Fortschritt-Berichte VDI

oy

Reihe 8
Mess-, M.Sc. Constantin Wagner,
Steuerungs- und Karben

Regelungstechnik

Nr. 1266 Konzept zur Unter-
stitzung der
dezenfralen Wieder-
verwendung in
komponentenbasierten
Systemen der
operativen Leittechnik

Lehrstuhl fir
Prozessleittechnik

AACHENTER der RWTH Aachen

https://doi.org/10.51202/9783186266088

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

“Konzept zur Unterstiitzung der dezentralen Wiederverwendung in
komponentenbasierten Systemen der operativen Leittechnik®

Von der Fakultat fiir Georessourcen und Materialtechnik
der Rheinisch-Westfilischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von M. Sc.

Constantin August Wilhelm Wagner

aus Berlin.

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Alexander Fay

Tag der mundlichen Priiffung: 17. Mai 2019

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

IT

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

tar

mit, flir oder In KI-

https://doi.org/10.51202/9783186266088

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- M.Sc. Constantin Wagner,
und Regelungstechnik Karben

[NFr. 1266 | Konzept zur Unter-
stitzung der
dezentralen Wieder-
verwendung in
komponentenbasierten
Systemen der
operativen Leittechnik

Lehrstuhl fir
Prozessleittechnik
AAC

ENER der RWTH Aachen

https://doi.org/10.51202/9783186266088

Wagner, Constantin

Konzept zur Unterstitzung der dezentralen Wiederverwendung in
komponentenbasierten Systemen der operativen Leittechnik
Fortschr-Ber. VDI Reihe 08 Nr. 1266. Disseldorf: VDI Verlag 2019.
160 Seiten, 54 Bilder, 3 Tabellen.

ISBN 978-3-18-526608-9 ISSN 0178-9546,

€ 5700/VDI-Mitgliederpreis € 51,30.

Fir die Dokumentation: Prozessleittechnik — Wiederverwendung — Variantenmodell - Kompo-
nentensysteme — Delta-Modellierung

Die Wiederverwendung von Teilldsungen in komponentenbasierten Systemen der Automatisie-
rungsfechnik findet in der Praxis, wenn Uberhaupt, wenig systematisch statt. In dieser Arbeit wird
ein Konzept zur Beschreibung und Wiederverwendung von Komponentensystemen vorgestellt.
Grundlagen des Konzepts sind eine auf Delta-Modellen basierende Variantenbeschreibung und
ein Modell zur Abstraktion von Komponentensystemen. Dadurch ist es mdglich, Komponenten-
sysfeme unabhéngig von deren konkreter Redlisierung zu beschreiben und wiederzuverwen-
den. Fir die Anwendung in der Praxis wird zusétzlich ein Mechanismus zur Bekanntmachung
und Verteilung der Wiederverwendungsgegensténde vorgestellt. Dieser besteht aus Prozessen

zur Anwendung der Modelle sowie der dafir notwendigen Dienste. Das Konzept wurde proto-
typisch realisiert und an Software- und hybriden Systemen erprobt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

[German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
[{German National Bibliography); detailed bibliographic data is available via Intemet at
www.dnb.de.

D82 (Diss. RWTH Aachen University, 2019)
Tag der mindlichen Priffung: 17. Mai 2019

© VDI Verlag GmbH - Dissseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopie], der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersefzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789546
ISBN 978-3-18-526608-9

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Vorwort

Die vorliegende Arbeit entstand wihrend meiner Zeit als Mitarbeiter am Lehrstuhl fiir
Prozessleittechnik der RWTH Aachen. Auf diese Jahre blicke ich mit Dankbarkeit fiir die
Unterstiitzung und die gewéhrten Chancen zurtick. Ich mochte mich an dieser Stelle bei
allen bedanken, die mir wiahrend dieser Zeit zur Seite gestanden haben.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. Ulrich Epple fiir die Unterstiitzung
meines Promotionsvorhabens. Die konstruktive Atmosphére am Lehrstuhl und der ausge-
zeichnete fachliche Austausch mit ihm bildeten die Basis fir den erfolgreichen Abschluss
meiner Arbeit. Durch die gebotenen Freirdume konnte ich unterschiedliche Facetten der
Automatisierungstechnik kennenlernen und so meinen Horizont erweitern.

Bei Herrn Professor Dr.-Ing. Alexander Fay, Inhaber der Professur fiir Automatisierungs-
technik der Helmut-Schmidt-Universitdt / Universitiat der Bundeswehr, mochte ich mich
fiir die Ubernahme der Rolle des Zweitgutachters und lehrreichen Gespriche bedanken.

Ich danke meinen Kollegen fiir die gute Zusammenarbeit und die interessanten, teils auch
kontroversen, Diskussionen. Bei Frau Milescu bedanke ich mich insbesondere fiir die orga-
nisatorische Hilfe und die gute Zusammenarbeit bei der Lehrstuhlverwaltung.

Bei den Mitgliedern des Arbeitskreises 2.2 , Prozessfiihrung® der NAMUR bedanke ich
mich fiir den lehrreichen fachlichen Austausch. Durch die Gespriache habe ich wertvolle
Einblicke in die Praxis erhalten.

Bei meiner Freundin Katharina Schiiller méchte ich mich fir die Unterstiitzung wahrend
der vergangenen Jahre bedanken. Insbesondere wéhrend der intensiven Phasen war sie mir
ein grofler Rickhalt.

Abschlieffend danke ich meinen Eltern Albertine und Michael Wagner sowie meiner Schwe-
ster Charlotte fiir die Unterstiitzung wihrend meines Studiums und anschliefend wéhrend
meiner Promotion. Immer standen sie mir mit Rat und Tat zur Seite.

Karben, im Mai 2019
Constantin Wagner

111

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

v

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

tar

mit, flir oder In KI-

https://doi.org/10.51202/9783186266088

Inhaltsverzeichnis

Abkiirzungen
Kurzfassung
Abstract

1 Einfiihrung
1.1 Motivation
1.2 Problemdefinition und Losungsweg
1.3 Aufbau der Arbeit

2 Grundlagen und Stand der Technik

2.1 Grundlagen der Automatisierungstechnik
2.1.1 Aufbau von Dezentralen Prozessleitsystemen

2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie
2.1.3 Engineering von automatisierten Systemen
2.1.4 Quo vadis Automatisierungstechnik? — Ein Ausblick im Zeitalter von
Industrie 4.0o
2.2 Komponentenbasierte Architekturen oL
2.2.1 Der Komponentenbegriff
2.2.2 Komponentenbasierte Architekturen in der Automatisierungstechnik
2.3 Zwischenfazito

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik
3.1 Besonderheiten in der Automatisierungstechnik
3.2 Anforderungen an das Konzept

4 Stand der Wissenschaft
4.1 Eigene Vorarbeiten
4.2 Grundlagen der Wiederverwendung oL
4.2.1 Gegenstand der systematischen Wiederverwendung
4.2.2 Arten der Wiederverwendung
4.2.3 Versionen und Versionierung
4.2.4 Wiederverwendung in der Automatisierungstechnik
4.3 Grundlagen der Variantenbeschreibungo L.
4.3.1 Varianten und Variabilitdt 0000
4.3.2 Variabilitatsmodelleo oo
4.3.3 Delta-Modelle in der Softwaretechnik

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

Vil

Vil

D UV =

(<]

10
17
19

22
24
24
30
32

34
34
36

39
39
40
41
43
43
45
46
47
51
55

https://doi.org/10.51202/9783186266088

Inhaltsverzeichnis

4.4 Modellierungsgrundlageno L 59
4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der Inter-

operabilitdt 61

4.4.2 Modellierungssichten oL 67

4.4.3 Modelle in der Automatisierungstechnik 69

4.5 Diskussion des Stands der Wissenschaft 0. 4

5 Wiederverwendung in komponentenbasierten Architekturen 76

5.1 Komponenten-Metamodell - Basis fiir die Wiederverwendung 78

5.1.1 Modellbeschreibung oL 78

5.1.2 Anwendungsregeln fiir die Komponenten-Metamodelle 82

5.1.3 Einordnung des Komponenten-Metamodells 84

5.1.4 Abgebildete Implementierungen 84

52 A—Metamodell 87

5.2.1 Modellbeschreibung o 88

5.2.2 Variantenbeschreibung mit Delta-Modellen 90

5.2.3 Verketten von Delta-Modellen 92

5.24 Visualisierungo oo 95

5.2.5 Mapping in den Problemraum 96

5.3 Gesamtkonzept fir die variantenbasierte Wiederverwendung 97

5.3.1 Uberblick iiber das Konzept 97

5.3.2 Modelltransformationen Lo 100

5.3.3 Gegenstand der Wiederverwendung 104

5.3.4 Die verteilte Nutzung der Modelle 105

5.3.5 Verwendung in der Praxis 108

5.4 Kritische Betrachtung des Konzepts 111

5.4.1 Added Values 111

5.4.2 Randbedingungen 112

5.4.3 Handlungsempfehlungen 113

6 Prototypische Realisierung und Anwendungsfille 115

6.1 Implementierung in ACPLT/RTE 115

6.1.1 Umsetzung der Modelle 116

6.1.2 Realisierung der dezentralen Struktur 117

6.2 Anwendungsfalle 120

6.2.1 PID-Regler-Baustein o000 L. 120

6.2.2 Prozessfithrungskomponenten 121

6.2.3 Modulare Anlage MAP.AC L. 125

6.3 Evaluierung der Implementierung, 126

7 Diskussion der Ergebnisse 129

8 Zusammenfassung und Ausblick 132

Literaturverzeichnis 133

VI
IP 218.73.216.38, am 20.01.2026, 12:55:25. @ Inhalt.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Abkiirzungen

DDS Data Distribution Service

ERP Enterprise Resource Planning

I4.0 Industrie 4.0

MES Manufacturing Execution System
MTP Module Type Package

MPC Model Predictive Control
NAMUR Interessengemeinschaft Automatisierungstechnik der Prozessindustrie
OMG Object Management Group

OPC UA OPC Unified Architecture
PLS Prozessleitsystem

POE Programmorganisationseinheit
SOA Service orientierte Architektur

SPS Speicherprogrammierbare Steuerung

UML Unified Modeling Language

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

VII

https://doi.org/10.51202/9783186266088

Kurzfassung

Im Rahmen der Entwicklung von Automatisierungslésungen sind der iiberwiegende Anteil
der durchgefithrten Arbeiten repetitiver Art. Diese wiederholenden Arbeiten sind fehler-
anfillig und entscheiden nur in geringem Mafle iiber den Projekterfolg. Daher lohnt es
sich, die Mitarbeiter bei diesen Arbeiten zu unterstiitzen, so dass mehr Ressourcen fir
andere Tatigkeiten zur Verfligung stehen. Die entwickelten Automatisierungslosungen ah-
neln sich sehr haufig funktional oder auch ihre Implementierung betreffend. Dies fiihrt zur
Wiederverwendung von Losungen bzw. Teillosungen. Diese Wiederverwendung ist meist
unsystematisch und nicht explizit dokumentiert. Daraus ergeben sich Herausforderungen
fiir die Erweiterung oder Anderung von mehrfach genutzten Lésungen. Im Zuge des demo-
grafischen Wandels und der damit einhergehenden Verknappung von qualifizierten Arbeits-
kraften muss die Arbeit effizienter werden. Eine Moglichkeit die Effizienz zu verbessern ist
die Nutzung von Methoden und Tools zur Unterstiitzung der Wiederverwendung.

In der Automatisierungstechnik ist der Einsatz von komponentenbasierten Systemen (z. B.
Funktionsbausteine IEC 61131 oder Package Units) sehr verbreitet. Dabei handelt es sich
um hybride Systeme, d.h. sowohl um Hard- als auch um Softwaresysteme. Der Fokus der
Automatisierungstechnik liegt auf der Betrachtung von hybriden Systemen.

In der vorliegenden Arbeit wird ein Konzept zur Unterstiitzung der Wiederverwendung
in komponentenbasierten Architekturen vorgestellt. Als erstes wird dafiir der Begriff der
Komponente sowohl fiir Hard- als auch fiir Softwarekomponenten gleichermaflen definiert.
Damit ist es moglich, die unterschiedlichen Komponentenarten gleich zu behandeln. Ergeb-
nis dieser Betrachtung ist ein Metamodell fiir die Beschreibung von Komponentensystemen.
Das Komponenten-Modell besteht aus einem Teil zur Beschreibung von Komponententy-
pen und einem zweiten Teil zur Beschreibung von Systemen, die aus Instanzen zusam-
mengesetzt sind. Kern des Konzepts zur Unterstiitzung der Wiederverwendung ist das
Delta-Modell aus der Informatik. Dieser Ansatz beschreibt die Variabilitdt im Problem-
raum. So kénnen implementierungsspezifische Unterschiede zwischen Varianten modelliert
werden. Fiir die Beschreibung der Delta-Modelle wird ein objektorientiertes Delta-Modell
vorgestellt. Auf Basis des Delta-Modells wird ein Abstandsmaf fiir die Beschreibung der
Unterschiedlichkeit von Varianten vorgestellt.

Aufbauend auf dem Komponenten- und dem Delta-Modell wird ein Mechanismus zur Nut-
zung der beschriebenen Varianten in der dezentralen Entwicklung und Verwendung von Au-
tomatisierungslosungen vorgestellt. Grundlage fiir den Mechanismus ist eine Server-Client
Architektur. Auf dem Server werden alle fiir den Kontext relevanten Typ- und Delta-
Modelle gespeichert. Aus diesen konnen fir den konkreten Anwendungsfall die Instanz-
Modelle gebildet und auf den Client heruntergeladen werden. Mit den auf dem Client
vorhandenen Typ-Modellen, den darin enthaltenen Referenzen zwischen Komponenten-
Typ-Modellen und ihren Implementierungen kénnen die konkreten Komponentensysteme

VIII

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

aufgebaut werden. Der Manager des Clients fiihrt eine Liste der verwendeten Varianten
und bietet die Méglichkeit, nach neueren Varianten auf dem Server zu suchen und diese
herunterzuladen.

Das Konzept unterstiitzt den Nutzer bei der Wiederverwendung in komponentenbasierten
Systemen. Es bietet mit dem Delta-Modell einen Mechanismus zur abstrakten Beschrei-
bung des Wiederverwendungsgegenstands. Durch das Komponenten-Modell kénnen sowohl
die Komponenten-Typen als auch die Systeme aus Instanzen unabhéngig von ihrer konkre-
ten Implementierung beschrieben werden. Durch diese Trennung zwischen dem konkreten
System und der Variabilitatsbeschreibung wird das in den Komponentensystemen enthal-
tene Wissen leicht in neue Systeme tibertragbar. Dazu missen die Typ-Modelle auf die
jeweiligen Implementierungen projiziert werden. Zusétzlich wird eine Trennung zwischen
den Versionen einer Komponente und den Varianten eines Komponentensystems geschaf-
fen.

Fir die Wiederverwendung von Losungen ist es erforderlich, dass der potentielle Nutzer
von einer bereits bestehenden Losung Kenntnis hat. Zur Forderung der Bekanntheit von
bestehenden Losungen und zur Unterstiitzung von deren Austausch zwischen verschie-
denen Systemen dient der Mechanismus zur dezentralen Nutzung. Nutzer kénnen so die
vorhandenen Losungen erkunden und die Zusammenhéange zwischen ihnen erkennen.

Das vorgestellte Konzept wurde in am Lehrstuhl fiir Prozessleittechnik der RWTH Aa-
chen entwickelten Laufzeitumgebung ACPLT/RTE prototypisch umgesetzt und erprobt.
Die beschriebenen Modelle wurden in Bibliotheken der Laufzeitumgebung realisiert. Die
Architektur mit den Managern fiir Server und Client, sowie die notwendigen Transforma-
tionen der Modelle, wurden ebenso implementiert. An drei Anwendungsféllen wurde das
Konzept erprobt. Erster Anwendungsfall ist die Beschreibung von Bausteinen fir PID-
Regler. Die verschiedenen Auspriagungen der Prozessfiihrungskomponenten des Lehrstuhls
sind der zweite Anwendungsfall. Als Testfall fiir ein hybrides System diente die modulare
Anlage des Lehrstuhls fiir Prozessleittechnik.

IX

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Abstract

A huge part of the tasks conducted in the development of automation solutions is repetitive.
Those repetitive work is error-prone and mostly not that relevant for the success of projects.
Hence, it is beneficial to support the user to fulfill these repetitive tasks such that more
resources can be used for tasks that are more relevant for the project’s success. Most
of the developed automation solutions are similar regarding their functionality or their
implementation. This leads to the reuse of solutions or solution parts. Nowadays, this reuse
is mostly unsystematic and not documented explicitly. As a result, extending or modifying
solutions that are used more than once is challenging. Considering the demographic change
and the resulting reduction of manpower, working must be more efficient. One way to
increase the efficiency is to use methods and tools to support the reuse of solutions in an
appropriate way.

Component-based systems are very much used in the automation domain. Examples are
function blocks of the IEC 61131 or package units. Regarding the focus of the automation
domain, most systems are hybrid systems. Those systems can consist of hard and software
components.

In this thesis, a concept to support the reuse in component-based architectures is introdu-
ced. First, the definition for components used in this thesis are presented. These cover both
hard and software components. Starting from the definition a metamodel for the descripti-
on of component systems. It consists of a part for describing component types and another
part to describe the systems built of the instances. Core element of the concept to support
the reusability is the delta model that is well-known in the software development domain.
Those delta models are used to describe the variability in the solution space. The great
advantage of these models is that implementation specific differences between variants can
be considered. The delta models are described by an object-oriented model and are the
basis for an approach to calculate the differences between variants.

Additionally to the component and delta model, a mechanism to use the variants of au-
tomation solutions in a decentralized development and usage is presented. Basis for this
mechanism is a server- client architecture. Inside the server, all relevant type and delta
models are stored. By combining these models, the concrete instance models describing
a specific variant can be generated and sent to a client. By mapping between the types
and corresponding components on the client, the instance model can be transformed in
a component model. The client’s manager holds a list of all variants used on the client
and provides the feature to search for new variants on the server. Found variants can be
downloaded from the server by the client manager.

This concept supports users with the reuse in component-based systems. The delta model
is provided as a mechanism for the abstract description of the subject of reusability. The
component model allows it to handle solutions in an abstract manner, independent from

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

their concrete realization. By this separation, the knowledge included in component-based
systems can easily be transferred into new systems. Only the transformation of types into
new implementations is required. Additionally, the concept supports the separation bet-
ween variants and versions. Different realizations of the same component type are versions
of the component. Because those realizations are compatible to each other their change
has no effect on a component system. Change in the structure or the types of components
in a component system leads to a new variant.

In order to reuse solutions, it is necessary that a potential user is aware of an existing
solution. To support the prominence of existing solutions and their exchange between dif-
ferent systems the mechanism for the decentralized usage is introduced. Users can explore
existing solutions and the relations between them.

The concept was prototypically implemented in the runtime environment of the Chair of
Process Control Engineering at RWTH Aachen University. The introduced models have
been implemented in the object-oriented structure of the runtime environment. The de-
centralized approach along with the managers for the server and client have been realized
as well. Three use cases have been used to test the concept. The first one is modeling and
handling the different variants of a PID control block. The description of the various types
of process control blocks of the Chair of Process Control Engineering is the second use
case. As the third testcase for hybrid systems the chairs modular plant was utilized.

XI

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1 Einfiihrung

Die vorliegende Arbeit stellt ein Konzept zur Unterstiitzung der dezentralen Wiederver-
wendung in komponentenbasierten Systemen der operativen Leittechnik vor. Dazu werden
in diesem Kapitel zunichst die Motivation und der Aufbau der Arbeit erlautert. Zunéachst
wird erklért, warum es notwendig ist, sich mit der Wiederverwendung in der Automatisie-
rungstechnik zu befassen. Danach erfolgt die Vorstellung der konkreten Problemstellung
und des gewdhlten Losungswegs. Abschliefend wird die Struktur der Arbeit erkléart.

1.1 Motivation

Aktuell besteht die Herausforderung der Automatisierung nicht in der Herstellung von
Produkten, sondern darin, die dafiir notigen Anlagen wirtschaftlich zu betreiben und die
Produktion an die Marktanforderungen anzupassen [SAG*17]. Die Herstellung der Pro-
dukte ist technisch moglich. Allerdings stellt die wirtschaftliche Produktion von kleinen
Stiickzahlen und der Wechsel zwischen Produkten in kurzen Zeitrdumen eine grofie He-
rausforderung dar. Im Folgenden werden die Motive fiir die Beschéftigung mit Wiederver-
wendung aufgezahlt und anschliefend genauer beschrieben:

1. Die Automatisierungstechnik wird durch neue Anforderungen zunehmend komplexer.
Dies sind beispielsweise die Produktion kleiner Stiickzahlen oder die Sicherstellung
einer hoheren Anlagenverfiigbarkeit.

2. Ein hoher Anteil der Tétigkeiten im Engineering ist repetitiv. Diese Arbeiten sind
notig fur die Umsetzung der Projekte, bestimmen allerdings nicht den Projekterfolg.

3. Der steigende Kostendruck in der Produktion fithrt zu einem ebenso steigenden Kos-
tendruck in der Automatisierungstechnik. Dadurch missen die Aufwénde fir die
Entwicklung und Wartung der Automatisierungslosungen reduziert werden.

4. Ahnliche, d.h. sich leicht unterscheidende Problemstellungen, fithren zu Lésungen
fir Aufgaben in der Automatisierungstechnik, die sich nur marginal voneinander
unterscheiden.

5. Komponentenorientierte Architekturen, z. B. nach der IEC 61131 [IEC14b], werden
auch in einer von Servicearchitekturen geprigten Automatisierungstechnik die Basis
fiir die Entwicklung von Losungen bilden.

6. Die groflen Hindernisse bei der Wiederverwendung von Losungen sind weniger tech-
nischer, sondern vielmehr organisatorischer Natur. Zudem findet in der Prozessin-
dustrie eine systematische Wiederverwendung bestehender Komponentensysteme in
den meisten Féllen nicht statt.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1 Einfiihrung

Zunehmnde Komplexitdt in der Automatisierungstechnik

Die Automatisierungstechnik hat die Aufgabe, Maschinen in die Lage zu versetzen,
(Produktions-) Prozesse teilweise oder vollstandig autonom durchfithren zu kénnen. An-
trieb fiir den Einsatz von Automatisierung konnen verschiedene Griinde sein, z. B., dass ein
Prozess nicht von Menschen durchgefithrt werden kann oder dass die Durchfithrung nicht
Okonomisch sinnvoll ist. Zur Realisierung der gestellten Aufgaben greifen Automatisie-
rungstechniker neben den Methoden der Regelungstechnik auf Konzepte und Technologien
aus anderen Doménen zuriick. Der klassische Aufbau der Automatisierungstechnik wird
in Form einer geschichteten Pyramide beschrieben (Abbildung 1.1). Im unteren Bereich
ist das Feld, d.h. die Maschinen und Anlagen, die den (Produktions-) Prozess umsetzen,
zu erkennen. In den dariiber liegenden Schichten werden die Automatisierungsfunktionen
realisiert. Zwischen den Ebenen werden Prozess- und Planungsinformationen ausgetauscht.
Die Planungsinformationen flieBen von oben nach unten und die Prozessinformationen von
unten nach oben, wobei keine Ebene iibersprungen wird. Jede Ebene aggregiert die Infor-
mationen bzw. Funktionalitdten der Ebenen darunter. Dies wird durch die spitz zulaufende
Pyramide verdeutlicht.

c
S ERP
c
.9
= MES
£
S
= Leitebene
7
=
= Steuerungsebene
=
1S
[
Feldebene

Abbildung 1.1: Automatisierungspyramide nach [SEEQ9]

Der strikt in Ebenen unterteilte Aufbau hat sich in der Vergangenheit bei der Entwicklung
von sicheren und zuverlassigen Losungen von Aufgaben der Automatisierungstechnik be-
wahrt. Durch Industrie 4.0 (I4.0) wird die industrielle Produktion weiterentwickelt, indem
Geréte oder Softwaresysteme miteinander interagieren, auch wenn diese nicht derselben
oder benachbarten Ebenen angehoren. Zusatzlich dazu treiben moderne Kommunikations-
protokolle wie OPC Unified Architecture (OPC UA) [PGP*15] und Data Distribution Ser-
vice (DDS) [AE17] die Entwicklung der industriellen Produktion voran. Dies fithrt zu einer
Flexibilisierung der Automatisierungstechnik und der industriellen Produktion [SAG*17].
Dadurch wird eine wirtschaftliche Produktion von kleinen Stiickzahlen bis hin zur Losgréfie
eins moglich.

Die stérkere Vernetzung kann durch ein Aufbrechen der festen Strukturen der Pyramide
zugunsten einer flexibleren Servicearchitektur [EE13, WE17] entstehen. Alternativ kann
die Servicearchitektur zum bestehenden Ausbau hinzugefiigt werden [LU17]. Dadurch wird
die Hard- und Software der Automatisierungstechnik insgesamt komplexer und der Auf-
wand, sie zu entwickeln und zu betreiben, steigt. Analog dazu werden die Aufwénde fur
das Engineering von Automatisierungslosungen und die Integration der einzelnen Anwen-
dungen in ein Gesamtsystem (Systemengineering) [DMG™17] grofier.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1.1 Motivation

Hoher Anteil repetitiver Tatigkeiten im Engineering

Bei der Mehrzahl der Tétigkeiten im Engineering, d.h. in der Erstellung von Losungen
von Automatisierungsaufgaben, handelt es sich um repetitive Tatigkeiten [Web14]. Ledig-
lich ein kleiner Anteil der Tétigkeiten ist fiir den Erfolg oder Misserfolg von Projekten
verantwortlich. Die Bearbeiter miissen sich daher auf diese Tétigkeiten konzentrieren und
dafiir von den repetitiven Tatigkeiten entlastet werden. Das folgende Zitat von [Webl4]
verdeutlicht den beschriebenen Sachverhalt:

Ungefédhr 90 Prozent der Engineeringleistungen sind normale, wiederkehren-
de Ingenieurtétigkeiten. Die restlichen 10 Prozent Engineeringleistungen aber
sind das Besondere, das Wichtige. Sie sind der Erfahrungsschatz oder das In-
novative und nicht selten auch das Firmen-Know-how. Von der gewissenhaften
Umsetzung dieser 10 Prozent Planungsvorgaben hangt aber i. d. R. wesentlich
der Projekterfolg ab. [Web14]

Steigender Kostendruck

Im Rahmen der angesprochenen Flexibilisierung der Produktion riicken nicht-funktionale
Anforderungen in den Fokus [BUN, Lee08]. Beispiele dafiir sind die Reduktion von Kosten
fiir die Erstellung und Wartung einer Automatisierungslosung oder die Moglichkeit, sich auf
eine sich schnell dndernde Produktpalette einzustellen [MBO0O]. Diese Herausforderungen
sind insbesondere unter 6konomischen Gesichtspunkten und in Anbetracht einer alternden
Gesellschaft von grofier Relevanz, da in einer alternden Gesellschaft weniger Arbeitskrafte
zur Verfligung stehen.

Die Erstellung von Automatisierungslosungen, d.h. die Kombination von elektrischen,
mechanischen und Software (Teil-)Systemen, unterliegt einem immer starkeren Kosten-
druck [VHDF*14]. Durch die fortschreitende Integration von zusétzlichen Gewerken und
Komponenten in die Automatisierungstechnik wird diese komplexer und damit schwerer
zu beherrschen [MBO00]. Dies fithrt zu einem steigenden Anteil der Engineeringkosten im
Maschinen- und Anlagenbau. Zusétzliche Faktoren sind hohe Personalkosten in Deutsch-
land oder der Bau von Unikaten, die immer wieder eine neue Planung und Entwicklung
verlangen.

Ahnliche Problemstellungen

Wie beschrieben treten in der Automatisierungstechnik in verschiedenen Zusammenhéngen
wiederkehrende Problemstellungen auf, die sich mit den gleichen Prinzipien 16sen lassen.
Dies fithrt dazu, dass Implementierungen entstehen, die sich sehr 4hneln, jedoch in wesent-
lichen Punkten voneinander abweichen. Im Rahmen der Arbeit des Arbeitskreises 2.2 der
NAMUR! wurde festgestellt, dass es géingige Praxis ist, diese d&hnlichen Losungen neben-
einander zu entwickeln. Bestenfalls sind sich die Entwickler der Existenz der benachbarten
Losungen bewusst. Nicht ungewohnlich ist allerdings auch, dass entstandene Implementie-
rungen nur einem begrenzten Personenkreis bekannt sind. Folgen dieser Praxis sind:

e Duplizierung von Code,
e schlechte Wartbarkeit,

e hoher Aufwand bei der Losungsentwicklung und -implementierung.

!Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1 Einfiihrung

Im Sinne der modernen Softwareentwicklung sind diese Folgen nicht erwtinscht und stellen
eine behebbare Herausforderung dar.

Komponentenbasierte Architekturen sind in der Automatisierungstechnik verbreitet
Aufgrund der komponentenbasierten Architekturen in der Automatisierungstechnik pas-
siert es hiufig, dass Komponenten oder ganze Subsysteme weiterentwickelt und damit
verandert werden. Dies kann im ungiinstigsten Fall dazu fiihren, dass die Gesamtlosung
mit der neuen Version von verwendeten Komponenten nicht mehr funktionsféhig ist. Eine
Konsequenz daraus ist, dass viel Zeit und Aufwand in die Entwicklung von sogenannten
Migrationspfaden und Migrationstools investiert wird. Diese haben die Aufgabe, Automati-
sierungslosungen mit neuen Versionen von Komponenten oder Teilsystemen funktionsfahig
zu halten. Wenn selbst entwickelte Komponenten verwendet werden, fehlen diese Hilfsmit-
tel oft und die Aktualisierung der Automatisierung gestaltet sich schwierig.

Organisatorische Hindernisse bei der Wiederverwendung

Bei der Einfiihrung eines Wiederverwendungskonzepts muss der Mensch berticksichtigt
werden [Mey88]. Die besten Mechanismen und Werkzeuge sind wertlos, wenn die Nutzer
sie nicht verwenden. Durch die Heterogenitat der Nutzer in der Automatisierungstechnik ist
die Sicherstellung der Akzeptanz besonders schwierig und wichtig. Bestehende Anséitze aus
anderen Domaénen (z. B. der Softwaretechnik) konnen nicht einfach iibernommen, sondern
miissen angepasst werden.

Die Herausforderungen bei der Wiederverwendung von Implementierungen sind sowohl
technischer als auch organisatorischer Natur. Durch die Nutzung geeigneter Tools in Ver-
bindung mit der Vorgabe, bestehende Implementierungen zu verwenden, konnen die or-
ganisatorischen Defizite teilweise durch technische Ansétze behoben werden. Mit dem in
dieser Arbeit vorgestellten Konzept sollen die technischen und organisatorischen Herausfor-
derungen gleichermaflen adressiert werden. Dies ist erforderlich, da die Fokussierung auf die
Bearbeitung der technischen Herausforderung nicht zu einer Verbreitung von Implementie-
rungen fithrt. Die potentiellen Nutzer miissen durch einen Mechanismus von bestehenden
Implementierungen erfahren.

Diese aufkommenden Herausforderungen zu bewéltigen, ist das Ziel vieler Initiativen und
Arbeiten. Ein Ansatz dabei ist es, die Automation der Automation weiterzuentwickeln.
Das bedeutet, dass nicht nur der (Produktions-)Prozess selbst automatisiert wird, son-
dern auch die Erstellung der Automatisierungslosung teil- oder vollautomatisiert ablauft.
Modellbasierte Ansétze, mit denen z.B. die Struktur von Anlagen, Designpatterns fiir
Losungen oder Eigenschaften von Produkten beschrieben werden, sind ein moglicher
Weg [FVHF*15, WKS*16]. Unter Einbezichung und Kombination dieser Modelle wird
die spezifische Automatisierungslosung generiert.

Allerdings ist auch die Verbesserung der Wiederverwendung und der Verbreitung beste-
hender Losungen sinnvoll. Nur leicht unterschiedliche und sehr strukturiert aufgebaute
Losungen stellen eine gute Ausgangsbasis fiir die Wiederverwendung in der Automatisie-
rungstechnik dar. Die Nutzung eines Variantenmanagements ist eine Moglichkeit fiir die
Umsetzung der Wiederverwendung [VHDF'14]. Ebenso ist die Bekanntmachung und Ver-
breitung von bestehenden Losungen eine Grundvoraussetzung fiir die Wiederverwendung,
die typischerweise in der Automatisierungstechnik nicht gegeben ist und hergestellt werden
muss.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1.2 Problemdefinition und Lésungsweg

1.2 Problemdefinition und Losungsweg

Ziel der vorliegenden Arbeit ist die Entwicklung eines Konzepts zur Unterstiitzung der Wie-
derverwendung in komponentenbasierten Systemen. Die Komponenten selbst stellen durch
ihren Einsatz in unterschiedlichen Systemen ein Mittel zur Wiederverwendung dar. Neben
der Entwicklung von Komponenten wird ein hoher Aufwand in die Losung von Automa-
tisierungsaufgaben durch die Verkniipfung von Komponenten investiert. Der Fokus dieser
Arbeit liegt daher auf der Wiederverwendung von Strukturen in komponentenbasierten Sy-
stemen. Da die Arbeiten an der Entwicklung von Automatisierungslésungen in der Regel
nicht an einem Ort und nicht von einer Person durchgefithrt werden, beriicksichtigt das
Konzept die dezentrale Wiederverwendung. Darunter ist die ortliche und/oder organisa-
torisch getrennte Entwicklung und Wiederverwendung von Automatisierungslosungen zu
verstehen.

Damit die Wiederverwendung von Losungen gelingt, miissen die folgenden drei Fragen, die
an die Ausfiihrungen in [Mey09] angelehnt sind, beantwortet werden:

e Wie sieht ein Mechanismus fiir komponentenbasierte (Teil-)Losungen aus, so dass sie
wiederverwendet und auf andere Anwendungsfille tibertragen werden kénnen?

e Wie wird der Wiederverwendungsmechanismus in bestehende Tools und Prozesse
integriert, so dass der Nutzer ihn verwendet?

e Wie erfahrt der Nutzer, dass eine geeignete Losung existiert?

Diese drei Fragen werden in der vorliegenden Arbeit fiir die komponentenbasierten Archi-
tekturen der Automatisierungstechnik beantwortet. Es wird daftir ein Konzept zur Wieder-
verwendung vorgestellt. Das Konzept besteht aus einem Mechanismus zur Wiederverwen-
dung und einer Architektur fiir dessen Anwendung. Im Folgenden wird das Konzept anhand
der drei Fragen vorgestellt und ein Uberblick iiber den gewihlten Weg zur Unterstiitzung
der Wiederverwendung gegeben.

Die Beschreibung der Variabilitédt von Produkten ist in der Softwaretechnik und dem Au-
tomobilbau eine bewdhrte Methode, die Wiederverwendung zu unterstiitzen. Die Varia-
bilitdt kann auf verschiedene Arten beschrieben werden. Diese Arbeit stiitzt sich auf die
Delta-Modellierung als theoretische Basis fiir die Beschreibung von Variabilitiat. Die Delta-
Modellierung ist fiir die Anwendung in der Automatisierungstechnik besonders geeignet,
da sie gut in bestehende Systeme integriert werden kann. Delta-Modelle beschreiben durch
Operationen die Transformation eines Produkts in ein anderes. Als Operationen kénnen
das Hinzufiigen, Entfernen und Konfigurieren der Komponenten des Produkts verwendet
werden. Zuséatzlich kénnen Verbindungen zwischen den Komponenten angelegt und ge-
l6scht werden. Die Delta-Modelle stammen aus der Softwaretechnik und werden in diesem
Bereich direkt auf Komponenten angewendet. Fiir die Nutzung in den hybriden Systemen
der Automatisierungstechnik wird in dieser Arbeit ein Modell fiir die Beschreibung von
Komponenten verwendet. Dieses stellt die Basis dar, auf der die Delta-Modelle angewendet
werden. Durch die Beschreibung der Produkte (Losungen von Automatisierungsaufgaben)
durch Delta-Modelle existiert ein Mechanismus fir die Wiederverwendung von Strukturen.
Die durch Delta-Modelle dargestellten Strukturen kénnen auf andere Anwendungsfille an-
gewendet werden und tragen so zur Wiederverwendung bei. Die Verwendung von Modellen

ot

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

1 Einfiihrung

fiir die Losung von Problemen ist in der Automatisierungstechnik ein erprobter Ansatz, der
auch in dieser Arbeit Verwendung findet. Die Komponenten- und Delta-Modelle werden
dafiir in Laufzeitumgebungen realisiert, die eine Erkundung und Manipulation der Modelle
ermoglichen.

Die dritte Frage beschéftigt sich mit der Information der Nutzer tiber vorhandene Lo-
sungen. Diese Losungen sind die Komponentensysteme, die eine Automatisierungsaufgabe
l6sen. Das beste Verfahren zur Wiederverwendung ist unwirksam, wenn existierende Lo-
sungen nicht bekannt sind. In der vorliegenden Arbeit wird dafiir ein zentraler Server
fiir die Verwaltung der Komponentensysteme vorgeschlagen. Dieser Server verkorpert die
»,Gelben Seiten” fiir die bestehenden Losungen. Nutzer konnen dort nach Losungen fiir ihre
Probleme suchen und diese wiederverwenden. Kann keine passende Losung gefunden wer-
den, besteht die Moglichkeit, eine bestehende Losung fir den konkreten Anwendungsfall
anzupassen. Ein Anwendungsfall ist der konkrete Kontext in dem eine Losung verwendet
oder wiederverwendet wird. Diese neue Losung wird auf den Server geladen und steht fur
die erneute Nutzung bereit. Auf dem Server werden die Lésungen durch Delta-Modelle
und Komponenten-Modelle in einer implementierungsunabhéngigen Form abgelegt. Jedes
Delta-Modell reprasentiert ein Produkt bzw. eine Losung. Die Delta-Modelle werden dafiir
als Baum verkniipft. Die initialen Produkte bilden die Wurzeln des Baums. Die von diesen
abgeleiteten Produkte werden in Form von Delta-Modellen gespeichert. Fiir die Erzeugung
eines Produkts werden die Operationen aller Delta-Modelle von einer Wurzel aus angewen-
det. Dafiir werden die Komponenten-Modelle genutzt. Komponenten-Modelle bestehen aus
einem Teil, der die Komponenten-Typen beschreibt und einem anderen Teil, der die daraus
verbundenen Instanzen beschreibt. Diese beinhalten die vorhandenen Komponenten-Typen
und ermoglichen durch die Anwendung der Delta-Modelle, die dazugehérigen Instanz-
Modelle zu erzeugen.

Zur Integration der beschriebenen Mechanismen in die bestehenden Systeme (Frage 2),
wird ein Client vorgeschlagen. Dieser ermoglicht es, die Produkte (Losungen der Automa-
tisierungsaufgaben) vom Server herunterzuladen und in den lokalen Kontext einzubinden.
Dafiir wird auf dem Server das Instanz-Modell aus den Delta-Modellen erzeugt und auf
den Client iibertragen. Fiir die Ubertragung werden die Instanz-Modelle serialisiert und
de-serialisiert. Auf dem Client existiert ein lokales Modell, das beschreibt, wie die Kom-
ponenten des Modells realisiert werden. Durch Nutzung dieses Zusammenhangs wird das
lokale Komponentensystem erzeugt.

Das vorgestellte Konzept wurde fiir das Laufzeitsystem des Lehrstuhls fir Prozessleit-
technik ACPLT/RTE realisiert. Zur Demonstration der Funktionsféhigkeit des Konzepts
wird es auf PID-Regler, auf die Prozessfithrungskomponenten des Lehrstuhls und fiir die
modulare Anlage des Lehrstuhls angewendet.

1.3 Aufbau der Arbeit

Die Gliederung der vorliegenden Arbeit ist in Abbildung 1.2 dargestellt. In Kapitel 2 wer-
den die Grundlagen der Automatisierungstechnik und der Stand der Technik im Hinblick
auf komponentenbasierte Architekturen erldutert. In diesem Rahmen wird die in dieser

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Einfiihrung und Motivation

Grundlagen der

1.3 Aufbau der Arbeit

Bestehende Konzepte zur

(Kap. 2.1)

Anforderungen an ein
Konzept zur
Wiederverwendung in
komponentenbasierten

g
(Kap. 4.2/4.3)

Delta-Modell und
Komponenten-Modell

(Kap. 1) Architekturen der (Kap. 5.1/5.2)
Komponentenbasierte (Kap. 3) Modelle als Grundlage fiir
Architekturen die Losungsentwicklung
(Kap. 2.2) (Kap. 4.4)
fur die
Kritische Diskussion des Wiederverwendung in
Prototypische Realisierung
Konzepts
P, (Kap. 6) Architekturen der
P: Automatisierungstechnik
(Kap. 5.3)

I

Zusammenfassung und
Ausblick
(Kap. 8)

Abbildung 1.2: Darstellung des Aufbaus der vorliegenden Arbeit.

Arbeit verwendete Definition einer Komponente vorgestellt und mit anderen Definitionen
aus der Doméne und der Softwaretechnik in Verbindung gesetzt. Es wird gezeigt, dass
komponentenbasierte Architekturen in der Automatisierungstechnik weit verbreitet sind.

Die Anforderungen an das Konzept zu Wiederverwendung werden in Kapitel 3 vorgestellt.
Ausgangspunkt der Betrachtung sind die Besonderheiten der Automatisierungstechnik. Im
Anschluss daran werden die funktionalen und nicht-funktionalen Anforderungen an das
Konzept eingefiihrt.

Kapitel 4 bietet einen Uberblick iiber den aktuellen Stand der Wissenschaft. Ausgehend
von einer Vorstellung der eigenen Vorarbeiten werden zunéchst die Grundlagen der Wieder-
verwendung vorgestellt. Der Schwerpunkt liegt auf den Arten der Wiederverwendung und
der Betrachtung der Versionierung. Dem schlieit sich ein Uberblick iiber die Grundlagen
der Variantenbeschreibung an. Anschlielend werden die Delta-Modelle aus der Software-
technik vorgestellt. Am Ende des Kapitels werden die Grundlagen der Modellierung und
Beispiele aus der Automatisierungstechnik dargestellt.

Das Konzept fiir die Wiederverwendung in komponentenbasierten Architekturen wird in
Kapitel 5 eingefithrt. Am Anfang des Kapitels werden das Komponenten- und das Delta-
Modell vorgestellt. Danach wird deren Verwendung in einem Gesamtkonzept dargestellt.
Dabei wird auf die dezentrale Wiederverwendung und die dafiir nétigen Prozesse eingegan-
gen. AbschlieBend werden die Randbedingungen und die Vorteile des Konzepts betrachtet.

In Kapitel 6 wird die prototypische Realisierung vorgestellt und anhand von drei Anwen-
dungsféllen der Nutzen des Konzepts verdeutlicht. Kern der in ACPLT/RTE umgesetzten
Implementierung sind die vorgestellten Metamodelle und die Transformationen zur auto-
matisieren Erzeugung der Modelle.

Ein Uberblick und die Diskussion der Ergebnisse der Arbeit ist in Kapitel 7 zu finden.
Abschliefend wird in Kapitel 8 ein Ausblick auf mogliche weiterfiihrende Arbeiten gegeben.

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

In diesem Kapitel wird ein Uberblick iiber die relevanten Arbeiten und iiber den Stand der
Technik gegeben. Zunéchst werden die Grundlagen der Automatisierungstechnik erlautert.
Dabei wird auf die dezentralen Leitsysteme und modulare Anlagen in der Prozessindustrie
naher eingegangen, bevor die Prozesse zum Bau einer Anlage niher erldutert werden.

2.1 Grundlagen der Automatisierungstechnik

Es ist das Ziel der Automatisierungstechnik, Systeme so zu steuern, dass sie
autonom arbeiten. [Lun03]

Aus diesem Zitat von Lunze geht hervor, dass sich die Automatisierungstechnik mit dem
Steuern von Systemen beschéftigt. Die Art der Systeme wird dabei nicht eingeschriankt. Die
Automatisierungstechnik kann anhand des betrachteten Systems klassifiziert werden. Eine
géngige Klassifikation ist die Unterteilung in Produktautomatisierung und Produktionsau-
tomatisierung. Die erst genannte beschéftigt sich mit Produkten (z. B. Autos, Flugzeugen,
Hausgerite). Gegenstand der Produktionsautomatisierung ist die Automation der Herstel-
lungsprozesse von Produkten. In der nichst feineren Klassifikation wird die Produktions-
automatisierung in Fertigungsautomation (Fertigung von Stiickgiitern) und Prozessauto-
matisierung (Batch- und Konti- Prozesse, z. B. mit Gasen, Schiittgut, Flissigkeiten oder
Aluminiumbéndern) unterteilt. Jede der beiden Gruppen hat spezifische Eigenschaften
und Anforderungen an die Automatisierungssysteme [FA09]. Gegenstand der vorliegenden
Arbeit ist die Produktionsautomatisierung mit dem Schwerpunkt auf der Prozessautoma-
tisierung.

Nach Lunze ist das Ziel der Steuerung von Systemen, die Autonomie des Systems zu er-
reichen. Der Grad der Autonomie hingt vom jeweiligen Anwendungsszenario ab und kann
ebenso zur Klassifikation genutzt werden [TE18, Gasl12]. Die Bandbreite reicht von einem
System ohne Automation bis hin zu einem System, das ohne menschliche Unterstiitzung
funktioniert. Allerdings ist der Mensch weiterhin ein wichtiger Bestandteil der Automati-
sierung [VHDB13, Lun03]. Steigt der Grad der Autonomie, wird zwar die Selbststéndigkeit
der Systeme erhoht, jedoch ist der Nutzer weiterhin in iberwachender Funktion erforder-
lich. Zusétzlich wird der Mensch fiir die Entwicklung und den Aufbau von Automatisie-
rungslésungen bendétigt. Dies gilt gleichermafen fiir die Wartung und Instandhaltung der
verbauten Systeme.

In Abbildung 2.1 ist der Aufbau eines automatisierten Systems dargestellt. Das System
besteht aus dem Nutzer, der Nutzerschnittstelle (Mensch-Prozess-Kommunikation), dem
Automatisierungssystem und dem technischen Prozess. Bestandteil des Automatisierungs-

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

systems ist mindestens eine Hardwarekomponente, auf der das Steuerungsprogramm aus-
gefithrt wird. Die Hardware verfiigt iiber Ein- und Ausgénge zum technischen Prozess. Die
Sensoren und Aktoren werden als Schnittstelle zum technischen Prozess [Lun03] bzw. zwi-
schen physischer Welt und Informationswelt [KE12] verstanden. In [HSF*13] wird heraus-
gestellt, dass das Besondere an der Automatisierungstechnik die Doménen-iibergreifende
Betrachtung des Systems ist. So miissen alle Bestandteile perfekt zusammen funktionie-
ren, damit das Gesamtsystem wie geplant arbeitet [VHDF14]. Jede Doméne verfiigt tiber
eine andere Sicht auf den Betrachtungsgegenstand. Die Verfahrenstechnik hat die Aufgabe
Anlagen zu planen und kann so den Aufbau der Anlage beeinflussen [HSF™13]. Fiir die
Automatisierungstechnik ist beispielsweise der Anlagenaufbau eine Randbedingung, die
beriicksichtigt werden muss. Dadurch steigt die Komplexitit dieser Systeme zunehmend
an [VHDF*14].

Automatisiertes System
Mensch-Prozess-
Kommunikation

Bedienelementel TAnzelgeelemente

Automatisierungssystem
-system 1 -systemn
Hardware Hardware

1 n

Technischer Prozess in technischem
System

Abbildung 2.1: Aufbau eines automatisierten Systems nach [VHDFG13, VHDB13]

Im Folgenden wird der Aufbau von Automatisierungssystemen in der Prozessindustrie, d. h.
von (Prozess-) Leitsystemen, ndher beschrieben. Anwendungszweck eines Leitsystems ist
die Fithrung eines Prozesses entsprechend gegebener Randbedingungen (d.h. die Umset-
zung der Prozessfithrung). Unter Prozessfiihrung sind nicht nur die Regelung und Optimie-
rung einer Anlage zu verstehen, sondern dartiber hinaus alle zielgerichteten Maflnahmen,
um den jeweiligen Produktionsprozess zu beherrschen und entsprechend ihrer Zielvorgaben
zu fahren. Diese Definition schlieBt ausdriicklich die Tétigkeit des Anlagenfahrers ein und
erklart die Prozessfithrung zu einer Aufgabe, an der unterschiedliche technische Disziplinen,
u. a. die Verfahrenstechnik und die Automatisierungstechnik (vgl. [KBD08, PE94]), betei-
ligt sind. Im Folgenden werden Systeme zur Prozessfiihrung und Automatisierungslosung
synonym verwendet.

Zunéchst werden die in der industriellen Anwendung verbreiteten dezentralen Prozessleit-
systeme beschrieben. Anschliefend wird auf die aufkommenden modularen Anlagen und
damit die Package Units in der Prozessindustrie als Beispiel fiir die Modularisierung der
Produktion eingegangen.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

2.1.1 Aufbau von Dezentralen Prozessleitsystemen

Dezentrale Prozessleitsysteme bilden die Grundlage der modernen Industrieautomation.
Nachfolgend wird erst der Aufbau der Hardwarekomponenten beschrieben, anschliefend
wird ein Uberblick iiber die Softwareseite der Automatisierungssysteme gegeben. Der Fokus
liegt dabei auf der Architektur der Software und der Sprachen aus der IEC 61131 [IEC14b].
Zusitzlich wird ein Blick auf die IEC 61499 [IEC05] geworfen und deren Softwarearchitek-
tur vorgestellt.

