeutet die vorher geplante reversible Anpassung
an neue Gegebenheiten [Löf11]. Charakteristisch für flexible Produktionssysteme ist der

22

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

begrenzte Handlungsspielraum, innerhalb dessen sich diese bewegen können. Wandelbare
Systeme können diesen engen Korridor verlassen und im Vorhinein nicht geplante Verän-
derungen durchführen [Löf11].

Ein Weg zur Umsetzung der Adaption einer neuen Aufgabe durch die Automatisierungslö-
sung ist die Nutzung einer wandelbaren Struktur [WE15a]. Wandelbar bedeutet in diesem
Zusammenhang, dass sich die Struktur ändern können muss. Dies kann nötig sein, wenn
sich die Struktur der Anlage ändert oder neue Komponenten in die Automatisierungslö-
sung eingebracht werden. Dies kann durch eine dienstbasierte Architektur und die Ver-
wendung von Nachrichten für das Aufrufen der Dienste realisiert werden [EE13]. Dabei
bieten die Prozessführungskomponenten die von ihnen angebotene Funktionalität über ein
Dienstsystem an. Diese Dienste können von Dienstnutzern, d. h. anderen Prozessführungs-
komponenten oder Bedienern, gefunden und genutzt werden. Für die Nutzung in der Au-
tomatisierungstechnik sind Ressourcen orientierte Architekturen (ROA) geeignet [WE17].
Diese Architekturen sind reduzierte Dienstsysteme, die anstelle von Diensten mit einem
großen Interface und beliebiger Funktionalität auf atomare Dienste mit einer begrenzten
Funktionalität setzen. Die Komplexität eines umfassenden Dienstes kann gegen komple-
xere Aufrufe von atomaren Diensten getauscht werden. Microservices [BFK+17] und die
Dienste für die Interaktion von Komponenten [IEC05] sind Beispiele dafür.

Ein weiterer Gegenstand der Betrachtung ist die Anbindung der Automatisierungslösung
an die Cloud [SCZ+16]. In diesem Kontext wird Edge Computing, d. h. die Datenverarbei-
tung an der Grenze zur Cloud diskutiert. Für das Edge Computing werden die Ressourcen
von Geräten verwendet, die nahe am Prozess stehen. Aufgaben sind beispielsweise die
Datenverarbeitung oder die Verteilung von Anfragen [SCZ+16]. Vorteile gegenüber dem
reinen Cloudcomputing sind die bessere Anbindung an die Produzenten von Daten und
die daraus resultierenden höheren Bandbreiten sowie geringere Antwortzeiten.

Durch die zunehmende Verwendung von smarten Geräten und deren Vernetzung stehen
in Zukunft immer mehr Daten über Prozesse und Geräte zur Verfügung. Um diese ein-
heitlich zugänglich zu machen, sind ein standardisiertes Interface und eine vereinheitlichte
Datenmodellierung erforderlich. Mit der Verwaltungsschale wird ein solches Interface und
eine objektorientierte Datenmodellierung vorgeschlagen [PE17]. Dabei besteht die Verwal-
tungsschale aus verschiedenen Elementen, die z. B. durch einen OPC UA-Server von außen
zugänglich gemacht werden können. Eine Anwendung für die neuen Daten sind Applika-
tionen aus dem Bereich des Predictiv Maintenance. Dabei wird versucht, aus den Daten
eine Veränderung des Gerätezustands herauszulesen und einen möglichen Ausfall vorher-
zusagen. Eine Vernetzung der Systeme über die Unternehmensgrenzen hinweg ermöglicht
es, dass der Hersteller Zugang zu den Daten seiner verbauten Geräte erhält und diese
auswerten kann. So können neue Dienstleistungen realisiert werden.

In [WGE+17] wird ein überarbeiteter Lebenszyklus für die Anlagenentwicklung vorgestellt
(vgl. Abbildung 2.7). Der Prozess ist im Wesentlichen deckungsgleich zu dem vorgestellten
aus dem NAMUR Arbeitsblatt 35. Er besteht aus den Schritten Grobplanung, der anschlie-
ßenden Geräteauswahl aus dem Katalog von Typen, dem Aufbau des Instanz-Modells der
Anlage und dem abschließenden Aufbau der Anlage.

Der Fokus liegt auf der Verwendung von neuen digitalen Modellen in den verschiedenen
Schritten der Planung einer Anlage. In Kombination mit einer verbesserten Werkzeugkette

23

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

D-Instance model

Motor

Motor

Anlage

VentilA1

Cont.B1

MotorA1

Physical

thing

D4711

Physical world of real objects

Information world with data and services

D-Rolemodel
(Function description)

Plant

ValveA1

Cont.B1

MotorA1

D-Type-Catalog
(Herstellerkatalog oder

nutzerdefinierte Bibliothek)

Cont._A

Cont._B

Motor

Valve

Device

selection
Plant

ValveA1

MotorA1

Plant I4.0 Infrastructure

MotorA1

Administration

connected to

Requirements/

assurances

Model (Simulation type),

requirements/assurances,

type information,

AAS templates

Specific simulation,

Instance specific information,

AAS instances

Instance

model

realizes

refers to

Information of asset

(properties, states, etc.)

Cont.B1

Administration

Information model

of plant

generates

Rough planning
Detail planning,
virtual commisioning

Libraries Plant operation

Historian

reads

Orders, Assembly

Engineering-Tool
scanning of the plant structure, functions,

properties, etc.

writes

configurations

abstraction

1 2 3 54

Engineering-Tool
connected to

Historian

Apps

Apps

5.1

5.2

I4
.0

 S
o

ft
w

ar
e

-
In

fr
as

tr
u

ct
u

re

enables

enables

I4.0
Repository

Timeline

Iteration

FeedbackFeedbackFeedback

Abbildung 2.7: Darstellung der Anlagenentwicklung im Kontext von Industrie 4.0
nach [WGE+17]

soll diese Entwicklung zu geringen Aufwänden im Engineering führen. Die verbesserten
Werkzeugketten bestehen aus passenden Schnittstellen zwischen den unterschiedlichen Sy-
stemen, die eine automatisierte Datenübertragung ermöglichen und einer durchgängigen
Betrachtung von Assets über deren gesamten Lebenszyklus hinweg ermöglichen. Eine ange-
strebte Verbesserung ist die Verkleinerung der Lücke zwischen den Planungs- bzw. Doku-
mentationsunterlagen und der Anlage selbst. Dies soll durch eine Rückwärts-Propagierung
von Änderungen an Planungsmodellen z. B. der zweiten und dritten Phase in die erste oder
zweite Phase erfolgen. Somit sind alle Modelle auf dem Stand der Anlage.

2.2 Komponentenbasierte Architekturen

Im folgenden Abschnitt werden die Grundgedanken zu komponentenbasierten Architektu-
ren vorgestellt und erläutert. Zunächst wird der Begriff Komponente eingeführt und eine
Definition für die vorliegende Arbeit gegeben. Komponenten werden in Systemen und Ar-
chitekturen zusammengefasst. Deren Aufbau und Vorteile widmet sich der nachfolgende
Abschnitt. Anschließend werden die Verwendung von komponentenbasierten Architekturen
in der Automatisierungstechnik vorgestellt.

2.2.1 Der Komponentenbegriff

Die Verwendung von Komponenten sind ein sehr grundsätzlicher Ansatz zur Betrachtung
eines Systems, das aus einzelnen Teilen, d. h. Komponenten zusammengesetzt ist. Im Du-
den wird Komponente als „Bestandteil bzw. Element eines Ganzen“ definiert. Nach dieser

24

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

Definition sind Komponenten Elemente eines übergeordneten Systems. Beispiele für eine
derartige Betrachtung sind die Komponenten einer Stoffmischung oder die Komponenten
in einem Computer. Der Begriff Komponente stellt sich als generisch dar und abhängig
vom Gegenstand der Betrachtung können darunter sehr verschiedene Dinge verstanden
werden.

In der DIN SPEC 40912 [DIN14] wird daher die technische Komponente als Spezialisierung
der allgemeinen Komponente eingeführt. Unter dem Begriff werden sowohl Hard- als auch
Softwarekomponenten subsumiert.

Definition 1 (Technische Komponente). Vorgefertigte, in sich strukturierte und unabhän-
gig hantierbare Einheit zur Realisierung einer konkreten Rolle in einem System [DIN14].

Die Definition der technischen Komponente beinhaltet vier zusätzliche Kernaspekte: sie ist
vorgefertigt, strukturiert, unabhängig hantierbar und realisiert eine konkrete Rolle. Vor-
gefertigt bedeutet, dass die technische Komponente schon vorliegt, wenn das System auf-
gebaut wird. Die technische Komponente hat einen internen Aufbau, der nach einem Plan
aufgebaut ist. Die interne Struktur muss nicht zu jedem Zeitpunkt transparent sein, d. h.,
eine technische Komponente kann nach außen als Black-Box erscheinen (vgl. [OMG15]).
Technische Komponenten können einem System hinzugefügt oder entnommen werden, bei-
spielsweise, wenn sie getauscht werden. Hierdurch erfolgt eine Abgrenzung zur allgemeinen
Komponente, da diese nicht einzeln hantierbar sein muss. Die Komponenten des Kompo-
nentenklebers bilden nach der Vermischung eine Einheit und die Komponenten können
nicht mehr getrennt behandelt werden. Diese Eigenschaft einer Komponente stellt beson-
dere Anforderungen an das Interface der Komponente und der Umgebung, in welche die
Komponente eingebaut wird. Die beiden Interfaces müssen zueinander kompatibel sein.
Zudem muss die Umgebung die Möglichkeiten bereitstellen, die Komponente zu hantieren.
Im Folgenden werden technische Komponenten als Komponenten bezeichnet. Der letzte
Aspekt der Definition von Komponenten ist, dass technische Komponenten eine konkrete
Rolle in einem System erfüllen. Die Grundlagen dieser Systembeschreibung werden nach-
folgend erläutert.

Rollen und Realisierungseinheiten – Das Rollenmodell

Das Rollenmodell ist eine Systembeschreibung, die im Engineering von Anlagen verbreitet
ist [WGE+17]. Es beschreibt das System als Kombination aus Rollen und Realisierungsein-
heiten (vgl. Abbildung 2.8) [DIN14]. Rollen beinhalten auf der einen Seite die Anforderun-
gen an Realisierungseinheiten und auf der anderen Seite Zusicherungen an die umgebenden
Systemelemente und das Gesamtsystem. Realisierungseinheiten realisieren diese Rollen und
werden Bestandteil des Systems.

Die Trennung in Rolle und Realisierungseinheit stellt einen fundamentalen Bestandteil der
Anlagenplanung dar und ist, wenn auch nicht immer explizit beschrieben, zumindest impli-
zit vorhanden [DMG+17]. Wird zum Beispiel der Temperatursensor einer Anlage getauscht,
so wird der alte Sensor der Anlage entnommen und damit die Verbindung zwischen der
Rolle „Temperatur messen“ und dem Sensor als Realisierungseinheit getrennt. Die Rolle,
d. h. die Anforderung, dass eine Temperatur unter den gegebenen Randbedingungen gemes-

25

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

System

Rolle Realisierungseinheit
realisiert

Abbildung 2.8: Darstellung des Rollenmodells zur Systembeschreibung [DIN14]

sen werden soll, existiert weiterhin. Sie wird durch den neu eingebauten Sensor realisiert.
Dieser ist dann die neue Realisierungseinheit.

Bei der Betrachtung des Lebenszyklus einer Anlage wird der Nutzen des Rollenmodells
deutlich. In [DMG+17] beschreiben die Autoren die Verwendung von Rollenmodellen im
Engineering. Hierbei wird die Anlage zunächst abstrakt (z. B. in einem Rohrleitungs- und
Instrumentierungsfließbild [IEC16]) entworfen. Dabei wird unter Verwendung der Rollen
eine Anlagenstruktur entworfen, ohne die konkreten Gerätetypen zu benennen, die in der
Anlage verbaut werden sollen. Diese dokumentieren die Anforderungen an die Geräte und
deren Aufgabe in der Anlage. Unter Verwendung dieser Anforderungen können geeignete
Typen von Realisierungseinheiten gesucht werden. Ausgehend von dem Ergebnis dieser
Suche werden die entsprechenden Realisierungseinheiten festgelegt [DF04, Epp08]. Der
Plan für den funktionalen Aufbau (Rollenmodell) einer Anlage ist damit losgelöst von
den tatsächlichen Geräten in der Anlage. Diese Trennung wird bei der Verwendung von
Verwaltungsschalen für Geräte und der damit verbundenen Nutzung von Lebenszyklusin-
formationen genutzt [WGE+17].

Der Aufbau von Komponenten

Aus der Definition von technischen Komponenten geht hervor, dass diese in sich struktu-
riert sein müssen. Ein Vorschlag für die Beschreibung dieses inneren Aufbaus von Soft-
warekomponenten wird in [Ens01] vorgestellt. Dabei werden zwei Arten von Komponenten
unterschieden: primitive und komplexe Komponenten. Primitive Komponenten sind ato-
mar, d. h., sie können in keine weiteren Bestandteile (Unterkomponenten) zerlegt werden.
Im Gegensatz dazu setzen sich komplexe Komponenten aus Unterkomponenten zusammen.
Die Unterteilung ist analog zu der Einteilung in der IEC 61499 [IEC05]. Für die Beschrei-
bung von Komponenten als Black-Box werden Kapseln eingeführt [Ens01]. Diese beschrei-
ben das Interface einer oder mehrerer Komponenten. Das beschriebene Interface ist eine
Mindestanforderung, d. h., die Komponenten können über ein größeres Interface verfügen
und sind trotzdem kompatibel. In [Ens01] werden Kapseln als Beschreibung für Kompo-
nenten vorgesehen, die „Gemeinsamkeiten in Struktur und Verhalten aufweisen“. Kapseln
können als Rollenbeschreibung von Funktionsbausteinen aufgefasst und im zugehörigen
Engineeringprozess für den Aufbau von komplexen Komponenten verwendet werden. Im
weiteren Verlauf werden die Kapseln durch Funktionsbausteine implementiert.

Eine sehr prominente Beschreibung für den Aufbau von Softwarekomponenten ist in der

26

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

Spezifikation der Unified Modeling Language (UML) enthalten [OMG15]. Darin wird ei-
ne Komponente als modulare Einheit mit einem wohldefinierten Interface, die innerhalb
ihrer Umgebung austauschbar ist, definiert. Diese Definition ist für Softwarekomponenten
deckungsgleich mit der vorgestellten Definition der technischen Komponenten. Der Fokus
der Komponente aus Sicht der UML liegt auf der Kapselung des Zustands und des Verhal-
tens der Komponente. Darüber hinaus sind Komponenten austauschbare Elemente, wenn
ihre Funktionalität und ihr Interface kompatibel sind. In Abbildung 2.9 ist der strukturierte
Aufbau von Komponenten vereinfacht dargestellt. Es ist zu erkennen, dass Komponenten
von einer Klasse abgeleitet werden und aus Realisierungen, PackageableElements und In-
terfaces bestehen können. Das Interface unterteilt sich in benötigte (required) und bereit
gestellte (provided) Interfaceelemente. Ein weiterführender Überblick zu Softwarekompo-
nenten ist in [Die02] zu finden.

Komponente Komponentenrealisierung

Klasse

Interface

Realisierung

PackageableElement

*

* *

*0..1

0..1

Abbildung 2.9: Komponentenaufbau nach [OMG15]

Eine andere Art der Komponenten sind Hardwarekomponenten, wie z. B. Feldgeräte
(vgl. Kapitel 2.1.1) oder Package Units (vgl. Kapitel 2.1.2). Der innere Aufbau dieser Hard-
warekomponenten ist für die Betrachtung in einem größeren System (z. B. einer Anlage)
selten relevant. Daher werden diese Elemente bei der Beschreibung von Anlagen (z. B. in
einem Rohrleitungs- und Instrumentierungsfließbild [IEC16]) als Black-Boxen dargestellt.
Aus Sicht der Systembeschreibung sind nur die Funktionalität und das Interface (z. B. Art
des Anschlusses oder benötigte Spannungsversorgung) relevant. Analog dazu ist die Defini-
tion des Module Type Package (MTP) der Interessengemeinschaft Automatisierungstech-
nik der Prozessindustrie (NAMUR) zu verstehen, in dessen Rahmen die Schnittstellen für
Module definiert werden. Für jedes Modul muss die Mensch-Maschine-Schnittstelle und
eine Schnittstelle für das Steuern und Überwachen beschrieben sein [BHH+16]. Für das
Steuern und Überwachen stellt das Modul seinen internen Zustand nach außen dar und
bietet (Prozessführungs-)Dienste an, die von einer überlagerten Steuerung genutzt werden.
Der interne Aufbau des Moduls ist für den Nutzer im Sinne einer Service orientierte Ar-
chitektur (SOA) nicht relevant und kann durch verschiedene Hardwareaufbauten realisiert
werden.

27

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Eigenschaften von Komponenten

Eigenschaften von Softwarekomponenten, die auch für technische Komponenten gelten,
sind in [Sam97] vorgestellt worden. Die wesentlichen Eigenschaften sind:

• Geschlossenheit
Unter Geschlossenheit ist zu verstehen, dass eine Komponente wiederverwendet wer-
den kann, ohne dass dazu andere Komponenten oder Hilfsmittel nötig sind. Sind
für die Verwendung einer Funktion andere Funktionen erforderlich, so müssen diese
alle in einer Komponente enthalten sein. Eine Klasse aus der Softwaretechnik ist im
Allgemeinen alleine keine Komponente, da aufgrund von Vererbungsstrukturen für
deren Erzeugung weitere Klassen vorhanden sein müssen.

• Identifizierbarkeit
Komponenten müssen eindeutig identifizierbar sein. Zusätzlich zu der reinen Namens-
gebung ist darunter auch die Auffindbarkeit zu verstehen.

• Klarheit der Schnittstelle
Bei der Verwendung von Softwarekomponenten steht die Wiederverwendung im Vor-
dergrund. Daher muss sich die Schnittstelle auf den für die Wiederverwendung rele-
vanten Umfang beschränken und alles Weitere verbergen. Im Allgemeinen wird unter
den Schnittstellen die Signatur der angebotenen Funktionen verstanden [Die02].

• Dokumentation
Die Dokumentation von Komponenten ist für deren Verwendung und insbesondere
für die Wiederverwendung wichtig. Die am besten für die Wiederverwendung ver-
wendbare Komponente ist nutzlos, wenn es keine geeignete Dokumentation gibt.

• Wiederverwendungsstatus
Der Wiederverwendungsstatus gibt an, wer die Komponente besitzt, wer für die War-
tung verantwortlich ist und wer kontaktiert werden kann, wenn es Probleme mit der
Komponente gibt.

In [Die02] wird zwischen zwei Arten von Komponenten unterschieden: den horizontalen
und den vertikalen Komponenten. Horizontale Komponenten sind unabhängig von einem
konkreten Anwendungsgebiet bzw. einer Domäne. Beispiele sind Komponenten für Benut-
zerschnittstellen oder das Datenmanagement. Im Gegensatz dazu stellen vertikale Kom-
ponenten Funktionalitäten für einen konkreten Bereich bereit. Die Prozessführungskom-
ponenten sind dafür ein Beispiel.

Abbildung 2.10 zeigt das Zusammenspiel aus Komponentenentwicklung, Komponentenma-
nagement und Lösungsentwicklung. Im Kern dieser drei Aufgaben steht das Repository,
in dem die Komponenten gesammelt und verwaltet werden. Im Rahmen der Komponen-
tenentwicklung werden neue Komponenten dem Repository hinzugefügt, die im Nachgang
von den Entwicklern bearbeitet und verbessert werden können. Die Verwaltung der Kom-
ponenten und ihre Bereitstellung für die Lösungsentwicklung ist Gegenstand des Kompo-
nentenmanagements. Ausgehend von den entwickelten Komponenten werden in der Lö-
sungsentwicklung Lösungen für die jeweiligen Problemstellungen realisiert. In [HC01] wird
betont, dass ein zentrales Repository für die Durchführung der Prozesse wichtig ist, da-
mit die verfügbaren Komponenten allen Beteiligten bekannt sind und von diesen genutzt

28

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

werden können.

Repository

Lösungs-
entwicklung

Komponenten-
entwicklung

Komponenten-
management

Abbildung 2.10: Das Repository im Zentrum der Komponentenverwendung nach [HC01]

Komponenten als Grundlage für die Wiederverwendung

Einheiten, seien sie physisch oder nicht physisch, werden erst durch das Hinzufügen zu
einem Komponentensystem zu einer Komponente. Übertragen bedeutet das, dass der Sen-
sor im Lager oder die in der Cloud gespeicherte Softwareapplikation keine Komponenten
im engeren Sinne sind. Im allgemeinen Sprachgebrauch werden jedoch auch Einheiten, die
prinzipiell als Komponenten verwendet werden können, als Komponenten bezeichnet, auch
wenn sie aktuell keinem Komponentensystem zugeordnet sind [DIN14].

Nach [Kru04] sind komponentenbasierte Architekturen eine Lösung für grundlegende Pro-
bleme im Bereich der Softwareentwicklung, da sie folgende Vorteile haben:

• Komponenten erleichtern das Design von widerstandsfähigen Architekturen.

• Modularität ermöglicht eine klare Trennung der Zuständigkeiten von Systemelemen-
ten.

• Wiederverwendung wird durch standardisierte Frameworks und verfügbare Kompo-
nenten erleichtert.

• Komponenten stellen eine natürliche Basis für das Konfigurationsmanagement dar.

• Tools für die visuelle Modellierung stellen eine Automation für das komponentenba-
sierte Entwickeln dar.

29

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Dementsprechend sind komponentenbasierte Systeme in vielen Bereichen zumindest im-
plizit verbreitet. Wie gezeigt wurde, existieren Definitionen von Komponenten sowohl im
Hard- als auch im Softwarebereich. Im Folgenden werden beispielhaft einige komponenten-
basierte Architekturen aus der Automatisierungstechnik vorgestellt.

2.2.2 Komponentenbasierte Architekturen in der
Automatisierungstechnik

Beispiele für komponentenbasierte Architekturen in der Automatisierungstechnik sind
Funktionsbausteine aus der IEC 61131 [IEC14b] und IEC 61499 [IEC05], Package Units, die
Betrachtung von Sensoren und Aktoren in Anlagen und Rohrleitungs- und Instrumenten-
Fließbilder. Die Funktionsbausteine und die Hardwarekomponenten sind klassische Bei-
spiele für komponentenbasierte Architekturen. Aber auch die Elemente von Fließbildern
können als Komponenten aufgefasst werden, da sie in ihrer Umgebung einzeln handhabbar
sind, einen konkreten Zweck haben und ein definiertes Interface bereitstellen.

Softwarekomponenten

Für den Aufbau des Softwareteils der Automatisierungslösung (System für die Automati-
sierung z. B. einer Anlage, vgl. [VHDF+14]) werden in der Regel die Programmiersprachen
der IEC 61131 verwendet [JT00]. Zur Strukturierung hat sich die Verwendung von Funkti-
onsbausteinen in Funktionsbausteinnetzwerken etabliert. Dabei werden einzelne Aufgaben
in einem Funktionsbaustein gekapselt. Dieser verfügt über ein definiertes Interface, soge-
nannte Ports, und kann innerhalb des Automatisierungssystems instanziiert, gelöscht und
manipuliert werden. Der rückwirkungsfreie Austausch von Daten wird durch Signalver-
bindungen zwischen den Ports von Bausteinen realisiert. Als Erweiterung der klassischen
Bausteintechnik im Hinblick auf Verteilbarkeit von Lösungen und der Ausführungsseman-
tik ist die IEC 61499 entwickelt worden. Als Ergänzung zu den klassischen Ports sind
Eventports zur Abbildung eines Eventflusses eingeführt worden. Funktionsbausteine kön-
nen zu aggregierten Funktionsbausteinen zusammengefasst werden. Durch die Verwendung
von globalen Variablen in einem Funktionsbaustein ist dieser keine Komponente im Sinne
der vorgestellten Definition. Diese Bausteine sind nicht abgegrenzt und können nicht in
Umgebungen ohne die globale Variable eingesetzt werden. Softwarekomponenten eignen
sich besonders gut für die Wiederverwendung, da die Grenzkosten für die Nutzung einer
weiteren Instanz vernachlässigbar gering sind. Eine Ausnahme sind Lizenzmodelle, die eine
Zahlung an den Lizenzgeber pro eingesetzter Instanz vorsehen.

Hardwarekomponenten

Wie bereits angesprochen, werden auch Hardwareteile als Komponenten in einer Anlage
angesehen. Sie sind Bestandteil der Automatisierungslösung. Solche Komponenten sind
Sensoren und Aktoren wie z. B. Pumpen und Temperatursensoren. Auch diese Hardware-
komponenten verfügen über ein definiertes Interface, das sie gegenüber ihrer Umgebung

30

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

austauschbar macht. Beispiele dafür sind ein Anschluss über Zweidraht, d. h. 4 bis 20 mA,
oder Profibus.

Eine Form der Aggregation von Hardwarekomponenten wird bei der Verwendung von
Package Units umgesetzt [NAM96]. Dabei werden Module einer Anlage als komplette Ein-
heit bereitgestellt. Ein Beispiel dafür sind Verpackungsmaschinen. Diese können über eine
eigene Automatisierungslösung verfügen, die sich entweder in ein übergeordnetes Leitsy-
stem einfügt oder eigenständig betrieben wird. Die Wiederverwendung von Hardwarekom-
ponenten ist analog zu der Klasse-Instanz Beziehung in Softwaresystemen. Ein Pumpentyp
beispielsweise kann mehrfach produziert und anschließend in verschiedenen Anlagen ein-
gesetzt werden. Auch ein Tausch von Pumpen unterschiedlichen Typs ist bei gleichem
Interface und kompatibler Funktionalität ohne Rückwirkung auf die Umgebung möglich.

Komponenten im Engineering

Bei der Planung einer Prozessanlage entstehen Diagramme, die den geplanten Aufbau
der Anlage bestehend aus den Rohren und Instrumenten (R&I- Fließbilder) darstel-
len [HSF+13, PE94]. Sie sind das Ergebnis der verfahrenstechnischen Anlagenplanung und
bilden die Grundlage für die Planung der Automatisierungslösung. Die einzelnen Bestand-
teile der Diagramme (z. B. Messstellen und Aktoren) sind mit den jeweiligen Anforderun-
gen an sie und den Verbindungen zwischen ihnen dargestellt und können als Komponenten
aufgefasst werden. Die Diagramme haben zwei Aufgaben: Auf der einen Seite stellen sie
ein Rollenmodell für die zu bauende Anlage und ihre Komponenten dar. Auf der ande-
ren Seite sind sie selbst Modelle, die sich aus einzelnen Komponenten zusammensetzen.
Als elektronisches Austauschformat wird mit PandIX eine CAEX Bibliothek auf Basis der
IEC 62424 [IEC16] vorgestellt.

Verwendung von Komponenten in Laufzeitsystemen

Durch die zunehmende Verwendung von OPC UA [IEC10, GPP16] und der damit ver-
bundenen Modellierung von Daten und Zusammenhängen in objektorientierten Informa-
tionsmodellen, wird die Verwendung von komponentenorientierten Architekturen zuneh-
men [SAG+17, WTPE17]. In diesen Informationsmodellen werden viele Informationen ge-
speichert und zugänglich gemacht. Daher ist davon auszugehen, dass diese zunehmend
größer und komplexer werden. So muss es ein Anliegen sein, den Aufwand für die Erstel-
lung und Pflege dieser Modelle so gering wie möglich zu halten.

Eine Möglichkeit, diese Modelle zu speichern, sind Laufzeitumgebungen (vgl. Kapi-
tel 2.1.1). Abhängig von der Funktionalität der Laufzeitumgebung kann mit ihr die Ab-
arbeitung von aktiven Komponenten wie Diensterbringern oder Steuerungslogiken durch-
geführt werden. Im Kontext der geplanten Umsetzung von wandelbaren Fabriken ist nicht
nur die Erkundung von Funktionalitäten zur Laufzeit erforderlich, sondern darüber hinaus
auch die Möglichkeit zu deren Modifikation, um auf neue Situationen und Randbedingun-
gen reagieren zu können.

Zur Umsetzung der flexiblen Prozessführung, wie sie durch die Flexibilisierung der Produk-
tion in Industrie 4.0 gefordert ist [SAG+17, VHDF+14], rücken zunehmend Laufzeitumge-

31

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

bungen in den Fokus. Diese müssen zumindest teilweise echtzeitfähig sein und flexibel an
die Umgebung angebunden werden können. Für eine flexible Erkundung der Funktionalität
und Zusammenschaltung von mehreren Laufzeitumgebungen zur Laufzeit ist die Reflexion
nützlich. Durch diesen Mechanismus wird der aktuelle Zustand der Laufzeitumgebungen
sowie die in ihr enthaltenen Objekte und deren Zustand von außen zugänglich. Die vor-
gestellten Prozessführungskomponenten können so flexibel realisiert und in wandlungsfä-
higen Strukturen angeordnet werden [WTPE17]. Ebenso bieten sich Laufzeitumgebungen
für Implementierung von Verwaltungsschalen an, die ebenfalls als Komponenten anzusehen
sind [PE17].

2.3 Zwischenfazit

In diesem Kapitel wurden die in der Automatisierungstechnik verwendeten Soft- und Hard-
waresysteme vorgestellt. Der Fokus lag dabei auf der Prozessindustrie als Anwendungsge-
biet. In einem zweiten Teil wurde der Begriff der technischen Komponente eingeführt und
existierenden Definitionen von Komponenten gegenübergestellt. Es zeigt sich, dass die au-
tomatisierungstechnischen Soft- und Hardwaresysteme als Komponentensysteme aufgefasst
werden können. Aufgrund des Fokus der Automatisierungstechnik ist es sinnvoll, Soft- und
Hardware nicht getrennt zu betrachten, sondern als hybrides System zu verstehen. Dies gilt
insbesondere deshalb, da sich die Soft- und Hardware der Systeme gegenseitig beeinflussen
können.

Im Engineeringsprozess werden viele Tätigkeiten häufig und repetitiv durchgeführt, um
ähnliche Problemstellungen zu lösen. Hier führt eine verbesserte Wiederverwendung zu
geringeren Aufwänden. Zusätzlich ist es durch die verschiedenen Personen, die an der
Umsetzung beteiligt sind, schwierig, bestehende (Teil-)Lösungen wiederzuverwenden, da
deren Bekanntheit nicht hoch genug ist.

Innerhalb der einzelnen Phasen des Engineeringprozesses werden Komponenten bereits
entlang der Grenzen von Gewerken wiederverwendet. Es werden sowohl Soft- als auch
Hardwarekomponenten standardisiert. Die Verwendung ist jedoch nicht flächendeckend
gegeben. Zusätzlich muss die Standardisierung über die Grenzen der Gewerke sinnvoll
und konsistent vorgenommen werden. Selbst wenn innerhalb der Gewerke Komponenten
standardisiert sind, müssen diese in hybriden Systemen über die Grenzen der Gewerke
zueinander kompatibel sein. Die Wiederverwendung von Komponentensystemen ist bisher
bestenfalls in Ansätzen gängige Praxis.

Die relevante Information zur Lösung eines Problems bzw. der Mehrwert einer Imple-
mentierung befindet sich in den komponentenorientierten Architekturen der Automatisie-
rungstechnik nicht nur in den Komponenten selbst. Zu einem großen, je nach Anwendung
auch überwiegenden, Teil sind die Informationen im Zusammenspiel der Komponenten
enthalten. In diese Verknüpfung der Komponenten bzw. in den Aufbau der Komponen-
tennetzwerke wird viel Aufwand investiert. Da die Systeme (z. B. Leitsysteme) ähnlich
aufgebaut sind, bzw. funktionell die gleichen Funktionsbausteintypen verwendet werden,
besteht in der Übertragung dieser Komponenten ein enormes Potenzial. Man kann diese
als Implementierungs-unabhängigen Teil der Lösung von Automatisierungsaufgaben be-

32

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

2.3 Zwischenfazit

zeichnen.

Durch die Grenzen zwischen den Anwendungen findet in der Praxis keine Wiederverwen-
dung oberhalb der Komponenten statt. Die Dokumentation der Anlagen und der Automa-
tisierungslösungen entspricht nicht immer dem aktuellen Zustand der Systeme.

Es wird daher ein Konzept benötigt, das die Wiederverwendung von komponentenbasierten
(Teil-)Lösungen ermöglicht und unterstützt. Dazu muss ein Weg entwickelt werden, diese
Teillösungen und die Abhängigkeiten zwischen ihnen zu beschreiben. Der Ansatz muss
in die bestehende Architektur eingefügt werden können. Im Rahmen des Konzepts muss
sichergestellt sein, dass es sich in die bestehenden Prozesse des Engineerings einfügt und auf
zukünftige Entwicklungen der Automatisierungstechnik vorbereitet ist. Das bedeutet, die
Anwendung in verteilten Systemen und die Abbildung von dienstbasierten Architekturen
müssen unterstützt werden.

33

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im
Kontext der Automatisierungstechnik

In diesem Kapitel werden die Anforderungen an ein Konzept zur Unterstützung der Wie-
derverwendbarkeit in komponentenbasierten Architekturen spezifiziert. In einem ersten
Schritt werden die Besonderheiten der Automatisierungstechnik vorgestellt. Diese bilden
die Grundlage für die anschließend beschriebenen funktionalen und nicht-funktionalen An-
forderungen. Diese Anforderungen beschreiben die geforderte Funktionalität und die Art
und Weise, wie sich das Konzept in die bestehenden Konzepte und Vorgehensweisen der
Automatisierungstechnik einfügen muss.

3.1 Besonderheiten in der Automatisierungstechnik

Das Anwendungsfeld der Prozessautomation stellt besondere Anforderungen an die ver-
wendeten Automatisierungslösungen. Da die vorliegende Arbeit ein Problem dieser Domä-
ne adressiert, ist eine Betrachtung ihrer besonderen Eigenschaften erforderlich. Nur deren
Berücksichtigung ermöglicht die Entwicklung einer passgenauen Lösung.

Konsequenzen bei Störungen des Betriebs: In der Automatisierungstechnik hat die Si-
cherheit einen sehr hohen Stellenwert, da die Auswirkungen einer Störung, insbesondere
in der Prozessautomation, sehr hoch sein können [FA09]. Diese reichen von wirtschaft-
lichen Konsequenzen über die Verschmutzung der Umwelt bis zur direkten Gefährdung
von Menschenleben. Wirtschaftliche Schäden werden beispielsweise durch die Zerstörung
oder Beschädigung von Maschinen oder Produktionsgütern hervorgerufen, aber auch durch
Produktionsausfälle, die aus einer Störung resultieren. Umweltverschmutzungen können
durch das Austreten von schädlichen Stoffen auftreten. Insbesondere in der Chemie hat
der Schutz von Mitarbeitern und Anwohnern einen großen Stellenwert, da es durch die
Prozesse und Materialien zu schwerwiegenden Unfällen (Explosionen, giftige Gase, etc.)
kommen kann [Web14]. Für die Integration neuer Ansätze und Lösungen muss nachge-
wiesen werden, dass diese ein mindestens gleichwertiges Sicherheitsniveau haben wie die
Bestandslösung.

Lebenszyklen der Anlagen: Insbesondere in der Prozessindustrie liegen die Lebenszyklen
von Anlagen im Bereich von mehreren Dekaden [FA09, VHDB13]. Eine Konsequenz die-
ser Tatsache ist, dass aktuell Anlagen mit den unterschiedlichsten Graden der Automa-
tisierung und den verschiedensten Systemen betrieben werden. Dies macht die Wartung,
Instandhaltung und Erweiterung zu schwierigen und herausfordernden Aufgaben. Insbe-
sondere da nicht nur Hardwarekomponenten vorgehalten werden müssen, sondern auch die
entsprechenden Engineeringtools zur Wartung der Automatisierungssysteme. Zusätzlich

34

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

3.1 Besonderheiten in der Automatisierungstechnik

müssen Mitarbeiter die dafür erforderliche Expertise besitzen [VHDB13, NAM08]. Eine
aussagekräftige und aktuelle Dokumentation des Anlagenzustands ist bei diesen langen
Lebenszyklen eine Herausforderung [Web14, WGE+17].

Unterbrechungsfreie Anlagenlaufzeiten: Ein weiteres Merkmal der Prozessautomation
sind die langen unterbrechungsfreien Anlagenlaufzeiten. Zwischen zwei geplanten Abschal-
tungen können bei kontinuierlich produzierenden Anlagen bis zu drei Jahre liegen [FA09].
Da die Kosten durch einen ungeplanten Produktionsausfall hoch sein können, muss ein
solcher Fall nach Möglichkeit vermieden werden.

Domänenspezifische Programmiersprachen: Die Programmiersprachen der
IEC 61131 [IEC04] sind in der industriellen Automation sehr verbreitet und werden
auf absehbare Zeit ihre Bedeutung behalten [WTE+17]. Die Sprachen sind in vielen
Anwendungen über einen langen Zeitraum erprobt und die Mitarbeiter der Unternehmen
verfügen über eine große Expertise in deren Nutzung.

Betrachtung von hybriden Soft- und Hardwaresystemen: Ziel der Produktionsauto-
mation ist die Produktion von materiellen Gütern. Um dieses zu erreichen, sind Aktoren
für die Produktion nötig. Diese repräsentieren die Schnittstelle zwischen der Cyberwelt und
der physischen Welt. Ohne diese Hardwareanbindung ist eine Produktion materieller Güter
nicht möglich. [HSF+13]. Um dies zu berücksichtigen, endet z. B. die Automatisierungspy-
ramide (vgl. Kapitel 1) am unteren Ende mit der Anbindung ins Feld. Daraus resultiert,
dass die aus der Hardware resultierenden Randbedingungen nicht zu vernachlässigen sind.
Diese Kombination von Soft- und Hardwaresystemen führt zusammen mit den unterschied-
lichen Anwendungsbereichen zu einer hohen Komplexität der Systeme [VHDF+14].

Vielfältige Automatisierungs- und Engineeringsysteme: Aufgrund des weiten Aufga-
benspektrums und der angesprochenen langen Lebensdauer der Anlagen und ihrer Kompo-
nenten, werden unterschiedliche Arten von Automatisierungssystemen verschiedener Her-
steller verwendet. Zur Entwicklung und Wartung der Automatisierungslösungen sind zu-
sätzlich die kompatiblen Engineeringsysteme nötig. In Kombination mit dem nicht flä-
chendeckenden Vorhandensein von Datenaustauschlösungen führt dies zu einem höheren
Fehlerpotential, Ineffizienz und damit höheren Kosten bei der Anlagenplanung und damit
der Planung von Automatisierungslösungen [VHDB13].

Heterogener Nutzerkreis der Systeme: Da die Automatisierungstechnik Schnittstellen
zu verschiedenen Gewerken hat, werden die Systeme von Mitarbeitern mit unterschied-
lichen Voraussetzungen (fachlicher Hintergrund, Ausbildungsniveau, Erfahrung, etc.) ent-
wickelt, bedient und gewartet [VHDB13]. Entsprechend muss den jeweiligen Voraussetzun-
gen und Rollen innerhalb der Organisationseinheit Rechnung getragen werden. Beispiels-
weise können spezialisierte Sichten auf das gleiche System vorgehalten werden [NAM14].
Trotz der fortschreitenden Automatisierung ist der Mensch weiterhin ein wichtiger Bestand-
teil im Produktionsprozess. Die Automatisierungstechnik entlastet den Bediener häufig,
sodass dieser den Prozess insgesamt nach übergeordneten Gesichtspunkten wie Wirtschaft-
lichkeit und Sicherheit führen kann [Lun03].

35

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik

3.2 Anforderungen an das Konzept

Abgeleitet aus den vorgestellten Eigenschaften der Domäne, werden im Folgenden die An-
forderungen an das Konzept vorgestellt.

R1 Integration in bestehende Architekturen: Das Konzept zur Variantenbeschreibung
muss sich in die viel verwendeten und erprobten Architekturen der Automatisierungstech-
nik einfügen, d. h., es muss sich nahtlos in die bestehenden Modelle der einzelnen Domänen
einpassen. Wie in Abschnitt 2.2 beschrieben, sind komponentenbasierte Architekturen in
der Automatisierungstechnik weit verbreitet. Diese finden zumindest implizit im Hard- und
Softwarebereich Anwendung und bilden die Grundlage für die Entwicklung vieler Lösun-
gen.

R2 Modellbasierte Abbildung der Variabilität Zur Förderung der Wiederverwendbar-
keit in komponentenbasierten Architekturen muss die Variabilität der Lösungen durch
einen modellbasierten Ansatz beschrieben werden. Modellbasierte Ansätze sind ein be-
währtes Mittel zur Lösung von Aufgaben in der Automatisierungstechnik [WKS+16]. Ins-
besondere für den Austausch von Daten, aber auch für die Sicherstellung der Interopera-
bilität haben sich auf Metamodellen basierende Ansätze als geeignet erwiesen. Prominente
Beispiele sind AutomationML [IEC16] und Merkmale [EMPA17].

R3 Brownfield Lösungen integrieren: Das Konzept muss angesichts der vielen bestehen-
den Lösungen und der langen Lebensdauer von Anlagen (vgl. 3.1) bestehende Lösungen
integrieren. Darunter ist zu verstehen, dass das Konzept bestehende Lösungen als Aus-
gangspunkt für Wiederverwendung vorsehen soll. Es muss möglich sein, diese bestehenden
(Teil-) Lösungen in neue Lösungen zu integrieren. Die bestehenden Systeme können nicht
von einem Konzept ausgeschlossen werden, da sie aufgrund der langen Lebensdauer und
der hohen Investitionskosten nicht durch Neusysteme ersetzbar sind. Ein Konzept, das
keine bestehenden Lösungen integriert, wird sich schwerlich durchsetzen.

R4 Abstraktion von konkreten Implementierungen: Resultierend aus der heterogenen
Tool-Landschaft muss das Konzept von konkreten Implementierungen abstrahieren. Das
fördert zum einen den Austausch von Implementierungen, andererseits führt es zu einer
Anwendbarkeit des Konzepts auf verschiedene Anwendungsfälle. Abstraktion bedeutet, von
den herstellerspezifischen Systemen zu abstrahieren und eine gemeinsame Basis zu finden,
auf der Wiederverwendung unabhängig von der konkreten Umsetzung des Systems möglich
ist.

R5 Explizite Modellierung der Abhängigkeiten zwischen Varianten: Bestehende Ab-
hängigkeiten zwischen Varianten müssen explizit modelliert werden. Der aktuelle Zustand,
dass die Abhängigkeiten bestenfalls implizit in der Implementierung verborgen sind, re-
duziert sowohl die Produktivität als auch die Wiederverwendung. Ein Beispiel dafür ist
das Kopieren eines Teilsystems, ohne dabei eine Referenz auf das Original zu erzeugen.
Darüber hinaus ist es sinnvoll, derartig relevante Informationen allen Programmierern und
Systemdesignern zugänglich zu machen bzw. aufgrund dieser Informationen Prozesse zum
Propagieren von Änderungen zu starten.

36

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

3.2 Anforderungen an das Konzept

R6 Explizite Darstellung der Beziehungen zwischen Varianten und Versionen:
Analog zur Modellierung der Abhängigkeiten zwischen Varianten müssen auch die
Beziehungen zu Versionen dargestellt werden. Die Modellierung, welche Version(en) einer
Komponente zu einer Variante kompatibel sind, steht hier im Fokus. Die Umsetzung einer
Versionierung ist in der Automatisierungstechnik ein relevantes Thema [VH09].

R7 Propagieren von Änderungen an (Software-)Varianten: In der Praxis werden an
Softwaresystemen über ihren gesamten Lebenszyklus hinweg Änderungen vorgenommen.
Dies können z. B. Fehlerbehebungen oder Erweiterungen des Funktionsumfangs sein. Im
Kontext des Konzepts kann eine Änderung aus zwei Quellen resultieren: entweder ändert
sich eine Komponente in einer Variante oder die Variante selbst ändert sich. In beiden
Fällen muss ein Weg gefunden werden, diese Änderungen zu erfassen. Der Nutzer muss die
Abhängigkeiten erfassen können und bei der Verarbeitung unterstützt werden.

R8 Integration in dezentrale Systeme: Eine Möglichkeit, die im Kontext von I4.0 gefor-
derte Wandlungsfähigkeit zu realisieren, ist die Verwendung von modularen Anlagen bzw.
Package Units. Diese können mit einer eigenen Steuerung ausgestattet sein und sich je
nach Typ in ein überlagertes Leitsystem integrieren. Zusätzlich ist der vermehrte Einsatz
von intelligenten Feldgeräten im Kontext von I4.0 im Gespräch. Die beiden genannten
Entwicklungen führen zu einer vermehrten Verteilung der Steuerung auf unterschiedliche
Geräte. Entwicklungen für modulare Systeme werden durch organisatorisch und räumlich
getrennt arbeitende Personen durchgeführt. Die Entwicklung und Verwendung der Auto-
matisierungslösungen erfolgten zunehmend dezentral. Diese dezentrale Entwicklung und
Verwendung der Automatisierungslösung muss im Wiederverwendungskonzept berücksich-
tigt werden.

R9 Zentrale Variantenlagerung: Darüber hinaus ist es nötig, dass eine Austauschplatt-
form für die Entwicklung mit mehreren Personen an einem System existiert. Diese Platt-
form ist auch im Hinblick auf den Erhalt von Wissen in einer Organisationseinheit und
den Wissenstransfer wichtig. Sie muss zentral sein, um eine doppelte und inkonsistente
Datenhaltung zu unterbinden.

R10 Integration in bestehende Prozesse: Das entwickelte Konzept muss sich in beste-
hende Prozesse zur Erstellung einer Lösung integrieren. Optimalerweise kann es additiv zu
bestehenden Systemen verwendet bzw. an diese angeschlossen werden. Der hohe zeitliche
Aufwand und zu hohe Kosten sind die Hauptgründe dafür, dass aktuell wenig varianten-
basiert entwickelt wird [VHON18]. Für eine bessere Akzeptanz muss sich der Aufwand für
die Integration in Grenzen halten.

R11 Verwendung bestehender Sprachen und Paradigmen: Da es in der Automatisie-
rungstechnik anwendbar ist, muss ein Konzept für die Wiederverwendung die in Kapitel 2.1
vorgestellten Programmiersprachen berücksichtigen. Diese werden auf absehbare Zeit das
Rückgrat der industriellen Automatisierungstechnik bilden.

R12 Automatisierte Interpretierbarkeit der zugrundeliegenden Modelle: Die Modelle
des Konzepts müssen für eine (teil-)automatisierte Verwendung nutzbar sein. Dies ist für
die Aufwandsreduktion bei der Erstellung von Automatisierungslösungen erforderlich. Die-
se Interpretierbarkeit ermöglicht die Verwendung von automatisierten Umwandlungen zur
Übertragung der Modelle in verschiedene nutzerspezifische Visualisierungen. Dies ist im
Hinblick auf den heterogenen Nutzerkreis in der Automatisierungstechnik nützlich.

37

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik

R13 Anwendung des Konzepts auf hybride Systeme: Das Konzept muss für Hard-
und Softwaresysteme gleichermaßen gelten, um dem Fokus der Automatisierungstechnik
auf hybride Systeme gerecht zu werden. Wie in Abschnitt 2.1 dargestellt, werden in der
Automatisierungstechnik Soft- und Hardware betrachtet. Insbesondere die Abhängigkei-
ten und Wirkzusammenhänge zwischen beiden Teilen eines Systems müssen berücksichtigt
werden.