Aufbau der Hardwarekomponenten

Unternehmens-
‘ netzwerk
Betriebs- Engineering-
SCADA
leitebene BuB Station
"""""""""""" Intranet,
Betriebsbus
I I R
z. B.PLS

. SPS
Prozessleitebene
PNK, Remote IO
2.B.SPS P

———————————————————————— i Feldbus | 4.20mA

Feldebene EE | a% % - ‘-T E« E dil HART,.

1
r
[Prozess] [Prozess J

Abbildung 2.2: Architektur eines Prozessleitsystems nach [KCJ*10]

In Abbildung 2.2 ist schematisch der Aufbau eines dezentralen Prozessleitsystems darge-
stellt. Die Abbildung ist analog zur Automatisierungspyramide aufgebaut und beginnt am
unteren Ende mit dem zu automatisierenden Prozess. Direkten Kontakt mit dem Prozess
haben die Sensoren und Aktoren. Die Sensoren haben die Aufgabe, Informationen iiber den
aktuellen Zustand des Prozesses zu sammeln. Beispiele fiir Sensoren sind Fillstands- oder
Durchflussmessgeréte. Die Aktoren werden verwendet, um den Prozess zu beeinflussen.
Ventile oder Pumpen sind beispielsweise Aktoren.

Die von Sensoren gemessenen Werte und die Vorgaben, wie sich die Aktoren zu verhal-
ten haben, werden iiber Kommunikationssysteme an bzw. von prozessnahen Komponenten
iibermittelt. Verwendung findet die Zweidrahtanbindung, bei der die Feldgerite direkt mit

10

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

den prozessnahen Komponenten verbunden sind und Messwerte und Stellwerte als ana-
loges Stromsignal (4 bis 20 mA) iibertragen werden. Das HART Protokoll ermdglicht es,
zusétzlich zu den analogen Werten Konfigurationsdaten der Feldgeréte zu iibermitteln und
so Informationen iiber die Feldgerite zu erhalten oder sie zu parametrieren. Eine weite-
re Form der Anbindung sind Feldbusse. Hierbei werden die Feldgerdte mit prozessnahen
Komponenten tiber einen digitalen Bus verbunden. Die Feldbusanbindung erméglicht es,
die Feldgerite mit erweiterten Funktionen auszustatten und so zu intelligenten Geréten
aufzuwerten.

Prozessnahe Komponenten sind heutzutage fast ausnahmslos Speicherprogrammierbare
Steuerungen (SPS) oder Remote-I0s. Die SPS verfiigen tiber Schnittstellen fiir die Bus-
se oder die Zweidrahtanbindung. Die Feldgeréte sind entweder direkt an die SPS oder die
Remote-10 angeschlossen. Eine Remote-10 hat die Aufgabe, die Signale von und zu Feldge-
riten iiber die Zweidrahtanbindung aufzunehmen und in ein Bussignal umzuwandeln. Uber
diesen Feldbus ist die Remote-10 mit einer SPS verbunden, die die Weiterverarbeitung der
Werte tibernimmt. Verglichen mit Feldbussen stellen Systembusse hohere Anforderungen
an die verfigbare Bandbreite. Im Gegensatz dazu sind die Echtzeitanforderungen nicht so
hoch [FA09, ASE08].

Steuerungs- und Regelungsaufgaben werden von prozessnahen Komponenten realisiert.
Aufgaben, die mit dem Koordinieren und Optimieren des Prozesses assoziiert sind, werden
dagegen von prozessfernen Komponenten (z. B. Prozessleitsystem (PLS)) ausgefiihrt. Das
kénnen hohere Regelungskonzepte, wie Model Predictive Control (MPC) oder andere Op-
timierungsverfahren sein. Zu den prozessfernen Komponenten gehéren auch Systeme, die
fiir die Aufzeichnung und Archivierung von Mess- und Stellwerten verantwortlich sind.

Die Komponenten oberhalb der Feldgeréte bis hin zu den prozessfernen Komponenten bil-
den die Prozessleitebene in der Automatisierungspyramide. Oberhalb der prozessfernen
Komponenten beginnt mit der Verwendung des Betriebsbusses bzw. des Intranets die Be-
triebsleitebene. Auf dieser Ebene sind die Engineeringstationen fiir das Konfigurieren und
Warten des Leitsystems und die Stationen fiir das Bedienen und Beobachten (BuB) des
Prozesses angesiedelt. Daneben stehen auch leistungsfihige Manufacturing Execution Sy-
stems (MES) und Enterprise Resource Planning (ERP) Systeme zur Verfiigung. Das Intra-
net bzw. der Betriebsbus sind tiber Firewalls an Biironetze und an das Internet angeschlos-
sen [KCJT10]. Dies ermdglicht einen kontrollierten lesenden Zugriff, damit beispielsweise
eine Fernwartung oder Analysen und Optimierungen von ortsfernen Experten durchgefiihrt
werden kénnen. Zusétzlich kénnen so, iiber die Grenzen von Standorten hinweg, Leistungs-
indikatoren sichtbar gemacht werden und Prozesse und Produktionsanweisungen (Rezepte)
im Unternehmen verbreitet werden.

Speicherprogrammierbare Steuerungen und Laufzeitsysteme

Die SPS entwickelten sich aus den verbindungsprogrammierten Steuerungen, bei denen die
Funktionalitat mittels Schiitz- und Relaistechnik realisiert wird [FA09]. Aktuell sind SPS
sowohl in der Prozess- als auch in der Fertigungsautomation sehr verbreitet und es gibt sie
in verschiedenen Leistungsklassen. Durch die zunehmende Verteilung von Funktionalitat
direkt ins Feld und die zunehmende Verwendung von PCs (Soft-SPS) fiir das Steuern und

11

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Regeln geht die Bedeutung von groflen SPS zuriick. Kleinere SPS kommen als Steuerungen
von einzelnen Prozessmodulen zum Einsatz.

Andere Systeme
N 72N

Kommunikations-
funktion

Funktionen der
Mensch-Maschine-
Schnittstelle

Programmier- und
Testfunktion

Signalverarbeitungs-

funktion Funktion des
Betriebssystems
Strom- _ Funktion der
versorgung Stromversorgung Anwendungs- Funktionen des
programm- Anwendungs-
verarbeitung programmspeichers

— Bediener

Anwendungs-
programmierer

Funktion des
Datenspeichers

’ Funktion der Schnittstelle fiir Aktoren und Sensoren ‘

U Maschine / Prozess U

Abbildung 2.3: Darstellung des funktionalen Aufbaus einer SPS nach [IEC04]

Abbildung 2.3 zeigt den funktionalen Aufbau einer SPS. Es sind die vier groen Funktions-
bereiche zu erkennen: Stromversorgung, Schnittstelle zu Sensoren und Aktoren (Feld),
Kommunikation und Signalverarbeitung. Wie beschrieben, gibt es unterschiedliche Mog-
lichkeiten, eine SPS an die Sensoren anzubinden. Fiir die interne Verwendung der Pro-
zessinformationen bzw. der Beeinflussung der Aktoren abstrahiert die Schnittstelle zu den
Sensoren und Aktoren von den unterschiedlichen Anbindungsarten und stellt ein einheitli-
ches Interface zur Verfiigung. Die Signalverarbeitungsfunktion ist das eigentliche Herzstiick
der SPS. Sie besteht aus der Anwendungsprogrammverarbeitung, die unter Einbeziehung
des Betriebssystems und des Datenspeichers die Anwendungsprogramme ausfiithrt. Dabei
findet eine zyklische Auswertung der Eingdnge zum Feld statt und es werden durch die
Anwendungsprogramme die Ausginge gesetzt. Die Kommunikation zu anderen Systemen,
sowie zum Bediener und Anwendungsprogrammierer, erfolgt iiber die Kommunikations-
funktion.

Nach [NAMO2] setzt sich das Betriebssystem von Leitsystemen (SPS) aus einem Standard-
betriebssystem und einem Leitsystem-Betriebssystem zusammen. Ein Betriebssystem- oder
Leitsystemhersteller stellt das Standardbetriebssystem bereit. Dieses stellt die Basis der
Software dar. Auf ihm arbeitet das Leitsystem-Betriebssystem des Leitsystemherstellers,
in dem die Anwendungen fiir die Automatisierung ausgefithrt werden. Das Leitsystem-
Betriebssystem kann auch als Laufzeitumgebung (runtime system oder runtime environ-
ment) bezeichnet werden. Dieser Begriff stammt aus der Informatik und beschreibt ein

12

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

System, das eine Schicht zwischen dem Betriebssystem und der Applikation des Anwen-
ders bildet [App90, Griil7]. Das Laufzeitsystem stellt Funktionen fiir den Zugriff auf die
Hardware, fiir das Speicherhandling (Allokation und Freigabe), fiir die Interaktion mit dem
System (z. B. Debuggen), fir die Introspektion und fiir die Reflexion bereit (vgl. [Griil7]).
Laufzeitsysteme sind nicht zwingend mit PLS und SPS assoziiert, sondern finden auch,
sofern es die Randbedingungen zulassen, in Soft-SPS oder als Applikation auf einem nor-
malen PC Verwendung.

Softwarearchitekturen

Konfiguration

Ressource Ressource

Globale und direkt dargestellte Variablen und
instanzspezifische Initialisierungen

Zugriffspfad

Abbildung 2.4: Darstellung des Softwarearchitektur einer SPS nach [IEC14b].

In der Automatisierung ist die in Abbildung 2.4 dargestellte Softwarearchitektur aus der
TEC 61131 weit verbreitet. Die Architektur stellt die Softwaresicht auf eine Norm-konforme
Umgebung fir die Realisierung von Automatisierungsfunktionen dar. Die Konfiguration
ist mit einer SPS assoziiert. Innerhalb der Konfiguration existieren Ressourcen, die die
beschriebenen Funktionen des Laufzeitsystems bereitstellen. Die Ressource ist die Umge-
bung fiir die Programme und Tasks. Programme enthalten die ausfithrbare Logik (z. B. als
Netz von Funktionsbausteinen) und durch sie erfolgt der Zugriff auf den Speicher bzw. die
Peripherie. Einer oder mehrere Tasks koordinieren die Ausfithrung der Programme bzw.
der einzelnen Funktionsbausteine. Die Ausfiihrung erfolgt zyklisch, wobei die Zykluszeit
durch die Wahl der Tasks vom Anwender eingestellt werden kann. Nach [JT00] existiert in
der Norm zusétzlich der Begriff der Programmorganisationseinheit (POE). Darunter wird
die kleinste unabhéngige Softwareanwendung in dieser Architektur verstanden [Griil7].

Der Austausch von Informationen innerhalb von Programmen erfolgt durch die direkte
Verkniipfung von beispielsweise Funktionsbausteinen. Fir die Kommunikation zwischen
Programmen derselben Ressource und zwischen verschiedenen Ressourcen stehen globale
Variablen zur Verfiigung, die von allen Programmen in einer Konfiguration gelesen und
geschrieben werden konnen.

Als Erweiterung der vorgestellten Softwarearchitektur ist die IEC 61499 [IEC05] zu sehen.
Sie definiert eine Architektur fiir verteilte Systeme, bei der eine Anwendung auf mehr als

13

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

einer SPS ausgefithrt werden kann. Im Gegensatz zu den beschriebenen Tasks, die eine
zyklische Abarbeitung der Programmlogik vorsehen, werden Funktionsbausteine nach der
IEC 61499 Ereignis-gesteuert ausgefiihrt. Zusétzlich dazu definiert die Norm, additiv zu
den Verbindungen fiir den Informationsfluss, Verbindungen fir Ereignisse (Events) zwi-
schen Funktionsbausteinen. Die dritte Neuerung ist die Definition von Diensten fiir die
Interaktion mit und zwischen Ressourcen. Hierzu werden Konfigurations- und Kommuni-
kationsdienste sowie Interfaces fiir die entsprechenden Bausteine festgelegt.

Sprachen der IEC 61131

Fir die Programmierung der benétigten Funktionalitdten stehen in einer IEC 61131 kon-
formen Umgebung fiinf Programmiersprachen zur Verfiigung. Anweisungsliste (AWL) und
Strukturierter Text (ST) sind zwei textuelle Programmiersprachen. Im Gegensatz dazu
sind die Funktionsbausteinsprache (FBS), der Kontaktplan (KOP) und die Ablaufspra-
che (AS) grafische Programmiersprachen. Die folgende Vorstellung der Programmierspra-
chen ist [JT00, Griil7, Kam17] entnommen.

Anweisungsliste: AWL wird als maschinennahe Programmiersprache eingestuft. Eine An-
weisung besteht aus einem Operator und einem Operanden. Fiir die Festlegung des Pro-
grammablaufes werden Sprungmarken am Anfang der Zeilen verwendet. AWL dient als
gemeinsame ,, Zwischensprache® fiir sowohl die textuellen als auch die grafischen Sprachen
der IEC 61131.

Strukturierter Text: ST wird im Kontext der IEC 61131 als Hochsprache bezeichnet und
besteht aus Anweisungen zum Programmablauf (z. B. FOR- und WHILE-Schleifen), sowie
Operatoren/Funktionen und Operanden. Im Vergleich zu AWL hat ST die Vorteile, dass
eine sehr kompakte Formulierung und einen tibersichtlichen Aufbau des Programms erlaubt
wird. Nachteilig ist, dass die Ubersetzung in Maschinencode nicht direkt beeinflussbar ist
und dass es durch die hohere Abstraktionsstufe zu einem Verlust an Effizienz kommen
kann.

Funktionsbausteinsprache: FBS stammt aus der Einzelgeratetechnik bzw. der Signal-
verarbeitung und ist im Gegensatz zu AWL und ST eine grafische Programmiersprache.
Grafische Elemente der Sprache sind die Bausteine, Verbindungen, Konnektoren und Ele-
mente fir die Ausfithrungssteuerung. Die Bausteine werden in Funktionen (ohne internen
Speicher) und Funktionsbausteine (mit internem Speicher) unterteilt. Offene Eingédnge von
Bausteinen kénnen mit Variablen oder Konstanten beschaltet werden. Die Elemente der
Sprache werden zu Funktionsbausteinnetzen zusammengefasst.

Kontaktplan: Analog zu der Funktionsbausteinsprache kommt KOP historisch aus dem
Bereich der elektromechanischen Relaissysteme. Daher wird der ,Stromfluss® durch die
Netzwerke beschrieben und es werden im Wesentlichen boolesche Signale verarbeitet. Die
Basis der KOP-Netzwerke sind zwei ,,Stromschienen®, die auf der linken und rechten Seite
die Plane begrenzen. Auf der linken Schiene herrscht der logische Zustand 1 und durch
Verbindungen zwischen den Schienen kann der Strom abhéngig vom Zustand von Variablen
flieBen. So konnen logische Bedingungen aus Parallel- und Reihenschaltungen aufgebaut
werden.

14

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

Ablaufsprache: Die AS dient dazu, eine komplexe Aufgabe in tiberschaubare Unterauf-
gaben zu zerlegen. Ein Beispiel fiir ein derartiges Vorgehen sind chemische Prozesse, die
aus Zwischenschritten aufgebaut sind. In der Prozessindustrie kénnten das beispielsweise
die folgenden Schritte sein: Befiillen, Heizen, Rithren, Ablassen. Dafiir werden durch die
Sprache Schritte und Transitionen bereitgestellt. In den Schritten kénnen Aktionen (z.B.
das Setzen von Variablen) ausgefiihrt werden. In den Transitionen werden Bedingungen
fiir den Wechsel von einem Schritt in den anderen gepriift. Diese Bedingungen konnen das
Ablaufen eines Timers oder der Zustand einer Variablen, also der Zustand des Prozesses,
sein.

Prozessfiihrungsarchitekturen

Das iibergeordnete Ziel der Automatisierungstechnik ist die Steuerung und Uberwachung
von Prozessen durch die Automatisierungslosung. Die Grundlage dafiir bilden die beschrie-
bene Hard- und Software. Fiir den Gesamterfolg muss unter deren Verwendung eine so-
genannte Prozessfithrung entwickelt werden. Die wesentliche Aufgabe der Prozessfithrung
ist die Bereitstellung der Steuerungslogik fiir die jeweilige Aufgabe. Im Folgenden wird der
schematische Aufbau dieser Steuerungslogik aus einer funktionalen Sicht vorgestellt.

instantiate activate archive
Next Measure Active
Measure
1 1
e O e R e
N ~~ N~ S~
TU 10 TU 20 TU 30 TU 40
Group
Control
Unit
Single
Control
Unit

w @ ®
Abbildung 2.5: Darstellung einer hierarchischen Prozessfiihrung [WTPE17].

In [PE94] wird ausgehend von einem hierarchischen Fithrungsmodell eine Prozessfiihrungs-
architektur vorgestellt. Deren fundamentale Bestandteile sind die Prozessfithrungseinhei-
ten. Diese kapseln die jeweiligen Funktionalitédten und bieten eine Schnittstelle an, um Pro-

15

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

zessfithrungsauftrage entgegenzunehmen bzw. zu versenden. Je nach Position innerhalb der
Hierarchie werden diese Prozessfithrungseinheiten als Finzelsteuereinheiten oder Gruppen-
steuereinheiten bezeichnet. Einzelsteuereinheiten kapseln einzelne Aktoren im Leitsystem.
Gruppensteuereinheiten aggregieren die Funktionalitédten und synchronisieren die Aktionen
der ihnen zugeordneten Einzelsteuereinheiten.

In Abbildung 2.5 ist der Aufbau einer hierarchischen Prozessfithrung dargestellt. Am un-
teren Rand sind die Aktoren der Feldebene zu erkennen. Diese werden im Leitsystem
durch sogenannte Einzelsteuereinheiten (Single Control Unit) reprasentiert (z.B. Y001).
Neben der untersten Ebene der Steuerung, beispielsweise Verriegelungen!, bilden die Ein-
zelsteuereinheiten zusétzlich auch den Zugangspunkt fiir die Interaktion mit dem Aktor
aus dem Leitsystem heraus. Alle Vorgaben, wie Sollwerte oder Parameter, werden tiber
die Einzelsteuereinheiten eingestellt. Wenn Informationen tiber den Aktor bendtigt wer-
den, stellt sie die Einzelsteuereinheit bereit. Oberhalb der Einzelsteuereinheiten befinden
sich die Gruppensteuereinheiten (Group Control Units). Ihre Aufgabe ist es, die von ihnen
kontrollierten Einzelsteuereinheiten zu koordinieren. In diesem Beispiel (Abbildung 2.5)
kontrolliert GCU_CH4 den Motor NI03 und das Ventil YOO1. Durch die Aggregation der
Funktionalitdten kann der Durchfluss eingestellt werden. Die Gruppensteuereinheit fun-
giert als virtueller Aktor und kapselt nach oben diese Funktionalitit. Gruppensteuerungen
konnen beliebig hoch iibereinandergestapelt, d. h. deren Funktionalitat aggregiert, werden.
In Abbildung 2.5 wird eine Gruppensteuereinheit fiir die Teilanlage TU10 (T'U10 Control-
ler) umgesetzt. In der Abbildung sind zwei Arten der Verbindung zwischen Prozessfiih-
rungskomponenten zu erkennen. Von GCU_CH4 nach unten zu YOOI wird eine feste
Verdrahtung verwendet. Nach oben zu TUI10 Controller werden Prozessfithrungsauftriage
bzw. Prozessfithrungsdienste genutzt. Zur Realisierung von prozeduralen Produktionspro-
zessen, die ein Produkt unter Einbeziehung verschiedener Anlagenteile produzieren, sind
sogenannte Mafinahmen vorgesehen. In der Prozessindustrie werden diese auch als Rezepte
bezeichnet. Eine Mafinahme beinhaltet eine Prozedur und die Schnittstellen zur Interak-
tion mit den Prozessfithrungskomponenten. Mafinahmen kénnen nach ihrer Durchfithrung
zu Dokumentationszwecken zusammen mit den relevanten Prozessparametern gespeichert
werden.

Die lose Kopplung durch die Verwendung von Prozessfithrungsdiensten schafft einen ho-
hen Freiheitsgrad bei der Verteilung der Komponenten auf unterschiedliche Hardware.
Die Verteilung von Einzelsteuereinheiten ist jedoch nur eingeschrankt moglich, da diese
einen Zugang zum jeweiligen Aktor benotigen. In [WE15a] wird eine Realisierung dieser
Schnittelle auf Basis von Nachrichten vorgestellt. Dabei werden die Auftridge in Klartext
verschickt und ermdoglichen so eine einfachere Nachverfolgung und Fehlerbehebung.

Die so aufgebaute Prozessfithrung kann in einen prozessnahen Teil (MaBnahmen) und einen
anlagennahen Teil (Steuereinheiten) aufgeteilt werden. Die Steuereinheiten aggregieren die
Funktionalitdt der Einheiten unter ihnen und die Mafinahmen zerlegen den Prozess in von
der Anlage bearbeitbare Teilaufgaben. In der Phase des Entwurfs muss festgelegt werden,
welche Aufgaben von welchem Teil realisiert werden. Denkbar ist, dass die Steuereinhei-
ten die Funktionalitit so weit aggregieren, dass die Anlage durch die oberste Steuerein-
heit komplett gesteuert werden kann. Alternativ konnen die Mafinahmen direkt auf die
Geréte wirken. Theoretisch sind alle Abstufungen zwischen diesen Extremen denkbar, je-

Verriegelung bedeutet das Festhalten oder Uberfiihren eines Aktors in einen sicheren Zustand.

16

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

doch muss die hohere Flexibilitit (MaBnahmen) gegen die einfachere Ansteuerung (héhere
Aggregation der Einzelsteuereinheiten) abgewogen werden. In [WTPE1L7] wird mit dem
Betriebsmittel-Mafinahmen Modell ein Ansatz vorgestellt, diese Entscheidung fir jeden
Anwendungsfall spezifisch zu treffen.

In [UDKO12] wird eine Architektur fiir die Integration von Modulen einer Anlage zu einer
Gesamtanlage beschrieben. Ziel der Architektur ist eine einfache Zusammenfassung der
Module durch die Nutzung einer Dienstschnittstelle. Diese erlaubt den Zugriff auf die
Funktionalitdt und den Status der einzelnen Module. Dieser Ansatz wird in [BFK*17]
fiir die Verwendung von Micro-Services ausgebaut. Micro-Services erlauben den Zugriff
auf die Funktionalitdt durch eine Reihe einfacher Dienste, die vom Client in geeigneter
Weise verwendet werden. Die Dienstaufrufe kénnen so einfach gehalten werden, wohingegen
Server und Client smart sein miissen.

2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie

Als Beispiel fiir ein System in der Automatisierungstechnik, das mehrfach eingesetzt werden
soll, werden im Folgenden die Package Units und modulare Anlagen vorgestellt. Diese
bestehen aus Software- und Hardwareelementen. Da sie mehrfach eingesetzt werden, bieten
die Module einen guten Anwendungsfall fiir Wiederverwendungskonzepte.

Der Arbeitskreis 1.6 , Package Unit* der NAMUR? definiert Package Units als Anlagentei-
le, die sowohl alleine funktionsfahig als auch abgeschlossen sind und wiederholt die gleiche
Funktionalitat bereitstellen [NAMO6]. Sie werden dafiir von einem Hersteller vertrieben,
konnen jedoch verschiedene Komponenten anderer Leistungserbringer beinhalten. Package
Units sind vorkonfektioniert und bieten die Moglichkeit, einen abgegrenzten Funktions-
umfang von einer Teilanlage zur Verfiigung gestellt zu bekommen. Die Frage, ob die Au-
tomatisierung der Package Units in ein iibergeordnetes Leitsystem integriert oder, ob die
Teilanlage separat (vor Ort) gefahren wird, ist nach [NAMO9G6] eine Designentscheidung, die
fiir jeden Einzelfall erneut abgewogen werden muss. Vorteile der Wiederverwendung von
Package Units sind:

o Giinstige Herstellungskosten,

o Grofie Erfahrung mit den Teilanlagen und entsprechend hohe Garantien fiir den Be-
treiber,

e Fokussierung auf die Planung des Gesamtprozesses.

Durch die Wiederverwendung entsteht ein spezifisches Wissen und der Hersteller kann sei-
nen Produktionsprozess verbessern. So kann er die Herstellungskosten senken und gleich-
zeitig die Qualitat verbessern [Die02, Lim94|. Bei einer hoheren Zahl von verwendeten
Package Units kénnen mehr Informationen tiber das Verhalten und die Leistung der ver-
bauten Einheiten erhoben werden. Dies erlaubt dem Hersteller sein Produkt zu verbessern
und, zusétzlich zur gesteigerten Qualitdat des Produktionsprozesses, das Produkt selbst

2Die NAMUR ist ein internationaler Verband der Anwender von Automatisierungstechnik der Prozess-
industrie.

17

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

genauer an die Kundenwiinsche und den Verwendungszweck anzupassen. Neben den Ver-
besserungen auf der Herstellerseite und den giinstigeren Kosten fiir den Anlagenbetreiber
entsteht auch ein Potential fiir Verbesserung darin, dass sich der Anlagenplaner auf die
Planung des Gesamtprozesses konzentrieren kann. Eine Standardfunktionalitit kann so
einfach und giinstig hinzugekauft werden, ohne dass sich der Planer tiber die Details der
Umsetzung kiimmern muss.

Nachteilig ist, dass die zur Verfiigung stehenden Package Units nicht auf alle Sonder-
wiinsche oder Spezialanforderungen des Anlagenbetreibers eingehen. Auftretende Abwei-
chungen, die bei der Produktion berticksichtigt werden miissen, fithren zu einem erhéhten
Entwicklungsaufwand und einem Verlust der skizzierten Vorteile [NAMYG].

Ein néachster Schritt, die Vorteile der Package Units in der Verfahrenstechnik besser nutz-
bar zu machen, ist die Verwendung von modularen Anlagen. Modulare Anlagen und die
sich daraus ergebenden neuen Anforderungen an die Automatisierungstechnik sind in der
NAMUR Empfehlung 148 [NAM13] beschrieben.

In modularen Anlagen werden verschiedene sogenannte Module zu Anlagen zusammen-
gefasst. Die Anlage besteht aus dem Backbone, der die gesamte von den Modulen bend-
tigte Infrastruktur umfasst und Moglichkeiten zum Andocken fiir die Module bereitstellt.
Die Infrastruktur umfasst die Versorgung mit Energie, Informationen und Edukten sowie
den Abtransport der hergestellten Produkte. In den ,Backbone* werden die fiir den kon-
kreten Anwendungsfall bendtigten Module in der erforderlichen Menge und Reihenfolge
eingebracht. Verschiedene Arten von einzelnen Modulen sind in [NAM13] vorgesehen. Es
werden drei Eigenschaften von Modulen unterschieden: autonom, integrierbar und modu-
lar. Diese Eigenschaften sind nicht disjunkt. Autonome Module kénnen autark betrieben
werden und bendtigen selbst keine Interaktion mit benachbarten Modulen. Daher muss
der Backbone solch ein Modul von der Umgebung entkoppeln (z.B. durch die Bereit-
stellung von Pufferbehéltern). Das Modul verfiigt iiber eine eigene Automatisierung mit
definierten Schnittstellen zur Erfassung von Betriebsdaten und fiir die Inbetriebnahme der
modularen Anlage. Integrierbare Module sind dartiber hinaus in ein tibergeordnetes Leitsy-
stem integrierbar, d. h., es existiert nicht nur eine Schnittstelle fiir die Interaktion, sondern
das Leitsystem kann eine moduliibergreifende Steuerung realisieren. Die Integration muss
auf verschiedenen Ebenen der Automatisierung erfolgen und sollte daher im Optimalfall
(teil-)automatisiert durchgefiithrt werden. Modulare Module sind intern wiederum modular
aufgebaut und stellen wieder eine modulare Anlage dar. Durch die definierten Schnittstellen
zwischen Modulen und Backbone ist die Integration von Modulen verschiedener Hersteller
in eine Anlage moglich.

Ein Vorteil dieser Herangehensweise ist, dass Produkte durch die Verwendung von Stan-
dardkomponenten und durch eine verbesserte Wiederverwendung von einzelnen Modulen
in unterschiedlichen Anlagen schneller in den Markt gebracht werden konnen. Erreicht eine
modulare Anlage oder einzelne Module die Grenzen der Kapazitit, kann diese durch ein
einfaches Numbering-up, d.h. Ergdnzung einer weiteren Anlage, anstelle eines Scale-up
(Steigerung der Produktion eines bestehenden Verfahrens) gesteigert werden. Somit muss
nicht die Produktivitat eines Prozesses als solcher nach oben skaliert werden, sondern es
wird lediglich die Anzahl der produzierenden Module erhoht. Durch die dezentrale Struktur
steigt insgesamt der Komplexititsgrad der Automatisierung (vgl. [Die02, Lim94]).

18

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

2.1.3 Engineering von automatisierten Systemen

Unter Anlagen-Engineering (dt. Anlagenplanung) werden die Schritte von der ersten Idee
einer Anlage iiber den Bau und die Inbetriebnahme bis hin zu deren Nutzung im normalen
Betrieb verstanden [Web14]. Grundlagen des Engineerings sind die Anforderungen des spa-
teren Betreibers. Diese zu sammeln und zu ordnen ist der erste Schritt des Engineerings.
Ausgehend von den ermittelten Anforderungen wird die Anlage geplant. An diesem Prozess
sind alle notwendigen Fachdisziplinen beteiligt (Verfahrenstechnik, Mess- und Regeltech-
nik, etc.). Ergebnis der Planung sind verschiedene Artefakte, beispielsweise Modelle der
Anlagentopologie (R&I FlieBbilder), PLT-Stellenblitter und Steuerungscode in den Spra-
chen der IEC 61131 (vgl. Kapitel 2.1.1) [HSF*13]. In der Planungsphase wird ebenso die
Hardware zur Umsetzung der geplanten Funktionalitdt ausgewéahlt. Im Rahmen der Um-
setzung wird entsprechend der durchgefithrten Planungen die konkrete Anlage errichtet,
anschliefend getestet und in Betrieb genommen. Nach der erfolgreichen Abnahme durch
den Betreiber kann diese den Regelbetrieb aufnehmen. Die anschliefenden Wartungs- und
Optimierungsarbeiten werden ebenso wie ein moglicher Riickbau als Bestandteil des Engi-
neerings im Anlagenlebenszyklus betrachtet [Web14].

Neben der rein technischen Betrachtung wird unter Engineering auch die Einhaltung von
wirtschaftlichen, rechtlichen und organisatorischen Randbedingungen verstanden [Koe85].
Eine automatisierte Anlage muss mit moglichst geringen Aufwénden (d. h. Personal, Mate-
rial, etc.) errichtet werden. Dabei ist es unerlasslich, die geltenden Vorschriften und Gesetze
einzuhalten [Web14]. Die Abwicklung eines Engineering-Projekts ist durch die Beteiligung
der vielen Personen eine grofle Herausforderung. Allerdings muss dartiber hinaus auch
berticksichtigt werden, dass die Anlage durch die Mitarbeiter der Betreiberorganisation
betrieben werden kann.

Engineering-Prozesse

Zur Durchfithrung von Engineeringprozessen existieren in der Literatur viele Vorschlage
und Ansétze. Ein bekannter Ansatz ist der im Folgenden vorgestellte Prozess zur , Ab-
wicklung von PLT-Projekten® aus dem Arbeitsblatt 35 der NAMUR [NAMO03]. Anwen-
dungsbereich des Arbeitsblattes ist die Durchfithrung von leittechnischen Projekten in der
Prozessindustrie. Mit dem Arbeitsblatt wird das Ziel verfolgt, dem wachsenden Kosten-
druck und der zunehmenden Komplexitat der Automatisierung zu begegnen. Dafiir wird
ein strukturierter Ablauf fir die Durchfithrung von Projekten vorgeschlagen, sowie Em-
pfehlungen fir das Qualitats- und Projektmanagement gemacht.

In Abbildung 2.6 ist der strukturierte Ablauf mit seinen sieben Phasen dargestellt. Inner-
halb der Pfeile ist der Name der jeweiligen Phase zu erkennen und unterhalb des Pfeils
ist das Zwischenziel der Phase angegeben. Die erste Phase (Grundlagenermittlung) be-
steht aus der Festlegung der Projektziele und einer groben Schétzung der zu erwartenden
Kosten auf Basis einer vorliegenden Verfahrensbeschreibung und einer geplanten Anlagen-
kapazitit. Das Ergebnis ist eine durchfithrbare Anlage. Davon ausgehend werden in der
Vorplanung das Anlagenkonzept festgelegt und die Kosten genauer kalkuliert. In dieser
Phase wird das erste Sicherheitsgespriach durchgefithrt und eine Wirtschaftlichkeitsberech-
nung erstellt. Das Ergebnis ist ein Anlagenkonzept und die dazugehorige Dokumentation

19

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Grunqlagen- Vorplanung Basis- Ausfiihrungs- Errichtung Inbetrieb- Projekt-
ermittlung Planung planung setzung abschluss
Die durchfiihr- Die genehmi- Die aus- Die errichtbare Die funktions- Die Die bewertete
bare Anlage gungsfahige schreibbare Anlage fahige Anlage produktions- und abgerech-
Anlage Anlage fahige Anlage nete Anlage

Abbildung 2.6: Darstellung des Prozesses der Abwicklung eines PLT-Projekts nach [NAMO03].

(z.B. PLT-Stellenblitter und R&I-FlieBbilder). Diese Dokumente werden in der Basispla-
nung verfeinert und die Kostenschétzung fortlaufend aktualisiert. Die Verfeinerung betrifft
insbesondere die Beschaffung der verfahrenstechnischen Daten und die Festlegung der tech-
nischen Realisierung der leittechnischen Funktionen. In der Ausfihrungsplanung werden die
bendtigten Gerédte und das Leitsystem spezifiziert. Ergebnisse sind u. a. die Stellenfunkti-
onsplidne und Montageunterlagen. In der finften Phase (Errichtung) werden die Auftriage
ausgestellt, deren Durchfiihrung veranlasst und iiberwacht. In dieser Phase wird ladefahi-
ger Code fiir die Leitsysteme programmiert und die Dokumentation erstellt. Dieser Code
muss auf Funktionsfihigkeit tiberpriift und gegebenenfalls miissen Nacharbeiten durchge-
fithrt werden. Abschlieend wird die Funktionsfdhigkeit dokumentiert. Wahrend der In-
beriebsetzung wird das Personal ausgebildet, die Anlage in Betrieb genommen und die
Dokumentation auf den aktuellen Stand gebracht. In der letzten Phase (Projektabschluss)
werden der Abschlussbericht und die Abrechnung erstellt.

Der typische Lebenszyklus einer Anlage in der Industrie 3.0 wird in [WGE*117] vorgestellt.
Dieser fokussiert die Behandlung von Assets tiber den Lebenszyklus. So werden in der ersten
Phase der Grobplanung die Anforderungen und Zusicherungen an ein Gerat festgehalten. In
der zweiten Phase wird ausgehend von den Anforderungen ein Gerétetyp ausgewéihlt. Diese
Auswahl erfolgt anhand von Katalogen oder von Typenbibliotheken. Mit den vorliegenden
Informationen tiber die Geréite kann die Detailplanung durchgefithrt werden. In diesem
Rahmen werden die Konstruktion, die Steuerung und die Infrastruktur geplant. In der
vierten Phase wird die Anlage gebaut, getestet und in Betrieb genommen. Anschlieffend
erfolgen die Ubergabe und die Aufnahme der Produktion.

Diese beiden Ablaufe stehen beispielhaft fiir die Engineeringprozesse, wie sie aktuell Stand
der Technik sind. Ein Uberblick iiber verschiedene Vorgehensmodelle im Engineering ist
in [Sch16b] zu finden. Wie auch [Web14] kommt der Autor zu dem Schluss, dass viele Té-
tigkeiten im Engineering repetitiv sind und daher ein grofies Potential fiir die Nutzung von
systematischen Wiederverwendungskonzepten bieten. Die Aufwénde fiir die Planung der
PLT-Stellen und der Konfiguration der Software werden auf etwa 30% der Gesamtaufwande
geschatzt [NAMO3]. Zusétzlich wird die Erzeugung der Software als eine der fehleranfil-
ligsten Projektphasen eingeschétzt. Heutige Automatisierungssystem sind weder fehlerfrei
noch 100% testbar [NAMOS].

Die geschilderten Abldufe stellen den Optimalfall dar [WGET17]. In der Praxis ist mit
undokumentierten Anderungen an der Hard- und Software zu rechnen. Demzufolge ent-

20

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

sprechen wenige Plédne von gebauten Anlagen den jeweiligen Anlagen. Fir die einzelnen
Projektphasen und Gewerke existieren jeweils unterschiedliche Tools mit proprietiren Aus-
tauschformaten [VHDB13]. Die heterogene Tool-Landschaft zusammen mit fehlenden Kon-
sistenzchecks wird als die Ursache fiir Inkonsistenzen und Missverstédndnisse in Anlagen-
planen angesehen [WGE™17].

Die Notwendigkeit, das Wissen und die entwickelten Artefakte aus Projekten in Folgevorha-
ben nutzbringend einzusetzen, wird in [NAMO8] betont. Ausgangspunkt ist die Annahme,
dass ein grofier Teil der Arbeiten, insbesondere bei der Erstellung der Plane und der Um-
setzung in eine Leitsystemprogrammierung, repetitiver Natur ist. Wenn diese Annahme
bejaht wird, so ist es sinnvoll das in den Pldnen und der Implementierungen steckende
Wissen in nachfolgende und andere Projekte zu iibertragen.

Wiederverwendung in der Praxis der Automatisierung

Ein grundsétzlicher Mechanismus der Wiederverwendung in der Automatisierungstechnik
ist die Entwicklung von z.B. Funktionsbausteinen und deren Nutzung in mehr als ei-
nem Anwendungsfall. Dieser Ansatz wird auch im Bereich der Hardware angewendet, da
Pumpen oder Sensoren in mehr als einer Anlage und in grofler Stiickzahl zum Einsatz
kommen [DMGT*17].

Fir Funktionsbausteine wird in [YGE13, WTPE17] der ACPLT Software Development
Process (SDP) vorgestellt. Dieser setzt auf eine strikte Trennung zwischen der Entwick-
lung der Bausteine und deren Nutzung im Engineering von Losungen konkreter Aufgaben.
Diese Trennung ist nicht nur zeitlich, sondern auch personell zu sehen, da im Rahmen der
Entwicklung eher softwaretechnische und im Engineering mehr anwendungsspezifische Fé-
higkeiten benotigt werden [VHDF*14]. Dieser Prozess ermoglicht es zwar, die Aufwénde in
der Entwicklung haufiger zu nutzen, allerdings ist die Kenntnis der entwickelten Bausteine
eine Grundvoraussetzung. Ist diese nicht gegeben, z. B. durch schlechte Kommunikation in
der Organisationseinheit, so kann es zur parallelen Entwicklung funktional gleicher Bau-
steine kommen.

Ein Ergebnis des Engineeringprozesses sind Funktionsbausteinnetzwerke, die sich aus den
vorher entwickelten Bausteinen zusammensetzen [HSF*13]. Diese Netzwerke werden in
mehreren Anwendungsfillen verwendet. Im Anderungsfall (z. B. der Fehlerbehebung) miis-
sen diese oft manuell gedndert werden bzw. nachgepflegt werden. Da die Plane oft struktu-
rell identisch sind, sich jedoch in der Parametrierung unterscheiden, ist eine Propagierung
der Anderungen nicht durch ein Kopieren und Einfiigen zu erreichen.

Es gibt unterschiedliche Hersteller, deren Blocke nicht kompatibel sind. Selbst bei der
Verwendung von Standardbausteinen kann es sein, dass deren Interface nicht gleich ist,
was zu Problemen bei der Ubertragung einer Anderung auf das System eines anderen
Herstellers fiithrt. Bei der Verwendung von selbst entwickelten Funktionsbausteinen und
Funktionsbausteinnetzen sind die Losungen nur eingeschréinkt iibertragbar. Dies gilt auch
fiir die Migration von einer Leitsystemversion auf eine andere. Ein Grund fiir die fehlen-
de Ubertragbarkeit ist die unterschiedliche Umsetzung von ST-Befehlen in den Systemen
der einzelnen Hersteller. Dies macht eine Ubertragung von Applikationen zwischen den
Herstellern schwierig.

21

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Eine weitere Art der Wiederverwendung ist die Nutzung von einheitlichen Strukturen. Dies
gilt w.a. fur die Strukturen von Reglern. Ein Beispiel ist die Verwendung von Kaskaden
oder von Storgrofienaufschaltungen [ASE08]. Durch dieses Vorgehen kann, eine richtige
Auswahl der Struktur vorausgesetzt, die Problemstellung auf die korrekte Parametrierung
der Bausteine reduziert werden.

2.1.4 Quo vadis Automatisierungstechnik? — Ein Ausblick im
Zeitalter von Industrie 4.0

Neben dem aktuellen Stand der Automatisierungstechnik in der Praxis, wird im Folgen-
den die nahe Zukunft betrachtet. Allgemein herrscht die Uberzeugung, dass die Automa-
tisierung und mit ihr die gesamte produzierende Industrie vor grofieren Verdnderungen
steht [SAG'17]. Ein Anzeichen dieser Entwicklung sind Projekte wie die Industrie 4.0
Initiative in Deutschland und das von der Object Management Group (OMG) in den Ver-
einigten Staaten ins Leben gerufene Industrial Internet Consortium. Diese beiden Initiati-
ven sind jeweils eine Sammlung von Vorhaben und Projekten, die von unterschiedlichsten
Beteiligten vorangetrieben werden. Thnen gemeinsam ist jedoch das tibergeordnete Ziel,
die Digitalisierung und Vernetzung der industriellen Produktion voranzutreiben. Damit
ist nicht nur die Vernetzung innerhalb der Betriebe und Unternehmen gemeint, sondern
vor allem die Vernetzung tiber die Grenzen von Unternehmen hinweg. Ziel ist es, ein in-
tegriertes Wertschopfungsnetzwerk zu schaffen, das mindestens teil-automatisiert Daten
iiber Produkte und Auftrége zwischen verschiedenen Teilnehmern austauscht. Damit soll
insbesondere an Hochlohnstandorten eine effizientere Produktion erméglicht werden.

Zusétzlich zu den beschriebenen Zielen soll die Produktion insgesamt flexibler gestaltet
werden. In diesem Kontext ist eine Produktion mit der Losgrofie eins die ultimative Bench-
mark [SAG*17]. Ein Schritt zur Erreichung dieses Ziels ist die Realisierung einer flexiblen
und wandelbaren Produktion in technischen Betrieben. Neben der Entwicklung von neuer
Infrastruktur, die eine variable Anordnung der Produktionsmittel ermoglicht, muss auch
die Automatisierungslésung in die Lage versetzt werden, der Anderung des Produktions-
prozesses zu folgen. Eine Moglichkeit dies umzusetzen ist die Programmierung zu flexibili-
sieren [VHDF*14]. Dies kann beispielsweise durch die Verwendung von Laufzeitsystemen,
die zur Laufzeit rekonfiguriert werden konnen, erfolgen. Durch das Halten von Enginee-
ringdaten innerhalb der Laufzeitumgebung kann die Automatisierungslosung durch eine
automatisierte Transformation aus einer Problembeschreibung und den Randbedingungen
erzeugt werden. Um die Liicke zwischen der geplanten Anderung und der echten Adapti-
on eines neuen Produktionsprozesses oder neuer Randbedingungen zu schlieflen, miissen
die Systeme in der Lage sein, ihre Umgebung zu erkennen und die Funktionalitét der an-
geschlossenen Gerite zu erkunden [VHDB13]. Zur Realisierung der Erkundbarkeit bietet
sich OPC UA als Kommunikationsprotokoll an. Neben der verbesserten Kommunikation
spezifiziert OPC UA ein Metamodell fir die objektorientierte Datenmodellierung. Ausge-
hend davon kénnen Datenmodelle fir die unterschiedlichsten Anwendungsfille entwickelt
werden (z. B. Verwaltungsschalen [PE17]).

Flexibilitat von Produktionssystemen bedeutet die vorher geplante reversible Anpassung
an neue Gegebenheiten [Lofl1]. Charakteristisch fiir flexible Produktionssysteme ist der

22

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.1 Grundlagen der Automatisierungstechnik

begrenzte Handlungsspielraum, innerhalb dessen sich diese bewegen kénnen. Wandelbare
Systeme konnen diesen engen Korridor verlassen und im Vorhinein nicht geplante Verdn-
derungen durchfithren [Lof11].

Ein Weg zur Umsetzung der Adaption einer neuen Aufgabe durch die Automatisierungslo-
sung ist die Nutzung einer wandelbaren Struktur [WE15a]. Wandelbar bedeutet in diesem
Zusammenhang, dass sich die Struktur 4ndern kénnen muss. Dies kann notig sein, wenn
sich die Struktur der Anlage dndert oder neue Komponenten in die Automatisierungslo-
sung eingebracht werden. Dies kann durch eine dienstbasierte Architektur und die Ver-
wendung von Nachrichten fiir das Aufrufen der Dienste realisiert werden [EE13]. Dabei
bieten die Prozessfiihrungskomponenten die von ihnen angebotene Funktionalitét tiber ein
Dienstsystem an. Diese Dienste kénnen von Dienstnutzern, d. h. anderen Prozessfithrungs-
komponenten oder Bedienern, gefunden und genutzt werden. Fiir die Nutzung in der Au-
tomatisierungstechnik sind Ressourcen orientierte Architekturen (ROA) geeignet [WE17].
Diese Architekturen sind reduzierte Dienstsysteme, die anstelle von Diensten mit einem
grofen Interface und beliebiger Funktionalitat auf atomare Dienste mit einer begrenzten
Funktionalitat setzen. Die Komplexitat eines umfassenden Dienstes kann gegen komple-
xere Aufrufe von atomaren Diensten getauscht werden. Microservices [BFK*17] und die
Dienste fiir die Interaktion von Komponenten [IEC05] sind Beispiele dafiir.

Ein weiterer Gegenstand der Betrachtung ist die Anbindung der Automatisierungslosung
an die Cloud [SCZ*16]. In diesem Kontext wird Edge Computing, d.h. die Datenverarbei-
tung an der Grenze zur Cloud diskutiert. Fiir das Edge Computing werden die Ressourcen
von Geriten verwendet, die nahe am Prozess stehen. Aufgaben sind beispielsweise die
Datenverarbeitung oder die Verteilung von Anfragen [SCZ'16]. Vorteile gegeniiber dem
reinen Cloudcomputing sind die bessere Anbindung an die Produzenten von Daten und
die daraus resultierenden hoheren Bandbreiten sowie geringere Antwortzeiten.

Durch die zunehmende Verwendung von smarten Gerdten und deren Vernetzung stehen
in Zukunft immer mehr Daten tiber Prozesse und Geréte zur Verfiigung. Um diese ein-
heitlich zugénglich zu machen, sind ein standardisiertes Interface und eine vereinheitlichte
Datenmodellierung erforderlich. Mit der Verwaltungsschale wird ein solches Interface und
eine objektorientierte Datenmodellierung vorgeschlagen [PE17]. Dabei besteht die Verwal-
tungsschale aus verschiedenen Elementen, die z. B. durch einen OPC UA-Server von aufien
zuganglich gemacht werden konnen. Eine Anwendung fiir die neuen Daten sind Applika-
tionen aus dem Bereich des Predictiv Maintenance. Dabei wird versucht, aus den Daten
eine Verdnderung des Gerdtezustands herauszulesen und einen moglichen Ausfall vorher-
zusagen. Eine Vernetzung der Systeme iiber die Unternehmensgrenzen hinweg ermaoglicht
es, dass der Hersteller Zugang zu den Daten seiner verbauten Geréite erhalt und diese
auswerten kann. So kénnen neue Dienstleistungen realisiert werden.

In [WGET17] wird ein iiberarbeiteter Lebenszyklus fiir die Anlagenentwicklung vorgestellt
(vgl. Abbildung 2.7). Der Prozess ist im Wesentlichen deckungsgleich zu dem vorgestellten
aus dem NAMUR Arbeitsblatt 35. Er besteht aus den Schritten Grobplanung, der anschlie-
Benden Gerédteauswahl aus dem Katalog von Typen, dem Aufbau des Instanz-Modells der
Anlage und dem abschlieenden Aufbau der Anlage.

Der Fokus liegt auf der Verwendung von neuen digitalen Modellen in den verschiedenen
Schritten der Planung einer Anlage. In Kombination mit einer verbesserten Werkzeugkette

23

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

i H ¥ T Iteration i
b Timeline -
Rough planning Libraries Detail planning, Orders, Assembly Plant operation enables
Q) virtual 5
D-Rolemodel D-Type-Catalog D-Instance model Plant 14.0 Infrastructure

(Function description) (Herstellerkatalog oder
Device nutzerdefinierte Bibliothek)

Plant selection
—_—

generates Information model
| of plant

Instance
model

ValveAl s ValveAl
Cont.B1 i ContBL | | reads
MotorAl
1 wies [
{=r {=F configurations
Reaqurements [
assurances

Engineering-Tool Engineering-Tool
connected to scanning of the plant structure, functions,

properties, etc.

Information world with data and services

Physical world of real objects Physical
thing
D4711

realizes {Ig:’

connected to

l) 14.0 Software- Infrastructure

; enables

Abbildung 2.7: Darstellung der Anlagenentwicklung im Kontext von Industrie 4.0
nach [WGE*17]

soll diese Entwicklung zu geringen Aufwéinden im Engineering fiihren. Die verbesserten
Werkzeugketten bestehen aus passenden Schnittstellen zwischen den unterschiedlichen Sy-
stemen, die eine automatisierte Dateniibertragung ermoglichen und einer durchgéngigen
Betrachtung von Assets tiber deren gesamten Lebenszyklus hinweg ermoglichen. Eine ange-
strebte Verbesserung ist die Verkleinerung der Liicke zwischen den Planungs- bzw. Doku-
mentationsunterlagen und der Anlage selbst. Dies soll durch eine Riickwérts-Propagierung
von Anderungen an Planungsmodellen z. B. der zweiten und dritten Phase in die erste oder
zweite Phase erfolgen. Somit sind alle Modelle auf dem Stand der Anlage.

2.2 Komponentenbasierte Architekturen

Im folgenden Abschnitt werden die Grundgedanken zu komponentenbasierten Architektu-
ren vorgestellt und erlautert. Zunéchst wird der Begriff Komponente eingefiihrt und eine
Definition fiir die vorliegende Arbeit gegeben. Komponenten werden in Systemen und Ar-
chitekturen zusammengefasst. Deren Aufbau und Vorteile widmet sich der nachfolgende
Abschnitt. Anschliefend werden die Verwendung von komponentenbasierten Architekturen
in der Automatisierungstechnik vorgestellt.

2.2.1 Der Komponentenbegriff
Die Verwendung von Komponenten sind ein sehr grundsitzlicher Ansatz zur Betrachtung

eines Systems, das aus einzelnen Teilen, d. h. Komponenten zusammengesetzt ist. Im Du-
den wird Komponente als ,Bestandteil bzw. Element eines Ganzen® definiert. Nach dieser

24

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

Definition sind Komponenten Elemente eines tibergeordneten Systems. Beispiele fiir eine
derartige Betrachtung sind die Komponenten einer Stoffmischung oder die Komponenten
in einem Computer. Der Begriff Komponente stellt sich als generisch dar und abhéngig
vom Gegenstand der Betrachtung konnen darunter sehr verschiedene Dinge verstanden
werden.

In der DIN SPEC 40912 [DIN14] wird daher die technische Komponente als Spezialisierung
der allgemeinen Komponente eingefithrt. Unter dem Begriff werden sowohl Hard- als auch
Softwarekomponenten subsumiert.

Definition 1 (Technische Komponente). Vorgefertigte, in sich strukturierte und unabhdn-
gig hantierbare Einheit zur Realisierung einer konkreten Rolle in einem System [DIN1j].

Die Definition der technischen Komponente beinhaltet vier zusitzliche Kernaspekte: sie ist
vorgefertigt, strukturiert, unabhéngig hantierbar und realisiert eine konkrete Rolle. Vor-
gefertigt bedeutet, dass die technische Komponente schon vorliegt, wenn das System auf-
gebaut wird. Die technische Komponente hat einen internen Aufbau, der nach einem Plan
aufgebaut ist. Die interne Struktur muss nicht zu jedem Zeitpunkt transparent sein, d. h.,
eine technische Komponente kann nach aufien als Black-Box erscheinen (vgl. [OMG15]).
Technische Komponenten kénnen einem System hinzugefiigt oder entnommen werden, bei-
spielsweise, wenn sie getauscht werden. Hierdurch erfolgt eine Abgrenzung zur allgemeinen
Komponente, da diese nicht einzeln hantierbar sein muss. Die Komponenten des Kompo-
nentenklebers bilden nach der Vermischung eine Einheit und die Komponenten kénnen
nicht mehr getrennt behandelt werden. Diese Eigenschaft einer Komponente stellt beson-
dere Anforderungen an das Interface der Komponente und der Umgebung, in welche die
Komponente eingebaut wird. Die beiden Interfaces miissen zueinander kompatibel sein.
Zudem muss die Umgebung die Moglichkeiten bereitstellen, die Komponente zu hantieren.
Im Folgenden werden technische Komponenten als Komponenten bezeichnet. Der letzte
Aspekt der Definition von Komponenten ist, dass technische Komponenten eine konkrete
Rolle in einem System erfiillen. Die Grundlagen dieser Systembeschreibung werden nach-
folgend erléutert.

Rollen und Realisierungseinheiten — Das Rollenmodell

Das Rollenmodell ist eine Systembeschreibung, die im Engineering von Anlagen verbreitet
ist [WGET17]. Es beschreibt das System als Kombination aus Rollen und Realisierungsein-
heiten (vgl. Abbildung 2.8) [DIN14]. Rollen beinhalten auf der einen Seite die Anforderun-
gen an Realisierungseinheiten und auf der anderen Seite Zusicherungen an die umgebenden
Systemelemente und das Gesamtsystem. Realisierungseinheiten realisieren diese Rollen und
werden Bestandteil des Systems.

Die Trennung in Rolle und Realisierungseinheit stellt einen fundamentalen Bestandteil der
Anlagenplanung dar und ist, wenn auch nicht immer explizit beschrieben, zumindest impli-
zit vorhanden [DMG™17]. Wird zum Beispiel der Temperatursensor einer Anlage getauscht,
so wird der alte Sensor der Anlage entnommen und damit die Verbindung zwischen der
Rolle , Temperatur messen“ und dem Sensor als Realisierungseinheit getrennt. Die Rolle,
d. h. die Anforderung, dass eine Temperatur unter den gegebenen Randbedingungen gemes-

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

System

I

realisiert . L
Rolle Realisierungseinheit

Abbildung 2.8: Darstellung des Rollenmodells zur Systembeschreibung [DIN14]

sen werden soll, existiert weiterhin. Sie wird durch den neu eingebauten Sensor realisiert.
Dieser ist dann die neue Realisierungseinheit.

Bei der Betrachtung des Lebenszyklus einer Anlage wird der Nutzen des Rollenmodells
deutlich. In [DMG™17] beschreiben die Autoren die Verwendung von Rollenmodellen im
Engineering. Hierbei wird die Anlage zunichst abstrakt (z. B. in einem Rohrleitungs- und
InstrumentierungsflieBbild [IEC16]) entworfen. Dabei wird unter Verwendung der Rollen
eine Anlagenstruktur entworfen, ohne die konkreten Gerdtetypen zu benennen, die in der
Anlage verbaut werden sollen. Diese dokumentieren die Anforderungen an die Geréte und
deren Aufgabe in der Anlage. Unter Verwendung dieser Anforderungen kénnen geeignete
Typen von Realisierungseinheiten gesucht werden. Ausgehend von dem Ergebnis dieser
Suche werden die entsprechenden Realisierungseinheiten festgelegt [DF04, Epp08]. Der
Plan fiir den funktionalen Aufbau (Rollenmodell) einer Anlage ist damit losgelost von
den tatsdchlichen Geraten in der Anlage. Diese Trennung wird bei der Verwendung von
Verwaltungsschalen fiir Gerédte und der damit verbundenen Nutzung von Lebenszyklusin-
formationen genutzt [WGE117].

Der Aufbau von Komponenten

Aus der Definition von technischen Komponenten geht hervor, dass diese in sich struktu-
riert sein missen. Ein Vorschlag fiir die Beschreibung dieses inneren Autfbaus von Soft-
warekomponenten wird in [Ens01] vorgestellt. Dabei werden zwei Arten von Komponenten
unterschieden: primitive und komplexe Komponenten. Primitive Komponenten sind ato-
mar, d.h., sie kdnnen in keine weiteren Bestandteile (Unterkomponenten) zerlegt werden.
Im Gegensatz dazu setzen sich komplexe Komponenten aus Unterkomponenten zusammen.
Die Unterteilung ist analog zu der Einteilung in der IEC 61499 [IECO05]. Fir die Beschrei-
bung von Komponenten als Black-Box werden Kapseln eingefithrt [Ens01]. Diese beschrei-
ben das Interface einer oder mehrerer Komponenten. Das beschriebene Interface ist eine
Mindestanforderung, d.h., die Komponenten kénnen tber ein grofieres Interface verfiigen
und sind trotzdem kompatibel. In [Ens01] werden Kapseln als Beschreibung fiir Kompo-
nenten vorgesehen, die ,Gemeinsamkeiten in Struktur und Verhalten aufweisen®. Kapseln
konnen als Rollenbeschreibung von Funktionsbausteinen aufgefasst und im zugehorigen
Engineeringprozess fiir den Aufbau von komplexen Komponenten verwendet werden. Im
weiteren Verlauf werden die Kapseln durch Funktionsbausteine implementiert.

Eine sehr prominente Beschreibung fiir den Aufbau von Softwarekomponenten ist in der

26

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

Spezifikation der Unified Modeling Language (UML) enthalten [OMG15]. Darin wird ei-
ne Komponente als modulare Einheit mit einem wohldefinierten Interface, die innerhalb
ihrer Umgebung austauschbar ist, definiert. Diese Definition ist fiir Softwarekomponenten
deckungsgleich mit der vorgestellten Definition der technischen Komponenten. Der Fokus
der Komponente aus Sicht der UML liegt auf der Kapselung des Zustands und des Verhal-
tens der Komponente. Dartiber hinaus sind Komponenten austauschbare Elemente, wenn
ihre Funktionalitét und ihr Interface kompatibel sind. In Abbildung 2.9 ist der strukturierte
Aufbau von Komponenten vereinfacht dargestellt. Es ist zu erkennen, dass Komponenten
von einer Klasse abgeleitet werden und aus Realisierungen, PackageableElements und In-
terfaces bestehen konnen. Das Interface unterteilt sich in benétigte (required) und bereit
gestellte (provided) Interfaceelemente. Ein weiterfiihrender Uberblick zu Softwarekompo-
nenten ist in [Die02] zu finden.

Klasse Realisierung
Komponente Komponentenrealisierung
0.1 *
*lo.1
* *
Interface PackageableElement

Abbildung 2.9: Komponentenaufbau nach [OMG15]

Eine andere Art der Komponenten sind Hardwarekomponenten, wie z.B. Feldgeréte
(vgl. Kapitel 2.1.1) oder Package Units (vgl. Kapitel 2.1.2). Der innere Aufbau dieser Hard-
warekomponenten ist fiir die Betrachtung in einem gréfieren System (z.B. einer Anlage)
selten relevant. Daher werden diese Elemente bei der Beschreibung von Anlagen (z.B. in
einem Rohrleitungs- und Instrumentierungsfliebild [IEC16]) als Black-Boxen dargestellt.
Aus Sicht der Systembeschreibung sind nur die Funktionalitdt und das Interface (z. B. Art
des Anschlusses oder bendtigte Spannungsversorgung) relevant. Analog dazu ist die Defini-
tion des Module Type Package (MTP) der Interessengemeinschaft Automatisierungstech-
nik der Prozessindustrie (NAMUR) zu verstehen, in dessen Rahmen die Schnittstellen fiir
Module definiert werden. Fiir jedes Modul muss die Mensch-Maschine-Schnittstelle und
eine Schnittstelle fiir das Steuern und Uberwachen beschrieben sein [BHH*16]. Fiir das
Steuern und Uberwachen stellt das Modul seinen internen Zustand nach aufien dar und
bietet (Prozessfithrungs-)Dienste an, die von einer tiberlagerten Steuerung genutzt werden.
Der interne Aufbau des Moduls ist fir den Nutzer im Sinne einer Service orientierte Ar-
chitektur (SOA) nicht relevant und kann durch verschiedene Hardwareaufbauten realisiert
werden.

27

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Eigenschaften von Komponenten

Eigenschaften von Softwarekomponenten, die auch fiir technische Komponenten gelten,
sind in [Sam97] vorgestellt worden. Die wesentlichen Eigenschaften sind:

e Geschlossenheit
Unter Geschlossenheit ist zu verstehen, dass eine Komponente wiederverwendet wer-
den kann, ohne dass dazu andere Komponenten oder Hilfsmittel notig sind. Sind
fiir die Verwendung einer Funktion andere Funktionen erforderlich, so miissen diese
alle in einer Komponente enthalten sein. Eine Klasse aus der Softwaretechnik ist im
Allgemeinen alleine keine Komponente, da aufgrund von Vererbungsstrukturen fur
deren Erzeugung weitere Klassen vorhanden sein miissen.

o Identifizierbarkeit
Komponenten missen eindeutig identifizierbar sein. Zusétzlich zu der reinen Namens-
gebung ist darunter auch die Auffindbarkeit zu verstehen.

e Klarheit der Schnittstelle
Bei der Verwendung von Softwarekomponenten steht die Wiederverwendung im Vor-
dergrund. Daher muss sich die Schnittstelle auf den fiir die Wiederverwendung rele-
vanten Umfang beschrianken und alles Weitere verbergen. Im Allgemeinen wird unter
den Schnittstellen die Signatur der angebotenen Funktionen verstanden [Die02].

e Dokumentation
Die Dokumentation von Komponenten ist fiir deren Verwendung und insbesondere
fir die Wiederverwendung wichtig. Die am besten fiir die Wiederverwendung ver-
wendbare Komponente ist nutzlos, wenn es keine geeignete Dokumentation gibt.

o Wiederverwendungsstatus
Der Wiederverwendungsstatus gibt an, wer die Komponente besitzt, wer fiir die War-
tung verantwortlich ist und wer kontaktiert werden kann, wenn es Probleme mit der
Komponente gibt.

In [Die02] wird zwischen zwei Arten von Komponenten unterschieden: den horizontalen
und den vertikalen Komponenten. Horizontale Komponenten sind unabhéngig von einem
konkreten Anwendungsgebiet bzw. einer Doméne. Beispiele sind Komponenten fir Benut-
zerschnittstellen oder das Datenmanagement. Im Gegensatz dazu stellen vertikale Kom-
ponenten Funktionalitdten fiir einen konkreten Bereich bereit. Die Prozessfihrungskom-
ponenten sind dafiir ein Beispiel.

Abbildung 2.10 zeigt das Zusammenspiel aus Komponentenentwicklung, Komponentenma-
nagement und Losungsentwicklung. Im Kern dieser drei Aufgaben steht das Repository,
in dem die Komponenten gesammelt und verwaltet werden. Im Rahmen der Komponen-
tenentwicklung werden neue Komponenten dem Repository hinzugefigt, die im Nachgang
von den Entwicklern bearbeitet und verbessert werden kénnen. Die Verwaltung der Kom-
ponenten und ihre Bereitstellung fiir die Losungsentwicklung ist Gegenstand des Kompo-
nentenmanagements. Ausgehend von den entwickelten Komponenten werden in der Lo-
sungsentwicklung Losungen fiir die jeweiligen Problemstellungen realisiert. In [HC01] wird
betont, dass ein zentrales Repository fiir die Durchfiihrung der Prozesse wichtig ist, da-
mit die verfiiggharen Komponenten allen Beteiligten bekannt sind und von diesen genutzt

28

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

werden koénnen.

Komponenten- Lésungs-
entwicklung entwicklung
Repository
Komponenten-
management

Abbildung 2.10: Das Repository im Zentrum der Komponentenverwendung nach [HCO1]

Komponenten als Grundlage fiir die Wiederverwendung

Einheiten, seien sie physisch oder nicht physisch, werden erst durch das Hinzufiigen zu
einem Komponentensystem zu einer Komponente. Ubertragen bedeutet das, dass der Sen-
sor im Lager oder die in der Cloud gespeicherte Softwareapplikation keine Komponenten
im engeren Sinne sind. Im allgemeinen Sprachgebrauch werden jedoch auch Einheiten, die
prinzipiell als Komponenten verwendet werden konnen, als Komponenten bezeichnet, auch
wenn sie aktuell keinem Komponentensystem zugeordnet sind [DIN14].

Nach [Kru04] sind komponentenbasierte Architekturen eine Losung fiir grundlegende Pro-
bleme im Bereich der Softwareentwicklung, da sie folgende Vorteile haben:

Komponenten erleichtern das Design von widerstandsfahigen Architekturen.

Modularitit ermoglicht eine klare Trennung der Zustandigkeiten von Systemelemen-
ten.

Wiederverwendung wird durch standardisierte Frameworks und verfiighare Kompo-
nenten erleichtert.

Komponenten stellen eine nattirliche Basis fiir das Konfigurationsmanagement dar.

Tools fiir die visuelle Modellierung stellen eine Automation fiir das komponentenba-
sierte Entwickeln dar.

29

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

Dementsprechend sind komponentenbasierte Systeme in vielen Bereichen zumindest im-
plizit verbreitet. Wie gezeigt wurde, existieren Definitionen von Komponenten sowohl im
Hard- als auch im Softwarebereich. Im Folgenden werden beispielhaft einige komponenten-
basierte Architekturen aus der Automatisierungstechnik vorgestellt.

2.2.2 Komponentenbasierte Architekturen in der
Automatisierungstechnik

Beispiele fiir komponentenbasierte Architekturen in der Automatisierungstechnik sind
Funktionsbausteine aus der IEC 61131 [TEC14b] und IEC 61499 [IEC05], Package Units, die
Betrachtung von Sensoren und Aktoren in Anlagen und Rohrleitungs- und Instrumenten-
FlieBbilder. Die Funktionsbausteine und die Hardwarekomponenten sind klassische Bei-
spiele fiir komponentenbasierte Architekturen. Aber auch die Elemente von Fliebildern
konnen als Komponenten aufgefasst werden, da sie in ihrer Umgebung einzeln handhabbar
sind, einen konkreten Zweck haben und ein definiertes Interface bereitstellen.

Softwarekomponenten

Fiir den Aufbau des Softwareteils der Automatisierungslosung (System fiir die Automati-
sierung z. B. einer Anlage, vgl. [VHDF*14]) werden in der Regel die Programmiersprachen
der IEC 61131 verwendet [JT00]. Zur Strukturierung hat sich die Verwendung von Funkti-
onsbausteinen in Funktionsbausteinnetzwerken etabliert. Dabei werden einzelne Aufgaben
in einem Funktionsbaustein gekapselt. Dieser verfiigt tiber ein definiertes Interface, soge-
nannte Ports, und kann innerhalb des Automatisierungssystems instanziiert, geloscht und
manipuliert werden. Der riickwirkungsfreie Austausch von Daten wird durch Signalver-
bindungen zwischen den Ports von Bausteinen realisiert. Als Erweiterung der klassischen
Bausteintechnik im Hinblick auf Verteilbarkeit von Losungen und der Ausfithrungsseman-
tik ist die IEC 61499 entwickelt worden. Als Ergéinzung zu den klassischen Ports sind
Eventports zur Abbildung eines Eventflusses eingefiihrt worden. Funktionsbausteine kon-
nen zu aggregierten Funktionsbausteinen zusammengefasst werden. Durch die Verwendung
von globalen Variablen in einem Funktionsbaustein ist dieser keine Komponente im Sinne
der vorgestellten Definition. Diese Bausteine sind nicht abgegrenzt und koénnen nicht in
Umgebungen ohne die globale Variable eingesetzt werden. Softwarekomponenten eignen
sich besonders gut fiir die Wiederverwendung, da die Grenzkosten fiir die Nutzung einer
weiteren Instanz vernachlassigbar gering sind. Eine Ausnahme sind Lizenzmodelle, die eine
Zahlung an den Lizenzgeber pro eingesetzter Instanz vorsehen.

Hardwarekomponenten

Wie bereits angesprochen, werden auch Hardwareteile als Komponenten in einer Anlage
angesehen. Sie sind Bestandteil der Automatisierungslosung. Solche Komponenten sind
Sensoren und Aktoren wie z. B. Pumpen und Temperatursensoren. Auch diese Hardware-
komponenten verfugen iiber ein definiertes Interface, das sie gegeniiber ihrer Umgebung

30

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.2 Komponentenbasierte Architekturen

austauschbar macht. Beispiele dafiir sind ein Anschluss tiber Zweidraht, d. h. 4 bis 20 mA,
oder Profibus.

Eine Form der Aggregation von Hardwarekomponenten wird bei der Verwendung von
Package Units umgesetzt [NAM9G6]. Dabei werden Module einer Anlage als komplette Ein-
heit bereitgestellt. Ein Beispiel dafiir sind Verpackungsmaschinen. Diese konnen tiber eine
eigene Automatisierungslosung verfiigen, die sich entweder in ein tibergeordnetes Leitsy-
stem einfiigt oder eigenstandig betrieben wird. Die Wiederverwendung von Hardwarekom-
ponenten ist analog zu der Klasse-Instanz Beziehung in Softwaresystemen. Ein Pumpentyp
beispielsweise kann mehrfach produziert und anschlieend in verschiedenen Anlagen ein-
gesetzt werden. Auch ein Tausch von Pumpen unterschiedlichen Typs ist bei gleichem
Interface und kompatibler Funktionalitat ohne Riickwirkung auf die Umgebung moglich.

Komponenten im Engineering

Bei der Planung einer Prozessanlage entstehen Diagramme, die den geplanten Aufbau
der Anlage bestehend aus den Rohren und Instrumenten (R&I- FlieSbilder) darstel-
len [HSF*13, PE94]. Sie sind das Ergebnis der verfahrenstechnischen Anlagenplanung und
bilden die Grundlage fiir die Planung der Automatisierungslosung. Die einzelnen Bestand-
teile der Diagramme (z. B. Messstellen und Aktoren) sind mit den jeweiligen Anforderun-
gen an sie und den Verbindungen zwischen ihnen dargestellt und kénnen als Komponenten
aufgefasst werden. Die Diagramme haben zwei Aufgaben: Auf der einen Seite stellen sie
ein Rollenmodell fir die zu bauende Anlage und ihre Komponenten dar. Auf der ande-
ren Seite sind sie selbst Modelle, die sich aus einzelnen Komponenten zusammensetzen.
Als elektronisches Austauschformat wird mit PandIX eine CAEX Bibliothek auf Basis der
IEC 62424 [IEC16] vorgestellt.

Verwendung von Komponenten in Laufzeitsystemen

Durch die zunehmende Verwendung von OPC UA [IEC10, GPP16] und der damit ver-
bundenen Modellierung von Daten und Zusammenhéngen in objektorientierten Informa-
tionsmodellen, wird die Verwendung von komponentenorientierten Architekturen zuneh-
men [SAGT17, WIPE17]. In diesen Informationsmodellen werden viele Informationen ge-
speichert und zuginglich gemacht. Daher ist davon auszugehen, dass diese zunehmend
groBer und komplexer werden. So muss es ein Anliegen sein, den Aufwand fir die Erstel-
lung und Pflege dieser Modelle so gering wie mdéglich zu halten.

Eine Moglichkeit, diese Modelle zu speichern, sind Laufzeitumgebungen (vgl. Kapi-
tel 2.1.1). Abhéangig von der Funktionalitdt der Laufzeitumgebung kann mit ihr die Ab-
arbeitung von aktiven Komponenten wie Diensterbringern oder Steuerungslogiken durch-
gefithrt werden. Im Kontext der geplanten Umsetzung von wandelbaren Fabriken ist nicht
nur die Erkundung von Funktionalitdten zur Laufzeit erforderlich, sondern dariiber hinaus
auch die Moglichkeit zu deren Modifikation, um auf neue Situationen und Randbedingun-
gen reagieren zu kénnen.

Zur Umsetzung der flexiblen Prozessfithrung, wie sie durch die Flexibilisierung der Produk-
tion in Industrie 4.0 gefordert ist [SAGT17, VHDF*14], riicken zunehmend Laufzeitumge-

31

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2 Grundlagen und Stand der Technik

bungen in den Fokus. Diese miissen zumindest teilweise echtzeitfdhig sein und flexibel an
die Umgebung angebunden werden konnen. Fiir eine flexible Erkundung der Funktionalitét
und Zusammenschaltung von mehreren Laufzeitumgebungen zur Laufzeit ist die Reflexion
niitzlich. Durch diesen Mechanismus wird der aktuelle Zustand der Laufzeitumgebungen
sowie die in ihr enthaltenen Objekte und deren Zustand von aufien zugénglich. Die vor-
gestellten Prozessfithrungskomponenten kénnen so flexibel realisiert und in wandlungsfa-
higen Strukturen angeordnet werden [WTPEL7]. Ebenso bieten sich Laufzeitumgebungen
fiir Implementierung von Verwaltungsschalen an, die ebenfalls als Komponenten anzusehen
sind [PE17].

2.3 Zwischenfazit

In diesem Kapitel wurden die in der Automatisierungstechnik verwendeten Soft- und Hard-
waresysteme vorgestellt. Der Fokus lag dabei auf der Prozessindustrie als Anwendungsge-
biet. In einem zweiten Teil wurde der Begriff der technischen Komponente eingefithrt und
existierenden Definitionen von Komponenten gegentibergestellt. Es zeigt sich, dass die au-
tomatisierungstechnischen Soft- und Hardwaresysteme als Komponentensysteme aufgefasst
werden konnen. Aufgrund des Fokus der Automatisierungstechnik ist es sinnvoll, Soft- und
Hardware nicht getrennt zu betrachten, sondern als hybrides System zu verstehen. Dies gilt
insbesondere deshalb, da sich die Soft- und Hardware der Systeme gegenseitig beeinflussen
konnen.

Im Engineeringsprozess werden viele Téatigkeiten haufig und repetitiv durchgefithrt, um
dhnliche Problemstellungen zu lésen. Hier fithrt eine verbesserte Wiederverwendung zu
geringeren Aufwéinden. Zusétzlich ist es durch die verschiedenen Personen, die an der
Umsetzung beteiligt sind, schwierig, bestehende (Teil-)Losungen wiederzuverwenden, da
deren Bekanntheit nicht hoch genug ist.

Innerhalb der einzelnen Phasen des Engineeringprozesses werden Komponenten bereits
entlang der Grenzen von Gewerken wiederverwendet. Es werden sowohl Soft- als auch
Hardwarekomponenten standardisiert. Die Verwendung ist jedoch nicht flichendeckend
gegeben. Zusétzlich muss die Standardisierung tiber die Grenzen der Gewerke sinnvoll
und konsistent vorgenommen werden. Selbst wenn innerhalb der Gewerke Komponenten
standardisiert sind, miissen diese in hybriden Systemen tiber die Grenzen der Gewerke
zueinander kompatibel sein. Die Wiederverwendung von Komponentensystemen ist bisher
bestenfalls in Ansétzen géngige Praxis.

Die relevante Information zur Losung eines Problems bzw. der Mehrwert einer Imple-
mentierung befindet sich in den komponentenorientierten Architekturen der Automatisie-
rungstechnik nicht nur in den Komponenten selbst. Zu einem grofien, je nach Anwendung
auch iiberwiegenden, Teil sind die Informationen im Zusammenspiel der Komponenten
enthalten. In diese Verkniipfung der Komponenten bzw. in den Aufbau der Komponen-
tennetzwerke wird viel Aufwand investiert. Da die Systeme (z.B. Leitsysteme) &hnlich
aufgebaut sind, bzw. funktionell die gleichen Funktionsbausteintypen verwendet werden,
besteht in der Ubertragung dieser Komponenten ein enormes Potenzial. Man kann diese
als Implementierungs-unabhangigen Teil der Losung von Automatisierungsaufgaben be-

32

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

2.3 Zwischenfazit

zeichnen.

Durch die Grenzen zwischen den Anwendungen findet in der Praxis keine Wiederverwen-
dung oberhalb der Komponenten statt. Die Dokumentation der Anlagen und der Automa-
tisierungslosungen entspricht nicht immer dem aktuellen Zustand der Systeme.

Es wird daher ein Konzept benotigt, das die Wiederverwendung von komponentenbasierten
(Teil-)Losungen ermoglicht und unterstiitzt. Dazu muss ein Weg entwickelt werden, diese
Teillésungen und die Abhéngigkeiten zwischen ihnen zu beschreiben. Der Ansatz muss
in die bestehende Architektur eingefiigt werden konnen. Im Rahmen des Konzepts muss
sichergestellt sein, dass es sich in die bestehenden Prozesse des Engineerings einfiigt und auf
zukiinftige Entwicklungen der Automatisierungstechnik vorbereitet ist. Das bedeutet, die
Anwendung in verteilten Systemen und die Abbildung von dienstbasierten Architekturen
miissen unterstiitzt werden.

33

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im
Kontext der Automatisierungstechnik

In diesem Kapitel werden die Anforderungen an ein Konzept zur Unterstiitzung der Wie-
derverwendbarkeit in komponentenbasierten Architekturen spezifiziert. In einem ersten
Schritt werden die Besonderheiten der Automatisierungstechnik vorgestellt. Diese bilden
die Grundlage fiir die anschliefend beschriebenen funktionalen und nicht-funktionalen An-
forderungen. Diese Anforderungen beschreiben die geforderte Funktionalitdt und die Art
und Weise, wie sich das Konzept in die bestehenden Konzepte und Vorgehensweisen der
Automatisierungstechnik einfligen muss.

3.1 Besonderheiten in der Automatisierungstechnik

Das Anwendungsfeld der Prozessautomation stellt besondere Anforderungen an die ver-
wendeten Automatisierungslosungen. Da die vorliegende Arbeit ein Problem dieser Domé-
ne adressiert, ist eine Betrachtung ihrer besonderen Eigenschaften erforderlich. Nur deren
Berticksichtigung erméglicht die Entwicklung einer passgenauen Losung.

Konsequenzen bei Storungen des Betriebs: In der Automatisierungstechnik hat die Si-
cherheit einen sehr hohen Stellenwert, da die Auswirkungen einer Storung, insbesondere
in der Prozessautomation, sehr hoch sein kénnen [FA09]. Diese reichen von wirtschaft-
lichen Konsequenzen tiber die Verschmutzung der Umwelt bis zur direkten Gefihrdung
von Menschenleben. Wirtschaftliche Schiden werden beispielsweise durch die Zerstérung
oder Beschiadigung von Maschinen oder Produktionsgiitern hervorgerufen, aber auch durch
Produktionsausfélle, die aus einer Storung resultieren. Umweltverschmutzungen kénnen
durch das Austreten von schidlichen Stoffen auftreten. Insbesondere in der Chemie hat
der Schutz von Mitarbeitern und Anwohnern einen grofien Stellenwert, da es durch die
Prozesse und Materialien zu schwerwiegenden Unfillen (Explosionen, giftige Gase, etc.)
kommen kann [Webl4]. Fir die Integration neuer Ansitze und Losungen muss nachge-
wiesen werden, dass diese ein mindestens gleichwertiges Sicherheitsniveau haben wie die
Bestandslosung.

Lebenszyklen der Anlagen: Insbesondere in der Prozessindustrie liegen die Lebenszyklen
von Anlagen im Bereich von mehreren Dekaden [FA09, VHDB13]. Eine Konsequenz die-
ser Tatsache ist, dass aktuell Anlagen mit den unterschiedlichsten Graden der Automa-
tisierung und den verschiedensten Systemen betrieben werden. Dies macht die Wartung,
Instandhaltung und Erweiterung zu schwierigen und herausfordernden Aufgaben. Insbe-
sondere da nicht nur Hardwarekomponenten vorgehalten werden miissen, sondern auch die
entsprechenden Engineeringtools zur Wartung der Automatisierungssysteme. Zusétzlich

34

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

3.1 Besonderheiten in der Automatisierungstechnik

miissen Mitarbeiter die dafiir erforderliche Expertise besitzen [VHDB13, NAMOS]. Eine
aussagekraftige und aktuelle Dokumentation des Anlagenzustands ist bei diesen langen
Lebenszyklen eine Herausforderung [Web14, WGE*17].

Unterbrechungsfreie Anlagenlaufzeiten: Ein weiteres Merkmal der Prozessautomation
sind die langen unterbrechungsfreien Anlagenlaufzeiten. Zwischen zwei geplanten Abschal-
tungen konnen bei kontinuierlich produzierenden Anlagen bis zu drei Jahre liegen [FA09).
Da die Kosten durch einen ungeplanten Produktionsausfall hoch sein kénnen, muss ein
solcher Fall nach Moglichkeit vermieden werden.

Domanenspezifische Programmiersprachen: Die Programmiersprachen der
IEC 61131 [IEC04] sind in der industriellen Automation sehr verbreitet und werden
auf absehbare Zeit ihre Bedeutung behalten [WTE'17]. Die Sprachen sind in vielen
Anwendungen iiber einen langen Zeitraum erprobt und die Mitarbeiter der Unternehmen
verfiigen tiber eine grofle Expertise in deren Nutzung.

Betrachtung von hybriden Soft- und Hardwaresystemen: Ziel der Produktionsauto-
mation ist die Produktion von materiellen Giitern. Um dieses zu erreichen, sind Aktoren
fiir die Produktion notig. Diese représentieren die Schnittstelle zwischen der Cyberwelt und
der physischen Welt. Ohne diese Hardwareanbindung ist eine Produktion materieller Giiter
nicht moglich. [HSF*13]. Um dies zu beriicksichtigen, endet z. B. die Automatisierungspy-
ramide (vgl. Kapitel 1) am unteren Ende mit der Anbindung ins Feld. Daraus resultiert,
dass die aus der Hardware resultierenden Randbedingungen nicht zu vernachléssigen sind.
Diese Kombination von Soft- und Hardwaresystemen fithrt zusammen mit den unterschied-
lichen Anwendungsbereichen zu einer hohen Komplexitéat der Systeme [VHDF*14].

Vielfdltige Automatisierungs- und Engineeringsysteme: Aufgrund des weiten Aufga-
benspektrums und der angesprochenen langen Lebensdauer der Anlagen und ihrer Kompo-
nenten, werden unterschiedliche Arten von Automatisierungssystemen verschiedener Her-
steller verwendet. Zur Entwicklung und Wartung der Automatisierungslésungen sind zu-
sitzlich die kompatiblen Engineeringsysteme notig. In Kombination mit dem nicht fla-
chendeckenden Vorhandensein von Datenaustauschlosungen fiithrt dies zu einem hoheren
Fehlerpotential, Ineffizienz und damit hoheren Kosten bei der Anlagenplanung und damit
der Planung von Automatisierungslosungen [VHDB13].

Heterogener Nutzerkreis der Systeme: Da die Automatisierungstechnik Schnittstellen
zu verschiedenen Gewerken hat, werden die Systeme von Mitarbeitern mit unterschied-
lichen Voraussetzungen (fachlicher Hintergrund, Ausbildungsniveau, Erfahrung, etc.) ent-
wickelt, bedient und gewartet [VHDB13]. Entsprechend muss den jeweiligen Voraussetzun-
gen und Rollen innerhalb der Organisationseinheit Rechnung getragen werden. Beispiels-
weise konnen spezialisierte Sichten auf das gleiche System vorgehalten werden [NAM14].
Trotz der fortschreitenden Automatisierung ist der Mensch weiterhin ein wichtiger Bestand-
teil im Produktionsprozess. Die Automatisierungstechnik entlastet den Bediener haufig,
sodass dieser den Prozess insgesamt nach tibergeordneten Gesichtspunkten wie Wirtschaft-
lichkeit und Sicherheit fiihren kann [Lun03].

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik

3.2 Anforderungen an das Konzept

Abgeleitet aus den vorgestellten Eigenschaften der Doméne, werden im Folgenden die An-
forderungen an das Konzept vorgestellt.

R1 Integration in bestehende Architekturen: Das Konzept zur Variantenbeschreibung
muss sich in die viel verwendeten und erprobten Architekturen der Automatisierungstech-
nik einfligen, d. h., es muss sich nahtlos in die bestehenden Modelle der einzelnen Doménen
einpassen. Wie in Abschnitt 2.2 beschrieben, sind komponentenbasierte Architekturen in
der Automatisierungstechnik weit verbreitet. Diese finden zumindest implizit im Hard- und
Softwarebereich Anwendung und bilden die Grundlage fiir die Entwicklung vieler Losun-
gen.

R2 Modellbasierte Abbildung der Variabilitit Zur Forderung der Wiederverwendbar-
keit in komponentenbasierten Architekturen muss die Variabilitdt der Losungen durch
einen modellbasierten Ansatz beschrieben werden. Modellbasierte Ansétze sind ein be-
wahrtes Mittel zur Losung von Aufgaben in der Automatisierungstechnik [WKS*16]. Ins-
besondere fiir den Austausch von Daten, aber auch fir die Sicherstellung der Interopera-
bilitat haben sich auf Metamodellen basierende Ansétze als geeignet erwiesen. Prominente
Beispiele sind AutomationML [IEC16] und Merkmale [EMPA17].

R3 Brownfield Losungen integrieren: Das Konzept muss angesichts der vielen bestehen-
den Losungen und der langen Lebensdauer von Anlagen (vgl. 3.1) bestehende Lésungen
integrieren. Darunter ist zu verstehen, dass das Konzept bestehende Losungen als Aus-
gangspunkt fiir Wiederverwendung vorsehen soll. Es muss moglich sein, diese bestehenden
(Teil-) Losungen in neue Losungen zu integrieren. Die bestehenden Systeme kénnen nicht
von einem Konzept ausgeschlossen werden, da sie aufgrund der langen Lebensdauer und
der hohen Investitionskosten nicht durch Neusysteme ersetzbar sind. Ein Konzept, das
keine bestehenden Loésungen integriert, wird sich schwerlich durchsetzen.

R4 Abstraktion von konkreten Implementierungen: Resultierend aus der heterogenen
Tool-Landschaft muss das Konzept von konkreten Implementierungen abstrahieren. Das
fordert zum einen den Austausch von Implementierungen, andererseits fithrt es zu einer
Anwendbarkeit des Konzepts auf verschiedene Anwendungsfille. Abstraktion bedeutet, von
den herstellerspezifischen Systemen zu abstrahieren und eine gemeinsame Basis zu finden,
auf der Wiederverwendung unabhéngig von der konkreten Umsetzung des Systems moglich
ist.

R5 Explizite Modellierung der Abhadngigkeiten zwischen Varianten: Bestehende Ab-
hangigkeiten zwischen Varianten miissen explizit modelliert werden. Der aktuelle Zustand,
dass die Abhéngigkeiten bestenfalls implizit in der Implementierung verborgen sind, re-
duziert sowohl die Produktivitét als auch die Wiederverwendung. Ein Beispiel dafiir ist
das Kopieren eines Teilsystems, ohne dabei eine Referenz auf das Original zu erzeugen.
Dartiber hinaus ist es sinnvoll, derartig relevante Informationen allen Programmierern und
Systemdesignern zuginglich zu machen bzw. aufgrund dieser Informationen Prozesse zum
Propagieren von Anderungen zu starten.

36

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

3.2 Anforderungen an das Konzept

R6 Explizite Darstellung der Beziehungen zwischen Varianten und Versionen:
Analog zur Modellierung der Abhéngigkeiten zwischen Varianten miissen auch die
Beziechungen zu Versionen dargestellt werden. Die Modellierung, welche Version(en) einer
Komponente zu einer Variante kompatibel sind, steht hier im Fokus. Die Umsetzung einer
Versionierung ist in der Automatisierungstechnik ein relevantes Thema [VH09)].

R7 Propagieren von Anderungen an (Software-)Varianten: In der Praxis werden an
Softwaresystemen iiber ihren gesamten Lebenszyklus hinweg Anderungen vorgenommen.
Dies kénnen z. B. Fehlerbehebungen oder Erweiterungen des Funktionsumfangs sein. Im
Kontext des Konzepts kann eine Anderung aus zwei Quellen resultieren: entweder dndert
sich eine Komponente in einer Variante oder die Variante selbst dndert sich. In beiden
Fallen muss ein Weg gefunden werden, diese Anderungen zu erfassen. Der Nutzer muss die
Abhéngigkeiten erfassen kénnen und bei der Verarbeitung unterstiitzt werden.

R8 Integration in dezentrale Systeme: Eine Maglichkeit, die im Kontext von 14.0 gefor-
derte Wandlungsféhigkeit zu realisieren, ist die Verwendung von modularen Anlagen bzw.
Package Units. Diese kénnen mit einer eigenen Steuerung ausgestattet sein und sich je
nach Typ in ein tiberlagertes Leitsystem integrieren. Zusétzlich ist der vermehrte Einsatz
von intelligenten Feldgerdten im Kontext von I14.0 im Gespriach. Die beiden genannten
Entwicklungen fithren zu einer vermehrten Verteilung der Steuerung auf unterschiedliche
Gerate. Entwicklungen fiir modulare Systeme werden durch organisatorisch und rdumlich
getrennt arbeitende Personen durchgefithrt. Die Entwicklung und Verwendung der Auto-
matisierungslésungen erfolgten zunehmend dezentral. Diese dezentrale Entwicklung und
Verwendung der Automatisierungslésung muss im Wiederverwendungskonzept beriicksich-
tigt werden.

R9 Zentrale Variantenlagerung: Dartiber hinaus ist es notig, dass eine Austauschplatt-
form fiir die Entwicklung mit mehreren Personen an einem System existiert. Diese Platt-
form ist auch im Hinblick auf den Erhalt von Wissen in einer Organisationseinheit und
den Wissenstransfer wichtig. Sie muss zentral sein, um eine doppelte und inkonsistente
Datenhaltung zu unterbinden.

R10 Integration in bestehende Prozesse: Das entwickelte Konzept muss sich in beste-
hende Prozesse zur Erstellung einer Losung integrieren. Optimalerweise kann es additiv zu
bestehenden Systemen verwendet bzw. an diese angeschlossen werden. Der hohe zeitliche
Aufwand und zu hohe Kosten sind die Hauptgriinde dafiir, dass aktuell wenig varianten-
basiert entwickelt wird [VHON18]. Fiir eine bessere Akzeptanz muss sich der Aufwand fiir
die Integration in Grenzen halten.

R11 Verwendung bestehender Sprachen und Paradigmen: Da es in der Automatisie-
rungstechnik anwendbar ist, muss ein Konzept fur die Wiederverwendung die in Kapitel 2.1
vorgestellten Programmiersprachen berticksichtigen. Diese werden auf absehbare Zeit das
Riickgrat der industriellen Automatisierungstechnik bilden.

R12 Automatisierte Interpretierbarkeit der zugrundeliegenden Modelle: Die Modelle
des Konzepts miissen fiir eine (teil-)automatisierte Verwendung nutzbar sein. Dies ist fir
die Aufwandsreduktion bei der Erstellung von Automatisierungslosungen erforderlich. Die-
se Interpretierbarkeit ermoglicht die Verwendung von automatisierten Umwandlungen zur
Ubertragung der Modelle in verschiedene nutzerspezifische Visualisierungen. Dies ist im
Hinblick auf den heterogenen Nutzerkreis in der Automatisierungstechnik nititzlich.

37

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik

R13 Anwendung des Konzepts auf hybride Systeme: Das Konzept muss fir Hard-
und Softwaresysteme gleichermaflen gelten, um dem Fokus der Automatisierungstechnik
auf hybride Systeme gerecht zu werden. Wie in Abschnitt 2.1 dargestellt, werden in der
Automatisierungstechnik Soft- und Hardware betrachtet. Insbesondere die Abhéngigkei-
ten und Wirkzusammenhénge zwischen beiden Teilen eines Systems miissen berticksichtigt
werden.

38

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Am Anfang dieses Kapitels werden die Vorarbeiten des Autors fiir diese Arbeit zusam-
mengefasst. Anschlieflend werden die Grundlagen der Wiederverwendung erlautert. Eine
Definition von Variabilitdt und von moglichen Arten sie zu modellieren folgt im néch-
sten Unterkapitel. AnschlieBend wird die Delta-Modellierung aus der Softwaretechnik vor-
gestellt. Nachfolgend werden die Grundlagen der Modellierung eingefithrt und erléutert.
Dies beinhaltet beispielsweise die verschiedenen Ebenen der Modellierung, wie sie von der
OMBG festgelegt worden sind und die Modellebenen, die am Lehrstuhl fiir Prozessleittech-
nik verwendet werden. In diesem Zusammenhang werden Kriterien fur gutes Modellieren
aus der Literatur vorgestellt, die fir diese Arbeit relevant sind. Abschliefend werden un-
terschiedliche Sichten von Modellen, die bei der Modellierung eine Rolle spielen kénnen
vorgestellt.

4.1 Eigene Vorarbeiten

Anforderungen an die Automatisierung: In [WTE'17] werden die Anforderungen an ein
Softwaresystem fiir die Automatisierung von grofien prozesstechnischen Anlagen unter-
sucht. Ausgehend von den Eigenschaften von Softwarequalitit der IEC 25010 [ISO11]
werden die Anforderungen ermittelt. In die Betrachtung werden die grundsétzlichen An-
forderungen an die Automatisierungssysteme von groffen prozesstechnischen Anlagen und
die speziellen Anforderungen an die Automatisierung von Walzwerken eingeschlossen. Das
Ergebnis ist ein Mapping von allgemeinen Softwarequalitédtsmerkmalen auf die speziellen
Anforderungen der Automatisierungstechnik. Die Liste ist mit einer internen Befragung
von Entwicklern des Industriepartners abgeglichen worden. Die Arbeiten tiber die An-
forderungen an Automatisierungslosungen [WTE'17] fithrten zu der Erkenntnis, dass die
nicht-funktionalen Anforderungen von grofler Bedeutung fiir die Akzeptanz der Tools sind.
Diese Ergebnisse flossen in die Anforderungen an das in dieser Arbeit entwickelte Konzept
ein.

Konzepte der Prozessfiihrungsarchitektur: Ausgehend von den Arbeiten des Lehrstuhls
fir Prozessleittechnik in fritheren Jahren (z. B. [Ens01, YQE10]) wird in [WE15a] das Kon-
zept der , Sprechenden Kommandos“, d. h. von Menschen direkt verstéindlichen Prozessfiih-
rungsauftragen, eingefithrt. Der vorgestellte Ansatz kann in die Ideen zur dienstebasierten
Prozessfithrung im Kontext von Industrie 4.0 integriert werden. Im néchsten Schritt wird
in [WE17] ein Vorschlag zu Integration von Diensten in IEC 61131 Architekturen vorge-
stellt. Ausgehend von Bausteinen fir die Nutzung von Diensten aus der IEC 61499 wird das
Interface eines Bausteins vorgestellt [WE17]. Zusatzlich wird ein Ablauf zur Erkundung der
angebotenen Dienste und des Aufbaus des fiir den jeweiligen Dienst nétigen Interfaces ent-
wickelt. Eine Herausforderung besteht darin, die Anlagen- und Prozessorientierung in einer

39

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Architektur zu vereinen. Dafiir wird in [WTPE17] ein Vorschlag fir die Strukturierung von
flexiblen Architekturen zur Prozessfithrung vorgestellt. Das Konzept wurde prototypisch
realisiert und in verschiedenen Anwendungsszenarien erprobt. Wie die Konzepte an einem
Beispiel angewendet und in der Lehre eingesetzt werden konnen, ist in [WSFE16] zu fin-
den. Die Prozessfithrungsarchitektur bildet eines der Anwendungsgebiete fiir das Konzept
zur Unterstiitzung der Wiederverwendung. Die Ergebnisse der Vorarbeiten in diesem Feld
dienten insbesondere als Anwendungsfall fiir das Konzept. Zusétzlich konnten die Anforde-
rungen an das Konzept durch die wéhrend der Realisierung der Prozessfithrungsarchitektur
gewonnenen Erfahrungen préazisiert werden.

Wiederverwendung und Portabilitdt von Funktionsbausteinnetzwerken: In [WGE16|
werden Mechanismen fiir die Wiederverwendung und Portabilitdt untersucht und ein An-
satz fir die Verwendung in Anwendungen, die auf Funktionsbausteinnetzwerken basieren,
vorgestellt. Hauptfaktoren fiir die Wiederverwendung und Portabilitdt sind in dieser Be-
trachtung die Ausfithrungssteuerung der einzelnen Komponenten eines Netzwerks und die
Modellierung einer gemeinsamen Vorlage fiir die Anwendung. Mit der Beschreibung von
Varianten in Bausteinnetzwerken wird in [WE15b] ein anderer Ansatz zur Wiederverwen-
dung vorgestellt. Dabei wird ein Funktionsbaustein mit den Mitteln des Software Product
Line Engineering beschrieben. Die vorgestellten Ansétze zur Wiederverwendung und Por-
tierung wurden bei der Ubertragung von Komponentensystemen aufgegriffen. Sie flossen
in das Metamodell fiir die Beschreibung der Komponenten ein. Der Ansatz aus [WE15b]
zur Beschreibung von Varianten bildete den Ausgangspunkt fiir die vorliegende Arbeit.
Eine kritische Auseinandersetzung mit dem in [WE15b] Konzept fiithrte zur Betrachtung
der Delta-Modelle als Moglichkeit zur Beschreibung von Varianten.

Modellbasierte Entwicklung von Automatisierungssoftware: Neben dem flexiblen Auf-
bau einer Prozessfilhrung (Automatisierungslosung) ist auch die Erzeugung eines solchen
Aufbaus interessant. In [WKS*16] wird eine modellbasierte Herangehensweise fiir die au-
tomatisierte Generierung einer Automatisierungslosung vorgestellt. Dazu werden verschie-
dene Modelle (Merkmale, PandIX) verkniipft und analysiert, um zur Laufzeit eine Au-
tomatisierungsaufgabe 16sen zu konnen. Welche Rolle der Digitale Zwilling oder die Ver-
waltungsschale im Engineering von Automatisierungssoftware spielen, wird in [WGE™17]
untersucht. In diesem Beitrag wird die Verwendung und der Nutzen dieser neuen Konzep-
te anhand des Lebenszyklus einer Anlage nachvollzogen. Die Ansétze zur modellbasierten
Entwicklung von Automatisierungslosungen bildeten die Grundlage fiir das in dieser Arbeit
vorgestellte Konzept. Die Beschreibung der Komponentensysteme durch ein Metamodell
und die Modellierung von deren Transformation durch Delta-Modelle ist eine Weiterfiih-
rung der Ansétze aus [WKS116].

4.2 Grundlagen der Wiederverwendung

Wiederverwendung ist ein universelles Konzept, das in den unterschiedlichsten Bereichen
zum Einsatz kommt. Ziel ist es; Artefakte (Synonyme: Assets, Objekte) in verschiedenen
Produkten oder Anwendungsféllen zu verwenden. Definition 2 ist [ISO11] entnommen und
definiert das Qualitatsmerkmal Wiederverwendbarkeit von Systemen und Software.