38

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Am Anfang dieses Kapitels werden die Vorarbeiten des Autors für diese Arbeit zusam-
mengefasst. Anschließend werden die Grundlagen der Wiederverwendung erläutert. Eine
Definition von Variabilität und von möglichen Arten sie zu modellieren folgt im näch-
sten Unterkapitel. Anschließend wird die Delta-Modellierung aus der Softwaretechnik vor-
gestellt. Nachfolgend werden die Grundlagen der Modellierung eingeführt und erläutert.
Dies beinhaltet beispielsweise die verschiedenen Ebenen der Modellierung, wie sie von der
OMG festgelegt worden sind und die Modellebenen, die am Lehrstuhl für Prozessleittech-
nik verwendet werden. In diesem Zusammenhang werden Kriterien für gutes Modellieren
aus der Literatur vorgestellt, die für diese Arbeit relevant sind. Abschließend werden un-
terschiedliche Sichten von Modellen, die bei der Modellierung eine Rolle spielen können
vorgestellt.

4.1 Eigene Vorarbeiten

Anforderungen an die Automatisierung: In [WTE+17] werden die Anforderungen an ein
Softwaresystem für die Automatisierung von großen prozesstechnischen Anlagen unter-
sucht. Ausgehend von den Eigenschaften von Softwarequalität der IEC 25010 [ISO11]
werden die Anforderungen ermittelt. In die Betrachtung werden die grundsätzlichen An-
forderungen an die Automatisierungssysteme von großen prozesstechnischen Anlagen und
die speziellen Anforderungen an die Automatisierung von Walzwerken eingeschlossen. Das
Ergebnis ist ein Mapping von allgemeinen Softwarequalitätsmerkmalen auf die speziellen
Anforderungen der Automatisierungstechnik. Die Liste ist mit einer internen Befragung
von Entwicklern des Industriepartners abgeglichen worden. Die Arbeiten über die An-
forderungen an Automatisierungslösungen [WTE+17] führten zu der Erkenntnis, dass die
nicht-funktionalen Anforderungen von großer Bedeutung für die Akzeptanz der Tools sind.
Diese Ergebnisse flossen in die Anforderungen an das in dieser Arbeit entwickelte Konzept
ein.

Konzepte der Prozessführungsarchitektur: Ausgehend von den Arbeiten des Lehrstuhls
für Prozessleittechnik in früheren Jahren (z. B. [Ens01, YQE10]) wird in [WE15a] das Kon-
zept der „Sprechenden Kommandos“, d. h. von Menschen direkt verständlichen Prozessfüh-
rungsaufträgen, eingeführt. Der vorgestellte Ansatz kann in die Ideen zur dienstebasierten
Prozessführung im Kontext von Industrie 4.0 integriert werden. Im nächsten Schritt wird
in [WE17] ein Vorschlag zu Integration von Diensten in IEC 61131 Architekturen vorge-
stellt. Ausgehend von Bausteinen für die Nutzung von Diensten aus der IEC 61499 wird das
Interface eines Bausteins vorgestellt [WE17]. Zusätzlich wird ein Ablauf zur Erkundung der
angebotenen Dienste und des Aufbaus des für den jeweiligen Dienst nötigen Interfaces ent-
wickelt. Eine Herausforderung besteht darin, die Anlagen- und Prozessorientierung in einer

39

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Architektur zu vereinen. Dafür wird in [WTPE17] ein Vorschlag für die Strukturierung von
flexiblen Architekturen zur Prozessführung vorgestellt. Das Konzept wurde prototypisch
realisiert und in verschiedenen Anwendungsszenarien erprobt. Wie die Konzepte an einem
Beispiel angewendet und in der Lehre eingesetzt werden können, ist in [WSFE16] zu fin-
den. Die Prozessführungsarchitektur bildet eines der Anwendungsgebiete für das Konzept
zur Unterstützung der Wiederverwendung. Die Ergebnisse der Vorarbeiten in diesem Feld
dienten insbesondere als Anwendungsfall für das Konzept. Zusätzlich konnten die Anforde-
rungen an das Konzept durch die während der Realisierung der Prozessführungsarchitektur
gewonnenen Erfahrungen präzisiert werden.

Wiederverwendung und Portabilität von Funktionsbausteinnetzwerken: In [WGE16]
werden Mechanismen für die Wiederverwendung und Portabilität untersucht und ein An-
satz für die Verwendung in Anwendungen, die auf Funktionsbausteinnetzwerken basieren,
vorgestellt. Hauptfaktoren für die Wiederverwendung und Portabilität sind in dieser Be-
trachtung die Ausführungssteuerung der einzelnen Komponenten eines Netzwerks und die
Modellierung einer gemeinsamen Vorlage für die Anwendung. Mit der Beschreibung von
Varianten in Bausteinnetzwerken wird in [WE15b] ein anderer Ansatz zur Wiederverwen-
dung vorgestellt. Dabei wird ein Funktionsbaustein mit den Mitteln des Software Product
Line Engineering beschrieben. Die vorgestellten Ansätze zur Wiederverwendung und Por-
tierung wurden bei der Übertragung von Komponentensystemen aufgegriffen. Sie flossen
in das Metamodell für die Beschreibung der Komponenten ein. Der Ansatz aus [WE15b]
zur Beschreibung von Varianten bildete den Ausgangspunkt für die vorliegende Arbeit.
Eine kritische Auseinandersetzung mit dem in [WE15b] Konzept führte zur Betrachtung
der Delta-Modelle als Möglichkeit zur Beschreibung von Varianten.

Modellbasierte Entwicklung von Automatisierungssoftware: Neben dem flexiblen Auf-
bau einer Prozessführung (Automatisierungslösung) ist auch die Erzeugung eines solchen
Aufbaus interessant. In [WKS+16] wird eine modellbasierte Herangehensweise für die au-
tomatisierte Generierung einer Automatisierungslösung vorgestellt. Dazu werden verschie-
dene Modelle (Merkmale, PandIX) verknüpft und analysiert, um zur Laufzeit eine Au-
tomatisierungsaufgabe lösen zu können. Welche Rolle der Digitale Zwilling oder die Ver-
waltungsschale im Engineering von Automatisierungssoftware spielen, wird in [WGE+17]
untersucht. In diesem Beitrag wird die Verwendung und der Nutzen dieser neuen Konzep-
te anhand des Lebenszyklus einer Anlage nachvollzogen. Die Ansätze zur modellbasierten
Entwicklung von Automatisierungslösungen bildeten die Grundlage für das in dieser Arbeit
vorgestellte Konzept. Die Beschreibung der Komponentensysteme durch ein Metamodell
und die Modellierung von deren Transformation durch Delta-Modelle ist eine Weiterfüh-
rung der Ansätze aus [WKS+16].

4.2 Grundlagen der Wiederverwendung

Wiederverwendung ist ein universelles Konzept, das in den unterschiedlichsten Bereichen
zum Einsatz kommt. Ziel ist es, Artefakte (Synonyme: Assets, Objekte) in verschiedenen
Produkten oder Anwendungsfällen zu verwenden. Definition 2 ist [ISO11] entnommen und
definiert das Qualitätsmerkmal Wiederverwendbarkeit von Systemen und Software.

40

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

Definition 2 (Wiederverwendbarkeit). Grad, mit dem ein Asset in mehr als einem System,
Gebäude oder anderen Asset verwendet werden kann.

Das Konzept Assets mehrfach und in verschiedenen Kontexten zu verwenden, wird sowohl
in Soft- als auch Hardwaresystemen genutzt. Beispielsweise werden im Automobilbau
baugleiche Teile in möglichst viele Fahrzeuge eingebaut. Vorteile dieses Ansatzes sind
die geringeren Aufwände in der Entwicklung und Produktion der Fahrzeuge. So sind die
Kosten geringer im Vergleich zur mehrfachen Entwicklung der Teile [Mey09]. Darüber
hinaus entfallen die Tests nach einer Neuentwicklung und es muss nur ein Bauteil gepflegt
werden anstatt mehrerer. In der Softwareentwicklung ist das Konzept ebenso bekannt.
Dort entsteht ein großer Nutzen, da die Grenzkosten für Software marginal sind, d. h.
jedes zusätzlich verwendete Asset (implementierte Instanz) ist nahezu ohne Kosten und
Aufwände nutzbar.

Die Definition 3 für Wiederverwendung in der Softwaretechnik ist analog dazu
(vgl. [Mey09]). Der Autor unterstreicht, dass die Wiederverwendung nicht nur öko-
nomische Vorteile bringt, sondern auch die Qualität der Software steigert. Die Vorteile
der Wiederverwendung in der Softwaretechnik wird in [Lim94] untersucht und umfassen
eine Verbesserung der Markteinführungszeit, der Produktqualität und der Produktivität.

Definition 3. Wiederverwendbarkeit ist die Fähigkeit von Softwareelementen für die Kon-
struktion von unterschiedlichen Applikationen zu dienen.

Die Herausforderungen bzw. die Hemmnisse für die Wiederverwendung bestehender Lö-
sungen sind organisatorischer und menschlicher Natur [Mey88]. Zusätzlich ist die Entwick-
lung von wiederverwendbarem Code bis zu 480% teurer als von konventionellen Program-
men [Lim94, Bör89].

Zusätzlich dazu wird von verschiedenen Autoren das Not invented here Syndrom als sehr
großes Hemmnis bei der Wiederverwendung ausgemacht [Mey09, Bör89]. In [WES87] wird
untersucht, ob Programmierer in der Lage sind, die Möglichkeiten der Wiederverwendung
in Software korrekt einzuschätzen. Im Ergebnis schätzen die befragten Personen die Poten-
tiale viel zu gering ein. Es wurde festgestellt, dass insbesondere ungeübte Programmierer
die Potentiale nicht richtig einschätzen können. Eine Abhängigkeit vom Alter oder anderen
Faktoren konnte nicht festgestellt werden.

In den folgenden Abschnitten wird eine kurze Einführung in das ThemaWiederverwendung
gegeben. Es werden zunächst die Voraussetzungen für eine systematische Wiederverwen-
dung und anschließend mögliche Arten der Wiederverwendung vorgestellt. Nach einem
Überblick über Versionen und Versionierung schließt das Kapitel mit der Betrachtung der
Wiederverwendung in der Automatisierungstechnik.

4.2.1 Gegenstand der systematischen Wiederverwendung

Die erste Frage, die bei Überlegungen zum Thema Wiederverwendung gestellt und be-
antwortet werden muss, ist: Was ist der Gegenstand der angestrebten Wiederverwen-
dung? [KCH+92]. In [Die02] ist ein Überblick über verschiedene Objekte der Wiederver-

41

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

wendung in der Softwareentwicklung enthalten. Diese sind prinzipiell in allen Phasen der
Softwareentwicklung zu finden. So ist die Wiederverwendung von Klassen-Spezifikationen
und -Implementierungen, von Analyse- und Entwurfsmodellen sowie von Frameworks und
Mustern im Kontext der objektorientierten Entwicklung möglich [GR95].

Gegenstände der Wiederverwendung können Programmfragmente, Muster, Prozeduren
bzw. Funktionen, Module und Teilsysteme sein [Bör89]. Programmfragmente sind Stücke
von Quellcode. Solche Gegenstände sind für die Wiederverwendung nur interessant,
wenn sie z. B. wiederholt genutzt werden. Wiederverwendungsmechanismen auf Uni-
kate anzuwenden ist nicht sinnvoll. Als Muster werden Vorlagen zur manuellen Er-
zeugung von Quellcode bezeichnet. Prozeduren und Funktionen sind Standard- oder
Anwendungsprozeduren/-funktionen und Makros. Ein Modul im Sinne des Autoren ist ein
Programmbaustein, der über eine definierte Schnittstelle mit der Außenwelt kommuniziert.
Module zusammengefasst ergeben ein Teilsystem.

Der Nutzen der Wiederverwendung ist größer, je größer die Objekte der Wiederverwendung
sind. Zusätzlich steigt der Nutzen je früher die Objekte im Lebens- bzw. Entwicklungs-
zyklus eingesetzt werden [Bör89]. Der Autor betont allerdings, dass mit dem Ansteigen
der beiden genannten Eigenschaften die Wahrscheinlichkeit sinkt, dass die Objekte die
Anforderungen an eine spezifische Aufgabe erfüllen.

Die Unterscheidung zwischen der Wiederverwendung von Strukturen und der Wiederver-
wendung von Elementen wird in [Die02] vorgenommen. Für die Wiederverwendung von
Strukturen nennt der Autor zwei Methoden: Die Adaptierung und die Spezialisierung.
Adaptierung bezeichnet die Anpassung eines Produkts an ein konkretes Problem durch
die Veränderung von Parametern. Im Gegensatz dazu wird bei der Spezialisierung eine
vorhandene Funktionalität zur Erstellung eines neuen Artefakts genutzt.

Die Existenz einer inneren Architektur von Produkten stellt eine Voraussetzung für eine
systematische Wiederverwendung dar [Sch16b]. In der Automatisierungstechnik besitzen
die Systeme in der Mehrzahl eine innere Struktur (vgl. Kapitel 2.1.1). Zusätzlich werden
in [Sch16b] mit der Baureihe, dem Baukasten, der Modulbauweise, der Plattform und
der Produktfamilie Methoden für die Strukturierung von Produkten aus der Produktent-
wicklung vorgestellt. Eine Baureihe umfasst Produkte, die funktional ähnlich sind, sich
aber in ihren Parametern, z. B. Leistungsdaten unterscheiden. Im Gegensatz dazu besteht
ein Baukasten aus vorher entwickelten Komponenten, die zu unterschiedlichen Produkten
zusammengefügt werden. Diese Produkte können sich beliebig stark unterscheiden. Die
Modulbauweise ist eine Form des Baukastens, bei dem die Bausteine nicht mehr frei kombi-
nierbar sind und einen erheblichen Teil der Gesamtfunktionalität ausmachen sollen. In der
Plattform werden die drei Designmethoden zusammengefasst und kombiniert. Dabei wird
insbesondere die Gemeinsamkeit zwischen verschiedenen Produkten in den Fokus gerückt.
Diese Herangehensweise ist im Automobilbereich verbreitet. Die Produktfamilie betrachtet
mehr als die Unterschiede zwischen den einzelnen Produkten, sie stellt die Gemeinsamkei-
ten der Produkte in den Vordergrund. Eine genauere Betrachtung von Produktfamilien
und deren Variabilität ist in Kapitel 4.3 zu finden.

42

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

4.2.2 Arten der Wiederverwendung

Neben den Gegenständen der Wiederverwendung ist die Frage relevant, wie diese Gegen-
stände wiederverwendet werden. In der Literatur werden dafür verschiedene Mechanismen
angeführt, die sich stark voneinander unterscheiden.

Die einfachste Art der Wiederverwendung ist das Copy and Paste [Sch16b]. Dabei wird
ein bestehendes Artefakt kopiert und in einem anderen Anwendungsfall eingesetzt. Die-
ser Ansatz birgt jedoch das Risiko, dass der Kopiervorgang nicht adäquat dokumentiert
wird und so mehrfach die gleiche Lösung entsteht, ohne dass diese Abhängigkeit vermerkt
ist. Für die Wartung der Implementierungen ist dies nicht optimal, da so ein unnötiger
Mehraufwand für die Pflege der einzelnen Instanzen entsteht. Durch eine fehlende Doku-
mentation der Abhängigkeiten werden die kopierten Instanzen möglicherweise nicht mehr
gefunden und profitieren nicht von Verbesserungen. In [WGE16] wird die Kopiervorlage im
Kontext von Funktionsbausteinanwendungen als Schablonen bezeichnet. Die einfache Im-
plementierbarkeit und Anwendbarkeit dieses Mechanismus ist ein Grund für die Nutzung
des Ansatzes.

Das beschriebene Defizit kann durch eine Verbindung zwischen der Schablone bzw. dem
Prototypen und der Instanz behoben werden. Die Informatik kennt dafür zwei Arten der
Typ-Instanz-Beziehung, nämlich die Prototyp-Instanz-Beziehung und die Klasse-Instanz-
Beziehung [SDM95]. Die Prototyp-Instanz-Beziehung besteht zwischen der Schablone und
den dazugehörigen Kopien. Vorteilhaft daran ist, dass Aktualisierungen zur Behebung von
Fehlern an die Instanzen verteilt werden können. Darüber hinaus kann über die Verbindung
nachvollzogen werden, wie die Instanzen mit den Prototypen zusammenhängen. Die zweite
Beziehung ist die Klasse-Instanz-Beziehung. Hierbei handelt es sich um den Zusammen-
hang zwischen Klasse und den gebildeten Instanzen. Auf der Klassen-Ebene können Klassen
voneinander abgeleitet werden. Die Frage, welches Paradigma besser (z. B. generischer an-
wendbar) ist, lässt sich nicht eindeutig beantworten. Eine Klasse-Instanz-Beziehungen ist
zur Laufzeit unflexibel und stellt eine unnötige Einschränkung dar [SLU88]. Allerdings sind
instanziierte Klassen im Allgemeinen an Ausführungsgeschwindigkeit überlegen [WGE16].
Typ-Instanz-Beziehungen kommen auch außerhalb der Softwaretechnik z. B. in der Kon-
struktionslehre zum Einsatz [Sch16b].

Für die abstrakte Wiederverwendung von Lösungsverfahren werden Pattern eingesetzt.
Eine bekannte Sammlung von Design-Pattern aus der Softwaretechnik ist [GJHV11]. Die
Pattern basieren auf Erfahrungswerten der Autoren und stellen in der Praxis gesammeltes
Wissen der Autoren dar. Für jeweils eine Klasse von Problemen wird eine Lösung prä-
sentiert, die vom Nutzer auf den jeweiligen Anwendungsfall angepasst werden muss. Die
Nutzung von Strukturen für Regler (z. B. Kaskadenregler) ist ein Beispiel für die Anwen-
dung von Pattern in der Automatisierungstechnik.

4.2.3 Versionen und Versionierung

Nach [Dud] ist eine Version eine „Ausführung, die in einigen Punkten vom ursprünglichen
Typ oder Modell abweicht“. An dieser Definition werden bereits zwei wichtige Eigenschaften

43

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

von Versionen deutlich: Es gibt einen Ausgangsgegenstand, auf den sich die Version bezieht
und zu diesem besteht eine Abweichung.

In [CW98] wird im Kontext der Konfigurationsverwaltung von Software eine Version v als
p = (ps, vs) definiert. ps stellt einen Zustand in einer funktionalen Sicht dar und die Einglie-
derung in die Versionsfolge wird durch vs repräsentiert. Diese Abfolge von Versionen wird
als Versionsraum bezeichnet und besteht aus den einzelnen Versionen inklusive der Ver-
bindungen zwischen diesen. In vielen Anwendungen wird der Versionsraum als Graph aus
Knoten (Versionen) und Kanten (Verbindungen) dargestellt. Die Verbindungen zwischen
den Versionen bilden Deltas, die die Unterschiede zwischen den Versionen beschreiben.
Diese werden in gerichtet und ungerichtet unterteilt. Wenn es möglich ist, die Richtung
der Veränderungen durch ein Delta zu invertieren, handelt es sich um ein ungerichtetes
Delta. So ist es beispielsweise nicht möglich, das Löschen einer Codezeile rückgängig zu
machen, wenn die Information, was in dieser Zeile stand, nicht erhalten worden ist.

Versionen von beispielsweise Softwareanwendungen werden aus verschiedenen Motivatio-
nen heraus entwickelt. Dazu gehört das Beheben von Fehlern, die Erweiterung der Funktio-
nalität und das Einpflegen von Abhängigkeiten [CW98]. Die Autoren bezeichnen Versionen
als Varianten, die dafür vorgesehen sind nebeneinander zu ko-existieren. Andere Versionen
sind hingegen nicht für die parallele Verwendung vorgesehen. In der Automatisierungs-
technik werden viele unterschiedliche Systeme verwendet und neue Versionen durch eine
fehlende Beschreibung der Abhängigkeiten oft nur unvollständig ausgerollt. Dementspre-
chend ko-existieren in der Praxis Versionen, die dafür nicht vorgesehen sind.

Für die Entwicklung von Quellcode bieten sich dateibasierte Versionsverwaltungen ins-
besondere für das kollaborative Arbeiten sowie die Beschreibung und Dokumentation der
Versionen an [Ott09]. Weitere Vorteile sind eine konsistente Datenhaltung und das Nachver-
folgen von parallelen Entwicklungssträngen (Branches) [CSFP08]. In [Ott09] wird zwischen
zentralen und dezentralen Architekturen von Versionsverwaltungssystemen unterschieden.
Zentrale Architekturen bestehen aus einem zentralen Server, von dem die Versionen an die
Clients verteilt werden und Änderungen an den Server zurückgesendet werden. Dezentrale
Systeme verteilen die Versionsverwaltung lokal auf jeden Client. Ein Beispiel dafür ist git.

In Abbildung 4.1 ist ein Überblick über den SVN-Workflow zusammen mit den jeweils
in den einzelnen Schritten verwendeten Kommandos dargestellt. Der Workflow wird als
kontinuierlicher Integrationsprozess bezeichnet [ORA]. Erster Schritt ist das check out der
Dateien aus der Versionsverwaltung. Wenn Änderungen am Quellcode durchgeführt worden
sind, können diese in die Versionsverwaltung commitet werden. Um die lokale Version
auf den Stand des Servers zu bringen, wird ein update durchgeführt. Durch add, delete,
copy und move können die Dateien der Versionsverwaltung manipuliert werden. Durch das
Zurückkehren zu einer Vorversion (revert) können Probleme gelöst werden, die durch den
Wechsel auf die neue Version entstanden sind. Nach dem manuellen Lösen von Konflikten
kann die Datei durch resolve als gelöst deklariert werden.

Die Behandlung von Versionen über die Grenzen der Gewerke in der Automatisierungs-
technik ist eine der großen heutigen Herausforderungen [FFVH12, VH09]. In der Praxis
stellt die Pflege und Migration von (Software-) Systemen eine große Aufgabe dar. Insbeson-
dere die Abhängigkeiten zwischen den Versionen der einzelnen Komponenten und daraus
resultierende Inkompatibilitäten erfordern viel Aufmerksamkeit.

44

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

Commit

Konflikte
Auflösen

Probleme
Lösen

Änderungen
Durchführen

Aktualisieren
svn update

svn add
svn delete
svn copy
svn move

svn revert

svn resolve

svn commit

Abbildung 4.1: SVN Workflow nach [ORA]

4.2.4 Wiederverwendung in der Automatisierungstechnik

In Kapitel 2.1 ist der grundsätzliche Aufbau von industriellen Automatisierungssystemen
beschrieben. Es ist zu erkennen, dass diese einen sehr weiten Bereich von Anwendungen
abdecken. Er umfasst die Systeme zwischen dem Feld bzw. dem Prozess und der Be-
triebsleitebene. In diesem Bereich kommen viele Systeme, Konzepte und Architekturen
zum Einsatz, die wiederum von unterschiedlichen Menschen entwickelt und betrieben wer-
den. So arbeiten u. a. Informatiker, Ingenieure (verschiedener Fachrichtungen z. B. Elektro-
technik, Maschinenbau, Verfahrenstechnik, etc.), Chemiker und Physiker zusammen und
bringen demzufolge die unterschiedlichen Herangehensweisen ihrer Fachdisziplinen in die
Automatisierungssysteme ein [FFVH12]. Dies betrifft ebenso die verwendeten Ansätze zur
Wiederverwendung in den unterschiedlichen Gewerken.

In den Softwaresystemen werden die typischen Konzepte der Wiederverwendung der In-
formatik angewendet. Eines dieser Konzepte ist das Klasse-Instanz Konzept aus der ob-
jektorientierten Programmierung, das aus dem Programmieren, Kompilieren und dem an-
schließenden Instanziieren sogenannter Klassen besteht. Grundsätzlich können einmal pro-
grammierte Klassen beliebig oft instanziiert werden. Funktionsbausteinarchitekturen sind
eine Ausprägung dieser Form der Wiederverwendung [WGE16].

Wiederverwendung findet in der Automatisierungstechnik auf verschiedenen Ebenen und
für verschiedene Zwecke statt. Dabei kann es sich z. B. um Desingpatterns und Konzepte,
mit denen gute Erfahrungen gemacht wurden, handeln. Beispiele dafür sind Strukturen für
den Einsatz von Reglern wie die Kaskade oder der Split-Range Regler. Ebenso werden rea-
lisierte (Teil-)Lösungen wiederverwende. Dabei kann es sich sowohl um Hardware als auch
um Software handeln. Beispielsweise werden Hardwarekomponenten (z. T. standardisiert)

45

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

für verschiedene Anwendungen verwendet [DMG+17].

Die Wiederverwendung von Modulen von modularen Anlagen ist in [UDKO12] vorgestellt.
Durch die automatisierte Einbindung von Modulen ist deren Wiederverwendung einfacher.
In der Anlagenplanung existieren Ansätze zu einem wissensbasierten Engineering und einer
Nutzung von Modularisierung [ODU13]. Grundlage der Wiederverwendung sind standar-
disierte Anlagenmodule.

Eine Wiederverwendung von Automatisierungsmodule ist in [Mah14] vorgestellt. Diese
Module werden dezentral in einem Kommunikationssystem verteilt. Zusammen mit der
verbauten Hardware werden sie zur Anwendung gebracht. Methodische Grundlage der
Automatisierungsmodule ist die Verwendung von Pattern und Modulen, um so die Wie-
derverwendung zu unterstützen.

Zwei Ansätze zur Produktlinien-basierten Wiederverwendung (vgl. 4.3.1) für die Auto-
matisierungstechnik werden in [Sch16b, FLK+14] vorgestellt. Beiden ist gemein, dass
sie den Produktlinienansatz auf die Automatisierungstechnik anwenden. Die Autoren
von [FLK+14] beschränkt sich bei der Betrachtung der Variabilität auf Feature-Modelle
und damit den Problemraum [Sch16b]. Die Betrachtung des Lösungsraums erfolgt
in [Sch16b]. Hier wird die Wiederverwendung durch eine Unterteilung des Konzepts in eine
Entwicklung der Komponenten unabhängig vom Anwendungsfall und eine Anwendung auf
das konkrete Problem unterstützt. Die Komponenten sind Gewerke-übergreifend definiert
und als methodische Grundlage kommt das Product Line Engineering zum Einsatz.

4.3 Grundlagen der Variantenbeschreibung

Eine Möglichkeit für die Reduktion von Aufwänden und damit der Kosten im Enginee-
ring ist die Wiederverwendung bestehender Lösungen oder Teillösungen. Wiederverwen-
dung im Kontext der Softwareentwicklung wird in [LS17] wie folgt definiert: Prinzip der
Objektorientierung, das zum Ziel hat, funktionsfähige Programmteile bereits bestehender
Programme, sog. Module, in nachfolgenden Softwareprojekten wieder zu benutzen. Vorteile
der Wiederverwendung sind nach [LS17] eine Zeitersparnis in der Entwicklungszeit und die
geringe Fehlerrate, da die Programmmodule bereits getestet und im Optimalfall in ande-
ren Anwendungen erprobt sind. Ersetzt man in der genannten Definition Programm durch
technische Komponente, Geräte oder Anlagenteil, so erhält man eine Definition von Wie-
derverwendung, deren Bedeutung über die Softwareentwicklung hinaus reicht. Der Nutzen
ist in anderen Anwendungsfeldern vergleichbar zu der in der Softwaretechnik: es wird Zeit
gespart und es kann auf erprobte Komponenten zurückgegriffen werden.

Um die Wiederverwendung von Lösungen zu unterstützen, haben sich je nach Anwendungs-
gebieten unterschiedliche Ansätze entwickelt, die den jeweiligen spezifischen Anforderungen
und Randbedingungen Rechnung tragen. Im Folgenden werden mit dem Software Product
Line Engineering und der Wiederverwendung in der diskreten Fertigung exemplarisch Wie-
derverwendungsansätze aus zwei ganz unterschiedlichen Domänen vorgestellt [CGR+12].

46

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

4.3.1 Varianten und Variabilität

Im folgenden Abschnitt werden Varianten eines materiellen und immateriellen Produktes
vorgestellt. In der Herstellung von Industrie- oder Konsumgütern kommt es häufig vor,
dass sich einzelne Produkte im Hinblick auf den Funktionsumfang oder den Aufbau nicht
stark unterscheiden.

Begriffsdefinitionen

In [DIN02] ist die nachfolgende Definition von Variante zu finden. Die der Definition
zugrunde liegende Norm wurde zurückgezogen, ist allerdings nach [BSG12] Grundlage für
viele Überlegungen zu Varianten (vgl. [Lin94]).

Definition 4 (Varianten). Gegenstände ähnlicher Form und/oder Funktion mit einem in
der Regel hohen Anteil identischer Gruppen oder Teile.

Aus der Definition geht hervor, dass es sich bei Varianten um Gegenstände handelt, die
eine ähnliche Form oder Funktion besitzen. Diese Gegenstände sollen aus identischen Tei-
len oder Gruppen bestehen. Nicht eindeutig ist jedoch, wie die Forderung nach „einem in
der Regel hohen Anteil“ zu verstehen ist. Der Begriff der Variante ist in vielen der existie-
renden Definitionen unscharf und bedarf einer Präzisierung im konkreten Anwendungsfall.
In [BSG12] kommen die Autoren zu dem Schluss, dass eine genaue Abgrenzung, welches
Produkt Variante eines anderen ist, eine subjektive Festlegung ist.

Zur Entscheidung, ob ein Gegenstand ein eigenständiges Produkt oder Variante eines an-
deren Produkts ist, ist die Festlegung von Vergleichskriterien und eines maximalen Ab-
stands zwischen Produkten nötig [BSG12]. Die Vergleichskriterien sind Merkmale, die die
betrachteten Gegenstände charakterisieren. Unter Einbeziehung dieser Vergleichskriterien
muss festgelegt werden, wie ähnlich sich zwei Gegenstände sein müssen, um als Varianten
eines Produktes zu gelten.

In [Lin94] wird eine Unterteilung in technische und strukturelle Varianten vorgenommen.
Technische Varianten variieren hinsichtlich der Geometrie, des Materials oder der Tech-
nologie eines Gegenstands. Bei aus mehreren Teilen bestehenden Gegenständen können
strukturelle Varianten durch Einbindung von verschieden Komponenten in ein Produkt
entstehen. Diese Charakterisierung wird in [DIN02] noch um die Funktion des Gegenstan-
des erweitert. Im Ergebnis umfassen die Vergleichskriterien die Funktionalität, den Aufbau
und die verwendeten Technologien. In [BSG12] wird festgestellt, dass es keine abschließende
Liste von Merkmalen zu einem Gegenstand geben kann. Vielmehr ist es in jedem Einzelfall
erforderlich, die Ähnlichkeit anhand von relevanten Merkmalen, die eine Unterscheidung
der betrachteten Produkte zulassen, zu prüfen.

Wie groß der Abstand zwischen den Gegenständen maximal sein darf, damit diese als
Varianten gelten, wird in der Literatur diskutiert. Nach [Lin94] entsteht die neue Variante
eines bestehenden Produkts durch Veränderung von einem oder mehreren Merkmalen.
Jedoch wird eingeschränkt, dass in der praktischen Anwendung nicht immer eindeutig ist,
ob ein Gegenstand eine Variante oder ein neues Produkt ist. In die gleiche Richtung wird
in [Brä04] argumentiert. Varianten werden ebenso über die Gleichheit von Eigenschaften

47

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

definiert. Auch bei der Untersuchung der Ähnlichkeit kommt [BSG12] zu dem Ergebnis,
dass Gleichheit von Merkmalen von Gegenständen und demzufolge die Betrachtung von
Gegenständen als Varianten eines Produkts subjektiv ist.

In [PBL05] wird eine Variante als Repräsentation des variierten Gegenstandes verstanden.
Die Autoren empfehlen einen dreistufigen Prozess bei der Festlegung von Varianten. Zu-
nächst muss der Gegenstand gewählt werden, der variiert werden soll. Im zweiten Schritt
werden das Merkmal oder die Merkmale identifiziert, die sich ändern sollen. Im letzten
Schritt werden die eigentlichen Varianten festgelegt, die durch eine Änderung des Merk-
mals erreicht werden sollen.

Ausgehend von den vorgestellten Betrachtungen wird in der vorliegenden Arbeit ein Ge-
genstand als Variante eines Produkts verstanden, wenn er diesem in der Mehrzahl der
für die Betrachtung relevanten Merkmalausprägungen gleicht. Jeweils zwei Varianten müs-
sen sich in mindestens einer Merkmalausprägung unterscheiden. Die relevanten Merkmale
können technischer, funktionaler und struktureller Art sein.

Die verwendete Definition von einer Variante ist analog zu der in [Sch16b] vorgestellten.
Allerdings ist die Bindung des Variantenbegriffs an die Produktlinie für die vorliegende
Arbeit nicht zweckmäßig. Die in dieser Arbeit verwendete Definition kann als Verallgemei-
nerung derjenigen von Schröck betrachtet werden.

Ausgehend von den beschriebenen Vergleichskriterien werden Varianten in unterschiedliche
Arten unterteilt. Wie beschrieben werden die Varianten durch [Lin94] in technische und
strukturelle Varianten unterteilt. Denkbar sind unterschiedliche Blickwinkel für Varianten:
Arbeitsfluss, Architektur und Verhalten [KLL+14]. Alternativ dazu werden Strukturvarian-
ten, Teilevarianten, Mengenvarianten und Funktionsvarianten unterschieden [Sch16b]. Die
vorgestellten Arten von Varianten sind nicht orthogonal zu einander, d. h., sie sind nicht
disjunkt. Beispielsweise können sich zwei Funktionsvarianten zusätzlich zu den Unterschie-
den in der Funktionalität strukturell unterscheiden. Die Einteilung kann dementsprechend
nur den Hauptbetrachtungsgegenstand wiedergeben und ist ebenfalls stark subjektiv. Wei-
tere Arten der Varianteneinteilung sind in [Brä04] zu finden.

Eng verknüpft mit dem Begriff der Variante ist die Variabilität. Nach [PBL05] bedeutet
Variabilität umgangssprachlich die Fähigkeit oder die Tendenz zur Änderung. Ausgehend
von dieser Betrachtung kommen die Autoren zu drei elementaren Fragen, die mit der
Variabilität assoziiert sind:

• Was variiert? (Variabilitätssubjekt)

• Warum variiert es?

• Wie variiert es? (Variabilitätsobjekt)

Die erste Frage bezieht sich auf den Gegenstand der Variation, d. h. der sich ändernde Teil
oder das sich ändernde Merkmal eines Gegenstandes in der wirklichen Welt. Dies wird als
Variabilitätssubjekt bezeichnet. Die zweite Frage bezieht sich auf den Grund der Änderung.
Mögliche Gründe sind sich ändernde Anforderungen der Stakeholder, unterschiedliche ge-
setzliche Rahmenbedingungen oder technische Gründe. Die letzte Frage nach dem „Wie?“
zielt auf die Menge an Ausprägungen, die ein Variabilitätssubjekt annehmen kann. Jede
Ausprägung wird als Variabilitätsobjekt bezeichnet.

48

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Farbe
(Variabilitätssubjekt)

Reale Welt Modell Welt

Farbe eines Autos
(Varianten Punkt)

Gelb
(Variabilitätsobjekt)

Blau
(Variabilitätsobjekt)

Rot
(Variabilitätsobjekt)

Rotes Auto
(Variante)

Blaues Auto
(Variante)

Abbildung 4.2: Übersicht über die Variabilität anhand des Beispiels der Autofarbe
nach [PBL05]

In Abbildung 4.2 sind die vorgestellten Begrifflichkeiten am Beispiel der Autofarbe darge-
stellt. Die Darstellung unterscheidet reale Welt und Modell. Die Farbe des Autos in der
realen Welt ist das Variabilitätssubjekt und im Modell der Variantenpunkt. Die möglichen
Ausprägungen der Farbe in der realen Welt (Gelb, Blau, Rot) sind die Variabilitätsob-
jekte. Analog dazu werden das blaue Auto oder das rote Auto im Modell als Varianten
bezeichnet.

Ebenso wie in [Sch16b] wird in der vorliegenden Arbeit der Begriff Variante nicht nur für
das Modell eines Produkts, sondern auch für das reale Objekt verwendet. Zum einen kann
die Unterscheidung zwischen der Variante im Modell und der realen Variante zu Verwirrung
führen, zum anderen gibt es keinen verbreiteten Begriff für die reale Variante.

Die Beherrschung der Variantenvielfalt und die Unterstützung des zielgerichteten Entwick-
lungsprozesses wird als Variantenmanagement bezeichnet [DB+07]. Ziel ist es, Produkte,
die sich nur wenig unterscheiden (Produktvarianten), ökonomisch sinnvoll herstellen zu
können [Ava06]. Ein Bestandteil des Managements von Variantenvielfalt ist die Modellie-
rung der auftretenden Varianten bzw. der Variabilität in Varianten-Modellen. In diesen
werden „die Gemeinsamkeiten und Variabilitäten der Artefakte eines Systems mit dem
Organisations- und Domänen-spezifischen Merkmalen und Abhängigkeiten“ beschrieben
(vgl. [SRC+12]). Im Folgenden Abschnitt werden verschiedene Arten der Variabilität vor-
gestellt.

Im Kontext von Software Produktlinien Engineering wird in [VG07] das
Variantenmanagement als Vorgehen zur Identifizierung, zum Design, zur Imple-
mentierung und zur Verfolgung von Flexibilität in Software Produkt Linien definiert. Im
Rahmen der vorliegenden Arbeit wird die Bedeutung von Variantenmanagement nicht nur

49

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

im Zusammenhang mit Softwaresystemen gesehen, sondern zusätzlich auf hybride und
Hardwaresysteme ausgedehnt.

Arten der Variabilität

Angelehnt an die Frage „Warum variiert das Variabilitätssubjekt?“ kann Variabilität an-
hand ihrer Ursache in die interne und die externe Variabilität unterteilt werden. Diese
Unterscheidung dient nicht nur der Klassifikation der Variabilität, sondern soll darüber
hinaus auch ein Bewusstsein dafür schaffen, für welchen Beteiligten die konkrete Variabi-
lität relevant ist. Externe Variabilität ist für den Kunden sichtbar, z. B. die Farbe eines
Autos (vgl. [PBL05]). Im Gegensatz dazu ist die Verwendung zweier Arten von funktional
identischen Bremsbelägen für den Kunden nicht direkt sichtbar. Diese Variabilität wird als
interne Variabilität bezeichnet. Man könnte also folgern, dass mit externer Variabilität
das Ziel verfolgt wird, einen höheren Kundennutzen durch die Produktion von auf den Kun-
den direkt zugeschnittenen Produkten zu erzielen. Weitere Gründe für externe Variabilität
können landesspezifische gesetzliche Regelungen oder Standards sein [PBL05]. Mit interner
Variabilität können beispielsweise Bestandteile von hochpreisigen und günstigeren Produk-
ten verwendet werden, ohne vom Kunden einsehbar zu sein. Ebenso kann es sein, dass der
Hersteller die Komplexität für den Kunden reduzieren möchte und daher nur höherwertige
Wahlmöglichkeiten bereitstellt. Die Details der technischen Umsetzung und mögliche wei-
terführende technische Auswirkungen werden dabei vor dem Kunden verborgen. Zusätzlich
zu den bereits beschriebenen Faktoren sind die Business- und die Marketingstrategie des
Herstellers entscheidend für die Einteilung in interne und externe Variabilität [PBL05].

Im Bereich der industriellen Automation ist die Unterscheidung von interner und exter-
ner Variabilität nicht einfach, da die Abgrenzung zwischen dem Hersteller eines Produkts
und dem Kunden nicht immer eindeutig ist. Die Automatisierungslösungen werden mög-
licherweise nicht durch den Betreiber selbst erstellt, allerdings fordert dieser in der Regel
Zugriff auf die Implementierung und wartet oder erweitert diese selbst. Darüber hinaus ist
zur Optimierung oder Wartung von Anlagen eine hohe Expertise der Anlage erforderlich,
sodass es nicht sinnvoll ist, vor den Nutzern etwas zu verbergen [Sch16b]. Zusätzlich ist die
Verwendbarkeit für den Endnutzer auch nicht immer im Fokus der Produktentwicklung
(Hard- und Software) [WTE+17]. Allerdings ist es für die Reduktion der Komplexität für
den Nutzer an manchen Stellen sinnvoll, eine Unterteilung in interne und externe Variabi-
lität vorzunehmen.

Zwei weitere Dimensionen der Einteilung von Variabilität sind die „Variability in Space“
und die „Variability in Time“ (vgl. [PBL05]). Bei der Variability in Space handelt es sich um
verschiedene Ausprägungen einer Funktionalität, die je nach Präferenz des Nutzers oder
den gegebenen Randbedingungen eingesetzt werden. Ein Beispiel dafür ist der Authentifi-
zierungsmechanismus für Smartphones. Inzwischen verfügt der Nutzer je nach Modell über
die Möglichkeit eine Pin einzugeben, sich mit seinem Fingerabdruck auszuweisen oder sich
bei neuen Geräten mit Hilfe der eingebauten Kamera über das Aussehen zu identifizieren.
Unter Variability in Time ist eine Variabilität über einen gewissen Zeitraum zu verstehen,
z. B., weil eine Technologie durch eine andere abgelöst wird. Die Einführung von digitalen
Kameras ist ein Beispiel dafür.

50

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

4.3.2 Variabilitätsmodelle

Um die Variabilität in der Praxis nutzen zu können, ist es wichtig zu verstehen, auf welche
Arten Variabilität modelliert werden kann. Jedes Modell der Variabilität hat sein eigenes
Anwendungsgebiet und kann dort einen Mehrwert schaffen. Variabilitätsmodelle können in
verschiedene Arten unterteilt werden. Bekannt ist die Unterteilung in Problemraum und
Lösungsraum [SRC+12].

Problemraum: Variabilität im Problemraum bezeichnet die domänenspezifische Variabili-
tät, d. h. die Variabilität, die beispielsweise der Kunde eines Produktes wahrnimmt. Diese
Form der Variabilität beschreibt eine funktionale Sicht auf ein Produkt. Die Modellierung
der Variabilität erfolgt vorwiegend Feature- oder Entscheidungs-orientiert. Die Variabilität
im Problemraum wird als Produktlinien-Variabilität bezeichnet [MPH+07].

Lösungsraum: Variabilität im Lösungsraum, auch Software Variabilität genannt, ist die
Variabilität der wiederverwendbaren Artefakte [MPH+07]. Die Variabilität im Lösungs-
raum betrachtet die Variabilität bei der Erstellung der Lösung. Beispiele für solche Ar-
tefakte sind Architekturelemente, Testfälle, Komponenten und Dokumente [SRC+12].
Diese Art der Variabilität ist aus der Entwicklung von einzelnen Softwaresystemen be-
kannt [MPH+07]. So stellt die Spezialisierung einer Klasse eine Form der Variabilität im
Lösungsraum dar. Bei der Spezialisierung werden Teile der Superklasse in einem weiteren
Produkt (der abgeleiteten Klasse) verwendet.

Die interne und externe Variabilität unterscheidet, ob eine Variation vom Kunden wahr-
genommen wird oder nicht. Im Gegensatz dazu wird mit der Differenzierung zwischen
Problem- und Lösungsraum zwischen der Funktionalen- und der Implementierungssicht
unterschieden. Die beiden Klassifizierungsansätze sind nicht disjunkt, stellen aber unter-
schiedliche Unterscheidungsmerkmale in den Vordergrund.

Für die Modellierung der Variabilität sowohl im Problem- als auch im Lösungsraum sind
unterschiedliche Eigenschaften relevant. Dementsprechend gibt es verschiedene Ansätze die
Variabilität in Modellen zu beschreiben und diese formalisiert festzuhalten. Im Folgenden
werden zunächst Variabilitätsmodelle für den Problemraum vorgestellt. Anschließend wird
auf die Variabilitätsmodelle des Lösungsraums eingegangen.

Variabilitätsmodelle für den Problemraum

Mit den Feature- und Entscheidungs-orientierten Modellen existieren zwei Klassen der
Variabilitätsmodellierung im Problemraum [SRC+12]. Diese zwei Modellarten werden im
Folgenden vorgestellt.

Das Feature-Modell beschreibt eine Klasse von Produkten (Produktlinie) als hierarchische
Kombination von möglichen Merkmalen bzw. Eigenschaften. Die Merkmale werden in dem
Modell baumartig angeordnet. Die Abhängigkeiten zwischen den Eltern-Merkmalen und
Kinder-Merkmalen können nach [Bat05] in folgende Klassen unterteilt werden: Und, Alter-
nativ, Oder, Verpflichtend und Optional. Das Feature-Diagramm wird auch als graphische
Repräsentation des Merkmalbaums bezeichnet [KCH+90]. Zusätzlich werden die Abhän-
gigkeiten zwischen den Merkmalen, sowie die Dokumentation der Designentscheidungen

51

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Notebook

Bildschirm

touch non-touch

Akku

3 Zellen 6 Zellen

benötigt

Abbildung 4.3: Beispiel für ein Feature-Diagramm.

und aller existierenden Merkmale, als Bestandteile des Modells gesehen. Abhängigkeiten
zwischen Merkmalen können die notwendige Verwendung oder der Ausschluss eines wei-
teren Merkmals sein. In Abbildung 4.3 ist beispielhaft ein Feature-Diagramm dargestellt.
Es ist zu erkennen, dass die Produktlinie Notebook aus den Merkmalen Bildschirm und
Akku besteht. Als Bildschirm kann entweder ein touch oder ein non-touch Modell verbaut
werden. Für die Energieversorgung stehen ein drei- oder ein sechs-Zellen Akku zur Verfü-
gung. Die Wahlmöglichkeiten sind jeweils Alternativen, was durch den nicht ausgefüllten
Kreisausschnitt zwischen den Linien verdeutlicht wird. Die ausgefüllten Kreise zeigen an,
dass die Merkmale verpflichtend sind, z. B., dass ein Bildschirm in einem Notebook sein
muss. Durch die gestrichelte Linie wird ausgedrückt, dass bei der Verwendung eines touch-
Bildschirms ein großer Akku verwendet werden muss.

Im Rahmen eines entscheidungsorientierten Ansatzes wird versucht, für jede Variante eine
Frage zu stellen, deren Beantwortung zur Auswahl der Varianten führt [SRC+12]. Dies
können beispielsweise einfache Fragen sein, die mit ja oder nein zu beantworten sind. Im Fall
von komplexeren Entscheidungen, in denen mehr als eine Option anwendbar ist bzw. mehr
als eine Variante zeitgleich verwendet werden kann, bietet sich die Verwendung von solchen
Entscheidungsfragen an. Analog zu den Feature-Modellen werden die Randbedingungen
ebenfalls modelliert.

Es ist zu erkennen, dass beide Modelle eine Produktlinie aus einer funktionalen Sicht
betrachten. Während das Feature-Modell alle Merkmale deskriptiv festhält, versucht der
entscheidungsorientierte Ansatz den Nutzer durch geeignete Fragen zu dem für ihn pas-
senden Produkt einer Produktlinie zu führen. Beiden Modellen ist gemein, dass sie von
der konkreten Umsetzung der Produkte abstrahieren. Ein Überblick und ein Vergleich der
beiden Modelle sind in [CGR+12] zu finden. Im Folgenden werden Variabilitätsmodelle zur
Beschreibung des Lösungsraums betrachtet.