40

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

Definition 2 (Wiederverwendbarkeit). Grad, mit dem ein Asset in mehr als einem System,
Gebaude oder anderen Asset verwendet werden kann.

Das Konzept Assets mehrfach und in verschiedenen Kontexten zu verwenden, wird sowohl
in Soft- als auch Hardwaresystemen genutzt. Beispielsweise werden im Automobilbau
baugleiche Teile in moglichst viele Fahrzeuge eingebaut. Vorteile dieses Ansatzes sind
die geringeren Aufwédnde in der Entwicklung und Produktion der Fahrzeuge. So sind die
Kosten geringer im Vergleich zur mehrfachen Entwicklung der Teile [Mey09]. Dartiber
hinaus entfallen die Tests nach einer Neuentwicklung und es muss nur ein Bauteil gepflegt
werden anstatt mehrerer. In der Softwareentwicklung ist das Konzept ebenso bekannt.
Dort entsteht ein grofer Nutzen, da die Grenzkosten fiir Software marginal sind, d.h.
jedes zusétzlich verwendete Asset (implementierte Instanz) ist nahezu ohne Kosten und
Aufwinde nutzbar.

Die Definition 3 fiir Wiederverwendung in der Softwaretechnik ist analog dazu
(vgl. [Mey09]). Der Autor unterstreicht, dass die Wiederverwendung nicht nur 6ko-
nomische Vorteile bringt, sondern auch die Qualitdt der Software steigert. Die Vorteile
der Wiederverwendung in der Softwaretechnik wird in [Lim94] untersucht und umfassen
eine Verbesserung der Markteinfithrungszeit, der Produktqualitit und der Produktivitét.

Definition 3. Wiederverwendbarkeit ist die Fihigkeit von Softwareelementen fiir die Kon-
struktion von unterschiedlichen Applikationen zu dienen.

Die Herausforderungen bzw. die Hemmnisse fiir die Wiederverwendung bestehender Lo-
sungen sind organisatorischer und menschlicher Natur [Mey88]. Zusatzlich ist die Entwick-
lung von wiederverwendbarem Code bis zu 480% teurer als von konventionellen Program-
men [Lim94, Borg9].

Zuséatzlich dazu wird von verschiedenen Autoren das Not invented here Syndrom als sehr
groBes Hemmnis bei der Wiederverwendung ausgemacht [Mey09, Bor89]. In [WES87] wird
untersucht, ob Programmierer in der Lage sind, die Méglichkeiten der Wiederverwendung
in Software korrekt einzuschéitzen. Im Ergebnis schétzen die befragten Personen die Poten-
tiale viel zu gering ein. Es wurde festgestellt, dass insbesondere ungetibte Programmierer
die Potentiale nicht richtig einschétzen konnen. Eine Abhangigkeit vom Alter oder anderen
Faktoren konnte nicht festgestellt werden.

In den folgenden Abschnitten wird eine kurze Einfiihrung in das Thema Wiederverwendung
gegeben. Es werden zunédchst die Voraussetzungen fiir eine systematische Wiederverwen-
dung und anschliefend mogliche Arten der Wiederverwendung vorgestellt. Nach einem
Uberblick iiber Versionen und Versionierung schlieit das Kapitel mit der Betrachtung der
Wiederverwendung in der Automatisierungstechnik.

4.2.1 Gegenstand der systematischen Wiederverwendung

Die erste Frage, die bei Uberlegungen zum Thema Wiederverwendung gestellt und be-
antwortet werden muss, ist: Was ist der Gegenstand der angestrebten Wiederverwen-
dung? [KCH*92]. In [Die02] ist ein Uberblick iiber verschiedene Objekte der Wiederver-

41

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

wendung in der Softwareentwicklung enthalten. Diese sind prinzipiell in allen Phasen der
Softwareentwicklung zu finden. So ist die Wiederverwendung von Klassen-Spezifikationen
und -Implementierungen, von Analyse- und Entwurfsmodellen sowie von Frameworks und
Mustern im Kontext der objektorientierten Entwicklung moglich [GRI5].

Gegensténde der Wiederverwendung kénnen Programmfragmente, Muster, Prozeduren
bzw. Funktionen, Module und Teilsysteme sein [B6r89]. Programmfragmente sind Stiicke
von Quellcode. Solche Gegenstinde sind fiir die Wiederverwendung nur interessant,
wenn sie z.B. wiederholt genutzt werden. Wiederverwendungsmechanismen auf Uni-
kate anzuwenden ist nicht sinnvoll. Als Muster werden Vorlagen zur manuellen Er-
zeugung von Quellcode bezeichnet. Prozeduren und Funktionen sind Standard- oder
Anwendungsprozeduren/-funktionen und Makros. Ein Modul im Sinne des Autoren ist ein
Programmbaustein, der iiber eine definierte Schnittstelle mit der Aufenwelt kommuniziert.
Module zusammengefasst ergeben ein Teilsystem.

Der Nutzen der Wiederverwendung ist grofer, je grofier die Objekte der Wiederverwendung
sind. Zusatzlich steigt der Nutzen je frither die Objekte im Lebens- bzw. Entwicklungs-
zyklus eingesetzt werden [Bor89]. Der Autor betont allerdings, dass mit dem Ansteigen
der beiden genannten Eigenschaften die Wahrscheinlichkeit sinkt, dass die Objekte die
Anforderungen an eine spezifische Aufgabe erfiillen.

Die Unterscheidung zwischen der Wiederverwendung von Strukturen und der Wiederver-
wendung von Elementen wird in [Die02] vorgenommen. Fiir die Wiederverwendung von
Strukturen nennt der Autor zwei Methoden: Die Adaptierung und die Spezialisierung.
Adaptierung bezeichnet die Anpassung eines Produkts an ein konkretes Problem durch
die Verdnderung von Parametern. Im Gegensatz dazu wird bei der Spezialisierung eine
vorhandene Funktionalitat zur Erstellung eines neuen Artefakts genutzt.

Die Existenz einer inneren Architektur von Produkten stellt eine Voraussetzung fiir eine
systematische Wiederverwendung dar [Sch16b]. In der Automatisierungstechnik besitzen
die Systeme in der Mehrzahl eine innere Struktur (vgl. Kapitel 2.1.1). Zusétzlich werden
in [Sch16b] mit der Baureihe, dem Baukasten, der Modulbauweise, der Plattform und
der Produktfamilie Methoden fiir die Strukturierung von Produkten aus der Produktent-
wicklung vorgestellt. Eine Baureihe umfasst Produkte, die funktional &hnlich sind, sich
aber in ihren Parametern, z. B. Leistungsdaten unterscheiden. Im Gegensatz dazu besteht
ein Baukasten aus vorher entwickelten Komponenten, die zu unterschiedlichen Produkten
zusammengefiigt werden. Diese Produkte kénnen sich beliebig stark unterscheiden. Die
Modulbauweise ist eine Form des Baukastens, bei dem die Bausteine nicht mehr frei kombi-
nierbar sind und einen erheblichen Teil der Gesamtfunktionalitdt ausmachen sollen. In der
Plattform werden die drei Designmethoden zusammengefasst und kombiniert. Dabei wird
insbesondere die Gemeinsamkeit zwischen verschiedenen Produkten in den Fokus geriickt.
Diese Herangehensweise ist im Automobilbereich verbreitet. Die Produktfamilie betrachtet
mehr als die Unterschiede zwischen den einzelnen Produkten, sie stellt die Gemeinsamkei-
ten der Produkte in den Vordergrund. Eine genauere Betrachtung von Produktfamilien
und deren Variabilitét ist in Kapitel 4.3 zu finden.

42

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

4.2.2 Arten der Wiederverwendung

Neben den Gegenstianden der Wiederverwendung ist die Frage relevant, wie diese Gegen-
stdnde wiederverwendet werden. In der Literatur werden dafiir verschiedene Mechanismen
angefiihrt, die sich stark voneinander unterscheiden.

Die einfachste Art der Wiederverwendung ist das Copy and Paste [Sch16b]. Dabei wird
ein bestehendes Artefakt kopiert und in einem anderen Anwendungsfall eingesetzt. Die-
ser Ansatz birgt jedoch das Risiko, dass der Kopiervorgang nicht adédquat dokumentiert
wird und so mehrfach die gleiche Losung entsteht, ohne dass diese Abhangigkeit vermerkt
ist. Fir die Wartung der Implementierungen ist dies nicht optimal, da so ein unnotiger
Mehraufwand fiir die Pflege der einzelnen Instanzen entsteht. Durch eine fehlende Doku-
mentation der Abhéngigkeiten werden die kopierten Instanzen moglicherweise nicht mehr
gefunden und profitieren nicht von Verbesserungen. In [WGE16] wird die Kopiervorlage im
Kontext von Funktionsbausteinanwendungen als Schablonen bezeichnet. Die einfache Im-
plementierbarkeit und Anwendbarkeit dieses Mechanismus ist ein Grund fiir die Nutzung
des Ansatzes.

Das beschriebene Defizit kann durch eine Verbindung zwischen der Schablone bzw. dem
Prototypen und der Instanz behoben werden. Die Informatik kennt dafir zwei Arten der
Typ-Instanz-Beziehung, namlich die Prototyp-Instanz-Beziehung und die Klasse-Instanz-
Beziehung [SDMO95]. Die Prototyp-Instanz-Bezichung besteht zwischen der Schablone und
den dazugehorigen Kopien. Vorteilhaft daran ist, dass Aktualisierungen zur Behebung von
Fehlern an die Instanzen verteilt werden kénnen. Dariiber hinaus kann tiber die Verbindung
nachvollzogen werden, wie die Instanzen mit den Prototypen zusammenhéngen. Die zweite
Beziehung ist die Klasse-Instanz-Beziehung. Hierbei handelt es sich um den Zusammen-
hang zwischen Klasse und den gebildeten Instanzen. Auf der Klassen-Ebene kénnen Klassen
voneinander abgeleitet werden. Die Frage, welches Paradigma besser (z. B. generischer an-
wendbar) ist, ldsst sich nicht eindeutig beantworten. Eine Klasse-Instanz-Beziehungen ist
zur Laufzeit unflexibel und stellt eine unnotige Einschrankung dar [SLUSS]. Allerdings sind
instanziierte Klassen im Allgemeinen an Ausfithrungsgeschwindigkeit iiberlegen [WGE16].
Typ-Instanz-Beziehungen kommen auch auflerhalb der Softwaretechnik z.B. in der Kon-
struktionslehre zum Einsatz [Sch16b].

Fiir die abstrakte Wiederverwendung von Losungsverfahren werden Pattern eingesetzt.
Eine bekannte Sammlung von Design-Pattern aus der Softwaretechnik ist [GJHV11]. Die
Pattern basieren auf Erfahrungswerten der Autoren und stellen in der Praxis gesammeltes
Wissen der Autoren dar. Fiir jeweils eine Klasse von Problemen wird eine Losung pré-
sentiert, die vom Nutzer auf den jeweiligen Anwendungsfall angepasst werden muss. Die
Nutzung von Strukturen fiir Regler (z. B. Kaskadenregler) ist ein Beispiel fir die Anwen-
dung von Pattern in der Automatisierungstechnik.

4.2.3 Versionen und Versionierung

Nach [Dud] ist eine Version eine ,,Ausfithrung, die in einigen Punkten vom urspriinglichen
Typ oder Modell abweicht“. An dieser Definition werden bereits zwei wichtige Eigenschaften

43

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

von Versionen deutlich: Es gibt einen Ausgangsgegenstand, auf den sich die Version bezieht
und zu diesem besteht eine Abweichung.

In [CW98] wird im Kontext der Konfigurationsverwaltung von Software eine Version v als
p = (ps, vs) definiert. py stellt einen Zustand in einer funktionalen Sicht dar und die Einglie-
derung in die Versionsfolge wird durch v, représentiert. Diese Abfolge von Versionen wird
als Versionsraum bezeichnet und besteht aus den einzelnen Versionen inklusive der Ver-
bindungen zwischen diesen. In vielen Anwendungen wird der Versionsraum als Graph aus
Knoten (Versionen) und Kanten (Verbindungen) dargestellt. Die Verbindungen zwischen
den Versionen bilden Deltas, die die Unterschiede zwischen den Versionen beschreiben.
Diese werden in gerichtet und ungerichtet unterteilt. Wenn es moglich ist, die Richtung
der Verédnderungen durch ein Delta zu invertieren, handelt es sich um ein ungerichtetes
Delta. So ist es beispielsweise nicht moglich, das Léschen einer Codezeile riickgéingig zu
machen, wenn die Information, was in dieser Zeile stand, nicht erhalten worden ist.

Versionen von beispielsweise Softwareanwendungen werden aus verschiedenen Motivatio-
nen heraus entwickelt. Dazu gehort das Beheben von Fehlern, die Erweiterung der Funktio-
nalitdt und das Einpflegen von Abhéngigkeiten [CW98]. Die Autoren bezeichnen Versionen
als Varianten, die dafiir vorgesehen sind nebeneinander zu ko-existieren. Andere Versionen
sind hingegen nicht fir die parallele Verwendung vorgesehen. In der Automatisierungs-
technik werden viele unterschiedliche Systeme verwendet und neue Versionen durch eine
fehlende Beschreibung der Abhéngigkeiten oft nur unvollstindig ausgerollt. Dementspre-
chend ko-existieren in der Praxis Versionen, die dafiir nicht vorgesehen sind.

Fiir die Entwicklung von Quellcode bieten sich dateibasierte Versionsverwaltungen ins-
besondere fiir das kollaborative Arbeiten sowie die Beschreibung und Dokumentation der
Versionen an [Ott09]. Weitere Vorteile sind eine konsistente Datenhaltung und das Nachver-
folgen von parallelen Entwicklungsstrangen (Branches) [CSFP08]. In [Ott09] wird zwischen
zentralen und dezentralen Architekturen von Versionsverwaltungssystemen unterschieden.
Zentrale Architekturen bestehen aus einem zentralen Server, von dem die Versionen an die
Clients verteilt werden und Anderungen an den Server zuriickgesendet werden. Dezentrale
Systeme verteilen die Versionsverwaltung lokal auf jeden Client. Ein Beispiel dafiir ist git.

In Abbildung 4.1 ist ein Uberblick iiber den SVN-Workflow zusammen mit den jeweils
in den einzelnen Schritten verwendeten Kommandos dargestellt. Der Workflow wird als
kontinuierlicher Integrationsprozess bezeichnet [ORA]. Erster Schritt ist das check out der
Dateien aus der Versionsverwaltung. Wenn Anderungen am Quellcode durchgefiihrt worden
sind, konnen diese in die Versionsverwaltung commitet werden. Um die lokale Version
auf den Stand des Servers zu bringen, wird ein update durchgefithrt. Durch add, delete,
copy und move kénnen die Dateien der Versionsverwaltung manipuliert werden. Durch das
Zurtickkehren zu einer Vorversion (revert) konnen Probleme gelost werden, die durch den
Wechsel auf die neue Version entstanden sind. Nach dem manuellen Losen von Konflikten
kann die Datei durch resolve als gelost deklariert werden.

Die Behandlung von Versionen iiber die Grenzen der Gewerke in der Automatisierungs-
technik ist eine der grofen heutigen Herausforderungen [FFVH12, VH09]. In der Praxis
stellt die Pflege und Migration von (Software-) Systemen eine grofie Aufgabe dar. Insbeson-
dere die Abhéngigkeiten zwischen den Versionen der einzelnen Komponenten und daraus
resultierende Inkompatibilitaten erfordern viel Aufmerksamkeit.

44

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.2 Grundlagen der Wiederverwendung

Commit ..
) Aktualisieren
svn commit
svn update
Konflikte Anderungen
Auflésen Durchfiihren
svn add
svn resolve
svn delete
svn copy
svn move
Probleme
Losen
svn revert

Abbildung 4.1: SVN Workflow nach [ORA]

4.2.4 Wiederverwendung in der Automatisierungstechnik

In Kapitel 2.1 ist der grundsétzliche Aufbau von industriellen Automatisierungssystemen
beschrieben. Es ist zu erkennen, dass diese einen sehr weiten Bereich von Anwendungen
abdecken. Er umfasst die Systeme zwischen dem Feld bzw. dem Prozess und der Be-
triebsleitebene. In diesem Bereich kommen viele Systeme, Konzepte und Architekturen
zum Einsatz, die wiederum von unterschiedlichen Menschen entwickelt und betrieben wer-
den. So arbeiten u. a. Informatiker, Ingenieure (verschiedener Fachrichtungen z. B. Elektro-
technik, Maschinenbau, Verfahrenstechnik, etc.), Chemiker und Physiker zusammen und
bringen demzufolge die unterschiedlichen Herangehensweisen ihrer Fachdisziplinen in die
Automatisierungssysteme ein [FFVHI12]. Dies betrifft ebenso die verwendeten Ansétze zur
Wiederverwendung in den unterschiedlichen Gewerken.

In den Softwaresystemen werden die typischen Konzepte der Wiederverwendung der In-
formatik angewendet. Eines dieser Konzepte ist das Klasse-Instanz Konzept aus der ob-
jektorientierten Programmierung, das aus dem Programmieren, Kompilieren und dem an-
schliefenden Instanziieren sogenannter Klassen besteht. Grundsétzlich kénnen einmal pro-
grammierte Klassen beliebig oft instanziiert werden. Funktionsbausteinarchitekturen sind
eine Auspragung dieser Form der Wiederverwendung [WGE16].

Wiederverwendung findet in der Automatisierungstechnik auf verschiedenen Ebenen und
fiir verschiedene Zwecke statt. Dabei kann es sich z. B. um Desingpatterns und Konzepte,
mit denen gute Erfahrungen gemacht wurden, handeln. Beispiele dafiir sind Strukturen fir
den Einsatz von Reglern wie die Kaskade oder der Split-Range Regler. Ebenso werden rea-
lisierte (Teil-)Losungen wiederverwende. Dabei kann es sich sowohl um Hardware als auch
um Software handeln. Beispielsweise werden Hardwarekomponenten (z. T. standardisiert)

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

fir verschiedene Anwendungen verwendet [DMG*17].

Die Wiederverwendung von Modulen von modularen Anlagen ist in [UDKO12] vorgestellt.
Durch die automatisierte Einbindung von Modulen ist deren Wiederverwendung einfacher.
In der Anlagenplanung existieren Ansétze zu einem wissensbasierten Engineering und einer
Nutzung von Modularisierung [ODU13]. Grundlage der Wiederverwendung sind standar-
disierte Anlagenmodule.

Eine Wiederverwendung von Automatisierungsmodule ist in [Mahl4] vorgestellt. Diese
Module werden dezentral in einem Kommunikationssystem verteilt. Zusammen mit der
verbauten Hardware werden sie zur Anwendung gebracht. Methodische Grundlage der
Automatisierungsmodule ist die Verwendung von Pattern und Modulen, um so die Wie-
derverwendung zu unterstiitzen.

Zwei Ansitze zur Produktlinien-basierten Wiederverwendung (vgl. 4.3.1) fiir die Auto-
matisierungstechnik werden in [Sch16b, FLK™14] vorgestellt. Beiden ist gemein, dass
sie den Produktlinienansatz auf die Automatisierungstechnik anwenden. Die Autoren
von [FLK"14] beschrinkt sich bei der Betrachtung der Variabilitit auf Feature-Modelle
und damit den Problemraum [Sch16b]. Die Betrachtung des Losungsraums erfolgt
in [Sch16b]. Hier wird die Wiederverwendung durch eine Unterteilung des Konzepts in eine
Entwicklung der Komponenten unabhéngig vom Anwendungsfall und eine Anwendung auf
das konkrete Problem unterstiitzt. Die Komponenten sind Gewerke-iibergreifend definiert
und als methodische Grundlage kommt das Product Line Engineering zum Einsatz.

4.3 Grundlagen der Variantenbeschreibung

Eine Moglichkeit fiir die Reduktion von Aufwinden und damit der Kosten im Enginee-
ring ist die Wiederverwendung bestehender Losungen oder Teillosungen. Wiederverwen-
dung im Kontext der Softwareentwicklung wird in [LS17] wie folgt definiert: Prinzip der
Objektorientierung, das zum Ziel hat, funktionsfihige Programmiteile bereits bestehender
Programme, sog. Module, in nachfolgenden Softwareprojekten wieder zu benutzen. Vorteile
der Wiederverwendung sind nach [LS17] eine Zeitersparnis in der Entwicklungszeit und die
geringe Fehlerrate, da die Programmmodule bereits getestet und im Optimalfall in ande-
ren Anwendungen erprobt sind. Ersetzt man in der genannten Definition Programm durch
technische Komponente, Gerite oder Anlagenteil, so erhdlt man eine Definition von Wie-
derverwendung, deren Bedeutung tiber die Softwareentwicklung hinaus reicht. Der Nutzen
ist in anderen Anwendungsfeldern vergleichbar zu der in der Softwaretechnik: es wird Zeit
gespart und es kann auf erprobte Komponenten zurtickgegriffen werden.

Um die Wiederverwendung von Losungen zu unterstiitzen, haben sich je nach Anwendungs-
gebieten unterschiedliche Ansétze entwickelt, die den jeweiligen spezifischen Anforderungen
und Randbedingungen Rechnung tragen. Im Folgenden werden mit dem Software Product
Line Engineering und der Wiederverwendung in der diskreten Fertigung exemplarisch Wie-
derverwendungsansitze aus zwei ganz unterschiedlichen Doménen vorgestellt [CGR™12].

46

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

4.3.1 Varianten und Variabilitat

Im folgenden Abschnitt werden Varianten eines materiellen und immateriellen Produktes
vorgestellt. In der Herstellung von Industrie- oder Konsumgtitern kommt es haufig vor,
dass sich einzelne Produkte im Hinblick auf den Funktionsumfang oder den Aufbau nicht
stark unterscheiden.

Begriffsdefinitionen

In [DINO02] ist die nachfolgende Definition von Variante zu finden. Die der Definition
zugrunde liegende Norm wurde zuriickgezogen, ist allerdings nach [BSG12] Grundlage fir
viele Uberlegungen zu Varianten (vgl. [Lin94]).

Definition 4 (Varianten). Gegenstinde dhnlicher Form und/oder Funktion mit einem in
der Regel hohen Anteil identischer Gruppen oder Teile.

Aus der Definition geht hervor, dass es sich bei Varianten um Gegenstinde handelt, die
eine dhnliche Form oder Funktion besitzen. Diese Gegensténde sollen aus identischen Tei-
len oder Gruppen bestehen. Nicht eindeutig ist jedoch, wie die Forderung nach ,einem in
der Regel hohen Anteil“ zu verstehen ist. Der Begriff der Variante ist in vielen der existie-
renden Definitionen unscharf und bedarf einer Prézisierung im konkreten Anwendungsfall.
In [BSG12] kommen die Autoren zu dem Schluss, dass eine genaue Abgrenzung, welches
Produkt Variante eines anderen ist, eine subjektive Festlegung ist.

Zur Entscheidung, ob ein Gegenstand ein eigensténdiges Produkt oder Variante eines an-
deren Produkts ist, ist die Festlegung von Vergleichskriterien und eines maximalen Ab-
stands zwischen Produkten notig [BSG12]. Die Vergleichskriterien sind Merkmale, die die
betrachteten Gegenstande charakterisieren. Unter Einbeziehung dieser Vergleichskriterien
muss festgelegt werden, wie ahnlich sich zwei Gegenstande sein missen, um als Varianten
eines Produktes zu gelten.

In [Lin94] wird eine Unterteilung in technische und strukturelle Varianten vorgenommen.
Technische Varianten variieren hinsichtlich der Geometrie, des Materials oder der Tech-
nologie eines Gegenstands. Bei aus mehreren Teilen bestehenden Gegenstidnden kénnen
strukturelle Varianten durch Einbindung von verschieden Komponenten in ein Produkt
entstehen. Diese Charakterisierung wird in [DIN02] noch um die Funktion des Gegenstan-
des erweitert. Im Ergebnis umfassen die Vergleichskriterien die Funktionalitét, den Aufbau
und die verwendeten Technologien. In [BSG12] wird festgestellt, dass es keine abschlieBende
Liste von Merkmalen zu einem Gegenstand geben kann. Vielmehr ist es in jedem Einzelfall
erforderlich, die Ahnlichkeit anhand von relevanten Merkmalen, die eine Unterscheidung
der betrachteten Produkte zulassen, zu priifen.

Wie grofi der Abstand zwischen den Gegenstdnden maximal sein darf, damit diese als
Varianten gelten, wird in der Literatur diskutiert. Nach [Lin94] entsteht die neue Variante
eines bestehenden Produkts durch Verdnderung von einem oder mehreren Merkmalen.
Jedoch wird eingeschrénkt, dass in der praktischen Anwendung nicht immer eindeutig ist,
ob ein Gegenstand eine Variante oder ein neues Produkt ist. In die gleiche Richtung wird
in [Bra04] argumentiert. Varianten werden ebenso iiber die Gleichheit von Eigenschaften

47

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

definiert. Auch bei der Untersuchung der Ahnlichkeit kommt [BSG12] zu dem Ergebnis,
dass Gleichheit von Merkmalen von Gegensténden und demzufolge die Betrachtung von
Gegensténden als Varianten eines Produkts subjektiv ist.

In [PBLO05] wird eine Variante als Reprasentation des variierten Gegenstandes verstanden.
Die Autoren empfehlen einen dreistufigen Prozess bei der Festlegung von Varianten. Zu-
nachst muss der Gegenstand gewéhlt werden, der variiert werden soll. Im zweiten Schritt
werden das Merkmal oder die Merkmale identifiziert, die sich d&ndern sollen. Im letzten
Schritt werden die eigentlichen Varianten festgelegt, die durch eine Anderung des Merk-
mals erreicht werden sollen.

Ausgehend von den vorgestellten Betrachtungen wird in der vorliegenden Arbeit ein Ge-
genstand als Variante eines Produkts verstanden, wenn er diesem in der Mehrzahl der
fiir die Betrachtung relevanten Merkmalauspriagungen gleicht. Jeweils zwei Varianten miis-
sen sich in mindestens einer Merkmalauspragung unterscheiden. Die relevanten Merkmale
konnen technischer, funktionaler und struktureller Art sein.

Die verwendete Definition von einer Variante ist analog zu der in [Sch16b] vorgestellten.
Allerdings ist die Bindung des Variantenbegriffs an die Produktlinie fiir die vorliegende
Arbeit nicht zweckméfig. Die in dieser Arbeit verwendete Definition kann als Verallgemei-
nerung derjenigen von Schrock betrachtet werden.

Ausgehend von den beschriebenen Vergleichskriterien werden Varianten in unterschiedliche
Arten unterteilt. Wie beschrieben werden die Varianten durch [Lin94] in technische und
strukturelle Varianten unterteilt. Denkbar sind unterschiedliche Blickwinkel fiir Varianten:
Arbeitsfluss, Architektur und Verhalten [KLL"14]. Alternativ dazu werden Strukturvarian-
ten, Teilevarianten, Mengenvarianten und Funktionsvarianten unterschieden [Sch16b]. Die
vorgestellten Arten von Varianten sind nicht orthogonal zu einander, d. h., sie sind nicht
disjunkt. Beispielsweise konnen sich zwei Funktionsvarianten zusatzlich zu den Unterschie-
den in der Funktionalitat strukturell unterscheiden. Die Einteilung kann dementsprechend
nur den Hauptbetrachtungsgegenstand wiedergeben und ist ebenfalls stark subjektiv. Wei-
tere Arten der Varianteneinteilung sind in [Bra04] zu finden.

Eng verkniipft mit dem Begriff der Variante ist die Variabilitédt. Nach [PBL05] bedeutet
Variabilitdt umgangssprachlich die Fihigkeit oder die Tendenz zur Anderung. Ausgehend
von dieser Betrachtung kommen die Autoren zu drei elementaren Fragen, die mit der
Variabilitat assoziiert sind:

e Was variiert? (Variabilitdtssubjekt)
o Warum variiert es?
e Wie variiert es? (Variabilitatsobjekt)

Die erste Frage bezieht sich auf den Gegenstand der Variation, d. h. der sich &ndernde Teil
oder das sich &ndernde Merkmal eines Gegenstandes in der wirklichen Welt. Dies wird als
Variabilititssubjekt bezeichnet. Die zweite Frage bezieht sich auf den Grund der Anderung,.
Mogliche Griinde sind sich éndernde Anforderungen der Stakeholder, unterschiedliche ge-
setzliche Rahmenbedingungen oder technische Griinde. Die letzte Frage nach dem ,Wie?*
zielt auf die Menge an Auspriagungen, die ein Variabilitidtssubjekt annehmen kann. Jede
Auspriagung wird als Variabilitatsobjekt bezeichnet.

48

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Reale Welt Modell Welt

Farbe Farbe eines Autos
(Variabilitatssubjekt) § (Varianten Punkt)

Gelb
(Variabilitatsobjekt)

Blaues Auto
(Variante)
Rotes Auto
(Variante)

Abbildung 4.2: Ubersicht iiber die Variabilitit anhand des Beispiels der Autofarbe
nach [PBLO5]

In Abbildung 4.2 sind die vorgestellten Begrifflichkeiten am Beispiel der Autofarbe darge-
stellt. Die Darstellung unterscheidet reale Welt und Modell. Die Farbe des Autos in der
realen Welt ist das Variabilitatssubjekt und im Modell der Variantenpunkt. Die méoglichen
Auspragungen der Farbe in der realen Welt (Gelb, Blau, Rot) sind die Variabilitéatsob-
jekte. Analog dazu werden das blaue Auto oder das rote Auto im Modell als Varianten
bezeichnet.

Ebenso wie in [Sch16b] wird in der vorliegenden Arbeit der Begriff Variante nicht nur fiir
das Modell eines Produkts, sondern auch fiir das reale Objekt verwendet. Zum einen kann
die Unterscheidung zwischen der Variante im Modell und der realen Variante zu Verwirrung
fithren, zum anderen gibt es keinen verbreiteten Begriff fir die reale Variante.

Die Beherrschung der Variantenvielfalt und die Unterstiitzung des zielgerichteten Entwick-
lungsprozesses wird als Variantenmanagement bezeichnet [DB*07]. Ziel ist es, Produkte,
die sich nur wenig unterscheiden (Produktvarianten), dkonomisch sinnvoll herstellen zu
konnen [Ava06]. Ein Bestandteil des Managements von Variantenvielfalt ist die Modellie-
rung der auftretenden Varianten bzw. der Variabilitdt in Varianten-Modellen. In diesen
werden ,die Gemeinsamkeiten und Variabilitdten der Artefakte eines Systems mit dem
Organisations- und Doménen-spezifischen Merkmalen und Abhéngigkeiten“ beschrieben
(vgl. [SRCT™12]). Im Folgenden Abschnitt werden verschiedene Arten der Variabilitdt vor-
gestellt.

Im Kontext von Software Produktlinien Engineering wird in [VGO07] das
Variantenmanagement als Vorgehen zur Identifizierung, zum Design, zur Imple-
mentierung und zur Verfolgung von Flexibilitat in Software Produkt Linien definiert. Im
Rahmen der vorliegenden Arbeit wird die Bedeutung von Variantenmanagement nicht nur

49

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

im Zusammenhang mit Softwaresystemen gesehen, sondern zusétzlich auf hybride und
Hardwaresysteme ausgedehnt.

Arten der Variabilitat

Angelehnt an die Frage ,Warum variiert das Variabilitdtssubjekt?“ kann Variabilitdt an-
hand ihrer Ursache in die interne und die externe Variabilitat unterteilt werden. Diese
Unterscheidung dient nicht nur der Klassifikation der Variabilitiat, sondern soll dariiber
hinaus auch ein Bewusstsein dafiir schaffen, fiir welchen Beteiligten die konkrete Variabi-
litdt relevant ist. Externe Variabilitét ist fir den Kunden sichtbar, z. B. die Farbe eines
Autos (vgl. [PBLO05]). Im Gegensatz dazu ist die Verwendung zweier Arten von funktional
identischen Bremsbeldgen fiir den Kunden nicht direkt sichtbar. Diese Variabilitat wird als
interne Variabilitat bezeichnet. Man kénnte also folgern, dass mit externer Variabilitat
das Ziel verfolgt wird, einen hoheren Kundennutzen durch die Produktion von auf den Kun-
den direkt zugeschnittenen Produkten zu erzielen. Weitere Griinde fiir externe Variabilitat
koénnen landesspezifische gesetzliche Regelungen oder Standards sein [PBLO05]. Mit interner
Variabilitat konnen beispielsweise Bestandteile von hochpreisigen und giinstigeren Produk-
ten verwendet werden, ohne vom Kunden einsehbar zu sein. Ebenso kann es sein, dass der
Hersteller die Komplexitét fir den Kunden reduzieren méchte und daher nur héherwertige
Wahlmoglichkeiten bereitstellt. Die Details der technischen Umsetzung und mogliche wei-
terfiihrende technische Auswirkungen werden dabei vor dem Kunden verborgen. Zusétzlich
zu den bereits beschriebenen Faktoren sind die Business- und die Marketingstrategie des
Herstellers entscheidend fiir die Einteilung in interne und externe Variabilitat [PBLO05].

Im Bereich der industriellen Automation ist die Unterscheidung von interner und exter-
ner Variabilitdt nicht einfach, da die Abgrenzung zwischen dem Hersteller eines Produkts
und dem Kunden nicht immer eindeutig ist. Die Automatisierungslosungen werden mog-
licherweise nicht durch den Betreiber selbst erstellt, allerdings fordert dieser in der Regel
Zugriff auf die Implementierung und wartet oder erweitert diese selbst. Dartiber hinaus ist
zur Optimierung oder Wartung von Anlagen eine hohe Expertise der Anlage erforderlich,
sodass es nicht sinnvoll ist, vor den Nutzern etwas zu verbergen [Sch16b]. Zusitzlich ist die
Verwendbarkeit fiir den Endnutzer auch nicht immer im Fokus der Produktentwicklung
(Hard- und Software) [WTE"17]. Allerdings ist es fiir die Reduktion der Komplexitét fiir
den Nutzer an manchen Stellen sinnvoll, eine Unterteilung in interne und externe Variabi-
litdt vorzunehmen.

Zwei weitere Dimensionen der Einteilung von Variabilitiat sind die ,Variability in Space®
und die ,Variability in Time* (vgl. [PBLO05]). Bei der Variability in Space handelt es sich um
verschiedene Auspriagungen einer Funktionalitat, die je nach Préferenz des Nutzers oder
den gegebenen Randbedingungen eingesetzt werden. Ein Beispiel dafiir ist der Authentifi-
zierungsmechanismus fiir Smartphones. Inzwischen verfiigt der Nutzer je nach Modell iiber
die Moglichkeit eine Pin einzugeben, sich mit seinem Fingerabdruck auszuweisen oder sich
bei neuen Geriten mit Hilfe der eingebauten Kamera tiber das Aussehen zu identifizieren.
Unter Variability in Time ist eine Variabilitat iiber einen gewissen Zeitraum zu verstehen,
z.B., weil eine Technologie durch eine andere abgelost wird. Die Einfithrung von digitalen
Kameras ist ein Beispiel dafiir.

50

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

4.3.2 Variabilitatsmodelle

Um die Variabilitéit in der Praxis nutzen zu konnen, ist es wichtig zu verstehen, auf welche
Arten Variabilitdt modelliert werden kann. Jedes Modell der Variabilitdt hat sein eigenes
Anwendungsgebiet und kann dort einen Mehrwert schaffen. Variabilitdtsmodelle konnen in
verschiedene Arten unterteilt werden. Bekannt ist die Unterteilung in Problemraum und
Losungsraum [SRCT12).

Problemraum: Variabilitéit im Problemraum bezeichnet die doménenspezifische Variabili-
tét, d. h. die Variabilitat, die beispielsweise der Kunde eines Produktes wahrnimmt. Diese
Form der Variabilitat beschreibt eine funktionale Sicht auf ein Produkt. Die Modellierung
der Variabilitat erfolgt vorwiegend Feature- oder Entscheidungs-orientiert. Die Variabilitat
im Problemraum wird als Produktlinien-Variabilitit bezeichnet [MPH*07].

Losungsraum: Variabilitdt im Losungsraum, auch Software Variabilitdt genannt, ist die
Variabilitdt der wiederverwendbaren Artefakte [MPH'07]. Die Variabilitdt im Losungs-
raum betrachtet die Variabilitat bei der Erstellung der Losung. Beispiele fiir solche Ar-
tefakte sind Architekturelemente, Testfille, Komponenten und Dokumente [SRCT12].
Diese Art der Variabilitiat ist aus der Entwicklung von einzelnen Softwaresystemen be-
kannt [MPH'07]. So stellt die Spezialisierung einer Klasse eine Form der Variabilitit im
Losungsraum dar. Bei der Spezialisierung werden Teile der Superklasse in einem weiteren
Produkt (der abgeleiteten Klasse) verwendet.

Die interne und externe Variabilitat unterscheidet, ob eine Variation vom Kunden wahr-
genommen wird oder nicht. Im Gegensatz dazu wird mit der Differenzierung zwischen
Problem- und Losungsraum zwischen der Funktionalen- und der Implementierungssicht
unterschieden. Die beiden Klassifizierungsansétze sind nicht disjunkt, stellen aber unter-
schiedliche Unterscheidungsmerkmale in den Vordergrund.

Fiir die Modellierung der Variabilitdt sowohl im Problem- als auch im Losungsraum sind
unterschiedliche Eigenschaften relevant. Dementsprechend gibt es verschiedene Ansétze die
Variabilitat in Modellen zu beschreiben und diese formalisiert festzuhalten. Im Folgenden
werden zunéchst Variabilitdtsmodelle fiir den Problemraum vorgestellt. Anschliefend wird
auf die Variabilitdtsmodelle des Losungsraums eingegangen.

Variabilitatsmodelle fiir den Problemraum

Mit den Feature- und Entscheidungs-orientierten Modellen existieren zwei Klassen der
Variabilitdtsmodellierung im Problemraum [SRC*12]. Diese zwei Modellarten werden im
Folgenden vorgestellt.

Das Feature-Modell beschreibt eine Klasse von Produkten (Produktlinie) als hierarchische
Kombination von moglichen Merkmalen bzw. Eigenschaften. Die Merkmale werden in dem
Modell baumartig angeordnet. Die Abhéngigkeiten zwischen den Eltern-Merkmalen und
Kinder-Merkmalen kénnen nach [Bat05] in folgende Klassen unterteilt werden: Und, Alter-
nativ, Oder, Verpflichtend und Optional. Das Feature-Diagramm wird auch als graphische
Repréisentation des Merkmalbaums bezeichnet [KCH'90]. Zusétzlich werden die Abhéin-
gigkeiten zwischen den Merkmalen, sowie die Dokumentation der Designentscheidungen

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Notebook

T T

Bildschirm Akku

bendtigt

Abbildung 4.3: Beispiel fiir ein Feature-Diagramm.

und aller existierenden Merkmale, als Bestandteile des Modells gesehen. Abhéngigkeiten
zwischen Merkmalen konnen die notwendige Verwendung oder der Ausschluss eines wei-
teren Merkmals sein. In Abbildung 4.3 ist beispielhaft ein Feature-Diagramm dargestellt.
Es ist zu erkennen, dass die Produktlinie Notebook aus den Merkmalen Bildschirm und
Akku besteht. Als Bildschirm kann entweder ein touch oder ein non-touch Modell verbaut
werden. Fiir die Energieversorgung stehen ein drei- oder ein sechs-Zellen Akku zur Verfii-
gung. Die Wahlméglichkeiten sind jeweils Alternativen, was durch den nicht ausgefiillten
Kreisausschnitt zwischen den Linien verdeutlicht wird. Die ausgefiillten Kreise zeigen an,
dass die Merkmale verpflichtend sind, z. B., dass ein Bildschirm in einem Notebook sein
muss. Durch die gestrichelte Linie wird ausgedriickt, dass bei der Verwendung eines touch-
Bildschirms ein grofler Akku verwendet werden muss.

Im Rahmen eines entscheidungsorientierten Ansatzes wird versucht, fiir jede Variante eine
Frage zu stellen, deren Beantwortung zur Auswahl der Varianten fithrt [SRC*T12]. Dies
konnen beispielsweise einfache Fragen sein, die mit ja oder nein zu beantworten sind. Im Fall
von komplexeren Entscheidungen, in denen mehr als eine Option anwendbar ist bzw. mehr
als eine Variante zeitgleich verwendet werden kann, bietet sich die Verwendung von solchen
Entscheidungsfragen an. Analog zu den Feature-Modellen werden die Randbedingungen
ebenfalls modelliert.

Es ist zu erkennen, dass beide Modelle eine Produktlinie aus einer funktionalen Sicht
betrachten. Wahrend das Feature-Modell alle Merkmale deskriptiv festhélt, versucht der
entscheidungsorientierte Ansatz den Nutzer durch geeignete Fragen zu dem fiir ihn pas-
senden Produkt einer Produktlinie zu fithren. Beiden Modellen ist gemein, dass sie von
der konkreten Umsetzung der Produkte abstrahieren. Ein Uberblick und ein Vergleich der
beiden Modelle sind in [CGR*12] zu finden. Im Folgenden werden Variabilitdtsmodelle zur
Beschreibung des Losungsraums betrachtet.

Variabilitatsmodelle fiir den Lésungsraum

Die Modelle der Variabilitdt im Losungsraum werden anhand des Vorgehens beim Losungs-
aufbau klassifiziert [Sch16b]. In [VGO07] werden der annotative und der kompositionelle An-

52

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Requires VP_VP Excludes VP_VP Requires V_VP Excludes V_VP Requires V_V ExcludesV_V
Variant Point Variant Point to Variant Constraint
Constraint Variant Constraint Dependency
Dependency Dependency
T
\ | /
E Variant Point I Variant f
T
1.% | 1%
A ‘
Variability
Dependency
Extemal Variant Internal Variant
Point Point Zﬁ
Mandatory Optional Alternative Choice
F———=>{ max
2.5 ol

Abbildung 4.4: UML-Modell der Variabilitat nach [PBLO5]

satz unterschieden. Annotative Ansditze werden auch als 150% Lésungen bezeichnet und
bestehen aus einem Modell, in dem die gesamte Variabilitat einer Produktlinie dargestellt
ist. Um ein giiltiges Produkt aus der Produktlinie zur erzeugen, werden die nicht beno-
tigten Artefakte aus dem Modell entfernt. Zur Beschreibung dieser Modelle werden meist
formale oder semi-formale Ansétze verwendet [Sch16b]. Kompositionellen Ansdtzen liegt
das entgegengesetzte Vorgehen zugrunde. Bei ihrer Verwendung wird das konkrete Pro-
dukt aus Artefakten zusammengestellt. Dies wird dadurch erreicht, dass die Additive um
einen Produktkern, der allen Produkten einer Produktlinie gemein ist, angeordnet wer-
den [SRC*12]. In [Sch16b] wird darauf hingewiesen, dass sichergestellt sein muss, dass die
einzelnen Artefakte miteinander kombinierbar sind. Andernfalls besteht die Gefahr von
hohen Aufwénden fiir Nacharbeiten an den Schnittstellen.

Eine Kombination aus annotativen und kompositionellen Ansédtzen ist der
transformative Ansatz. Er vereint die Reduktion und Addition und erlaubt so,
Produkte einer Produktlinie entsprechend aufgestellter Regeln zu transformieren. Die
Delta-Modellierung ist ein Beispiel fiir einen transformativen Ansatz [SRCT12]. Sie
definiert die Operationen Addition, Subtraktion und Modifikation, um Produkte einer
Produktlinie ineinander umzuwandeln. Sie ist ein intuitiv verstandlicher Ansatz, der das
Potential besitzt, in der Automatisierungstechnik gut einsetzbar zu sein. Aufgrund des
transformativen Charakters kann die Delta-Modellierung nahtlos in bestehenden Systemen
eingesetzt werden. Ein detaillierter Uberblick iiber die verschiedenen Variabilitdtsmodelle
ist in [SRCT12] zu finden. In Abschnitt 4.3.3 wird die Delta-Modellierung und ihre
Anwendungen in der Softwaretechnik vorgestellt

53

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Occupy Control

Automaton Algorithm
DI PEASSTS

~
e VLS T, N T el
~ - N <
- ~ - S~o
ﬁ ~ _-- ’ N ~<.
. . PID/ P/
Variant 1 Variant 2 PID-Algorithm Anti-Windup PI-Algorithm Anti-Windup
. requires

3

PID-Controller

VP

Signal Filter

-
|

\\
, ,
/’ SS

- L ~

Moving 1st-order lag Butterworth -
Average element Filter z

2nd-order lag
element

External Input

Abbildung 4.5: Beispiel fir die Nutzung eines Orthogonalen Variabilitdtsmodells fir die Be-
schreibung eines PID-Regler Funktionsbausteins [WE15b]

Eine weitere Moglichkeit Variabilitdt zu modellieren, die die Problem- und Lésungsraum-
raumdarstellung kombiniert, ist das orthogonale Variabilitatsmodell. In einem orthogona-
len Variabilitdtsmodell wird das Produkt, bzw. die Produktlinie, aus funktionaler Sicht
beschrieben. Es werden alle Variantenpunkte der Produktlinie mit den dazugehorigen Va-
rianten aufgefiihrt. In Abbildung 4.4 ist das UML-Modell des Zusammenhangs zwischen
Variantenpunkten und Varianten nach [PBLO05] dargestellt. Darin ist zu erkennen, dass ein
Variantenpunkt sowohl intern als auch extern sein kann. Die Zuordnung einer Variante
zu einem Variantenpunkt ist entweder verpflichtend oder optional. Wenn die Zuordnung
optional ist, kann eine Wahl aus mehreren Alternativen erzwungen werden. Dies wird tiber
die Parametrierung der alternativen Wahl (min und max) realisiert. Zusétzlich ist im Mo-
dell die Abbildung von Abhéngigkeiten zwischen Variantenpunkten, zwischen Varianten
und zwischen Variantenpunkten und Varianten vorgesehen. Die Abhéngigkeit kann entwe-
der das Benotigen oder das Ausschlieen des jeweils anderen Elements sein. Dies ist als
Randbedingung fiir den Aufbau von erlaubten Produkten zu verstehen. Wenn das Aus-
gangselement in einem Produkt enthalten ist, wird das Zielelement entweder ben6tigt oder
dessen Verwendung ausgeschlossen.

In Abbildung 4.5 ist die Nutzung des vorgestellten UML-Modells am Beispiel eines PID-
Regler Funktionsbausteins dargestellt. Es ist zu erkennen, dass der Funktionsbaustein
durch fiinf Variantenpunkte modelliert ist. Namentlich sind es der Belegungsautomat, der

54

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Regelalgorithmus, der Signalfilter, der Anschluss an den Feedforward Controller und der
Sollwertfilter. Die Variantenpunkte werden durch eine bis vier Varianten realisiert. Wenn
mehr als eine zugeordnete Variante existiert, sind die Varianten als alternative Wahlmog-
lichkeit dargestellt. Es kann jedoch maximal eine Variante ausgewdhlt werden. Bei der
Wahl des PID-Algorithmus wird die Nutzung eines Rampenfilters erzwungen.

Das orthogonale Variabilitdtsmodell findet im Software Produktlinien Engineering Anwen-
dung. Das Software Produktlinien Engineering ist ein Prinzip zur Entwicklung und Im-
plementierung von Softwarelosungen. Ziel ist es, ahnliche Produkte aus einer Menge von
gleichen Komponenten zu bauen bzw. zu implementieren. Die Ideen dazu stammen zum
Teil aus der Grofiserienfertigung der Automobilindustrie. Die Zielsetzung ist es, Produkte
um einen Kern herum zu entwickeln und so Softwarekomponenten mehrfach zu verwen-
den. Zur Erreichung dieses Ziels wurden Entwicklungsprozesse und Vorgehensweisen ent-
wickelt, die die Wiederverwendung unterstiitzen und fordern sollen sowie die Varianten
in den Mittelpunkt des Entwurfes riicken. Der Fokus liegt dabei auf der Beriicksichtigung
der Gemeinsamkeiten von verschiedenen Produkten insbesondere im Hinblick auf deren
Funktionalitdt [KLD02].

Zusammenhang zwischen Modellen des Problem- und Losungsraums

Die Variabilitatsmodelle des Problem- und Losungsraums beschreiben unterschiedliche
Gesichtspunkte von Produktlinien. Schlussendlich stellen sie aber nur zwei unterschied-
liche Betrachtungsweisen des gleichen Gegenstandes dar. Um die Modelle sinnvoll nutzen
zu kénnen, muss die Beziehung zwischen den Modellen der beiden Rdume beschrieben
sein [SRC*12]. Durch diese Verbindung kann der Kunde bzw. der Nutzer eines Produkts
aus der Produktlinie die von ihm benétigten Funktionalitdten auswahlen und es kann das
entsprechende Produkt zusammengefiigt werden. Daftir muss modelliert werden, welche
Artefakte im Losungsraum die jeweiligen Funktionalitdten im Problemraum realisieren.
In [CHS10] wird der Zusammenhang zwischen Problemraum und Losungsraum als An-
wendungsfunktion bezeichnet. Ein Uberblick iiber verschiedene Ansitze zur Modellierung
der Verbindung ist in [SRC*12] zu finden.

4.3.3 Delta-Modelle in der Softwaretechnik

Grundsétzlich sind Delta-Modelle ein transformativer Ansatz, durch den der Unterschied
zwischen mindestens zwei Gegensténden beschrieben werden kann. Eine sehr anschauliche
Anwendung von Deltas ist das Bilden der Differenz zwischen zwei Programmsténden. Im
Ergebnis erhilt man zeilenweise die Information, ob eine Zeile hinzugefiigt oder gel6scht
wurde. Mit diesem Vorgehen kénnen Anderungen am Quellcode sehr leicht erfasst und
nachvollzogen werden. Tools zur Unterstiitzung dieses Vorgehens sind heutzutage Standard
bei den gebrauchlichen Codeverwaltungsanwendungen (z. B. GitHub, SVN; etc.).

Im Kontext der Modellierung von Variabilitit ist die Deltamodellierung eine Ausprigung
der transformativen Modelle des Losungsraums. Die erste Definition der Delta-Modelle fiir
Softwareproduktlinien ist in [Sch10] zu finden. Ausgehend von der UML-Komponente (vgl.
Kapitel 2.2) beschreibt die Autorin ein formalisiertes Delta-Modell. Das Modell besteht aus

ot
ot

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Elementen und Verbindungen zwischen den Elementen. Aus den Elementen und Verbin-
dungen konnen Systeme gebildet werden, die definierte Merkmale erfiillen. Ist ein System
eine valide Konfiguration aus Merkmalen, so wird es nach [Sch10] je nach Verwendung als
Kernmodell bzw. Produktmodell bezeichnet.

Ausgehend von einem Ausgangssystem definiert ein Delta-Modell eine Menge von Opera-
tionen. Diese Operationen beschreiben die Modifikationen an dem Ausgangssystem und
itberfithren es in das Zielsystem. Zusétzlich beschreibt das Delta-Modell eine sogenannte
Anwendungsbedingung. Dies ist eine Vorbedingung, die im Hinblick auf die Merkmale des
Ausgangsmodells vorliegen muss, damit das Delta-Modell anwendbar ist. In [Sch10] werden
fiinf Operationen fir die Modifikation von Ausgangsmodellen definiert:

e add Element
Die Operation add fiigt ein Element zu dem Ausgangsmodell, auf das sie angewendet
wird, hinzu.

e mod Element
Durch die Operation mod wird ein Element modifiziert. Dies konnte beispielsweise
die Anderung eines Parameters oder des internen Zustands des Elements sein.

e rem Element
Das Entfernen eines Elements wird durch die Operation rem realisiert.

e add Verbindung(FElement;,Elements)
Durch diese Operation wird eine Verbindung zwischen zwei Elementen angelegt.

e rem Verbindung(FElement;,Elements)
Die Operation rem entfernt eine Verbindung zwischen zwei Elementen aus dem Mo-
dell.

In Abbildung 4.6 ist ein Uberblick iiber die verschiedenen Artefakte und Begriffe sowie
ihre Beziehungen dargestellt. Ausgangspunkt ist die Produktlinie, die aus einem Featu-
remodell (®), einem Kernprodukt (c), einem Delta-Modell (D, <) und einer Applikati-
onsfunktion (7y) besteht. Aus dieser Produktlinie ist ein Delta-Modell entnommen, das
eine benotigte Menge an Merkmalen erfillt. Der Weg zur Erzeugung eines Produkts selbst
kann aus mehr als einem einfachen, z. B. einem zusammengesetzten Delta-Modell bestehen.
Dies konnte eine Aneinanderreihung von Delta-Modellen sein, die von einem Kernprodukt
bis zu einem Produkt fithren. Fir die Anwendung des Deltas bzw. der in ihm enthalte-
nen Delta-Operationen gibt es grundsétzlich zwei Moglichkeiten: Die Anwendung auf ein
Kernprodukt oder der Aufbau eines Produkts aus Delta-Operationen, ohne dass ein Kern-
produkt als Ausgangspunkt existiert. Werden die Delta-Operationen auf ein Kernprodukt
angewendet, wird dadurch ein neues Produkt erzeugt. Die Variabilitiat aus dem Problem-
raum (Featuremodell) wird so im Lésungsraum durch ein neues Produkt abgebildet. Dieses
Vorgehen ist dann niitzlich, wenn z. B. ein Produkt existiert, das als Ausgangspunkt fiir
weitere Varianten dient. Die zweite Moglichkeit ist, dass ein solcher Kern nicht existiert
und das Produkt ganz neu aufgebaut wird. Am Beispiel der eingangs erwahnten Codever-
waltung sind diese Moglichkeiten ebenfalls beide zu erkennen. Wird eine bestehende Datei
mit Code modifiziert, so ist dies analog zur Anwendung eines Deltas auf ein Kernprodukt
zu sehen. Wird hingegen eine neue Implementierung in die Codeverwaltung eingebracht,
so gibt es naturgemafl keinen vorangegangenen Stand, auf den aufgebaut werden kann

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.3 Grundlagen der Variantenbeschreibung

Produktlinie: PL = (®,c, D, <,y)

Konfiguration der Merkmale

Delta-Modell: (D, <)

Ableitung der Deltas

Zusammengesetztes Delta: x = xp, * -+ * x4

Partielle Deltas: Anwendung auf ein
x(—) Kernmodell: x(c)

Produkt —Produkt: f Produkt

Anwendung auf einen Kern: f(c)

Abbildung 4.6: Bezichung zwischen Artefakten und Begriffen nach [CHS10].

und somit kein Kern- oder Vorprodukt. Eine formale Beschreibung der Delta-Modelle ist
in [Sch10, CHS10] zu finden.

Bei der Anwendung von Delta-Operationen auf einen Ausgangszustand kann es zu Kon-
flikten und Inkonsistenzen kommen. Beispielsweise wenn ein Element, das nicht vorhanden
ist, modifiziert werden soll. Um solche Konflikte zu vermeiden und um eine bessere Uber-
sichtlichkeit zu erlangen, werden normalisierte Delta-Modelle verwendet [Sch10]. Diese be-
stehen jeweils nur aus einem Typ von Delta-Operation, d. h. entweder aus add, mod oder
rem. Aus jedem Delta-Modell oder jeder Kombination kénnen drei normalisierte Delta-
Modelle gebildete werden. Dies wird dadurch erreicht, dass die Delta-Operationen nach
Typen sortiert abgearbeitet werden. Als erstes werden die Operationen zum Hinzufiigen
von Elementen angewendet. Im zweiten Schritt werden alle Modifikationen durchgefiihrt
und anschlieend die vorgesehenen Elemente geloscht. Die normalisierten Delta-Modelle
werden nacheinander angewendet. Im Anschluss an die Transformation der Modellelemen-
te werden zunéchst die neuen Verbindungen angelegt und anschlieBend die Operationen
zum Loschen der Verbindungen durchgefiihrt. Es wird von der Annahme ausgegangen,
dass die Delta-Operationen eines Deltas-Modells alle zeitgleich angewendet werden, d. h.,
es wird keine Anwendungsreihenfolge modelliert [Sch10].

Nach [Sch10] sind folgende Regeln fir die Anwendung der Operationen vorgesehen:

e Fin Element oder eine Verbindung kann mehrfach hinzugefiigt werden, taucht aber
im Modell nur einmal auf.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

e Wenn ein Element entfernt wird, werden alle Verbindungen, an denen es beteiligt ist,
ebenfalls geloscht.

e Die Operationen ein Element zu modifizieren oder zu 16schen, das nicht existiert, ist
nicht definiert.

Trotz Beachtung der Regeln kénnen nach [Sch10] drei Arten von Konflikten auftreten: Das
Anlegen und nachtréigliche Loschen eines Elements oder einer Verbindung, das Modifizieren
und anschlieBende Loschen von Elementen oder das Modifizieren und erneute Modifizieren
von Elementen. Diese Anwendungen von Delta-Operationen sind grundsétzlich zuléssig,
weisen aber auf Inkonsistenzen innerhalb des Delta-Modells hin. Wahrend der Transfor-
mation kann es passieren, dass die aktuell vorliegenden Modellelemente und Verbindungen
kein valides Produkt im Sinne der zugrundeliegenden Architektur oder Sprache bilden
(vgl. [HRRS11]). Erst nach Abschluss der Transformation wird ein valides Produkt erwar-
tet. Eine formale Beschreibung der aufeinanderfolgenden Anwendung von Delta-Modellen
einschlieBlich potentieller Konflikte und Wege zu deren Behebung ist in [CHS10] zu finden.

Die vorangegangene Betrachtung des Delta-Modells im Kontext der Software Produktli-
nien vermittelt einen Eindruck der Vielseitigkeit dieses Ansatzes. Grundsétzlich kénnen
die Modifikationen an Softwareprodukten mit diesem Ansatz beschrieben werden. Durch
die Méachtigkeit der Transformation ist es moglich, jedes Produkt in ein komplett neues
umzuwandeln. Im Extremfall wird das Ausgangsprodukt komplett entfernt und ein neu-
es Produkt aufgebaut. Es ist moglich iiber die Produktlinie und die darin enthaltenen
Features eine Klammer um die assoziierten Produkte zu bilden [CHS10]. Dies bedeutet,
dass sie funktional gewisse Gemeinsamkeiten haben sollen. Diese Gemeinsamkeiten wer-
den in [SRC*12] durch das Kernprodukt représentiert. An diesem Kernprodukt werden
durch Delta-Modelle Veranderungen vorgenommen. Das Kernprodukt stellt fir die von
ihm anhéngenden Produkte die gemeinsame Basis dar. Gleichwohl ist diese Herangehens-
weise durch eine Fokussierung auf den Losungsraum geprégt, d. h., die Gemeinsamkeiten
werden durch Features beschrieben. Eine Moglichkeit die Ahnlichkeit im Lésungsraum zu
ermitteln und gegebenenfalls zu begrenzen, ist die Einfithrung eines Abstandsmafles iiber
die Delta-Operationen. Eine Ubersicht iiber verschiedene AbstandsmaBe ist in [BSG12] zu
finden. Die Festlegung, welches Produkt Bestandteil einer Produktlinie bzw. Variante eines
anderen Produkts ist, ist subjektiv [Lim94].

Man sieht, dass dieser intuitive Ansatz in vielen Anwedungsgebieten zum Einsatz kommen
kann. Die erste Publikation der Delta-Modelle kam aus dem Umfeld der modellgetriebenen
Softwareentwicklung [Sch10]. Ausgehend von diesem Ansatz entwickelte sich der Bereich
des abstrakten Deltamodellierens [CHS10]. Darin wird die formale Basis fir die Nutzung
der Delta-Modelle gelegt. Dieses generische Konzept fir die Entwicklung von Software-
produktlinien wurde nachfolgend in verschiedenen Anwendungsbeispielen umgesetzt und
erprobt. Im Folgenden werden einige Beispiele vorgestellt.

Die Delta-Modellierung wurde als deltaorientiertes Programmieren mit der Programmier-
sprache DeltaJava umgesetzt und erprobt [SBB*10]. Die Realisierung wurde mit einer
featureorientierten Programmierung von Softwareproduktlinien verglichen. In diesem Rah-
men wurde festgestellt, dass beide Ansétze gut skalieren, sich allerdings in einigen Punkten
unterscheiden. Die Delta-Modelle sind in Bezug auf die Transformationsregeln sowie die
Wahl des Startpunkts und damit der Anwendbarkeit auf bestehende Losungen flexibler.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

Durch die Moglichkeit, direkt aus Delta-Modellen Konflikte zu erkennen und partiell zu
beheben, sind diese dem featureorientierten Programmieren voraus. Die Erweiterung der
Funktionalitat erfolgt im featureorientierten Programmieren durch ein Refactoring der be-
stehenden Produktlinie. Im Gegensatz dazu werden im deltaorientierten Programmieren
weitere Delta-Module hinzugefigt.

Weitere Anwendungsbereiche sind die Nutzung von Delta-Modellen fiir die Beschreibung
der Variabilitit von Architektursprachen [HRRS11, HKR*11]. In diesen wird die Variabi-
litat von Systemarchitekturen in Delta-Modellen beschrieben. Die Systemarchitektur wird
ihrerseits durch die entsprechende Sprache ausgedriickt (z. B. MonitArc). Als weiterer An-
wendungsfall wird ein Prozess fiir die Ableitung einer Delta-Sprache fiir eine gegebene
textuelle Programmier- oder Modellierungssprache vorgestellt [HHK'13]. Der Prozess be-
steht aus Ableitungsregeln und Kontextbedingungen sowie einem Ablauf, der beispielhaft
fiir eine textuelle Version der Statecharts durchgefithrt wurde. Eine Anwendung von Delta-
Modellen in der Praxis ist in [HMW12] beschrieben. Ausgehend von einem Workflow fiir
die Entwicklung von Delta-Modellen wurde die Nutzung von Delta-Modellen in einem
industrierelevanten Maflstab evaluiert. Eine Anwendung der Delta-Modelle im Kontext
der Automatisierungstechnik ist in [KLL*14, KPST14] zu finden. Die Autoren beschrei-
ben einen Ansatz, der auf einer multiperspektivischen Sicht beruht. Dabei werden drei
verschiedene Sichten (Workflow, Architektur und Verhalten) auf ein Fertigungssystem ge-
nutzt, um dafir Delta-Modelle aufzustellen und daraus Steuerungscode zu generieren. Die
Vorteile der Deltamodellierung werden in der einfachen Verstandlichkeit des Ansatzes und
der Flexibilitéit gesehen.

Ein Ansatz die Delta-Modellierung fiir Produktlinien zu verwenden wurde in [SSS17] vorge-
stellt. Kern des Konzepts ist ein Prozess fiir die Entwicklung von Losungen. Dieser besteht
aus einer kurzfristigen, einer mittelfristigen und einer langfristigen Phase. Es werden fiir die
einzelnen Phasen jeweils Metriken vorgestellt, die eine Verbesserung der Implementierung
ermoglichen. Uber Varianten Interfaces kénnen Varianten Punkte fiir eine eingeschrankte
Transformation markiert werden. Ein sehr interessanter Ansatz ist die Verwendung von
Delta-Modellen zur Transformation von anderen Delta-Modellen [LKS16]. Dieser Ansatz
wird als Delta-Modell hoherer Ordnung bezeichnet. Vorteil dieses Ansatzes ist, dass die
vollstandige Historie der Anderungen an Delta-Modellen abgebildet wird.

4.4 Modellierungsgrundlagen

Ziel von Modellen ist es, das System, das modelliert wird, besser zu verstehen [Kru04].
Die unterschiedlichen Arten von Modellen sind zahlreich wie ihre Anwendungsbereiche.
In [VWB*09] sind folgende Beispiele fiir Modelle aus unterschiedlichen Anwendungsberei-
chen genannt:

e Kostenmodelle
e Rentenmodell
e Modelle fiir die Wettervorhersage

o Geometriemodelle

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

e Modelle fir den Reglerentwurf
e Modelle fur Borsenkurse

Genauso vielfiltig wie die Verwendungsmoglichkeiten sind die Vorstellungen, was Modelle
sind. Die unterschiedlichen Betrachtungsweisen stammen aus unterschiedlichen Anwen-
dungsbereichen und haben sich iiber die Zeit hinweg entwickelt. Eine sehr generische
Definition fiir Modelle ist in [DIN14] gegeben:

Definition 5 (Modell). Gegenstand, der es erlaubt Aussagen iber einen anderen, model-
lierten Gegenstand zu treffen.

Ausgehend von dieser Definition lassen sich Modelle als Abbildung eines Gegenstandes
ansehen. Diese Abbildung wird fiir einen konkreten Zweck erstellt [BRS95]. Der Zweck
gibt vor, in welcher Art und Weise die Sicht auf den Gegenstand verkiirzt wird. Modelle
sind deshalb verkiirzt, da ein Gegenstand nicht in allen seinen Fassetten modelliert wird,
sondern nur die fir den jeweiligen Zweck relevanten Eigenschaften und Verhaltensweisen.
Diese wird in der folgenden Definition von Modell in [IEC14a] aufgegriffen:

Definition 6 (Modell). Mathematische oder physikalische Darstellung eines Systems oder
Prozesses, die das System oder den Prozess aufgrund bekannter Gesetzmafigkeiten, einer
Identifikation oder getroffener Annahmen gentigend genau abbildet.

Die beiden zitierten Definitionen unterstreichen mogliche unterschiedliche Blickwinkel auf
Modelle. So werden diese, je nach personlichem Hintergrund und dem konkreten Anwen-
dungsfall anders definiert. Dies kann bei einer Zusammenarbeit von Personen aus un-
terschiedlichen Fachrichtungen und Branchen zu Missverstindnissen fithren. So versteht
ein Regelungstechniker unter einem Modell grundsétzlich ein System von Differentialglei-
chungen, die mittels physikalischen GesetzméBigkeiten ein physisches System beschreiben.
Hierbei handelt es sich um ein Modell im Sinne von Definition 5 und Definition 6. Ein
technischer Modellbauer assoziiert mit einem Modell ein physisches Modell, beispielsweise
von einem neuen Produkt. Dieses Modell lasst sich nur mit Definition 5 in Einklang brin-
gen, da das Modell nicht mathematisch oder physikalisch ist. Aus demselben Grund erfiillt
auch das Modell einer Anlagentopologie lediglich die Definition 5.

Fir die vorliegende Arbeit dient Definition 7 aus [Epp08] als Grundlage. Sie beschreibt
Modellsysteme als Erweiterung des Modellbegriffs, der ein Modell als verkiirzte Abbildung
eines physischen oder nicht-physischen Gegenstandes versteht. Dabei wird das Modell
selbst als System verstanden, das aus internen Elementen besteht. Im Weiteren werden
Modell und Modellsystem als Synonyme verwendet.

Definition 7 (Ein Modellsystem ist ein). Modell, das selbst als System strukturiert ist und
das versucht den inneren Aufbau eines Systems so gut nachzubilden, dass im gewiinschten
Kontext und mit der geforderten Genauigkeit die dufSeren Figenschaften des Modellsystems
mit denen des betrachteten Systems tbereinstimmen.

Da viele Modellierungssprachen objektorientiert sind [PGGS16], liegt der Fokus dieser Ar-
beit auf der Betrachtung von objektorientierten Modellen. Beispiele dafiir sind das OPC UA
Metamodell [IEC10], das Merkmalmodell [Mer12, Kam17] oder das allgemeine Prozedur-
modell [NAM16, Sch16al.

60

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

definiert

Metamodell Modell

konsistent mit

hat Beziehung zu

1..* 1..% 1..% *
Modellelement-
Definition Regel Modellelement |+
’7 1 definiert Anwendung | T

definiert

Abbildung 4.7: Formale Spezifikation des Metamodells nach [DIN14]

Eine Ubersicht iiber die Grundsitze zur ordnungsgemifBien Modellierung ist in [BRS95] zu
finden. Dies sind u. a. die Relevanz, die Klarheit und die Vergleichbarkeit eines Modells.

Im Folgenden werden zwei Klassifikatoren fiir Modelle vorstellt. Zum einen werden die
verschiedenen Metamodell-Ebenen vorgestellt und ihre Bedeutung fiir Laufzeitumgebungen
erldutert. Anschliefend wird die Klassifikation nach den verschiedenen Sichten auf das
modellierte System vorgestellt.

4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der
Interoperabilitat

Eine Moglichkeit, Modelle zu klassifizieren, ist die Einteilung tiber die Art des zu
modellierenden Systems. Definition 7 folgend beschreiben Modelle reale Systeme. So
kann beispielsweise ein Motor durch physikalische Gleichungen beschrieben werden.
Diese Gleichungen folgen den Regeln der Physik. Die Physik stellt somit Regeln fir die
Modellierung von Gegenstanden bereit und definiert Bestandteile des Modells (elektrischer
Strom, Drehmoment). Sie ist nach Definition 8 aus [DIN14] ein Metamodell.

Definition 8 (Metamodell). Ein Metamodell definiert Aufbau und Bedeutung von Model-
len

In Abbildung 4.7 ist die formale Spezifikation des Metamodells dargestellt. Das Metamo-
dell definiert Modelle und besteht aus Definitionen von Modellelementen und Regeln. Die
Regeln eines Metamodells definieren die Verwendung der in diesem Metamodell definier-
ten Modellelemente. Das nach den Vorgaben eines Metamodells aufgestellte Modell ist
konsistent mit den Regeln des Metamodells und verwendet die definierten Modellelemente
(vegl. [BRS95]). Der Begriff Modellelement kann sehr sehr allgemein verstanden werden.
So kénnen Modellelemente, je nach Art des betrachteten Modells, Gleichungen oder auch
Objekte (z.B. in einem Strukturmodell) sein. Der Zusammenhang zwischen einem Meta-
modell und dem Modell ist deutlich starker als der Zusammenhang zwischen einem Modell
und dem modellierten System. Das Modell bildet tiblicherweise nur einen Teilaspekt des

61

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

modellierten Systems ab, wohingegen das Metamodell das Modell in Génze beschreiben
muss.

Es ist moglich, Metamodelle, d. h. ihre Modellelemente und Regeln, ohne Abhéngigkeiten
zu anderen Modellen zu definieren. Eine andere Herangehensweise ist, Metamodelle nach
den Vorgaben anderer Metamodelle aufzustellen. Die Physik, die in dem Beispiel die Vor-
gaben zur Beschreibung des Motors liefert, basiert auf der Mathematik. Die Mathematik
ist in diesem Kontext ein Metametamodell, d. h., sie ist die Grundlage fir die Definition
eines Metamodells (der Physik).

Wie an diesem einfachen Beispiel mit der Mathematik, der Physik und dem Motor ge-
zeigt, lassen sich Metamodelle in einer Hierarchie verwenden. Ausgehend von Metameta-
modellen (Mathematik) werden Metamodelle (Physik) definiert, mit denen Modelle von
Gegenstéanden entworfen werden. Analog dazu werden auch in anderen Bereichen (z. B. in
der objektorientierten Programmierung [OMG16]) Metamodelle verwendet. Es gibt keine
Vorgaben, wie viele Hierarchiestufen verwendet werden miissen. Es sind, ausgehend von
einer zweistufigen Architektur bestehend aus Klasse und Instanz, beliebig viele Ebenen
moglich [OMG16]. Allerdings nutzen die meisten Systeme weniger als fiinf Ebenen (Meta-
metamodell, Metamodell, Modell, Instanz).

Der Nutzen eines Metamodells entsteht aus der einheitlichen Verwendung der Modellele-
mente und Regeln, die das Metamodell definiert. Dieser Nutzen wird gesteigert, wenn ein
Metamodell von moglichst vielen Modellerstellern als richtig angesehen und verwendet
wird. Auch hier kann die Mathematik als Beispiel herangezogen werden. Uberall auf der
Welt nutzen Menschen Regeln und Elemente der Mathematik. Dabei ist es irrelevant, ob der
Anwendungsfall in der theoretischen Physik oder im Bereich der Kostenrechnung liegt, die
Regeln sind immer gleich. Je nach Anwendungsfall kann jedoch der Umfang der genutzten
Regeln und Modellelemente schwanken. Wahrend moglicherweise in der Kostenrechnung
die vier Grundrechenarten ausreichen, kann in der theoretischen Physik die Verwendung
von sehr speziellen Regeln und Modellelementen notig sein.

Im technischen Kontext wurde die Notwendigkeit fiir die Verwendung von gemeinsamen
Metamodellen fiir Interoperabilitét festgestellt [PSUT14]. Es wird zwischen Referenzmodel-
len und Kernmodellen unterschieden. Kernmodelle sind analog zu physikalischen Gesetz-
méafigkeiten immer giiltig, ganz gleich, ob sie explizit oder implizit angewendet werden.
Eine Sammlung von Kernmodellen ist in der DIN SPEC 40912 [DIN14] normiert. Ein
Beispiel fiir ein Kernmodell ist das Lebenszyklusmodell, das beschreibt, was der Lebenszy-
klus einer Entitét ist. Dieses Modell ist so generisch, dass es mindestens implizit verwendet
wird, immer dann, wenn ein Lebenszyklus modelliert oder verwendet wird. Im Gegensatz zu
den Kernmodellen haben Referenzmodelle nur einen hinweisenden Charakter. Sie besitzen
keine grundsétzliche Giiltigkeit, sondern sind ausschliefllich in einem Anwendungsbereich
giiltig. In diesem Anwendungsbereich ist z.B. die Sammlung von Entwurfsmustern fir
objektorientierte Softwarearchitekturen zu sehen [GHJV11]. Diese Sammlung beschreibt
in der objektorientierten Programmierung héufig auftretende Konstrukte, die fiir einen
Programmierer niitzlich sein kénnen, aber nicht alternativlos sind.

Eine wesentliche Voraussetzung fiir die Entwicklung und Nutzung von gemeinsamen Mo-
dellen ist die Erlangung eines gemeinsamen Verstédndnisses aller relevanten Begriffe. Die
Lklare, konsistente und allgemein anerkannte textuelle Beschreibung von Begriffen® ist

62

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

eine Voraussetzung fir die Entwicklung von Referenzmodellen im Rahmen von Indu-
strie 4.0 [PSU*14]. Typischerweise treten bei der Verwendung von unterschiedlichen Be-
griffsdefinitionen in einer Diskussion zwei Effekte auf: Entweder verwenden die Beteiligten
unterschiedliche Begriffe fiir den gleichen Gegenstand oder sie verwenden den gleichen Be-
griff fiir unterschiedliche Gegenstande [WGET17]. Durch die Entwicklung und durchgingi-
ge Verwendung von Referenz und Kernmodellen werden diese Schwierigkeiten iiberwunden
und die Entwicklung von neuen Losungen unterstiitzt.

Verwendung von (Meta-)Metamodellen in der Automatisierungstechnik

Nach der Vorstellung von Modellen und Metamodellen folgt in diesem Abschnitt die Be-
schreibung, wie diese in der Automatisierungstechnik verwendet werden. Neben den An-
strengungen, Metamodelle aufzustellen und anschliefend durch Abstimmung mit Partnern
als Referenzmodelle bzw. Kernmodelle zu verwenden, besteht der Wunsch die Modelle
in konkreten Anwendungsfillen einzusetzen. Der Ansatz, (Meta-)Modelle im Engineering
von Anlagen zu verwenden und damit ein durchgéngiges modellbasiertes Engineering zu
verwirklichen, wird in [VHDF*14] skizziert. In [BSF*09] beschreiben die Autoren, wie
aus Strukturmodellen von Anlagen automatisiert Simulationsmodelle erzeugt werden kon-
nen. Dabei kommt ein xml-basiertes Austauschformat fiir die Anlagenstrukturmodelle zum
Einsatz. Ein Metamodell fiir die Beschreibung von Ablaufen in der Automatisierungstech-
nik wird in [YGE13] vorgestellt. Fiir die Erstellung von Automatisierungslésungen sind
in [WKS*16] zwei Wege beschrieben, die auf der Anwendung von Modellen basieren. Zum
einen ist die modellbasierte Codegenerierung beschrieben, bei der die Problemstellung und
z.B. die Anlage in Modellen beschrieben sind. Daraus wird dann die Automatisierungslo-
sung generiert. Zum anderen kann die Losung durch Modellzugriffe und Transformationen
zur Laufzeit erstellt werden. Der erste Weg fiigt sich hervorragend in bestehende En-
gineeringprozesse ein, wohingegen der zweite Ansatz den Vorteil hat, dass Modelle und
Algorithmen, die auf den Modellen operieren, getrennt sind. Daraus folgt eine sehr gute
Wiederverwendbarkeit von Losungen fiir andere Anwendungsfille. Zur Umsetzung dieser
modellbasierten Losungen ist in jedem Fall eine Vorstellung erforderlich, wie das konkrete
Modell aufgebaut ist.

Neben der Definition von Metamodellen muss geklart werden, wie diese zu speichern und
zuganglich zu machen sind. Damit eng verkntipft ist die Frage, wie die Modelle, die unter
Verwendung der Metamodelle entwickelt werden, genutzt werden. Sinnvollerweise sind die
Metamodelle wiahrend der Verwendung der aus ihnen aufgebauten Modelle ebenfalls ver-
fiighar. Die Autoren stellen in [WKST16] drei grundsatzliche Moglichkeiten dar, Modelle zu
verwenden: dateibasiert, in Datenbanken und in Laufzeitumgebungen. Die Ansétze unter-
scheiden sich hinsichtlich des Zugriffs auf die Modelle (Interpreter fiir Dateien, Queries bei
Datenbanken und Dienste bei Laufzeitumgebungen) und der Moglichkeit dynamische Mo-
delle zu verwalten. Daraus resultiert, dass der Datei- und der Datenbank-basierte Ansatz
eher fiir das Engineering und weniger fiir die Nutzung der Modelle zur Laufzeit geeig-
net sind. Die Laufzeitumgebung ist dariiber hinaus fiir die dynamische Verwendung von
Modellen zur Laufzeit geeignet.

Bei der Realisierung von Modellen in Laufzeitumgebungen ist das der Laufzeitumgebung
und den Metamodellen zugrundeliegende Metametamodell relevant. So stellt die OMG

63

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Type Feature TypedElement MultiplicityElement
% I
Classifier > Generalization StructuralFeature
Class -
Property Association

TypedElement MultiplicityElement

A

Operation Parameter

Abbildung 4.8: Vereinfachte Darstellung des Metametamodell der OMG [OMG16]

mit der Meta object facility ein Metametamodell fiir die Erstellung von Modellen be-
reit [OMG16]. OPC UA [IEC10] definiert ein Metametamodell als Grundlage fiir die Ob-
jektstrukturen in einem OPC UA Server. In Laufzeitsystemen wie FASA [WGKO15] oder
der Laufzeitumgebung des Lehrstuhls fiir Prozessleittechnik [Alb03] kommen ebenfalls ei-
gene Metametamodelle zum Einsatz.

Es ist zu erkennen, dass die Metametamodelle und die Metamodelle fiir die Interoperabilitat
relevant sind. Wenn sie kompatibel sind, erméglichen sie auf Modellebene Interoperabilitat
und Austauschbarkeit. Allerdings erfordert eine Integration von verschiedenen Laufzeitum-
gebungen in einem Anwendungsfall, die ausschlieBlich im Verbund gelést werden kann, ein
Versténdnis fiir die zugrunde liegenden Metamodelle der jeweiligen Laufzeitumgebungen.
Ein Beispiel dafiir ist die Darstellung der Objektstruktur der Laufzeitumgebung des Lehr-
stuhls fiir Prozessleittechnik als OPC UA Nodestore. Grundsétzlich ist diese Abbildung
unproblematisch, allerdings ist das Metametamodell der Laufzeitumgebung sehr stark an
der Containment-Beziehung zwischen Objekten orientiert. Das OPC UA Metametamodell
kennt diese Art der Beziehung auch, allerdings ohne ihr die Prioritét beizumessen. Dieses
einfache Beispiel verdeutlicht, dass nicht nur die zugrundeliegenden Metamodelle, sondern
auch die (implizit) verwendeten Metametamodelle fiir die Interoperabilitit relevant sind.

Metametamodelle

Im Folgenden werden drei Beispiele fiir Metametamodelle vorgestellt: Die Meta Object Fa-
cility der OMG, das OPC UA Metamodell und das Metametamodell der Laufzeitumgebung
des Lehrstuhls fiir Prozessleittechnik. In Abbildung 4.8 ist das vereinfachte Metametamo-
dell der OMG dargestellt. Kern des Modells ist Class, die sich aus Eigenschaften (Property)
und Operationen (Operation) zusammensetzt. Class ist von Classifier abgeleitet, und Clas-

64

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

1 Attribute
Nodeld
1 Attribute
BrowseName
* Attribute
<<Reference>> BaseNode 1 NodeClass
1 Attribute
DisplayName
* 1 Attribute
X . N Description
Variable Object View Data Type Reference
Type
Object Variable Method
Type Type

Abbildung 4.9: OPC UA Metamodell nach [LMO06]

sifier wiederum ist von Type abgeleitet. Zweck des Modells ist es, eine Grundlage fiir die
Beschreibung von Softwaremodellen zu schaffen. Des Weiteren besitzt es breite Akzeptanz
in der Softwareentwicklung [SRVK10]. Die OMG hat dieses Metametamodell als Grund-
lage fiir darauf aufbauende Metamodelle standardisiert und schafft so eine einheitliche
Vorstellung, wie objektorientierte Modelle im Kontext von UML 2.0 aufgebaut werden.

Ein Metametamodell, das in der Automatisierungstechnik aktuell viel diskutiert wird, ist
das OPC UA Metamodell (vgl. Abbildung 4.9). OPC UA [IEC10] definiert zwei Kompo-
nenten: Ein Kommunikationsprotokoll und einen objektorientierten Modellspeicher (No-
destore). Das Kommunikationsprotokoll spezifiziert die Zugriffe auf den Nodestore. Im
Wesentlichen handelt es sich dabei um Services zum Lesen und Schreiben von Werten
sowie dem Erzeugen und Loschen von Objekten. Das in Abbildung 4.9 dargestellte Mo-
dell bildet die Grundlage fiir den OPC UA Namensraum. Der Kern dieses Modells ist der
BaseNode, der sich aus Nodeld, BrowseName, NodeClass, DisplayName und Description
zusammensetzt. Jedes Objekt in OPC UA ist von BaseNode abgeleitet und kann Referen-
zen zu Variablen haben. Sowohl Variable als auch Object konnen tiber die entsprechenden
Objekte Object Type und Variable Type typisiert werden. Neue Datentypen kénnen mittels
Data Type aus den vorhandenen Datentypen zusammengesetzt werden. Dariiber hinaus ist
es mit Reference Type Objekten moglich, zusitzliche Arten von Referenzen zu definieren.
Ausfithrbare Methoden werden iiber Method Objekte realisiert.

Die erzeugte Objektstruktur, d.h. alle Objekte in einem Nodestore, kann zur Laufzeit
erkundet und interpretiert werden. Die Kenntnis des Metamodells ist dabei unerldsslich, um
die Semantik der Objekte korrekt interpretieren zu konnen (z. B. eines Method-Objektes).

Grundlage der am Lehrstuhl fiir Prozessleittechnik entwickelten Laufzeitumgebung

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

ACPLT/RTE ist das in Abbildung 4.10 dargestellte Metametamodell. Kern des Modells
ist object, von dem alle anderen Teile des Modells abgeleitet sind. Es ist zu erkennen,
dass dhnlich wie im OPC UA Metamodell sowohl Operationen als auch Variablen eigene
Objekte sind. Die Klassen, die in der Laufzeitumgebung instanziiert werden koénnen, sind
selbst Instanzen der Metaklasse class und werden im System explizit verwaltet. Kern des
Modells ist der Ringschluss zwischen class und object, durch den alle Objekte Instanzen
ihrer Klassen werden und die Laufzeitumgebung sich selbst beschreibt [WKST16].

Beim Vergleich des OPC UA Metamodells mit dem ACPLT-Metametamodell fallt die an-
gesprochene Fokussierung auf die containment Beziehung zwischen object und Domain
auf. Damit wird erzwungen, dass sich jedes Objekt, unabhéngig von seinem Assoziations-
netzwerk, mit anderen Objekten in eine namensgebende Grundbaumstruktur einordnet.
Diese Namensbaumhierarchie gibt es in OPC UA Informationsmodellen nicht. Trotz der
leichten Unterschiede zwischen den Metametamodellen konnen die mit ihnen entwickelten
Modelle ineinander tiberfithrt werden [SRVK10]. So konnen durch die Transformation der
Informationsmodelle Datenbanken tiber OPC UA zuginglich gemacht werden [GPE16].

Die Kenntnis von Metametamodellen und deren korrekter Verwendung werden in einer
zusammenwachsenden Landschaft von Laufzeitumgebung und Modellen immer wichtiger.
Ein Indikator dafiir ist die zunehmende Fokussierung auf das OPC UA Metamodell auch
gerade im Kontext von Industrie 4.0. Hierbei spielen Metamodelle eine wichtige Rolle.
Bei der Umsetzung der wandelbaren Fabrik erkunden Geréte andere Geréte und fiihren
mit diesen gemeinsame koordinierte Aktionen durch. Dafiir reicht es nicht, dass Geréte
auf der Ebene von Kommunikationsprotokollen kompatibel sind, sondern sie miissen dar-
iiber hinaus in der Lage sein, gegenseitig die Informationsmodelle zu interpretieren. Dafiir
sind gemeinsame Metamodelle sowohl auf der Seite des Senders als auch des Empféingers
unerlésslich.

66

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

instantiation 0..* -
- object
containment 0..
1 |
domain operation variable part association
0..* 0.* 0..*| 10..*
construction
1] |
class library structure
0”*
) _|:|1 1|1
inheritance embedment
parent relationship
child relationship

Abbildung 4.10: Metametamodell der Laufzeitumgebung ACPLT /RTE [WKS™16]

4.4.2 Modellierungssichten

Bei der Modellierung ist es wichtig, sich dariiber im Klaren zu sein, welche Aspekte eines
Gegenstandes modelliert werden sollen. Handelt es sich um mehrere Aspekte, stellt sich
zusétzlich die Frage, ob diese Aspekte in einem Modell abzubilden sind, oder ob eine
Unterteilung in mehrere Modelle nicht sinnvoller ist. Im folgenden Abschnitt wird auf diese
Fragen eingegangen und es werden Ansétze présentiert, welche Sichten eines Gegenstands
in unterschiedlichen Modellen dargestellt werden sollten.

In der Automatisierungstechnik ist diese Trennung von Aspekten ein bekannter Ansatz. So
ist beispielsweise in AutomationML [IEC14c, DLPHO08] die Trennung der Informationen
iber einen betrachteten Gegenstand in drei Modelle vorgesehen:

o Struktur
Aufbau und Beschreibung von Anlagen mit CAEX nach [TEC16]

e Geometrie und Kinematik
Beschreibung der Geometrie und der Kinematik von z. B. Robotern. Als Format wird
COLLADA verwendet.

e Logik

Beschreibung von Schrittketten und Bausteinnetzwerken mit PLCopen. PLCopen
definiert ein neutrales Austauschformat fir die industrielle Leittechnik auf Basis von

xml.

67

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
m

‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

Logische Sicht Ij‘> Entwicklungssicht
* Funktionalitat * Softwaremanagement

g (=) 3

Physikalische Sicht

* Performance : Zﬁs:ﬁ;et?f:bg'e

» Skalierbarkeit lj\> . 8

« Durchsatz * Installation

* Telekommunikation

Prozesssicht

Abbildung 4.11: 4+1 Sichten Modell nach [Kru95]

Es ist zu erkennen, dass die Trennung entlang der verschiedenen Gewerke in einer An-
lage vorgenommen wird: Die mechanische Modellierung, die Modellierung aus Sicht der
Automatisierungstechnik und die Analgenstruktur. Dieser Ansatz ist weit verbreitet, da
historisch gesehen die Tools so entstanden sind, wie sie von den unterschiedlichen Fach-
richtungen bendtigt wurden. So gibt es beispielsweise eigene Tools fiir die Prozessplanung
(z.B. Verfahrenstechnik), fiir das Engineering der Automatisierungslésung und fir die Be-
dienung der Anlage [WGE™17]. Jedes dieser Tools bildet eine eigene Sicht auf die gleiche
Anlage ab und verwendet zur Beschreibung eigenen Metamodelle. Die Herausforderung in
der Automatisierungstechnik besteht darin, alle Sichten auf die Anlage zu integrieren und
mehrfache (mglw. inkonsistente) Datenhaltung zu vermeiden.

In der Softwarearchitektur gibt es ebenfalls Konzepte, die unterschiedlichen Sichten von
modellierten Gegenstanden zu trennen. In [Kru95] wird das 441 Sichten Modell fir die
Softwarearchitektur vorgestellt. In Abbildung 4.11 ist das Modell dargestellt. Im Mittel-
punkt stehen die unterschiedlichen Szenarien, die fir die Entwicklung einer Softwarear-
chitektur relevant sind. Die logische Sicht betrachtet die Funktionalitit des Softwaresy-
stems. In der Regel ist das die Sicht, die ein Nutzer auf das System hat. Hierbei stehen
die funktionalen Anforderungen im Vordergrund. Aus der logischen Sicht ergeben sich die
Entwicklungssicht, die fiir den Softwareentwickler relevant ist, und die Prozesssicht fiir
den Systemintegrator. In der Entwicklungssicht wird beschrieben, wie die Softwaremodule
organisiert werden. Nicht-funktionale Anforderungen wie die Verteilung der Softwarearte-
fakte oder die Fehlertoleranz werden in der Prozesssicht adressiert. Alle anderen Sichten
minden in der physikalischen Sicht, die den tatséchlichen Aufbau des Gesamtsystems aus
Soft- und Hardware sowie der Kommunikation beschreibt.

Um die verschiedenen Sichten erstellen und bearbeiten zu konnen, stehen verschiedene gra-
fische Modelle zur Verfiigung. Diese enthalten Diagramme fiir Szenarien, Anwendungsfille,

68

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

Klassen, Deployment, Zustinde und Komponenten [Kru04]. Ein Beispiel fiir eine derartige
Sammlung von Diagrammen ist die Modellierungssprache UML [ISO12]. Diese definiert so-
wohl Struktur- als auch Verhaltensdiagramme, deren Elemente gemischt in einem Modell
verwendet werden kénnen.

In [FRO7] betonen die Autoren die Bedeutung davon, die verschieden Sichten eines Soft-
waresystems wihrend seines Entwurfs zu berticksichtigen und zu modellieren. Fiir die Au-
tomatisierungstechnik bedeutet der Ansatz, beispielsweise die funktionale Sicht von der
Implementierung und der Verteilung auf verschiedene Hardwareplattformen zu trennen,
jedoch keinesfalls die Abhéngigkeiten zu vernachléassigen.

4.4.3 Modelle in der Automatisierungstechnik

In folgenden Kapiteln werden kurz die fiir diese Arbeit relevanten Modelle der Automatisie-
rungstechnik vorgestellt. Die Relevanz ergibt sich entweder durch ihre direkte Verwendung
oder durch ihren Vorbildcharakter fiir die Losung von Problemstellungen. Zunéachst wird
das grundlegende und vielseitig einsetzbare Merkmalmodell vorgestellt. CAEX und sei-
ne Spezialisierung R&I Fliefibilder fir die Prozessindustrie wird anschlieflend als Beispiel
fiir ein Rollenmodell vorgestellt. AbschlieBend wird ein Modell fiir die Beschreibung der
Sprachen des Engineerings erlautert.

Merkmale

Merkmale beschreiben charakterisierende Eigenschaften von Dingen, die im Betrachtungs-
zeitraum als konstant angesehen werden kénnen [EE13]. Abzugrenzen sind Zustande, die
einer fortlaufenden Anderung unterworfen sein kénnen. Die Herausforderung im techni-
schen Kontext besteht darin, Merkmale so zu definieren und zu modellieren, dass bei der
Interpretation eines Wertes klar ist, was dessen Semantik ist. Es muss also aus der Verkniip-
fung eines Wertes mit einer Merkmaldefinition hervorgehen, welche Semantik dieser Wert
hat. Beispielsweise wird beschrieben, dass es sich bei diesem Wert um den Durchmesser
eines Rohres handelt und ob es der Innen-, Mittel- oder Aulendurchmesser ist.

Das Merkmalmodell nach [EMPA17] ldsst sich in drei Bestandteile unterteilen: Der be-
schriebene Merkmaltrager, das semantische System und das Anwendungssystem. Der Merk-
maltrager besteht aus den spezifischen Merkmalen, deren Werte unbekannt sein koénnen,
da sie nur im Rahmen der Messungenauigkeiten messbar sind. Das semantische System
besteht aus einem Modell der Merkmaltréger, den Merkmaltrigertypen und der Beschrei-
bung der Merkmale. Das semantische System beruht auf globalen Standards wie z. B. der
IEC 61360 [IEC17]. Bekannt ist auch ecl@ss, ein zentrales Repository fiir Definitionen
von Merkmalen und den korrespondierenden Merkmaltrégertypen. Optimalerweise legen
semantische Systeme fiir alle Anwendungssysteme die Semantik fest, sodass Informationen
zwischen diesen ausgetauscht werden koénnen.

Innerhalb der Anwendungssysteme werden die abgebildeten Merkmaltrager durch Auspré-
gungsaussagen beschrieben (vgl. [EMPA17]). Dies sind Werte mit einer Referenz auf ein
Merkmal, einer Einheit, einer Erzeugungszeit, einer Quelle, einer Aussagesemantik und

69

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

ciner logischen Einordnung. Uber die Aussagesemantik kann die Aussage entweder als
Anforderung, Zusicherung, Messwert oder Sollwert charakterisiert werden. Mit der Aus-
sagelogik wird festgelegt, ob ein festgelegter Wert tiber- oder unterschritten werden soll.
Alternativ kann die Gleichheit zu einem bestimmten Wert festgelegt werden. Die Refe-
renz auf das Merkmal, zu dem eine Aussage gemacht wird, ermdéglicht einem Nutzer des
Wertes, diesen entsprechend seiner Bedeutung zu interpretieren. Dies ist der Schliissel zur
Interoperabilitit zwischen Systemen.

Ein aktuelles Anwendungsgebiet von Merkmalsauspragungsaussagen ist die Modellierung
von Verwaltungsschalen [PE17]. In diesem Kontext werden Merkmale genutzt, um die
Semantik von Werten allgemeingiiltig beschreiben zu kénnen und damit die Interopera-
bilitat zu steigern [EMPA17]. Dafiir wird die urspriingliche Definition eines Merkmals
weiter gefasst und auch Zustdnde und Parameter durch Merkmalsauspragungsaussagen
ausgedriickt. In [Mer12, EE13] wird die Nutzung von merkmalbasierten Informationen fir
verschiedene Anwendungen vorgestellt. Dort sind weiterfithrende Informationen zu den
Merkmalmodellen sowie ihrer Anwendung zu finden.

Entity-Relationship-Systemmodell

Das Entity-Relationship-Systemmodell (ER-Systemmodell) ist ein Kernmodell [DIN14]
und als solches ein Metamodell fiir die Beschreibung von Systemen. Das ER-Systemmodell
kann zur Beschreibung aller Arten von imagindren oder physischen Systemen verwendet
werden. Die Systeme werden als Netzwerk aus miteinander in Beziehung (Relationship)
stehenden Elementen (Entitys) beschrieben. Systemelemente koénnen sowohl Klassen als
auch Objekte sein. Das Systemmodell ist so flexibel einsetzbar.

Grundannahme des Modells ist, dass ein System eine Hiille, d. h. eine Systemgrenze besitzt
und aus Elementen aufgebaut ist. Das System ist von auflen betrachtet ein Element, in
seinem Inneren ist es jedoch aus einer Struktur von verbundenen Elementen aufgebaut.
Diese Elemente konnen wiederum einen internen Aufbau besitzen und so aus weiteren
Elementen zusammengesetzt sein. Eine weitere Annahme ist, dass die Systemhiille nur an
vordefinierten Stellen tiberwunden werden kann.

System

) .

1 *
Systemelement Beziehung .
B) > Abstrakti
(Entity) 1% (Relationship) straktion
1 Kardinalitat Aggregation
Quelle
1 Kardinalitat Komposition
Ziel

Abbildung 4.12: ER-Modell nach [DIN14]

70

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

In Abbildung 4.12 ist das Systemmodell dargestellt. Es ist zu erkennen, dass sich Sy-
steme aus Systemelementen und Beziehungen zusammensetzen. Sie sind iiber Quell- und
Zielkanten miteinander verbunden. Die Beziehung ist eine 1:1 Verbindung, jedoch kénnen
die Systemelemente beliebig viele Verbindungen untereinander besitzen. Beziehungen sind
klassifiziert. Im Kernmodell sind die Abstraktion, die Aggregation und die Komposition vor-
gesehen. Diese konnen um zusétzliche Klassen ergénzt werden. Zusétzlich kann die Anzahl
der zu verbindenden Systemelemente durch Kardinalitaten definiert werden.

Systemelement-Interface-Connection Modell

Das Systemelement-Interface-Connection (SIC) Modell ist ein Metamodell fiir die Beschrei-
bung von Systemen und gehort zu den Kernmodellen (vgl. [DIN14]). Die Grundannahmen
im Hinblick auf den Aufbau von Systemen sind die Gleichen wie fir ER-Systemmodelle.

Der Aufbau des SIC-Modells ist in Abbildung 4.13 zu erkennen. Kern des Modells ist das
Systemelement. Ein System besteht aus Basiselementen. Das System und das Systemele-
ment bestehen jeweils aus Schnittstellen. Das Modell erméglicht so die Beschreibung eines
hierarchisch aufgebauten Systems. Die Verbindungen zwischen den Schnittstellen werden
durch Verbindungen modelliert.

System
* *
1 *
< . * Schnittstelle Link
nent (Interface) 1 *

Abbildung 4.13: SIC-Modell nach [DIN14]

Anwendungsbeispiele, in denen das SIC-Modell benutzt wird, sind die Funktionsbaustein-
netzwerke oder R&I FlieB3bilder. Das Funktionsbausteinnetzwerk stellt ein System dar, das
aus Funktionsbausteinen (Basiselementen) und anderen Funktionsbausteinnetzwerken (Sy-
stemen) zusammengesetzt ist. Die Netzwerke und Bausteine stellen ihre Schnittstellen nach
auflen iiber Ports (Interfaceelemente) dar. Die Ports sind vergleichbar mit den Interfaces
im SIC-Modell.

Modell fiir Sprachen des Engineering

Ein Metamodell fiir das Engineering von Funktionsbausteinsprachen wird in [WGE™18]
vorgestellt. Ausgangspunkt dieses Beitrags war die Heterogenitit der Laufzeitsysteme in-
nerhalb des BaSys 4.0 Projekts. So entstand die Idee, ein Metamodell zu entwickeln, das von
den jeweiligen Sprachen abstrahiert und die Verwendung einer einheitlichen Schnittstelle
fiir das Engineering moglich macht. Das Metamodell ist in Abbildung 4.14 dargestellt.