Variabilitätsmodelle für den Lösungsraum

Die Modelle der Variabilität im Lösungsraum werden anhand des Vorgehens beim Lösungs-
aufbau klassifiziert [Sch16b]. In [VG07] werden der annotative und der kompositionelle An-

52

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Requires VP_VP Excludes VP_VP

VariantVariant Point

Variant Point
Constraint

Dependency

Variant Point to
Variant Constraint

Dependency

Variability
Dependency

Variant Constraint
Dependency

Requires V_VP Excludes V_VP Requires V_V Excludes V_V

External Variant
Point

Internal Variant
Point

Mandatory Optional Alternative Choice

- max
- min

1..* 1..*

2..* 0..1

Abbildung 4.4: UML-Modell der Variabilität nach [PBL05]

satz unterschieden. Annotative Änsätze werden auch als 150% Lösungen bezeichnet und
bestehen aus einem Modell, in dem die gesamte Variabilität einer Produktlinie dargestellt
ist. Um ein gültiges Produkt aus der Produktlinie zur erzeugen, werden die nicht benö-
tigten Artefakte aus dem Modell entfernt. Zur Beschreibung dieser Modelle werden meist
formale oder semi-formale Ansätze verwendet [Sch16b]. Kompositionellen Ansätzen liegt
das entgegengesetzte Vorgehen zugrunde. Bei ihrer Verwendung wird das konkrete Pro-
dukt aus Artefakten zusammengestellt. Dies wird dadurch erreicht, dass die Additive um
einen Produktkern, der allen Produkten einer Produktlinie gemein ist, angeordnet wer-
den [SRC+12]. In [Sch16b] wird darauf hingewiesen, dass sichergestellt sein muss, dass die
einzelnen Artefakte miteinander kombinierbar sind. Andernfalls besteht die Gefahr von
hohen Aufwänden für Nacharbeiten an den Schnittstellen.

Eine Kombination aus annotativen und kompositionellen Ansätzen ist der
transformative Ansatz. Er vereint die Reduktion und Addition und erlaubt so,
Produkte einer Produktlinie entsprechend aufgestellter Regeln zu transformieren. Die
Delta-Modellierung ist ein Beispiel für einen transformativen Ansatz [SRC+12]. Sie
definiert die Operationen Addition, Subtraktion und Modifikation, um Produkte einer
Produktlinie ineinander umzuwandeln. Sie ist ein intuitiv verständlicher Ansatz, der das
Potential besitzt, in der Automatisierungstechnik gut einsetzbar zu sein. Aufgrund des
transformativen Charakters kann die Delta-Modellierung nahtlos in bestehenden Systemen
eingesetzt werden. Ein detaillierter Überblick über die verschiedenen Variabilitätsmodelle
ist in [SRC+12] zu finden. In Abschnitt 4.3.3 wird die Delta-Modellierung und ihre
Anwendungen in der Softwaretechnik vorgestellt

53

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

PID /
Anti-Windup

V

VP

Variant 1

V

Variant 2

V

[0,1]

Occupy
Automaton

VP

Moving
Average

V

1st-order lag
element

V

[0,1]

Signal Filter

Butterworth
Filter

V

VP

PID-Algorithm

V

[0,1]

Control
Algorithm

PI-Algorithm

V PI /
Anti-Windup

V

VP

Ramp

V

Reference
Shaping Filter

VP

V

External Input

V

[0,1]

Feed Forward
Controller

PID-Controller

2nd-order lag
element

requires

Abbildung 4.5: Beispiel für die Nutzung eines Orthogonalen Variabilitätsmodells für die Be-
schreibung eines PID-Regler Funktionsbausteins [WE15b]

Eine weitere Möglichkeit Variabilität zu modellieren, die die Problem- und Lösungsraum-
raumdarstellung kombiniert, ist das orthogonale Variabilitätsmodell. In einem orthogona-
len Variabilitätsmodell wird das Produkt, bzw. die Produktlinie, aus funktionaler Sicht
beschrieben. Es werden alle Variantenpunkte der Produktlinie mit den dazugehörigen Va-
rianten aufgeführt. In Abbildung 4.4 ist das UML-Modell des Zusammenhangs zwischen
Variantenpunkten und Varianten nach [PBL05] dargestellt. Darin ist zu erkennen, dass ein
Variantenpunkt sowohl intern als auch extern sein kann. Die Zuordnung einer Variante
zu einem Variantenpunkt ist entweder verpflichtend oder optional. Wenn die Zuordnung
optional ist, kann eine Wahl aus mehreren Alternativen erzwungen werden. Dies wird über
die Parametrierung der alternativen Wahl (min und max) realisiert. Zusätzlich ist im Mo-
dell die Abbildung von Abhängigkeiten zwischen Variantenpunkten, zwischen Varianten
und zwischen Variantenpunkten und Varianten vorgesehen. Die Abhängigkeit kann entwe-
der das Benötigen oder das Ausschließen des jeweils anderen Elements sein. Dies ist als
Randbedingung für den Aufbau von erlaubten Produkten zu verstehen. Wenn das Aus-
gangselement in einem Produkt enthalten ist, wird das Zielelement entweder benötigt oder
dessen Verwendung ausgeschlossen.

In Abbildung 4.5 ist die Nutzung des vorgestellten UML-Modells am Beispiel eines PID-
Regler Funktionsbausteins dargestellt. Es ist zu erkennen, dass der Funktionsbaustein
durch fünf Variantenpunkte modelliert ist. Namentlich sind es der Belegungsautomat, der

54

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Regelalgorithmus, der Signalfilter, der Anschluss an den Feedforward Controller und der
Sollwertfilter. Die Variantenpunkte werden durch eine bis vier Varianten realisiert. Wenn
mehr als eine zugeordnete Variante existiert, sind die Varianten als alternative Wahlmög-
lichkeit dargestellt. Es kann jedoch maximal eine Variante ausgewählt werden. Bei der
Wahl des PID-Algorithmus wird die Nutzung eines Rampenfilters erzwungen.

Das orthogonale Variabilitätsmodell findet im Software Produktlinien Engineering Anwen-
dung. Das Software Produktlinien Engineering ist ein Prinzip zur Entwicklung und Im-
plementierung von Softwarelösungen. Ziel ist es, ähnliche Produkte aus einer Menge von
gleichen Komponenten zu bauen bzw. zu implementieren. Die Ideen dazu stammen zum
Teil aus der Großserienfertigung der Automobilindustrie. Die Zielsetzung ist es, Produkte
um einen Kern herum zu entwickeln und so Softwarekomponenten mehrfach zu verwen-
den. Zur Erreichung dieses Ziels wurden Entwicklungsprozesse und Vorgehensweisen ent-
wickelt, die die Wiederverwendung unterstützen und fördern sollen sowie die Varianten
in den Mittelpunkt des Entwurfes rücken. Der Fokus liegt dabei auf der Berücksichtigung
der Gemeinsamkeiten von verschiedenen Produkten insbesondere im Hinblick auf deren
Funktionalität [KLD02].

Zusammenhang zwischen Modellen des Problem- und Lösungsraums

Die Variabilitätsmodelle des Problem- und Lösungsraums beschreiben unterschiedliche
Gesichtspunkte von Produktlinien. Schlussendlich stellen sie aber nur zwei unterschied-
liche Betrachtungsweisen des gleichen Gegenstandes dar. Um die Modelle sinnvoll nutzen
zu können, muss die Beziehung zwischen den Modellen der beiden Räume beschrieben
sein [SRC+12]. Durch diese Verbindung kann der Kunde bzw. der Nutzer eines Produkts
aus der Produktlinie die von ihm benötigten Funktionalitäten auswählen und es kann das
entsprechende Produkt zusammengefügt werden. Dafür muss modelliert werden, welche
Artefakte im Lösungsraum die jeweiligen Funktionalitäten im Problemraum realisieren.
In [CHS10] wird der Zusammenhang zwischen Problemraum und Lösungsraum als An-
wendungsfunktion bezeichnet. Ein Überblick über verschiedene Ansätze zur Modellierung
der Verbindung ist in [SRC+12] zu finden.

4.3.3 Delta-Modelle in der Softwaretechnik

Grundsätzlich sind Delta-Modelle ein transformativer Ansatz, durch den der Unterschied
zwischen mindestens zwei Gegenständen beschrieben werden kann. Eine sehr anschauliche
Anwendung von Deltas ist das Bilden der Differenz zwischen zwei Programmständen. Im
Ergebnis erhält man zeilenweise die Information, ob eine Zeile hinzugefügt oder gelöscht
wurde. Mit diesem Vorgehen können Änderungen am Quellcode sehr leicht erfasst und
nachvollzogen werden. Tools zur Unterstützung dieses Vorgehens sind heutzutage Standard
bei den gebräuchlichen Codeverwaltungsanwendungen (z. B. GitHub, SVN, etc.).

Im Kontext der Modellierung von Variabilität ist die Deltamodellierung eine Ausprägung
der transformativen Modelle des Lösungsraums. Die erste Definition der Delta-Modelle für
Softwareproduktlinien ist in [Sch10] zu finden. Ausgehend von der UML-Komponente (vgl.
Kapitel 2.2) beschreibt die Autorin ein formalisiertes Delta-Modell. Das Modell besteht aus

55

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Elementen und Verbindungen zwischen den Elementen. Aus den Elementen und Verbin-
dungen können Systeme gebildet werden, die definierte Merkmale erfüllen. Ist ein System
eine valide Konfiguration aus Merkmalen, so wird es nach [Sch10] je nach Verwendung als
Kernmodell bzw. Produktmodell bezeichnet.

Ausgehend von einem Ausgangssystem definiert ein Delta-Modell eine Menge von Opera-
tionen. Diese Operationen beschreiben die Modifikationen an dem Ausgangssystem und
überführen es in das Zielsystem. Zusätzlich beschreibt das Delta-Modell eine sogenannte
Anwendungsbedingung. Dies ist eine Vorbedingung, die im Hinblick auf die Merkmale des
Ausgangsmodells vorliegen muss, damit das Delta-Modell anwendbar ist. In [Sch10] werden
fünf Operationen für die Modifikation von Ausgangsmodellen definiert:

• add Element
Die Operation add fügt ein Element zu dem Ausgangsmodell, auf das sie angewendet
wird, hinzu.

• mod Element
Durch die Operation mod wird ein Element modifiziert. Dies könnte beispielsweise
die Änderung eines Parameters oder des internen Zustands des Elements sein.

• rem Element
Das Entfernen eines Elements wird durch die Operation rem realisiert.

• add Verbindung(Element1,Element2)
Durch diese Operation wird eine Verbindung zwischen zwei Elementen angelegt.

• rem Verbindung(Element1,Element2)
Die Operation rem entfernt eine Verbindung zwischen zwei Elementen aus dem Mo-
dell.

In Abbildung 4.6 ist ein Überblick über die verschiedenen Artefakte und Begriffe sowie
ihre Beziehungen dargestellt. Ausgangspunkt ist die Produktlinie, die aus einem Featu-
remodell (Φ), einem Kernprodukt (c), einem Delta-Modell (D,≺) und einer Applikati-
onsfunktion (γ) besteht. Aus dieser Produktlinie ist ein Delta-Modell entnommen, das
eine benötigte Menge an Merkmalen erfüllt. Der Weg zur Erzeugung eines Produkts selbst
kann aus mehr als einem einfachen, z. B. einem zusammengesetzten Delta-Modell bestehen.
Dies könnte eine Aneinanderreihung von Delta-Modellen sein, die von einem Kernprodukt
bis zu einem Produkt führen. Für die Anwendung des Deltas bzw. der in ihm enthalte-
nen Delta-Operationen gibt es grundsätzlich zwei Möglichkeiten: Die Anwendung auf ein
Kernprodukt oder der Aufbau eines Produkts aus Delta-Operationen, ohne dass ein Kern-
produkt als Ausgangspunkt existiert. Werden die Delta-Operationen auf ein Kernprodukt
angewendet, wird dadurch ein neues Produkt erzeugt. Die Variabilität aus dem Problem-
raum (Featuremodell) wird so im Lösungsraum durch ein neues Produkt abgebildet. Dieses
Vorgehen ist dann nützlich, wenn z. B. ein Produkt existiert, das als Ausgangspunkt für
weitere Varianten dient. Die zweite Möglichkeit ist, dass ein solcher Kern nicht existiert
und das Produkt ganz neu aufgebaut wird. Am Beispiel der eingangs erwähnten Codever-
waltung sind diese Möglichkeiten ebenfalls beide zu erkennen. Wird eine bestehende Datei
mit Code modifiziert, so ist dies analog zur Anwendung eines Deltas auf ein Kernprodukt
zu sehen. Wird hingegen eine neue Implementierung in die Codeverwaltung eingebracht,
so gibt es naturgemäß keinen vorangegangenen Stand, auf den aufgebaut werden kann

56

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Produktlinie: 𝑃𝐿 = (Φ, 𝑐, 𝐷, ≺, 𝛾)

Delta-Modell: (𝐷, ≺)

Zusammengesetztes Delta: 𝑥 = 𝑥𝑛 ∗ ⋯∗ 𝑥1

ProduktProdukt →Produkt: 𝑓

Konfiguration der Merkmale

Ableitung der Deltas

Anwendung auf ein
Kernmodell: 𝑥(𝑐)

Anwendung auf einen Kern: 𝑓(𝑐)

Partielle Deltas:
x(−)

Abbildung 4.6: Beziehung zwischen Artefakten und Begriffen nach [CHS10].

und somit kein Kern- oder Vorprodukt. Eine formale Beschreibung der Delta-Modelle ist
in [Sch10, CHS10] zu finden.

Bei der Anwendung von Delta-Operationen auf einen Ausgangszustand kann es zu Kon-
flikten und Inkonsistenzen kommen. Beispielsweise wenn ein Element, das nicht vorhanden
ist, modifiziert werden soll. Um solche Konflikte zu vermeiden und um eine bessere Über-
sichtlichkeit zu erlangen, werden normalisierte Delta-Modelle verwendet [Sch10]. Diese be-
stehen jeweils nur aus einem Typ von Delta-Operation, d. h. entweder aus add, mod oder
rem. Aus jedem Delta-Modell oder jeder Kombination können drei normalisierte Delta-
Modelle gebildete werden. Dies wird dadurch erreicht, dass die Delta-Operationen nach
Typen sortiert abgearbeitet werden. Als erstes werden die Operationen zum Hinzufügen
von Elementen angewendet. Im zweiten Schritt werden alle Modifikationen durchgeführt
und anschließend die vorgesehenen Elemente gelöscht. Die normalisierten Delta-Modelle
werden nacheinander angewendet. Im Anschluss an die Transformation der Modellelemen-
te werden zunächst die neuen Verbindungen angelegt und anschließend die Operationen
zum Löschen der Verbindungen durchgeführt. Es wird von der Annahme ausgegangen,
dass die Delta-Operationen eines Deltas-Modells alle zeitgleich angewendet werden, d. h.,
es wird keine Anwendungsreihenfolge modelliert [Sch10].

Nach [Sch10] sind folgende Regeln für die Anwendung der Operationen vorgesehen:

• Ein Element oder eine Verbindung kann mehrfach hinzugefügt werden, taucht aber
im Modell nur einmal auf.

57

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

• Wenn ein Element entfernt wird, werden alle Verbindungen, an denen es beteiligt ist,
ebenfalls gelöscht.

• Die Operationen ein Element zu modifizieren oder zu löschen, das nicht existiert, ist
nicht definiert.

Trotz Beachtung der Regeln können nach [Sch10] drei Arten von Konflikten auftreten: Das
Anlegen und nachträgliche Löschen eines Elements oder einer Verbindung, das Modifizieren
und anschließende Löschen von Elementen oder das Modifizieren und erneute Modifizieren
von Elementen. Diese Anwendungen von Delta-Operationen sind grundsätzlich zulässig,
weisen aber auf Inkonsistenzen innerhalb des Delta-Modells hin. Während der Transfor-
mation kann es passieren, dass die aktuell vorliegenden Modellelemente und Verbindungen
kein valides Produkt im Sinne der zugrundeliegenden Architektur oder Sprache bilden
(vgl. [HRRS11]). Erst nach Abschluss der Transformation wird ein valides Produkt erwar-
tet. Eine formale Beschreibung der aufeinanderfolgenden Anwendung von Delta-Modellen
einschließlich potentieller Konflikte und Wege zu deren Behebung ist in [CHS10] zu finden.

Die vorangegangene Betrachtung des Delta-Modells im Kontext der Software Produktli-
nien vermittelt einen Eindruck der Vielseitigkeit dieses Ansatzes. Grundsätzlich können
die Modifikationen an Softwareprodukten mit diesem Ansatz beschrieben werden. Durch
die Mächtigkeit der Transformation ist es möglich, jedes Produkt in ein komplett neues
umzuwandeln. Im Extremfall wird das Ausgangsprodukt komplett entfernt und ein neu-
es Produkt aufgebaut. Es ist möglich über die Produktlinie und die darin enthaltenen
Features eine Klammer um die assoziierten Produkte zu bilden [CHS10]. Dies bedeutet,
dass sie funktional gewisse Gemeinsamkeiten haben sollen. Diese Gemeinsamkeiten wer-
den in [SRC+12] durch das Kernprodukt repräsentiert. An diesem Kernprodukt werden
durch Delta-Modelle Veränderungen vorgenommen. Das Kernprodukt stellt für die von
ihm anhängenden Produkte die gemeinsame Basis dar. Gleichwohl ist diese Herangehens-
weise durch eine Fokussierung auf den Lösungsraum geprägt, d. h., die Gemeinsamkeiten
werden durch Features beschrieben. Eine Möglichkeit die Ähnlichkeit im Lösungsraum zu
ermitteln und gegebenenfalls zu begrenzen, ist die Einführung eines Abstandsmaßes über
die Delta-Operationen. Eine Übersicht über verschiedene Abstandsmaße ist in [BSG12] zu
finden. Die Festlegung, welches Produkt Bestandteil einer Produktlinie bzw. Variante eines
anderen Produkts ist, ist subjektiv [Lim94].

Man sieht, dass dieser intuitive Ansatz in vielen Anwedungsgebieten zum Einsatz kommen
kann. Die erste Publikation der Delta-Modelle kam aus dem Umfeld der modellgetriebenen
Softwareentwicklung [Sch10]. Ausgehend von diesem Ansatz entwickelte sich der Bereich
des abstrakten Deltamodellierens [CHS10]. Darin wird die formale Basis für die Nutzung
der Delta-Modelle gelegt. Dieses generische Konzept für die Entwicklung von Software-
produktlinien wurde nachfolgend in verschiedenen Anwendungsbeispielen umgesetzt und
erprobt. Im Folgenden werden einige Beispiele vorgestellt.

Die Delta-Modellierung wurde als deltaorientiertes Programmieren mit der Programmier-
sprache DeltaJava umgesetzt und erprobt [SBB+10]. Die Realisierung wurde mit einer
featureorientierten Programmierung von Softwareproduktlinien verglichen. In diesem Rah-
men wurde festgestellt, dass beide Ansätze gut skalieren, sich allerdings in einigen Punkten
unterscheiden. Die Delta-Modelle sind in Bezug auf die Transformationsregeln sowie die
Wahl des Startpunkts und damit der Anwendbarkeit auf bestehende Lösungen flexibler.

58

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

Durch die Möglichkeit, direkt aus Delta-Modellen Konflikte zu erkennen und partiell zu
beheben, sind diese dem featureorientierten Programmieren voraus. Die Erweiterung der
Funktionalität erfolgt im featureorientierten Programmieren durch ein Refactoring der be-
stehenden Produktlinie. Im Gegensatz dazu werden im deltaorientierten Programmieren
weitere Delta-Module hinzugefügt.

Weitere Anwendungsbereiche sind die Nutzung von Delta-Modellen für die Beschreibung
der Variabilität von Architektursprachen [HRRS11, HKR+11]. In diesen wird die Variabi-
lität von Systemarchitekturen in Delta-Modellen beschrieben. Die Systemarchitektur wird
ihrerseits durch die entsprechende Sprache ausgedrückt (z. B. MonitArc). Als weiterer An-
wendungsfall wird ein Prozess für die Ableitung einer Delta-Sprache für eine gegebene
textuelle Programmier- oder Modellierungssprache vorgestellt [HHK+13]. Der Prozess be-
steht aus Ableitungsregeln und Kontextbedingungen sowie einem Ablauf, der beispielhaft
für eine textuelle Version der Statecharts durchgeführt wurde. Eine Anwendung von Delta-
Modellen in der Praxis ist in [HMW12] beschrieben. Ausgehend von einem Workflow für
die Entwicklung von Delta-Modellen wurde die Nutzung von Delta-Modellen in einem
industrierelevanten Maßstab evaluiert. Eine Anwendung der Delta-Modelle im Kontext
der Automatisierungstechnik ist in [KLL+14, KPST14] zu finden. Die Autoren beschrei-
ben einen Ansatz, der auf einer multiperspektivischen Sicht beruht. Dabei werden drei
verschiedene Sichten (Workflow, Architektur und Verhalten) auf ein Fertigungssystem ge-
nutzt, um dafür Delta-Modelle aufzustellen und daraus Steuerungscode zu generieren. Die
Vorteile der Deltamodellierung werden in der einfachen Verständlichkeit des Ansatzes und
der Flexibilität gesehen.

Ein Ansatz die Delta-Modellierung für Produktlinien zu verwenden wurde in [SSS17] vorge-
stellt. Kern des Konzepts ist ein Prozess für die Entwicklung von Lösungen. Dieser besteht
aus einer kurzfristigen, einer mittelfristigen und einer langfristigen Phase. Es werden für die
einzelnen Phasen jeweils Metriken vorgestellt, die eine Verbesserung der Implementierung
ermöglichen. Über Varianten Interfaces können Varianten Punkte für eine eingeschränkte
Transformation markiert werden. Ein sehr interessanter Ansatz ist die Verwendung von
Delta-Modellen zur Transformation von anderen Delta-Modellen [LKS16]. Dieser Ansatz
wird als Delta-Modell höherer Ordnung bezeichnet. Vorteil dieses Ansatzes ist, dass die
vollständige Historie der Änderungen an Delta-Modellen abgebildet wird.

4.4 Modellierungsgrundlagen

Ziel von Modellen ist es, das System, das modelliert wird, besser zu verstehen [Kru04].
Die unterschiedlichen Arten von Modellen sind zahlreich wie ihre Anwendungsbereiche.
In [VWB+09] sind folgende Beispiele für Modelle aus unterschiedlichen Anwendungsberei-
chen genannt:

• Kostenmodelle

• Rentenmodell

• Modelle für die Wettervorhersage

• Geometriemodelle

59

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

• Modelle für den Reglerentwurf

• Modelle für Börsenkurse

Genauso vielfältig wie die Verwendungsmöglichkeiten sind die Vorstellungen, was Modelle
sind. Die unterschiedlichen Betrachtungsweisen stammen aus unterschiedlichen Anwen-
dungsbereichen und haben sich über die Zeit hinweg entwickelt. Eine sehr generische
Definition für Modelle ist in [DIN14] gegeben:

Definition 5 (Modell). Gegenstand, der es erlaubt Aussagen über einen anderen, model-
lierten Gegenstand zu treffen.

Ausgehend von dieser Definition lassen sich Modelle als Abbildung eines Gegenstandes
ansehen. Diese Abbildung wird für einen konkreten Zweck erstellt [BRS95]. Der Zweck
gibt vor, in welcher Art und Weise die Sicht auf den Gegenstand verkürzt wird. Modelle
sind deshalb verkürzt, da ein Gegenstand nicht in allen seinen Fassetten modelliert wird,
sondern nur die für den jeweiligen Zweck relevanten Eigenschaften und Verhaltensweisen.
Diese wird in der folgenden Definition von Modell in [IEC14a] aufgegriffen:

Definition 6 (Modell). Mathematische oder physikalische Darstellung eines Systems oder
Prozesses, die das System oder den Prozess aufgrund bekannter Gesetzmäßigkeiten, einer
Identifikation oder getroffener Annahmen genügend genau abbildet.

Die beiden zitierten Definitionen unterstreichen mögliche unterschiedliche Blickwinkel auf
Modelle. So werden diese, je nach persönlichem Hintergrund und dem konkreten Anwen-
dungsfall anders definiert. Dies kann bei einer Zusammenarbeit von Personen aus un-
terschiedlichen Fachrichtungen und Branchen zu Missverständnissen führen. So versteht
ein Regelungstechniker unter einem Modell grundsätzlich ein System von Differentialglei-
chungen, die mittels physikalischen Gesetzmäßigkeiten ein physisches System beschreiben.
Hierbei handelt es sich um ein Modell im Sinne von Definition 5 und Definition 6. Ein
technischer Modellbauer assoziiert mit einem Modell ein physisches Modell, beispielsweise
von einem neuen Produkt. Dieses Modell lässt sich nur mit Definition 5 in Einklang brin-
gen, da das Modell nicht mathematisch oder physikalisch ist. Aus demselben Grund erfüllt
auch das Modell einer Anlagentopologie lediglich die Definition 5.

Für die vorliegende Arbeit dient Definition 7 aus [Epp08] als Grundlage. Sie beschreibt
Modellsysteme als Erweiterung des Modellbegriffs, der ein Modell als verkürzte Abbildung
eines physischen oder nicht-physischen Gegenstandes versteht. Dabei wird das Modell
selbst als System verstanden, das aus internen Elementen besteht. Im Weiteren werden
Modell und Modellsystem als Synonyme verwendet.

Definition 7 (Ein Modellsystem ist ein). Modell, das selbst als System strukturiert ist und
das versucht den inneren Aufbau eines Systems so gut nachzubilden, dass im gewünschten
Kontext und mit der geforderten Genauigkeit die äußeren Eigenschaften des Modellsystems
mit denen des betrachteten Systems übereinstimmen.

Da viele Modellierungssprachen objektorientiert sind [PGGS16], liegt der Fokus dieser Ar-
beit auf der Betrachtung von objektorientierten Modellen. Beispiele dafür sind das OPC UA
Metamodell [IEC10], das Merkmalmodell [Mer12, Kam17] oder das allgemeine Prozedur-
modell [NAM16, Sch16a].

60

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

Metamodell Modell
definiert

Modellelement-
Definition

Regel Modellelement

konsistent mit

definiert Anwendung

definiert

hat Beziehung zu

1 … * 1 … * 1 … *

*

*

Abbildung 4.7: Formale Spezifikation des Metamodells nach [DIN14]

Eine Übersicht über die Grundsätze zur ordnungsgemäßen Modellierung ist in [BRS95] zu
finden. Dies sind u. a. die Relevanz, die Klarheit und die Vergleichbarkeit eines Modells.

Im Folgenden werden zwei Klassifikatoren für Modelle vorstellt. Zum einen werden die
verschiedenen Metamodell-Ebenen vorgestellt und ihre Bedeutung für Laufzeitumgebungen
erläutert. Anschließend wird die Klassifikation nach den verschiedenen Sichten auf das
modellierte System vorgestellt.

4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der
Interoperabilität

Eine Möglichkeit, Modelle zu klassifizieren, ist die Einteilung über die Art des zu
modellierenden Systems. Definition 7 folgend beschreiben Modelle reale Systeme. So
kann beispielsweise ein Motor durch physikalische Gleichungen beschrieben werden.
Diese Gleichungen folgen den Regeln der Physik. Die Physik stellt somit Regeln für die
Modellierung von Gegenständen bereit und definiert Bestandteile des Modells (elektrischer
Strom, Drehmoment). Sie ist nach Definition 8 aus [DIN14] ein Metamodell.

Definition 8 (Metamodell). Ein Metamodell definiert Aufbau und Bedeutung von Model-
len

In Abbildung 4.7 ist die formale Spezifikation des Metamodells dargestellt. Das Metamo-
dell definiert Modelle und besteht aus Definitionen von Modellelementen und Regeln. Die
Regeln eines Metamodells definieren die Verwendung der in diesem Metamodell definier-
ten Modellelemente. Das nach den Vorgaben eines Metamodells aufgestellte Modell ist
konsistent mit den Regeln des Metamodells und verwendet die definierten Modellelemente
(vgl. [BRS95]). Der Begriff Modellelement kann sehr sehr allgemein verstanden werden.
So können Modellelemente, je nach Art des betrachteten Modells, Gleichungen oder auch
Objekte (z. B. in einem Strukturmodell) sein. Der Zusammenhang zwischen einem Meta-
modell und dem Modell ist deutlich stärker als der Zusammenhang zwischen einem Modell
und dem modellierten System. Das Modell bildet üblicherweise nur einen Teilaspekt des

61

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

modellierten Systems ab, wohingegen das Metamodell das Modell in Gänze beschreiben
muss.

Es ist möglich, Metamodelle, d. h. ihre Modellelemente und Regeln, ohne Abhängigkeiten
zu anderen Modellen zu definieren. Eine andere Herangehensweise ist, Metamodelle nach
den Vorgaben anderer Metamodelle aufzustellen. Die Physik, die in dem Beispiel die Vor-
gaben zur Beschreibung des Motors liefert, basiert auf der Mathematik. Die Mathematik
ist in diesem Kontext ein Metametamodell, d. h., sie ist die Grundlage für die Definition
eines Metamodells (der Physik).

Wie an diesem einfachen Beispiel mit der Mathematik, der Physik und dem Motor ge-
zeigt, lassen sich Metamodelle in einer Hierarchie verwenden. Ausgehend von Metameta-
modellen (Mathematik) werden Metamodelle (Physik) definiert, mit denen Modelle von
Gegenständen entworfen werden. Analog dazu werden auch in anderen Bereichen (z. B. in
der objektorientierten Programmierung [OMG16]) Metamodelle verwendet. Es gibt keine
Vorgaben, wie viele Hierarchiestufen verwendet werden müssen. Es sind, ausgehend von
einer zweistufigen Architektur bestehend aus Klasse und Instanz, beliebig viele Ebenen
möglich [OMG16]. Allerdings nutzen die meisten Systeme weniger als fünf Ebenen (Meta-
metamodell, Metamodell, Modell, Instanz).

Der Nutzen eines Metamodells entsteht aus der einheitlichen Verwendung der Modellele-
mente und Regeln, die das Metamodell definiert. Dieser Nutzen wird gesteigert, wenn ein
Metamodell von möglichst vielen Modellerstellern als richtig angesehen und verwendet
wird. Auch hier kann die Mathematik als Beispiel herangezogen werden. Überall auf der
Welt nutzen Menschen Regeln und Elemente der Mathematik. Dabei ist es irrelevant, ob der
Anwendungsfall in der theoretischen Physik oder im Bereich der Kostenrechnung liegt, die
Regeln sind immer gleich. Je nach Anwendungsfall kann jedoch der Umfang der genutzten
Regeln und Modellelemente schwanken. Während möglicherweise in der Kostenrechnung
die vier Grundrechenarten ausreichen, kann in der theoretischen Physik die Verwendung
von sehr speziellen Regeln und Modellelementen nötig sein.

Im technischen Kontext wurde die Notwendigkeit für die Verwendung von gemeinsamen
Metamodellen für Interoperabilität festgestellt [PSU+14]. Es wird zwischen Referenzmodel-
len und Kernmodellen unterschieden. Kernmodelle sind analog zu physikalischen Gesetz-
mäßigkeiten immer gültig, ganz gleich, ob sie explizit oder implizit angewendet werden.
Eine Sammlung von Kernmodellen ist in der DIN SPEC 40912 [DIN14] normiert. Ein
Beispiel für ein Kernmodell ist das Lebenszyklusmodell, das beschreibt, was der Lebenszy-
klus einer Entität ist. Dieses Modell ist so generisch, dass es mindestens implizit verwendet
wird, immer dann, wenn ein Lebenszyklus modelliert oder verwendet wird. Im Gegensatz zu
den Kernmodellen haben Referenzmodelle nur einen hinweisenden Charakter. Sie besitzen
keine grundsätzliche Gültigkeit, sondern sind ausschließlich in einem Anwendungsbereich
gültig. In diesem Anwendungsbereich ist z. B. die Sammlung von Entwurfsmustern für
objektorientierte Softwarearchitekturen zu sehen [GHJV11]. Diese Sammlung beschreibt
in der objektorientierten Programmierung häufig auftretende Konstrukte, die für einen
Programmierer nützlich sein können, aber nicht alternativlos sind.

Eine wesentliche Voraussetzung für die Entwicklung und Nutzung von gemeinsamen Mo-
dellen ist die Erlangung eines gemeinsamen Verständnisses aller relevanten Begriffe. Die
„klare, konsistente und allgemein anerkannte textuelle Beschreibung von Begriffen“ ist

62

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

eine Voraussetzung für die Entwicklung von Referenzmodellen im Rahmen von Indu-
strie 4.0 [PSU+14]. Typischerweise treten bei der Verwendung von unterschiedlichen Be-
griffsdefinitionen in einer Diskussion zwei Effekte auf: Entweder verwenden die Beteiligten
unterschiedliche Begriffe für den gleichen Gegenstand oder sie verwenden den gleichen Be-
griff für unterschiedliche Gegenstände [WGE+17]. Durch die Entwicklung und durchgängi-
ge Verwendung von Referenz und Kernmodellen werden diese Schwierigkeiten überwunden
und die Entwicklung von neuen Lösungen unterstützt.

Verwendung von (Meta-)Metamodellen in der Automatisierungstechnik

Nach der Vorstellung von Modellen und Metamodellen folgt in diesem Abschnitt die Be-
schreibung, wie diese in der Automatisierungstechnik verwendet werden. Neben den An-
strengungen, Metamodelle aufzustellen und anschließend durch Abstimmung mit Partnern
als Referenzmodelle bzw. Kernmodelle zu verwenden, besteht der Wunsch die Modelle
in konkreten Anwendungsfällen einzusetzen. Der Ansatz, (Meta-)Modelle im Engineering
von Anlagen zu verwenden und damit ein durchgängiges modellbasiertes Engineering zu
verwirklichen, wird in [VHDF+14] skizziert. In [BSF+09] beschreiben die Autoren, wie
aus Strukturmodellen von Anlagen automatisiert Simulationsmodelle erzeugt werden kön-
nen. Dabei kommt ein xml-basiertes Austauschformat für die Anlagenstrukturmodelle zum
Einsatz. Ein Metamodell für die Beschreibung von Abläufen in der Automatisierungstech-
nik wird in [YGE13] vorgestellt. Für die Erstellung von Automatisierungslösungen sind
in [WKS+16] zwei Wege beschrieben, die auf der Anwendung von Modellen basieren. Zum
einen ist die modellbasierte Codegenerierung beschrieben, bei der die Problemstellung und
z. B. die Anlage in Modellen beschrieben sind. Daraus wird dann die Automatisierungslö-
sung generiert. Zum anderen kann die Lösung durch Modellzugriffe und Transformationen
zur Laufzeit erstellt werden. Der erste Weg fügt sich hervorragend in bestehende En-
gineeringprozesse ein, wohingegen der zweite Ansatz den Vorteil hat, dass Modelle und
Algorithmen, die auf den Modellen operieren, getrennt sind. Daraus folgt eine sehr gute
Wiederverwendbarkeit von Lösungen für andere Anwendungsfälle. Zur Umsetzung dieser
modellbasierten Lösungen ist in jedem Fall eine Vorstellung erforderlich, wie das konkrete
Modell aufgebaut ist.

Neben der Definition von Metamodellen muss geklärt werden, wie diese zu speichern und
zugänglich zu machen sind. Damit eng verknüpft ist die Frage, wie die Modelle, die unter
Verwendung der Metamodelle entwickelt werden, genutzt werden. Sinnvollerweise sind die
Metamodelle während der Verwendung der aus ihnen aufgebauten Modelle ebenfalls ver-
fügbar. Die Autoren stellen in [WKS+16] drei grundsätzliche Möglichkeiten dar, Modelle zu
verwenden: dateibasiert, in Datenbanken und in Laufzeitumgebungen. Die Ansätze unter-
scheiden sich hinsichtlich des Zugriffs auf die Modelle (Interpreter für Dateien, Queries bei
Datenbanken und Dienste bei Laufzeitumgebungen) und der Möglichkeit dynamische Mo-
delle zu verwalten. Daraus resultiert, dass der Datei- und der Datenbank-basierte Ansatz
eher für das Engineering und weniger für die Nutzung der Modelle zur Laufzeit geeig-
net sind. Die Laufzeitumgebung ist darüber hinaus für die dynamische Verwendung von
Modellen zur Laufzeit geeignet.

Bei der Realisierung von Modellen in Laufzeitumgebungen ist das der Laufzeitumgebung
und den Metamodellen zugrundeliegende Metametamodell relevant. So stellt die OMG

63

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Class
Property

Operation

Classifier

Type

Generalization

Parameter

Association

StructuralFeature

Feature TypedElement MultiplicityElement

TypedElement MultiplicityElement

Abbildung 4.8: Vereinfachte Darstellung des Metametamodell der OMG [OMG16]

mit der Meta object facility ein Metametamodell für die Erstellung von Modellen be-
reit [OMG16]. OPC UA [IEC10] definiert ein Metametamodell als Grundlage für die Ob-
jektstrukturen in einem OPC UA Server. In Laufzeitsystemen wie FASA [WGKO15] oder
der Laufzeitumgebung des Lehrstuhls für Prozessleittechnik [Alb03] kommen ebenfalls ei-
gene Metametamodelle zum Einsatz.

Es ist zu erkennen, dass die Metametamodelle und die Metamodelle für die Interoperabilität
relevant sind. Wenn sie kompatibel sind, ermöglichen sie auf Modellebene Interoperabilität
und Austauschbarkeit. Allerdings erfordert eine Integration von verschiedenen Laufzeitum-
gebungen in einem Anwendungsfall, die ausschließlich im Verbund gelöst werden kann, ein
Verständnis für die zugrunde liegenden Metamodelle der jeweiligen Laufzeitumgebungen.
Ein Beispiel dafür ist die Darstellung der Objektstruktur der Laufzeitumgebung des Lehr-
stuhls für Prozessleittechnik als OPC UA Nodestore. Grundsätzlich ist diese Abbildung
unproblematisch, allerdings ist das Metametamodell der Laufzeitumgebung sehr stark an
der Containment-Beziehung zwischen Objekten orientiert. Das OPC UA Metametamodell
kennt diese Art der Beziehung auch, allerdings ohne ihr die Priorität beizumessen. Dieses
einfache Beispiel verdeutlicht, dass nicht nur die zugrundeliegenden Metamodelle, sondern
auch die (implizit) verwendeten Metametamodelle für die Interoperabilität relevant sind.

Metametamodelle

Im Folgenden werden drei Beispiele für Metametamodelle vorgestellt: Die Meta Object Fa-
cility der OMG, das OPC UAMetamodell und das Metametamodell der Laufzeitumgebung
des Lehrstuhls für Prozessleittechnik. In Abbildung 4.8 ist das vereinfachte Metametamo-
dell der OMG dargestellt. Kern des Modells ist Class, die sich aus Eigenschaften (Property)
und Operationen (Operation) zusammensetzt. Class ist von Classifier abgeleitet, und Clas-

64

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

BaseNode

NodeId
Attribute

BrowseName
Attribute

NodeClass
Attribute

DisplayName
Attribute

Description
Attribute

1

1

1

1

1
ObjectVariable View Data Type Reference

Type

MethodVariable
Type

Object
Type

<<Reference>> *

*

Abbildung 4.9: OPC UA Metamodell nach [LM06]

sifier wiederum ist von Type abgeleitet. Zweck des Modells ist es, eine Grundlage für die
Beschreibung von Softwaremodellen zu schaffen. Des Weiteren besitzt es breite Akzeptanz
in der Softwareentwicklung [SRVK10]. Die OMG hat dieses Metametamodell als Grund-
lage für darauf aufbauende Metamodelle standardisiert und schafft so eine einheitliche
Vorstellung, wie objektorientierte Modelle im Kontext von UML 2.0 aufgebaut werden.

Ein Metametamodell, das in der Automatisierungstechnik aktuell viel diskutiert wird, ist
das OPC UA Metamodell (vgl. Abbildung 4.9). OPC UA [IEC10] definiert zwei Kompo-
nenten: Ein Kommunikationsprotokoll und einen objektorientierten Modellspeicher (No-
destore). Das Kommunikationsprotokoll spezifiziert die Zugriffe auf den Nodestore. Im
Wesentlichen handelt es sich dabei um Services zum Lesen und Schreiben von Werten
sowie dem Erzeugen und Löschen von Objekten. Das in Abbildung 4.9 dargestellte Mo-
dell bildet die Grundlage für den OPC UA Namensraum. Der Kern dieses Modells ist der
BaseNode, der sich aus NodeId, BrowseName, NodeClass, DisplayName und Description
zusammensetzt. Jedes Objekt in OPC UA ist von BaseNode abgeleitet und kann Referen-
zen zu Variablen haben. Sowohl Variable als auch Object können über die entsprechenden
Objekte Object Type und Variable Type typisiert werden. Neue Datentypen können mittels
Data Type aus den vorhandenen Datentypen zusammengesetzt werden. Darüber hinaus ist
es mit Reference Type Objekten möglich, zusätzliche Arten von Referenzen zu definieren.
Ausführbare Methoden werden über Method Objekte realisiert.

Die erzeugte Objektstruktur, d. h. alle Objekte in einem Nodestore, kann zur Laufzeit
erkundet und interpretiert werden. Die Kenntnis des Metamodells ist dabei unerlässlich, um
die Semantik der Objekte korrekt interpretieren zu können (z. B. eines Method-Objektes).

Grundlage der am Lehrstuhl für Prozessleittechnik entwickelten Laufzeitumgebung

65

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

ACPLT/RTE ist das in Abbildung 4.10 dargestellte Metametamodell. Kern des Modells
ist object, von dem alle anderen Teile des Modells abgeleitet sind. Es ist zu erkennen,
dass ähnlich wie im OPC UA Metamodell sowohl Operationen als auch Variablen eigene
Objekte sind. Die Klassen, die in der Laufzeitumgebung instanziiert werden können, sind
selbst Instanzen der Metaklasse class und werden im System explizit verwaltet. Kern des
Modells ist der Ringschluss zwischen class und object, durch den alle Objekte Instanzen
ihrer Klassen werden und die Laufzeitumgebung sich selbst beschreibt [WKS+16].

Beim Vergleich des OPC UA Metamodells mit dem ACPLT-Metametamodell fällt die an-
gesprochene Fokussierung auf die containment Beziehung zwischen object und Domain
auf. Damit wird erzwungen, dass sich jedes Objekt, unabhängig von seinem Assoziations-
netzwerk, mit anderen Objekten in eine namensgebende Grundbaumstruktur einordnet.
Diese Namensbaumhierarchie gibt es in OPC UA Informationsmodellen nicht. Trotz der
leichten Unterschiede zwischen den Metametamodellen können die mit ihnen entwickelten
Modelle ineinander überführt werden [SRVK10]. So können durch die Transformation der
Informationsmodelle Datenbanken über OPC UA zugänglich gemacht werden [GPE16].

Die Kenntnis von Metametamodellen und deren korrekter Verwendung werden in einer
zusammenwachsenden Landschaft von Laufzeitumgebung und Modellen immer wichtiger.
Ein Indikator dafür ist die zunehmende Fokussierung auf das OPC UA Metamodell auch
gerade im Kontext von Industrie 4.0. Hierbei spielen Metamodelle eine wichtige Rolle.
Bei der Umsetzung der wandelbaren Fabrik erkunden Geräte andere Geräte und führen
mit diesen gemeinsame koordinierte Aktionen durch. Dafür reicht es nicht, dass Geräte
auf der Ebene von Kommunikationsprotokollen kompatibel sind, sondern sie müssen dar-
über hinaus in der Lage sein, gegenseitig die Informationsmodelle zu interpretieren. Dafür
sind gemeinsame Metamodelle sowohl auf der Seite des Senders als auch des Empfängers
unerlässlich.

66

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

class

object

domain operation variable part association

structurelibrary

0..*

0..* 0..* 0..* 0..*

0..*

0..*

1 111
embedment

parent relationship

child relationship

1

1

1

containment

instantiation

inheritance

construction

Abbildung 4.10: Metametamodell der Laufzeitumgebung ACPLT/RTE [WKS+16]

4.4.2 Modellierungssichten

Bei der Modellierung ist es wichtig, sich darüber im Klaren zu sein, welche Aspekte eines
Gegenstandes modelliert werden sollen. Handelt es sich um mehrere Aspekte, stellt sich
zusätzlich die Frage, ob diese Aspekte in einem Modell abzubilden sind, oder ob eine
Unterteilung in mehrere Modelle nicht sinnvoller ist. Im folgenden Abschnitt wird auf diese
Fragen eingegangen und es werden Ansätze präsentiert, welche Sichten eines Gegenstands
in unterschiedlichen Modellen dargestellt werden sollten.

In der Automatisierungstechnik ist diese Trennung von Aspekten ein bekannter Ansatz. So
ist beispielsweise in AutomationML [IEC14c, DLPH08] die Trennung der Informationen
über einen betrachteten Gegenstand in drei Modelle vorgesehen:

• Struktur
Aufbau und Beschreibung von Anlagen mit CAEX nach [IEC16]

• Geometrie und Kinematik
Beschreibung der Geometrie und der Kinematik von z. B. Robotern. Als Format wird
COLLADA verwendet.

• Logik
Beschreibung von Schrittketten und Bausteinnetzwerken mit PLCopen. PLCopen
definiert ein neutrales Austauschformat für die industrielle Leittechnik auf Basis von
xml.

67

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Logische Sicht
• Funktionalität

Entwicklungssicht
• Softwaremanagement

Physikalische Sicht
• Systemtopologie
• Auslieferung
• Installation
• Telekommunikation

Prozesssicht
• Performance
• Skalierbarkeit
• Durchsatz

Szenarien

Abbildung 4.11: 4+1 Sichten Modell nach [Kru95]

Es ist zu erkennen, dass die Trennung entlang der verschiedenen Gewerke in einer An-
lage vorgenommen wird: Die mechanische Modellierung, die Modellierung aus Sicht der
Automatisierungstechnik und die Analgenstruktur. Dieser Ansatz ist weit verbreitet, da
historisch gesehen die Tools so entstanden sind, wie sie von den unterschiedlichen Fach-
richtungen benötigt wurden. So gibt es beispielsweise eigene Tools für die Prozessplanung
(z. B. Verfahrenstechnik), für das Engineering der Automatisierungslösung und für die Be-
dienung der Anlage [WGE+17]. Jedes dieser Tools bildet eine eigene Sicht auf die gleiche
Anlage ab und verwendet zur Beschreibung eigenen Metamodelle. Die Herausforderung in
der Automatisierungstechnik besteht darin, alle Sichten auf die Anlage zu integrieren und
mehrfache (mglw. inkonsistente) Datenhaltung zu vermeiden.