Grundlage der Uberlegungen ist das SIC-Modell. Analog zu diesem wurden die verwendeten
Arten von Bausteinen in komplexe und einfache Bausteine unterteilt. Einfache Bausteine

71

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

werden als atomar betrachtet und kénnen ihrerseits zu komplexen Bausteinen zusammen-
gesetzt werden. Jeder Baustein verfiigt iiber ein Zustands- und ein Ausfihrungsmodell.
Jedes dieser Modelle stellt eine Schnittstelle fiir die Interaktion bzw. den Datenzugriff be-
reit. Alle Bausteine verfiigen iiber eine Schnittstelle zur Interaktion mit der Umgebung.
Diese besteht aus Signalports und Serviceschnittstellen. Signalports konnen nach Eingang,
Ausgang oder bidirektional typisiert werden. Verbindungen zwischen Signalports werden
durch Links und Verbindungsobjekte dargestellt. Innerhalb der Verbindungsobjekte wer-
den z. B. die Konvertierung von Werten oder deren Ubertragung realisiert.

Eine spezielle Art eines komplexen Bausteins ist die Prozedur im Sinne der
NE 160 [NAM16]. Diese besteht aus Schritten und Transitionen, die jeweils miteinander zu
einer Schrittkette verbunden sind. Innerhalb der Transition werden die Bedingungen fir
deren Schalten durch logische Gleichungen dargestellt. Schritte konnen entweder elementa-
re Schritte, Makro-Schritte oder Parallelisierungen sein. Elementare Schritte bestehen aus
Aktionsaufrufen, die beispielsweise das Setzen von Werten oder das Aufrufen eines Dienstes
sind. Sowohl die Makro-Schritte als auch die Parallelisierungen sind jeweils Teilprozeduren
und werden als abgeleitete Prozeduren modelliert.

72

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.4 Modellierungsgrundlagen

sic
SVt Interface J<}——
System Element o>
o +source +arget
Basic Element
7 Link
/
/
/
/
[/
BaSysFBMM /
/
——> complexType Basic Type Connection signalPort Service Interface
+direction: interfaceDirection
0.1 0.1 + type
0.1 /
«enumeration»
01 interfaceDirection
in
Statelvodel Execution Model oL
inout
<t
|
|
|
T |
|
v ! Vi
|
cinterface» | cinterface»
statelnterface | executionlnterface
|
+ getCurrentState() I |+ execute()
+ getStateModel() |
+ setCommand() }
|
F———
Procedure Sub-Procedure .
2.n
Parallel Branching
1 1
. .
Transition Step Macro Step
5 1 <
1
Elementary Step Action Request
Condition Logical Equation -
3 .

Abbildung 4.14: BaSys Metamodell fiir Engineeringsprachen nach [WGE*18]

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

‘mit, flir oder in Ki-Syster

73

https://doi.org/10.51202/9783186266088

4 Stand der Wissenschaft

4.5 Diskussion des Stands der Wissenschaft

In diesem Kapitel wurde der Stand der Wissenschaft zur Wiederverwendung vorgestellt. Es
wurde gezeigt, dass dieses Thema in der Informatik weiterhin Gegenstand von Arbeiten ist.
Auch in der Automatisierungstechnik werden zunehmend Anstrengungen unternommen,
die Wiederverwendung von bestehenden Losungen zu unterstiitzen. Durch den zunehmen-
den Einsatz von Laufzeitsystemen mit komponentenorientierten Metamodellen riickt die
Wiederverwendung von Komponentensystemen in den Fokus. Durch andere Arbeiten im
Bereich der wandelbaren Fabrik, wie die Verteilung von Applikationen und die Anderung
von Funktionalitdt zur Laufzeit, wird dieser Trend unterstiitzt.

Eine Verbesserung der Wiederverwendung ist in der Automatisierungs- und Softwaretech-
nik gleichermaBen ein présentes Thema. Das Konzept aus [ODU13] ist aufgrund der in
Kapitel 3 geforderten Anwendbarkeit fiir hybride Systeme (Anforderung R13) fiir den in
dieser Arbeit skizzierten Anwendungsfall ungeeignet. Die Beschreibung von AT-Modulen
in [Mah14] ist eine funktionale Betrachtung zu hybriden Modulen. Das vorgestellte Kon-
zept zielt nicht auf die Behandlung von entstehenden Varianten ab. Allerdings bilden die
Module eine Ausgangsbasis fiir die Entwicklung von Wiederverwendungsgegenstanden.

Die Berticksichtigung der Variabilitat von Produkten zur Unterstiitzung der Wiederver-
wendung hat sich in anderen Doménen wie der Softwaretechnik und dem Maschinenbau
als sehr zweckmaBig herausgestellt. Sie sind fiir den hier betrachteten Anwendungsfall
auch im Fokus. Auf Produktlinien basierende Anséitze werden mit groem Erfolg fiir die
Losung vieler Aufgaben eingesetzt. Die kompositionellen und annotativen Verfahren sind
fiir die Anwendung in bestehenden Systemen nur bedingt geeignet (R3). Im Gegensatz zu
Delta-Modellen verfiigen sie weder iiber die Flexibilitat, Artefakte zu einer Lésung hinzuzu-
fiigen, noch sie wieder entfernen zu kénnen [Sch18]. Fiir die betrachteten, sich evolutionar
entwickelnden Systeme ist eine vollstandige Transformation besser geeignet als die kom-
positionellen und annotativen Verfahren. Der zeitliche und monetiare Aufwand sind die
Hindernisse fiir den Einsatz des auf Varianten basierenden Konstruierens [VHON18]. Die
neue Delta-Modellierung ist besser fiir den Einsatz in bestehenden Losungen geeignet (R3).
Eine modellbasierte Beschreibung der Variabilitét, wie in (R2) gefordert, ist zudem auch
moglich. Delta-Modelle sind ein intuitiver Weg, den Unterschied zwischen zwei Produkten
bzw. zwei Komponentensystemen zu beschreiben. Sie konnen flexibel auf unterschiedliche
Anwendungsfille angewendet werden. Es ist moglich, nicht nur einzelne Komponenten und
Verbindungen, sondern ganze Teil-Systeme in einen neuen Anwendungsfall zu tibernehmen.

Es wurde gezeigt, dass modellbasierte Losungsansitze in der Automatisierungstechnik ver-
breitet sind und als zukunftstrachtig angesehen werden. Einheitliche Metamodelle sind fiir
die Interoperabilitdt aber auch fiir das gemeinsame Verstindnis der Systeme relevant. Dies
gilt auf der Ebene der Kommunikationsprotokolle und ebenso bei der Ubertragung von
Komponentensystemen. Das vorgestellte Metamodell der Engineeringsprachen ist ein ein-
heitliches Modell, wodurch ein einheitliches Verstandnis der Komponentensysteme erreicht
wird. Verwendet man das Metamodell zusammen mit einem vereinheitlichten Interface,
konnen Engineeringsysteme mit kompatiblen Laufzeitumgebungen genutzt werden. Fiir
die Entwicklung dieser Modelle sind neben dem zu modellierenden Gegenstand auch die
zu modellierenden Facetten wichtig. Nur wenn diese insgesamt beriicksichtigt werden, kén-
nen die Modelle bei der Bewéltigung der Herausforderungen helfen.

74

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

4.5 Diskussion des Stands der Wissenschaft

Die Frage, wie ein Nutzer von bestehenden fiir seine Aufgabenstellung relevanten Losungen
erfahrt, ist in der Automatisierungstechnik ungelost. Auf der Ebene der Komponenten
findet eine Verteilung und eine anschlieBende Verwendung durch die Nutzer statt. Fir
Komponentensysteme gilt dies nicht. Ebenso finden eine Beschreibung und ein Monitoring
der verwendeten Versionen von Komponenten nur implizit statt oder es wird génzlich
darauf verzichtet. Daraus resultieren Probleme bei der Wartung und Erweiterung von
bestehenden Losungen.

Die Merkmale sind nach dem Merkmalmodell zentral definiert. Die sich darauf beziehenden
Systeme verwenden alle diese Definition, um die gleiche Semantik von Werten zu nutzen.
In der Codeentwicklung werden Versionsverwaltungssysteme genutzt, damit bestehende
Losungen allen Entwicklern bekannt sind und Funktionalitdten nicht mehrfach entwickelt
werden. Diese Mechanismen bilden eine Grundlage fiir das in dieser Arbeit vorgestellte
Konzept.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in
komponentenbasierten Architekturen

Ausgehend von den in Kapitel 3 beschriebenen Anforderungen und der Analyse der bis-
herigen Arbeiten (vgl. Kapitel 4) wird im Folgenden ein Konzept fir die systematische
Wiederverwendung von komponentenbasierten Losungen vorgestellt. Durch das Konzept
werden die drei Fragen aus Kapitel 1.2 beantwortet:

e Wie sieht ein Mechanismus fiir komponentenbasierte (Teil-)Losungen aus, so dass sie
wiederverwendet und auf andere Anwendungsfille iibertragen werden kénnen?

e Wie wird der Wiederverwendungsmechanismus in bestehende Tools und Prozesse
integriert, so dass der Nutzer ihn verwendet?

o Wie erfahrt der Nutzer, dass eine geeignete Losung existiert?

Die Antwort auf die erste Frage ist ein Mechanismus fiir die Wiederverwendung in Kompo-
nentensystemen. Die Delta-Modellierung hat sich in der Analyse des Stands der Technik als
geeignet fir die Anwendung in der Automatisierungstechnik erwiesen. Sie wird daher als
Grundlage fir den zu entwickelnden Wiederverwendungsmechanismus verwendet. In der
spateren Nutzung miissen die Delta-Modelle gespeichert werden. Dies kann beispielsweise
in Laufzeitumgebungen geschehen. Fiir diese Speicherung in Laufzeitumgebungen wird ein
objektorientiertes Metamodell fir Delta-Modelle vorgestellt.

Delta-Modelle transformieren ein System oder das Modell eines Systems in ein anderes
System bzw. Modell. Wenn Delta-Modelle auf Modelle angewendet werden, miissen diese
beschrieben sein. Das heifit, es miissen ein Metamodell des Modells und Anwendungsregeln
vorliegen. Die Delta-Modelle erhalten durch das Metamodell des zu transformierenden Sy-
stems die Grundlage fiir ihre Anwendung (vgl. Abbildung 5.1). Wenn Elemente angelegt
werden, miissen diese definiert und bekannt sein. In der Literatur werden Delta-Modelle
ohne die Abstraktion durch eine Modellierungsebene auf Komponenten angewendet. Die
Delta-Modelle konnten direkt auf die entsprechenden Komponentensysteme angewendet
werden. Dagegen spricht allerdings, dass die Nutzbarkeit in diesem Fall auf das konkre-
te System beschriankt wéare. Entwickelte Komponentensysteme kénnten nicht iibertragen
werden, da die Delta-Modelle auf anderen Systemen keine Anwendungsbasis hiatten. Auch
eine Anwendung der Delta-Modelle auf unterschiedliche Arten von Komponentensystemen
(z.B. Funktionsbausteinnetzwerke oder P&I-Diagramme) wére nicht moglich. Durch die
heterogene Infrastruktur in der Automatisierungstechnik, d.h. durch die vielen verschiede-
nen Werkzeuge und Automatisierungssysteme, ist dieser Ansatz nicht zweckméfig. Daher
wird im folgenden Konzept ein generisches Komponenten-Metamodell als Basis fir die An-
wendung der Delta-Modelle entwickelt. Das Komponenten-Metamodell beschreibt hybride
Systeme, d.h. Hard- und Softwarekomponenten. Es bildet eine Abstraktionsschicht von

76

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

den konkreten Komponenten und erméglicht die unabhingige Handhabung der Kompo-
nentensysteme in Form von Modellen. So kénnen die wichtigen Informationen, die in der
Struktur und dem Zusammenschalten der Komponenten enthalten sind, wiederverwendet
werden.

Eine Ubersicht iiber die Zusammenhénge zwischen den Modellen ist in Abbildung 5.1 dar-
gestellt. Das Komponenten-Modell setzt sich aus einem Typ-Modell und einem Instanz-
Modell zusammen. In den Typ-Modellen sind die Typen der verwendeten Komponenten
beschrieben. Zudem wird dort auf kompatible Komponententypen referenziert. So kon-
nen mehrere kompatible Versionen von Komponententypen einem Typ-Modell zugeordnet
werden. Die Zuordnung von unterschiedlichen kompatiblen Versionen zu einem Kompo-
nententyp wird durch die Referenz ermoglicht. Durch diese explizite Modellierung kénnen
diese kompatiblen Versionen aufgefunden und verwendet werden. Die konkrete Verschal-
tung der Komponenten wird in den darauf aufbauenden Instanz-Modellen modelliert. Im
vorliegenden Konzept sind das Typ-, das Instanz- und das Delta-Metamodell enthalten.
Diese beinhalten die Elemente und Vorschriften zur Bildung der zugehorigen Modelle. So
beschreibt das Typ-Metamodell den Aufbau von Typ-Modellen.

Komponenten-Metamodell
\

Typ-
yp Instanz-Metamodell Delta-Metamodell
Metamodell
Typ-Modell : E
Verweis auf
v v
reprasentiert transformiert
Komponentensystem Instanz-Modell Delta-Modell

Abbildung 5.1: Ubersicht der verwendeten Metamodelle, Modelle und deren Zusammenhinge.

Die zweite Frage fokussiert die Integration des Mechanismus zur Wiederverwendung in
bestehende Prozesse und Werkzeuge. Sind in den bei der Entwicklung einer Automatisie-
rungslosung beteiligten Werkzeugen die gleichen Typ-Modelle mit Referenzen auf entspre-
chende lokale Realisierungen vorhanden, kénnen die Instanz-Modelle zwischen den Werk-
zeugen ausgetauscht werden. So kénnen die durch Delta-Modelle beschrieben Losungen in
unterschiedlichen Anwendungsfillen zum Einsatz gebracht werden. Gleichzeitig verbessert
dieser Ansatz die Interoperabilitit zwischen den Systemen der Automatisierungstechnik.

Der angesprochene Interoperabilitétsaspekt ist zusétzlich Bestandteil der Antwort auf die
zweite Frage. Damit die Nutzer das Konzept zur Wiederverwendung annehmen und ver-
wenden, muss es sich in die bestehenden Prozesse und Werkzeuge einfiigen. Das Konzept
ist dafiir additiv zu bestehenden Werkzeugen zu sehen und ist fiir den Nutzer im Regel-
betrieb in der vollen Komplexitit nicht sichtbar. Analog zu Versionsverwaltungssystemen

T

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

greift der Nutzer nur beim Austausch von Losungen auf Schnittstellen des Konzepts zurtick.
Dies wird durch die Vorstellung von Prozessen fiir die Verwendung der Modelle unterstiitzt.

Fiir die Beantwortung der dritten Frage steht die Auffindbarkeit von Losungen im Vor-
dergrund. Der beste Wiederverwendungsmechanismus mit einer gelungenen Integration in
Werkzeuge und Prozesse kann nicht genutzt werden, wenn der potentielle Nutzer nichts
von existierenden zur Wiederverwendung geeigneten Losungen weifl. Insbesondere gilt dies
in der raumlich oder organisatorisch getrennten Entwicklung von Lésungen. Als Weg fur
die Auffindung existierender Lésungen ist ein zentraler Speicher fir die Losungen vorge-
sehen. Darin werden die gemeinsam verwendeten Typ-Modelle und die Delta-Modelle fiir
die Beschreibung der Losungen abgelegt. Die Nutzer konnen diesen Speicher durchsuchen
und relevante Losungen auf das lokale System herunterladen. Dort kénnen diese verwendet
und modifiziert werden.

Die angesprochenen Modelle, die fiir das Konzept bendtigte Anwendungsumgebung und die
Prozesse zur Wiederverwendung werden im Folgenden beschrieben. Das Kapitel ist folgen-
dermaBlen strukturiert: Abgeleitet von den Komponenten in der Automatisierungstechnik
wird das Metamodell der Komponenten entwickelt (Abschnitt 5.1). Dieses ist die Grundlage
fiir die Delta-Modellierung. Ausgehend von der Beschreibung von Variabilitiat durch Delta-
Modelle in der Softwaretechnik wird das Metamodell eingefithrt (Abschnitt 5.2). Dies wird
an die Eigenschaften des Komponenten-Metamodells angepasst. In Abschnitt 5.3 wird die
Verwendung der Modelle vorgestellt und anschlieend auf die dezentrale Wiederverwen-
dung eingegangen. Am Ende des Kapitels folgt eine kritische Diskussion des vorgestellten
Konzepts.

5.1 Komponenten-Metamodell - Basis fiir die
Wiederverwendung

Ausgehend von dem Modell fir Engineeringsprachen, das ein Komponenten-Modell ist,
wird ein Metamodell vorgestellt, das die Grundlage fir die Deltamodellierung bietet.

Das Metamodell ist eine Erweiterung der in Abschnitt 2.2 vorgestellten Komponenten-
Modelle. Diese wurden um Mechanismen des OPC UA Metamodells (vgl. Abschnitt 4.4)
erweitert, sodass Referenzen zwischen Komponenten abgebildet werden kénnen. Diese Re-
ferenzen bilden eine typisierte Beziehung zwischen Komponenten, die iiber die Ubertragung
von Informationen hinausgeht. So kénnen beispielsweise logische Abhéangigkeiten zwischen
Komponenten modelliert werden.

5.1.1 Modellbeschreibung

Das Komponenten-Metamodell besteht aus einem Modellteil zur Beschreibung der Kom-
ponententypen und einem zweiten Teil, der die Komponentensysteme modelliert, die aus
Instanzen dieser Komponententypen zusammengesetzt sind. Im Folgenden wird zunéchst
das Typ-Modell und anschliefend das Instanz-Modell vorgestellt. Das Typ-Modell bildet
die Basis, auf der das Delta-Modell ausgefithrt wird. Alle verwendeten Komponententypen

78

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis fiir die Wiederverwendung

werden durch dieses Modell beschrieben. Das Ergebnis der Anwendung des Delta-Modells
ist ein Instanz-Modell. Dieses ist unabhéngig von den konkreten Komponenten. Durch ei-
ne Transformation kann das Komponentensystem bestehend aus den realen Komponenten
erzeugt werden.

Metamodell zur Beschreibung von Komponententypen

KomponentenTypBeschreibung

- Funktionalitat
- Referenzauf kompatible Komponententypen

1
0.* 0.*
Assoziationsbeschreibung Interfacebeschreibung|
Portbeschreibung Dienstbeschreibung
- input - type
- output
- type

Abbildung 5.2: Metamodell der Komponententypen

Das Metamodell der Komponententypen ist in Abbildung 5.2 dargestellt. Dessen Kern
ist die KomponentenKlasse, die Verweise auf mindestens eine Implementierung und ei-
ne Beschreibung der Funktionalitit enthélt. Die Klasse kann auf mehrere Versionen der
Komponente verweisen. So kénnen unterschiedliche kompatible Implementierungen expli-
zit modelliert werden. Unterhalb der KomponentenKlasse wird das Interface durch die
Interfacebeschreibung modelliert. Schnittstellenelemente sind sowohl Ports als auch Dienst-
schnittstellen. Diese Unterscheidung ist erforderlich, da Dienste eine andere Semantik im
Hinblick auf die zugrunde liegende Verbindung haben. Beispielsweise werden Dienstnutzer

79

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

und Dienstempfanger moglicherweise erst zur Laufzeit festgelegt. So ist die Dienstschnitt-
stelle sehr flexibel nutzbar.

Die Beschreibung der Funktionalitdt in der KomponentenKlasse dient dazu, den Zweck
der konkreten Komponenten zu erkennen. Bei der Abbildung von Bausteinen wird tiber
diesen Mechanismus festgehalten, welche Rolle der Funktionsbaustein ausfillen kann. Fiir
die Beschreibung der Funktionalitit konnen verschieden komplexe Mechanismen zum Ein-
satz kommen. Die einfachste Umsetzung ist, die Funktionalitat textuell, d. h. durch einen
String, zu beschreiben. Der Vorteil ist, dass ein Mensch diesen sehr einfach interpretieren
kann. Durch eine unzureichende Verwendung von Namenskonventionen kann es allerdings
zu unterschiedlichen Beschreibungen der gleichen Funktionalitat durch leicht unterschiedli-
che Namen kommen. Als Erweiterung kann eine zentrale Verwaltung dieser Bezeichnungen
mit einer detaillierten Beschreibung realisiert werden. Analog zu der Definition von Merk-
malen wird in einer Organisationseinheit oder dartiber hinaus eine zentrale Grundlage
geschaffen, wie die Funktionalitdt beschrieben werden kann und wie die Zusammenhéan-
ge zwischen diesen Funktionalitdten sind. Fiir diesen Ansatz existieren in der Forschung
bereits Konzepte [Riel7] und es werden aktuell weitere Vorschlige zur Beschreibung von
Féhigkeiten ausgearbeitet. In diesem Rahmen wird auch eine Beschreibung der Funktio-
nalitdt mit formalen Methoden wie einer mathematisch-physikalischen Beschreibung oder
mithilfe von Ablaufdiagrammen diskutiert. Diese weitergehenden Ansétze finden in der
Praxis noch keine Verwendung. Im Wesentlichen mangelt es an konsistenten Definitionen
der Funktionalitét, die eine Bedeutung fiir ein groBeres Anwendungsgebiet haben. Diese
Ansétze sind fiir die vorliegende Arbeit zu weitgehend, konnen aber nachtraglich ohne grofie
Anderungen in das Gesamtkonzept iibernommen werden. Fiir die weitere Betrachtung wird
angenommen, dass es in der Organisationseinheit, in der das Konzept angewendet wird,
eine konsistente Konvention zur Beschreibung der Funktionalitat gibt, die von allen An-
wendern benutzt wird.

Die Schnittstellen des modellierten Komponententyps beschreiben die Objekte der Klas-
sen Portbeschreibung und Dienstbeschreibung. Durch die Portbeschreibung kann festgelegt
werden, ob es sich um einen Ein- oder Ausgang handelt. Zusétzlich kann der Typ des Ports
beschrieben werden. Durch die Dienstbeschreibung wird ein vorhandenes Dienstinterface
abgebildet. In ihr ist hinterlegt, ob es sich um einen Dienstaufruf oder das Anbieten eines
Dienstes handelt. Zusitzlich werden die relevanten Dienste beschrieben.

Metamodell zur Modellierung von Komponentensystemen (Instanz-Modell)

Mit Objekten der Klassen des Instanz-Modells werden konkrete Systeme modelliert.
Das Modell ist in Abbildung 5.3 dargestellt. Kern des Modells ist das Komponenten-
Systemmodell, das aus Objekten der Klassen KomponentenInstanz und Schnittstellenele-
ment besteht. Diese bilden das Interface des Komponenten-Systemmodells nach aufien und
dessen internen Aufbau ab. Ein Schnittstellenelement kann durch Dienstschnittstellen und
Ports realisiert werden. Da ein Komponenten-Systemmodell nach auflen die Schnittstellen
einer Komponente bereitstellt, konnen die Beschreibungsobjekte in beiden Fallen verwen-
det werden. Mit diesem Modell wird ausgehend von den KomponentenInstanzen der Aufbau
eines konkreten Komponentensystems beschrieben. Es ist zu erkennen, dass die Komponen-
tenInstanz Uiber Ports als Ein- und Ausgange verfiigt. Zwischen den Ports konnen gerichtete

80

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis fiir die Wiederverwendung

Komponenten- 1
Systemmodell .

Komponenteninstanz

4> - KomponentenTypBeschreibung| 0..*

- Zustand e
Assoziationen 0.%

1 1
Schnittstell |
0.*
Dienstaufruf
[
Dienstschnittstelle Port
T - type
- value
Dienstanbieter
1 i\O*
Portverbindung

Abbildung 5.3: Metamodell zur Abbildung von Systemen bestehend aus Komponenten.

Verbindungen aufgebaut werden. Die Semantik der Verbindung besteht darin, dass Infor-
mationen, Stoffe oder Energie vom Anfang zum Ziel der Verbindung transportiert wird.
Je nach Typ des Ports kann es sein, dass beispielsweise ein Massenfluss oder ein Infor-
mationsfluss modelliert wird. Abhéngigkeiten zwischen Komponenten, die nicht mit einer
Verbindung tiber einen der Ports in Zusammenhang stehen, kénnen durch Assoziationen
dargestellt werden.

Durch die Klassen Dienstaufruf und Dienstanbieter wird die Einbindung eines Komponen-
tensystems in eine Dienstarchitektur abgebildet. Die Komponenten des Systems kénnen
sowohl Diensterbringer als auch Dienstnutzer sein. Fir die Ausgestaltung einer Dienst-
schnittstelle existieren unterschiedliche Herangehensweisen. Exemplarisch sind das Dienst-
modell [DIN14] und die Integration von Diensten [BFK*17, WE17] in die Automatisie-
rungstechnik. Es ist allgemeiner Konsens, dass eine solche Anbindung in Zukunft benotigt
wird. Damit das Modell in diesem Kontext anwendbar ist, ist die Modellierung dieser
Dienstschnittstelle vorgesehen.

81

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Das Instanz-Modell ist analog zum in [WGE™18] vorgestellten Modell fir die Sprachen
des Engineerings. Die Beschreibung von geschachtelten Systemen ist in diesem Modell in
dhnlicher Weise gelost worden. Die Komplezen Typen setzen sich aus Basis Typen und
Schnittstellenkomponenten zusammen. Das Modell sieht zusitzlich die Moglichkeit vor,
Verbindungen zwischen Komponenten als Objekte zu modellieren. Dies ist erforderlich, um
fiir die Engineering-Systeme einen einheitlichen Aufbau zu erreichen und die Verbindungen
als eigene Entitéten verwalten zu kénnen. In den Laufzeitsystemen kann es sinnvoll sein, die
Verbindungen als eigene Objekte zu realisieren. So konnen beispielsweise Transformationen
von Datentypen umgesetzt werden.

5.1.2 Anwendungsregeln fiir die Komponenten-Metamodelle

Neben den beschriebenen Modellzusammenhéngen sind fir die Nutzung der Modelle An-
wendungsregeln erforderlich. Diese spezifizieren die Verwendung der Modellelemente und
legen einen Rahmen fiir deren Zusammensetzung fest.

Regel 1: Wéhrend der Transformation eines Modells kann dieses von den Regeln abwei-
chen.

Regel 2: Verbindungen miissen immer von einem Port an der Quelle zu einem oder mehr
Ports an der Senke fiihren.

Regel 3: Komponenten und Verbindungen kénnen nur innerhalb eines Komponentensys-
tems verortet sein. Wird ein System geloscht, werden alle enthaltenen Elemente
ebenfalls entfernt.

Regel 4: Fiir die Korrektheit der Verbindungen gelten die jeweiligen Regeln des model-
lierten Systems.

Regel 5: Regeln des modellierten Systems, die Abhéngigkeiten zwischen Komponenten
betreffen, werden iiber Assoziationen abgebildet.

Regel 6: Alle in einem Instanz-Modell verwendeten Komponenten miissen auf eine Kom-
ponente in einem Typ-Modell referenzieren.

Regel 7: Das Interface einer Komponente im Instanz-Modell muss dem Interface des
referenzierten Komponententyps entsprechen.

Regel 8: Uber die Systemgrenzen hinweg kénnen Informationen nur iiber die Ports und
Dienstschnittstellen des Systems tibertragen werden.

In Regel 1 ist der Geltungsbereich der Regeln auf nicht in einer Transformation befind-
liche Modelle eingeschrankt. Wenn ein Modell verdndert wird, kann tempordr von den
Vorgaben der Regeln abgewichen werden. Nach Abschluss der Transformation muss ein
regelkonformes Modell vorliegen.

Verbindungen miussen nach Regel 2 immer Quelle und Senke verbinden. Eine Verbindung
ohne Anfangs- und/oder Endpunkt darf es nicht geben. Dies entspricht der grundsatzlichen
Wahrnehmung von Verbindungen, die eine reine Ubertragungsfunktion haben. Wenn ein
Rohr ohne Abschluss verbliebe, wiirde alles, was hineinflieft, unkontrolliert herausflieen.
Bei Softwaresystemen kénnen einseitige Verbindungen bestehen, welche moglicherweise

82

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis fiir die Wiederverwendung

allerdings auf einen Fehler hindeuten. Im Rahmen einer Transformation ist es temporar
zuléssig, Verbindungen unvollstédndig zu belassen.

Komponenten und Verbindungen diirfen nur innerhalb eines Instanz-Modells angelegt wer-
den (Regel 3). Da eine Komponente ein Komponentensystem sein kann, entsteht ein hierar-
chisches System. Jede Komponente und Verbindung muss darin eindeutig verortet sein. Es
muss diskutiert werden, was passiert, wenn eine zusammengesetzte Komponente gel6scht
wird. Die einfachste Moglichkeit ist die Loschung aller in ihr enthaltenen Komponenten
und Verbindungen. Die Kompositionsbeziehung zwischen dem System und seinen Bestand-
teilen unterstiitzt dieses Vorgehen. Allerdings ist es auch denkbar, dass nur die Systembhiille
entfernt wird und die enthaltenen Elemente Teile des dariiber liegenden Systems werden.
Dieses Vorgehen hat den Nachteil, dass das Loschen von Systemen kontextsensitiv wird.
Handelt es sich bei dem zu léschenden System um ein Subsystem, bleiben die Elemente
erhalten. Ist es kein Subsystem, miissen die Elemente geloscht werden. Daher wird in Satz 2
von Regel 3 festgelegt, dass Elemente eines Systems bei dessen Loschung ebenfalls gelscht
werden.

Das modellierte System legt Regeln fest, welche Typen von Ports miteinander verbunden
werden konnen (Regel 4). Das Metamodell ermoglicht die Verbindung von allen Ports mit
allen anderen Ports. Ob diese Verbindungen zuléssig sind, ergibt sich aus den Konvertie-
rungsregeln des Systems. Nach diesen Regeln kann das Instanz-Modell nach der Erstellung
geprift werden. Abhéngigkeiten zwischen Komponenten des modellierten Systems, die tiber
Verbindungen hinausgehen, werden nach Regel 5 iiber die Assoziationen modelliert. Bei-
spielsweise kann eine Vorganger-Nachfolger Beziehung auf diese Weise abgebildet werden.

In einem Instanz-Modell verwendete Komponenten miissen auf eine Komponente in einem
Typ-Modell referenzieren (Regel 6). Typ-Modelle definieren die Komponententypen, die
in Instanz-Modellen verwendet werden kénnen. Wenn die Referenz nicht vorhanden ist
bzw. wenn kein passendes Typ-Modell existiert, ist die Komponente nicht definiert und
kann daher nicht verwendet werden. In diesem Kontext ist Regel 7 zu verstehen. Die Kom-
ponente im Instanz-Modell muss das gleiche Interface aufweisen wie die Definition ihres
Typs. Weichen die Modelle voneinander ab, liegt eine Inkonsistenz vor, die dokumentiert
und behoben werden muss. In Regel 8 wird die Vorgabe aus [IEC04] aufgegriffen, dass
Komponenten abgeschlossen sein miissen. Diese wird auf die Komponentensysteme ausge-
dehnt und die Ubertragung von Informationen auf die explizit modellierten Schnittstellen
begrenzt.

Mit den Regeln werden Einschrénkungen hinsichtlich des Verhaltens und Aufbaus der
abgebildeten Systeme formuliert. Beispielsweise kann ein System, das keinen strukturierten
Aufbau besitzt, nicht von dem vorgestellten Komponenten-Metamodell abgebildet werden.
Zuséatzlich wird die Abhangigkeit des Modells von den Regeln des modellierten Systems
verdeutlicht. So kann das Metamodell keine Aussage iiber eine etwaige Kompatibilitét von
Typen von Ports treffen.

Die vorgestellten Regeln definieren Modellzustiande, die als Basis fir die weitere Nutzung

dienen. Ausgehend von einem konformen Modell kann die anschliefende Bearbeitung der
Modelle erfolgen.

83

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

5.1.3 Einordnung des Komponenten-Metamodells

Das Komponenten-Metamodell abstrahiert sowohl von den Komponententypen als auch
von den aus Komponenteninstanzen gebildeten Netzwerken. Es werden jeweils nur das
Interface sowie die auszufiihrende Funktionalitdt modelliert. Aus einer abstrakten Sicht
ist das vorgestellte Modell ein Rollenmodell (vgl. Kapitel 2.2.1). Durch die Trennung von
Implementierung und der geforderten Funktionalitéat sind die entwickelten Komponenten-
strukturen in unterschiedliche Implementierungen iiberfithrbar. Im Kontext der Baustein-
sprachen und Softwarekomponenten wird in [Ens01] ein Ansatz fir die implementierungs-
unabhéngige Beschreibung von Bausteinnetzwerken vorgestellt. Neben der Fokussierung
auf Softwareckomponenten ist das Modell fiir den in dieser Arbeit vorgesehenen Anwen-
dungsfall nicht génzlich geeignet. Es werden beispielsweise ausschlielich Signalverbindun-
gen zwischen Komponentenports modelliert und die Typen der Ports sind auf die in der
Softwaretechnik gebrauchlichen beschréankt.

Ein reines Rollenmodell legt den Schwerpunkt auf die Beschreibung der geforderten Funk-
tionalitdt und additiver Anforderungen (z.B. durch Merkmalauspragungsaussagen). Im
Gegensatz dazu werden im vorgestellten Modell zudem die Mindestanforderungen an das
Interface der représentierten Komponenten festgelegt.

Das Modell vereint Elemente von ECL- und ER-Modell (vgl. Abschnitt 4.4.3). Es kon-
nen Informations-, Energie- oder Materiefliisse zwischen den Systemelementen modelliert
werden (ECL-Modell). Durch die Assoziationen sind logische Abhéngigkeiten zwischen
Systemelementen abbildbar (ER-Modell). Die vorgenommene Zusammenfiihrung der zwei
Paradigmen in einem Modell erlaubt die Abbildung einer groen Bandbreite von Systemen.
Eine Reduktion des Modells um eines der Paradigmen fithrt entweder zu einer geringeren
Nutzbarkeit des Modells oder die jeweils fehlende Modellierungsmoglichkeiten werden mit
den existierenden Modellelementen umgesetzt. Durch die Verbindung der zwei Paradigmen
entsteht ein einheitliches und durchgiangiges Modell, das flexibel anwendbar ist. Beispiele
fiir abzubildende Systeme werden in Abschnitt 5.1.4 dargestellt.

Auf die explizite Modellierung der Ausfiihrungssemantik der Komponenten wird im vor-
liegenden Modell verzichtet. Insbesondere bei Systemen bestehend aus Hardwarekompo-
nenten ist keine Ausfiihrungssemantik nétig. Im Kontext von Steuerungen kann z. B. eine
Reihenfolge der Ausfithrung durch Assoziationen zwischen den Komponenten abgebildet
werden. Alternativ kann die Ausfithrungsreihenfolge auch durch eine Heuristik im Laufzeit-
bzw. im Engineeringsystem festgelegt werden.

5.1.4 Abgebildete Implementierungen

Im folgenden Abschnitt werden Beispiele fiir die Verwendung des Komponenten-
Metamodells vorgestellt. Dabei wird auf die Erstellung solcher Modelle eingegangen.

Mit der KomponentenInstanz des vorgestellten Modells konnen verschiedene Arten von
Komponenten abgebildet werden. Es kann sich dabei um Soft- oder Hardwarekomponen-
ten handeln. Nach der Definition der technischen Komponente (vgl. Abschnitt 2.2) konnen
diese gleich behandelt werden. In der Automatisierungstechnik liegt der Kontext der be-
trachteten Systeme auf beiden Arten von Komponenten. Durch die engen Verflechtungen

84

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.1 Komponenten-Metamodell - Basis fiir die Wiederverwendung

und Abhéngigkeiten ist es erforderlich, Soft- und Hardware gleichermafien im Modell ei-
nes Systems zu berticksichtigen. So kann der Zusammenhang zwischen einem Aktor und
der zugehorigen Steuerung abgebildet werden. Sollte beispielsweise in einer Package Unit
der Motor getauscht werden, kann der Informationsfluss zu der entsprechenden Steue-
rungskomponente dargestellt werden. Die Genauigkeit, mit der das Modell des konkreten
Systems entwickelt wird, hangt von den jeweiligen Anwendungsfillen ab. Im Hinblick auf
die Package Units sind verschiedene Grade der Modellierung denkbar. So kénnte die Kom-
munikation zwischen dem Aktor und der Steuerung ebenso als Komponente modelliert wer-
den. Eine detailliertere Darstellung kann durch die additive Modellierung von dazwischen
liegenden Hardwarekomponenten erreicht werden. Wenn diese im Fokus der Betrachtung
sind, miissen sie in dem Modell beriicksichtigt werden.

Es ist zu beachten, dass die Semantik der Verbindungen zwischen den Komponentenports
nicht gleich der von Signalverbindungen oder Informationsverbindungen aus der Software-
technik ist. Sie ist eine Kombination aus der Ubertragung von Informationen bzw. Signalen
und dem Transport von Stoffen oder Energie. Die Verbindungen verkniipfen aus Sicht des
Modells nur zwei Ports von Komponenten. Was iibertragen wird, ergibt sich aus dem Typ
der Ports. Das Modell erlaubt die Verbindung von zwei Ports unterschiedlichen Typs. Die
Priifung, ob dieses Vorgehen sinnvoll ist und ob eine geeignete Konvertierungsvorschrift
(vgl. Konvertierung von Datentypen nach [IEC14b]) vorliegt, muss durch den Anwender
bzw. durch die Implementierung erfolgen.

In Abbildung 5.4 ist beispielhaft das Modell eines Systems bestehend aus zwei Komponen-
ten dargestellt. Auf der Systemgrenze sind die Schnittstellen des Systems nach aufen zu
erkennen. Die beiden Eingangsports des Systems sind mit den Eingangsports der linken
Komponente verkniipft. Deren Ausgang ist mit dem Eingang der rechten Komponente ver-
bunden. Die beiden Ausgange der rechten Komponente werden iiber die Ausgangsports des
Systems von aufien zugénglich. Der gestrichelte Pfeil stellt eine Assoziation dar. In diesem
Fall wird die Ausfithrungsreihenfolge von Softwarekomponenten abgebildet.

Abbildung 5.4: Beispiel eines Systemmodells mit zwei Komponenten.

Ein Beispiel fir das Modell eines hybriden Systems ist in Abbildung 5.5 dargestellt. Im un-
teren Teil der Abbildung ist ein System aus zwei Pumpen und einem Tank abgebildet. Im
oberen Teil ist die zugehorige Steuerung beispielhaft modelliert. Die Steuerung ist ebenso
als Komponentensystem modelliert und stellt ein Subsystem im Gesamtsystem dar. Dies
ist ein Beispiel fiir ein hierarchisch aufgebautes Systemmodell. Die weiteren Komponen-

85

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

ten konnten ebenso wiederum Komponentensysteme sein. Fiir die Darstellung ist es nicht
sinnvoll, alle Komponentensystem mit ihrem inneren Aufbau zu zeigen. Zur Reduktion der
Komplexitit kann der innere Aufbau verborgen und das Komponentensystem als Blackbox
gezeigt werden. In der Abbildung ist zu erkennen, dass die Pumpen und der Tank jeweils
Schnittstellen zur Steuerung besitzen. Den Pumpen werden Sollwerte fiir die Drehzahl vor-
gegeben. Aus einem Fillstandsensor des Tanks werden Informationen tiber den Zustand
des Systems fiir die Steuerung gewonnen. Der Detailgrad des Modells muss spezifisch fiir
jeden Anwendungsfall gewdhlt werden.

In welcher Form die Beschreibung der Komponente vorliegt, ist fiir die Nutzung des Mo-
dells unerheblich. Bei der Modellierung von Hardwarekomponenten kann die Grundlage
eine Typenbeschreibung in Form eines AutomationML Modells sein. Analog dazu kann
auf der Softwareseite die Klasseninformation oder der Prototyp einer Komponente verwen-
det werden. Eine bestehende (Teil-)Losung kann modelliert werden und steht so fir die
Wiederverwendung in anderen Bereichen zur Verfiigung. Fiir die Bildung eines Modells
werden die typisierten Ein- und Ausgidnge der Komponente sowie eine Beschreibung ihres
Verhaltens benotigt. Dariiber hinaus ist ein Verweis auf die Realisierung der Komponente
erforderlich. Dies kann bei einer Hardwarekomponente eine Typen-ID (z. B. Bestellnum-
mer) sein. Im Bereich der Software ist die Angabe von Klassennamen oder der Verweis auf
einen Prototyp sinnvoll.

Je nachdem, wie die Komponente bzw. ihre Beschreibung vorliegt, variieren die Moglichkei-
ten, das korrespondierende Modell zu erzeugen. Am wenigsten Anforderungen an die Be-
schreibung der Komponente stellt die manuelle Erzeugung des Modells. Hierbei ist es uner-
heblich, ob der durchfithrende Mensch das Modell anhand der Betrachtung eines physischen
Gegenstandes oder einer Typinformation aufbaut. Die Komponente muss nicht beschrie-
ben sein. Gleichwohl ist es sinnvoll, die Art der Interpretation zu formalisieren (z. B. durch
die Vorgabe von Richtlinien), damit die Modelle dhnlich aufgebaut sind. Alternativ kann
das Modell automatisiert aus einer Komponentenbeschreibung, d.h. aus einer Typ- oder
Instanzbeschreibung, generiert werden. Grundlage dafiir ist eine Beschreibung des Inter-
faces der Komponente. Moglich ist beispielsweise die Auswertung von Datenbldttern oder
die Interpretation eines AutomationML-Modells. Die Auswertung einer Beschreibung ist
sowohl fiir Hard- als auch fiir Softwarekomponenten umsetzbar. Die dritte Moglichkeit
ist die automatisierte Identifizierung der Komponente selbst. Dies kénnte beispielsweise
durch die Erkundung einer Komponente auf einem OPC UA Server erfolgen. Durch die
vorliegende Typisierung der Objekte kann das Modell der Komponente erzeugt werden. Fur
Softwarekomponenten ist diese Erzeugung bei sich selbst beschreibenden Laufzeitsystemen
gut moglich. Dies ist bei der automatisierten Identifizierung von Hardwarekomponenten
nicht der Fall. Ohne Zuhilfenahme von Typinformationen ist die direkte Erzeugung des
Modells allein aus der vorliegenden Hardwarekomponente nur mit einem grofien Aufwand
im Hinblick auf die verwendeten Sensoren und die Fusion der Sensorwerte moglich. Zu-
sammenfassend lasst sich festhalten, dass eine Automatisierung der Erzeugung durch eine
intrinsische Erkundbarkeit der Komponenten oder der Typbeschreibung vereinfacht bzw.
iiberhaupt erst ermoglicht wird.

Auf der Typenebene des Modells wird bei der Erstellung bewusst auf eine Modellierung von
Vererbungsbeziehungen zwischen Komponenten-Instanzen verzichtet, da diese nicht Mo-
dellierungsgegenstand sind. Ebenso wird auf eine Modellierung von zusammengesetzten

86

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.2 A — Metamodell

1
L

E,:-—Elpumpelz EITank AE

A

EIPumpeE

B

Abbildung 5.5: Beispiel fiir das Modell eines hybriden Instanz-Modells

Komponenten verzichtet. Diese werden tiber den Verweis auf die entsprechende Implemen-
tierung beriicksichtigt, d. h., wenn eine zusammengesetzte Komponente modelliert werden
soll, wird sie in der Auflensicht als Komponente beschrieben. Ein analoges Vorgehen findet
auf der Typenebene statt. Komponenteninstanzen reprisentieren auch zusammengesetzte
Komponenten und sind somit wieder selbst Komponentensysteme.

Systeme, die nicht aus Komponenten aufgebaut sind, kénnen nicht durch das Metamo-
dell abgebildet werden. Beispiele sind unstrukturierte Systeme bzw. Systeme, tiber deren
internen Aufbau keine Informationen vorliegen.

5.2 A — Metamodell

Im folgenden Abschnitt wird das Delta-Metamodell vorgestellt. Ausgangspunkt des Mo-
dells ist die vorgestellte Systematik der Modellierung von Variabilitdt im Losungsraum
durch die Nutzung von Transformationen (vgl. Abschnitt 4.3.3). Fiir die Nutzung der Delta-
Modelle innerhalb der zunehmend mehr verwendeten Laufzeitumgebungen und im Hinblick
auf die flexiblen und wandelbaren Produktionssysteme der Zukunft ist eine explizite Mo-
dellierung der Deltas als Objekte in einer Laufzeitumgebung ein bewéihrter Ansatz. Die Ab-
bildung von Strukturen in objektorientierten Laufzeitumgebungen wurde bereits bei ande-
ren deskriptiven Modellen verwendet (vgl. Merkmale und Merkmal- Auspragungsaussagen,

87

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Abschnitt 4.4.3). So kénnen die modellierten Deltas in einem Laufzeitsystem abgelegt und
jederzeit durch autorisierte Systeme und Nutzer erkundet werden. Nachfolgend wird zu-
nachst das Modell vorgestellt.

5.2.1 Modellbeschreibung

Ein Delta-Modell ~ beschreibt die Transformation von einem Komponenten-
Systemmodell in ein anders. Die Transformation ist in Gleichung 5.1 dargestellt.
Das KomponentenSystemmodell, wird durch Anwendung des DeltaModell; in
KomponentenSystemmodell, 1 transformiert. Das Systemmodell, das die Ausgangsbasis
darstellt, muss den in Abschnitt 5.1.2 vorgestellten Regeln entsprechen. Dies gilt ebenso
fiir den Zielzustand der Transformation. Wéhrend der Transformation kann von den
vorgestellten Regeln abgewichen werden.

KomponentenSystemmodell, 1 = KomponentenSystemmodell,, + DeltaModell; (5.1)

Das Delta-Modell ist eine Zusammenfassung von Transitions-Operationen. Die in einem
Delta-Modell enthaltenen Operationen transformieren ein Instanz-Modell von einem kon-
sistenten in einen anderen konsistenten Zustand. Aus der jeweiligen Zusammenstellung
der Operationen in einem Delta-Modell und der Anforderung ein konsistentes Ergebnis
der Transformation zu erreichen, ergeben sich Randbedingungen fiir das Instanz-Modell,
das transformiert werden soll. Die Operationen miissen zu dem Kontext, in dem sie an-
gewendet werden, passen. Ist dies nicht der Fall, kann das Ergebnis ein inkonsistentes
Instanz-Modell sein.

In Abbildung 5.6 ist das Delta-Metamodell als UML-Modell dargestellt. Kern des Modells
ist das Delta-Objekt, das iiber einen Namen eindeutig identifizierbar ist. Ein Delta-Objekt
besteht aus einer sortierten Menge von Operationen. Diese Operationen sind spezielle
Auspriagungen der Grundoperationen Hinzufiigen, Loschen und Modifizieren der Delta-
Modelle. Fiir das vorgestellte Komponenten-Metamodell wurden die Operationen starker
ausdifferenziert. Es sind die Operationen fir das Hinzuftigen und Loschen von Objekten
(Komponenten und Schnittstellenelementen) sowie fiir das Hinzufiigen und Loschen von
Assoziationen und Verbindungen vorgesehen. Zusétzlich kénnen der interne Zustand einer
Komponente oder der Wert eines Parameters tiber die entsprechenden Zustande gedndert
werden. Die Ausdifferenzierung der Operationen in die unterschiedlichen Spezialformen
kann auf den ersten Blick zu feingranular wirken und fithrt in der Anwendung zu komple-
xeren Modellen. Allerdings wird durch die Ausdifferenzierung klar erkenntlich, ob es sich
bei der vorgenommenen Transformation um eine Anderung der Schnittstelle des Instanz-
Modells handelt oder ,nur“ der interne Aufbau variiert wird. Diese semantische Trennung
ist dhnlich zur Unterscheidung von externer und interner Variabilitat. Ebenso unterschied-
lich sind das Setzen von Parametern und die Verdnderung eines internen Zustands. Die
Operationen werden in einer konkreten Reihenfolge angeordnet. Dies ist in der Abbildung
als verkettete Liste von Elementen dargestellt.

In der Literatur ist eine Reihenfolge der Delta-Operationen nicht vorgesehen, da diese durch
eine geeignete Reihung der Typen von Operatoren (Addition, Subtraktion, Modifikation)

88

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.2 A — Metamodell

Delta

Name

!

Delta-Operation

ordered
Interface- A Interface-
Komponente I6schen Komponente
hinzufiigen
I8schen|
hinzufiigen

Verbindung léschen Verbindung
hinzufiigen

Assoziation l6schen Assoziation

hinzufiigen

Konfigurieren
Parameter Setzen 4 Zustand &ndern

Abbildung 5.6: Ubersicht iiber das Delta-Metamodell.

nicht notig ist. Im Kontext von Softwaresystemen ist der Verzicht auf eine Anwendungsrei-
henfolge schliissig und richtig, insbesondere wenn das zugrundeliegende Komponentensys-
tem die Schachtelungstiefe eins besitzt. In diesem Fall gibt es keine Abhéngigkeit zwischen
Operationen, die das Anlegen von Komponenten durchfiihren. Wenn im Komponenten-
system eine Hierarchie existiert, so ist es plausibel, erst das Elternobjekt anzulegen und
anschliefend die Kinderobjekte. Im allgemeinen Fall kann davon ausgegangen werden, dass
erst das Elternobjekt angelegt werden muss, bevor das Kindobjekt darunter angelegt wer-
den kann. Wenn beispielsweise ein Tank nicht existiert, kann er nicht befillt werden. Fur
diese Falle ist die Modellierung einer Reihenfolge in den Delta-Operationen erforderlich.
Dies kann entweder iiber eine die Reihenfolge abbildende containment-Beziehung zwischen
den Operationen und dem entsprechenden Delta oder tiber eine Modellierung im Delta-
Metamodell erfolgen. Die Modellierung im Delta-Metamodell kann beispielsweise durch die
Nutzung von Parametern in den Operationen oder von Vorgénger-/Nachfolger-Referenzen
zwischen den Operationen umgesetzt werden. Bei der Anwendung der Delta-Operationen
ist die Reihenfolge entsprechend zu beachten.

89

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Der Nutzen des Delta-Modells fir die Beschreibung der Variabilitdt soll exemplarisch an
einem Beispiel verdeutlicht werden. Ausgangsbasis ist das Systemmodells aus zwei Kom-
ponenten aus Abbildung 5.4. Dieses Modell wird mittels folgendem Delta-Modell in das
Systemmodell aus drei Komponenten transformiert.

Das Delta-Modell besteht aus folgenden Operationen:

1. Verbindung 16schen: Loschen der Verbindung der rechten Komponenten zum Aus-
gangsport des Systems.

2. Interface-Komponente hinzufiigen: Hinzufiigen des dritten Eingangsports des
Systems.

3. Komponente hinzufiigen: Hinzufiigen der dritten Komponente.

4. Dreimal Verbindung hinzufiigen: Hinzufligen der Verbindungen vom Eingangs-
port zur dritten Komponente, von der rechten Komponente zur dritten Komponente
und von der dritten Komponente zum Ausgangsport.

5. Assoziation hinzufiigen: Assoziation von der rechten Komponente zur dritten
Komponente hinzufiigen.

Abbildung 5.7: Beispiel eines Systemmodells mit zwei Komponenten.

Dieses einfache Beispiel verdeutlicht den intuitiven Charakter des Ansatzes. Zusétzlich
wird klar, dass die Anzahl der Operationen in einem Delta-Modell mit der Anzahl der
Anderungen linear wichst. Das Delta-Modell kann fiir die Transformation von jedem Sys-
temmodell in jedes beliebige andere Systemmodell genutzt werden. Mit der Betrachtung
dieses Sachverhalts beschéftigt sich Abschnitt 5.2.2.

5.2.2 Variantenbeschreibung mit Delta-Modellen

Das vorgestellte Modell zur Deltamodellierung ermoglicht es, Varianten von Komponenten-
systemen im Loésungsraum zu beschreiben, d. h., Variationen der Implementierung kénnen

90

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.2 A — Metamodell

modelliert werden. Zusétzlich zu der in Abschnitt 4.3.1 vorgestellten Definition ist eine
Variante im Kontext der vorgestellten Delta-Modellierung das Produkt, das nach Anwen-
dung eines Delta-Modells auf ein Instanz-Modell entsteht. Delta-Modelle kénnen durch
die zugrundeliegenden Operationen tiefgreifende Verdnderungen an Systemen vornehmen.
Im Extremfall kann dies der vollstdndige Austausch des Ausgangssystems sein. Es ist
moglich, zwei Komponentensysteme als Varianten voneinander zu modellieren, die wenige
oder gar keine Gemeinsamkeiten besitzen. Im angesprochenen Extremfall wiirde das er-
ste Komponentensystem komplett geloscht und anschliefend komplett aufgebaut werden.
Diese massiven Verédnderung widersprechen dem Gedanken der weitgehenden Wiederver-
wendung und sind eher der regelbasierten Entwicklung zuzuordnen. Es bedarf daher einer
Unterteilung bzw. einer Begrenzung der Delta-Modelle, um zusammengehorige Systeme
identifizieren zu konnen.

Eine Moglichkeit, die Grofle der Deltas zu begrenzen, ist die Einfiihrung eines Abstandsma-
Bes und die Definition einer zuldssigen Obergrenze. Im Kontext der Variabilitéit existieren
verschieden Abstandsmafle. Allerdings kann nur subjektiv entschieden werden, ob ein Sys-
tem Variante eines anderen ist. Fur die Delta-Modelle bieten sich ein an das Euklidsche
Abstandsmafl angelehntes Maf an. Dafiir wird die gewichtete Summe der Anzahl der ein-
zelnen Operationen in einem Delta gebildet.

S = SEacInt + SKom + SVer + SAsso + ag - OPmod (52)

In Gleichung 5.2 ist die Berechnungsvorschrift dargestellt. Sie besteht aus den gewichteten
Einzelsummen fiir die jeweiligen Operationen, die in den Gleichungen 5.3 bis 5.6 angegeben
sind. In Gleichung 5.3 werden die Operationen, die das externe Interface des Komponenten-
systems verdndern, beriicksichtigt. Mit dem Faktor a; wird die Anzahl der Operationen,
die dem externen Interface einen Bestandteil hinzufiigen, gewichtet. ay ist der Gewich-
tungsfaktor fiir die Anzahl der Operationen, die das externe Interface verkiirzen. Analog
werden die gewichteten Summen fir die internen Komponenten Sk, die Verbindungen
Svyer und Assoziationen Sag,, gebildet.

Skaint = a1 - ExIntegq + as - ExIntgy (5.3)
Skom = ag - Komgaq + ay - Komga (5-4)
Sver = a5 - Veraaa + as - Verga (5.5)
Sasso = Q7+ ASSOqaq + ag - ASSOgel (5.6)

Die Parameter miissen spezifisch fiir den jeweiligen Anwendungsfall festgelegt werden. Es
kann beispielsweise sinnvoll sein, die Anderung des externen Interfaces stérker zu gewichten
als eine Manipulation des internen Aufbaus. Alternativ kénnten auch alle Faktoren auf
den Wert eins gesetzt werden, sodass nur die reine Anzahl der Operationen unabhéngig
von der Wirkungsweise berticksichtigt wird. In der praktischen Anwendung ist es sinnvoll,
die komplementaren Operationen (Hinzufiigen und Loschen) mit dem gleichen Faktor zu
gewichten. Erfolgt dies nicht, fithrt beispielsweise das Loschen von Verbindungen zu einem
groBeren Abstandsmaf als das Hinzufiigen.

91

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Die in Gleichung 5.2 angegebene gewichtete Summe (S) stellt ein absolutes Abstandsmaf}
dar. Es wird ausgehend von der Anzahl der Operationen eine Berechnungsmethode fur
die Unterschiedlichkeit von Delta-Modellen angeboten. Allerdings wird bei dieser Art der
Berechnung nicht beriicksichtigt, wie gro der Anteil der Anderungen an dem Ausgangs-
system ist. So kénnen drei Operationen an einem kleinen Ausgangssystem eine grofiere
Verénderung darstellen als drei Operationen an einem grofien Modell. Um diesen Umstand
zu berticksichtigen, ist es sinnvoll, ein auf die Grofie des Ausgangssystems normiertes Ab-
standsmafl zu berechnen. Fiir die Normierung der Summe bieten sich sowohl die reine
als auch eine gewichtete Anzahl der Systembestandteile an. Durch hohe Gewichtungsfak-
toren bei der Berechnung von S kann es zu einer starken Verzerrung kommen. Um dies
zu kompensieren, miissen die Systembestandteile mit entsprechenden Faktoren gewichtet
werden.
_ S — ag - OP, 'mod
\al\;rlaz\ - ExIntan, + \as\;rlaﬂ - Koman, + |ﬂ5“§‘0«6| Veran. + \M\}rlas\ - A850.4ns
(5.7)
Gleichung 5.7 zeigt eine Berechnungsvorschrift fiir ein normiertes Abstandsmafl. Die Fak-
toren fiir die Gewichtung der einzelnen Bestandteile des Ausgangsmodells werden aus dem
Durchschnitt der Betrige der Gewichtungsfaktoren fiir die korrespondierenden Operatio-
nen im Delta-Modell gebildet. Im Zéhler der Gleichung ist zu erkennen, dass die Opera-
tionen fiir das Setzen von Parametern oder die Konfiguration der Komponenten in der
Berechnung nicht beriicksichtigt werden. Diese Anderungen sind nicht struktureller Na-
tur und wenn sie beriicksichtigt werden, muss die Anzahl aller Ports des Ausgangsmodells
berticksichtigt werden, damit die Aussagekraft nicht verfalscht wird.

Sn

Alternativ konnen fiir den Vergleich von zwei oder mehr Delta-Modellen zwei Mafizahlen
verwendet werden. Dafiir wird S in S,y und Sy geteilt. S,qq beschreibt die gewichtete
Summe der Additionsoperationen und Sy die der Loschoperationen. Die beiden Zahlen
sind analog zu der Darstellung der hinzugefiigten und geléschten Zeilen in einem Versions-
verwaltungssystem fiir Quellcode. Ahnlich wie die normierte Groe kénnen Spgq und Sye
ebenfalls auf die gewichtete Grofle des Ausgangsmodells normiert werden.

Neben der Einschatzung, ob ein System die Variante eines anderen Systems ist, kann durch
die Abstandsmafie bestimmt werden, wie strukturell ahnlich sich zwei Systeme sind. Es
gilt dabei allerdings zu beachten, dass die Aussagekraft auf die Struktur der Systeme bzw.
auf den Losungsraum beschrankt ist. Es wird keinerlei Aussage iiber die Funktionalitat
getroffen. Im Extremfall kann ein Delta-Modell, das das Ausgangssystem komplett 16scht
und etwas Neues aufbaut, die gleiche Funktionalitit realisieren. Ebenso kann eine kleine
Anderung der Struktur zu einer ginzlich anderen Funktionalitét fiithren.

5.2.3 Verketten von Delta-Modellen

Im folgenden Abschnitt wird das Delta-Metamodell um einen Mechanismus zum Verket-
ten der Modelle erweitert. Dieser Mechanismus besteht aus einer Referenz, die von einem
Delta-Modell auf ein oder mehrere Delta-Modelle verweist. Diese Referenz ist in dem er-
weiterten UML-Modell in Abbildung 5.8 zu erkennen. Im Folgenden wird der Mechanismus
beschrieben und die Verwendung anhand eines Beispiels erlautert.

92

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.2 A — Metamodell

Basis-

Delta

Delta

Name

1.

Delta-Operation

ordered
Interface- A Interface-
Komponente Ischen Komponente
hinzufiigen
K I6schen|
hinzufiigen
Verbindung léschen Verbindung
Assoziation 6schen Assoziation
Kofigurieren
Parameter Setzen 4 Zustand dndern

Abbildung 5.8: Delta-Metamodell mit der Erweiterung Basis-Delta.

Wie bereits angesprochen, beschreibt ein Delta-Modell die Transformation eines bestehen-
den Komponenten-Systemmodells in ein anderes. Fiir eine solche Transformation ist ein
definierter Ausgangspunkt, auf den diese angewendet wird, erforderlich. Im vorgestellten
Delta-Metamodell ist die Darstellung dieses Ausgangspunktes durch das Ergebnis einer
Deltaoperation vorgesehen. Es ist zu erkennen, dass Deltas eine gerichtete Verbindung zu
anderen Delta-Modellen haben konnen. Die Quelle dieser Verbindung ist der Ausgangs-
punkt fiir die Anwendung eines Delta-Modells an der Senke. Von einem Delta-Modell kén-
nen beliebig viele Verbindungen zu anderen Delta-Modellen ausgehen. Das Ausgangsdelta
wird im Weiteren als Basisdelta bezeichnet. Im Kontext dieser Verbindung spannen die
so verbundenen Delta-Modelle einen Baum auf. Jede hinzugefiigte Transformation fiigt so
weitere Bléatter hinzu. Grundséatzlich sind zwei Situationen fiir ein beliebiges Delta denkbar:

1. Es existiert ein Basisdelta. In diesem Fall ist das aktuelle Delta dessen Variation.

93

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

2. Es existiert kein Basisdelta. Das jeweilige Delta-Modell reprasentiert in diesem Fall
keine Variante eines Komponenten-Systemmodells. Ein solches Delta wird im Weite-
ren als Root-Delta bezeichnet.

In Abbildung 5.9 ist exemplarisch die Abhéangigkeit zwischen verschiedenen Delta-Modellen
dargestellt. Es sind vier Delta-Modelle (Delta 1, Delta 2, Delta 3 und Delta A) sowie de-
ren Abhéangigkeiten dargestellt. Die Delta-Modelle sind jeweils mit einem Instanz-Modell
assoziiert, das sich aus der Anwendung der Operationen auf die vorgesehene Startbedin-
gung ergibt. Es ist zu erkennen, dass Delta 1 das Root-Delta dieses Baums ist, d.h., die
anderen Delta-Modelle variieren das mit Delta 1 assoziierte Instanz-Modell. So erginzt
Delta 2 das einfache Modul um einen Riithrer nebst der fiir diesen notwendigen Steuerung
und der Schnittstelle des erweiterten Serviceinterface des Moduls. Durch die Anwendung
von Delta A wird die Steuerung von Hersteller X im einfachen Modul durch eine Steuerung
von Hersteller Y ersetzt. Mit Delta 3 wird das erweiterte Modul um eine zweite Pumpe
erganzt.

An diesem einfachen Beispiel wird die Bedeutung der Abhéngigkeiten zwischen den Delta-
Modellen deutlich. Es ist zu erkennen, dass ein Delta-Modell grundsatzlich nicht konfliktfrei
auf eine beliebige Ausgangslage, die unterschiedlich zu der vorhergesehenen Ausgangslage
ist, anwendbar ist. So kann Delta 2 nicht konfliktfrei auf das mit Delta A assoziierte
Instanz-Modell angewendet werden. Die in Delta A durchgefithrte Anderung im Hinblick
auf den Hersteller der Steuerung kann zu Konflikten bei der Ubernahme fiihren, z.B.
dann, wenn die Struktur der Steuerung gravierend verandert wird. Ein Delta-Modell ist
grundsétzlich an eine gegebene Ausgangslage gebunden. Die Anwendung auf einen anderen
Kontext fithrt moglicherweise zu einem nicht fehlerfreien Verhalten.

Einfaches Modul mit
einem Tank, einer
Delta 1 Pumpe und Steuerung

von Hersteller X
Einfaches Modul mit Erweitertes Modul mit

einem Tank, einer - Delta A Delta 2 - einem Tank (mit Riihrer),
Pumpe und Steuerung Pumpe und Steuerung
von Hersteller Y von Hersteller X

Modul mit einem Tank
(mit Ruhrer), zwei
Pumpen und Steuerung
von Hersteller X

Abbildung 5.9: Beispiel fiir die Abhéngigkeiten zwischen Delta-Modellen

Durch das Zusammenfassen von Delta-Modellen kann es zu inversen oder zu widerspriich-
lichen Operationen in einem Modell kommen. Durch die Beachtung einer Reihenfolge der
Operationen entstehen keine inkonsistenten Modelle. Allerdings befinden sich im Modell
unnotige Artefakte. Diese konnen jedoch leicht durch Vergleich des Gegenstands, auf den
die Operation angewendet wird, identifiziert und entsprechend behoben werden. Inverse
Operationen (Anlegen und Loschen eines Elements) konnen aus dem Modell entfernt wer-
den. Wird eine Komponente geléscht und neu angelegt, kann dies zu einem Andern der
Parameter reduziert werden.

94

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.2 A — Metamodell

5.2.4 Visualisierung

Fir die Visualisierung der Delta-Modelle bietet sich eine von der Versionsverwaltung von
Quellcode abgeleitete Form der Darstellung an. Dabei werden gednderte Elemente des Mo-
dells farblich im Kontext des Ergebnisses des angewandten Delta-Modells hervorgehoben.
Durch die Delta-Modelle konnen drei Grundoperationen dargestellt werden (Hinzufiigen,
Loschen und Modifizieren), weswegen drei Farben fir die Kodierung bendtigt werden.
Durch das Delta-Modell hinzugefiigte Elemente sollen griin, geldschte Elemente rot und
modifizierte Ports und Zusténde gelb hervorgehoben werden. So entsteht eine Darstellung
des neuen Systems im Vergleich zum alten.

Die Darstellung der Komponenten des Systems kann prinzipiell auf zwei Arten erfolgen.
Einerseits konnen die Komponenten in der Darstellungsform der jeweiligen Doméne ab-
gebildet werden. Bei Hardware aus der Prozessindustrie ist die IEC 62424 [IEC16] ein
Beispiel dafiir. Nachteilig an dieser Herangehensweise ist die Vermischung von verschiede-
nen Darstellungsformen in einer Abbildung. Dies fordert vom Nutzer die Kenntnis einer
groflen Bandbreite von Darstellungsformen. Werden die Komponenten abstrakt als Bau-
steine dargestellt, kann der Typ tber einen Namen im Kopf des Bausteins angegeben
werden. Diese Darstellung als Blockschaltbild ist vielfach gebrduchlich und kann so von
Anwendern mit unterschiedlichem Hintergrund verwendet werden. Externe Ports werden
am Rand der Darstellung abgebildet, wie es auch in CFC’s tblich ist. Die Darstellung
von Dienstschnittstellen erfolgt tiber spezielle Blocke, die die entsprechenden Dienstauf-
rufe oder die angebotenen Dienste als Block mit der dazugehorigen internen Schnittstelle
darstellen.

Wenn es im Einzelfall benotigt wird, kann das jeweilige Modell durch eine doméanenspe-
zifische Darstellung wiedergegeben werden. Die vorgestellte farbliche Kodierung bleibt in
diesem Fall gleich.

Abbildung 5.10: Beispiel fiir die Visualisierung von Delta-Modellen

In Abbildung 5.10 ist das Beispiel einer Visualisierung eines Delta-Modells dargestellt. Es
ist die angesprochene Darstellung als Blockschaltbild zu erkennen. Sowohl das Interface
als auch die einzelnen Verbindungen zwischen den Komponenten sind entsprechend ihrer
Bedeutung im Delta-Modell eingefarbt. Elemente, die durch das Delta-Modell nicht ver-
andert wurden, sind schwarz, hinzugefiigte Elemente griin, geléschte rot und Ports, deren
Wert gedndert sind, gelb eingeférbt.

Zur Dokumentation bzw. Veranschaulichung der Wirkung der Anwendung eines Delta-
Modells koénnen alle Komponenteninstanzen, geloschte und hinzugefiigte, nach dem An-
wenden eines Delta-Modells, in einem Komponentensystem zusammengefiihrt werden. Zur

95

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Interpretation ob eine Komponenteninstanz hinzugefiigt oder geléscht wurde, wird diese
farblich abgebildet. Hinzugefligte Komponenten sind griin, geléschte rot und verdnderte
gelb dargestellt.

5.2.5 Mapping in den Problemraum

Die reine Betrachtung von Varianten im Losungsraum, d.h. von Delta-Modellen, ist im
Kontext von Implementierungen sehr gut geeignet. Allerdings ist dieser Ansatz mit einer
hervorragend geplanten und gebauten Stadt vergleichbar, fir die keine Stadtplédne oder
Telefonbiicher verfiighar sind. Geschéfte und Hauser sind vorhanden, allerdings sind diese
nicht auffindbar. Aus Sicht des Entwicklers (im Beispiel der Architekt oder Bauleiter) stellt
sich der Zustand so dar, wie er sein soll: Er weif}, was implementiert ist und wie es genutzt
werden kann. Fiur einen Nutzer, der das bestehende System verwenden mochte, gilt dies
nicht. Er benétigt Plane und Beschreibungen, um das System nutzen zu konnen.

Ubertragen auf die Delta-Modelle betrachtet ein Nutzer (sei es Mensch oder Maschine) die
Varianten unter funktionalen Gesichtspunkten. Der innere Aufbau ist dafiir nicht relevant.
Vielmehr muss deutlich werden, was eine Implementierung kann und wie sie zu nutzen ist.

Eine Moglichkeit der Losung ist, ein Mapping in den Problemraum (vgl. Abschnitt 4.3.2)
zu schaffen, da dort die Fahigkeiten und Merkmale eines Produkts modelliert sind. In-
nerhalb des Problemraums stehen die Fahigkeiten bzw. Funktionen der Produkte und
nicht ihre Realisierung im Fokus. Im Folgenden wird ein Feature-Modell vorgestellt, mit
dem Produkttypen auf Basis von Features beschrieben werden kénnen. Diese modellier-
ten Features werden mit den Delta-Modellen im Losungsraum verbunden und ergeben so
eine durchgéngige Beschreibung der implementierten Funktionalitét. Die durch ein Delta-
Modell beschriebene Anderung am Aufbau eines Produkts (Instanz-Modell) hat im All-
gemeinen Auswirkungen auf dessen Features. Welche Features davon betroffen sind, wird
durch die Verbindung zwischen Delta-Modell und den zugehorigen Features abgebildet.

Das Modell ist in Abbildung 5.11 dargestellt. Kern ist der Produkttyp, der sich aus den
ProduktFeatures zusammensetzt. ProduktFeatures sind eine lokale Abbildung von allgemein
definierten Features. Zwischen ProduktFeatures konnen Abhéngigkeiten modelliert werden.
Etwa, dass ein anderes ProduktFeature fur die Nutzung eines bestimmten ProduktFeatures
erforderlich ist oder dieses ausschlieit. Von den Delta-Modellen existiert jeweils ein Verweis
auf die realisierten ProduktFeatures. Durch die aufgespannten Assoziationen sind Delta-
Modelle aus einer funktionalen Perspektive auffindbar.

In der praktischen Anwendung erhélt der Nutzer eine Menge von Produkttypen, die jeweils
von Features beschrieben werden. Uber die Produkttypen und Features kann ein Produkt
mit den benétigten Features gesucht werden. Das Ergebnis der Suche beinhaltet die Pro-
dukttypen, auf die die geforderten Kriterien zutreffen. So kénnen geeignete Delta-Modelle
identifiziert werden, um das gewiinschte Produkt zu erzeugen.

Die genaue Definition der Features ist spezifisch fiir den jeweiligen Anwendungsfall. Im
Rahmen des Projekts BaSys 4.0 wurde mit dem Aufbau eines Feature-Modells begonnen.

96

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

Produkttyp

!

Delta-Modell ProduktFeature Feature

Realisie! Definiert

1 * . 1

A
Benotigt/Ausgeschlossen

Abbildung 5.11: Feature-Modell fiir die Darstellung im Problemraum

5.3 Gesamtkonzept fiir die variantenbasierte
Wiederverwendung

Im folgenden Abschnitt wird das Gesamtkonzept fir die variantenbasierte Wiederverwen-
dung vorgestellt. Grundlage dafiir sind das Komponenten- und das Delta-Modell aus den
vorangegangenen Abschnitten. Als erstes wird ein Uberblick iiber das Konzept gegeben
und die darin enthaltenen Elemente erlautert. Anschlieend wird die durch das Konzept
vorgenommene Unterscheidung zwischen Versionen und Varianten vorgestellt. Nach der
Erldauterung der im Modell enthaltenen Transformationen wird erértert, was durch das
Konzept wiederverwendet wird. Fir den praktischen Einsatz wird anschlieflend eine ver-
teilte Architektur vorgestellt. Abschlielend werden Prozesse fir die Nutzung in der Praxis
vorgeschlagen.

5.3.1 Uberblick iiber das Konzept

Die vorgestellten Modelle kénnen rein deskriptiv verwendet werden. Um diese jedoch in der
Praxis moglichst nutzbringend anzuwenden, ist die Einbindung in bestehende Engineering-
Prozesse erforderlich. Dafiir ist die Verkniipfung der Modelle durch Transformationen und
deren geeignete Nutzung in Prozessen notwendig. In diesem Abschnitt wird die Verwendung
der unterschiedlichen Modelle, deren Verkniipfung zur physischen Welt und die Transfor-
mationen erldutert.

Ein Uberblick iiber das Konzept ist in Abbildung 5.12 dargestellt. Diese Darstellung ist
eine Sicht auf die Modelle und physische Welt sowie die Verbindungen und Transformatio-
nen zwischen den Modellelementen. Es sind das Delta-Modell, das Instanz-Modell und das
Typ-Modell zu erkennen. Auf der rechten Seite ist die physische Welt mit den Komponen-
tentypen und den aus Komponenteninstanzen zusammengesetzten Systemen dargestellt.
Die Darstellung unterteilt sich so in die Modellwelt und die reale Welt. Ein Uberblick iiber
die in Abbildung 5.12 verwendeten Elemente ist in Tabelle 5.1 enthalten.

97

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Die Pfeile (rot gestrichelt) zwischen den Modellen und den Komponenten stellen die Trans-
formationen dar, die zur Erzeugung der Modelle bzw. zu deren Umwandlung erforderlich
sind. Die schwarzen durchgezogenen Pfeile stellen Verweise bzw. Abhéangigkeiten zwischen
den Elementen des Bilds dar. So ist der Verweis von einem Delta-Modell auf sein Basis-
Delta-Modell dargestellt. Dies fiithrt zu der diskutierten Baumstruktur innerhalb der Delta-
Modelle. Analog zu den Komponentensystemen, die Instanziierungen der Komponenten-
typen sind, besteht eine Instanziierungsbeziehung zwischen dem Instanz-Modell und dem
Typ-Modell.

Name des Elements Beschreibung

Komponententypen Typen von Komponenten, die zur Verwendung in Komponen-
tensystemen vorgesehen sind. Dies kénnen Klassen, Prototypen
oder Beschreibungen von Komponenten sein.

Typ-Modelle Modelle der Komponententypen (vgl. Kapitel 5.1).

Komponentensysteme Aus Instanzen der Komponententypen zusammengesetzte Syste-
me. Diese stellen Implementierungen der Instanz-Modelle dar.
Abhéngig vom betrachteten Kontext kann es sich hierbei um
Hardware, Software oder hybride Systeme handeln.

Instanz-Modelle Modelle von Komponentensystemen auf Basis der vorhandenen
Typ-Modelle (vgl. Kapitel 5.1).
Delta-Modelle Modelle, die die Transformation von einem Instanz-Modell in

ein anderes beschreiben. Diese liegen als Objektstrukturen vor
(vel. Kapitel 5.2).

Tabelle 5.1: Ubersicht iiber die Elemente des Konzepts

Eine sehr niitzliche Verbindung ist die Referenz zwischen den Komponententypen im Typ-
Modell und den konkreten Komponententypen. Diese kann iiber einen Verweis oder einen
Link realisiert werden. Sie ist eine 1:n Beziehung, mit der beschrieben wird, welche Ty-
pen von Komponenten den Komponententyp im Modell realisieren. Uber diese Verbindung
kann auch die Versionierung von Komponenten abgebildet werden. Solange das Interface
der Komponente kompatibel zum modellierten Interface ist und die realisierte Funktio-
nalitdt gleich ist, konnen andere Versionen der Komponente ebenfalls den Komponenten-
typ im Modell realisieren. Aus dem Modell heraus ist der Verweis auf alle kompatiblen
Realisierungen moglich. Die verwendet Referenz zwischen den Delta-Modellen und den
Typ-Modellen bedeutet, dass die Delta-Modelle bei Hinzufiigen-Operationen auf die durch
die Typ-Modelle beschriebenen Komponenten verweisen. Diese Komponenten stellen die
,Toolbox* dar, die durch die Delta-Modelle verwendet werden kann.

Fiir die Verfolgung der eingesetzten Instanzen ist die Realisierung der Verbindung zwischen
den Komponententypen und -instanzen erforderlich. Diese Verbindung muss explizit sein.
Eine implizite Verbindung, wie sie beispielsweise beim Kopieren und Einfligen entsteht, ist
fiir die Nachverfolgbarkeit nicht sinnvoll. Je nach vorhandenen Randbedingungen kann sie
als bi- oder unidirektionale Verbindung umgesetzt werden. Die Verfolgung der Instanzen
ermoglicht im weiteren Verlauf deren Aktualisierung auf eine neue Version. Ebenso ist es
moglich, neue Varianten von Komponentensystemen anstelle von alteren zum Einsatz zu
bringen.

98

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

In Tabelle 5.2 ist eine Ubersicht iiber die in Abbildung 5.12 dargestellten Transformationen
und deren Ergebnisse aufgefithrt. In der Spalte Vorbedingung sind die jeweils fiir die Trans-
formation bendtigten Elemente festgehalten. Wenn die dargestellte Ausgangssituation in
einem konkreten Anwendungsfall nicht eingehalten wird, kann die Transformation nicht
durchfithrbar sein oder zu einem nicht definierten Ergebnis fithren. Eine Implementierung
des Konzepts muss dies entsprechend berticksichtigen und das Vorhandensein einer giil-
tigen Vorbedingung priifen. Die Transformationen werden im Einzelnen in Kapitel 5.3.2
beschrieben.

Name der Transformation Vorbedingung Ergebnis

erzKomponentenTypModell Komponententypen oder Be- Typ-Modell
schreibung liegen vor

erzKomponentenInstModell Komponentensystem und Typ- Instanz-Modell
Modelle der verwendeten Kompo-
nententypen liegen vor

erzImpl Instanz-Modell, Typ-Modelle und Komponentensystem
die zugehorigen Implementierun-
gen liegen vor

erzDeltaModell Zwei Instanz-Modelle liegen vor ~ Delta-Modell

erzlnstanzModell Delta-Modell und Instanz-Modell Instanz-Modell
als Ausgangspunkt fiir dessen An-
wendung liegen vor

Tabelle 5.2: Ubersicht iiber die Transformationen des Konzepts

Versionen und Varianten

Im Rahmen des Konzepts wird zwischen Versionen und Varianten unterschieden. Varianten
sind unterschiedliche Komponentensysteme, die sich entsprechend der vorgestellten Defi-
nition dhnlich sind (vgl. Abschnitt 4.3.1). Diese Varianten bzw. die Unterschiede zwischen
ihnen werden mittels der Delta-Modelle beschrieben.

Zusétzlich dazu konnen — orthogonal zu den Varianten — von den verwendeten Kompo-
nententypen unterschiedliche Versionen existieren. Versionen miissen dafir die Funktiona-
litdt und die Schnittstelle des Typ-Modells einer Komponente realisieren. In beiden Féllen
(Funktionalitédt und Schnittstelle) miissen die Versionen die Anforderungen des Modells
mindestens erfiillen. Eine Ubererfiillung, z. B. durch ein lingeres Interface oder zusitzliche
Funktionalitét, ist kompatibel und wird ebenso abgebildet.

Diese Interpretation von Versionen im Konzept ist anders als die zeitliche Fortschreibung
von Implementierungen einer Anwendung, die in der Literatur verwendet wird. In dieser
klassischen Sicht entsteht eine neue Version einer Anwendung durch eine Anderung ih-
rer Implementierung. Je nach Gréfie der Anderung wird die neue Versionsbezeichnung ge-
wihlt. Bei grofen Anderungen ist die neue Version die nichste ganze Zahl. Ansonsten wird
die Nachkommastelle inkrementiert. Eine Betrachtung der Funktionalitidt der Anwendung
und ihrer Kompatibilitét gegeniiber der Umgebung findet nicht statt. Diese funktionale

99

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Komponenten-
typen
Typ-Modell erzKomponenténTypModell Klasse

implemeptiert

[

Komponententypen Prototyp
Delta-Modell instanziiert
I instanziiert
Root Delta-Modell erzDeltaModell

Applikation 1 DR Instanz-Modell Komponenten

I Basis-Delta erzinstanzModell | Systeme

-Modell [Modell Applikation 1 erzKomponentdninstModell o

Delta-Modell PP Applikation 1
Applikation 2

Modell Applikation2 | =TT > Applikation 2

I

Modellwelt Reale Welt

Abbildung 5.12: Das Konzept in der Gesamtsicht

Betrachtung steht fiir das Konzept im Fokus. Daher wird der Versionsbegriff auf das Typ-
Modell der Komponenten angewendet. So wird von der Ahnlichkeit der Implementierung
abstrahiert und der Schwerpunkt auf die Funktionen und Schnittstellen gelegt.

So konnen auch unterschiedliche Implementierungen, die die im Modell beschriebenen Vor-
aussetzungen (Schnittstellen und Funktionalitét) erfiillen, als Versionen eines Typ-Modells
verwendet werden. Dies ist vorteilhaft, da die Funktionalitat und die Kompatibilitét fiir den
Anwender wichtiger ist als die Einordnung in eine Implementierungshistorie. Diese bleibt
fiir den Entwickler weiter bestehen. In der Entwicklung der Komponententypen ist die Nut-
zung dieser Verweise sinnvoll und richtig. In der Weiterentwicklung von Implementierungen
ist der Zusammenhang zwischen unterschiedlichen Versionen einer Implementierung wich-
tig, um an geeigneten Stellen Anderungen durchfiihren zu kénnen. Fiir den Anwender ist
dagegen der vorgestellte erweiterte Versionsbegriff zielfithrender.

Allein die Verwendung von unterschiedlichen Versionen eines Komponententyps fiithrt nicht
zur Entstehung einer neuen Variante. So kann ein Komponententyp auf unterschiedlichen
Systemen durch unterschiedliche Komponenten realisiert werden. Trotzdem é&ndert sich
hierdurch die Variante nicht. Erst die Nutzung eines anderen Komponententyps oder eine
verdnderte Anbindung an die Umgebung fithrt zu einer neuen Variante und damit zu einem
Delta-Modell.

5.3.2 Modelltransformationen

Im folgenden Abschnitt werden die in Abbildung 5.12 und Tabelle 5.2 dargestellten Trans-
formationen néher beschrieben. Die Vorbedingungen und das Ergebnis der jeweiligen

100

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

Transformation ist in Tabelle 5.2 zu finden.

erzKomponentenTypModell

Ziel dieser Transformation ist die Erzeugung des Modells eines Komponententyps. Die ge-
naue Umsetzung der Transformation ist abhangig von der Art der vorliegenden Beschrei-
bung des Komponententyps. Liegt diese in einer Form vor, die durch einen Computer
auswertbar ist, so kann eine Applikation entwickelt werden, die diesen Prozess automati-
siert. Ist dies nicht der Fall, da beispielsweise nur der Prototyp einer Hardwarekomponente
vorliegt, so muss das Modell manuell erzeugt werden (vgl. Kapitel 5.1). Das Vorgehen ist
unabhéngig von der konkreten Umsetzung gleichartig.

Im ersten Schritt muss der Typ der Komponenten identifiziert werden. Dieser kann beim
Anlegen des Objekts, das den Komponententyp représentiert, in den Objektnamen inte-
griert werden. Mindestens wird der Verweis auf den Komponententyp im Objekt erzeugt.
Dies kann entweder als unidirektionaler Verweis, beispielsweise ein Bezeichner, erfolgen
oder, wenn es die verwendete Implementierung und Komponente zulassen, eine bidirek-
tionale Referenz sein. In diesem Schritt muss auch die Funktionalitit des abgebildeten
Komponententyps im Modell abgelegt werden. Dies kann textuell erfolgen. Allerdings bie-
tet ein einheitliches Verzeichnis, das analog zu Merkmalen die Funktionalitdten oder Fa-
higkeiten beschreibt, einige Vorteile beziiglich der Eindeutigkeit und Auffindbarkeit dieser
Zuordnungen (vgl. Kapitel 5.1).

Als letztes wird das Interface der Komponente nachgebildet. Dafiir werden die Ein- und
Ausgangsports der Komponente mit deren jeweiligen Typen angelegt. Die Ports werden
iber die Zuordnung im Namensraum, d. h. iiber Namensgleichheit, eindeutig identifiziert.
Die Namen konnen auch tiber mehrere Versionen einer Komponente als konstant betrachtet
werden, da durch vorherrschende Namenskonventionen eine Beschreibung des Ports iiber
den Namen vorgenommen wird. Sollte sich der Name von Ports &ndern, so handelt es sich
vom Standpunkt des Komponenten-Modells um eine Komponente mit der gleichen Funk-
tionalitat aber einem nicht kompatiblen Interface. Dies fiihrt zur Auspriagung eines neuen
Komponententyps bzw. bei Verwendung dieses Komponentyps zu einer neuen Variante.

erzKomponentenlnstModell

Das Ziel dieser Transformation ist die Erzeugung eines Instanz-Modells aus einem vor-
liegenden Komponentensystem unter Verwendung von Komponententypmodellen. Aus-
gangspunkt ist ein bestehendes Komponentensystem. Ebenso wie bei der Erzeugung
der Typ-Modelle ist der eigentliche Prozess unabhéngig davon, ob er manuell oder
(teil-)automatisiert durchgefiihrt wird. Der verwendete Automatisierungsgrad hangt im
Wesentlichen davon ab, inwieweit das vorliegende System automatisiert erkundbar ist.
Dass das System erkundbar ist, ist insbesondere bei Systemen aus Softwarekomponenten
wie Funktionsbausteinnetzwerken zu erwarten.

Im ersten Schritt wird der Name des Komponentensystems ermittelt und ein Objekt fiir
seine Représentation entsprechend dem Komponenten-Metamodell angelegt. Anschlieend

101

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

wird tiber die Komponenten des Systems (interne Komponenten und Interfacekomponen-
ten) iteriert. Wenn eine aufgefundene Komponente im Komponententypmodell enthalten
ist, wird ein Modell im Instanz-Modell instanziiert. Die Identifizierbarkeit wird tber die
Namensgleichheit im Namensraum sichergestellt. Liegt zu einer Komponente kein passen-
des Typ-Modell vor, muss dies protokolliert werden. Wenn méglich, kann der Abgleich
mit anderen Typ-Modellen durchgefiihrt und so ein passendes Modell gefunden werden.
Ist das nicht moglich, muss der Nutzer manuell eingreifen. Es ist zusétzlich zu erortern,
ob und wenn ja, wie viele Hierarchiestufen des Komponentensystems im Instanz-Modell
nachgebildet werden sollen. Insbesondere die Identifikation von eingebetteten Strukturen
ist dabei interessant, um diese fiir die Wiederverwendung zu nutzen. Damit sind Struktu-
ren von Komponenten gemeint, die in verschiedenen Systemen wiederverwendet werden.
Diese liegen als Prototyp vor und sind aus Basiskomponenten zusammengesetzt. Fir die
Nachbildung der unterschiedlichen Hierarchiestufen sind drei Moglichkeiten denkbar:

1. Nachbildung des Instanz-Modells mit der Erkundungstiefe eins
Bei dieser Moglichkeit wird das gegebene System nachgebildet, ohne dabei geschach-
telte Komponenten zu erfassen. Aggregierte Komponenten werden als Blackboxen
betrachtet, d. h., wenn sie unbekannt sind, findet keine Identifikation statt.

2. Beliebige Erkundungstiefe ohne Identifikation von Strukturen
Das vorliegende Komponentensystem wird in einer beliebigen Erkundungstiefe nach-
gebildet, ohne dabei jedoch eingebettete Strukturen aus dem Typenmodell zu suchen
und zu erkennen. Die verschachtelten Strukturen werden aus den vorhandenen Ba-
siskomponenten modelliert.

3. Rekursive Identifikation von eingebetteten Strukturen
Dieser Ansatz erfasst auch alle Komponenten des Systems. Wéhrend der Erfassung
wird allerdings versucht, aggregierte Komponenten zu erkennen und das Instanz-
Modell unter Verweis auf den jeweiligen Prototyp aufzubauen.

Die drei vorgestellten Moglichkeiten unterscheiden sich hinsichtlich der Komplexitét ihrer
Umsetzung. Sie sind in aufsteigender Komplexitit sortiert. Zunéchst wird die iterative
Erkundung und die Identifikation von eingebetteten Strukturen hinzugefiigt. Gleichzeitig
steigt der Nutzen der Wiederverwendung an, wenn Strukturen identifiziert und auf einen
gemeinsamen Prototyp zurtickgefithrt werden kénnen. So wird die doppelte Wartung von
Implementierungen vermieden und Aktualisierungen von Implementierungen kénnen an
alle Instanzen propagiert werden.

Wenn eine aggregierte, vorher noch nicht verwendete, Komponente gefunden wird, kann
diese direkt tiber einen Prototypen der Liste der Komponententypen hinzugefiigt und an-
schlieflend verwendet werden. Handelt es sich um eine atomare Komponente, die nicht
Bestandteil des Typ-Modells ist, muss das Fehlen des bendtigten Komponententyps pro-
tokolliert werden.

erzlmpl

Diese Transformation kann als eine Invertierung von erzKomponentenInstModell betrach-
tet werden. Sie wandelt ein Instanz-Modell in eine konkretes Komponentensystem um.

102

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

Durch die Existenz von mehreren Implementierungen eines Komponententyps (z. B. durch
mehrere Versionen) ist diese Transformation nicht zwingend eindeutig.

Im Rahmen der Transformation wird durch das vorliegende Instanz-Modell iteriert und
die Realisierungen der verwendeten Komponenten ermittelt. Um die Realisierungen zu
finden, wird der Typ der Komponente im Typ-Modell gesucht. In diesem Modell sind
Verweise auf kompatible Implementierungen enthalten. Nach deren Auffinden werden diese
im Komponentensystem instanziiert. Je nach Art des Komponentensystems kann es sich
um die Instanziierung einer Softwarekomponente handeln oder um das Hinzufiigen einer
Hardwarekomponente.

erzDeltaModell

Ziel dieser Transformation ist es, durch den Vergleich zweier Instanz-Modelle ein Delta-
Modell zu erzeugen. Voraussetzung fiir die Transformation ist das Vorliegen zweier Instanz-
Modelle. Der Grad ihrer Uberschneidung ist fiir die Durchfiihrung der Transformation un-
erheblich, da es sich im Extremfall um einen vollstdndigen Austausch der Modelle handelt.

Der Vergleich der Modelle kann unter Beriicksichtigung von unterschiedlichen Randbedin-
gungen durchgefithrt werden. Eine Auffindung von gleichen Komponenten kann tiber eine
Gleichheitspriifung hinsichtlich des Komponententyps und/oder des Namens der Kompo-
nente erfolgen. Dariiber hinaus kann die Position der Komponente innerhalb des modellier-
ten Komponentensystems als Vergleichsgroie herangezogen werden. Die Position besteht
dabei aus Verbindungen und verbundenen Komponenten. Die Namen von Komponenten
folgen fiir eine bessere Versténdlichkeit von Komponentensystemen einer gewissen Syste-
matik (vgl. PLT-Stellenbezeichnungen [IEC16]). Daher reicht es fiir die Mehrzahl der An-
wendungsfille aus, die Namen zweier Komponenten als Vergleichsgrofie heranzuziehen. Die
verwendete Vergleichssystematik kann ohne Beeintriachtigung des restlichen Konzeptes an-
gepasst und verfeinert werden.

Nach der erfolgten Detektion eines Unterschiedes zwischen den Instanz-Modellen wird ein
entsprechendes Objekt im Delta-Modell erzeugt. In dem Objekt werden die entsprechenden
Parameter gespeichert. Dies konnen z. B. die manipulierte Komponente, der zu setzende
Parameter, dessen neuer Wert oder der Name und der Typ der zu erzeugenden Komponente
sein.

erzlnstanzModell

Ausgehend von einem Delta-Modell wird durch diese Transformation das entsprechende
Instanz-Modell erzeugt. Entweder handelt es sich bei dem Delta-Modell um ein Root-Delta
oder um ein Delta-Modell mit beliebig vielen Basisdeltas. Liegt ein Root-Delta vor, konnen
die enthaltenen Operationen direkt ausgefithrt werden. Ist das vorliegende Delta-Modell
kein Root-Delta, muss zunachst das Basisdelta rekursiv vom zugehorigen Root-Delta aus-
gehend erzeugt werden. Fiir diese Erzeugung gibt es zwei Optionen: Zum einen die echte
Rekursion, wobei jedes Delta-Modell auf dem Pfad vom Root-Delta bis Basisdelta nachein-
ander angewendet wird, und zum anderen das Zusammenfassen aller Operationen zu einem
Delta-Modell. Die Anwendung des Gesamt-Delta-Modells kann optimiert werden, indem

103

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

es auf Uberschreibungen des gleichen Parameters von unterschiedlichen Operationen oder
auf das Vorliegen von Hinzufiige- und Loschen-Operationen mit der gleichen Komponente
als Ziel uiberprift wird.

5.3.3 Gegenstand der Wiederverwendung

Ziel der Arbeit ist ein Konzept fir die Wiederverwendung von Teillésungen in komponen-
tenbasierten Architekturen. Dieses Konzept soll moglichst unabhéngig von der konkreten
Implementierung der Komponenten sein. Nachdem die Modelle fiir das Konzept und die
Transformationen zwischen den Modellelementen diskutiert wurden, wird im Folgenden
die Fragestellung behandelt, was durch das Konzept wiederverwendet wird.

Fir das Austauschen von Komponentensystemen kann das zugrundeliegende Meta-
Metamodell vereinheitlicht werden. Dies steht jedoch im Gegensatz zur Forderung, dass
Bestandssysteme durch das Konzept berticksichtigt werden miissen. Anstatt das Meta-
Metamodell zu verdndern, wird das dieser Arbeit zugrunde liegende Komponenten-Modell
fiir die Abstraktion von dem konkreten Komponentensystem verwendet. Die Komponenten-
strukturen werden von ihrer Realisierung entkoppelt und die in den Strukturen enthaltene
Information kann separat genutzt werden. So wird ein Austausch der implementierungsun-
abhéngigen Systemstrukturen erméglicht, ohne die Bestandssysteme verdndern zu miissen.

InstanzModell; + A, = InstanzModell, (5.8)

Die Moglichkeiten der Deltamodellierung erlauben es, Wiederverwendung auf zwei Arten zu
betreiben. In Gleichung 5.8 ist der Zusammenhang zwischen zwei Instanz-Modellen und ei-
nem Delta-Modell A 4 dargestellt. Es ist zu erkennen, dass das InstanzModell; ebenso mit
einem anderen Delta-Modell verwendet werden kann. In diesem Fall ist das Instanz-Modell
Gegenstand der Wiederverwendung. Alternativ kann A, auf ein anderes Instanz-Modell
angewendet werden und stellt in diesem Fall den Gegenstand der Wiederverwendung dar.

In Abbildung 5.13 sind die beiden Arten der Wiederverwendung im Uberblick dargestellt.
Auf der linken Seite ist zu erkennen, wie das Delta-Modell als Gegenstand der Wiederver-
wendung benutzt wird. Die durch das Delta-Modell beschriebene Struktur kann in unter-
schiedlichen Kontexten, d. h. Anwendungsumgebungen, angewendet werden. Die zweite Art
ist auf der rechten Seite zu erkennen. Der Kontext, d.h. die urspringliche (Teil-)Losung,
wird fir unterschiedliche Delta-Modelle verwendet. Im einem Fall ist das Delta-Modell
Gegenstand der Wiederverwendung und im anderen Fall die Umgebung, in die die Delta-
Modelle eingefiigt werden.

Die Anwendung von Delta-Modellen in einem anderen als dem urspriinglich vorgesehenen
Kontext ist nicht zwingend konfliktfrei moglich. Insbesondere nicht vorhandene Randbe-
dingungen, wie nicht existierende Komponenten oder Interfacekomponenten des Systems,
zu denen eine Verbindung aufgebaut werden soll, kénnen zu Konflikten fithren. Die Nut-
zung der Komponenten-Modelle als Abstraktion der konkreten Implementierung erlaubt
die Anwendung von Delta-Modellen auf einen anderen Kontext ohne die Erzeugung einer
inkonsistenten Implementierung. So kann ein Delta-Modell bewusst auf ein anderes Ba-
sisdelta angewendet werden. Anhand der Ergebnisse der Transformation, in diesem Fall

104

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

Delta-Modell 1 Delta-Modell 2 Delta-Modell 3

= + i

Kontext 1 Kontext 2 Kontext 3

Abbildung 5.13: Arten der Wiederverwendung

insbesondere anhand der Fehlermeldungen, kann deren Qualitat ermittelt werden. Nach
der Ausfithrung der Transformation muss das Instanz-Modell auf Konsistenz gepriift wer-
den. Dabei muss sichergestellt werden, dass die Typen von verbundenen Ports gleich sind.
Die Uberpriifung der Typengleichheit muss anhand der spezifischen Randbedingungen der
Ports erfolgen und neben der Gleichheit mogliche Konvertierungen berticksichtigen (vgl.
Tabelle fiir die Konvertierung von Datentypen in [IEC14b]). Zusitzlich kann eine Uber-
prifung, ob alle Komponenten mit Eingéngen mindestens einen verbunden Eingang ha-
ben und ob bei Komponenten mit Ausgédngen mindestens einer von ihnen verbunden ist,
Aufschluss tiber mogliche Fehler der Transformation geben. Die fehlende Anbindung von
Komponenten kann ein Indiz dafiir sein, dass die Komponente nicht optimal in das um-
gebende Komponentensystem eingebunden ist und daher ein Fehler durch die Anwendung
des Delta-Modells vorliegt.

5.3.4 Die verteilte Nutzung der Modelle

In den vorangegangenen Ausfithrungen zu den Modellen und dem Verwendungskonzept
wurde der Fokus auf die Modellierung und die Funktionalitat gelegt. Im folgenden Ab-
schnitt riickt der physische Aufbau und die Verteilung der Modelle in einem System fiir
den praktischen Einsatz in den Blickpunkt (vgl. Abschnitt 4.4.2).

In Abbildung 5.14 ist der schematische Aufbau einer dezentralen Verwendung der Modelle
dargestellt. Es ist zu erkennen, dass es sich dabei um eine Server-Client-Architektur han-
delt. Der Server stellt die zentrale Sammelstelle fiir die Delta-Modelle und damit fiir beste-
hende Implementierungen dar. Die Clients sind in die jeweiligen Engineering-Umgebungen
eingebettet, von denen aus die im Server gesammelten Implementierungen abgerufen und
neue hinzugefiigt werden. Durch die Clients wird so die dezentrale Wiederverwendung und
Veranderung der Modelle ermoglicht.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Client A . Server
Realisierungen Typ Delta- Feature-

Modell Modell Modell

L J
I

Manager Typ-
Komponenten- Instanz-
system Modell \

Client B

Instanz-

Austausch Modell

Typ-
Modell

\ J
Y

Manager
Komponenten- Instanz-
[ey
system Modell

Abbildung 5.14: Verteilte Architektur fiir die Nutzung der Modelle

Realisierungen

Auf dem zentralen Server werden die Delta-Modelle und die Abhéngigkeiten zwischen ih-
nen abgelegt. Neben den Delta-Modellen werden die Modelle der Komponenten auf dem
Server gespeichert. Dauerhaft werden dort jedoch ausschlieflich die Typ-Modelle der Kom-
ponenten abgelegt. Die Instanz-Modelle werden entweder von einem Client auf den Server
transferiert oder auf dem Server aus Delta-Modellen erzeugt. Aus der Differenz zwischen
zwei Instanz-Modellen wird mittels der vorgestellten Transformationen ein Delta-Modell
erzeugt. Dieses wird an der richtigen Stelle in den Delta-Baum eingefiigt und mit dem
Feature-Modell auf dem Server verbunden.