In der Softwarearchitektur gibt es ebenfalls Konzepte, die unterschiedlichen Sichten von
modellierten Gegenständen zu trennen. In [Kru95] wird das 4+1 Sichten Modell für die
Softwarearchitektur vorgestellt. In Abbildung 4.11 ist das Modell dargestellt. Im Mittel-
punkt stehen die unterschiedlichen Szenarien, die für die Entwicklung einer Softwarear-
chitektur relevant sind. Die logische Sicht betrachtet die Funktionalität des Softwaresy-
stems. In der Regel ist das die Sicht, die ein Nutzer auf das System hat. Hierbei stehen
die funktionalen Anforderungen im Vordergrund. Aus der logischen Sicht ergeben sich die
Entwicklungssicht, die für den Softwareentwickler relevant ist, und die Prozesssicht für
den Systemintegrator. In der Entwicklungssicht wird beschrieben, wie die Softwaremodule
organisiert werden. Nicht-funktionale Anforderungen wie die Verteilung der Softwarearte-
fakte oder die Fehlertoleranz werden in der Prozesssicht adressiert. Alle anderen Sichten
münden in der physikalischen Sicht, die den tatsächlichen Aufbau des Gesamtsystems aus
Soft- und Hardware sowie der Kommunikation beschreibt.

Um die verschiedenen Sichten erstellen und bearbeiten zu können, stehen verschiedene gra-
fische Modelle zur Verfügung. Diese enthalten Diagramme für Szenarien, Anwendungsfälle,

68

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

Klassen, Deployment, Zustände und Komponenten [Kru04]. Ein Beispiel für eine derartige
Sammlung von Diagrammen ist die Modellierungssprache UML [ISO12]. Diese definiert so-
wohl Struktur- als auch Verhaltensdiagramme, deren Elemente gemischt in einem Modell
verwendet werden können.

In [FR07] betonen die Autoren die Bedeutung davon, die verschieden Sichten eines Soft-
waresystems während seines Entwurfs zu berücksichtigen und zu modellieren. Für die Au-
tomatisierungstechnik bedeutet der Ansatz, beispielsweise die funktionale Sicht von der
Implementierung und der Verteilung auf verschiedene Hardwareplattformen zu trennen,
jedoch keinesfalls die Abhängigkeiten zu vernachlässigen.

4.4.3 Modelle in der Automatisierungstechnik

In folgenden Kapiteln werden kurz die für diese Arbeit relevanten Modelle der Automatisie-
rungstechnik vorgestellt. Die Relevanz ergibt sich entweder durch ihre direkte Verwendung
oder durch ihren Vorbildcharakter für die Lösung von Problemstellungen. Zunächst wird
das grundlegende und vielseitig einsetzbare Merkmalmodell vorgestellt. CAEX und sei-
ne Spezialisierung R&I Fließbilder für die Prozessindustrie wird anschließend als Beispiel
für ein Rollenmodell vorgestellt. Abschließend wird ein Modell für die Beschreibung der
Sprachen des Engineerings erläutert.

Merkmale

Merkmale beschreiben charakterisierende Eigenschaften von Dingen, die im Betrachtungs-
zeitraum als konstant angesehen werden können [EE13]. Abzugrenzen sind Zustände, die
einer fortlaufenden Änderung unterworfen sein können. Die Herausforderung im techni-
schen Kontext besteht darin, Merkmale so zu definieren und zu modellieren, dass bei der
Interpretation eines Wertes klar ist, was dessen Semantik ist. Es muss also aus der Verknüp-
fung eines Wertes mit einer Merkmaldefinition hervorgehen, welche Semantik dieser Wert
hat. Beispielsweise wird beschrieben, dass es sich bei diesem Wert um den Durchmesser
eines Rohres handelt und ob es der Innen-, Mittel- oder Außendurchmesser ist.

Das Merkmalmodell nach [EMPA17] lässt sich in drei Bestandteile unterteilen: Der be-
schriebeneMerkmalträger, das semantische System und das Anwendungssystem. Der Merk-
malträger besteht aus den spezifischen Merkmalen, deren Werte unbekannt sein können,
da sie nur im Rahmen der Messungenauigkeiten messbar sind. Das semantische System
besteht aus einem Modell der Merkmalträger, den Merkmalträgertypen und der Beschrei-
bung der Merkmale. Das semantische System beruht auf globalen Standards wie z. B. der
IEC 61360 [IEC17]. Bekannt ist auch ecl@ss, ein zentrales Repository für Definitionen
von Merkmalen und den korrespondierenden Merkmalträgertypen. Optimalerweise legen
semantische Systeme für alle Anwendungssysteme die Semantik fest, sodass Informationen
zwischen diesen ausgetauscht werden können.

Innerhalb der Anwendungssysteme werden die abgebildeten Merkmalträger durch Ausprä-
gungsaussagen beschrieben (vgl. [EMPA17]). Dies sind Werte mit einer Referenz auf ein
Merkmal, einer Einheit, einer Erzeugungszeit, einer Quelle, einer Aussagesemantik und

69

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

einer logischen Einordnung. Über die Aussagesemantik kann die Aussage entweder als
Anforderung, Zusicherung, Messwert oder Sollwert charakterisiert werden. Mit der Aus-
sagelogik wird festgelegt, ob ein festgelegter Wert über- oder unterschritten werden soll.
Alternativ kann die Gleichheit zu einem bestimmten Wert festgelegt werden. Die Refe-
renz auf das Merkmal, zu dem eine Aussage gemacht wird, ermöglicht einem Nutzer des
Wertes, diesen entsprechend seiner Bedeutung zu interpretieren. Dies ist der Schlüssel zur
Interoperabilität zwischen Systemen.

Ein aktuelles Anwendungsgebiet von Merkmalsausprägungsaussagen ist die Modellierung
von Verwaltungsschalen [PE17]. In diesem Kontext werden Merkmale genutzt, um die
Semantik von Werten allgemeingültig beschreiben zu können und damit die Interopera-
bilität zu steigern [EMPA17]. Dafür wird die ursprüngliche Definition eines Merkmals
weiter gefasst und auch Zustände und Parameter durch Merkmalsausprägungsaussagen
ausgedrückt. In [Mer12, EE13] wird die Nutzung von merkmalbasierten Informationen für
verschiedene Anwendungen vorgestellt. Dort sind weiterführende Informationen zu den
Merkmalmodellen sowie ihrer Anwendung zu finden.

Entity-Relationship-Systemmodell

Das Entity-Relationship-Systemmodell (ER-Systemmodell) ist ein Kernmodell [DIN14]
und als solches ein Metamodell für die Beschreibung von Systemen. Das ER-Systemmodell
kann zur Beschreibung aller Arten von imaginären oder physischen Systemen verwendet
werden. Die Systeme werden als Netzwerk aus miteinander in Beziehung (Relationship)
stehenden Elementen (Entitys) beschrieben. Systemelemente können sowohl Klassen als
auch Objekte sein. Das Systemmodell ist so flexibel einsetzbar.

Grundannahme des Modells ist, dass ein System eine Hülle, d. h. eine Systemgrenze besitzt
und aus Elementen aufgebaut ist. Das System ist von außen betrachtet ein Element, in
seinem Inneren ist es jedoch aus einer Struktur von verbundenen Elementen aufgebaut.
Diese Elemente können wiederum einen internen Aufbau besitzen und so aus weiteren
Elementen zusammengesetzt sein. Eine weitere Annahme ist, dass die Systemhülle nur an
vordefinierten Stellen überwunden werden kann.

1

System

Systemelement
(Entity)

Beziehung
(Relationship)

Abstraktion

*
*

*
1

*1

Kardinalität
Ziel

Kardinalität
Quelle

Aggregation

Komposition1

Abbildung 4.12: ER-Modell nach [DIN14]

70

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

In Abbildung 4.12 ist das Systemmodell dargestellt. Es ist zu erkennen, dass sich Sy-
steme aus Systemelementen und Beziehungen zusammensetzen. Sie sind über Quell- und
Zielkanten miteinander verbunden. Die Beziehung ist eine 1:1 Verbindung, jedoch können
die Systemelemente beliebig viele Verbindungen untereinander besitzen. Beziehungen sind
klassifiziert. Im Kernmodell sind die Abstraktion, die Aggregation und die Komposition vor-
gesehen. Diese können um zusätzliche Klassen ergänzt werden. Zusätzlich kann die Anzahl
der zu verbindenden Systemelemente durch Kardinalitäten definiert werden.

Systemelement-Interface-Connection Modell

Das Systemelement-Interface-Connection (SIC) Modell ist ein Metamodell für die Beschrei-
bung von Systemen und gehört zu den Kernmodellen (vgl. [DIN14]). Die Grundannahmen
im Hinblick auf den Aufbau von Systemen sind die Gleichen wie für ER-Systemmodelle.

Der Aufbau des SIC-Modells ist in Abbildung 4.13 zu erkennen. Kern des Modells ist das
Systemelement. Ein System besteht aus Basiselementen. Das System und das Systemele-
ment bestehen jeweils aus Schnittstellen. Das Modell ermöglicht so die Beschreibung eines
hierarchisch aufgebauten Systems. Die Verbindungen zwischen den Schnittstellen werden
durch Verbindungen modelliert.

System

Systemelement
Schnittstelle
(Interface)

Link

*

*

*
*1

*1

Abbildung 4.13: SIC-Modell nach [DIN14]

Anwendungsbeispiele, in denen das SIC-Modell benutzt wird, sind die Funktionsbaustein-
netzwerke oder R&I Fließbilder. Das Funktionsbausteinnetzwerk stellt ein System dar, das
aus Funktionsbausteinen (Basiselementen) und anderen Funktionsbausteinnetzwerken (Sy-
stemen) zusammengesetzt ist. Die Netzwerke und Bausteine stellen ihre Schnittstellen nach
außen über Ports (Interfaceelemente) dar. Die Ports sind vergleichbar mit den Interfaces
im SIC-Modell.

Modell für Sprachen des Engineering

Ein Metamodell für das Engineering von Funktionsbausteinsprachen wird in [WGE+18]
vorgestellt. Ausgangspunkt dieses Beitrags war die Heterogenität der Laufzeitsysteme in-
nerhalb des BaSys 4.0 Projekts. So entstand die Idee, ein Metamodell zu entwickeln, das von
den jeweiligen Sprachen abstrahiert und die Verwendung einer einheitlichen Schnittstelle
für das Engineering möglich macht. Das Metamodell ist in Abbildung 4.14 dargestellt.

Grundlage der Überlegungen ist das SIC-Modell. Analog zu diesem wurden die verwendeten
Arten von Bausteinen in komplexe und einfache Bausteine unterteilt. Einfache Bausteine

71

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

werden als atomar betrachtet und können ihrerseits zu komplexen Bausteinen zusammen-
gesetzt werden. Jeder Baustein verfügt über ein Zustands- und ein Ausführungsmodell.
Jedes dieser Modelle stellt eine Schnittstelle für die Interaktion bzw. den Datenzugriff be-
reit. Alle Bausteine verfügen über eine Schnittstelle zur Interaktion mit der Umgebung.
Diese besteht aus Signalports und Serviceschnittstellen. Signalports können nach Eingang,
Ausgang oder bidirektional typisiert werden. Verbindungen zwischen Signalports werden
durch Links und Verbindungsobjekte dargestellt. Innerhalb der Verbindungsobjekte wer-
den z. B. die Konvertierung von Werten oder deren Übertragung realisiert.

Eine spezielle Art eines komplexen Bausteins ist die Prozedur im Sinne der
NE 160 [NAM16]. Diese besteht aus Schritten und Transitionen, die jeweils miteinander zu
einer Schrittkette verbunden sind. Innerhalb der Transition werden die Bedingungen für
deren Schalten durch logische Gleichungen dargestellt. Schritte können entweder elementa-
re Schritte, Makro-Schritte oder Parallelisierungen sein. Elementare Schritte bestehen aus
Aktionsaufrufen, die beispielsweise das Setzen von Werten oder das Aufrufen eines Dienstes
sind. Sowohl die Makro-Schritte als auch die Parallelisierungen sind jeweils Teilprozeduren
und werden als abgeleitete Prozeduren modelliert.

72

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

BaSysFBMM

SIC

Basic Element

Basic Type

System Interface

Complex Type

System Element

SignalPort

+ direction: interfaceDirection
+ type

State Model

«enumeration»
interfaceDirection

 in
 out
 inOut

«interface»
stateInterface

+ getCurrentState()
+ getStateModel()
+ setCommand()

«interface»
executionInterface

+ execute()

Execution Model

Service Interface

Transition Step

Condition Logical Equation

Parallel Branching

Macro Step

Elementary Step Action Request

Sub-ProcedureProcedure

Connection

*

0..*1

2..n

0..1

*1

+source

Link

+target

0..1

* 1

1

1
1

*
1

0..1

*
1

0..1

Abbildung 4.14: BaSys Metamodell für Engineeringsprachen nach [WGE+18]

73

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

4.5 Diskussion des Stands der Wissenschaft

In diesem Kapitel wurde der Stand der Wissenschaft zur Wiederverwendung vorgestellt. Es
wurde gezeigt, dass dieses Thema in der Informatik weiterhin Gegenstand von Arbeiten ist.
Auch in der Automatisierungstechnik werden zunehmend Anstrengungen unternommen,
die Wiederverwendung von bestehenden Lösungen zu unterstützen. Durch den zunehmen-
den Einsatz von Laufzeitsystemen mit komponentenorientierten Metamodellen rückt die
Wiederverwendung von Komponentensystemen in den Fokus. Durch andere Arbeiten im
Bereich der wandelbaren Fabrik, wie die Verteilung von Applikationen und die Änderung
von Funktionalität zur Laufzeit, wird dieser Trend unterstützt.

Eine Verbesserung der Wiederverwendung ist in der Automatisierungs- und Softwaretech-
nik gleichermaßen ein präsentes Thema. Das Konzept aus [ODU13] ist aufgrund der in
Kapitel 3 geforderten Anwendbarkeit für hybride Systeme (Anforderung R13) für den in
dieser Arbeit skizzierten Anwendungsfall ungeeignet. Die Beschreibung von AT-Modulen
in [Mah14] ist eine funktionale Betrachtung zu hybriden Modulen. Das vorgestellte Kon-
zept zielt nicht auf die Behandlung von entstehenden Varianten ab. Allerdings bilden die
Module eine Ausgangsbasis für die Entwicklung von Wiederverwendungsgegenständen.

Die Berücksichtigung der Variabilität von Produkten zur Unterstützung der Wiederver-
wendung hat sich in anderen Domänen wie der Softwaretechnik und dem Maschinenbau
als sehr zweckmäßig herausgestellt. Sie sind für den hier betrachteten Anwendungsfall
auch im Fokus. Auf Produktlinien basierende Ansätze werden mit großem Erfolg für die
Lösung vieler Aufgaben eingesetzt. Die kompositionellen und annotativen Verfahren sind
für die Anwendung in bestehenden Systemen nur bedingt geeignet (R3). Im Gegensatz zu
Delta-Modellen verfügen sie weder über die Flexibilität, Artefakte zu einer Lösung hinzuzu-
fügen, noch sie wieder entfernen zu können [Sch18]. Für die betrachteten, sich evolutionär
entwickelnden Systeme ist eine vollständige Transformation besser geeignet als die kom-
positionellen und annotativen Verfahren. Der zeitliche und monetäre Aufwand sind die
Hindernisse für den Einsatz des auf Varianten basierenden Konstruierens [VHON18]. Die
neue Delta-Modellierung ist besser für den Einsatz in bestehenden Lösungen geeignet (R3).
Eine modellbasierte Beschreibung der Variabilität, wie in (R2) gefordert, ist zudem auch
möglich. Delta-Modelle sind ein intuitiver Weg, den Unterschied zwischen zwei Produkten
bzw. zwei Komponentensystemen zu beschreiben. Sie können flexibel auf unterschiedliche
Anwendungsfälle angewendet werden. Es ist möglich, nicht nur einzelne Komponenten und
Verbindungen, sondern ganze Teil-Systeme in einen neuen Anwendungsfall zu übernehmen.

Es wurde gezeigt, dass modellbasierte Lösungsansätze in der Automatisierungstechnik ver-
breitet sind und als zukunftsträchtig angesehen werden. Einheitliche Metamodelle sind für
die Interoperabilität aber auch für das gemeinsame Verständnis der Systeme relevant. Dies
gilt auf der Ebene der Kommunikationsprotokolle und ebenso bei der Übertragung von
Komponentensystemen. Das vorgestellte Metamodell der Engineeringsprachen ist ein ein-
heitliches Modell, wodurch ein einheitliches Verständnis der Komponentensysteme erreicht
wird. Verwendet man das Metamodell zusammen mit einem vereinheitlichten Interface,
können Engineeringsysteme mit kompatiblen Laufzeitumgebungen genutzt werden. Für
die Entwicklung dieser Modelle sind neben dem zu modellierenden Gegenstand auch die
zu modellierenden Facetten wichtig. Nur wenn diese insgesamt berücksichtigt werden, kön-
nen die Modelle bei der Bewältigung der Herausforderungen helfen.

74

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

4.5 Diskussion des Stands der Wissenschaft

Die Frage, wie ein Nutzer von bestehenden für seine Aufgabenstellung relevanten Lösungen
erfährt, ist in der Automatisierungstechnik ungelöst. Auf der Ebene der Komponenten
findet eine Verteilung und eine anschließende Verwendung durch die Nutzer statt. Für
Komponentensysteme gilt dies nicht. Ebenso finden eine Beschreibung und ein Monitoring
der verwendeten Versionen von Komponenten nur implizit statt oder es wird gänzlich
darauf verzichtet. Daraus resultieren Probleme bei der Wartung und Erweiterung von
bestehenden Lösungen.

Die Merkmale sind nach dem Merkmalmodell zentral definiert. Die sich darauf beziehenden
Systeme verwenden alle diese Definition, um die gleiche Semantik von Werten zu nutzen.
In der Codeentwicklung werden Versionsverwaltungssysteme genutzt, damit bestehende
Lösungen allen Entwicklern bekannt sind und Funktionalitäten nicht mehrfach entwickelt
werden. Diese Mechanismen bilden eine Grundlage für das in dieser Arbeit vorgestellte
Konzept.

75

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in
komponentenbasierten Architekturen

Ausgehend von den in Kapitel 3 beschriebenen Anforderungen und der Analyse der bis-
herigen Arbeiten (vgl. Kapitel 4) wird im Folgenden ein Konzept für die systematische
Wiederverwendung von komponentenbasierten Lösungen vorgestellt. Durch das Konzept
werden die drei Fragen aus Kapitel 1.2 beantwortet:

• Wie sieht ein Mechanismus für komponentenbasierte (Teil-)Lösungen aus, so dass sie
wiederverwendet und auf andere Anwendungsfälle übertragen werden können?

• Wie wird der Wiederverwendungsmechanismus in bestehende Tools und Prozesse
integriert, so dass der Nutzer ihn verwendet?

• Wie erfährt der Nutzer, dass eine geeignete Lösung existiert?

Die Antwort auf die erste Frage ist ein Mechanismus für die Wiederverwendung in Kompo-
nentensystemen. Die Delta-Modellierung hat sich in der Analyse des Stands der Technik als
geeignet für die Anwendung in der Automatisierungstechnik erwiesen. Sie wird daher als
Grundlage für den zu entwickelnden Wiederverwendungsmechanismus verwendet. In der
späteren Nutzung müssen die Delta-Modelle gespeichert werden. Dies kann beispielsweise
in Laufzeitumgebungen geschehen. Für diese Speicherung in Laufzeitumgebungen wird ein
objektorientiertes Metamodell für Delta-Modelle vorgestellt.

Delta-Modelle transformieren ein System oder das Modell eines Systems in ein anderes
System bzw. Modell. Wenn Delta-Modelle auf Modelle angewendet werden, müssen diese
beschrieben sein. Das heißt, es müssen ein Metamodell des Modells und Anwendungsregeln
vorliegen. Die Delta-Modelle erhalten durch das Metamodell des zu transformierenden Sy-
stems die Grundlage für ihre Anwendung (vgl. Abbildung 5.1). Wenn Elemente angelegt
werden, müssen diese definiert und bekannt sein. In der Literatur werden Delta-Modelle
ohne die Abstraktion durch eine Modellierungsebene auf Komponenten angewendet. Die
Delta-Modelle könnten direkt auf die entsprechenden Komponentensysteme angewendet
werden. Dagegen spricht allerdings, dass die Nutzbarkeit in diesem Fall auf das konkre-
te System beschränkt wäre. Entwickelte Komponentensysteme könnten nicht übertragen
werden, da die Delta-Modelle auf anderen Systemen keine Anwendungsbasis hätten. Auch
eine Anwendung der Delta-Modelle auf unterschiedliche Arten von Komponentensystemen
(z. B. Funktionsbausteinnetzwerke oder P&I-Diagramme) wäre nicht möglich. Durch die
heterogene Infrastruktur in der Automatisierungstechnik, d. h. durch die vielen verschiede-
nen Werkzeuge und Automatisierungssysteme, ist dieser Ansatz nicht zweckmäßig. Daher
wird im folgenden Konzept ein generisches Komponenten-Metamodell als Basis für die An-
wendung der Delta-Modelle entwickelt. Das Komponenten-Metamodell beschreibt hybride
Systeme, d. h. Hard- und Softwarekomponenten. Es bildet eine Abstraktionsschicht von

76

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

den konkreten Komponenten und ermöglicht die unabhängige Handhabung der Kompo-
nentensysteme in Form von Modellen. So können die wichtigen Informationen, die in der
Struktur und dem Zusammenschalten der Komponenten enthalten sind, wiederverwendet
werden.

Eine Übersicht über die Zusammenhänge zwischen den Modellen ist in Abbildung 5.1 dar-
gestellt. Das Komponenten-Modell setzt sich aus einem Typ-Modell und einem Instanz-
Modell zusammen. In den Typ-Modellen sind die Typen der verwendeten Komponenten
beschrieben. Zudem wird dort auf kompatible Komponententypen referenziert. So kön-
nen mehrere kompatible Versionen von Komponententypen einem Typ-Modell zugeordnet
werden. Die Zuordnung von unterschiedlichen kompatiblen Versionen zu einem Kompo-
nententyp wird durch die Referenz ermöglicht. Durch diese explizite Modellierung können
diese kompatiblen Versionen aufgefunden und verwendet werden. Die konkrete Verschal-
tung der Komponenten wird in den darauf aufbauenden Instanz-Modellen modelliert. Im
vorliegenden Konzept sind das Typ-, das Instanz- und das Delta-Metamodell enthalten.
Diese beinhalten die Elemente und Vorschriften zur Bildung der zugehörigen Modelle. So
beschreibt das Typ-Metamodell den Aufbau von Typ-Modellen.

Typ-Modell

Instanz-ModellKomponentensystem

Verweis auf

repräsentiert
Delta-Modell

transformiert

Typ-
Metamodell

Instanz-Metamodell Delta-Metamodell

Komponenten-Metamodell

Abbildung 5.1: Übersicht der verwendeten Metamodelle, Modelle und deren Zusammenhänge.

Die zweite Frage fokussiert die Integration des Mechanismus zur Wiederverwendung in
bestehende Prozesse und Werkzeuge. Sind in den bei der Entwicklung einer Automatisie-
rungslösung beteiligten Werkzeugen die gleichen Typ-Modelle mit Referenzen auf entspre-
chende lokale Realisierungen vorhanden, können die Instanz-Modelle zwischen den Werk-
zeugen ausgetauscht werden. So können die durch Delta-Modelle beschrieben Lösungen in
unterschiedlichen Anwendungsfällen zum Einsatz gebracht werden. Gleichzeitig verbessert
dieser Ansatz die Interoperabilität zwischen den Systemen der Automatisierungstechnik.

Der angesprochene Interoperabilitätsaspekt ist zusätzlich Bestandteil der Antwort auf die
zweite Frage. Damit die Nutzer das Konzept zur Wiederverwendung annehmen und ver-
wenden, muss es sich in die bestehenden Prozesse und Werkzeuge einfügen. Das Konzept
ist dafür additiv zu bestehenden Werkzeugen zu sehen und ist für den Nutzer im Regel-
betrieb in der vollen Komplexität nicht sichtbar. Analog zu Versionsverwaltungssystemen

77

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

greift der Nutzer nur beim Austausch von Lösungen auf Schnittstellen des Konzepts zurück.
Dies wird durch die Vorstellung von Prozessen für die Verwendung der Modelle unterstützt.

Für die Beantwortung der dritten Frage steht die Auffindbarkeit von Lösungen im Vor-
dergrund. Der beste Wiederverwendungsmechanismus mit einer gelungenen Integration in
Werkzeuge und Prozesse kann nicht genutzt werden, wenn der potentielle Nutzer nichts
von existierenden zur Wiederverwendung geeigneten Lösungen weiß. Insbesondere gilt dies
in der räumlich oder organisatorisch getrennten Entwicklung von Lösungen. Als Weg für
die Auffindung existierender Lösungen ist ein zentraler Speicher für die Lösungen vorge-
sehen. Darin werden die gemeinsam verwendeten Typ-Modelle und die Delta-Modelle für
die Beschreibung der Lösungen abgelegt. Die Nutzer können diesen Speicher durchsuchen
und relevante Lösungen auf das lokale System herunterladen. Dort können diese verwendet
und modifiziert werden.

Die angesprochenen Modelle, die für das Konzept benötigte Anwendungsumgebung und die
Prozesse zur Wiederverwendung werden im Folgenden beschrieben. Das Kapitel ist folgen-
dermaßen strukturiert: Abgeleitet von den Komponenten in der Automatisierungstechnik
wird das Metamodell der Komponenten entwickelt (Abschnitt 5.1). Dieses ist die Grundlage
für die Delta-Modellierung. Ausgehend von der Beschreibung von Variabilität durch Delta-
Modelle in der Softwaretechnik wird das Metamodell eingeführt (Abschnitt 5.2). Dies wird
an die Eigenschaften des Komponenten-Metamodells angepasst. In Abschnitt 5.3 wird die
Verwendung der Modelle vorgestellt und anschließend auf die dezentrale Wiederverwen-
dung eingegangen. Am Ende des Kapitels folgt eine kritische Diskussion des vorgestellten
Konzepts.

5.1 Komponenten-Metamodell - Basis für die
Wiederverwendung

Ausgehend von dem Modell für Engineeringsprachen, das ein Komponenten-Modell ist,
wird ein Metamodell vorgestellt, das die Grundlage für die Deltamodellierung bietet.

Das Metamodell ist eine Erweiterung der in Abschnitt 2.2 vorgestellten Komponenten-
Modelle. Diese wurden um Mechanismen des OPC UA Metamodells (vgl. Abschnitt 4.4)
erweitert, sodass Referenzen zwischen Komponenten abgebildet werden können. Diese Re-
ferenzen bilden eine typisierte Beziehung zwischen Komponenten, die über die Übertragung
von Informationen hinausgeht. So können beispielsweise logische Abhängigkeiten zwischen
Komponenten modelliert werden.

5.1.1 Modellbeschreibung

Das Komponenten-Metamodell besteht aus einem Modellteil zur Beschreibung der Kom-
ponententypen und einem zweiten Teil, der die Komponentensysteme modelliert, die aus
Instanzen dieser Komponententypen zusammengesetzt sind. Im Folgenden wird zunächst
das Typ-Modell und anschließend das Instanz-Modell vorgestellt. Das Typ-Modell bildet
die Basis, auf der das Delta-Modell ausgeführt wird. Alle verwendeten Komponententypen

78

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis für die Wiederverwendung

werden durch dieses Modell beschrieben. Das Ergebnis der Anwendung des Delta-Modells
ist ein Instanz-Modell. Dieses ist unabhängig von den konkreten Komponenten. Durch ei-
ne Transformation kann das Komponentensystem bestehend aus den realen Komponenten
erzeugt werden.

Metamodell zur Beschreibung von Komponententypen

Komponenten
Systemmodell

KomponentenTypBeschreibung

- Funktionalität
- Referenz auf kompatible Komponententypen

InterfacebeschreibungAssoziationsbeschreibung

Portbeschreibung

- input
- output
- type

Dienstbeschreibung

- type

Komponenten Instanzen

0..*

1

0..*

1

0..*

Abbildung 5.2: Metamodell der Komponententypen

Das Metamodell der Komponententypen ist in Abbildung 5.2 dargestellt. Dessen Kern
ist die KomponentenKlasse, die Verweise auf mindestens eine Implementierung und ei-
ne Beschreibung der Funktionalität enthält. Die Klasse kann auf mehrere Versionen der
Komponente verweisen. So können unterschiedliche kompatible Implementierungen expli-
zit modelliert werden. Unterhalb der KomponentenKlasse wird das Interface durch die
Interfacebeschreibung modelliert. Schnittstellenelemente sind sowohl Ports als auch Dienst-
schnittstellen. Diese Unterscheidung ist erforderlich, da Dienste eine andere Semantik im
Hinblick auf die zugrunde liegende Verbindung haben. Beispielsweise werden Dienstnutzer

79

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

und Dienstempfänger möglicherweise erst zur Laufzeit festgelegt. So ist die Dienstschnitt-
stelle sehr flexibel nutzbar.

Die Beschreibung der Funktionalität in der KomponentenKlasse dient dazu, den Zweck
der konkreten Komponenten zu erkennen. Bei der Abbildung von Bausteinen wird über
diesen Mechanismus festgehalten, welche Rolle der Funktionsbaustein ausfüllen kann. Für
die Beschreibung der Funktionalität können verschieden komplexe Mechanismen zum Ein-
satz kommen. Die einfachste Umsetzung ist, die Funktionalität textuell, d. h. durch einen
String, zu beschreiben. Der Vorteil ist, dass ein Mensch diesen sehr einfach interpretieren
kann. Durch eine unzureichende Verwendung von Namenskonventionen kann es allerdings
zu unterschiedlichen Beschreibungen der gleichen Funktionalität durch leicht unterschiedli-
che Namen kommen. Als Erweiterung kann eine zentrale Verwaltung dieser Bezeichnungen
mit einer detaillierten Beschreibung realisiert werden. Analog zu der Definition von Merk-
malen wird in einer Organisationseinheit oder darüber hinaus eine zentrale Grundlage
geschaffen, wie die Funktionalität beschrieben werden kann und wie die Zusammenhän-
ge zwischen diesen Funktionalitäten sind. Für diesen Ansatz existieren in der Forschung
bereits Konzepte [Rie17] und es werden aktuell weitere Vorschläge zur Beschreibung von
Fähigkeiten ausgearbeitet. In diesem Rahmen wird auch eine Beschreibung der Funktio-
nalität mit formalen Methoden wie einer mathematisch-physikalischen Beschreibung oder
mithilfe von Ablaufdiagrammen diskutiert. Diese weitergehenden Ansätze finden in der
Praxis noch keine Verwendung. Im Wesentlichen mangelt es an konsistenten Definitionen
der Funktionalität, die eine Bedeutung für ein größeres Anwendungsgebiet haben. Diese
Ansätze sind für die vorliegende Arbeit zu weitgehend, können aber nachträglich ohne große
Änderungen in das Gesamtkonzept übernommen werden. Für die weitere Betrachtung wird
angenommen, dass es in der Organisationseinheit, in der das Konzept angewendet wird,
eine konsistente Konvention zur Beschreibung der Funktionalität gibt, die von allen An-
wendern benutzt wird.

Die Schnittstellen des modellierten Komponententyps beschreiben die Objekte der Klas-
sen Portbeschreibung und Dienstbeschreibung. Durch die Portbeschreibung kann festgelegt
werden, ob es sich um einen Ein- oder Ausgang handelt. Zusätzlich kann der Typ des Ports
beschrieben werden. Durch die Dienstbeschreibung wird ein vorhandenes Dienstinterface
abgebildet. In ihr ist hinterlegt, ob es sich um einen Dienstaufruf oder das Anbieten eines
Dienstes handelt. Zusätzlich werden die relevanten Dienste beschrieben.

Metamodell zur Modellierung von Komponentensystemen (Instanz-Modell)

Mit Objekten der Klassen des Instanz-Modells werden konkrete Systeme modelliert.
Das Modell ist in Abbildung 5.3 dargestellt. Kern des Modells ist das Komponenten-
Systemmodell, das aus Objekten der Klassen KomponentenInstanz und Schnittstellenele-
ment besteht. Diese bilden das Interface des Komponenten-Systemmodells nach außen und
dessen internen Aufbau ab. Ein Schnittstellenelement kann durch Dienstschnittstellen und
Ports realisiert werden. Da ein Komponenten-Systemmodell nach außen die Schnittstellen
einer Komponente bereitstellt, können die Beschreibungsobjekte in beiden Fällen verwen-
det werden. Mit diesemModell wird ausgehend von den KomponentenInstanzen der Aufbau
eines konkreten Komponentensystems beschrieben. Es ist zu erkennen, dass die Komponen-
tenInstanz über Ports als Ein- und Ausgänge verfügt. Zwischen den Ports können gerichtete

80

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis für die Wiederverwendung

Komponenten-
Systemmodell

Komponenteninstanz

- KomponentenTypBeschreibung
- Zustand

Dienstschnittstelle Port

- type
- value

Dienstaufruf

Dienstanbieter

Schnittstellenelement

0..*

0..*

1

1

Portverbindung

0..*

1

Assoziationen

0..*

0..*

1

Abbildung 5.3: Metamodell zur Abbildung von Systemen bestehend aus Komponenten.

Verbindungen aufgebaut werden. Die Semantik der Verbindung besteht darin, dass Infor-
mationen, Stoffe oder Energie vom Anfang zum Ziel der Verbindung transportiert wird.
Je nach Typ des Ports kann es sein, dass beispielsweise ein Massenfluss oder ein Infor-
mationsfluss modelliert wird. Abhängigkeiten zwischen Komponenten, die nicht mit einer
Verbindung über einen der Ports in Zusammenhang stehen, können durch Assoziationen
dargestellt werden.

Durch die Klassen Dienstaufruf und Dienstanbieter wird die Einbindung eines Komponen-
tensystems in eine Dienstarchitektur abgebildet. Die Komponenten des Systems können
sowohl Diensterbringer als auch Dienstnutzer sein. Für die Ausgestaltung einer Dienst-
schnittstelle existieren unterschiedliche Herangehensweisen. Exemplarisch sind das Dienst-
modell [DIN14] und die Integration von Diensten [BFK+17, WE17] in die Automatisie-
rungstechnik. Es ist allgemeiner Konsens, dass eine solche Anbindung in Zukunft benötigt
wird. Damit das Modell in diesem Kontext anwendbar ist, ist die Modellierung dieser
Dienstschnittstelle vorgesehen.

81

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Das Instanz-Modell ist analog zum in [WGE+18] vorgestellten Modell für die Sprachen
des Engineerings. Die Beschreibung von geschachtelten Systemen ist in diesem Modell in
ähnlicher Weise gelöst worden. Die Komplexen Typen setzen sich aus Basis Typen und
Schnittstellenkomponenten zusammen. Das Modell sieht zusätzlich die Möglichkeit vor,
Verbindungen zwischen Komponenten als Objekte zu modellieren. Dies ist erforderlich, um
für die Engineering-Systeme einen einheitlichen Aufbau zu erreichen und die Verbindungen
als eigene Entitäten verwalten zu können. In den Laufzeitsystemen kann es sinnvoll sein, die
Verbindungen als eigene Objekte zu realisieren. So können beispielsweise Transformationen
von Datentypen umgesetzt werden.

5.1.2 Anwendungsregeln für die Komponenten-Metamodelle

Neben den beschriebenen Modellzusammenhängen sind für die Nutzung der Modelle An-
wendungsregeln erforderlich. Diese spezifizieren die Verwendung der Modellelemente und
legen einen Rahmen für deren Zusammensetzung fest.

Regel 1: Während der Transformation eines Modells kann dieses von den Regeln abwei-
chen.

Regel 2: Verbindungen müssen immer von einem Port an der Quelle zu einem oder mehr
Ports an der Senke führen.

Regel 3: Komponenten und Verbindungen können nur innerhalb eines Komponentensys-
tems verortet sein. Wird ein System gelöscht, werden alle enthaltenen Elemente
ebenfalls entfernt.

Regel 4: Für die Korrektheit der Verbindungen gelten die jeweiligen Regeln des model-
lierten Systems.

Regel 5: Regeln des modellierten Systems, die Abhängigkeiten zwischen Komponenten
betreffen, werden über Assoziationen abgebildet.

Regel 6: Alle in einem Instanz-Modell verwendeten Komponenten müssen auf eine Kom-
ponente in einem Typ-Modell referenzieren.

Regel 7: Das Interface einer Komponente im Instanz-Modell muss dem Interface des
referenzierten Komponententyps entsprechen.

Regel 8: Über die Systemgrenzen hinweg können Informationen nur über die Ports und
Dienstschnittstellen des Systems übertragen werden.

In Regel 1 ist der Geltungsbereich der Regeln auf nicht in einer Transformation befind-
liche Modelle eingeschränkt. Wenn ein Modell verändert wird, kann temporär von den
Vorgaben der Regeln abgewichen werden. Nach Abschluss der Transformation muss ein
regelkonformes Modell vorliegen.

Verbindungen müssen nach Regel 2 immer Quelle und Senke verbinden. Eine Verbindung
ohne Anfangs- und/oder Endpunkt darf es nicht geben. Dies entspricht der grundsätzlichen
Wahrnehmung von Verbindungen, die eine reine Übertragungsfunktion haben. Wenn ein
Rohr ohne Abschluss verbliebe, würde alles, was hineinfließt, unkontrolliert herausfließen.
Bei Softwaresystemen können einseitige Verbindungen bestehen, welche möglicherweise

82

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis für die Wiederverwendung

allerdings auf einen Fehler hindeuten. Im Rahmen einer Transformation ist es temporär
zulässig, Verbindungen unvollständig zu belassen.

Komponenten und Verbindungen dürfen nur innerhalb eines Instanz-Modells angelegt wer-
den (Regel 3). Da eine Komponente ein Komponentensystem sein kann, entsteht ein hierar-
chisches System. Jede Komponente und Verbindung muss darin eindeutig verortet sein. Es
muss diskutiert werden, was passiert, wenn eine zusammengesetzte Komponente gelöscht
wird. Die einfachste Möglichkeit ist die Löschung aller in ihr enthaltenen Komponenten
und Verbindungen. Die Kompositionsbeziehung zwischen dem System und seinen Bestand-
teilen unterstützt dieses Vorgehen. Allerdings ist es auch denkbar, dass nur die Systemhülle
entfernt wird und die enthaltenen Elemente Teile des darüber liegenden Systems werden.
Dieses Vorgehen hat den Nachteil, dass das Löschen von Systemen kontextsensitiv wird.
Handelt es sich bei dem zu löschenden System um ein Subsystem, bleiben die Elemente
erhalten. Ist es kein Subsystem, müssen die Elemente gelöscht werden. Daher wird in Satz 2
von Regel 3 festgelegt, dass Elemente eines Systems bei dessen Löschung ebenfalls gelöscht
werden.

Das modellierte System legt Regeln fest, welche Typen von Ports miteinander verbunden
werden können (Regel 4). Das Metamodell ermöglicht die Verbindung von allen Ports mit
allen anderen Ports. Ob diese Verbindungen zulässig sind, ergibt sich aus den Konvertie-
rungsregeln des Systems. Nach diesen Regeln kann das Instanz-Modell nach der Erstellung
geprüft werden. Abhängigkeiten zwischen Komponenten des modellierten Systems, die über
Verbindungen hinausgehen, werden nach Regel 5 über die Assoziationen modelliert. Bei-
spielsweise kann eine Vorgänger-Nachfolger Beziehung auf diese Weise abgebildet werden.

In einem Instanz-Modell verwendete Komponenten müssen auf eine Komponente in einem
Typ-Modell referenzieren (Regel 6). Typ-Modelle definieren die Komponententypen, die
in Instanz-Modellen verwendet werden können. Wenn die Referenz nicht vorhanden ist
bzw. wenn kein passendes Typ-Modell existiert, ist die Komponente nicht definiert und
kann daher nicht verwendet werden. In diesem Kontext ist Regel 7 zu verstehen. Die Kom-
ponente im Instanz-Modell muss das gleiche Interface aufweisen wie die Definition ihres
Typs. Weichen die Modelle voneinander ab, liegt eine Inkonsistenz vor, die dokumentiert
und behoben werden muss. In Regel 8 wird die Vorgabe aus [IEC04] aufgegriffen, dass
Komponenten abgeschlossen sein müssen. Diese wird auf die Komponentensysteme ausge-
dehnt und die Übertragung von Informationen auf die explizit modellierten Schnittstellen
begrenzt.

Mit den Regeln werden Einschränkungen hinsichtlich des Verhaltens und Aufbaus der
abgebildeten Systeme formuliert. Beispielsweise kann ein System, das keinen strukturierten
Aufbau besitzt, nicht von dem vorgestellten Komponenten-Metamodell abgebildet werden.
Zusätzlich wird die Abhängigkeit des Modells von den Regeln des modellierten Systems
verdeutlicht. So kann das Metamodell keine Aussage über eine etwaige Kompatibilität von
Typen von Ports treffen.

Die vorgestellten Regeln definieren Modellzustände, die als Basis für die weitere Nutzung
dienen. Ausgehend von einem konformen Modell kann die anschließende Bearbeitung der
Modelle erfolgen.

83

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

5.1.3 Einordnung des Komponenten-Metamodells

Das Komponenten-Metamodell abstrahiert sowohl von den Komponententypen als auch
von den aus Komponenteninstanzen gebildeten Netzwerken. Es werden jeweils nur das
Interface sowie die auszuführende Funktionalität modelliert. Aus einer abstrakten Sicht
ist das vorgestellte Modell ein Rollenmodell (vgl. Kapitel 2.2.1). Durch die Trennung von
Implementierung und der geforderten Funktionalität sind die entwickelten Komponenten-
strukturen in unterschiedliche Implementierungen überführbar. Im Kontext der Baustein-
sprachen und Softwarekomponenten wird in [Ens01] ein Ansatz für die implementierungs-
unabhängige Beschreibung von Bausteinnetzwerken vorgestellt. Neben der Fokussierung
auf Softwarekomponenten ist das Modell für den in dieser Arbeit vorgesehenen Anwen-
dungsfall nicht gänzlich geeignet. Es werden beispielsweise ausschließlich Signalverbindun-
gen zwischen Komponentenports modelliert und die Typen der Ports sind auf die in der
Softwaretechnik gebräuchlichen beschränkt.

Ein reines Rollenmodell legt den Schwerpunkt auf die Beschreibung der geforderten Funk-
tionalität und additiver Anforderungen (z. B. durch Merkmalausprägungsaussagen). Im
Gegensatz dazu werden im vorgestellten Modell zudem die Mindestanforderungen an das
Interface der repräsentierten Komponenten festgelegt.

Das Modell vereint Elemente von ECL- und ER-Modell (vgl. Abschnitt 4.4.3). Es kön-
nen Informations-, Energie- oder Materieflüsse zwischen den Systemelementen modelliert
werden (ECL-Modell). Durch die Assoziationen sind logische Abhängigkeiten zwischen
Systemelementen abbildbar (ER-Modell). Die vorgenommene Zusammenführung der zwei
Paradigmen in einem Modell erlaubt die Abbildung einer großen Bandbreite von Systemen.
Eine Reduktion des Modells um eines der Paradigmen führt entweder zu einer geringeren
Nutzbarkeit des Modells oder die jeweils fehlende Modellierungsmöglichkeiten werden mit
den existierenden Modellelementen umgesetzt. Durch die Verbindung der zwei Paradigmen
entsteht ein einheitliches und durchgängiges Modell, das flexibel anwendbar ist. Beispiele
für abzubildende Systeme werden in Abschnitt 5.1.4 dargestellt.

Auf die explizite Modellierung der Ausführungssemantik der Komponenten wird im vor-
liegenden Modell verzichtet. Insbesondere bei Systemen bestehend aus Hardwarekompo-
nenten ist keine Ausführungssemantik nötig. Im Kontext von Steuerungen kann z. B. eine
Reihenfolge der Ausführung durch Assoziationen zwischen den Komponenten abgebildet
werden. Alternativ kann die Ausführungsreihenfolge auch durch eine Heuristik im Laufzeit-
bzw. im Engineeringsystem festgelegt werden.

5.1.4 Abgebildete Implementierungen

Im folgenden Abschnitt werden Beispiele für die Verwendung des Komponenten-
Metamodells vorgestellt. Dabei wird auf die Erstellung solcher Modelle eingegangen.

Mit der KomponentenInstanz des vorgestellten Modells können verschiedene Arten von
Komponenten abgebildet werden. Es kann sich dabei um Soft- oder Hardwarekomponen-
ten handeln. Nach der Definition der technischen Komponente (vgl. Abschnitt 2.2) können
diese gleich behandelt werden. In der Automatisierungstechnik liegt der Kontext der be-
trachteten Systeme auf beiden Arten von Komponenten. Durch die engen Verflechtungen

84

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis für die Wiederverwendung

und Abhängigkeiten ist es erforderlich, Soft- und Hardware gleichermaßen im Modell ei-
nes Systems zu berücksichtigen. So kann der Zusammenhang zwischen einem Aktor und
der zugehörigen Steuerung abgebildet werden. Sollte beispielsweise in einer Package Unit
der Motor getauscht werden, kann der Informationsfluss zu der entsprechenden Steue-
rungskomponente dargestellt werden. Die Genauigkeit, mit der das Modell des konkreten
Systems entwickelt wird, hängt von den jeweiligen Anwendungsfällen ab. Im Hinblick auf
die Package Units sind verschiedene Grade der Modellierung denkbar. So könnte die Kom-
munikation zwischen dem Aktor und der Steuerung ebenso als Komponente modelliert wer-
den. Eine detailliertere Darstellung kann durch die additive Modellierung von dazwischen
liegenden Hardwarekomponenten erreicht werden. Wenn diese im Fokus der Betrachtung
sind, müssen sie in dem Modell berücksichtigt werden.

Es ist zu beachten, dass die Semantik der Verbindungen zwischen den Komponentenports
nicht gleich der von Signalverbindungen oder Informationsverbindungen aus der Software-
technik ist. Sie ist eine Kombination aus der Übertragung von Informationen bzw. Signalen
und dem Transport von Stoffen oder Energie. Die Verbindungen verknüpfen aus Sicht des
Modells nur zwei Ports von Komponenten. Was übertragen wird, ergibt sich aus dem Typ
der Ports. Das Modell erlaubt die Verbindung von zwei Ports unterschiedlichen Typs. Die
Prüfung, ob dieses Vorgehen sinnvoll ist und ob eine geeignete Konvertierungsvorschrift
(vgl. Konvertierung von Datentypen nach [IEC14b]) vorliegt, muss durch den Anwender
bzw. durch die Implementierung erfolgen.

In Abbildung 5.4 ist beispielhaft das Modell eines Systems bestehend aus zwei Komponen-
ten dargestellt. Auf der Systemgrenze sind die Schnittstellen des Systems nach außen zu
erkennen. Die beiden Eingangsports des Systems sind mit den Eingangsports der linken
Komponente verknüpft. Deren Ausgang ist mit dem Eingang der rechten Komponente ver-
bunden. Die beiden Ausgänge der rechten Komponente werden über die Ausgangsports des
Systems von außen zugänglich. Der gestrichelte Pfeil stellt eine Assoziation dar. In diesem
Fall wird die Ausführungsreihenfolge von Softwarekomponenten abgebildet.

Abbildung 5.4: Beispiel eines Systemmodells mit zwei Komponenten.

Ein Beispiel für das Modell eines hybriden Systems ist in Abbildung 5.5 dargestellt. Im un-
teren Teil der Abbildung ist ein System aus zwei Pumpen und einem Tank abgebildet. Im
oberen Teil ist die zugehörige Steuerung beispielhaft modelliert. Die Steuerung ist ebenso
als Komponentensystem modelliert und stellt ein Subsystem im Gesamtsystem dar. Dies
ist ein Beispiel für ein hierarchisch aufgebautes Systemmodell. Die weiteren Komponen-

85

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

ten könnten ebenso wiederum Komponentensysteme sein. Für die Darstellung ist es nicht
sinnvoll, alle Komponentensystem mit ihrem inneren Aufbau zu zeigen. Zur Reduktion der
Komplexität kann der innere Aufbau verborgen und das Komponentensystem als Blackbox
gezeigt werden. In der Abbildung ist zu erkennen, dass die Pumpen und der Tank jeweils
Schnittstellen zur Steuerung besitzen. Den Pumpen werden Sollwerte für die Drehzahl vor-
gegeben. Aus einem Füllstandsensor des Tanks werden Informationen über den Zustand
des Systems für die Steuerung gewonnen. Der Detailgrad des Modells muss spezifisch für
jeden Anwendungsfall gewählt werden.

In welcher Form die Beschreibung der Komponente vorliegt, ist für die Nutzung des Mo-
dells unerheblich. Bei der Modellierung von Hardwarekomponenten kann die Grundlage
eine Typenbeschreibung in Form eines AutomationML Modells sein. Analog dazu kann
auf der Softwareseite die Klasseninformation oder der Prototyp einer Komponente verwen-
det werden. Eine bestehende (Teil-)Lösung kann modelliert werden und steht so für die
Wiederverwendung in anderen Bereichen zur Verfügung. Für die Bildung eines Modells
werden die typisierten Ein- und Ausgänge der Komponente sowie eine Beschreibung ihres
Verhaltens benötigt. Darüber hinaus ist ein Verweis auf die Realisierung der Komponente
erforderlich. Dies kann bei einer Hardwarekomponente eine Typen-ID (z. B. Bestellnum-
mer) sein. Im Bereich der Software ist die Angabe von Klassennamen oder der Verweis auf
einen Prototyp sinnvoll.

Je nachdem, wie die Komponente bzw. ihre Beschreibung vorliegt, variieren die Möglichkei-
ten, das korrespondierende Modell zu erzeugen. Am wenigsten Anforderungen an die Be-
schreibung der Komponente stellt die manuelle Erzeugung des Modells. Hierbei ist es uner-
heblich, ob der durchführende Mensch das Modell anhand der Betrachtung eines physischen
Gegenstandes oder einer Typinformation aufbaut. Die Komponente muss nicht beschrie-
ben sein. Gleichwohl ist es sinnvoll, die Art der Interpretation zu formalisieren (z. B. durch
die Vorgabe von Richtlinien), damit die Modelle ähnlich aufgebaut sind. Alternativ kann
das Modell automatisiert aus einer Komponentenbeschreibung, d. h. aus einer Typ- oder
Instanzbeschreibung, generiert werden. Grundlage dafür ist eine Beschreibung des Inter-
faces der Komponente. Möglich ist beispielsweise die Auswertung von Datenblättern oder
die Interpretation eines AutomationML-Modells. Die Auswertung einer Beschreibung ist
sowohl für Hard- als auch für Softwarekomponenten umsetzbar. Die dritte Möglichkeit
ist die automatisierte Identifizierung der Komponente selbst. Dies könnte beispielsweise
durch die Erkundung einer Komponente auf einem OPC UA Server erfolgen. Durch die
vorliegende Typisierung der Objekte kann das Modell der Komponente erzeugt werden. Für
Softwarekomponenten ist diese Erzeugung bei sich selbst beschreibenden Laufzeitsystemen
gut möglich. Dies ist bei der automatisierten Identifizierung von Hardwarekomponenten
nicht der Fall. Ohne Zuhilfenahme von Typinformationen ist die direkte Erzeugung des
Modells allein aus der vorliegenden Hardwarekomponente nur mit einem großen Aufwand
im Hinblick auf die verwendeten Sensoren und die Fusion der Sensorwerte möglich. Zu-
sammenfassend lässt sich festhalten, dass eine Automatisierung der Erzeugung durch eine
intrinsische Erkundbarkeit der Komponenten oder der Typbeschreibung vereinfacht bzw.
überhaupt erst ermöglicht wird.

Auf der Typenebene des Modells wird bei der Erstellung bewusst auf eine Modellierung von
Vererbungsbeziehungen zwischen Komponenten-Instanzen verzichtet, da diese nicht Mo-
dellierungsgegenstand sind. Ebenso wird auf eine Modellierung von zusammengesetzten

86

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.2 ∆ – Metamodell

Pumpe
A

Pumpe
B

Tank A

Abbildung 5.5: Beispiel für das Modell eines hybriden Instanz-Modells

Komponenten verzichtet. Diese werden über den Verweis auf die entsprechende Implemen-
tierung berücksichtigt, d. h., wenn eine zusammengesetzte Komponente modelliert werden
soll, wird sie in der Außensicht als Komponente beschrieben. Ein analoges Vorgehen findet
auf der Typenebene statt. Komponenteninstanzen repräsentieren auch zusammengesetzte
Komponenten und sind somit wieder selbst Komponentensysteme.

Systeme, die nicht aus Komponenten aufgebaut sind, können nicht durch das Metamo-
dell abgebildet werden. Beispiele sind unstrukturierte Systeme bzw. Systeme, über deren
internen Aufbau keine Informationen vorliegen.

5.2 ∆ – Metamodell

Im folgenden Abschnitt wird das Delta-Metamodell vorgestellt. Ausgangspunkt des Mo-
dells ist die vorgestellte Systematik der Modellierung von Variabilität im Lösungsraum
durch die Nutzung von Transformationen (vgl. Abschnitt 4.3.3). Für die Nutzung der Delta-
Modelle innerhalb der zunehmend mehr verwendeten Laufzeitumgebungen und im Hinblick
auf die flexiblen und wandelbaren Produktionssysteme der Zukunft ist eine explizite Mo-
dellierung der Deltas als Objekte in einer Laufzeitumgebung ein bewährter Ansatz. Die Ab-
bildung von Strukturen in objektorientierten Laufzeitumgebungen wurde bereits bei ande-
ren deskriptiven Modellen verwendet (vgl. Merkmale und Merkmal-Ausprägungsaussagen,

87

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Abschnitt 4.4.3). So können die modellierten Deltas in einem Laufzeitsystem abgelegt und
jederzeit durch autorisierte Systeme und Nutzer erkundet werden. Nachfolgend wird zu-
nächst das Modell vorgestellt.

5.2.1 Modellbeschreibung

Ein Delta-Modell beschreibt die Transformation von einem Komponenten-
Systemmodell in ein anders. Die Transformation ist in Gleichung 5.1 dargestellt.
Das KomponentenSystemmodelln wird durch Anwendung des DeltaModelli in
KomponentenSystemmodelln+1 transformiert. Das Systemmodell, das die Ausgangsbasis
darstellt, muss den in Abschnitt 5.1.2 vorgestellten Regeln entsprechen. Dies gilt ebenso
für den Zielzustand der Transformation. Während der Transformation kann von den
vorgestellten Regeln abgewichen werden.

KomponentenSystemmodelln+1 = KomponentenSystemmodelln +DeltaModelli (5.1)

Das Delta-Modell ist eine Zusammenfassung von Transitions-Operationen. Die in einem
Delta-Modell enthaltenen Operationen transformieren ein Instanz-Modell von einem kon-
sistenten in einen anderen konsistenten Zustand. Aus der jeweiligen Zusammenstellung
der Operationen in einem Delta-Modell und der Anforderung ein konsistentes Ergebnis
der Transformation zu erreichen, ergeben sich Randbedingungen für das Instanz-Modell,
das transformiert werden soll. Die Operationen müssen zu dem Kontext, in dem sie an-
gewendet werden, passen. Ist dies nicht der Fall, kann das Ergebnis ein inkonsistentes
Instanz-Modell sein.

In Abbildung 5.6 ist das Delta-Metamodell als UML-Modell dargestellt. Kern des Modells
ist das Delta-Objekt, das über einen Namen eindeutig identifizierbar ist. Ein Delta-Objekt
besteht aus einer sortierten Menge von Operationen. Diese Operationen sind spezielle
Ausprägungen der Grundoperationen Hinzufügen, Löschen und Modifizieren der Delta-
Modelle. Für das vorgestellte Komponenten-Metamodell wurden die Operationen stärker
ausdifferenziert. Es sind die Operationen für das Hinzufügen und Löschen von Objekten
(Komponenten und Schnittstellenelementen) sowie für das Hinzufügen und Löschen von
Assoziationen und Verbindungen vorgesehen. Zusätzlich können der interne Zustand einer
Komponente oder der Wert eines Parameters über die entsprechenden Zustände geändert
werden. Die Ausdifferenzierung der Operationen in die unterschiedlichen Spezialformen
kann auf den ersten Blick zu feingranular wirken und führt in der Anwendung zu komple-
xeren Modellen. Allerdings wird durch die Ausdifferenzierung klar erkenntlich, ob es sich
bei der vorgenommenen Transformation um eine Änderung der Schnittstelle des Instanz-
Modells handelt oder „nur“ der interne Aufbau variiert wird. Diese semantische Trennung
ist ähnlich zur Unterscheidung von externer und interner Variabilität. Ebenso unterschied-
lich sind das Setzen von Parametern und die Veränderung eines internen Zustands. Die
Operationen werden in einer konkreten Reihenfolge angeordnet. Dies ist in der Abbildung
als verkettete Liste von Elementen dargestellt.

In der Literatur ist eine Reihenfolge der Delta-Operationen nicht vorgesehen, da diese durch
eine geeignete Reihung der Typen von Operatoren (Addition, Subtraktion, Modifikation)

88

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.2 ∆ – Metamodell

Delta

- Name

Interface-
Komponente

hinzufügen

Interface-
Komponente löschen

Komponente löschen

Verbindung löschen

Komponente
hinzufügen

Verbindung
hinzufügen

Assoziation löschen Assoziation
hinzufügen

Konfigurieren

Parameter Setzen Zustand ändern

Delta-Operation

0..*

ordered

Abbildung 5.6: Übersicht über das Delta-Metamodell.

nicht nötig ist. Im Kontext von Softwaresystemen ist der Verzicht auf eine Anwendungsrei-
henfolge schlüssig und richtig, insbesondere wenn das zugrundeliegende Komponentensys-
tem die Schachtelungstiefe eins besitzt. In diesem Fall gibt es keine Abhängigkeit zwischen
Operationen, die das Anlegen von Komponenten durchführen. Wenn im Komponenten-
system eine Hierarchie existiert, so ist es plausibel, erst das Elternobjekt anzulegen und
anschließend die Kinderobjekte. Im allgemeinen Fall kann davon ausgegangen werden, dass
erst das Elternobjekt angelegt werden muss, bevor das Kindobjekt darunter angelegt wer-
den kann. Wenn beispielsweise ein Tank nicht existiert, kann er nicht befüllt werden. Für
diese Fälle ist die Modellierung einer Reihenfolge in den Delta-Operationen erforderlich.
Dies kann entweder über eine die Reihenfolge abbildende containment-Beziehung zwischen
den Operationen und dem entsprechenden Delta oder über eine Modellierung im Delta-
Metamodell erfolgen. Die Modellierung im Delta-Metamodell kann beispielsweise durch die
Nutzung von Parametern in den Operationen oder von Vorgänger-/Nachfolger-Referenzen
zwischen den Operationen umgesetzt werden. Bei der Anwendung der Delta-Operationen
ist die Reihenfolge entsprechend zu beachten.

89

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Der Nutzen des Delta-Modells für die Beschreibung der Variabilität soll exemplarisch an
einem Beispiel verdeutlicht werden. Ausgangsbasis ist das Systemmodells aus zwei Kom-
ponenten aus Abbildung 5.4. Dieses Modell wird mittels folgendem Delta-Modell in das
Systemmodell aus drei Komponenten transformiert.

Das Delta-Modell besteht aus folgenden Operationen:

1. Verbindung löschen: Löschen der Verbindung der rechten Komponenten zum Aus-
gangsport des Systems.

2. Interface-Komponente hinzufügen: Hinzufügen des dritten Eingangsports des
Systems.

3. Komponente hinzufügen: Hinzufügen der dritten Komponente.

4. Dreimal Verbindung hinzufügen: Hinzufügen der Verbindungen vom Eingangs-
port zur dritten Komponente, von der rechten Komponente zur dritten Komponente
und von der dritten Komponente zum Ausgangsport.

5. Assoziation hinzufügen: Assoziation von der rechten Komponente zur dritten
Komponente hinzufügen.

Abbildung 5.7: Beispiel eines Systemmodells mit zwei Komponenten.

Dieses einfache Beispiel verdeutlicht den intuitiven Charakter des Ansatzes. Zusätzlich
wird klar, dass die Anzahl der Operationen in einem Delta-Modell mit der Anzahl der
Änderungen linear wächst. Das Delta-Modell kann für die Transformation von jedem Sys-
temmodell in jedes beliebige andere Systemmodell genutzt werden. Mit der Betrachtung
dieses Sachverhalts beschäftigt sich Abschnitt 5.2.2.

5.2.2 Variantenbeschreibung mit Delta-Modellen

Das vorgestellte Modell zur Deltamodellierung ermöglicht es, Varianten von Komponenten-
systemen im Lösungsraum zu beschreiben, d. h., Variationen der Implementierung können

90

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.2 ∆ – Metamodell

modelliert werden. Zusätzlich zu der in Abschnitt 4.3.1 vorgestellten Definition ist eine
Variante im Kontext der vorgestellten Delta-Modellierung das Produkt, das nach Anwen-
dung eines Delta-Modells auf ein Instanz-Modell entsteht. Delta-Modelle können durch
die zugrundeliegenden Operationen tiefgreifende Veränderungen an Systemen vornehmen.
Im Extremfall kann dies der vollständige Austausch des Ausgangssystems sein. Es ist
möglich, zwei Komponentensysteme als Varianten voneinander zu modellieren, die wenige
oder gar keine Gemeinsamkeiten besitzen. Im angesprochenen Extremfall würde das er-
ste Komponentensystem komplett gelöscht und anschließend komplett aufgebaut werden.
Diese massiven Veränderung widersprechen dem Gedanken der weitgehenden Wiederver-
wendung und sind eher der regelbasierten Entwicklung zuzuordnen. Es bedarf daher einer
Unterteilung bzw. einer Begrenzung der Delta-Modelle, um zusammengehörige Systeme
identifizieren zu können.

Eine Möglichkeit, die Größe der Deltas zu begrenzen, ist die Einführung eines Abstandsma-
ßes und die Definition einer zulässigen Obergrenze. Im Kontext der Variabilität existieren
verschieden Abstandsmaße. Allerdings kann nur subjektiv entschieden werden, ob ein Sys-
tem Variante eines anderen ist. Für die Delta-Modelle bieten sich ein an das Euklidsche
Abstandsmaß angelehntes Maß an. Dafür wird die gewichtete Summe der Anzahl der ein-
zelnen Operationen in einem Delta gebildet.

S = SExInt + SKom + SV er + SAsso + a9 ·OPmod (5.2)

In Gleichung 5.2 ist die Berechnungsvorschrift dargestellt. Sie besteht aus den gewichteten
Einzelsummen für die jeweiligen Operationen, die in den Gleichungen 5.3 bis 5.6 angegeben
sind. In Gleichung 5.3 werden die Operationen, die das externe Interface des Komponenten-
systems verändern, berücksichtigt. Mit dem Faktor a1 wird die Anzahl der Operationen,
die dem externen Interface einen Bestandteil hinzufügen, gewichtet. a2 ist der Gewich-
tungsfaktor für die Anzahl der Operationen, die das externe Interface verkürzen. Analog
werden die gewichteten Summen für die internen Komponenten SKom, die Verbindungen
SV er und Assoziationen SAsso gebildet.

SExInt = a1 · ExIntadd + a2 · ExIntdel (5.3)

SKom = a3 ·Komadd + a4 ·Komdel (5.4)

SV er = a5 · V eradd + a6 · V erdel (5.5)

SAsso = a7 · Assoadd + a8 · Assodel (5.6)

Die Parameter müssen spezifisch für den jeweiligen Anwendungsfall festgelegt werden. Es
kann beispielsweise sinnvoll sein, die Änderung des externen Interfaces stärker zu gewichten
als eine Manipulation des internen Aufbaus. Alternativ könnten auch alle Faktoren auf
den Wert eins gesetzt werden, sodass nur die reine Anzahl der Operationen unabhängig
von der Wirkungsweise berücksichtigt wird. In der praktischen Anwendung ist es sinnvoll,
die komplementären Operationen (Hinzufügen und Löschen) mit dem gleichen Faktor zu
gewichten. Erfolgt dies nicht, führt beispielsweise das Löschen von Verbindungen zu einem
größeren Abstandsmaß als das Hinzufügen.

91

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Die in Gleichung 5.2 angegebene gewichtete Summe (S) stellt ein absolutes Abstandsmaß
dar. Es wird ausgehend von der Anzahl der Operationen eine Berechnungsmethode für
die Unterschiedlichkeit von Delta-Modellen angeboten. Allerdings wird bei dieser Art der
Berechnung nicht berücksichtigt, wie groß der Anteil der Änderungen an dem Ausgangs-
system ist. So können drei Operationen an einem kleinen Ausgangssystem eine größere
Veränderung darstellen als drei Operationen an einem großen Modell. Um diesen Umstand
zu berücksichtigen, ist es sinnvoll, ein auf die Größe des Ausgangssystems normiertes Ab-
standsmaß zu berechnen. Für die Normierung der Summe bieten sich sowohl die reine
als auch eine gewichtete Anzahl der Systembestandteile an. Durch hohe Gewichtungsfak-
toren bei der Berechnung von S kann es zu einer starken Verzerrung kommen. Um dies
zu kompensieren, müssen die Systembestandteile mit entsprechenden Faktoren gewichtet
werden.

SN = S − a9 ·OPmod

|a1|+|a2|
2 · ExIntAnz + |a3|+|a4|

2 ·KomAnz + |a5|+|a6|
2 · V erAnz + |a7|+|a8|

2 · AssoAnz

(5.7)
Gleichung 5.7 zeigt eine Berechnungsvorschrift für ein normiertes Abstandsmaß. Die Fak-
toren für die Gewichtung der einzelnen Bestandteile des Ausgangsmodells werden aus dem
Durchschnitt der Beträge der Gewichtungsfaktoren für die korrespondierenden Operatio-
nen im Delta-Modell gebildet. Im Zähler der Gleichung ist zu erkennen, dass die Opera-
tionen für das Setzen von Parametern oder die Konfiguration der Komponenten in der
Berechnung nicht berücksichtigt werden. Diese Änderungen sind nicht struktureller Na-
tur und wenn sie berücksichtigt werden, muss die Anzahl aller Ports des Ausgangsmodells
berücksichtigt werden, damit die Aussagekraft nicht verfälscht wird.

Alternativ können für den Vergleich von zwei oder mehr Delta-Modellen zwei Maßzahlen
verwendet werden. Dafür wird S in Sadd und Sdel geteilt. Sadd beschreibt die gewichtete
Summe der Additionsoperationen und Sdel die der Löschoperationen. Die beiden Zahlen
sind analog zu der Darstellung der hinzugefügten und gelöschten Zeilen in einem Versions-
verwaltungssystem für Quellcode. Ähnlich wie die normierte Größe können Sadd und Sdel

ebenfalls auf die gewichtete Größe des Ausgangsmodells normiert werden.

Neben der Einschätzung, ob ein System die Variante eines anderen Systems ist, kann durch
die Abstandsmaße bestimmt werden, wie strukturell ähnlich sich zwei Systeme sind. Es
gilt dabei allerdings zu beachten, dass die Aussagekraft auf die Struktur der Systeme bzw.
auf den Lösungsraum beschränkt ist. Es wird keinerlei Aussage über die Funktionalität
getroffen. Im Extremfall kann ein Delta-Modell, das das Ausgangssystem komplett löscht
und etwas Neues aufbaut, die gleiche Funktionalität realisieren. Ebenso kann eine kleine
Änderung der Struktur zu einer gänzlich anderen Funktionalität führen.

5.2.3 Verketten von Delta-Modellen

Im folgenden Abschnitt wird das Delta-Metamodell um einen Mechanismus zum Verket-
ten der Modelle erweitert. Dieser Mechanismus besteht aus einer Referenz, die von einem
Delta-Modell auf ein oder mehrere Delta-Modelle verweist. Diese Referenz ist in dem er-
weiterten UML-Modell in Abbildung 5.8 zu erkennen. Im Folgenden wird der Mechanismus
beschrieben und die Verwendung anhand eines Beispiels erläutert.

92

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.2 ∆ – Metamodell

Delta

- Name

Interface-
Komponente

hinzufügen

Interface-
Komponente löschen

Komponente löschen

Verbindung löschen

Komponente
hinzufügen

Verbindung
hinzufügen

Assoziation löschen Assoziation
hinzufügen

Kofigurieren

Parameter Setzen Zustand ändern

Delta-Operation

0..*

ordered

1

Basis-
Delta

*

Abbildung 5.8: Delta-Metamodell mit der Erweiterung Basis-Delta.

Wie bereits angesprochen, beschreibt ein Delta-Modell die Transformation eines bestehen-
den Komponenten-Systemmodells in ein anderes. Für eine solche Transformation ist ein
definierter Ausgangspunkt, auf den diese angewendet wird, erforderlich. Im vorgestellten
Delta-Metamodell ist die Darstellung dieses Ausgangspunktes durch das Ergebnis einer
Deltaoperation vorgesehen. Es ist zu erkennen, dass Deltas eine gerichtete Verbindung zu
anderen Delta-Modellen haben können. Die Quelle dieser Verbindung ist der Ausgangs-
punkt für die Anwendung eines Delta-Modells an der Senke. Von einem Delta-Modell kön-
nen beliebig viele Verbindungen zu anderen Delta-Modellen ausgehen. Das Ausgangsdelta
wird im Weiteren als Basisdelta bezeichnet. Im Kontext dieser Verbindung spannen die
so verbundenen Delta-Modelle einen Baum auf. Jede hinzugefügte Transformation fügt so
weitere Blätter hinzu. Grundsätzlich sind zwei Situationen für ein beliebiges Delta denkbar:

1. Es existiert ein Basisdelta. In diesem Fall ist das aktuelle Delta dessen Variation.

93

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

2. Es existiert kein Basisdelta. Das jeweilige Delta-Modell repräsentiert in diesem Fall
keine Variante eines Komponenten-Systemmodells. Ein solches Delta wird im Weite-
ren als Root-Delta bezeichnet.

In Abbildung 5.9 ist exemplarisch die Abhängigkeit zwischen verschiedenen Delta-Modellen
dargestellt. Es sind vier Delta-Modelle (Delta 1, Delta 2, Delta 3 und Delta A) sowie de-
ren Abhängigkeiten dargestellt. Die Delta-Modelle sind jeweils mit einem Instanz-Modell
assoziiert, das sich aus der Anwendung der Operationen auf die vorgesehene Startbedin-
gung ergibt. Es ist zu erkennen, dass Delta 1 das Root-Delta dieses Baums ist, d. h., die
anderen Delta-Modelle variieren das mit Delta 1 assoziierte Instanz-Modell. So ergänzt
Delta 2 das einfache Modul um einen Rührer nebst der für diesen notwendigen Steuerung
und der Schnittstelle des erweiterten Serviceinterface des Moduls. Durch die Anwendung
von Delta A wird die Steuerung von Hersteller X im einfachen Modul durch eine Steuerung
von Hersteller Y ersetzt. Mit Delta 3 wird das erweiterte Modul um eine zweite Pumpe
ergänzt.

An diesem einfachen Beispiel wird die Bedeutung der Abhängigkeiten zwischen den Delta-
Modellen deutlich. Es ist zu erkennen, dass ein Delta-Modell grundsätzlich nicht konfliktfrei
auf eine beliebige Ausgangslage, die unterschiedlich zu der vorhergesehenen Ausgangslage
ist, anwendbar ist. So kann Delta 2 nicht konfliktfrei auf das mit Delta A assoziierte
Instanz-Modell angewendet werden. Die in Delta A durchgeführte Änderung im Hinblick
auf den Hersteller der Steuerung kann zu Konflikten bei der Übernahme führen, z. B.
dann, wenn die Struktur der Steuerung gravierend verändert wird. Ein Delta-Modell ist
grundsätzlich an eine gegebene Ausgangslage gebunden. Die Anwendung auf einen anderen
Kontext führt möglicherweise zu einem nicht fehlerfreien Verhalten.

Delta 1

Delta 2Delta A

Einfaches Modul mit
einem Tank, einer

Pumpe und Steuerung
von Hersteller X

Erweitertes Modul mit
einem Tank (mit Rührer),

Pumpe und Steuerung
von Hersteller X

Einfaches Modul mit
einem Tank, einer

Pumpe und Steuerung
von Hersteller Y

Delta 3

Modul mit einem Tank
(mit Rührer), zwei

Pumpen und Steuerung
von Hersteller X

Abbildung 5.9: Beispiel für die Abhängigkeiten zwischen Delta-Modellen

Durch das Zusammenfassen von Delta-Modellen kann es zu inversen oder zu widersprüch-
lichen Operationen in einem Modell kommen. Durch die Beachtung einer Reihenfolge der
Operationen entstehen keine inkonsistenten Modelle. Allerdings befinden sich im Modell
unnötige Artefakte. Diese können jedoch leicht durch Vergleich des Gegenstands, auf den
die Operation angewendet wird, identifiziert und entsprechend behoben werden. Inverse
Operationen (Anlegen und Löschen eines Elements) können aus dem Modell entfernt wer-
den. Wird eine Komponente gelöscht und neu angelegt, kann dies zu einem Ändern der
Parameter reduziert werden.

94

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.2 ∆ – Metamodell

5.2.4 Visualisierung

Für die Visualisierung der Delta-Modelle bietet sich eine von der Versionsverwaltung von
Quellcode abgeleitete Form der Darstellung an. Dabei werden geänderte Elemente des Mo-
dells farblich im Kontext des Ergebnisses des angewandten Delta-Modells hervorgehoben.
Durch die Delta-Modelle können drei Grundoperationen dargestellt werden (Hinzufügen,
Löschen und Modifizieren), weswegen drei Farben für die Kodierung benötigt werden.
Durch das Delta-Modell hinzugefügte Elemente sollen grün, gelöschte Elemente rot und
modifizierte Ports und Zustände gelb hervorgehoben werden. So entsteht eine Darstellung
des neuen Systems im Vergleich zum alten.

Die Darstellung der Komponenten des Systems kann prinzipiell auf zwei Arten erfolgen.
Einerseits können die Komponenten in der Darstellungsform der jeweiligen Domäne ab-
gebildet werden. Bei Hardware aus der Prozessindustrie ist die IEC 62424 [IEC16] ein
Beispiel dafür. Nachteilig an dieser Herangehensweise ist die Vermischung von verschiede-
nen Darstellungsformen in einer Abbildung. Dies fordert vom Nutzer die Kenntnis einer
großen Bandbreite von Darstellungsformen. Werden die Komponenten abstrakt als Bau-
steine dargestellt, kann der Typ über einen Namen im Kopf des Bausteins angegeben
werden. Diese Darstellung als Blockschaltbild ist vielfach gebräuchlich und kann so von
Anwendern mit unterschiedlichem Hintergrund verwendet werden. Externe Ports werden
am Rand der Darstellung abgebildet, wie es auch in CFC’s üblich ist. Die Darstellung
von Dienstschnittstellen erfolgt über spezielle Blöcke, die die entsprechenden Dienstauf-
rufe oder die angebotenen Dienste als Block mit der dazugehörigen internen Schnittstelle
darstellen.

Wenn es im Einzelfall benötigt wird, kann das jeweilige Modell durch eine domänenspe-
zifische Darstellung wiedergegeben werden. Die vorgestellte farbliche Kodierung bleibt in
diesem Fall gleich.

RTE

Abbildung 5.10: Beispiel für die Visualisierung von Delta-Modellen

In Abbildung 5.10 ist das Beispiel einer Visualisierung eines Delta-Modells dargestellt. Es
ist die angesprochene Darstellung als Blockschaltbild zu erkennen. Sowohl das Interface
als auch die einzelnen Verbindungen zwischen den Komponenten sind entsprechend ihrer
Bedeutung im Delta-Modell eingefärbt. Elemente, die durch das Delta-Modell nicht ver-
ändert wurden, sind schwarz, hinzugefügte Elemente grün, gelöschte rot und Ports, deren
Wert geändert sind, gelb eingefärbt.

Zur Dokumentation bzw. Veranschaulichung der Wirkung der Anwendung eines Delta-
Modells können alle Komponenteninstanzen, gelöschte und hinzugefügte, nach dem An-
wenden eines Delta-Modells, in einem Komponentensystem zusammengeführt werden. Zur

95

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Interpretation ob eine Komponenteninstanz hinzugefügt oder gelöscht wurde, wird diese
farblich abgebildet. Hinzugefügte Komponenten sind grün, gelöschte rot und veränderte
gelb dargestellt.

5.2.5 Mapping in den Problemraum

Die reine Betrachtung von Varianten im Lösungsraum, d. h. von Delta-Modellen, ist im
Kontext von Implementierungen sehr gut geeignet. Allerdings ist dieser Ansatz mit einer
hervorragend geplanten und gebauten Stadt vergleichbar, für die keine Stadtpläne oder
Telefonbücher verfügbar sind. Geschäfte und Häuser sind vorhanden, allerdings sind diese
nicht auffindbar. Aus Sicht des Entwicklers (im Beispiel der Architekt oder Bauleiter) stellt
sich der Zustand so dar, wie er sein soll: Er weiß, was implementiert ist und wie es genutzt
werden kann. Für einen Nutzer, der das bestehende System verwenden möchte, gilt dies
nicht. Er benötigt Pläne und Beschreibungen, um das System nutzen zu können.

Übertragen auf die Delta-Modelle betrachtet ein Nutzer (sei es Mensch oder Maschine) die
Varianten unter funktionalen Gesichtspunkten. Der innere Aufbau ist dafür nicht relevant.
Vielmehr muss deutlich werden, was eine Implementierung kann und wie sie zu nutzen ist.

Eine Möglichkeit der Lösung ist, ein Mapping in den Problemraum (vgl. Abschnitt 4.3.2)
zu schaffen, da dort die Fähigkeiten und Merkmale eines Produkts modelliert sind. In-
nerhalb des Problemraums stehen die Fähigkeiten bzw. Funktionen der Produkte und
nicht ihre Realisierung im Fokus. Im Folgenden wird ein Feature-Modell vorgestellt, mit
dem Produkttypen auf Basis von Features beschrieben werden können. Diese modellier-
ten Features werden mit den Delta-Modellen im Lösungsraum verbunden und ergeben so
eine durchgängige Beschreibung der implementierten Funktionalität. Die durch ein Delta-
Modell beschriebene Änderung am Aufbau eines Produkts (Instanz-Modell) hat im All-
gemeinen Auswirkungen auf dessen Features. Welche Features davon betroffen sind, wird
durch die Verbindung zwischen Delta-Modell und den zugehörigen Features abgebildet.

Das Modell ist in Abbildung 5.11 dargestellt. Kern ist der Produkttyp, der sich aus den
ProduktFeatures zusammensetzt. ProduktFeatures sind eine lokale Abbildung von allgemein
definierten Features. Zwischen ProduktFeatures können Abhängigkeiten modelliert werden.
Etwa, dass ein anderes ProduktFeature für die Nutzung eines bestimmten ProduktFeatures
erforderlich ist oder dieses ausschließt. Von den Delta-Modellen existiert jeweils ein Verweis
auf die realisierten ProduktFeatures. Durch die aufgespannten Assoziationen sind Delta-
Modelle aus einer funktionalen Perspektive auffindbar.

In der praktischen Anwendung erhält der Nutzer eine Menge von Produkttypen, die jeweils
von Features beschrieben werden. Über die Produkttypen und Features kann ein Produkt
mit den benötigten Features gesucht werden. Das Ergebnis der Suche beinhaltet die Pro-
dukttypen, auf die die geforderten Kriterien zutreffen. So können geeignete Delta-Modelle
identifiziert werden, um das gewünschte Produkt zu erzeugen.

Die genaue Definition der Features ist spezifisch für den jeweiligen Anwendungsfall. Im
Rahmen des Projekts BaSys 4.0 wurde mit dem Aufbau eines Feature-Modells begonnen.

96

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

Produkttyp

ProduktFeature FeatureDelta-Modell

1
Benötigt/Ausgeschlossen

*

1

Definiert

*
1

Realisiert

*

Abbildung 5.11: Feature-Modell für die Darstellung im Problemraum

5.3 Gesamtkonzept für die variantenbasierte
Wiederverwendung

Im folgenden Abschnitt wird das Gesamtkonzept für die variantenbasierte Wiederverwen-
dung vorgestellt. Grundlage dafür sind das Komponenten- und das Delta-Modell aus den
vorangegangenen Abschnitten. Als erstes wird ein Überblick über das Konzept gegeben
und die darin enthaltenen Elemente erläutert. Anschließend wird die durch das Konzept
vorgenommene Unterscheidung zwischen Versionen und Varianten vorgestellt. Nach der
Erläuterung der im Modell enthaltenen Transformationen wird erörtert, was durch das
Konzept wiederverwendet wird. Für den praktischen Einsatz wird anschließend eine ver-
teilte Architektur vorgestellt. Abschließend werden Prozesse für die Nutzung in der Praxis
vorgeschlagen.

5.3.1 Überblick über das Konzept

Die vorgestellten Modelle können rein deskriptiv verwendet werden. Um diese jedoch in der
Praxis möglichst nutzbringend anzuwenden, ist die Einbindung in bestehende Engineering-
Prozesse erforderlich. Dafür ist die Verknüpfung der Modelle durch Transformationen und
deren geeignete Nutzung in Prozessen notwendig. In diesem Abschnitt wird die Verwendung
der unterschiedlichen Modelle, deren Verknüpfung zur physischen Welt und die Transfor-
mationen erläutert.

Ein Überblick über das Konzept ist in Abbildung 5.12 dargestellt. Diese Darstellung ist
eine Sicht auf die Modelle und physische Welt sowie die Verbindungen und Transformatio-
nen zwischen den Modellelementen. Es sind das Delta-Modell, das Instanz-Modell und das
Typ-Modell zu erkennen. Auf der rechten Seite ist die physische Welt mit den Komponen-
tentypen und den aus Komponenteninstanzen zusammengesetzten Systemen dargestellt.
Die Darstellung unterteilt sich so in die Modellwelt und die reale Welt. Ein Überblick über
die in Abbildung 5.12 verwendeten Elemente ist in Tabelle 5.1 enthalten.

97

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Die Pfeile (rot gestrichelt) zwischen den Modellen und den Komponenten stellen die Trans-
formationen dar, die zur Erzeugung der Modelle bzw. zu deren Umwandlung erforderlich
sind. Die schwarzen durchgezogenen Pfeile stellen Verweise bzw. Abhängigkeiten zwischen
den Elementen des Bilds dar. So ist der Verweis von einem Delta-Modell auf sein Basis-
Delta-Modell dargestellt. Dies führt zu der diskutierten Baumstruktur innerhalb der Delta-
Modelle. Analog zu den Komponentensystemen, die Instanziierungen der Komponenten-
typen sind, besteht eine Instanziierungsbeziehung zwischen dem Instanz-Modell und dem
Typ-Modell.

Name des Elements Beschreibung
Komponententypen Typen von Komponenten, die zur Verwendung in Komponen-

tensystemen vorgesehen sind. Dies können Klassen, Prototypen
oder Beschreibungen von Komponenten sein.

Typ-Modelle Modelle der Komponententypen (vgl. Kapitel 5.1).
Komponentensysteme Aus Instanzen der Komponententypen zusammengesetzte Syste-

me. Diese stellen Implementierungen der Instanz-Modelle dar.
Abhängig vom betrachteten Kontext kann es sich hierbei um
Hardware, Software oder hybride Systeme handeln.

Instanz-Modelle Modelle von Komponentensystemen auf Basis der vorhandenen
Typ-Modelle (vgl. Kapitel 5.1).

Delta-Modelle Modelle, die die Transformation von einem Instanz-Modell in
ein anderes beschreiben. Diese liegen als Objektstrukturen vor
(vgl. Kapitel 5.2).

Tabelle 5.1: Übersicht über die Elemente des Konzepts

Eine sehr nützliche Verbindung ist die Referenz zwischen den Komponententypen im Typ-
Modell und den konkreten Komponententypen. Diese kann über einen Verweis oder einen
Link realisiert werden. Sie ist eine 1:n Beziehung, mit der beschrieben wird, welche Ty-
pen von Komponenten den Komponententyp im Modell realisieren. Über diese Verbindung
kann auch die Versionierung von Komponenten abgebildet werden. Solange das Interface
der Komponente kompatibel zum modellierten Interface ist und die realisierte Funktio-
nalität gleich ist, können andere Versionen der Komponente ebenfalls den Komponenten-
typ im Modell realisieren. Aus dem Modell heraus ist der Verweis auf alle kompatiblen
Realisierungen möglich. Die verwendet Referenz zwischen den Delta-Modellen und den
Typ-Modellen bedeutet, dass die Delta-Modelle bei Hinzufügen-Operationen auf die durch
die Typ-Modelle beschriebenen Komponenten verweisen. Diese Komponenten stellen die
„Toolbox“ dar, die durch die Delta-Modelle verwendet werden kann.

Für die Verfolgung der eingesetzten Instanzen ist die Realisierung der Verbindung zwischen
den Komponententypen und -instanzen erforderlich. Diese Verbindung muss explizit sein.
Eine implizite Verbindung, wie sie beispielsweise beim Kopieren und Einfügen entsteht, ist
für die Nachverfolgbarkeit nicht sinnvoll. Je nach vorhandenen Randbedingungen kann sie
als bi- oder unidirektionale Verbindung umgesetzt werden. Die Verfolgung der Instanzen
ermöglicht im weiteren Verlauf deren Aktualisierung auf eine neue Version. Ebenso ist es
möglich, neue Varianten von Komponentensystemen anstelle von älteren zum Einsatz zu
bringen.

98

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

In Tabelle 5.2 ist eine Übersicht über die in Abbildung 5.12 dargestellten Transformationen
und deren Ergebnisse aufgeführt. In der Spalte Vorbedingung sind die jeweils für die Trans-
formation benötigten Elemente festgehalten. Wenn die dargestellte Ausgangssituation in
einem konkreten Anwendungsfall nicht eingehalten wird, kann die Transformation nicht
durchführbar sein oder zu einem nicht definierten Ergebnis führen. Eine Implementierung
des Konzepts muss dies entsprechend berücksichtigen und das Vorhandensein einer gül-
tigen Vorbedingung prüfen. Die Transformationen werden im Einzelnen in Kapitel 5.3.2
beschrieben.

Name der Transformation Vorbedingung Ergebnis
erzKomponentenTypModell Komponententypen oder Be-

schreibung liegen vor
Typ-Modell

erzKomponentenInstModell Komponentensystem und Typ-
Modelle der verwendeten Kompo-
nententypen liegen vor

Instanz-Modell

erzImpl Instanz-Modell, Typ-Modelle und
die zugehörigen Implementierun-
gen liegen vor

Komponentensystem

erzDeltaModell Zwei Instanz-Modelle liegen vor Delta-Modell
erzInstanzModell Delta-Modell und Instanz-Modell

als Ausgangspunkt für dessen An-
wendung liegen vor

Instanz-Modell

Tabelle 5.2: Übersicht über die Transformationen des Konzepts

Versionen und Varianten

Im Rahmen des Konzepts wird zwischen Versionen und Varianten unterschieden. Varianten
sind unterschiedliche Komponentensysteme, die sich entsprechend der vorgestellten Defi-
nition ähnlich sind (vgl. Abschnitt 4.3.1). Diese Varianten bzw. die Unterschiede zwischen
ihnen werden mittels der Delta-Modelle beschrieben.

Zusätzlich dazu können – orthogonal zu den Varianten – von den verwendeten Kompo-
nententypen unterschiedliche Versionen existieren. Versionen müssen dafür die Funktiona-
lität und die Schnittstelle des Typ-Modells einer Komponente realisieren. In beiden Fällen
(Funktionalität und Schnittstelle) müssen die Versionen die Anforderungen des Modells
mindestens erfüllen. Eine Übererfüllung, z. B. durch ein längeres Interface oder zusätzliche
Funktionalität, ist kompatibel und wird ebenso abgebildet.

Diese Interpretation von Versionen im Konzept ist anders als die zeitliche Fortschreibung
von Implementierungen einer Anwendung, die in der Literatur verwendet wird. In dieser
klassischen Sicht entsteht eine neue Version einer Anwendung durch eine Änderung ih-
rer Implementierung. Je nach Größe der Änderung wird die neue Versionsbezeichnung ge-
wählt. Bei großen Änderungen ist die neue Version die nächste ganze Zahl. Ansonsten wird
die Nachkommastelle inkrementiert. Eine Betrachtung der Funktionalität der Anwendung
und ihrer Kompatibilität gegenüber der Umgebung findet nicht statt. Diese funktionale

99

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

erzDeltaModell

erzInstanzModell

Komponenten-
typen

Klasse

Prototyp

Typ-Modell

Komponententypen

…

Komponenten
Systeme

Applikation 1

Applikation 2

…

Instanz-Modell

Modell Applikation 1

Modell Applikation 2

Delta-Modell

Root Delta-Modell
Applikation 1

Delta-Modell
Applikation 2

erzKomponentenTypModell

erzKomponentenInstModell

erzImpl

instanziiert

instanziiert

Basis-Delta
-Modell

implementiert

Modellwelt Reale Welt

verwendet

Abbildung 5.12: Das Konzept in der Gesamtsicht

Betrachtung steht für das Konzept im Fokus. Daher wird der Versionsbegriff auf das Typ-
Modell der Komponenten angewendet. So wird von der Ähnlichkeit der Implementierung
abstrahiert und der Schwerpunkt auf die Funktionen und Schnittstellen gelegt.

So können auch unterschiedliche Implementierungen, die die im Modell beschriebenen Vor-
aussetzungen (Schnittstellen und Funktionalität) erfüllen, als Versionen eines Typ-Modells
verwendet werden. Dies ist vorteilhaft, da die Funktionalität und die Kompatibilität für den
Anwender wichtiger ist als die Einordnung in eine Implementierungshistorie. Diese bleibt
für den Entwickler weiter bestehen. In der Entwicklung der Komponententypen ist die Nut-
zung dieser Verweise sinnvoll und richtig. In der Weiterentwicklung von Implementierungen
ist der Zusammenhang zwischen unterschiedlichen Versionen einer Implementierung wich-
tig, um an geeigneten Stellen Änderungen durchführen zu können. Für den Anwender ist
dagegen der vorgestellte erweiterte Versionsbegriff zielführender.

Allein die Verwendung von unterschiedlichen Versionen eines Komponententyps führt nicht
zur Entstehung einer neuen Variante. So kann ein Komponententyp auf unterschiedlichen
Systemen durch unterschiedliche Komponenten realisiert werden. Trotzdem ändert sich
hierdurch die Variante nicht. Erst die Nutzung eines anderen Komponententyps oder eine
veränderte Anbindung an die Umgebung führt zu einer neuen Variante und damit zu einem
Delta-Modell.

5.3.2 Modelltransformationen

Im folgenden Abschnitt werden die in Abbildung 5.12 und Tabelle 5.2 dargestellten Trans-
formationen näher beschrieben. Die Vorbedingungen und das Ergebnis der jeweiligen

100

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

Transformation ist in Tabelle 5.2 zu finden.

erzKomponentenTypModell

Ziel dieser Transformation ist die Erzeugung des Modells eines Komponententyps. Die ge-
naue Umsetzung der Transformation ist abhängig von der Art der vorliegenden Beschrei-
bung des Komponententyps. Liegt diese in einer Form vor, die durch einen Computer
auswertbar ist, so kann eine Applikation entwickelt werden, die diesen Prozess automati-
siert. Ist dies nicht der Fall, da beispielsweise nur der Prototyp einer Hardwarekomponente
vorliegt, so muss das Modell manuell erzeugt werden (vgl. Kapitel 5.1). Das Vorgehen ist
unabhängig von der konkreten Umsetzung gleichartig.

Im ersten Schritt muss der Typ der Komponenten identifiziert werden. Dieser kann beim
Anlegen des Objekts, das den Komponententyp repräsentiert, in den Objektnamen inte-
griert werden. Mindestens wird der Verweis auf den Komponententyp im Objekt erzeugt.
Dies kann entweder als unidirektionaler Verweis, beispielsweise ein Bezeichner, erfolgen
oder, wenn es die verwendete Implementierung und Komponente zulassen, eine bidirek-
tionale Referenz sein. In diesem Schritt muss auch die Funktionalität des abgebildeten
Komponententyps im Modell abgelegt werden. Dies kann textuell erfolgen. Allerdings bie-
tet ein einheitliches Verzeichnis, das analog zu Merkmalen die Funktionalitäten oder Fä-
higkeiten beschreibt, einige Vorteile bezüglich der Eindeutigkeit und Auffindbarkeit dieser
Zuordnungen (vgl. Kapitel 5.1).

Als letztes wird das Interface der Komponente nachgebildet. Dafür werden die Ein- und
Ausgangsports der Komponente mit deren jeweiligen Typen angelegt. Die Ports werden
über die Zuordnung im Namensraum, d. h. über Namensgleichheit, eindeutig identifiziert.
Die Namen können auch über mehrere Versionen einer Komponente als konstant betrachtet
werden, da durch vorherrschende Namenskonventionen eine Beschreibung des Ports über
den Namen vorgenommen wird. Sollte sich der Name von Ports ändern, so handelt es sich
vom Standpunkt des Komponenten-Modells um eine Komponente mit der gleichen Funk-
tionalität aber einem nicht kompatiblen Interface. Dies führt zur Ausprägung eines neuen
Komponententyps bzw. bei Verwendung dieses Komponentyps zu einer neuen Variante.

erzKomponentenInstModell

Das Ziel dieser Transformation ist die Erzeugung eines Instanz-Modells aus einem vor-
liegenden Komponentensystem unter Verwendung von Komponententypmodellen. Aus-
gangspunkt ist ein bestehendes Komponentensystem. Ebenso wie bei der Erzeugung
der Typ-Modelle ist der eigentliche Prozess unabhängig davon, ob er manuell oder
(teil-)automatisiert durchgeführt wird. Der verwendete Automatisierungsgrad hängt im
Wesentlichen davon ab, inwieweit das vorliegende System automatisiert erkundbar ist.
Dass das System erkundbar ist, ist insbesondere bei Systemen aus Softwarekomponenten
wie Funktionsbausteinnetzwerken zu erwarten.

Im ersten Schritt wird der Name des Komponentensystems ermittelt und ein Objekt für
seine Repräsentation entsprechend dem Komponenten-Metamodell angelegt. Anschließend

101

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

wird über die Komponenten des Systems (interne Komponenten und Interfacekomponen-
ten) iteriert. Wenn eine aufgefundene Komponente im Komponententypmodell enthalten
ist, wird ein Modell im Instanz-Modell instanziiert. Die Identifizierbarkeit wird über die
Namensgleichheit im Namensraum sichergestellt. Liegt zu einer Komponente kein passen-
des Typ-Modell vor, muss dies protokolliert werden. Wenn möglich, kann der Abgleich
mit anderen Typ-Modellen durchgeführt und so ein passendes Modell gefunden werden.
Ist das nicht möglich, muss der Nutzer manuell eingreifen. Es ist zusätzlich zu erörtern,
ob und wenn ja, wie viele Hierarchiestufen des Komponentensystems im Instanz-Modell
nachgebildet werden sollen. Insbesondere die Identifikation von eingebetteten Strukturen
ist dabei interessant, um diese für die Wiederverwendung zu nutzen. Damit sind Struktu-
ren von Komponenten gemeint, die in verschiedenen Systemen wiederverwendet werden.
Diese liegen als Prototyp vor und sind aus Basiskomponenten zusammengesetzt. Für die
Nachbildung der unterschiedlichen Hierarchiestufen sind drei Möglichkeiten denkbar:

1. Nachbildung des Instanz-Modells mit der Erkundungstiefe eins
Bei dieser Möglichkeit wird das gegebene System nachgebildet, ohne dabei geschach-
telte Komponenten zu erfassen. Aggregierte Komponenten werden als Blackboxen
betrachtet, d. h., wenn sie unbekannt sind, findet keine Identifikation statt.

2. Beliebige Erkundungstiefe ohne Identifikation von Strukturen
Das vorliegende Komponentensystem wird in einer beliebigen Erkundungstiefe nach-
gebildet, ohne dabei jedoch eingebettete Strukturen aus dem Typenmodell zu suchen
und zu erkennen. Die verschachtelten Strukturen werden aus den vorhandenen Ba-
siskomponenten modelliert.

3. Rekursive Identifikation von eingebetteten Strukturen
Dieser Ansatz erfasst auch alle Komponenten des Systems. Während der Erfassung
wird allerdings versucht, aggregierte Komponenten zu erkennen und das Instanz-
Modell unter Verweis auf den jeweiligen Prototyp aufzubauen.

Die drei vorgestellten Möglichkeiten unterscheiden sich hinsichtlich der Komplexität ihrer
Umsetzung. Sie sind in aufsteigender Komplexität sortiert. Zunächst wird die iterative
Erkundung und die Identifikation von eingebetteten Strukturen hinzugefügt. Gleichzeitig
steigt der Nutzen der Wiederverwendung an, wenn Strukturen identifiziert und auf einen
gemeinsamen Prototyp zurückgeführt werden können. So wird die doppelte Wartung von
Implementierungen vermieden und Aktualisierungen von Implementierungen können an
alle Instanzen propagiert werden.

Wenn eine aggregierte, vorher noch nicht verwendete, Komponente gefunden wird, kann
diese direkt über einen Prototypen der Liste der Komponententypen hinzugefügt und an-
schließend verwendet werden. Handelt es sich um eine atomare Komponente, die nicht
Bestandteil des Typ-Modells ist, muss das Fehlen des benötigten Komponententyps pro-
tokolliert werden.

erzImpl

Diese Transformation kann als eine Invertierung von erzKomponentenInstModell betrach-
tet werden. Sie wandelt ein Instanz-Modell in eine konkretes Komponentensystem um.

102

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

Durch die Existenz von mehreren Implementierungen eines Komponententyps (z. B. durch
mehrere Versionen) ist diese Transformation nicht zwingend eindeutig.

Im Rahmen der Transformation wird durch das vorliegende Instanz-Modell iteriert und
die Realisierungen der verwendeten Komponenten ermittelt. Um die Realisierungen zu
finden, wird der Typ der Komponente im Typ-Modell gesucht. In diesem Modell sind
Verweise auf kompatible Implementierungen enthalten. Nach deren Auffinden werden diese
im Komponentensystem instanziiert. Je nach Art des Komponentensystems kann es sich
um die Instanziierung einer Softwarekomponente handeln oder um das Hinzufügen einer
Hardwarekomponente.

erzDeltaModell

Ziel dieser Transformation ist es, durch den Vergleich zweier Instanz-Modelle ein Delta-
Modell zu erzeugen. Voraussetzung für die Transformation ist das Vorliegen zweier Instanz-
Modelle. Der Grad ihrer Überschneidung ist für die Durchführung der Transformation un-
erheblich, da es sich im Extremfall um einen vollständigen Austausch der Modelle handelt.

Der Vergleich der Modelle kann unter Berücksichtigung von unterschiedlichen Randbedin-
gungen durchgeführt werden. Eine Auffindung von gleichen Komponenten kann über eine
Gleichheitsprüfung hinsichtlich des Komponententyps und/oder des Namens der Kompo-
nente erfolgen. Darüber hinaus kann die Position der Komponente innerhalb des modellier-
ten Komponentensystems als Vergleichsgröße herangezogen werden. Die Position besteht
dabei aus Verbindungen und verbundenen Komponenten. Die Namen von Komponenten
folgen für eine bessere Verständlichkeit von Komponentensystemen einer gewissen Syste-
matik (vgl. PLT-Stellenbezeichnungen [IEC16]). Daher reicht es für die Mehrzahl der An-
wendungsfälle aus, die Namen zweier Komponenten als Vergleichsgröße heranzuziehen. Die
verwendete Vergleichssystematik kann ohne Beeinträchtigung des restlichen Konzeptes an-
gepasst und verfeinert werden.

Nach der erfolgten Detektion eines Unterschiedes zwischen den Instanz-Modellen wird ein
entsprechendes Objekt im Delta-Modell erzeugt. In dem Objekt werden die entsprechenden
Parameter gespeichert. Dies können z. B. die manipulierte Komponente, der zu setzende
Parameter, dessen neuer Wert oder der Name und der Typ der zu erzeugenden Komponente
sein.

erzInstanzModell

Ausgehend von einem Delta-Modell wird durch diese Transformation das entsprechende
Instanz-Modell erzeugt. Entweder handelt es sich bei dem Delta-Modell um ein Root-Delta
oder um ein Delta-Modell mit beliebig vielen Basisdeltas. Liegt ein Root-Delta vor, können
die enthaltenen Operationen direkt ausgeführt werden. Ist das vorliegende Delta-Modell
kein Root-Delta, muss zunächst das Basisdelta rekursiv vom zugehörigen Root-Delta aus-
gehend erzeugt werden. Für diese Erzeugung gibt es zwei Optionen: Zum einen die echte
Rekursion, wobei jedes Delta-Modell auf dem Pfad vom Root-Delta bis Basisdelta nachein-
ander angewendet wird, und zum anderen das Zusammenfassen aller Operationen zu einem
Delta-Modell. Die Anwendung des Gesamt-Delta-Modells kann optimiert werden, indem

103

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

es auf Überschreibungen des gleichen Parameters von unterschiedlichen Operationen oder
auf das Vorliegen von Hinzufüge- und Löschen-Operationen mit der gleichen Komponente
als Ziel überprüft wird.

5.3.3 Gegenstand der Wiederverwendung

Ziel der Arbeit ist ein Konzept für die Wiederverwendung von Teillösungen in komponen-
tenbasierten Architekturen. Dieses Konzept soll möglichst unabhängig von der konkreten
Implementierung der Komponenten sein. Nachdem die Modelle für das Konzept und die
Transformationen zwischen den Modellelementen diskutiert wurden, wird im Folgenden
die Fragestellung behandelt, was durch das Konzept wiederverwendet wird.

Für das Austauschen von Komponentensystemen kann das zugrundeliegende Meta-
Metamodell vereinheitlicht werden. Dies steht jedoch im Gegensatz zur Forderung, dass
Bestandssysteme durch das Konzept berücksichtigt werden müssen. Anstatt das Meta-
Metamodell zu verändern, wird das dieser Arbeit zugrunde liegende Komponenten-Modell
für die Abstraktion von dem konkreten Komponentensystem verwendet. Die Komponenten-
strukturen werden von ihrer Realisierung entkoppelt und die in den Strukturen enthaltene
Information kann separat genutzt werden. So wird ein Austausch der implementierungsun-
abhängigen Systemstrukturen ermöglicht, ohne die Bestandssysteme verändern zu müssen.

InstanzModell1 + ∆A = InstanzModell2 (5.8)

Die Möglichkeiten der Deltamodellierung erlauben es, Wiederverwendung auf zwei Arten zu
betreiben. In Gleichung 5.8 ist der Zusammenhang zwischen zwei Instanz-Modellen und ei-
nem Delta-Modell ∆A dargestellt. Es ist zu erkennen, dass das InstanzModell1 ebenso mit
einem anderen Delta-Modell verwendet werden kann. In diesem Fall ist das Instanz-Modell
Gegenstand der Wiederverwendung. Alternativ kann ∆A auf ein anderes Instanz-Modell
angewendet werden und stellt in diesem Fall den Gegenstand der Wiederverwendung dar.

In Abbildung 5.13 sind die beiden Arten der Wiederverwendung im Überblick dargestellt.
Auf der linken Seite ist zu erkennen, wie das Delta-Modell als Gegenstand der Wiederver-
wendung benutzt wird. Die durch das Delta-Modell beschriebene Struktur kann in unter-
schiedlichen Kontexten, d. h. Anwendungsumgebungen, angewendet werden. Die zweite Art
ist auf der rechten Seite zu erkennen. Der Kontext, d. h. die ursprüngliche (Teil-)Lösung,
wird für unterschiedliche Delta-Modelle verwendet. Im einem Fall ist das Delta-Modell
Gegenstand der Wiederverwendung und im anderen Fall die Umgebung, in die die Delta-
Modelle eingefügt werden.

Die Anwendung von Delta-Modellen in einem anderen als dem ursprünglich vorgesehenen
Kontext ist nicht zwingend konfliktfrei möglich. Insbesondere nicht vorhandene Randbe-
dingungen, wie nicht existierende Komponenten oder Interfacekomponenten des Systems,
zu denen eine Verbindung aufgebaut werden soll, können zu Konflikten führen. Die Nut-
zung der Komponenten-Modelle als Abstraktion der konkreten Implementierung erlaubt
die Anwendung von Delta-Modellen auf einen anderen Kontext ohne die Erzeugung einer
inkonsistenten Implementierung. So kann ein Delta-Modell bewusst auf ein anderes Ba-
sisdelta angewendet werden. Anhand der Ergebnisse der Transformation, in diesem Fall

104

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

Delta-Modell 1

Kontext 1

Delta-Modell 2 Delta-Modell 3

Kontext 2 Kontext 3

Abbildung 5.13: Arten der Wiederverwendung

insbesondere anhand der Fehlermeldungen, kann deren Qualität ermittelt werden. Nach
der Ausführung der Transformation muss das Instanz-Modell auf Konsistenz geprüft wer-
den. Dabei muss sichergestellt werden, dass die Typen von verbundenen Ports gleich sind.
Die Überprüfung der Typengleichheit muss anhand der spezifischen Randbedingungen der
Ports erfolgen und neben der Gleichheit mögliche Konvertierungen berücksichtigen (vgl.
Tabelle für die Konvertierung von Datentypen in [IEC14b]). Zusätzlich kann eine Über-
prüfung, ob alle Komponenten mit Eingängen mindestens einen verbunden Eingang ha-
ben und ob bei Komponenten mit Ausgängen mindestens einer von ihnen verbunden ist,
Aufschluss über mögliche Fehler der Transformation geben. Die fehlende Anbindung von
Komponenten kann ein Indiz dafür sein, dass die Komponente nicht optimal in das um-
gebende Komponentensystem eingebunden ist und daher ein Fehler durch die Anwendung
des Delta-Modells vorliegt.

5.3.4 Die verteilte Nutzung der Modelle

In den vorangegangenen Ausführungen zu den Modellen und dem Verwendungskonzept
wurde der Fokus auf die Modellierung und die Funktionalität gelegt. Im folgenden Ab-
schnitt rückt der physische Aufbau und die Verteilung der Modelle in einem System für
den praktischen Einsatz in den Blickpunkt (vgl. Abschnitt 4.4.2).

In Abbildung 5.14 ist der schematische Aufbau einer dezentralen Verwendung der Modelle
dargestellt. Es ist zu erkennen, dass es sich dabei um eine Server-Client-Architektur han-
delt. Der Server stellt die zentrale Sammelstelle für die Delta-Modelle und damit für beste-
hende Implementierungen dar. Die Clients sind in die jeweiligen Engineering-Umgebungen
eingebettet, von denen aus die im Server gesammelten Implementierungen abgerufen und
neue hinzugefügt werden. Durch die Clients wird so die dezentrale Wiederverwendung und
Veränderung der Modelle ermöglicht.

105

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Server Delta-
Modell

Typ-
Modell

Instanz-
Modell

Feature-
Modell

Client A
Realisierungen

Typ-
Modell

Instanz-
Modell

Austausch

Manager

Manager

Komponenten-
system

Client B
Realisierungen

Typ-
Modell

Instanz-
Modell

Manager

Komponenten-
system

Abbildung 5.14: Verteilte Architektur für die Nutzung der Modelle

Auf dem zentralen Server werden die Delta-Modelle und die Abhängigkeiten zwischen ih-
nen abgelegt. Neben den Delta-Modellen werden die Modelle der Komponenten auf dem
Server gespeichert. Dauerhaft werden dort jedoch ausschließlich die Typ-Modelle der Kom-
ponenten abgelegt. Die Instanz-Modelle werden entweder von einem Client auf den Server
transferiert oder auf dem Server aus Delta-Modellen erzeugt. Aus der Differenz zwischen
zwei Instanz-Modellen wird mittels der vorgestellten Transformationen ein Delta-Modell
erzeugt. Dieses wird an der richtigen Stelle in den Delta-Baum eingefügt und mit dem
Feature-Modell auf dem Server verbunden.

Die Realisierung der benötigten Dienste und die Strukturierung der Objekte und Model-
le werden von einem Delta-Manager und einem Typ-Modell-Manager übernommen. Diese
Manager bieten die vorgestellten Transformationen als Dienste an und bilden die Zugangs-
punkte für Dienstnutzer. Je nach Anwendungsfall kann es zur Verbesserung der Nutzbar-
keit sinnvoll sein, die atomaren Dienste direkt in den Managern zu höherwertigen Diensten
zu aggregieren und diese nach außen zur Verfügung zu stellen.

Auf dem Client befindet sich ein entsprechender Manager, der für die Umgebung bzw. für
den Nutzer den Zugangspunkt für die Interaktionen bildet. Er bietet die Möglichkeit, die
auf dem Server abgelegten Delta- und Feature-Modelle zu erkunden und nach vorgegebenen
Randbedingungen zu durchsuchen. Wenn ein geeignetes Delta-Modell bzw. das dazugehö-
rige Komponentensystem gefunden ist, kann es vom Server heruntergeladen werden. Vom
Server wird dafür das Instanz-Modell des Komponentensystems erzeugt und auf den Client
übertragen. Dort werden die Elemente des Instanz-Modells mit den lokal gültigen Imple-
mentierungen zusammengeführt und das konkrete Komponentensystem aufgebaut. Nach
dem Ändern des Komponentensystems kann die neue Variante auf den Server hochgeladen
und in den Delta-Baum eingefügt werden. Die Implementierungen der Komponenten bleibt
auf dem jeweiligen Client. Aus dem Komponentensystem wird das dazugehörige Instanz-
Modell erzeugt. Dieses dient als generisches Austauschformat für Komponentensysteme

106

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

und wird auf den Clients in die jeweilige Implementierung überführt. Dies ermöglicht,
die Strukturen der Lösungen in unterschiedliche Umgebungen und Implementierungen zu
überführen.

Instanz-Modelle können auf unterschiedliche Arten zwischen Server und Client ausge-
tauscht werden. Eine Möglichkeit zur Realisierung des Austauschs ist es, das Modell in
ein gängiges Dateiformat, z. B. XML, abzubilden. Diese Datei, in der die jeweiligen Mo-
delle enthalten sind, kann anschließend übertragen werden. Diese dateibasierte Variante
bringt jedoch einen großen Mehraufwand mit und ist somit nicht sehr effizient. Alternativ
kann das Modell in der jeweils anderen Laufzeitumgebung erzeugt werden, indem Dienste
zum Anlegen und Manipulieren von Objekten der Laufzeitumgebungen verwendet werden.
Bei dieser Übertragungsart müssen sehr viele Dienste aufgerufen werden, was einen hohen
Kommunikationsaufwand bedeutet. Wegen der angesprochenen Probleme wird in der vor-
liegenden Arbeit die (De-)Serialisierung des Instanz-Modells durch ein gängiges Format,
nämlich der JavaScript Object Notation (JSON), zur Übertragung von Objekten verwen-
det. Dies ermöglicht die Übertragung in einer einfachen und effizienten Weise.

Der Komponententyp im Typ-Modell kann in der physischen Welt nicht nur durch Klas-
sen sondern auch durch Prototypen realisiert werden. Bei einem direkten Transfer einer
Applikation von einer Herkunfts-Laufzeitumgebung in eine Ziel-Laufzeitumgebung müs-
sen die Schnittstellen der Komponenten des Systems kompatibel sein. Bei der Realisierung
durch eine Klasse ist eine unterschiedliche Anzahl von Eingängen in den Funktionsbaustein
denkbar. Es können drei Fälle auftreten: Der implementierte Funktionsbaustein in der Ziel-
Laufzeitumgebung besitzt eine kleinere, eine größere oder eine gleich große Schnittstelle als
der in der Herkunfts-Laufzeitumgebung. Ist die Schnittstelle größer oder gleich groß, so ist
die Implementierung des Funktionsbausteins ohne Änderung kompatibel zum Typ-Modell.
Bei einer kleineren Schnittstelle ist die Implementierung nicht mehr kompatibel zum Typ-
Modell. Dadurch ist eine Übertragung der Komponentensysteme, die diese inkompatiblen
Bausteine verwenden, nicht möglich. Durch die Abstraktion mit dem in dieser Arbeit vor-
gestellten Komponenten-Modell besteht die Möglichkeit, den Komponententyp durch einen
Prototypen zu realisieren. Somit kann die geforderte Funktionalität durch ein Netzwerk
von Funktionsbausteinen in der Ziel-Laufzeitumgebung realisiert werden. Der Unterschied
einer Realisierung durch Klassen zu der durch einen Prototypen wird im folgenden Bei-
spiel deutlich: Das Addieren von Werten wird typischerweise durch eine Funktionsbaustein-
Klasse realisiert. Ist in der Ziel-Laufzeitumgebung lediglich ein Funktionsbaustein mit zwei
Eingängen realisiert, in der Herkunfts-Laufzeitumgebung jedoch einer mit drei Eingängen,
so kann der Funktionsbaustein und somit das Komponentensystem nicht mehr übertra-
gen werden. Wird das Addieren aber in der Ziel-Laufzeitumgebung als Protoyp realisiert,
so kann durch eine geschickte Verschaltung von zwei Addierer-Bausteinen die zu kleine
Schnittstelle kompensiert werden. Das Beispiel ist in Abbildung 5.15 exemplarisch darge-
stellt.

Dieses einfache Beispiel zeigt, wie durch die Verwendung einer zusätzlichen Abstrakti-
onsschicht die Kompatibilität und Wiederverwendbarkeit von komponentenbasierten Sy-
stemen auch bei zunächst inkompatiblen Komponenten erreicht werden kann. Dies kann
analog ebenso auf Hardwarekomponenten angewendet werden. Entspricht beispielsweise
der Durchsatz einer Pumpe nicht den geforderten Spezifikationen, so kann dies durch die
parallele Verwendung von zwei oder mehr Pumpen kompensiert werden.

107

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Klasse Prototyp

Abbildung 5.15: Realisierung einer Komponente zur Addition von drei Werten durch eine
Klasse und durch eine Verschaltung von zwei Komponenten, die lediglich zwei Werte addieren
können.

5.3.5 Verwendung in der Praxis

Im folgenden Abschnitt werden exemplarisch Abläufe für die Nutzung des vorgestellten
Konzeptes in der Praxis vorgestellt. Für diese Abläufe werden die in Abschnitt 5.3.2 be-
schriebenen Transformationen genutzt. Zu jedem Ablauf wird die Ausgangssituation, der
eigentliche Prozess und das Ergebnis beschrieben.

Es wird in den folgenden Ausführungen davon ausgegangen, dass ein verteiltes System
mit Clients und ein zentraler Server für die Verwaltung der Delta-Modelle vorliegt. So-
wohl die Clients als auch der Server können durch Laufzeitsysteme realisiert werden. Die
Komponentensysteme sind hybride Systeme, d. h. Hard- und Softwaresysteme.

Von der Implementierung zum Delta-Modell

Erzeugen der

Typ-Modelle

Erzeugung des

Root-Deltas

Übertragung des

Instanz-Modells

auf den Server

Erzeugen des

Instanz-Modells

auf dem Client

Suchen der

benötigten Variante

Erzeugung des

Komponenten-

systems

Übertragung des

Instanz-Modells

auf den Client

Erzeugen des

Instanz-Modells

auf dem Server

Abbildung 5.16: Ablauf zur Erzeugung eines Delta-Modells

Ausgangssituation: Es existieren mindestens ein Komponentensystem, ein Client für den
Aufbau des Instanz-Modells und ein zentraler Server, auf dem die Delta-Modelle der Imple-
mentierungen abgelegt werden. Auf dem Server und dem Client sind die jeweiligen Manager
vorhanden und betriebsbereit.

Ablauf: Eine Übersicht des Ablaufs ist in Abbildung 5.16 dargestellt. Der erste Schritt ist
die Erzeugung der Typ-Modelle aus den Implementierungen oder einer Typbeschreibung.
Dafür wird die Transformation erzKomponentenTypModell verwendet. Die Typ-Modelle
werden sowohl auf dem Server als auch auf allen Clients erzeugt, sodass eine einheitli-
che Basis von Typ-Modellen vorliegt. Im zweiten Schritt wird das Instanz-Modell durch
die Transformation erzKomponentenInstModell auf einem Client erzeugt. Das erzeugte

108

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung

Instanz-Modell wird anschließend auf den Server übertragen. Danach kann das Modell
auf dem Client gelöscht werden. Falls das Instanz-Modell Variante eines existierenden ist,
wird das Delta-Modell unter Verweis auf ein Basis-Delta erzeugt. Ist dies nicht der Fall,
wird das Delta-Modell und ebenso die Verbindung in den Problemraum, z. B. zu einem
Feature-Modell, angelegt. Nachdem das Delta-Modell angelegt ist, wird das übertragene
Instanz-Modell und ggf. auch das Instanz-Modell, auf dessen Grundlage das Delta-Modell
erzeugt wurde, gelöscht.

Ergebnis: Das Delta-Modell und das Feature-Modell sind auf dem Server abgelegt und sind
bereit zur Verwendung. Die Abhängigkeiten zwischen den beiden Modellen sind angelegt.
Analog zu einer Versionsverwaltung für Quellcode ist dieser Ablauf der Comitt bzw. der
initial Comitt.

Verteilen einer Lösung

Erzeugen der

Typ-Modelle

Erzeugung des

Root-Deltas

Übertragung des

Instanz-Modells

auf den Server

Erzeugen des

Inszanz-Modells

auf dem Client

Suchen der

benötigten Variante

Erzeugung des

Komponenten-

systems

Übertragung des

Instanz-Modells

auf den Client

Erzeugen des

Instanz-Modells

auf dem Server

Abbildung 5.17: Ablauf zur Erzeugung eines Komponentensystems

Ausgangssituation: Auf einem Server liegen Delta- und Typ-Modelle vor. Die gleichen
Typ-Modelle und die dazugehörigen Implementierung bzw. eine Referenz auf die Imple-
mentierungen sind auf dem Client vorhanden. Die entsprechenden Manager sind auf beiden
Systemen vorhanden.

Ablauf: Im ersten Schritt wird vom Manager auf dem Client die benötigte Variante auf
dem Server gesucht (vgl. Abbildung 5.17). Dies kann auf unterschiedliche Arten passie-
ren: liegt nur eine Variantenbeschreibung im Lösungsraum (Delta-Modell) vor, muss die
Variante allein über diese gefunden werden. Ist eine Abbildung im Lösungsraum (Feature-
Modell) vorhanden, so kann diese durchsucht und das oder die Produkt(e) anhand der
benötigten Features gefunden werden. Durch den Link auf das Delta-Modell, das dieses
Produkt erzeugt, kann das Delta-Modell verwendet werden. Im zweiten Schritt wird das
Instanz-Modell auf dem Server erzeugt. Dafür wird die Transformation erzImpl genutzt.
Anschließend wird das erzeugte Instanz-Modell auf den Client übertragen und auf dem
Server gelöscht. Unter Verwendung der Implementierungen auf dem Client wird aus dem
vorliegenden Instanz-Modell die Implementierung erzeugt.

Ergebnis: Das durch ein Delta-Modell und seine verbundenen Modelle bis zum Root-Delta
repräsentierte Komponentensystem sind in eine konkrete Implementierung umgewandelt.
Diese liegt in der Umgebung vor und kann durch den Nutzer verwendet werden.

Erweitern einer bestehenden Lösung

Ausgangssituation: Ein Komponentensystem ist im Client vorhanden und das dazugehö-
rige Delta-Modell liegt im Server vor. Die Typ-Modelle aller verwendeten Komponenten
sind auf Server und Client vorhanden.

109

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Änderung am

Komponentensystem

vornehmen

Erzeugung des

neuen

Delta-Modells

Übertragung des

Instanz-Modells

auf den Server

Erzeugen des

Instanz-Modells

auf dem Client

Identifikation des zu

ändernden

Typ-Modells

Entfernen der

alten Komponente

Hinzufügen der

neuen

Komponenten und

Verbindungen

Suchen der

betroffenen

Komponenten-

systeme

Identifikation des zu

ändernden

Typ-Modells

Löschen der alten

Komponente

Hinzufügen der

neuen

Komponenten und

Verbindungen

Suchen der

betroffenen

Komponenten-

systeme

Abbildung 5.18: Ablauf zur Erweiterung einer bestehenden Lösung

Ablauf: Der vorgestellte Ablauf ist in Abbildung 5.18 dargestellt. Der erste Schritt ist die
Änderung des Komponentensystems auf dem Client durch den Nutzer. Diese Änderung
könnte ebenso direkt im Instanz-Modell erfolgen. Allerdings würde dieses Vorgehen das
Look-and-Feel für den Nutzer ändern. Zusätzlich kommt hinzu, dass bei reinen Softwaresys-
temen die Änderungen am Komponentensystem automatisch in ein neues Instanz-Modell
transformiert werden können (vgl. erzKomponentenInstModell), wodurch kein Mehrauf-
wand im Vergleich zur Nutzung ohne das vorgestellte Konzept entsteht. Diese Umwandlung
ist Schritt zwei des Ablaufs. Anschließend wird das Instanz-Modell auf den Server übertra-
gen und auf dem Client gelöscht. Auf dem Server wird zwischen dem Instanz-Modell und
dem Ausgangssystem das Delta-Modell erzeugt. Dieses wird mit dem Basisdelta und dem
Feature-Modell verknüpft.

Ergebnis: Das geänderte Komponentensystem ist mit den Änderungen als Variante in den
Varianten-Server aufgenommen worden und steht für die weitere Nutzung zur Verfügung.
Die Verknüpfung zur Ausgangsvariante und die Einordnung in das Feature-Modell wurden
vorgenommen.

Propagieren einer neuen Komponentenversion

Änderung am

Komponentensystem

vornehmen

Erzeugung des

neuen

Delta-Modells

Übertragung des

Instanz-Modells

auf den Server

Erzeugen des

Inszanz-Modells

auf dem Client

Identifikation des zu

ändernden

Typ-Modells

Entfernen der

alten Komponente

Hinzufügen der

neuen

Komponenten und

Verbindungen

Suchen der

betroffenen

Komponenten-

systeme

Identifikation des zu

ändernden

Typ-Modells

Löschen der alten

Komponente

Hinzufügen der

neuen

Komponenten und

Verbindungen

Suchen der

betroffenen

Komponenten-

systeme

Abbildung 5.19: Ablauf zum Propagieren einer neuen Version einer Komponente

Ausgangssituation: Es liegt eine verteilte Architektur vor und die neue Version einer
Komponente wurde entwickelt. Die neue Komponente soll in einem Komponentensystem
zum Einsatz kommen, das von einem Client verwaltet wird. Dies kann beispielsweise eine
neue Version einer Pumpe sein oder eine verbesserte Version eines Funktionsbausteins.

Ablauf: Nach dem in Abbildung 5.19 dargestellten Ablauf ist der erste Schritt, das Typ-
Modell zu identifizieren, das die neue Komponente realisiert. Im Modell wird eine Refe-
renz auf die neue Version der Komponente eingetragen und als aktuelle Version markiert.
Anschließend werden die von der Aktualisierung betroffenen Komponenten in den Kompo-
nentensystemen identifiziert. Dies können entweder alle Komponenten eines Typs sein, die
von dem Client verwaltet werden, oder eine selektive Auswahl. Je nach Anwendungsfall
kann es auch sein, dass die Aktualisierung nicht von dem verwaltenden Tool vorgenommen
wird (push), sondern für jede Komponente einzeln angefordert wird (pull). Im nächsten
Schritt wird die neue Version der Komponente instanziiert bzw. jedem Komponentensys-
tem hinzugefügt. Ist die Beibehaltung des Namens nicht relevant, beispielsweise bei einer

110

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.4 Kritische Betrachtung des Konzepts

Hardwarekomponente, die über ihre Rolle in der Anlage angesprochen wird, werden die
Verbindungen der alten Komponente auf die neue übertragen. Wenn der Name beibehal-
ten werden soll, muss in diesem Rahmen auch eine Umbenennung der neuen Komponente
erfolgen. Nachdem die Verbindungen von der alten auf die neue Version übergegangen sind
und die alte Komponente nicht mehr mit der Umgebung verbunden ist, kann sie aus dem
Komponentensystem entfernt werden.

Ergebnis: Die neue Version einer Komponente ist in ein bzw. mehrere Komponentensys-
tem(e) integriert. Die Systeme sind bereit zur anschließenden Verwendung.

Delta-Modell in anderem Kontext

Ausgangssituation: Es liegen ein Delta-Modell und ein Komponentensystem vor, auf das
das Delta-Modell angewendet werden soll. Das Delta-Modell war ursprünglich für die An-
wendung in einem anderen Kontext vorgesehen.

Ablauf: In einem ersten Schritt muss die Eignung des Delta-Modells für die Anwendung
auf den neuen Kontext überprüft werden. Dies kann auf verschiedene Arten erfolgen. Eine
erste Abschätzung kann anhand des Delta-Modells getroffen werden. Je mehr Verbindun-
gen zu bestehenden Komponenten des Komponentensystems angelegt werden, desto höher
ist die Wahrscheinlichkeit, dass eine von diesen nicht vorhanden ist. Ausgehend davon kann
abgeschätzt werden, wie gut sich das Delta-Modell in die Umgebung integrieren lässt. Ei-
ne andere Möglichkeit ist es, Nutzen aus dem Komponenten-Modell zu ziehen und die
Anwendung des Delta-Modells direkt zu testen. Anschließend muss durch Konsistenzprü-
fungen und aufgetretene Fehlermeldungen bei der Anwendung entschieden werden, ob diese
erfolgreich war bzw. ob und wo nachgearbeitet werden muss. Ist der Prozess erfolgreich
verlaufen, wird das (angepasste) Delta-Modell in den Delta-Server an der vorgesehenen
Stelle integriert.

Ergebnis: Das Delta-Modell wurde für einen weiteren Anwendungsfall nutzbar gemacht
und die in ihm enthaltenen Aufwände wurden erfolgreich wiederverwendet. Das Delta-
Modell steht zur Nutzung in einem neuen Kontext zur Verfügung.

5.4 Kritische Betrachtung des Konzepts

Im folgenden Abschnitt wird das vorgestellte Konzept einer Betrachtung und Bewertung
unterzogen. Zunächst werden die Vorteile des Konzepts herausgearbeitet. Anschließend
werden Handlungsempfehlungen für die Verwendung gegeben. Abschließend werden die
Randbedingungen für die Nutzung des Konzepts zusammengefasst.

5.4.1 Added Values

Ausgehend von Komponenten und Delta-Modellen in der Literatur wurden zwei Modelle
entwickelt. Mit diesen können die Varianten von Komponentensystemen leicht und über-
sichtlich beschrieben werden. Die Nutzung der Komponenten-Modelle als Abstraktions-

111

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

schicht hat den Vorteil, dass so von der Implementierung der jeweiligen Komponente ab-
strahiert werden kann. Wie gezeigt, ist diese Vorgehensweise geeignet für die Übertragung
der Komponentenstrukturen zwischen Systemen. Mit Hilfe des Delta-Modells kann die Va-
riabilität im Lösungsraum intuitiv beschrieben werden, was somit eine Wiederverwendung
von erzeugten Lösungen ermöglicht. Durch die Einfachheit und Nachvollziehbarkeit der
Modelle wird eine höhere Akzeptanz bei den Mitarbeitern der unterschiedlichen Gewerke
erreicht. Somit erhöht sich der Nutzungsgrad der Modelle. Im Konzept werden die Delta-
Modelle auf ein Modell anstatt auf ein konkreten System angewendet. Da das Modell sehr
allgemein formuliert ist, ist es sehr robust gegenüber Inkonsistenzen. So können Operatio-
nen und neue Anwendungen leicht erprobt und nachträglich deren Konsistenz sichergestellt
werden.

Die verteilte Architektur hat den Vorteil, dass sie die Modelle in der Praxis anwendbar
macht und gleichzeitig das Look-and-Feel der Nutzer möglichst wenig verändert. Die be-
währten Prozesse und Tools können beibehalten werden. Lediglich für die Wiederverwen-
dung wird, analog zu einem Versionsverwaltungstool für Code, ein zusätzliches Werkzeug
benötigt. Darüber hinaus ermöglicht die Darstellung der Delta-Modelle in der domänen-
spezifischen Sprache die optimale Integration für den Nutzer und die vielfältige Verwen-
dung der vorgestellten Modelle. Die verteilte Architektur vereint eine dezentrale Nutzung
der Komponentensysteme mit der zentralen Speicherung der relevanten Informationen. So
können diese jedem (potenziellen) Nutzer zugänglich gemacht werden.

Durch die zunehmende Verwendung von OPC UA und Laufzeitsystemen sinkt die Ein-
stiegshürde für die Verwendung der vorgestellten objektorientierten Modelle, da diese nativ
verwendet werden können. Gleichzeitig steigt der Bedarf der Verwaltung von komponen-
tenbasierten Architekturen im Softwarebereich weiter an als er durch die Verwendung der
IEC 61131 Sprachen schon gestiegen ist. Die Verwendung von Verwaltungsschalen und
der darin enthaltenen Teilmodelle auf Basis von strukturierten Komponenten weist auf
ein zusätzliches Anwendungsgebiet hin. Dieser Bedarf wird durch das vorgestellte Konzept
gedeckt.

Zusätzlich wird durch das Konzept die explizite Modellierung von Komponentenversio-
nen unterstützt. Von der Modellierung ausgehend, kann das beschriebene Verfahren für
das Propagieren von neuen Versionen und weiterer Prozesse umgesetzt werden. In einem
ersten Schritt ermöglicht die Modellierung, kompatible Komponentenversionen als solche
darzustellen, und macht für den Nutzer kenntlich, wie diese in Komponentensystemen
verwendet werden.

5.4.2 Randbedingungen

Im Folgenden werden die Randbedingungen und Einschränkungen, die bei der Verwendung
des Konzepts zu berücksichtigen sind, zusammengefasst.

• Das Konzept ist besonders gut nutzbar, wenn die durch einzelne Delta-Modelle verän-
derte Funktionalität(en) orthogonal auf den Funktionalitäten des Komponentensys-
tems stehen. Im Kontext von technischen Systemen ist die Trennung in orthogonale
Funktionalitäten (z. B. aus [Har87]) bekannt. In der Automatisierungstechnik bietet
es sich an, die Automaten der Steuerungskomponenten so zu entflechten, dass diese

112

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5.4 Kritische Betrachtung des Konzepts

orthogonal aufeinander stehen. Dementsprechend ist die Erfüllung dieser Randbe-
dingung nicht mit großen Änderungen verbunden.

• Die Delta-Modelle sind immer nur für einen definierten Ausgangspunkt zu verwen-
den. Eine Anwendung auf eine andere Basis kann zu nicht definierten Ergebnissen
bzw. zu einem inkonsistenten Komponentensystem führen. Ein einfaches Beispiel da-
für ist das Löschen eines Objekts, das nicht existiert. In diesem Fall entspricht der
Zustand dem angestrebten Ergebnis. Wird aber eine Verbindung zu einem Baustein
angelegt, der nicht existiert, kann der gewünschte Zielzustand nicht erreicht werden.
Das Komponenten-Modell und das Komponentensystem sind nach Anwendung der
Delta-Operationen nicht in der gewünschten Weise aufgebaut.

• Eine unbeschränkte Menge von Delta-Operationen innerhalb eines Delta-Modells
führt zu einer nicht vorhersagbaren Ausführungsdauer der Modifikation. Daher ist ei-
ne Verwendung zur Laufzeit ohne Einschränkung der Anzahl der Operationen nur be-
dingt möglich. Insgesamt kann das beschriebene Verfahren für einen Austausch bzw.
den Aufbau von Komponentensystemen zur Laufzeit eingesetzt werden. Dies ist aller-
dings mit erhöhten Anforderungen an das Laufzeitsystem verbunden (z. B. Wechsel
von Verbindungen und Umschalten zwischen Bausteinen zwischen zwei Zyklen). Zu-
sätzlich muss die Funktionalität des stoßfreien Austausches von Baustein(system)en
implementiert werden.

• Im vorgestellten Konzept wird das Delta-Modell hinsichtlich der strukturellen Diffe-
renz zwischen zwei Komponenten-Modellen gebildet. Dies bedeutet, dass Änderun-
gen, die keine Auswirkungen auf die eigentliche Funktionalität haben, trotzdem in
einem Delta-Modell abgebildet werden. Dies kann z. B. die Änderung des Namens
einer Komponente sein. Je nach konkreter Umsetzung des Vergleiches kann die Na-
mensgleichheit ein Kriterium für das Auffinden der Unterschiede sein.

• Durch die Verwendung eines einheitlichen Sets von Komponenten wird der Nut-
zen des Konzepts weiter gesteigert. Wie vorgestellt, lassen sich auch gewisse Abwei-
chungen zwischen den Komponententypen nivellieren. Allerdings ist eine grundsätzli-
che Ähnlichkeit der Komponenten trotzdem erforderlich. Durch die Verwendung der
IEC 61131 sind die Baustein-Bibliotheken in der Automatisierungstechnik zumindest
funktional kompatibel. Ähnlich ist die Situation im Bereich der Hardwarekomponen-
ten.

• Die Abgeschlossenheit der Komponenten muss diszipliniert vom Nutzer und von der
Organisationseinheit durchgesetzt werden. Trotz der sinnvollen Forderung, diese si-
cherzustellen, sind globale Variable und direkte Lese- und Schreibzugriffe über die
Grenzen von Komponenten hinweg weiterhin verbreitet. Ebenso muss eine einheitli-
che Richtlinie für Komponentennamen und die Pflege und Verwendung der Funktio-
nalitätsreferenzen durchgängig angewendet werden.

5.4.3 Handlungsempfehlungen

Für jeden konkreten Anwendungsfall müssen eigene Regeln und Handlungsempfehlungen
abgeleitet werden. Im Folgenden werden einige grundsätzliche Empfehlungen vorgestellt,

113

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

die die Nutzung des Konzepts einfacher machen.

Nach der Anwendung eines Delta-Modells sollte grundsätzlich die Konsistenz des erzeugten
Komponenten-Modells überprüft werden. Grundlage dafür sind die Regeln des abgebildeten
Komponentensystems. Dies können unter anderem die Umwandlungsregeln der jeweiligen
Implementierungen sein. Demzufolge muss die Konsistenzprüfung auf dem Client unter
Berücksichtigung der lokal geltenden Regeln erneut durchgeführt werden. Alternativ wird
die Prüfung anhand von unterschiedlichen Profilen je nach verwendetem Client durch-
geführt. Die Unterschiede durch die Implementierungen sind durch die Verwendung von
gemeinsamen Sprachen gering.

Zusätzlich können auf dem Instanz-Modell Überprüfungen durchgeführt werden, die nicht
direkt eine Inkonsistenz anzeigen, dennoch einen Indikator für eine nicht optimale An-
wendung eines Delta-Modells darstellen. Insbesondere nach der Anwendung eines Delta-
Modells in einem neuen Kontext ist eine solche Überprüfung sinnvoll. In einem ersten
Schritt ist zu prüfen, ob die Eingangsports des Systems offen, d. h. nicht mit mindestens
einer Komponente des Systems verbunden sind. Ebenso sollen die Ausgangsports des Ge-
samtsystems nicht un-parametriert bzw. unverbunden sein. Beide Zustände können Indi-
katoren für eine fehlerhafte Integration oder Artefakte von anderen Varianten sein. Eine
weitere mögliche Erklärung ist ein Informationsfluss über die Grenzen der Komponen-
te hinweg ohne das Nutzen der dafür vorgesehenen Ports. Dies ist eigentlich durch die
Kapselung von Komponenten unterbunden, kommt in der Praxis allerdings vor. Hat eine
Komponente keine oder nur eine einseitige Verbindung zu ihrer Umgebung, so kann dies
ebenso ein Indikator für eine fehlerhafte Integration sein. Dass beispielsweise eine Pumpe
nur an einer Seite mit einem Rohr verbunden ist, weist in der Mehrzahl der Fälle auf einen
Fehler hin.

Je nach Anforderungen der Nutzer kann es sinnvoll sein, die Delta-Modelle nach Gesichts-
punkten der Komplexität oder der Funktionalität aufzubauen. Funktionalität bedeutet
hier, dass ein Delta-Modell mit einer oder mehreren abgeschlossenen Funktionalitäten asso-
ziiert ist. Darüber hinaus kann es sinnvoll sein, Delta-Modelle in mehrere weniger komplexe
Delta-Modelle zu zerteilen. In einem anderen Anwendungsfall kann die Zusammenfassung
zu einem größeren Delta-Modell passender sein. So kann der Baum aus Delta-Modellen je
nach den lokalen Gegebenheiten aufgebaut werden. Nur, wenn solche Regeln aufgestellt
und eingehalten werden, ist die Nutzung eines Delta-Servers als „gelbe Seiten“ für Lösun-
gen denkbar und ein wirklicher Fortschritt im Hinblick auf die Wiederverwendbarkeit.

114

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und
Anwendungsfälle

Im folgenden Kapitel wird die prototypische Umsetzung des vorgestellten Konzepts be-
schrieben. Die Nutzung dieser Implementierung wird anschließend an drei Anwendungsfäl-
len verdeutlicht. Abschließend wird am Ende des Kapitels die Implementierung evaluiert.
Dies geschieht anhand von ausgesuchten Szenarien, die die Leistungsfähigkeit und Reaktion
der Implementierung auf Fehler verdeutlichen.

6.1 Implementierung in ACPLT/RTE

Die Umsetzung des Konzepts erfolgte in der Laufzeitumgebung des Lehrstuhls für Prozess-
leittechnik ACPLT/RTE [GE13]. Der Laufzeitumgebung liegt ein Meta-Metamodell für
Objekte zugrunde, auf dem alle weiteren Implementierungen aufsetzen (vgl. Kapitel 4.4.1).
Auf diesem Meta-Metamodell aufbauend wurde eine Funktionsbausteinarchitektur reali-
siert, mit der es möglich ist, IEC 61131 konforme Lösungen umzusetzen. Unter ande-
rem wurde so die Prozessführung für Anlagen implementiert [WTPE17, WE15a]. Darüber
hinaus bietet die Laufzeitumgebung die Möglichkeit, Modelle z. B. für die Beschreibung
von Anlagen zu implementieren und zu erproben [YGE13, Sch16a]. Durch diese Model-
le und geeignete Modelltransformationen können Automatisierungslösungen synthetisiert
werden [WKS+16].

Damit die Laufzeitumgebung auf unterschiedlicher Hardware ausgeführt werden kann, ist
sie in ANSI C implementiert. Sie realisiert ein Konzept von zur Laufzeit nachladbaren
Bibliotheken. So können Funktionalitäten in Bibliotheken implementiert und zur Laufzeit
nachgeladen werden, damit anschießend die Objektstruktur konfiguriert werden kann.

Die Anbindung der Laufzeitumgebung an andere Anwendungen erfolgt über das Kommu-
nikationsprotokoll des Lehrstuhls ACPLT/KS [WE17] und über OPC UA [GPP16]. Als
Benutzerschnittstelle stehen verschiedene Engineeringtools zur Verfügung, die auf die je-
weiligen Anwendungsfälle zugeschnitten sind. Das bedeutet, dass einige Tools universell für
die Konfiguration der Laufzeitumgebung und der enthaltenen Objektstrukturen einsetzbar
sind. Andere sind spezifisch für die Interaktion mit Objekten einer Bibliothek entwickelt
worden (z. B. Dienste-Klienten).

Analog zum Konzept besteht die Struktur der Implementierung aus zwei Teilen. Dabei
handelt es sich um die Modelle und den Manager. Diese müssen für die Nutzung reibungslos
zusammenspielen. Im Folgenden werden sie zur besseren Verständlichkeit nacheinander
vorgestellt.

115

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

6.1.1 Umsetzung der Modelle

Die Modelle wurden entsprechend der in Kapitel 5 vorgestellten Spezifikationen in der
Laufzeitumgebung ACPLT/RTE umgesetzt. Die Klassen der Komponenten-Metamodelle
und des Delta-Modells wurden in Klassen der Laufzeitumgebung umgesetzt. Entsprechend
der Metamodelle sind die Klassen in zwei Bibliotheken strukturiert. Zusätzlich zu den
in den Metamodellen beschriebenen Klassen sind in den Bibliotheken Klassen für Mana-
gerobjekte enthalten. Die Managerobjekte beinhalten Operationen zur Realisierung der
vorgestellten Transformationen.

Der componentClassManager realisiert die Verwaltung der Typ-Modelle der Komponen-
ten. Der Manager beinhaltet die Funktionalität zur automatischen Erzeugung des Typ-
Modells einer Bibliothek der Laufzeitumgebung. Als alternative Quelle zur Erzeugung des
Typ-Modells nutzt der Manager einen Prototypen des Komponentensystems. Er besitzt
einen Port, in dem der Pfad zu den Bibliotheksobjekten in der Laufzeitumgebung oder
dem Prototypen angegeben wird. Ausgehend davon wird die Bibliothek erkundet und das
Modell aufgebaut. Der Aufbau des Modells wird durch die drei Operationen der Klasse
componentClass realisiert. Eine Operation ist die Erzeugung des Typ-Modells aus einer
Funktionsblockklasse. Die zweite Operation nutzt ein Komponentensystem als Prototyp
und baut daraus das Typ-Modell auf. Die dritte Operation der Klasse ist die Erzeugung
des Instanz-Modells aus dem jeweiligen Typ-Modell.

Das componentChart ist eine Klasse, die den Rahmen eines Instanz-Modells mit dem zu-
gehörigen externen Interface bildet. Sie verfügt über eine Operation zum Erzeugen des
Instanz-Modells aus einem Komponentensystem und eine Operation zum Umwandeln des
Instanz-Modells in die dazugehörige Implementierung. Zur Verwaltung eines oder meh-
rerer componentCharts sind componentChartManager vorgesehen. Der Manager erzeugt
Instanz-Modelle aus Implementierungen oder Implementierungen aus Instanz-Modellen
durch Orchestrierung der Operationen der componentCharts. Dabei stellt der Manager
die Eindeutigkeit von Komponentennamen sicher und verwaltet die Ziel- und Quellpfade.

Geschachtelte Komponentensysteme haben grundsätzlich eine beliebige Tiefe. Das vorge-
stellte Konzept lässt es zu, die Komponentensysteme bis zur letzten Ebene in ein Modell zu
überführen. Im Rahmen der Implementierung wird eine beliebige Modelltiefe angenommen.
Allerdings ist die Erkundung von bekannten Strukturen ausschließlich auf die ersten Ebe-
ne beschränkt. Geschachtelte Strukturen werden als eingebettet bzw. nested bezeichnet
und durch Prototypen abgebildet. Diese Prototypen können selbst Varianten voneinan-
der sein. Die entsprechenden Delta-Modelle können in Typ-Modellen als Implementierung
verwendet werden. Der componentChartManager erkennt beim Umwandeln eines Kom-
ponentensystems anhand des Objekttyps, ob es sich um eine eingebettete Unterstruktur
handelt. In diesem Fall wird anhand des Links zum Typ-Modell geprüft, ob diese Struktur
bereits als Typ-Modell vorliegt. Liegt die Struktur vor, wird diese im Modell verlinkt. An-
dernfalls wird sie in einem neuen Typ-Modell nachgebildet. Dieser Prozess kann durch alle
Hierarchieebenen durchlaufen werden. Somit stellt die Einschränkung auf eine Ebene keine
Beschränkung der Allgemeinheit dar. Der Vergleichsmechanismus für die eingebundenen
Strukturen kann so weiterentwickelt werden, dass die Nutzung von Delta-Modellen für den
Vergleich zweier Implementierungen ebenfalls denkbar ist. Wenn das Delta-Modell leer ist,
sind die beiden verglichenen Instanz-Modelle gleich. Im Rahmen dieser Implementierung

116

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.1 Implementierung in ACPLT/RTE

wurde darauf verzichtet, da die Aussagekraft im Hinblick auf das Konzept gering ist.

Die Implementierung des Delta-Modells erfolgt auf der untersten Ebene durch die Realisie-
rung der in Abbildung 5.6 dargestellten Operationen. Dies wird durch die entsprechenden
Objekte und ihre Methoden in der Bibliothek dvariantsDelta realisiert. Diese Operatio-
nen werden jeweils in einem Delta zusammengefasst. Dieses bietet die Methoden an, alle
Delta-Operationen, die in ihm enthalten sind, auf ein gegebenes componentChart anzuwen-
den. Die Operation createComponentChart erzeugt das durch dieses konkrete Delta-Modell
dargestellte Komponentensystem. Dies wird durch die rekursive Ausführung aller Delta-
Modelle ausgehend vom jeweiligen Root-Delta erreicht. Umgekehrt wird ein Delta-Modell
durch die Operation createFromComponentCharts aus zwei vorliegenden Instanz-Modellen
(componentCharts) generiert.

Die Delta-Modelle werden durch die deltaManager verwaltet und durch die angebotenen
Funktionen besser zugänglich gemacht. Durch das Setzen der jeweiligen Parameter wird
z. B. die Basis-Variante eines zu erzeugenden Deltas festgelegt.

Das Feature-Modell wurde, wie in Abbildung 5.11 dargestellt, umgesetzt. Da das Modell in
diesem Kontext eine rein deskriptive Rolle einnimmt, war die Implementierung von Funk-
tionalitäten innerhalb des Modells nicht nötig. Die Verbindungen mit den Delta-Modellen
werden über das Server-Objekt angelegt (vgl. Abschnitt 6.1.2).

Für die Umsetzung der Visualisierung wurde ein zusätzliches Modell innerhalb der Delta-
Modell-Bibliothek angelegt. Diese ermöglicht es, den Informationsgehalt eines Delta-
Modells und des korrespondierenden Instanz-Modells in einem Modell darzustellen. Es
ist aufgebaut wie ein Instanz-Modell, allerdings gibt eine zusätzliche Variable an, ob eine
Instanz hinzugefügt, gelöscht oder bearbeitet wurde.

6.1.2 Realisierung der dezentralen Struktur

Die verteilte Struktur wird durch ein Server- und ein Client-Objekt realisiert. Zusätzlich
steht ein deltaExplorer genannter Baustein zur Verfügung, der es ermöglicht, einen Delta-
Server zu erkunden und nach den benötigten Varianten zu durchsuchen. Die Suche erfolgt
anhand des Feature-Modells und liefert als Ergebnis eine Menge von zu den Suchkriterien
kompatiblen Delta-Modellen.

Als Kommunikationsmittel kommen auf der Seite des Clients und des Explorers ks-
Bausteine zum Einsatz. Mit diesen werden Informationen und Aufträge in die entsprechen-
den Eingänge des Server-Objekts geschrieben und die Ergebnisse aus den Ausgängen ausge-
lesen. Der Austausch erfolgt über die Serialisierung der Instanz-Modelle (componentCharts)
und die hinzugefügten Aufrufe. Vorteilhaft an dieser Umsetzung ist, dass die verwendete
JSON Serialisierung sehr kompakt, durch Menschen interpretierbar und weit verbreitet ist.
Somit stehen d. h. Parser für die meisten gängigen Programmiersprachen zur Verfügung.
Eine Änderung des Kommunikationsprotokolls auf z. B. OPC UA ist durch den modularen
Aufbau einfach möglich. Dazu muss der entsprechende Baustein zum Lesen und Schreiben
ausgetauscht werden.

Über die Ein- und Ausgänge des deltaClients werden der Zielserver und der internen Zu-
stands des Bausteins angegeben. Die Hauptfunktionen sind das checkout und das commit.

117

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

Abbildung 6.1: Server, Client und Explorer Bausteine im HMI.

Mit dem checkout wird ein bestehendes Delta-Modell vom Server auf den Client herun-
tergeladen. Mit der Funktionalität commit werden Implementierungen auf dem Client in
ein Delta-Modell auf dem Server umgewandelt und dort in den Baum der Delta-Modelle
eingefügt.

Das Gegenstück dazu auf dem Server ist ein Objekt der Klasse deltaServer. Dieses stellt den
Zugangspunkt für die Clients dar und gibt die eingehenden Anfragen an die Komponenten-,
Delta- und Feature-Modelle weiter. Das Objekt stellt die Funktionalitäten commmit, check-
out und explore für das zugrunde liegende Delta-Modell bereit. So können die Funktionen
vom Client verwendet werden. Die vorgestellten Client-, Server- und Explorer-Bausteine
sind in Abbildung 6.1 dargestellt.

In Abbildung 6.2 ist der Ablauf eines checkouts mit den daran beteiligten Objekten als
UML-Sequenzdiagramm dargestellt. Auf der linken Seite der Abbildung ist der Nutzer des
Systems zu erkennen. Dabei kann es sich um einen Menschen oder eine andere Anwendung
handeln. Die weiteren dargestellten Objekte werden danach unterteilt, ob sie sich auf dem
Client (deltaClient und Komponenten-Modell) oder auf dem Server befinden (deltaServer,
Delta-Modell und Komponenten-Modell). Zu Beginn wird der deltaClient vom Nutzer pa-
rametriert. Bei den eingestellten Parametern handelt es sich um die Adresse des Servers
und des Delta-Modells. Anschließend wird der checkout unter Angabe des herunterzula-
denden Komponentensystems durch den Nutzer ausgelöst. Der Delta-Client übermittelt
die Anfrage unter Verwendung eines JSON Strings an den deltaServer. Dieser sucht das
angeforderte Delta-Modell und baut es, wenn vorhanden, zusammen. Für den Zusammen-
bau wird ermittelt, ob ein Basis-Delta zu dem Delta-Modell existiert. Ist das nicht der Fall,
werden die Delta-Operationen unter Einbeziehung des Typ-Modells angewendet und das
Instanz-Modell aufgebaut. Sollte ein Basis-Delta vorliegen, wird die Operation rekursiv auf
die Basis-Deltas angewendet bis das Root-Delta erreicht ist. Anschließend werden diese der
Reihe nach ausgeführt und das kumulierte Instanz-Modell erzeugt. Dieses wird dem delta-
Server zur Verfügung gestellt, der es serialisiert und an den deltaClient übermittelt. Dort
wird es deserialisiert und unter Einbeziehung des lokalen Typ-Modells wird aus dem emp-
fangenen Instanz-Modell das Komponentensystem erzeugt. Der erfolgreiche Abschluss des
Vorgangs oder eine Fehlermeldung wird dem Nutzer über einen Statusausgang mitgeteilt.

Analog zum checkout ist der Ablauf des commits in Abbildung 6.3 dargestellt. Dieser
startet ebenso mit dem Parametrieren des deltaClients durch den Nutzer. Anschließend
wird unter Angabe des zu übertragenden Komponentensystems, ggf. des Basis-Deltas und
der Features der Prozess gestartet. Unter Einbeziehung des Komponenten-Modells wird aus

118

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.1 Implementierung in ACPLT/RTE

Nutzer deltaClient

Parametrieren

Komponenten-ModellDelta-ModelldeltaServer

createImpl

Komponenten-Modell

checkout

Ergebnis

createComponent
applyDelta loop

Instanz-Modell

Instanz-Modell

Ergebnis

Status

Client Server

get delta

Abbildung 6.2: Sequenzdiagramm zur Beschreibung des Checkouts eines Komponentensys-
tems vom Server auf einen Client.

dem Komponentensystem das Instanz-Modell erzeugt. Dieses wird durch den deltaClient
serialisiert und an den Server geschickt. Dieser erzeugt daraus das Instanz-Modell und,
falls benötigt, das Instanz-Modell des Basis-Deltas. Dieses wird unter Einbeziehung des
Komponenten-Modells rekursiv aufgebaut. Wenn beide Instanz-Modelle vorliegen, wird das
Delta-Modell zwischen beiden gebildet. Das Basis-Delta kann dabei allerdings auch leer
sein. Das Delta-Modell wird anschließend in den Delta-Baum an der entsprechenden Stelle
eingefügt und das Feature-Modell um die entsprechenden Einträge ergänzt. Dem Nutzer
wird danach der erfolgreiche Abschluss des Vorgangs oder eine Fehlermeldung mitgeteilt.

119

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

Nutzer deltaClient

Parametrieren

Komponenten-ModellDelta-ModelldeltaServer

Ergebnis

Komponenten-Modell

commit

Ergebnis

createComponent
getBaseDelta loop

Instanz-Modell

Instanz-Modell

Status

Client Server

createDelta

createDelta

Ergebnis

createInstModell

Ergebnis

Abbildung 6.3: Sequenzdiagramm zur Beschreibung des Commits eines Komponentensystems
vom Client zu einem Server.

6.2 Anwendungsfälle

Im folgenden Abschnitt werden drei Anwendungsfälle für das Konzept und die Implemen-
tierung vorgestellt. Diese verdeutlichen exemplarisch den Nutzen des Konzepts. Das erste
Beispiel ist der Baustein für die Umsetzung von PID-Reglern. Anschließend werdend die am
Lehrstuhl für Prozesstechnik entwickelten und verwendeten Prozessführungskomponenten
als Beispiel vorgestellt. Abschließend wird am Beispiel der modularen Anlage M4P.AC ein
hybrides System betrachtet. Es ist zu berücksichtigen, dass der Aufbau eines Delta-Baums
grundsätzlich nicht eindeutig ist. Für die Nutzung bedeutet dieser Umstand, dass der Auf-
bau der Modelle eine Wahlmöglichkeit des Anwenders ist. Durch die Möglichkeiten der
Transformation kann ohne Einschränkungen zwischen den Varianten gewechselt werden.
In der Darstellung der Anwendungsfälle liegt der Fokus auf den Delta-Modellen und den
Vorteilen, die sich aus der Verwendung des Konzepts ergeben.

6.2.1 PID-Regler-Baustein

Die Gestaltung eines PID-Bausteins in verschiedenen Leitsystemen unterscheidet sich im
Hinblick auf den Funktionsumfang, die Art der Implementierung und die Nutzung. In
der Vergangenheit gab es z. B. in der VDI/VDE 3696 [VDI95] den Vorschlag für einen
Standard-PID-Regler. Da sich dieser in aktuellen Implementierungen nicht durchgesetzt
hat, wurde im Rahmen des NAMUR AK 2.2 erneut der Versuch unternommen, einen
Standard-Baustein zu spezifizieren. Da der benötigte Funktionsumfang sehr subjektiv ist
und jeder Anwender und jedes Unternehmen eigene Anwendungsszenarien vor Augen hat,
konnte sich der Arbeitskreis nur auf zwei Varianten des Reglers einigen. Aus diesem Grund
stellt der Regler ein sehr gutes Beisiel für die Nutzung des vorgestellten Konzepts dar.
Die Forderung, dass der Baustein ein einheitliches Interface und Verhalten aufweist, kann

120

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfälle

durch das Konzept erfüllt werden. Gleichzeitig kann die Funktionalität flexibel auf die
Wünsche und Erwartungen des Nutzers zugeschnitten werden.

(a) PI-Regler (b) PID-Regler (c) Server-Manager mit Delta-
und Feature-Modellen.

Abbildung 6.4: Delta-Modelle und Aufbau des Server-Managers am Beispiel von PID-Reglern.

Im Folgenden wird der Aufbau von PID-Varianten aus Komponentensystemen betrachtet.
Grundlage dafür sind Bausteine, die in der IEC 61131 spezifiziert sind. Eine Übersicht der
Varianten des PID-Reglers aus [WE15b] ist in Abbildung 4.5 dargestellt. Exemplarisch
wurde das Typ-Modell der benötigten Funktionsbausteinbibliotheken erzeugt und ausge-
hend davon die Delta-Modelle zwischen den Varianten gebildet. In Abbildung 6.4 sind
beispielhaft drei Delta-Modelle in der Ansicht eines Engineeringsystems dargestellt. Ein
Ausschnitt aus dem Root-Delta ist in Abbildung 6.4a zu erkennen. Ein Delta-Modell für
die Fortentwicklung zum PID-Regler ist in Abbildung 6.4b zu erkennen. Der Ausbau eines
Delta-Servers mit den Delta- und Feature-Modellen ist in Abbildung 6.4c zu sehen.

6.2.2 Prozessführungskomponenten

Die in Abschnitt 2.1 eingeführten Prozessführungskomponenten bestehen aus Teilsyste-
men, die in vielen Anwendungen verwendet werden können. Der Unterschied der einzelnen
Prozessführungskomponententypen zueinander ist teilweise sehr gering. Allerdings ist er so
groß, dass eine Nutzung der gleichen Komponente nicht möglich ist. Zusätzlich beinhalten

121

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

CMD

ROM

A1

A2

V

anNI

A2

A1

STEP 2

Transitions-
condition

„M1; StartD1; V=0.3“

StartD1

0.3

anNI: „C1; On; SP=1“

STEP 1

Abbildung 6.5: Prinzipieller Aufbau einer Prozessführungskomponente [WE15a]

die Komponenten orthogonal zueinander implementierbare Funktionen. Durch den gerin-
gen Abstand und die große Variantenvielfalt sind Prozessführungskomponenten ein gutes
Anwendungsgebiet für das vorgestellte Konzept. Bereits bei Anwendungsfällen mit einer
geringen Variantenvielfalt und wenigen Funktionalitäten steigt der Implementierungs- und
Wartungsaufwand ohne einen Mechanismus zur Wiederverwendung sehr stark an.

Der prinzipielle Aufbau einer Prozessführungskomponente ist in Abbildung 6.5 zu erken-
nen. Die Prozessführungskomponente besteht aus dem Ausführungsrahmen und den ent-
haltenen Komponenten. Der Rahmen stellt die Schnittstelle zur Umgebung der Kompo-
nente dar und beinhaltet die Ausführungslogik. Am oberen linken Rand ist der Eingang
für die Kommandos zur Prozessführung dargestellt. Die Kommandos werden durch den
Ausführungsrahmen an den Eingang des Automaten, der dieses Kommando verarbeitet,
zugestellt. Beispielhaft ist dargestellt, dass das Kommando StartD1 an den Eingang des
Automaten A1 übermittelt wurde. Eine Schrittkette kann ebenso ohne weitere Kapselung
in der Prozessführungskomponente realisiert werden (Step 1 und Step 2). In Step 2 ist
ein Kommando zu erkennen, das über den Ausgang anNI an eine weitere Komponente
übermittelt wird. Durch die Kommandos werden die angebotenen Dienste der Prozessfüh-
rungskomponenten aufgerufen [WTPE17].

Ein Baustein zum Erkunden und Aufrufen der angebotenen Dienste einer Prozessführungs-
komponente ist in Abbildung 6.6 dargestellt [WE17]. Der Baustein modifiziert seine eigenen
Schnittstellen so, dass sie den Parametern der Prozessführungskomponente gleichen. Dies
wird über die Erkundung der Prozessführungskomponente umgesetzt. Dafür verwendet der
Baustein die Schnittstelle zu einem Dienstsystem. Diese Schnittstelle wird in der Imple-
mentierung durch zusätzliche Bausteine realisiert. Wenn ein Kommando im Eingang CMD
vorliegt und der Eingang SEND auf TRUE gesetzt wird, wird der Dienstaufruf einschließ-
lich der Werte für die Eingangsparameter an die Prozessführungskomponente übertragen.
Die Ausgangsparameter des Bausteins werden regelmäßig über Abfragen aktuell gehal-
ten. Der Baustein ermöglicht es, aus einer IEC 61131 Umgebung über ein Dienstsystem
auf einen Diensterbringer zuzugreifen. Dafür ist der Baustein flexibel umgesetzt, um mit
unterschiedlichen Diensterbringern umgehen zu können.

122

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfälle

Titel der Präsentation | Name des Vortragenden | Organisationseinheit |

00.00.2000 | Die Fußzeile bietet Platz für einen Text über 3 Zeilen | Die Fußzeile

bietet Platz für einen Text über 3 Zeilen | Die Fußzeile bietet Platz für 3 Zeilen

BOOL

STRING

INT

ANY

ANY

ANY

EN

RESET

SEND

TARGET

CMD

SD_1

SD_2

SD_m

ENO

POSCMD

STATUS

RD_1

RD_2

RD_n

Service

Requester

BOOL

BOOL

BOOL

STRING

STRING

ANY

ANY

ANY

Abbildung 6.6: Schnittstelle eines Bausteins zum Dienstaufruf [WE17]

In Abbildung 6.7 ist der Aufbau des Basys-Demonstrators zu erkennen. Es handelt sich
dabei um die Simulation eines Transportsystems für Paletten, auf denen aufgewickelte
Metallbänder (Coils) transportiert werden.

Die Rechtecke in der Darstellung mit der Bezeichnung PEXX stellen Rollgänge dar. In
diesen befinden sich die Antriebseinheiten, um die Paletten voran zu treiben. In diesem
Beispiel existieren vier Typen von Rollgängen:

• Normal: Bidirektionaler Transport in horizontaler (Bild-)Richtung.

• Verfahrgänge: Bidirektionaler Transport in horizontaler und vertikaler
(Bild-)Richtung.

• Drehteller: Bidirektionaler Transport in horizontaler (Bild-)Richtung und Drehen des
Rollgangs um 180◦.

• Ofen: Bidirektionaler Transport in horizontaler (Bild-)Richtung und Erhitzen der
Ladung nach dem Schließen der Tore.

An der dargestellten Liste ist zu erkennen, dass die Funktionalität der verwendeten Ty-
pen in einigen Punkte deckungsgleich ist. So benötigen alle Rollgänge die Funktionalität
des bidirektionalen Transports. Die weiteren Funktionalitäten können additiv hinzugefügt
werden. Es wurden alle Rollgänge als Varianten des normalen Rollgangs mit erweiterten
Funktionalitäten betrachtet. Davon ausgehend wurden die Funktionalitäten implementiert
und die Transformationen in Form von Delta-Modellen abgelegt. In Abbildung 6.8 sind
exemplarisch zwei dieser Delta-Modelle dargestellt. Auf der linken Seite (Abbildung 6.8a)
ist ein Auszug aus dem Root-Delta für den normalen Rollgang zu erkennen. Das Delta-
Modell für die Integration der Funktionalität Drehteller in den Prozessführungsbaustein
ist auf der rechten Seite (Abbildung 6.8a) dargestellt.

Ein Vorteil dieser Herangehensweise gegenüber der vorher gängigen Praxis des Copy-and-
Modify ist, dass eine Änderung an einem Komponentensystem in alle von diesem abge-
leiteten Komponentensysteme eingefügt wird. Bei nachträglicher Änderungen an einem
Delta-Modell bzw. einem Komponentensystem ist zu prüfen, ob es sich um das Beheben

123

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

Abbildung 6.7: Übersicht über den Aufbau des verwendeten BaSys-Demonstrators.

eines Fehlers oder eine neue Variante handelt. Handelt es sich um eine neue Variante, ist das
Komponentensystem vom Ausgangssystem abgeleitet und es muss ein neues Delta-Modell
erstellt werden. Zusätzlich bietet die Herangehensweise die Möglichkeit, die Implementie-
rungen in anderen Anwendungsfällen und Projekten wiederzuverwenden, da ein Austausch
oder eine Ergänzung von Funktionalitäten leicht möglich ist. Durch die Verwendung der im-
plementierten Transformationen ist der Mehraufwand im Rahmen des Engineerings über-
schaubar und insbesondere bei Fehlerbehebungen stellt das neue Vorgehen eine deutliche
Verbesserung im Hinblick auf den Zeitaufwand dar.

(a) Aussschnitt Root-
Delta

(b) Drehteller

Abbildung 6.8: Delta-Modelle für die Beschreibung von Prozessführungsbausteinen.

124

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfälle

6.2.3 Modulare Anlage M4P.AC

Der im Folgenden beschriebene Anwendungsfall befasst sich mit der Anwendung des vor-
gestellten Konzepts auf ein hybrides System. Da es sich um ein hybrides System handelt
und die eingeführte Implementierung den Zusammenbau eines Hardwaresystems nicht un-
terstützt, ist der Anwendungsfall im rein deskriptiven Bereich angesiedelt. Trotz dieser
Einschränkung ist der Anwendungsfall für die Automatisierungstechnik relevant, da jedes
System einen Hardwareteil beinhaltet. Die Umwandlung in das konkrete Komponenten-
system benötigt in diesem Fall die Unterstützung eines Menschen bzw. einen vollständig
automatisierten Fertigungsprozess.

Beispielhaft für ein hybrides System ist die modulare Anlage M4P.Ac, die am Lehrstuhl für
Prozessleittechnik entwickelt und betrieben wird. Sie besteht aus drei Waben, die je nach
Produktionsauftrag und produziertem Produkt auf unterschiedliche Weise zusammenge-
schlossen werden können. Jede Wabe verfügt über einen anderen technischen Aufbau. Dies
bedeutet eine unterschiedliche Hardware und Automatisierungslösung.

Der beispielhafte Aufbau eines Delta-Baums für die Beschreibung solcher Module ist in
Abbildung 5.9 zu finden. Vorteilhaft bei dieser Herangehensweise ist die Nutzung von
Lösungen über die Grenzen von Herstellern hinweg. Wenn eine Hard- oder Softwarekom-
ponente ausgetauscht wird, hat dies unter Umständen Auswirkungen auf die umgebenden
Komponenten. Diese Auswirkungen können von einem erneuten Parametrieren bis zu einem
Austausch (von z. B. einem Treiberbaustein) reichen. Es ist wichtig zu berücksichtigen, dass
die Delta Varianten und die Betrachtung als Komponentensystem auf verschiedenen Hie-
rarchieebenen möglich ist. So können die unterschiedlichen Varianten eines Moduls durch
die Änderung einer Variante eines Tanks oder einer Pumpe sowie des dazugehörigen Steue-
rungssystems und der dazugehörigen Steuerung erzeugt werden. Durch die Anwendung des
Konzepts wird das Modul mit seinen Komponenten beschrieben und ebenso die Program-
mierung der Steuerungen als eine dieser Komponenten. Insbesondere bei den Steuerungen
erfolgt das Übersetzen der Komponenten-Modelle in die konkreten Implementierungen je
nach System möglicherweise anders. Dies zeigt die vielfältigen Freiheitsgrade bei der An-
wendung des Konzepts.

Für diesen Anwendungsfall wurde eine Bibliothek erstellt, die die Funktionalität der Kom-
ponenten dieses Systems in der Laufzeitumgebung nachbildet. Aus dieser wurden die Typ-
Modelle generiert. Aus den simulierten Komponentensystemen konnten anschließend die
Instanz-Modelle erzeugt werden. Beispielhaft ist ein Instanz-Modell in Abbildung 6.9b zu
erkennen. In Abbildung 6.9a ist ein Delta zur Beschreibung der modularen Anlage darge-
stellt.

125

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

(a) Root-Delta der modularen Anlage mit den Operationen. (b) Instanz-Modell der
modularen Analge

Abbildung 6.9: Delta-Modelle für die Beschreibung von Prozessführungsbausteinen.

6.3 Evaluierung der Implementierung

Im Folgenden wird zur Evaluierung der Funktionsfähigkeit der Implementierung eine Reihe
von exemplarischen Anwendungsszenarien vorgestellt. Zu jedem Anwendungsszenario wird
die Reaktion der Applikation beschrieben. Die Übersicht der Szenarien ist in Tabelle 6.1 zu
finden. Es ist zu erkennen, dass die aufgeführten Szenarien aus Normal- und Fehlerfällen
bestehen. Die Reaktion auf einen detektierten Fehler ist Anwendungs-spezifisch. So ist das
Löschen eines Objekts durch die Anwendung eines Delta-Modells, das nicht existiert, ein
Fehler. Allerdings beeinträchtigt dieser Fehler nicht die Funktionalität der Implementie-
rung. Gleichwohl ist er ein Indikator, dass die Anwendung des Delta-Modells nicht wie
vorgesehen funktioniert hat. Dies könnte zum Beispiel die Anwendung eines Delta-Modells
in einem neuen Kontext sein. Ziel der Implementierung ist in diesem Fall, den Nutzer auf
den Fehler aufmerksam zu machen und mit dem Prozess fortzufahren.

126

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6.3 Evaluierung der Implementierung

Ta
be

lle
6.
1:

Üb
er
sic

ht
üb

er
di
e
An

we
nd

un
gs
sz
en
ar
ien

Fa
llb

es
ch
re
ib
un

g
Er

ge
bn

is
de
r
A
pp

lik
at
io
n

M
od

el
le
rz
eu

gu
ng

(S
of
tw

ar
es
ys
te
m
e)

Er
ze
ug

en
ei
ne
s
Ty

p-
M
od

el
ls

au
s
ei
ne
r
Bi
bl
io
th
ek

A
nl
eg
en

de
s
M
od

el
ls

Er
ze
ug

en
de
s
In
st
an

z-
M
od

el
ls

au
s
de
m

ko
nk

re
te
n
Sy

st
em

A
nl
eg
en

de
s
M
od

el
ls

Er
ze
ug

en
de
s
In
st
an

z-
M
od

el
ls

au
s
de
m

ko
nk

re
te
n
Sy

st
em

be
if
eh
le
nd

en
Ty

p-
M
od

el
le
n
(B

la
ck
bo

x
K
om

po
ne
nt
en
)

Pa
rt
ie
lle
s
A
nl
eg
en

de
s
M
od

el
lu

nd
A
us
ga
be

de
r
Fe

hl
en
de
n

El
em

en
te
,d

ie
ni
ch
tv

er
kn

üp
fb
ar
en

Ve
rb
in
du

ng
en

al
s
K
on

se
-

qu
en
z
we

rd
en

eb
en
so

ge
m
el
de
t

Er
ze
ug

en
de
s
In
st
an

z-
M
od

el
ls

au
s
de
m

ko
nk

re
te
n
Sy

st
em

be
if
eh
le
nd

en
Ty

p-
M
od

el
le
n
(W

hi
te
bo

x-
K
om

po
ne
nt
en
)

A
nl
ag
en

de
s
en
ts
pr
ec
he
nd

en
M
od

el
ls,

A
us
ga
be

ei
ne
r
M
el
-

du
ng

,
hi
nz
uf
üg

en
de
r
W

hi
te
bo

x-
K
om

po
ne
nt
e
zu

de
n

Ty
p-

M
od

el
le
n

Er
ze
ug

en
ei
ne
s
D
el
ta
-M

od
el
ls

au
s
zw

ei
K
om

po
ne
nt
en
sy
st
em

en
A
nl
eg
en

de
s
D
el
ta
-M

od
el
ls

ve
rb
un

de
n
m
it

de
r
Ei
no

rd
nu

ng
in

ei
n
Fe

at
ur
e-
M
od

el
l

A
nw

en
du

ng
de

r
D
el
ta
-M

od
el
le

A
nw

en
de
n

ei
ne
r

ko
rr
ek
te
n

H
in
zu
fü
ge
-O

pe
ra
tio

n
(K

om
po

ne
nt
en
-In

st
an

z,
In
te
rfa

ce
-In

st
an

z)
A
us
fü
hr
un

g
de
r
O
pe

ra
tio

n

A
nw

en
de
n
ei
ne
r
H
in
zu
fü
ge
-O

pe
ra
tio

n
m
it

ei
ne
r
ex
ist

ie
re
nd

en
K
om

po
ne
nt
e

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
A
nw

en
de
n
ei
ne
r
H
in
zu
fü
ge
-O

p.
m
it

ni
ch
t
vo
rh
an

de
ne
m

K
om

po
ne
nt
en
-T

yp
N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
A
nl
eg
en

ei
ne
r
Ve

rb
in
du

ng
A
us
fü
hr
en

de
r
O
pe

ra
tio

n
A
nl
eg
en

ei
ne
r
Ve

rb
in
du

ng
zu

ei
ne
m

Po
rt

de
r
ni
ch
t
ex
ist

ie
rt

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
A
nl
eg
en

ei
ne
r
Ve

rb
in
du

ng
zu

zu
de
r
ke
in

Ty
p
ex
ist

ie
rt

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
A
nl
eg
en

ei
ne
r
Ve

rb
in
du

ng
in

de
r
fa
lsc

he
n
R
ich

tu
ng

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
Ä
nd

er
n
ei
ne
s
Pa

ra
m
et
er
s

A
us
fü
hr
en

de
r
O
pe

ra
tio

n
Ä
nd

er
n
ei
ne
s
ni
ch
t
ex
ist

ie
re
nd

en
Pa

ra
m
et
er
s

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng
Lö

sc
he
n
ei
ne
r
K
om

po
ne
nt
en
-In

st
an

z
A
us
fü
hr
en

de
r
O
pe

ra
tio

n
Lö

sc
he
n
ei
ne
r
K
om

po
ne
nt
en
-In

st
an

z
di
e
ni
ch
t
ex
ist

ie
rt

N
ich

ta
us
fü
hr
un

g
de
rO

pe
ra
tio

n
un

d
A
us
ga
be

ei
ne
rM

el
du

ng

127

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfälle

Dieses Vorgehen führt dazu, dass es zu Folgefehlern kommen kann. Ist es beispielsweise
nicht möglich, eine Komponente in der Implementierung anzulegen, ist es ebenso nicht
möglich, Verbindungen zu dieser Komponente anzulegen. Die Applikation protokolliert
alle diese Folgefehler und stellt als Ergebnis ein unvollständiges Komponentensystem zur
Verfügung. Ob dieses Ergebnis genutzt werden kann, muss der Nutzer für jeden Einzelfall
manuell entscheiden.

Die Aufstellung in Tabelle 6.1 soll einen Überblick über die implementierte Funktionalität
geben und einen Eindruck vermitteln, wozu die Applikation verwendet werden kann. Ein
Ziel ist es, die Applikation in die bestehenden Implementierungen nahtlos einzufügen und
dem Nutzer die Anwendung in konkreten Aufgaben so einfach wie möglich zu gestalten.
Daher sind die ausgegebenen Fehlermeldungen so aussagekräftig formuliert, dass der Nutzer
genau erkennen kann, wo der Fehler liegt. So wird beispielsweise der Name der Delta-
Operation und der Grund ihrer nicht ordnungsgemäßen Anwendung angegeben.

128

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

7 Diskussion der Ergebnisse

Das Ziel, ein Konzept zur Unterstützung der Wiederverwendung in komponentenbasierten
Architekturen vorzulegen, konnte erreicht werden. Durch die Berücksichtigung der tech-
nischen Komponenten und der Meta-Metamodelle bei der Entwicklung der Metamodell
kann die Integration in bestehende Architekturen erreicht werden (R1). Zusätzlich wur-
den Abläufe für die Verwendung der Modelle konform zum aktuell in der Praxis gängigen
Vorgehen vorgestellt. Das Delta-Modell erlaubt die modellbasierte Beschreibung der Va-
riabilität (R2) und die Integration von bestehenden Lösungen (R3), da die Komponenten-
und Delta-Modelle leicht nachträglich erzeugt werden können.

Durch die Nutzung des Komponenten-Modells kann von der konkreten Implementierung
abstrahiert (R4) werden. Das Komponenten-Modell kann zur Abbildung von hybriden Sy-
stemen verwendet werden (R13). Dadurch wird die Variabilität im Komponentensystem
unabhängig von den konkreten Komponenten beschrieben. So kann das in den Kompo-
nentensystemen enthaltene Wissen genutzt werden. Die Referenz vom Typ-Modell einer
Komponente zu beliebig vielen Komponenten-Typen oder anderen Vorlagen (z. B. Proto-
typen) ermöglicht die Abbildung von unterschiedlichen Versionen einer Komponente (R6).
So sind die kompatiblen Komponenten-Typen zu einem Typ-Modell explizit beschrieben.

Das Delta-Modell beschreibt nicht nur die Transformation der Komponentensysteme, son-
dern auch die Beziehungen zwischen den Delta-Modellen und somit den Varianten (R5).
Durch ein Feature-Modell werden Varianten von Produkten zusammengefasst. So wird der
Kontext von Varianten und Produkte für (potentielle) Nutzer explizit und einfach inter-
pretierbar dargestellt. Durch erkundbar abgelegte Modellinstanzen und das vorgestellte
Metamodell wird die automatisierte Interpretation der Modelle unterstützt (R12).

Der Prozess zur Integration von geänderten Varianten bzw. neuen Versionen von Kom-
ponenten wird durch die Manager-Bausteine realisiert (R7). Die vorgestellten Referenzen
zwischen den Modellen untereinander und zu den Komponentensystemen ermöglicht die ge-
naue Verfolgung der vorliegenden Komponenten sowie ihrer Abhängigkeiten. So können die
Manager-Bausteinen neue Versionen von Komponenten oder neue Varianten propagieren.
Das an die Versionsverwaltung angelehnte Konzept setzt auf in Versionsverwaltungssy-
stemen bewährte Strategien, um die geforderte Funktionalität bereitzustellen. Durch die
Verwendung eines Servers und beliebig vieler Clients wird eine Integration in verteilte Sy-
steme ermöglicht (R8). Der zentrale Server zur Bereitstellung von Varianten ist ebenso
an die Versionsverwaltung angelehnt (R9). So können die zur Wiederverwendung vorgese-
hen Artefakte innerhalb von Organisationseinheiten verbreitet werden. Eine doppelte und
somit potentiell inkonsistente Datenhaltung wird so vermieden.

Die funktionalen Anforderungen, beschrieben in Kapitel 3, werden erfüllt. Für die Wieder-
verwendung ist die Nutzung der Delta-Modelle in einem anderen Kontext nützlich. Das

129

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

7 Diskussion der Ergebnisse

Konzept stellt so einen Ansatz für die Verwaltung von Varianten in Komponentensystemen
(z. B. Funktionsbausteinnetzen) dar.

Ebenso werden die nicht-funktionalen Anforderungen erfüllt und die Integration in beste-
hende Prozesse (R10) wird durch die Berücksichtigung von Prozessen aus dem Engineering
wie der NA 35 oder dem ACPLT/SDP sichergestellt. Die Verwendung von Komponenten
als Grundlage der Wiederverwendung ermöglicht die Nutzung bestehender Paradigmen
und Sprachen (R11) aus der Automatisierungstechnik. Durch den Aufbau als Objektstruk-
turen und die Verwendung einer Laufzeitumgebung, die den Zugriff auf Objekte erlaubt,
können die Modelle Grundlage für eine automatisierte Weiterverarbeitung sein (R12).

Delta-Modelle werden selbst bei einfachen Aufgaben sehr schnell so komplex, dass sie
ohne eine automatisierte Bearbeitung schwer anzuwenden sind. Durch die Nutzung der
objektorientierten Modellierung für jede Operation werden die Modelle selbst relativ groß.
Andere Ansätze für die Abbildung der Delta-Modelle sind, eine andere Form der Mo-
dellierung der Deltas oder eine optimierte Form der Implementierung des vorgestellten
Modells zu verwenden. Gleichwohl ändert sich für den Nutzer dadurch nicht die Menge
der Informationen, die ihm bei der Anwendung des Konzepts zur Verfügung gestellt wer-
den. Dementsprechend muss diese Informationsmenge durch ein Engineering-Tool für den
Nutzer handhabbar gemacht werden. Durch eine automatisierte Informationsverarbeitung
kann der Nutzer unterstützt werden.

Positiv an Delta-Modellen ist, dass die Objekte der Wiederverwendung von der Art und
der Größe frei gewählt werden können. So können je nach Anwendungsfall die wieder-
verwendbaren Objekte möglichst gut definiert werden (vgl. [Bör89]). Das Zusammenfassen
und Trennen von Delta-Modellen ermöglicht einen Aufgaben- und Zielgruppen-orientierten
Einsatz von Objekten der Wiederverwendung. So entsteht eine Grundlage zu einem Wie-
derverwendungsmanagement in komponentenorientierten Systemen.

Im vorgestellten Konzept wurde in zwei Punkten von den Delta-Modellen in der Software-
technik abgewichen. Es wurde eine Reihenfolge in die Delta-Operationen integriert, da es
bei der Anwendung auf hierarchische Systeme erforderlich ist, zunächst die überlagerten
Komponenten anzulegen. Zusätzlich wurden die Regeln für die Anwendung der Delta-
Operationen enger gefasst. So ist ist es nicht regelkonform, eine Hinzufügen-Operation auf
ein Objekt anzuwenden, das bereits existiert. Dies stellt einen Fehler dar, der möglicher-
weise ein Indiz für ein größeres Problem ist. Daher muss der Sachverhalt protokolliert und
dem Nutzer zur Kenntnis gebracht werden.

Die beschriebene Variabilität beschränkt sich auf Variabilität in den Modellen. So kann
durch die Einführung einer neuen Version mit einem größeren Funktionsumfang ein neues
Komponentensystem realisiert werden. Dieses wird nur dann im Modell als neue Variante
dargestellt, wenn eine neue Komponente im Typ-Modell angelegt wird. Erfolgt dies nicht,
entsteht zwar ein neues Produkt, allerdings wird dieses nicht modelliert. Dies kann zu
einem unvollständigen Modell führen, wenn das Typ-Modell nicht aktualisiert wird.

Die Einführung des vorgestellten Konzepts erfordert neben der technischen auch eine or-
ganisatorische Umsetzung. Das bedeutet, dass die Abläufe in einer Organisationseinheit so
gestaltet werden müssen, dass alle Komponentensysteme auf einem zentralen Server abge-
legt werden. Den dafür nötigen Prozess zu definieren, ist relativ einfach möglich. Damit der
Prozess in der täglichen Praxis verwendet und der Nutzen durch die Wiederverwendung

130

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

realisiert wird, müssen die Anwender für diesen Prozess gewonnen werden. Dies kann bei-
spielsweise durch eine nahtlose Integration in bestehende Tools und die Herausarbeitung
des Nutzens für den Einzelnen passieren.

Wird das im Rahmen dieser Arbeit entwickelte Konzept an den vorgestellten Grundsätzen
zur ordnungsgemäßen Modellierung gemessen, so werden die relevanten Kriterien erfüllt.
Die entwickelten Metamodelle sind semantisch und syntaktisch richtig aufgestellt. Grundla-
ge dafür ist das SIC-Modell und das ACPLT/RTE bzw. OPC UA Metamodell. Die Modelle
bilden nur die für den beschriebenen Anwendungsfall nötigen Aspekte klar und übersicht-
lich ab. Daher werden die Forderungen nach Klarheit und Relevanz ebenso erfüllt. Da alle
benötigten Sichten auf den Anwendungsfall durch die Metamodelle adressiert werden, ist
ein systematischer Aufbau gegeben. Die Forderungen nach der Wirtschaftlichkeit und der
Vergleichbarkeit sind im Rahmen dieser Arbeit von untergeordneter Bedeutung. Bei der
Verwendung der Modelle im Rahmen des vorgestellten Konzepts besteht allerdings durch
die Wiederverwendung ein enormes Einsparpotential.

131

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde ein Konzept zur Unterstützung der Wiederverwendung
von komponentenbasierten Architekturen vorgestellt. Für die Wiederverwendung wurden
Delta-Modelle zur Beschreibung der Variabilität genutzt. Kern des Konzepts sind ein Me-
tamodell für Komponenten und ein Metamodell für Delta-Modelle. Ausgehend von diesen
Modellen wurden Transformationen und Prozesse zu deren Nutzung entwickelt. Die Delta-
Modelle sollen in der dezentralen Entwicklung zur Nutzung von existierenden Lösungen
verwendet werden. Dafür wurden eine Architektur und Prozesse zur Anwendung vorge-
stellt.

Die Erprobung des Konzepts wurde anhand einer prototypischen Implementierung de-
monstriert und es wurden Randbedingungen und Empfehlungen für seine Verwendung
formuliert. Neben den Datenmodellen und Transformationen wurde ein Abstandsmaß für
Delta-Modelle entwickelt, mit dessen Hilfe entschieden werden kann, ob Produkte Vari-
anten voneinander sind. Zusätzlich wurde ein Vorschlag gemacht, wie durch die farbliche
Kodierung der Komponenten in einer Visualisierung Varianten dargestellt werden können.

Zukünftige Arbeiten können sich mit der Anwendung des Konzepts in der Fertigungstech-
nik beschäftigen. Dafür muss der Aufbau der dort verwendeten Systeme und die spezifi-
schen Prozesse dieser Domäne berücksichtigt werden. Die Nutzung von Fertigungszellen
mit verschieden Systemen und einem hohen Anteil gleicher Komponenten bietet sich dafür
an. In diesem Bereich existieren bereits verschiedene Ansätze, die Funktionalitäten dieser
Zelle und der darin verbauten Aktoren zu klassifizieren. Die Nutzung von Komponenten-
Modellen kann zu einem Nutzen von Strukturmodellen und den damit verbundenen Vor-
teilen für die automatisierte Interpretation der Topologie in der Fertigungsautomation
führen.

Die Weiterentwicklung der Architektur für die dezentrale Wiederverwendung könnte von
der Server-Client-Struktur hinzu einer Peer-to-Peer-Struktur könnte Untersucht werden.
Für gewisse Anwendungsfälle könnte der Verzicht auf einen zentralen Server Vorteile bieten.

Ebenso ist die Integration von virtuellen Komponenten in ein Komponentensystem ein
weiterer Ansatz, der verfolgt werden kann. Dies kann im Bereich des Testens von hybriden
Systemen einen Fortschritt bedeuten oder die virtuelle Inbetriebnahme erleichtern. Im
Kontext von Industrie 4.0 wird die virtuelle Inbetriebnahme als Weg zur Reduktion von
Kosten und Aufwänden diskutiert.

Das Konzept kann eine Grundlage für die Verteilung von Funktionalität zwischen unter-
schiedlichen Rechenknoten sein. Die Varianten mit ihren unterschiedlichen Anforderungen
an die Performance und den individuellen Features kann zu einer Anpassung oder Ver-
schiebung von Last genutzt werden. Dies ist ein Ansatz, die verbaute Hardware besser
auszulasten bzw. Lastspitzen durch Verteilung der Last auf andere Knoten abzufedern.

132

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[AE17] Azarmipour, Mahyar ; Epple, Ulrich: Interoperabilität von OPC UA und
DDS; Nichtredigierter Manuskriptdruck. In: Automation 2017 : technology
networks processes : 18. Leitkongress der Mess- und Automatisierungstechnik
: Kongresshaus Baden-Baden, 27. und 28. Juni 2017 / VDI VDE, VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik Bd. 2293. Düsseldorf : VDI
Verlag GmbH, Jun 2017 (VDI-Berichte), 87-88. – Datenträger: 1 USB-Stick
1.1

[Alb03] Albrecht, Harald: On Meta-Modeling for Communication in Operational
Process Control Engineering. In: at–Automatisierungstechnik/Methoden und
Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 51 (2003),
Nr. 7/2003, S. 339–340 4.4.1

[App90] Appel, Andrew W.: A runtime system. In: Lisp and Symbolic Computation
3 (1990), Nr. 4, S. 343–380 2.1.1

[ASE08] Abel, Dirk (Hrsg.) ; Spohr, Gerd-Ulrich (Hrsg.) ; Epple, Ulrich (Hrsg.):
Integration von Advanced Control in der Prozessindustrie: Rapid Control Pro-
totyping. 1. Aufl. Weinheim : Wiley-VCH, 2008. http://dx.doi.org/
10.1002/9783527626373. http://dx.doi.org/10.1002/9783527626373. –
ISBN 3527312056 2.1.1, 2.1.3

[Ava06] Avak, Björn: Variant management of modular product families in the market
phase 4.3.1

[Bat05] Batory, Don: Feature models, grammars, and propositional formulas. In:
International Conference on Software Product Lines Springer, 2005, S. 7–20
4.3.2

[BFK+17] Bloch, Henry ; Fay, Alexander ; Knohl, Torsten ; Hoernicke, Mario
; Bernshausen, Jens ; Hensel, Stephan ; Hahn, Anna ; Urbas, Leon:
A microservice-based architecture approach for the automation of modular
process plants. In: Emerging Technologies and Factory Automation (ETFA),
2017 22nd IEEE International Conference on IEEE, 2017, S. 1–8 2.1.1, 2.1.4,
5.1.1

[BHH+16] Bernshausen, J ; Haller, A ; Holm, T ; Hoernicke, M ; Obst,
M ; Ladiges, J: Namur–Modul Type Package. Modulbeschreibung
für die effiziente Automatisierung modularer Anlagen. In: atp edition–
Automatisierungstechnische Praxis 58 (2016), S. 1–2 2.2.1

133

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Bör89] Börstler, Jürgen: Wiederverwendbarkeit und Softwareentwicklung-
Probleme, Lösungsansätze und Bibliographie. RWTH, Fachgruppe Informatik,
1989 4.2, 4.2.1, 7

[Brä04] Bräutigam, Lars-Peter: Kostenverhalten bei Variantenproduktion. Wies-
baden : Deutscher Universitätsverlag, 2004 (Schriften zum Produktions-
management). http://dx.doi.org/10.1007/978-3-322-81758-7. http:
//dx.doi.org/10.1007/978-3-322-81758-7. – ISBN 3–8244–8109–X 4.3.1

[BRS95] Becker, Jörg ; Rosemann, Michael ; Schütte, Reinhard: Grundsätze
ordnungsmäßiger modellierung. In: Wirtschaftsinformatik 37 (1995), Nr. 5,
S. 435–445 4.4, 4.4, 4.4.1

[BSF+09] Barth, M. ; Strube, M. ; Fay, A. ; Weber, P. ; Greifeneder, J.: Object-
oriented engineering data exchange as a base for automatic generation of si-
mulation models. In: 2009 35th Annual Conference of IEEE Industrial Elec-
tronics, 2009. – ISSN 1553–572X, S. 2465–2470 4.4.1

[BSG12] Buchholz, Meike ; Souren, Rainer ; Gelbrich, Katja: Theorie der Vari-
antenvielfalt: Ein produktions- und absatzwirtschaftliches Erklärungsmodell:
Zugl.: Ilmenau, Techn. Univ., Diss., 2012. Wiesbanden : Springer Gabler,
2012 (Springer Gabler Research). – ISBN 978–3–8349–4199–2 4.3.1, 4.3.1,
4.3.3

[BUN] Bundesministerium für Wirtschaft und Energie: Plattform Industrie 4.0.
http://www.plattform-i40.de/I40/Navigation/DE/Home/home.html 1.1

[CGR+12] Czarnecki, Krzysztof ; Grünbacher, Paul ; Rabiser, Rick ; Schmid,
Klaus ; Wasowski, Andrzej: Cool Features and Tough Decisions: A Com-
parison of Variability Modeling Approaches. In: Proceedings of the 6th In-
ternational Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’12), ACM, 2012, S. 173–182 4.3, 4.3.2

[CHS10] Clarke, Dave ; Helvensteijn, Michiel ; Schaefer, Ina: Abstract Delta
Modeling. In: SIGPLAN Not. 46 (2010), Oktober, Nr. 2, 13–22. http://
dx.doi.org/10.1145/1942788.1868298. – DOI 10.1145/1942788.1868298.
– ISSN 0362–1340 4.3.2, 4.6, 4.3.3, 8

[CSFP08] Collins-Sussman, Ben ; Fitzpatrick, Brian W. ; Pilato, C M.: Version
control with subversion. O’Reilly, 2008 4.2.3

[CW98] Conradi, Reidar ; Westfechtel, Bernhard: Version models for software
configuration management. In: ACM Computing Surveys (CSUR) 30 (1998),
Nr. 2, S. 232–282 4.2.3

[DB+07] Dalgarno, Mark ; Beuche, Danilo u. a.: Variant management. In: 3rd
British Computer Society Configuration Management Specialist Group Con-
ference Bd. 1, 2007 4.3.1

134

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[DF04] Draht, R ; Fedai, M: CAEX-ein neutrales Datenaustauschformat für
Anlagendaten-Teil 1 und 2. In: Automatisierungstechnische Praxis-atp 46
(2004), Nr. 2, S. 52–56 2.2.1

[Die02] Dietzsch, Andreas: Systematische Wiederverwendung in der Software-
Entwicklung. Wiesbaden and s.l. : Deutscher Universitätsverlag, 2002.
http://dx.doi.org/10.1007/978-3-663-11580-9. http://dx.doi.org/
10.1007/978-3-663-11580-9. – ISBN 978–3–8244–2151–0 2.1.2, 2.2.1, 2.2.1,
4.2.1

[DIN02] DIN Deutsches Institut für Normung e.V.: Technische Produktdokumentation
- CAD-Modelle, Zeichnungen und Stücklisten - Teil 1: Begriffe. Berlin, 2002
4.3.1, 4.3.1

[DIN14] DIN Deutsches Institut für Normung e.V.: DIN SPEC 40912: Kernmodelle -
Beschreibung und Beispiele. Berlin, 2014 2.2.1, 1, 2.2.1, 2.8, 2.2.1, 4.4, 4.7,
4.4.1, 4.4.1, 4.4.3, 4.12, 4.4.3, 4.13, 5.1.1, 8

[DLPH08] Drath, Rainer ; Luder, Arndt ; Peschke, Jorn ; Hundt, Lorenz:
AutomationML-the glue for seamless automation engineering. In: Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE International
Conference on IEEE, 2008, S. 616–623 4.4.2

[DMG+17] Drath, Rainer ; Malakuti, Somayeh ; Grüner, Sten ; Grothoff, Juli-
an A. ; Wagner, Constantin A. ; Epple, Ulrich ; Hoffmeister, Michael
; Zimmermann, Patrick: Die Rolle der Industrie 4.0 „Verwaltungsschale“
und des „digitalen Zwillings“ im Lebenszyklus einer Anlage : Navigationshil-
fe, Begriffsbestimmung und Abgrenzung. In: Automation 2017 : technology
networks processes : 18. Leitkongress der Mess- und Automatisierungstechnik
: Kongresshaus Baden-Baden, 27. und 28. Juni 2017 / VDI VDE, VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik Bd. 2293. Düsseldorf : VDI
Verlag GmbH, Jun 2017 (VDI-Berichte), 93-94. – Datenträger: 1 USB-Stick
1.1, 2.1.3, 2.2.1, 4.2.4

[Dud] Dudenredaktion ; Dudenverlag (Hrsg.): Version. https://www.duden.
de/node/703510/revisions/1668452/view 4.2.3

[EE13] Evertz, Lars ; Epple, Ulrich: Laying a basis for service systems in process
control. In: 18th Conference on Emerging Technologies & Factory Automation
(ETFA), 2013, S. 1–8 1.1, 2.1.4, 4.4.3

[EMPA17] Epple, Ulrich ; Mertens, Martin ; Palm, Florian ; Azarmipour, Mahyar:
Using Properties as Semantic Base for Interoperability. In: IEEE transactions
on industrial informatics (2017), 9 Seiten. http://dx.doi.org/10.1109/
TII.2017.2741339. – DOI 10.1109/TII.2017.2741339. – ISSN 1941–0050. –
Online-First 3.2, 4.4.3

[Ens01] Enste, Udo: Fortschritt-Berichte VDI Reihe 8, Meß-, Steuerungs- und Rege-
lungstechnik. Bd. 884: Generische Entwurfsmuster in der Funktionsbaustein-
technik und deren Anwendung in der operativen Prozeßführung: Zugl.: Aa-

135

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

chen, Techn. Hochsch., Diss., 2000 . Als Ms. gedr. Düsseldorf : VDI-Verl.,
2001. – ISBN 3183884089 2.2.1, 4.1, 5.1.3

[Epp08] Epple, Ulrich: Begriffliche Grundlagen der leittechnischen Modellwelt. In:
Automatisierungstechnische Praxis : atp 50 (2008), Nr. 4, 83-91. http://
publications.rwth-aachen.de/record/133133. – ISSN 0178–2320 2.2.1,
4.4

[FA09] Früh, Karl F. (Hrsg.) ; Ahrens, Wolfgang (Hrsg.): Handbuch der Pro-
zessautomatisierung: Prozessleittechnik für verfahrenstechnische Anlagen. 4.,
überarb. Aufl. München : Oldenbourg, 2009. – ISBN 9783835631427 2.1,
2.1.1, 2.1.1, 3.1

[FFVH12] Feldmann, Stefan ; Fuchs, Julia ; Vogel-Heuser, Birgit: Modularity,
variant and version management in plant automation–future challenges and
state of the art. In: DS 70: Proceedings of DESIGN 2012, the 12th Interna-
tional Design Conference, Dubrovnik, Croatia, 2012 4.2.3, 4.2.4

[FLK+14] Fuchs, Julia ; Legat, Christoph ; Kernschmidt, Konstantin ; Frank,
Timo ; Vogel-Heuser, Birgit: Interdisziplinärer Produktlinienansatz zur
Unterstützung der Wiederverwendbarkeit im Maschinen-und Anlagenbau. In:
13. Fachtagung: Entwurf komplexer Automatisierungssysteme (EKA 2014),
2014 4.2.4

[FR07] France, Robert ; Rumpe, Bernhard: Model-driven development of complex
software: A research roadmap. In: 2007 Future of Software Engineering IEEE
Computer Society, 2007, S. 37–54 4.4.2

[FVHF+15] Fay, Alexander ; Vogel-Heuser, Birgit ; Frank, Timo ; Eckert, Karin
; Hadlich, Thomas ; Diedrich, Christian: Enhancing a model-based en-
gineering approach for distributed manufacturing automation systems with
characteristics and design patterns. In: Journal of Systems and Software 101
(2015), S. 221–235. http://dx.doi.org/10.1016/j.jss.2014.12.028. –
DOI 10.1016/j.jss.2014.12.028 1.1

[Gas12] Gasser, Tom M. (Hrsg.): Berichte der Bundesanstalt für Strassenwe-
sen F, Fahrzeugtechnik. Bd. 83: Rechtsfolgen zunehmender Fahrzeugauto-
matisierung: Gemeinsamer Schlussbericht der Projektgruppe ; Bericht zum
Forschungsprojekt F 1100.5409013.01 . Bremerhaven : Wirtschaftsverl.
NW Verl. für neue Wiss, 2012 http://bast.opus.hbz-nrw.de/volltexte/
2012/587/. – ISBN 978–3–86918–189–9 2.1

[GE13] Grüner, Sten ; Epple, Ulrich: Paradigms for unified runtime systems in
industrial automation. In: Control Conference (ECC), 2013 European, 2013,
3925–3930 6.1

[GHJV11] Gamma, Erich ; Helm, Richard ; Johnson, Ralph E. ; Vlissides, John:
Design patterns: Elements of reusable object-oriented software. 39. printing.
Boston : Addison-Wesley, 2011 (Addison-Wesley professional computing se-
ries). – ISBN 0201633612 4.4.1

136

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[GJHV11] Gamma, Erich ; Johnson, Ralph ; Helm, Richard ; Vlissides, John: Ent-
wurfsmuster: Elemente wiederverwendbarer objektorientierter Software. Pear-
son Deutschland GmbH, 2011 4.2.2

[GPE16] Grothoff, Julian A. ; Palm, Florian ; Epple, Ulrich: Modelltransformati-
on als Softwareadapter für OPC Unified Architecture. In: 7. Jahreskolloquium
"Kommunikation in der Automation": 30.11.2016 : KommA 2016 Kommuni-
kation in der Automation / Jürgen Jasperneite, Ulrich Jumar (Hrsg.) ; eine
Kooperation von: inIT, IFAK. Lemgo, 2016 4.4.1

[GPP16] Grüner, Sten ; Pfrommer, Julius ; Palm, Florian: RESTful Industrial
Communication with OPC UA. In: IEEE Transactions on Industrial In-
formatics (2016), S. 1. http://dx.doi.org/10.1109/TII.2016.2530404. –
DOI 10.1109/TII.2016.2530404. – ISSN 1551–3203 2.2.2, 6.1

[GR95] Goldberg, Adele ; Rubin, Kenneth S.: Succeeding with Objects. Decision
Frameworks for Project Management. In: Reading, Mass.: Addison-Wesley,|
c1995 (1995) 4.2.1

[Grü17] Grüner, Sten: Ressourcenadaptive Anwendungen für die operative Prozess-
leittechnik, RWTH Aachen, Dissertation, 2017 2.1.1, 2.1.1, 2.1.1

[Har87] Harel, David: Statecharts: A visual formalism for complex systems. In:
Science of computer programming 8 (1987), Nr. 3, S. 231–274 5.4.2

[HC01] Heineman, George T. ; Councill, William T.: Component-based software
engineering: Putting the pieces together. Boston, Mass. : Addison-Wesley,
2001. – ISBN 0–201–70485–4 2.2.1, 2.10, 8

[HHK+13] Haber, Arne ; Hölldobler, Katrin ; Kolassa, Carsten ; Look, Markus ;
Rumpe, Bernhard ; Müller, Klaus ; Schaefer, Ina: Engineering delta mo-
deling languages. In: Proceedings of the 17th International Software Product
Line Conference ACM, 2013, S. 22–31 4.3.3

[HKR+11] Haber, Arne ; Kutz, Thomas ; Rendel, Holger ; Rumpe, Bernhard ;
Schaefer, Ina: Delta-oriented architectural variability using monticore. In:
Proceedings of the 5th European Conference on Software Architecture: Com-
panion Volume ACM, 2011, S. 6 4.3.3

[HMW12] Helvensteijn, Michiel ; Muschevici, Radu ; Wong, Peter Y.: Delta mo-
deling in practice: a Fredhopper case study. In: Proceedings of the Sixth In-
ternational Workshop on Variability Modeling of Software-Intensive Systems
ACM, 2012, S. 139–148 4.3.3

[HRRS11] Haber, Arne ; Rendel, Holger ; Rumpe, Bernhard ; Schaefer, Ina: Delta
Modeling for Software Architectures. In: Dagstuhl-Workshop MBEES: Mo-
dellbasierte Entwicklung eingebetteter Systeme VII Citeseer, 2011 4.3.3

137

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[HSF+13] Holm, Thomas ; Schröck, Sebastian ; Fay, Alexander ; Jäger, Tobias
; Löwen, Ulrich: Engineering von “Mechatronik und Software“ in auto-
matisierten Anlagen: Anforderungen und Stand der Technik. In: Software
Engineering (Workshops), 2013, S. 261–272 2.1, 2.1.3, 2.1.3, 2.2.2, 3.1

[IEC04] International Electrotechnical Commission: IEC 61131:Programmable con-
trollers - Part 1: General information . 2004 2.3, 3.1, 5.1.2, 8

[IEC05] International Electrotechnical Commission: IEC 61499: Function blocks. 2005
2.1.1, 2.1.1, 2.1.4, 2.2.1, 2.2.2

[IEC10] International Electrotechnical Commission: IEC 62541. OPC Unified Archi-
tecture Part 1-10, Release 1.0. 2010 2.2.2, 4.4, 4.4.1, 4.4.1

[IEC14a] International Electrotechnical Commission: IEC 61131: Internationales Elek-
trotechnisches Wörterbuch - Teil 351: Leittechnik. 2014 4.4

[IEC14b] International Electrotechnical Commission: IEC 61131:Programmable con-
trollers - Part 3: Programming languages. 3rd. 2014 5, 2.1.1, 2.4, 2.2.2, 5.1.4,
5.3.3, 8

[IEC14c] International Electrotechnical Commission: IEC 62714: Engineering data ex-
change format for use in industrial automation systems engineering - Au-
tomation markup language - Part 1: Architecture and general requirements.
Juni 2014 4.4.2

[IEC16] International Electrotechnical Commission: IEC 62424: Representation of
process control engineering - Requests in P&I diagrams and data exchange
between P&ID tools and PCE-CAE tools. Juli 2016 2.2.1, 2.2.1, 2.2.2, 3.2,
4.4.2, 5.2.4, 5.3.2

[IEC17] International Electrotechnical Commission: IEC 61360:Standard data element
types with associated classification scheme - Part 1: Definitions - Principles
and methods. 3rd. 2017 4.4.3

[ISO11] International Electrotechnical Commission: ISO/IEC 25010: Systems and
software engineering – Systems and software Quality Requirements and Eva-
luation (SQuaRE) – System and software quality models. 2011 4.1, 4.2

[ISO12] International Electrotechnical Commission: ISO/IEC 19505-1: Information
technology – Object Management Group Unified Modeling Language (OMG
UML) – Part 1: Infrastructure. April 2012 4.4.2

[JT00] John, Karl-Heinz ; Tiegelkamp, Michael: SPS-Programmierung mit IEC
61131-3: Konzepte und Programmiersprachen, Anforderungen an Program-
miersysteme, Entscheidungshilfen. 3., neubearb. Aufl. Berlin and Heidelberg
and New York and Barcelona and Hongkong and London and Mailand and Pa-
ris and Singapur and Tokio : Springer, 2000 (VDI-Buch). – ISBN 3540664459
2.1.1, 2.1.1, 2.2.2

138

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Kam17] Kampert, David: Operative Verwendung merkmalbasierter Information in
der Automatisierung; Als Manuskript gedruckt. Düsseldorf, RWTH Aachen
University, Dr., 2017. http://dx.doi.org/10.18154/RWTH-2017-06589. –
DOI 10.18154/RWTH–2017–06589. – 1 Online–Ressource (X, 124 Seiten) :
Illustrationen, Diagramme S. – Auch veröffentlicht auf dem Publikationsser-
ver der RWTH Aachen University; Dissertation, RWTH Aachen University,
2017 2.1.1, 4.4

[KBD+08] Krämer, Stefan ; Bamberg, Andreas ; Dünnebier, Guido ; Hagenmeyer,
Veit ; Piechottka, Uwe ; Schmitz, S: Prozessführung: Beispiele, Erfahrung
und Entwicklung. In: Chemie Ingenieur Technik 80 (2008), Nr. 9, S. 1341–
1342 2.1

[KCH+90] Kang, Kyo C. ; Cohen, Sholom G. ; Hess, James A. ; Novak, William E. ;
Peterson, A S.: Feature-oriented domain analysis (FODA) feasibility study
/ Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst. 1990. –
Forschungsbericht 4.3.2

[KCH+92] Kang, Kyo C. ; Cohen, Sholom ; Holibaugh, Robert ; Perry, James
; Peterson, A S.: A reuse-based software development methodology /
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEE-
RING INST. 1992. – Forschungsbericht 4.2.1

[KCJ+10] Karnouskos, Stamatis ; Colombo, Armando W. ; Jammes, Francois ;
Delsing, Jerker ; Bangemann, Thomas: Towards an architecture for
service-oriented process monitoring and control. In: IECON 2010 - 36th An-
nual Conference of IEEE Industrial Electronics, 2010, S. 1385–1391 2.2, 2.1.1,
8

[KE12] Kampert, David ; Epple, Ulrich: Kernmodelle für die Systembeschreibung -
Ein Konzept zur Vereinfachung. In: Atp-Edition : automatisierungstechnische
Praxis 54 (2012), Nr. 7/8, 40-48. http://publications.rwth-aachen.de/
record/140375. – ISSN 0178–2320 2.1

[KLD02] Kang, Kyo C. ; Lee, Jaejoon ; Donohoe, Patrick: Feature-Oriented Product
Line Engineering. In: IEEE software 19 (2002), Nr. 4, S. 58–65 4.3.2

[KLL+14] Kowal, Matthias ; Legat, Christoph ; Lorefice, David ; Prehofer,
Christian ; Schaefer, Ina ; Vogel-Heuser, Birgit: Delta modeling for
variant-rich and evolving manufacturing systems. In: Nair, Anil R. (Hrsg.) ;
Prähofer, Herbert (Hrsg.) ; Zoitl, Alois (Hrsg.) ; Jetley, Raoul (Hrsg.) ;
Dubey, Alpana (Hrsg.) ; Kumar, Atul (Hrsg.): the 1st International Work-
shop on Modern Software Engineering Methods for Industrial Automation,
2014, S. 32–41 4.3.1, 4.3.3

[Koe85] Koen, Billy V.: Definition of the Engineering Method. American Sisiety for
Engineering Education, 1985 2.1.3

[KPST14] Kowal, Matthias ; Prehofer, Christian ; Schaefer, Ina ; Tribastone,
Mirco: Model-based Development and Performance Analysis for Evolving

139

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

Manufacturing Systems. In: at - Automatisierungstechnik 62 (2014), Nr. 11.
http://dx.doi.org/10.1515/auto-2014-1098. – DOI 10.1515/auto–2014–
1098. – ISSN 0178–2312 4.3.3

[Kru95] Kruchten, Philippe B.: The 4+ 1 view model of architecture. In: IEEE
software 12 (1995), Nr. 6, S. 42–50 4.11, 4.4.2, 8

[Kru04] Kruchten, Philippe: The rational unified process: an introduction. Addison-
Wesley Professional, 2004 2.2.1, 4.4, 4.4.2

[Lee08] Lee, Edward A.: Cyber physical systems: Design challenges. In: Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE Inter-
national Symposium on, 2008, S. 363–369 1.1

[Lim94] Lim, W. C.: Effects of reuse on quality, productivity, and economics. In:
IEEE Software 11 (1994), Nr. 5, S. 23–30. http://dx.doi.org/10.1109/
52.311048. – DOI 10.1109/52.311048. – ISSN 0740–7459 2.1.2, 4.2, 4.2,
4.3.3

[Lin94] Lingnau, Volker: Betriebswirtschaftliche Studien. Bd. 58: Variantenmanage-
ment: Produktionsplanung im Rahmen einer Produktdifferenzierungsstrategie:
Zugl.: Berlin, Techn. Univ., Diss., 1994 . Berlin : Schmidt, 1994. – ISBN 3–
503–03619–9 4.3.1, 4.3.1

[LKS16] Lity, Sascha ; Kowal, Matthias ; Schaefer, Ina: Higher-order Delta Mo-
deling for Software Product Line Evolution. In: Proceedings of the 7th Inter-
national Workshop on Feature-Oriented Software Development. New York,
NY, USA : ACM, 2016 (FOSD 2016). – ISBN 978–1–4503–4647–4, 39–48
4.3.3

[LM06] Leitner, Stefan-Helmut ; Mahnke, Wolfgang: OPC UA–service-
oriented architecture for industrial applications. (2006). http:
//www2.cs.uni-paderborn.de/cs/ag-engels/GI/ORA2006-Papers/
leitner-final.pdf 4.9, 8

[Löf11] Löffler, Carina: IPA-IAO Forschung und Praxis. Bd. 519: Systematik der
strategischen Strukturplanung für eine wandlungsfähige und vernetzte Pro-
duktion der variantenreichen Serienfertigung: Zugl.: Stuttgart, Univ., Diss.,
2011 . Heimsheim : Jost-Jetter, 2011 http://nbn-resolving.de/urn:nbn:
de:bsz:93-opus-70492. – ISBN 978–3–939890–90–4 2.1.4

[LS17] Lackes, Richard ; Siepermann, Markus ; Springer Gabler Verlag
(Hrsg.): Gabler Wirtschaftslexikon. http://wirtschaftslexikon.gabler.
de/Archiv/74918/wiederverwendbarkeit-v8.html. Version: 2017 4.3

[LU17] Leon Urbas, Christian K. u.: Namur Open Architecture. In: atp edition 59
(2017), Nr. 01-02, 20–37. http://dx.doi.org/10.17560/atp.v59i01-02.
620. – DOI 10.17560/atp.v59i01–02.620. – ISSN 2364–3137 1.1

140

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Lun03] Lunze, Jan: Automatisierungstechnik: Methoden für die Überwachung und
Steuerung kontinuierlicher und ereignisdiskreter Systeme ; ... mit 74 An-
wendungsbeispielen und 84 Übungsaufgaben. München : Oldenbourg, 2003.
– ISBN 3486274309 2.1, 3.1

[Mah14] Mahler, Carsten: Automatisierungsmodule für ein funktionsorientiertes Au-
tomatisierungsengineering. (2014) 4.2.4, 4.5

[MB00] Mcfarlane, Duncan C. ; Bussmann, Stefan: Developments in holonic pro-
duction planning and control. In: Production Planning & Control 11 (2000),
Nr. 6, S. 522–536. http://dx.doi.org/10.1080/095372800414089. – DOI
10.1080/095372800414089. – ISSN 0953–7287 1.1

[Mer12] Mertens, Martin: Fortschritt-Berichte VDI / Reihe 8 Mess-, Steuerungs-
und Regelungstechnik. Bd. 1207: Verwaltung und Verarbeitung merkmalba-
sierter Informationen: Vom Metamodell zur technologischen Realisierung: Aa-
chen, Techn. Hochsch., Diss., 2011 . Aachen : Hochschulbibliothek Rheinisch-
Westfälische Technischen Hochschule Aachen, 2012 http://nbn-resolving.
de/urn:nbn:de:hbz:82-opus-39896. – ISBN 9783185207082 4.4, 4.4.3

[Mey88] Meyer, Bertrand: Object-oriented software construction. Bd. 2. Prentice
hall New York, 1988 1.1, 4.2

[Mey09] Meyer, Bertrand: Object-oriented software construction. 2. ed., 15. print.
Upper Saddle River, NJ : Prentice Hall PTR, 2009. – ISBN 0136291554 1.2,
4.2, 4.2

[MPH+07] Metzger, Andreas ; Pohl, Klaus ; Heymans, Patrick ; Schobbens, Pierre-
Yves ; Saval, Germain: Disambiguating the Documentation of Variability
in Software Product Lines: A Separation of Concerns, Formalization and Au-
tomated Analysis. In: 15th IEEE International Requirements Engineering
Conference (RE 2007), 2007, S. 243–253 4.3.2

[NAM96] NAMUR Arbeitskreis 1.6: NA 63 - Package Units. 1996 2.1.2, 2.2.2

[NAM02] NAMUR Arbeitskreis 1.9: NE 58 - Abwicklung von qualifizierungspflichtigen
PLT - Projekten. 2002 2.1.1

[NAM03] NAMUR Arbeitskreis 1.1: NA 35 - Abwicklung von PLT-Projekten. 2003
2.1.3, 2.6, 2.1.3, 8

[NAM08] NAMUR Arbeitskreis 1.11: NE 121 - Qualitätssicherung leittechnischer Sy-
steme. 2008 2.1.3, 3.1

[NAM13] NAMUR Arbeitskreis 1.12: NE 148 - Anforderungen an die Automatisie-
rungstechnik durch die Modularisierung verfahrenstechnischer Anlagen. 2013
2.1.2

[NAM14] NAMUR Arbeitskreis 2.2: NE 152 - Regelgütemanagement: Überwachung und
Optimierung der Basisregelung von Produktionsanlagen. 2014 3.1

141

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[NAM16] NAMUR Arbeitskreis 1.11: NE 160 - Ein Referenzmodell für allgemeine
Prozedurbeschreibungen. 2016 4.4, 4.4.3

[ODU13] Obst, Michael ; Doherr, Falk ; Urbas, Leon: Wissensbasiertes Assistenzsy-
stem für modulares Engineering. In: at - Automatisierungstechnik 61 (2013),
Nr. 2, S. 103–108. http://dx.doi.org/10.1524/auto.2013.0011. – DOI
10.1524/auto.2013.0011. – ISSN 0178–2312 4.2.4, 4.5

[OMG15] Object Managment Group: OMG Unified Modeling Language. http://www.
omg.org/spec/UML/2.5. Version: 2015. – Version 2.5 2.2.1, 2.2.1, 2.9, 8

[OMG16] Object Managment Group: Meta Object Facility (MOF) 2.5.1 Core Specifica-
tion. http://www.omg.org/spec/MOF/2.5.1. Version: 2016. – Version 2.5.1
4.4.1, 4.8, 4.4.1, 8

[ORA] ORACLE: SVN Workflow. https://docs.oracle.com/middleware/1212/
core/MAVEN/config_svn.htmMAVEN8826 4.2.3, 4.1, 8

[Ott09] Otte, Stefan: Version control systems. In: Computer Systems and Telematics
(2009) 4.2.3

[PBL05] Pohl, Klaus ; Böckle, Günter ; Linden, Frank: Software Product Line
Engineering: Foundations, Principles, and Techniques. Berlin, Heidelberg
: Springer-Verlag Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/
3-540-28901-1. http://dx.doi.org/10.1007/3-540-28901-1. – ISBN 3–
540–24372–0 4.3.1, 4.2, 4.3.1, 4.4, 4.3.2, 8

[PE94] Polke, Martin ; Epple, Ulrich: Prozessleittechnik: Mit 8 Tabellen. 2., völlig
überarb. und stark erw. Aufl. München und Wien : Oldenbourg, 1994. – ISBN
3486225499 2.1, 2.1.1, 2.2.2

[PE17] Palm, Florian ; Epple, Ulrich: openAAS - Die offene Entwicklung der Ver-
waltungsschale. In: Automation 2017 : technology networks processes : 18.
Leitkongress der Mess- und Automatisierungstechnik : Kongresshaus Baden-
Baden, 27. und 28. Juni 2017 / VDI VDE Gesellschaft Mess- und Automati-
sierungstechnik Bd. 2293. Düsseldorf : VDI Verlag GmbH, Jun 2017 (Verein
Deutscher Ingenieure: VDI-Berichte), 103-104. – Datenträger: 1 USB-Stick
2.1.4, 2.1.4, 2.2.2, 4.4.3

[PGGS16] Pfrommer, Julius ; Grüner, Sten ; Goldschmidt, Thomas ; Schulz,
Dirk: A common core for information modeling in the Industrial Internet of
Things. In: at - Automatisierungstechnik 64 (2016), Nr. 9. http://dx.doi.
org/10.1515/auto-2016-0071. – DOI 10.1515/auto–2016–0071. – ISSN
0178–2312 4.4

[PGP+15] Palm, Florian ; Grüner, Sten ; Pfrommer, Julius ; Graube, Markus ;
Urbas, Leon: Open Source as Enabler for OPC UA in Industrial Automation.
In: Proceeedings of 2015 IEEE 20th Conference on Emerging Technologies &
Factory Automation (ETFA), 2015. – ISBN 978–1–4673–7929–8 1.1

142

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[PSU+14] Pfrommer, Julius ; Schleipen, Miriam ; Usländer, Thomas ; Epple,
Ulrich ; Heidel, Roland ; Urbas, Leon ; Sauer, Olaf ; Beyerer, Jürgen:
Begrifflichkeiten um Industrie 4.0 : Ordnung im Sprachwirrwarr. In: Ent-
wurf komplexer Automatisierungssysteme - EKA 2014 : Beschreibungsmittel,
Methoden, Werkzeuge und Anwendungen ; 13. Fachtagung mit Tutorium, 14.
bis 15. Mai 2014 in Magdeburg / Ulrich Jumar; Christian Diedrich (Hrsg.).
Magdeburg : ifak Institut für Automation und Kommunikation e.V., 2014, 8
S. 4.4.1

[Rie17] Riedel, Maik: Ein Beitrag zur wissensbasierten Unterstützung bei der Aus-
wahl technischer Ressourcen: Repräsentation und Auswertung von Prinziplö-
sungen auf Basis multidimensionaler, heterogener, vernetzter Merkmalräume.
(2017) 5.1.1

[SAG+17] Schuh, Günther ; Anderl, Reiner ; Gausemeier, Jürgen ; Ten Hompel,
Michael ; Wahlster, Wolfgang: Industrie 4.0 Maturity Index: Die digitale
Transformation von Unternehmen gestalten. Herbert Utz Verlag, 2017 1.1,
1.1, 2.1.4, 2.2.2

[Sam97] Sametinger, Johannes: Software engineering with reusable components:
With 26 tables. Berlin : Springer, 1997. – ISBN 3–540–62695–6 2.2.1

[SBB+10] Schaefer, Ina ; Bettini, Lorenzo ; Bono, Viviana ; Damiani, Ferruccio ;
Tanzarella, Nico: Delta-oriented programming of software product lines.
In: International Conference on Software Product Lines Springer, 2010, S.
77–91 4.3.3

[Sch10] Schaefer, Ina: Variability Modelling for Model-Driven Development of Soft-
ware Product Lines. In: VaMoS 10 (2010), S. 85–92 4.3.3, 4.3.3

[Sch16a] Schüller, Andreas: Ein Referenzmodell zur Beschreibung allgemeiner Pro-
zeduren im leittechnischen Umfeld. Düsseldorf, RWTH Aachen Universi-
ty, Dissertation, 2016. http://publications.rwth-aachen.de/record/
686692. – XIV, 148 Seiten : Diagramme S. – Als Manuskript gedruckt. -
Weitere Reihe: Lehrstuhl für Prozessleittechnik der RWTH Aachen; Disser-
tation, RWTH Aachen University, 2016 4.4, 6.1

[Sch16b] Schröck, Sebastian: Interdisziplinäre Wiederverwendung im Engineering
automatisierter Anlagen: Anforderungen, Konzept und Umsetzungen für die
Prozessindustrie. VDI Verlag GmbH, 2016 2.1.3, 4.2.1, 4.2.2, 4.2.4, 4.3.1,
4.3.1, 4.3.2

[Sch18] Schaefer, Ina: A Personal History of Delta Modelling. In: Müller, Peter
(Hrsg.) ; Schaefer, Ina (Hrsg.): Principled Software Development: Essays
Dedicated to Arnd Poetzsch-Heffter on the Occasion of his 60th Birthday.
Cham : Springer International Publishing, 2018. – ISBN 978–3–319–98046–1
4.5

143

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[SCZ+16] Shi, Weisong ; Cao, Jie ; Zhang, Quan ; Li, Youhuizi ; Xu, Lanyu: Edge
Computing: Vision and Challenges. In: IEEE Internet of Things Journal 3
(2016), S. 637–646 2.1.4

[SDM95] Steyaert, Patrick ; De Meuter, Wolfgang: A marriage of class-and object-
based inheritance without unwanted children. In: European Conference on
Object-Oriented Programming Springer, 1995, S. 127–144 4.2.2

[SEE09] Schlütter, M. ; Epple, U. ; Edelmann, T.: On Service-Orientation as a
New Approach for Automation Environments. In: Proceedings MATHMOD
09 Vienna (2009) 1.1, 8

[SLU88] Stein, Lynn A. ; Lieberman, Henry ; Ungar, David: A shared view of
sharing: the treaty of Orlando. Brown University, Department of Computer
Science, 1988 4.2.2

[SRC+12] Schaefer, Ina ; Rabiser, Rick ; Clarke, Dave ; Bettini, Lorenzo ;
Benavides, David ; Botterweck, Goetz ; Pathak, Animesh ; Trujil-
lo, Salvador ; Villela, Karina: Software diversity: State of the art and
perspectives. In: International Journal on Software Tools for Technolo-
gy Transfer 14 (2012), Nr. 5, S. 477–495. http://dx.doi.org/10.1007/
s10009-012-0253-y. – DOI 10.1007/s10009–012–0253–y. – ISSN 1433–2779
4.3.1, 4.3.2, 4.3.2, 4.3.2, 4.3.2, 4.3.2, 4.3.3

[SRVK10] Sprinkle, Jonathan ; Rumpe, Bernhard ; Vangheluwe, Hans ; Karsai,
Gabor: 3 Metamodelling. In: Model-Based Engineering of Embedded Real-
Time Systems. Springer, 2010, S. 57–76 4.4.1, 4.4.1

[SSS17] Schuster, Sven ; Seidl, Christoph ; Schaefer, Ina: Towards a Deve-
lopment Process for Maturing Delta-oriented Software Product Lines. In:
Proceedings of the 8th ACM SIGPLAN International Workshop on Feature-
Oriented Software Development. New York, NY, USA : ACM, 2017 (FOSD
2017). – ISBN 978–1–4503–5518–6, 41–50 4.3.3

[TE18] Trotha, Christian ; Epple, Ulrich: Assistenzsysteme in der Prozessindu-
strie : Ein Versuch der Klassifikation. In: [19. Leitkongress der Mess- und
Automatisierungstechnik, 2018-07-03 - 2018-07-04, Baden-Baden, Germany]
19. Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden (Ger-
many), 3 Jul 2018 - 4 Jul 2018, 2018, 529-542 2.1

[UDKO12] Urbas, Leon ; Doherr, Falk ; Krause, Annett ; Obst, Michael: Modu-
larisierung und Prozessführung. In: Chemie Ingenieur Technik 84 (2012),
Nr. 5, S. 615–623. http://dx.doi.org/10.1002/cite.201200034. – DOI
10.1002/cite.201200034. – ISSN 0009286X 2.1.1, 4.2.4

[VDI95] Verein Deutscher Ingenieure: VDI/VDE 3696 - Herstellerneutrale Konfigu-
rierung von Prozeßleitsystemen . 1995. – zrückgezogen 6.2.1

144

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[VG07] Voelter, Markus ; Groher, Iris: Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development. In: 11th Inter-
national Software Product Line Conference (SPLC 2007), 2007, S. 233–242
4.3.1, 4.3.2

[VH09] Vogel-Heuser, B: Visions of automation engineering in 2020. In: Automa-
tion Technology in Practice (atp) (2009) 3.2, 4.2.3

[VHDB13] Vogel-Heuser, Birgit ; Diedrich, Christian ; Broy, Manfred: Anforde-
rungen an CPS aus Sicht der Automatisierungstechnik. In: at – Automatisie-
rungstechnik 61 (2013), Nr. 10. http://dx.doi.org/10.1515/auto.2013.
0061. – DOI 10.1515/auto.2013.0061. – ISSN 0178–2312 2.1, 2.1, 2.1.3, 2.1.4,
3.1, 8

[VHDF+14] Vogel-Heuser, Birgit ; Diedrich, Christian ; Fay, Alexander ; Jeschke,
Sabine ; Kowalewski, Stefan ; Wollschlaeger, Martin ; Göhner, Peter:
Challenges for Software Engineering in Automation. In: Journal of Software
Engineering and Applications 07 (2014), Nr. 05, S. 440–451. http://dx.doi.
org/10.4236/jsea.2014.75041. – DOI 10.4236/jsea.2014.75041. – ISSN
1945–3116 1.1, 2.1, 2.1.3, 2.1.4, 2.2.2, 2.2.2, 3.1, 4.4.1

[VHDFG13] Vogel-Heuser, Birgit ; Diedrich, Christian ; Fay, Alexander ; Göhner,
Peter: Anforderungen an das Software-Engineering in der Automatisierungs-
technik. In: Software Engineering, 2013, S. 51–66 2.1, 8

[VHON18] Vogel-Heuser, B. ; Ocker, F. ; Neumann, E. M.: Maturity variations
of PLC-based control software within a company and among companies from
the same industrial sector. In: 2018 IEEE Industrial Cyber-Physical Systems
(ICPS), 2018, S. 283–290 3.2, 4.5

[VWB+09] Vajna, Sandor ; Weber, Christian ; Bley, Helmut ; Zeman, Klaus ; He-
henberger, Peter: Grundlagen der Modellbildung. In: CAx für Ingenieure
(2009), S. 97–157 4.4

[WE15a] Wagner, Constantin ; Epple, Ulrich: Sprechende Kommandos als Grundla-
ge moderner Prozessführungsschnittstellen. In: AUTOMATION 2015. Baden-
Baden, 2015 2.1.1, 2.1.4, 4.1, 6.1, 6.5, 8

[WE15b] Wagner, Constantin ; Epple, Ulrich: Variant Management for Control
Blocks. In: Proceedings of the IEEE 20th International Conference on Emer-
ging Technologies and Factory Automation. Piscataway, NJ : IEEE, Sep 2015
4.1, 4.5, 6.2.1, 8

[WE17] Wagner, Constantin ; Epple, Ulrich: Integration von Serviceschnittstel-
len in Funktionsbausteinarchitekturen; Nichtredigierter Manuskriptdruck. In:
Automation 2017 : technology networks processes : 18. Leitkongress der Mess-
und Automatisierungstechnik : Kongresshaus Baden-Baden, 27. und 28. Juni
2017 / VDI VDE, VDI/VDE-Gesellschaft Mess- und Automatisierungstech-
nik Bd. 2293. Düsseldorf : VDI Verlag GmbH, Jun 2017 (VDI-Berichte),
37-38. – Datenträger: 1 USB-Stick 1.1, 2.1.4, 4.1, 5.1.1, 6.1, 6.2.2, 6.6, 8

145

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Web14] Weber, Klaus H.: Engineering verfahrenstechnischer Anlagen: Praxishand-
buch mit checklisten und beispielen. Heidelberg : Springer Vieweg, 2014 (VDI-
Buch). http://search.ebscohost.com/login.aspx?direct=true&scope=
site&db=nlebk&db=nlabk&AN=846203. – ISBN 978–3–662–43528–1 1.1,
2.1.3, 2.1.3, 3.1

[WES87] Woodfield, S. N. ; Embley, D. W. ; Scott, D. T.: Can Programmers
Reuse Software? In: IEEE Software 4 (1987), July, Nr. 4, S. 52–59. http:
//dx.doi.org/10.1109/MS.1987.231064. – DOI 10.1109/MS.1987.231064.
– ISSN 0740–7459 4.2

[WGE16] Wagner, Constantin ; Grüner, Sten ; Epple, Ulrich: Portabilität und Wie-
derverwendbarkeit von auf Funktionsbausteinnetzwerken basierenden Anwen-
dungen. In: Entwurf komplexer Automatisierungssysteme. Magdeburg, 2016.
– ISBN 978–3–944722–35–1 4.1, 4.2.2, 4.2.4

[WGE+17] Wagner, Constantin ; Grothoff, Julian ; Epple, Ulrich ; Drath, Rainer
; Malakuti, Somayeh ; Gruner, Sten ; Hoffmeister, Michael ; Zimer-
mann, Patrick: The role of the Industry 4.0 asset administration shell and
the digital twin during the life cycle of a plant. In: 22nd IEEE Internatio-
nal Conference on Emerging Technologies and Factory Automation (ETFA),
2017, S. 1–8 2.1.3, 2.1.4, 2.7, 2.2.1, 2.2.1, 3.1, 4.1, 4.4.1, 4.4.2, 8

[WGE+18] Wagner, Constantin ; Grothoff, Julian ; Epple, Ulrich ; Grüner, Sten ;
Wenger, Monika ; Zoitl, Alois: Ein Beitrag zu einem einheitlichen Enginee-
ring für Laufzeitumgebungen. In: Automation 2018 : Seamless Convergence of
Automation & IT : 19. Leitkongress der Mess- und Automatisierungstechnik
, 2018 4.4.3, 4.14, 5.1.1, 8

[WGKO15] Wahler, Michael ; Gamer, Thomas ; Kumar, Atul ; Oriol, Manuel: FA-
SA: A software architecture and runtime framework for flexible distributed
automation systems. In: Journal of Systems Architecture 61 (2015), Nr. 2, S.
82–111 4.4.1

[WKS+16] Wagner, Constantin ; Kampert, David ; Schüller, Andreas ; Palm,
Florian ; Grüner, Sten ; Epple, Ulrich: Model based synthesis of au-
tomation functionality. In: at - Automatisierungstechnik 64 (2016), Nr. 3.
http://dx.doi.org/10.1515/auto-2015-0094. – DOI 10.1515/auto–2015–
0094. – ISSN 0178–2312 1.1, 3.2, 4.1, 4.4.1, 4.4.1, 4.10, 6.1, 8

[WSFE16] Wagner, Constantin ; Schüller, Andreas ; Fleischacker, Christopher ;
Epple, Ulrich: An Educational Framework for Process Control Theory and
Engineering Tools. In: [The 11th IFAC Symposium on Advances in Control
Education, 01.06.2016-03.06.2016, Bratislava, Slovakia] The 11th IFAC Sym-
posium on Advances in Control Education, Bratislava (Slovakia), 1 Jun 2016
- 3 Jun 2016, 2016 4.1

[WTE+17] Wagner, Constantin ; Trotha, Christian W. ; Epple, Ulrich ; Metzul,
Alfred ; Debus, Kai ; Christoph, Helle: Requirements for the Next Ge-
neration Automation Solution of Rolling Mills. In: [43rd Annual Conference

146

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

of the IEEE Industrial Electronics Society (IES), IECON 2017, 2017-10-29 -
2017-11-01, Peking, Peoples R China] 43rd Annual Conference of the IEEE
Industrial Electronics Society (IES), Peking (Peoples R China), 29 Oct 2017
- 1 Nov 2017, 2017 3.1, 4.1, 4.3.1

[WTPE17] Wagner, Constantin ; Trotha, Christian von ; Palm, Florian ; Epple,
Ulrich: Fundamentals for the next Generation of Automation Solutions of
the Fourth Industrial Revolution. In: [The 2017 Asian Control Conference -
ASCC 2017, 2017-12-17 - 2017-12-20, Gold Coast, Australia], 2017 2.5, 2.1.1,
2.1.3, 2.2.2, 4.1, 6.1, 6.2.2, 8

[YGE13] Yu, Liyong ; Grüner, Sten ; Epple, Ulrich: An engineerable procedure
description method for industrial automation. In: IEEE 18th Conference on
Emerging Technologies & Factory Automation (ETFA), 2013, S. 1–8 2.1.3,
4.4.1, 6.1

[YQE10] Yu, Liyong ; Quirós, Gustavo ; Epple, Ulrich: Service-Oriented Process
Control for Complex Multifunctional Plants: Concept and Case Study. In:
ETFA 2010: 15th IEEE International Conference on Emerging Technologies
and Factory Automation. Bilbao : IEEE, 2010 4.1

147

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

powered by VDI Verlag

D a s T e c h n i k K a r r i e r e N e w s - P o r t a l f ü r I n g e n i e u r e .

Mit dem Gehaltstest für Ingenieure überprüfen Sie schnell, ob Ihr Einkommen

den marktüblichen Kondi tionen entspricht. Er zeigt Trends auf und

gibt Ihnen Orientierung, z. B. für Ihr nächstes Gehaltsgespräch.

Und Ihre individuelle Auswertung können Sie jederzeit bequem aktualisieren.

J e T z T K o s T e N f r e I T e s T e N u N T e r :
w w w . I N g e N I e u r . D e / g e h a l T

Testen Sie Ihr Gehalt.

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-526608-9

https://doi.org/10.51202/9783186266088 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:55:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186266088

	Cover
	1 Einführung
	1.1 Motivation
	1.2 Problemdefinition und Lösungsweg
	1.3 Aufbau der Arbeit

	2 Grundlagen und Stand der Technik
	2.1 Grundlagen der Automatisierungstechnik
	2.1.1 Aufbau von Dezentralen Prozessleitsystemen
	2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie
	2.1.3 Engineering von automatisierten Systemen
	2.1.4 Quo vadis Automatisierungstechnik? – Ein Ausblick im Zeitalter von Industrie 4.0

	2.2 Komponentenbasierte Architekturen
	2.2.1 Der Komponentenbegriff
	2.2.2 Komponentenbasierte Architekturen in der Automatisierungstechnik

	2.3 Zwischenfazit

	3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik
	3.1 Besonderheiten in der Automatisierungstechnik
	3.2 Anforderungen an das Konzept

	4 Stand der Wissenschaft
	4.1 Eigene Vorarbeiten
	4.2 Grundlagen der Wiederverwendung
	4.2.1 Gegenstand der systematischen Wiederverwendung
	4.2.2 Arten der Wiederverwendung
	4.2.3 Versionen und Versionierung
	4.2.4 Wiederverwendung in der Automatisierungstechnik

	4.3 Grundlagen der Variantenbeschreibung
	4.3.1 Varianten und Variabilität
	4.3.2 Variabilitätsmodelle
	4.3.3 Delta-Modelle in der Softwaretechnik

	4.4 Modellierungsgrundlagen
	4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der Interoperabilität
	4.4.2 Modellierungssichten
	4.4.3 Modelle in der Automatisierungstechnik

	4.5 Diskussion des Stands der Wissenschaft

	5 Wiederverwendung in komponentenbasierten Architekturen
	5.1 Komponenten-Metamodell - Basis für die Wiederverwendung
	5.1.1 Modellbeschreibung
	5.1.2 Anwendungsregeln für die Komponenten-Metamodelle
	5.1.3 Einordnung des Komponenten-Metamodells
	5.1.4 Abgebildete Implementierungen

	5.2 � – Metamodell
	5.2.1 Modellbeschreibung
	5.2.2 Variantenbeschreibung mit Delta-Modellen
	5.2.3 Verketten von Delta-Modellen
	5.2.4 Visualisierung
	5.2.5 Mapping in den Problemraum

	5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung
	5.3.1 Überblick über das Konzept
	5.3.2 Modelltransformationen
	5.3.3 Gegenstand der Wiederverwendung
	5.3.4 Die verteilte Nutzung der Modelle
	5.3.5 Verwendung in der Praxis

	5.4 Kritische Betrachtung des Konzepts
	5.4.1 Added Values
	5.4.2 Randbedingungen
	5.4.3 Handlungsempfehlungen

	6 Prototypische Realisierung und Anwendungsfälle
	6.1 Implementierung in ACPLT/RTE
	6.1.1 Umsetzung der Modelle
	6.1.2 Realisierung der dezentralen Struktur

	6.2 Anwendungsfälle
	6.2.1 PID-Regler-Baustein
	6.2.2 Prozessführungskomponenten
	6.2.3 Modulare Anlage M4P.AC

	6.3 Evaluierung der Implementierung

	7 Diskussion der Ergebnisse
	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