Die Realisierung der benétigten Dienste und die Strukturierung der Objekte und Model-
le werden von einem Delta-Manager und einem Typ-Modell-Manager iibernommen. Diese
Manager bieten die vorgestellten Transformationen als Dienste an und bilden die Zugangs-
punkte fiir Dienstnutzer. Je nach Anwendungsfall kann es zur Verbesserung der Nutzbar-
keit sinnvoll sein, die atomaren Dienste direkt in den Managern zu hoherwertigen Diensten
zu aggregieren und diese nach aufien zur Verfiigung zu stellen.

Auf dem Client befindet sich ein entsprechender Manager, der fiir die Umgebung bzw. fiir
den Nutzer den Zugangspunkt fiir die Interaktionen bildet. Er bietet die Moglichkeit, die
auf dem Server abgelegten Delta- und Feature-Modelle zu erkunden und nach vorgegebenen
Randbedingungen zu durchsuchen. Wenn ein geeignetes Delta-Modell bzw. das dazugeho-
rige Komponentensystem gefunden ist, kann es vom Server heruntergeladen werden. Vom
Server wird dafiir das Instanz-Modell des Komponentensystems erzeugt und auf den Client
iibertragen. Dort werden die Elemente des Instanz-Modells mit den lokal gtiltigen Imple-
mentierungen zusammengefithrt und das konkrete Komponentensystem aufgebaut. Nach
dem Andern des Komponentensystems kann die neue Variante auf den Server hochgeladen
und in den Delta-Baum eingefligt werden. Die Implementierungen der Komponenten bleibt
auf dem jeweiligen Client. Aus dem Komponentensystem wird das dazugehorige Instanz-
Modell erzeugt. Dieses dient als generisches Austauschformat fiir Komponentensysteme

106

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

und wird auf den Clients in die jeweilige Implementierung iiberfiihrt. Dies ermoglicht,
die Strukturen der Losungen in unterschiedliche Umgebungen und Implementierungen zu
iiberfiithren.

Instanz-Modelle konnen auf unterschiedliche Arten zwischen Server und Client ausge-
tauscht werden. Eine Moglichkeit zur Realisierung des Austauschs ist es, das Modell in
ein gingiges Dateiformat, z. B. XML, abzubilden. Diese Datei, in der die jeweiligen Mo-
delle enthalten sind, kann anschliefend iibertragen werden. Diese dateibasierte Variante
bringt jedoch einen groBlen Mehraufwand mit und ist somit nicht sehr effizient. Alternativ
kann das Modell in der jeweils anderen Laufzeitumgebung erzeugt werden, indem Dienste
zum Anlegen und Manipulieren von Objekten der Laufzeitumgebungen verwendet werden.
Bei dieser Ubertragungsart miissen sehr viele Dienste aufgerufen werden, was einen hohen
Kommunikationsaufwand bedeutet. Wegen der angesprochenen Probleme wird in der vor-
liegenden Arbeit die (De-)Serialisierung des Instanz-Modells durch ein géngiges Format,
nimlich der JavaScript Object Notation (JSON), zur Ubertragung von Objekten verwen-
det. Dies erméglicht die Ubertragung in einer einfachen und effizienten Weise.

Der Komponententyp im Typ-Modell kann in der physischen Welt nicht nur durch Klas-
sen sondern auch durch Prototypen realisiert werden. Bei einem direkten Transfer einer
Applikation von einer Herkunfts-Laufzeitumgebung in eine Ziel-Laufzeitumgebung miis-
sen die Schnittstellen der Komponenten des Systems kompatibel sein. Bei der Realisierung
durch eine Klasse ist eine unterschiedliche Anzahl von Eingédngen in den Funktionsbaustein
denkbar. Es kénnen drei Falle auftreten: Der implementierte Funktionsbaustein in der Ziel-
Laufzeitumgebung besitzt eine kleinere, eine grofiere oder eine gleich groe Schnittstelle als
der in der Herkunfts-Laufzeitumgebung. Ist die Schnittstelle groBer oder gleich grof}; so ist
die Implementierung des Funktionsbausteins ohne Anderung kompatibel zum Typ-Modell.
Bei einer kleineren Schnittstelle ist die Implementierung nicht mehr kompatibel zum Typ-
Modell. Dadurch ist eine Ubertragung der Komponentensysteme, die diese inkompatiblen
Bausteine verwenden, nicht moglich. Durch die Abstraktion mit dem in dieser Arbeit vor-
gestellten Komponenten-Modell besteht die Moglichkeit, den Komponententyp durch einen
Prototypen zu realisieren. Somit kann die geforderte Funktionalitiat durch ein Netzwerk
von Funktionsbausteinen in der Ziel-Laufzeitumgebung realisiert werden. Der Unterschied
einer Realisierung durch Klassen zu der durch einen Prototypen wird im folgenden Bei-
spiel deutlich: Das Addieren von Werten wird typischerweise durch eine Funktionsbaustein-
Klasse realisiert. Ist in der Ziel-Laufzeitumgebung lediglich ein Funktionsbaustein mit zwei
Eingéngen realisiert, in der Herkunfts-Laufzeitumgebung jedoch einer mit drei Eingéngen,
so kann der Funktionsbaustein und somit das Komponentensystem nicht mehr iibertra-
gen werden. Wird das Addieren aber in der Ziel-Laufzeitumgebung als Protoyp realisiert,
so kann durch eine geschickte Verschaltung von zwei Addierer-Bausteinen die zu kleine
Schnittstelle kompensiert werden. Das Beispiel ist in Abbildung 5.15 exemplarisch darge-
stellt.

Dieses einfache Beispiel zeigt, wie durch die Verwendung einer zusitzlichen Abstrakti-
onsschicht die Kompatibilitat und Wiederverwendbarkeit von komponentenbasierten Sy-
stemen auch bei zunéchst inkompatiblen Komponenten erreicht werden kann. Dies kann
analog ebenso auf Hardwarekomponenten angewendet werden. Entspricht beispielsweise
der Durchsatz einer Pumpe nicht den geforderten Spezifikationen, so kann dies durch die
parallele Verwendung von zwei oder mehr Pumpen kompensiert werden.

107

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Klasse Prototyp

Abbildung 5.15: Realisierung einer Komponente zur Addition von drei Werten durch eine
Klasse und durch eine Verschaltung von zwei Komponenten, die lediglich zwei Werte addieren
konnen.

5.3.5 Verwendung in der Praxis

Im folgenden Abschnitt werden exemplarisch Ablaufe fiir die Nutzung des vorgestellten
Konzeptes in der Praxis vorgestellt. Fir diese Ablaufe werden die in Abschnitt 5.3.2 be-
schriebenen Transformationen genutzt. Zu jedem Ablauf wird die Ausgangssituation, der
eigentliche Prozess und das Ergebnis beschrieben.

Es wird in den folgenden Ausfiihrungen davon ausgegangen, dass ein verteiltes System
mit Clients und ein zentraler Server fiir die Verwaltung der Delta-Modelle vorliegt. So-
wohl die Clients als auch der Server kénnen durch Laufzeitsysteme realisiert werden. Die
Komponentensysteme sind hybride Systeme, d.h. Hard- und Softwaresysteme.

Von der Implementierung zum Delta-Modell

Ea. Erzeugen des Ubertragung des Ee
T —NEIJodeIIe Instanz-Modells Instanz-Modells RoogDeglJtas
P auf dem Client auf den Server

Abbildung 5.16: Ablauf zur Erzeugung eines Delta-Modells

Ausgangssituation: Es existieren mindestens ein Komponentensystem, ein Client fiir den
Aufbau des Instanz-Modells und ein zentraler Server, auf dem die Delta-Modelle der Imple-
mentierungen abgelegt werden. Auf dem Server und dem Client sind die jeweiligen Manager
vorhanden und betriebsbereit.

Ablauf: Eine Ubersicht des Ablaufs ist in Abbildung 5.16 dargestellt. Der erste Schritt ist
die Erzeugung der Typ-Modelle aus den Implementierungen oder einer Typbeschreibung.
Dafiir wird die Transformation erzKomponentenTypModell verwendet. Die Typ-Modelle
werden sowohl auf dem Server als auch auf allen Clients erzeugt, sodass eine einheitli-
che Basis von Typ-Modellen vorliegt. Im zweiten Schritt wird das Instanz-Modell durch
die Transformation erzKomponentenInstModell auf einem Client erzeugt. Das erzeugte

108

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.3 Gesamtkonzept fiir die variantenbasierte Wiederverwendung

Instanz-Modell wird anschlieffend auf den Server iibertragen. Danach kann das Modell
auf dem Client geloscht werden. Falls das Instanz-Modell Variante eines existierenden ist,
wird das Delta-Modell unter Verweis auf ein Basis-Delta erzeugt. Ist dies nicht der Fall,
wird das Delta-Modell und ebenso die Verbindung in den Problemraum, z.B. zu einem
Feature-Modell, angelegt. Nachdem das Delta-Modell angelegt ist, wird das tibertragene
Instanz-Modell und ggf. auch das Instanz-Modell, auf dessen Grundlage das Delta-Modell
erzeugt wurde, geloscht.

Ergebnis: Das Delta-Modell und das Feature-Modell sind auf dem Server abgelegt und sind
bereit zur Verwendung. Die Abhéngigkeiten zwischen den beiden Modellen sind angelegt.
Analog zu einer Versionsverwaltung fiir Quellcode ist dieser Ablauf der Comitt bzw. der
initial Comitt.

Verteilen einer Losung

Suchen der Erzeugen des Ubertragung des Erzeugung des
s " Instanz-Modells Instanz-Modells Komponenten-
bendtigten Variante N
auf dem Server auf den Client systems

Abbildung 5.17: Ablauf zur Erzeugung eines Komponentensystems

Ausgangssituation: Auf einem Server liegen Delta- und Typ-Modelle vor. Die gleichen
Typ-Modelle und die dazugehorigen Implementierung bzw. eine Referenz auf die Imple-
mentierungen sind auf dem Client vorhanden. Die entsprechenden Manager sind auf beiden
Systemen vorhanden.

Ablauf: Im ersten Schritt wird vom Manager auf dem Client die benétigte Variante auf
dem Server gesucht (vgl. Abbildung 5.17). Dies kann auf unterschiedliche Arten passie-
ren: liegt nur eine Variantenbeschreibung im Losungsraum (Delta-Modell) vor, muss die
Variante allein tiber diese gefunden werden. Ist eine Abbildung im Losungsraum (Feature-
Modell) vorhanden, so kann diese durchsucht und das oder die Produkt(e) anhand der
benotigten Features gefunden werden. Durch den Link auf das Delta-Modell, das dieses
Produkt erzeugt, kann das Delta-Modell verwendet werden. Im zweiten Schritt wird das
Instanz-Modell auf dem Server erzeugt. Dafir wird die Transformation erzImpl genutzt.
Anschlieend wird das erzeugte Instanz-Modell auf den Client iibertragen und auf dem
Server geloscht. Unter Verwendung der Implementierungen auf dem Client wird aus dem
vorliegenden Instanz-Modell die Implementierung erzeugt.

Ergebnis: Das durch ein Delta-Modell und seine verbundenen Modelle bis zum Root-Delta
reprasentierte Komponentensystem sind in eine konkrete Implementierung umgewandelt.
Diese liegt in der Umgebung vor und kann durch den Nutzer verwendet werden.

Erweitern einer bestehenden Losung
Ausgangssituation: Ein Komponentensystem ist im Client vorhanden und das dazugeho-

rige Delta-Modell liegt im Server vor. Die Typ-Modelle aller verwendeten Komponenten
sind auf Server und Client vorhanden.

109

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

Anderung am Erzeugen des Ubertragung des Erzeugung des
Komponentensystem Instanz-Modells Instanz-Modells neuen
vornehmen auf dem Client auf den Server Delta-Modells

Abbildung 5.18: Ablauf zur Erweiterung einer bestehenden Ldsung

Ablauf: Der vorgestellte Ablauf ist in Abbildung 5.18 dargestellt. Der erste Schritt ist die
Anderung des Komponentensystems auf dem Client durch den Nutzer. Diese Anderung
konnte ebenso direkt im Instanz-Modell erfolgen. Allerdings wiirde dieses Vorgehen das
Look-and-Feel fiir den Nutzer dndern. Zusétzlich kommt hinzu, dass bei reinen Softwaresys-
temen die Anderungen am Komponentensystem automatisch in ein neues Instanz-Modell
transformiert werden konnen (vgl. erzKomponentenInstModell), wodurch kein Mehrauf-
wand im Vergleich zur Nutzung ohne das vorgestellte Konzept entsteht. Diese Umwandlung
ist Schritt zwei des Ablaufs. Anschliefend wird das Instanz-Modell auf den Server iibertra-
gen und auf dem Client geléscht. Auf dem Server wird zwischen dem Instanz-Modell und
dem Ausgangssystem das Delta-Modell erzeugt. Dieses wird mit dem Basisdelta und dem
Feature-Modell verkniipft.

Ergebnis: Das gedinderte Komponentensystem ist mit den Anderungen als Variante in den
Varianten-Server aufgenommen worden und steht fiir die weitere Nutzung zur Verfiigung.
Die Verkniipfung zur Ausgangsvariante und die Einordnung in das Feature-Modell wurden
vorgenomuen.

Propagieren einer neuen Komponentenversion

p— Suchen der Hinzufligen der
Identifikation des zu
. betroffenen neuen Entfernen der
andernden
Komponenten- Komponenten und alten Komponente
Typ-Modells .
systeme Verbindungen

Abbildung 5.19: Ablauf zum Propagieren einer neuen Version einer Komponente

Ausgangssituation: Es liegt eine verteilte Architektur vor und die neue Version einer
Komponente wurde entwickelt. Die neue Komponente soll in einem Komponentensystem
zum Einsatz kommen, das von einem Client verwaltet wird. Dies kann beispielsweise eine
neue Version einer Pumpe sein oder eine verbesserte Version eines Funktionsbausteins.

Ablauf: Nach dem in Abbildung 5.19 dargestellten Ablauf ist der erste Schritt, das Typ-
Modell zu identifizieren, das die neue Komponente realisiert. Im Modell wird eine Refe-
renz auf die neue Version der Komponente eingetragen und als aktuelle Version markiert.
Anschlieend werden die von der Aktualisierung betroffenen Komponenten in den Kompo-
nentensystemen identifiziert. Dies konnen entweder alle Komponenten eines Typs sein, die
von dem Client verwaltet werden, oder eine selektive Auswahl. Je nach Anwendungsfall
kann es auch sein, dass die Aktualisierung nicht von dem verwaltenden Tool vorgenommen
wird (push), sondern fir jede Komponente einzeln angefordert wird (pull). Im néchsten
Schritt wird die neue Version der Komponente instanziiert bzw. jedem Komponentensys-
tem hinzugefligt. Ist die Beibehaltung des Namens nicht relevant, beispielsweise bei einer

110

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.4 Kritische Betrachtung des Konzepts

Hardwarekomponente, die tiber ihre Rolle in der Anlage angesprochen wird, werden die
Verbindungen der alten Komponente auf die neue iibertragen. Wenn der Name beibehal-
ten werden soll, muss in diesem Rahmen auch eine Umbenennung der neuen Komponente
erfolgen. Nachdem die Verbindungen von der alten auf die neue Version iibergegangen sind
und die alte Komponente nicht mehr mit der Umgebung verbunden ist, kann sie aus dem
Komponentensystem entfernt werden.

Ergebnis: Die neue Version einer Komponente ist in ein bzw. mehrere Komponentensys-
tem(e) integriert. Die Systeme sind bereit zur anschliefenden Verwendung.

Delta-Modell in anderem Kontext

Ausgangssituation: Es liegen ein Delta-Modell und ein Komponentensystem vor, auf das
das Delta-Modell angewendet werden soll. Das Delta-Modell war urspriinglich fir die An-
wendung in einem anderen Kontext vorgesehen.

Ablauf: In einem ersten Schritt muss die Eignung des Delta-Modells fir die Anwendung
auf den neuen Kontext tiberpriift werden. Dies kann auf verschiedene Arten erfolgen. Eine
erste Abschitzung kann anhand des Delta-Modells getroffen werden. Je mehr Verbindun-
gen zu bestehenden Komponenten des Komponentensystems angelegt werden, desto hoher
ist die Wahrscheinlichkeit, dass eine von diesen nicht vorhanden ist. Ausgehend davon kann
abgeschatzt werden, wie gut sich das Delta-Modell in die Umgebung integrieren léasst. Ei-
ne andere Moglichkeit ist es, Nutzen aus dem Komponenten-Modell zu ziehen und die
Anwendung des Delta-Modells direkt zu testen. Anschliefend muss durch Konsistenzprii-
fungen und aufgetretene Fehlermeldungen bei der Anwendung entschieden werden, ob diese
erfolgreich war bzw. ob und wo nachgearbeitet werden muss. Ist der Prozess erfolgreich
verlaufen, wird das (angepasste) Delta-Modell in den Delta-Server an der vorgesehenen
Stelle integriert.

Ergebnis: Das Delta-Modell wurde fiir einen weiteren Anwendungsfall nutzbar gemacht
und die in ihm enthaltenen Aufwénde wurden erfolgreich wiederverwendet. Das Delta-
Modell steht zur Nutzung in einem neuen Kontext zur Verfiigung.

5.4 Kiritische Betrachtung des Konzepts

Im folgenden Abschnitt wird das vorgestellte Konzept einer Betrachtung und Bewertung
unterzogen. Zunédchst werden die Vorteile des Konzepts herausgearbeitet. Anschlieflend
werden Handlungsempfehlungen fiir die Verwendung gegeben. Abschlieffend werden die
Randbedingungen fiir die Nutzung des Konzepts zusammengefasst.

5.4.1 Added Values

Ausgehend von Komponenten und Delta-Modellen in der Literatur wurden zwei Modelle
entwickelt. Mit diesen konnen die Varianten von Komponentensystemen leicht und iber-
sichtlich beschrieben werden. Die Nutzung der Komponenten-Modelle als Abstraktions-

111

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

schicht hat den Vorteil, dass so von der Implementierung der jeweiligen Komponente ab-
strahiert werden kann. Wie gezeigt, ist diese Vorgehensweise geeignet fiir die Ubertragung
der Komponentenstrukturen zwischen Systemen. Mit Hilfe des Delta-Modells kann die Va-
riabilitdt im Losungsraum intuitiv beschrieben werden, was somit eine Wiederverwendung
von erzeugten Losungen erméglicht. Durch die Einfachheit und Nachvollziehbarkeit der
Modelle wird eine héhere Akzeptanz bei den Mitarbeitern der unterschiedlichen Gewerke
erreicht. Somit erhoht sich der Nutzungsgrad der Modelle. Im Konzept werden die Delta-
Modelle auf ein Modell anstatt auf ein konkreten System angewendet. Da das Modell sehr
allgemein formuliert ist, ist es sehr robust gegeniiber Inkonsistenzen. So kénnen Operatio-
nen und neue Anwendungen leicht erprobt und nachtréaglich deren Konsistenz sichergestellt
werden.

Die verteilte Architektur hat den Vorteil, dass sie die Modelle in der Praxis anwendbar
macht und gleichzeitig das Look-and-Feel der Nutzer moéglichst wenig verandert. Die be-
wihrten Prozesse und Tools konnen beibehalten werden. Lediglich fiir die Wiederverwen-
dung wird, analog zu einem Versionsverwaltungstool fiir Code, ein zusétzliches Werkzeug
benotigt. Dartiber hinaus ermoglicht die Darstellung der Delta-Modelle in der doménen-
spezifischen Sprache die optimale Integration fiir den Nutzer und die vielfaltige Verwen-
dung der vorgestellten Modelle. Die verteilte Architektur vereint eine dezentrale Nutzung
der Komponentensysteme mit der zentralen Speicherung der relevanten Informationen. So
konnen diese jedem (potenziellen) Nutzer zugénglich gemacht werden.

Durch die zunehmende Verwendung von OPC UA und Laufzeitsystemen sinkt die Ein-
stiegshiirde fiir die Verwendung der vorgestellten objektorientierten Modelle, da diese nativ
verwendet werden konnen. Gleichzeitig steigt der Bedarf der Verwaltung von komponen-
tenbasierten Architekturen im Softwarebereich weiter an als er durch die Verwendung der
IEC 61131 Sprachen schon gestiegen ist. Die Verwendung von Verwaltungsschalen und
der darin enthaltenen Teilmodelle auf Basis von strukturierten Komponenten weist auf
ein zusatzliches Anwendungsgebiet hin. Dieser Bedarf wird durch das vorgestellte Konzept
gedeckt.

Zusétzlich wird durch das Konzept die explizite Modellierung von Komponentenversio-
nen unterstitzt. Von der Modellierung ausgehend, kann das beschriebene Verfahren fiir
das Propagieren von neuen Versionen und weiterer Prozesse umgesetzt werden. In einem
ersten Schritt ermdéglicht die Modellierung, kompatible Komponentenversionen als solche
darzustellen, und macht fiir den Nutzer kenntlich, wie diese in Komponentensystemen
verwendet werden.

5.4.2 Randbedingungen

Im Folgenden werden die Randbedingungen und Einschréankungen, die bei der Verwendung
des Konzepts zu berticksichtigen sind, zusammengefasst.

e Das Konzept ist besonders gut nutzbar, wenn die durch einzelne Delta-Modelle veréan-
derte Funktionalitét(en) orthogonal auf den Funktionalitéten des Komponentensys-
tems stehen. Im Kontext von technischen Systemen ist die Trennung in orthogonale
Funktionalitéten (z. B. aus [Har87]) bekannt. In der Automatisierungstechnik bietet
es sich an, die Automaten der Steuerungskomponenten so zu entflechten, dass diese

112

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5.4 Kritische Betrachtung des Konzepts

orthogonal aufeinander stehen. Dementsprechend ist die Erfiillung dieser Randbe-
dingung nicht mit grofen Anderungen verbunden.

e Die Delta-Modelle sind immer nur fiir einen definierten Ausgangspunkt zu verwen-
den. Eine Anwendung auf eine andere Basis kann zu nicht definierten Ergebnissen
bzw. zu einem inkonsistenten Komponentensystem fithren. Ein einfaches Beispiel da-
fiir ist das Loschen eines Objekts, das nicht existiert. In diesem Fall entspricht der
Zustand dem angestrebten Ergebnis. Wird aber eine Verbindung zu einem Baustein
angelegt, der nicht existiert, kann der gewiinschte Zielzustand nicht erreicht werden.
Das Komponenten-Modell und das Komponentensystem sind nach Anwendung der
Delta-Operationen nicht in der gewiinschten Weise aufgebaut.

e Eine unbeschrankte Menge von Delta-Operationen innerhalb eines Delta-Modells
fithrt zu einer nicht vorhersagbaren Ausfiihrungsdauer der Modifikation. Daher ist ei-
ne Verwendung zur Laufzeit ohne Einschrankung der Anzahl der Operationen nur be-
dingt moglich. Insgesamt kann das beschriebene Verfahren fiir einen Austausch bzw.
den Aufbau von Komponentensystemen zur Laufzeit eingesetzt werden. Dies ist aller-
dings mit erhohten Anforderungen an das Laufzeitsystem verbunden (z.B. Wechsel
von Verbindungen und Umschalten zwischen Bausteinen zwischen zwei Zyklen). Zu-
sitzlich muss die Funktionalitdt des stofifreien Austausches von Baustein(system)en
implementiert werden.

o Im vorgestellten Konzept wird das Delta-Modell hinsichtlich der strukturellen Diffe-
renz zwischen zwei Komponenten-Modellen gebildet. Dies bedeutet, dass Anderun-
gen, die keine Auswirkungen auf die eigentliche Funktionalitidt haben, trotzdem in
einem Delta-Modell abgebildet werden. Dies kann z. B. die Anderung des Namens
einer Komponente sein. Je nach konkreter Umsetzung des Vergleiches kann die Na-
mensgleichheit ein Kriterium fiir das Auffinden der Unterschiede sein.

e Durch die Verwendung eines einheitlichen Sets von Komponenten wird der Nut-
zen des Konzepts weiter gesteigert. Wie vorgestellt, lassen sich auch gewisse Abwei-
chungen zwischen den Komponententypen nivellieren. Allerdings ist eine grundsétzli-
che Ahnlichkeit der Komponenten trotzdem erforderlich. Durch die Verwendung der
IEC 61131 sind die Baustein-Bibliotheken in der Automatisierungstechnik zumindest
funktional kompatibel. Ahnlich ist die Situation im Bereich der Hardwarekomponen-
ten.

e Die Abgeschlossenheit der Komponenten muss diszipliniert vom Nutzer und von der
Organisationseinheit durchgesetzt werden. Trotz der sinnvollen Forderung, diese si-
cherzustellen, sind globale Variable und direkte Lese- und Schreibzugriffe iiber die
Grenzen von Komponenten hinweg weiterhin verbreitet. Ebenso muss eine einheitli-
che Richtlinie fiir Komponentennamen und die Pflege und Verwendung der Funktio-
nalitétsreferenzen durchgingig angewendet werden.

5.4.3 Handlungsempfehlungen

Fiir jeden konkreten Anwendungsfall miissen eigene Regeln und Handlungsempfehlungen
abgeleitet werden. Im Folgenden werden einige grundsatzliche Empfehlungen vorgestellt,

113

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

5 Wiederverwendung in komponentenbasierten Architekturen

die die Nutzung des Konzepts einfacher machen.

Nach der Anwendung eines Delta-Modells sollte grundsatzlich die Konsistenz des erzeugten
Komponenten-Modells iiberprift werden. Grundlage dafiir sind die Regeln des abgebildeten
Komponentensystems. Dies konnen unter anderem die Umwandlungsregeln der jeweiligen
Implementierungen sein. Demzufolge muss die Konsistenzpriifung auf dem Client unter
Berticksichtigung der lokal geltenden Regeln erneut durchgefiithrt werden. Alternativ wird
die Prifung anhand von unterschiedlichen Profilen je nach verwendetem Client durch-
gefiithrt. Die Unterschiede durch die Implementierungen sind durch die Verwendung von
gemeinsamen Sprachen gering.

Zusitzlich kénnen auf dem Instanz-Modell Uberpriifungen durchgefiihrt werden, die nicht
direkt eine Inkonsistenz anzeigen, dennoch einen Indikator fiir eine nicht optimale An-
wendung eines Delta-Modells darstellen. Insbesondere nach der Anwendung eines Delta-
Modells in einem neuen Kontext ist eine solche Uberpriifung sinnvoll. In einem ersten
Schritt ist zu priifen, ob die Eingangsports des Systems offen, d.h. nicht mit mindestens
einer Komponente des Systems verbunden sind. Ebenso sollen die Ausgangsports des Ge-
samtsystems nicht un-parametriert bzw. unverbunden sein. Beide Zustdnde kénnen Indi-
katoren fur eine fehlerhafte Integration oder Artefakte von anderen Varianten sein. Eine
weitere mogliche Erklarung ist ein Informationsfluss iiber die Grenzen der Komponen-
te hinweg ohne das Nutzen der dafiir vorgesehenen Ports. Dies ist eigentlich durch die
Kapselung von Komponenten unterbunden, kommt in der Praxis allerdings vor. Hat eine
Komponente keine oder nur eine einseitige Verbindung zu ihrer Umgebung, so kann dies
ebenso ein Indikator fiir eine fehlerhafte Integration sein. Dass beispielsweise eine Pumpe
nur an einer Seite mit einem Rohr verbunden ist, weist in der Mehrzahl der Félle auf einen
Fehler hin.

Je nach Anforderungen der Nutzer kann es sinnvoll sein, die Delta-Modelle nach Gesichts-
punkten der Komplexitidt oder der Funktionalitit aufzubauen. Funktionalitdat bedeutet
hier, dass ein Delta-Modell mit einer oder mehreren abgeschlossenen Funktionalitéten asso-
zilert ist. Dariiber hinaus kann es sinnvoll sein, Delta-Modelle in mehrere weniger komplexe
Delta-Modelle zu zerteilen. In einem anderen Anwendungsfall kann die Zusammenfassung
zu einem groferen Delta-Modell passender sein. So kann der Baum aus Delta-Modellen je
nach den lokalen Gegebenheiten aufgebaut werden. Nur, wenn solche Regeln aufgestellt
und eingehalten werden, ist die Nutzung eines Delta-Servers als , gelbe Seiten® fiir Losun-
gen denkbar und ein wirklicher Fortschritt im Hinblick auf die Wiederverwendbarkeit.

114

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und
Anwendungsfalle

Im folgenden Kapitel wird die prototypische Umsetzung des vorgestellten Konzepts be-
schrieben. Die Nutzung dieser Implementierung wird anschlieBend an drei Anwendungsfil-
len verdeutlicht. Abschlieflend wird am Ende des Kapitels die Implementierung evaluiert.
Dies geschieht anhand von ausgesuchten Szenarien, die die Leistungsfahigkeit und Reaktion
der Implementierung auf Fehler verdeutlichen.

6.1 Implementierung in ACPLT/RTE

Die Umsetzung des Konzepts erfolgte in der Laufzeitumgebung des Lehrstuhls fiir Prozess-
leittechnik ACPLT/RTE [GE13]. Der Laufzeitumgebung liegt ein Meta-Metamodell fir
Objekte zugrunde, auf dem alle weiteren Implementierungen aufsetzen (vgl. Kapitel 4.4.1).
Auf diesem Meta-Metamodell aufbauend wurde eine Funktionsbausteinarchitektur reali-
siert, mit der es moglich ist, IEC 61131 konforme Loésungen umzusetzen. Unter ande-
rem wurde so die Prozessfithrung fir Anlagen implementiert [WTPE17, WE15a]. Dartiber
hinaus bietet die Laufzeitumgebung die Moglichkeit, Modelle z. B. fir die Beschreibung
von Anlagen zu implementieren und zu erproben [YGE13, Sch16a]. Durch diese Model-
le und geeignete Modelltransformationen kénnen Automatisierungslosungen synthetisiert
werden [WKST16].

Damit die Laufzeitumgebung auf unterschiedlicher Hardware ausgefiihrt werden kann, ist
sie in ANSI C implementiert. Sie realisiert ein Konzept von zur Laufzeit nachladbaren
Bibliotheken. So kénnen Funktionalitdten in Bibliotheken implementiert und zur Laufzeit
nachgeladen werden, damit anschieflend die Objektstruktur konfiguriert werden kann.

Die Anbindung der Laufzeitumgebung an andere Anwendungen erfolgt iiber das Kommu-
nikationsprotokoll des Lehrstuhls ACPLT/KS [WE17] und iiber OPC UA [GPP16]. Als
Benutzerschnittstelle stehen verschiedene Engineeringtools zur Verfiigung, die auf die je-
weiligen Anwendungsfille zugeschnitten sind. Das bedeutet, dass einige Tools universell fiir
die Konfiguration der Laufzeitumgebung und der enthaltenen Objektstrukturen einsetzbar
sind. Andere sind spezifisch fiir die Interaktion mit Objekten einer Bibliothek entwickelt
worden (z.B. Dienste-Klienten).

Analog zum Konzept besteht die Struktur der Implementierung aus zwei Teilen. Dabei
handelt es sich um die Modelle und den Manager. Diese miissen fiir die Nutzung reibungslos
zusammenspielen. Im Folgenden werden sie zur besseren Verstandlichkeit nacheinander
vorgestellt.

115

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

6.1.1 Umsetzung der Modelle

Die Modelle wurden entsprechend der in Kapitel 5 vorgestellten Spezifikationen in der
Laufzeitumgebung ACPLT/RTE umgesetzt. Die Klassen der Komponenten-Metamodelle
und des Delta-Modells wurden in Klassen der Laufzeitumgebung umgesetzt. Entsprechend
der Metamodelle sind die Klassen in zwei Bibliotheken strukturiert. Zusitzlich zu den
in den Metamodellen beschriebenen Klassen sind in den Bibliotheken Klassen fir Mana-
gerobjekte enthalten. Die Managerobjekte beinhalten Operationen zur Realisierung der
vorgestellten Transformationen.

Der componentClassManager realisiert die Verwaltung der Typ-Modelle der Komponen-
ten. Der Manager beinhaltet die Funktionalitidt zur automatischen Erzeugung des Typ-
Modells einer Bibliothek der Laufzeitumgebung. Als alternative Quelle zur Erzeugung des
Typ-Modells nutzt der Manager einen Prototypen des Komponentensystems. Er besitzt
einen Port, in dem der Pfad zu den Bibliotheksobjekten in der Laufzeitumgebung oder
dem Prototypen angegeben wird. Ausgehend davon wird die Bibliothek erkundet und das
Modell aufgebaut. Der Aufbau des Modells wird durch die drei Operationen der Klasse
componentClass realisiert. Eine Operation ist die Erzeugung des Typ-Modells aus einer
Funktionsblockklasse. Die zweite Operation nutzt ein Komponentensystem als Prototyp
und baut daraus das Typ-Modell auf. Die dritte Operation der Klasse ist die Erzeugung
des Instanz-Modells aus dem jeweiligen Typ-Modell.

Das componentChart ist eine Klasse, die den Rahmen eines Instanz-Modells mit dem zu-
gehorigen externen Interface bildet. Sie verfiigt iiber eine Operation zum Erzeugen des
Instanz-Modells aus einem Komponentensystem und eine Operation zum Umwandeln des
Instanz-Modells in die dazugehérige Implementierung. Zur Verwaltung eines oder meh-
rerer componentCharts sind componentChartManager vorgesehen. Der Manager erzeugt
Instanz-Modelle aus Implementierungen oder Implementierungen aus Instanz-Modellen
durch Orchestrierung der Operationen der componentCharts. Dabei stellt der Manager
die Eindeutigkeit von Komponentennamen sicher und verwaltet die Ziel- und Quellpfade.

Geschachtelte Komponentensysteme haben grundsétzlich eine beliebige Tiefe. Das vorge-
stellte Konzept léasst es zu, die Komponentensysteme bis zur letzten Ebene in ein Modell zu
iberfithren. Im Rahmen der Implementierung wird eine beliebige Modelltiefe angenommen.
Allerdings ist die Erkundung von bekannten Strukturen ausschlielich auf die ersten Ebe-
ne beschriankt. Geschachtelte Strukturen werden als eingebettet bzw. nested bezeichnet
und durch Prototypen abgebildet. Diese Prototypen koénnen selbst Varianten voneinan-
der sein. Die entsprechenden Delta-Modelle kénnen in Typ-Modellen als Implementierung
verwendet werden. Der componentChartManager erkennt beim Umwandeln eines Kom-
ponentensystems anhand des Objekttyps, ob es sich um eine eingebettete Unterstruktur
handelt. In diesem Fall wird anhand des Links zum Typ-Modell gepriift, ob diese Struktur
bereits als Typ-Modell vorliegt. Liegt die Struktur vor, wird diese im Modell verlinkt. An-
dernfalls wird sie in einem neuen Typ-Modell nachgebildet. Dieser Prozess kann durch alle
Hierarchieebenen durchlaufen werden. Somit stellt die Einschrankung auf eine Ebene keine
Beschriankung der Allgemeinheit dar. Der Vergleichsmechanismus fiir die eingebundenen
Strukturen kann so weiterentwickelt werden, dass die Nutzung von Delta-Modellen fiir den
Vergleich zweier Implementierungen ebenfalls denkbar ist. Wenn das Delta-Modell leer ist,
sind die beiden verglichenen Instanz-Modelle gleich. Im Rahmen dieser Implementierung

116

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6.1 Implementierung in ACPLT/RTE

wurde darauf verzichtet, da die Aussagekraft im Hinblick auf das Konzept gering ist.

Die Implementierung des Delta-Modells erfolgt auf der untersten Ebene durch die Realisie-
rung der in Abbildung 5.6 dargestellten Operationen. Dies wird durch die entsprechenden
Objekte und ihre Methoden in der Bibliothek dvariantsDelta realisiert. Diese Operatio-
nen werden jeweils in einem Delta zusammengefasst. Dieses bietet die Methoden an, alle
Delta-Operationen, die in ihm enthalten sind, auf ein gegebenes componentChart anzuwen-
den. Die Operation createComponentChart erzeugt das durch dieses konkrete Delta-Modell
dargestellte Komponentensystem. Dies wird durch die rekursive Ausfithrung aller Delta-
Modelle ausgehend vom jeweiligen Root-Delta erreicht. Umgekehrt wird ein Delta-Modell
durch die Operation createFromComponentCharts aus zwei vorliegenden Instanz-Modellen
(componentCharts) generiert.

Die Delta-Modelle werden durch die deltaManager verwaltet und durch die angebotenen
Funktionen besser zugénglich gemacht. Durch das Setzen der jeweiligen Parameter wird
z. B. die Basis-Variante eines zu erzeugenden Deltas festgelegt.

Das Feature-Modell wurde, wie in Abbildung 5.11 dargestellt, umgesetzt. Da das Modell in
diesem Kontext eine rein deskriptive Rolle einnimmt, war die Implementierung von Funk-
tionalitdten innerhalb des Modells nicht nétig. Die Verbindungen mit den Delta-Modellen
werden tiber das Server-Objekt angelegt (vgl. Abschnitt 6.1.2).

Fiir die Umsetzung der Visualisierung wurde ein zusétzliches Modell innerhalb der Delta-
Modell-Bibliothek angelegt. Diese ermoglicht es, den Informationsgehalt eines Delta-
Modells und des korrespondierenden Instanz-Modells in einem Modell darzustellen. Es
ist aufgebaut wie ein Instanz-Modell, allerdings gibt eine zuséatzliche Variable an, ob eine
Instanz hinzugefiigt, geloscht oder bearbeitet wurde.

6.1.2 Realisierung der dezentralen Struktur

Die verteilte Struktur wird durch ein Server- und ein Client-Objekt realisiert. Zusétzlich
steht ein deltaFEzplorer genannter Baustein zur Verfigung, der es ermoglicht, einen Delta-
Server zu erkunden und nach den bendétigten Varianten zu durchsuchen. Die Suche erfolgt
anhand des Feature-Modells und liefert als Ergebnis eine Menge von zu den Suchkriterien
kompatiblen Delta-Modellen.

Als Kommunikationsmittel kommen auf der Seite des Clients und des Explorers #ks-
Bausteine zum Einsatz. Mit diesen werden Informationen und Auftrége in die entsprechen-
den Eingénge des Server-Objekts geschrieben und die Ergebnisse aus den Ausgéngen ausge-
lesen. Der Austausch erfolgt tiber die Serialisierung der Instanz-Modelle (componentCharts)
und die hinzugefiigten Aufrufe. Vorteilhaft an dieser Umsetzung ist, dass die verwendete
JSON Serialisierung sehr kompakt, durch Menschen interpretierbar und weit verbreitet ist.
Somit stehen d.h. Parser fiir die meisten giangigen Programmiersprachen zur Verfiigung.
Eine Anderung des Kommunikationsprotokolls auf z. B. OPC UA ist durch den modularen
Aufbau einfach moglich. Dazu muss der entsprechende Baustein zum Lesen und Schreiben
ausgetauscht werden.

Uber die Ein- und Ausgénge des deltaClients werden der Zielserver und der internen Zu-
stands des Bausteins angegeben. Die Hauptfunktionen sind das checkout und das commit.

117

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

Deltaserver T

(P
1 n

Abbildung 6.1: Server, Client und Explorer Bausteine im HMI.

Mit dem checkout wird ein bestehendes Delta-Modell vom Server auf den Client herun-
tergeladen. Mit der Funktionalitdt commit werden Implementierungen auf dem Client in
ein Delta-Modell auf dem Server umgewandelt und dort in den Baum der Delta-Modelle
eingefligt.

Das Gegenstiick dazu auf dem Server ist ein Objekt der Klasse deltaServer. Dieses stellt den
Zugangspunkt fur die Clients dar und gibt die eingehenden Anfragen an die Komponenten-,
Delta- und Feature-Modelle weiter. Das Objekt stellt die Funktionalitdten commmit, check-
out und ezxplore fiir das zugrunde liegende Delta-Modell bereit. So konnen die Funktionen
vom Client verwendet werden. Die vorgestellten Client-, Server- und Explorer-Bausteine
sind in Abbildung 6.1 dargestellt.

In Abbildung 6.2 ist der Ablauf eines checkouts mit den daran beteiligten Objekten als
UML-Sequenzdiagramm dargestellt. Auf der linken Seite der Abbildung ist der Nutzer des
Systems zu erkennen. Dabei kann es sich um einen Menschen oder eine andere Anwendung
handeln. Die weiteren dargestellten Objekte werden danach unterteilt, ob sie sich auf dem
Client (deltaClient und Komponenten-Modell) oder auf dem Server befinden (deltaServer,
Delta-Modell und Komponenten-Modell). Zu Beginn wird der deltaClient vom Nutzer pa-
rametriert. Bei den eingestellten Parametern handelt es sich um die Adresse des Servers
und des Delta-Modells. Anschlielend wird der checkout unter Angabe des herunterzula-
denden Komponentensystems durch den Nutzer ausgelost. Der Delta-Client iibermittelt
die Anfrage unter Verwendung eines JSON Strings an den deltaServer. Dieser sucht das
angeforderte Delta-Modell und baut es, wenn vorhanden, zusammen. Fir den Zusammen-
bau wird ermittelt, ob ein Basis-Delta zu dem Delta-Modell existiert. Ist das nicht der Fall,
werden die Delta-Operationen unter Einbeziehung des Typ-Modells angewendet und das
Instanz-Modell aufgebaut. Sollte ein Basis-Delta vorliegen, wird die Operation rekursiv auf
die Basis-Deltas angewendet bis das Root-Delta erreicht ist. Anschlielend werden diese der
Reihe nach ausgefiithrt und das kumulierte Instanz-Modell erzeugt. Dieses wird dem delta-
Server zur Verfiigung gestellt, der es serialisiert und an den deltaClient iibermittelt. Dort
wird es deserialisiert und unter Einbeziehung des lokalen Typ-Modells wird aus dem emp-
fangenen Instanz-Modell das Komponentensystem erzeugt. Der erfolgreiche Abschluss des
Vorgangs oder eine Fehlermeldung wird dem Nutzer tiber einen Statusausgang mitgeteilt.

Analog zum checkout ist der Ablauf des commits in Abbildung 6.3 dargestellt. Dieser
startet ebenso mit dem Parametrieren des deltaClients durch den Nutzer. Anschlieflend
wird unter Angabe des zu iibertragenden Komponentensystems, ggf. des Basis-Deltas und
der Features der Prozess gestartet. Unter Einbeziehung des Komponenten-Modells wird aus

118

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6.1 Implementierung in ACPLT/RTE

Client Server
A O, R
Nutzer deltaClient Komponenten-Modell' 'deltaServer Delta-Modell Komponenten-Modell
Parametrieren
checkout get delta
applyDelta n
createComponent
I
Instanz-Modell
Instanz-Modell
createlmpl
Status

Abbildung 6.2: Sequenzdiagramm zur Beschreibung des Checkouts eines Komponentensys-

tems vom Server auf einen Client.

dem Komponentensystem das Instanz-Modell erzeugt. Dieses wird durch den deltaClient
serialisiert und an den Server geschickt. Dieser erzeugt daraus das Instanz-Modell und,
falls benotigt, das Instanz-Modell des Basis-Deltas. Dieses wird unter Einbeziehung des
Komponenten-Modells rekursiv aufgebaut. Wenn beide Instanz-Modelle vorliegen, wird das
Delta-Modell zwischen beiden gebildet. Das Basis-Delta kann dabei allerdings auch leer
sein. Das Delta-Modell wird anschliefiend in den Delta-Baum an der entsprechenden Stelle
eingefiigt und das Feature-Modell um die entsprechenden Eintrége erganzt. Dem Nutzer
wird danach der erfolgreiche Abschluss des Vorgangs oder eine Fehlermeldung mitgeteilt.

119

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
m

‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

Client Server

Nutzer deltaClient Komponenten-Modell' 'deltaServer Delta-Modell Komponenten-Modell

Parametrieren

commit createlnstModell

createDelta

getBaseDelta

Instanz-Modell createComponent

Instanz-Modell

createDelta

Status Ergebnis

Abbildung 6.3: Sequenzdiagramm zur Beschreibung des Commits eines Komponentensystems
vom Client zu einem Server.

6.2 Anwendungsfalle

Im folgenden Abschnitt werden drei Anwendungsfélle fir das Konzept und die Implemen-
tierung vorgestellt. Diese verdeutlichen exemplarisch den Nutzen des Konzepts. Das erste
Beispiel ist der Baustein fiir die Umsetzung von PID-Reglern. Anschliefend werdend die am
Lehrstuhl fiir Prozesstechnik entwickelten und verwendeten Prozessfiihrungskomponenten
als Beispiel vorgestellt. AbschlieBend wird am Beispiel der modularen Anlage M4P.AC ein
hybrides System betrachtet. Es ist zu berticksichtigen, dass der Aufbau eines Delta-Baums
grundsétzlich nicht eindeutig ist. Fiir die Nutzung bedeutet dieser Umstand, dass der Auf-
bau der Modelle eine Wahlmoglichkeit des Anwenders ist. Durch die Moglichkeiten der
Transformation kann ohne Einschriankungen zwischen den Varianten gewechselt werden.
In der Darstellung der Anwendungsfélle liegt der Fokus auf den Delta-Modellen und den
Vorteilen, die sich aus der Verwendung des Konzepts ergeben.

6.2.1 PID-Regler-Baustein

Die Gestaltung eines PID-Bausteins in verschiedenen Leitsystemen unterscheidet sich im
Hinblick auf den Funktionsumfang, die Art der Implementierung und die Nutzung. In
der Vergangenheit gab es z.B. in der VDI/VDE 3696 [VDI95] den Vorschlag fiir einen
Standard-PID-Regler. Da sich dieser in aktuellen Implementierungen nicht durchgesetzt
hat, wurde im Rahmen des NAMUR AK 2.2 erneut der Versuch unternommen, einen
Standard-Baustein zu spezifizieren. Da der benétigte Funktionsumfang sehr subjektiv ist
und jeder Anwender und jedes Unternehmen eigene Anwendungsszenarien vor Augen hat,
konnte sich der Arbeitskreis nur auf zwei Varianten des Reglers einigen. Aus diesem Grund
stellt der Regler ein sehr gutes Beisiel fir die Nutzung des vorgestellten Konzepts dar.
Die Forderung, dass der Baustein ein einheitliches Interface und Verhalten aufweist, kann

120

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfille

durch das Konzept erfiillt werden. Gleichzeitig kann die Funktionalitdt flexibel auf die
Wiinsche und Erwartungen des Nutzers zugeschnitten werden.

Bl dpi

Faj-u addemp x
1L} addomp w

-1 | addomp KT

L addomp_FF

i} cont_x_value
1] conf_x_fiags

| | conf_KI_valuoe

1} cone RI_flage
| | conf EP valoe

L} cont_¥F_flags

L} addineon_y valua

L cont_y_flegs

E
-
E
[
|-
E
[
B
Iz
1!
[} conf w valne
[
B
[
[
B
[
[
G
B} } cont_int_EN
[
E

(a) PI-Regler

(b) PID-Regler

H—} deltaServer
] .componentCharts

EH

| | asarncen_int_px E-{) pidt f§ otrl antiwindup

1} conf_ine_DX Y Ren Al EH£] .products
-1} add¥Con_int KT) asdcep_gicx {3 otrl pid

-] § addcep sm1z ==
B-L} conf_ine KT
1 =t |} conf_¥D_fiags -i8p
I? {J cone_tne b 1} conz_aize EN i
L} sone_int W ey B (R
- 1) ssarscen_aife xX1§

B{ J sone_ine XL t§a
G-} cone_ada 1N § ¢ prefilter
ief | adetPiCon_add_TH2 f3ctrl pi
Bf | cont_add INZ i3 p7
B } cone_ada out =} § addFoCon_mul2 IND B
-} addrcon_mu1_tHa v-| | conf mn1? 1Nz £
5L cong_wu1_1n1 1§ conf_mal2 oOT fta

(c) Server-Manager mit Delta-

und Feature-Modellen.

Abbildung 6.4: Delta-Modelle und Aufbau des Server-Managers am Beispiel von PID-Reglern.

Im Folgenden wird der Aufbau von PID-Varianten aus Komponentensystemen betrachtet.
Grundlage dafiir sind Bausteine, die in der IEC 61131 spezifiziert sind. Eine Ubersicht der
Varianten des PID-Reglers aus [WE15b] ist in Abbildung 4.5 dargestellt. Exemplarisch
wurde das Typ-Modell der benétigten Funktionsbausteinbibliotheken erzeugt und ausge-
hend davon die Delta-Modelle zwischen den Varianten gebildet. In Abbildung 6.4 sind
beispielhaft drei Delta-Modelle in der Ansicht eines Engineeringsystems dargestellt. Ein
Ausschnitt aus dem Root-Delta ist in Abbildung 6.4a zu erkennen. Ein Delta-Modell fiir
die Fortentwicklung zum PID-Regler ist in Abbildung 6.4b zu erkennen. Der Ausbau eines
Delta-Servers mit den Delta- und Feature-Modellen ist in Abbildung 6.4¢ zu sehen.

6.2.2 Prozessfiihrungskomponenten

Die in Abschnitt 2.1 eingefithrten Prozessfithrungskomponenten bestehen aus Teilsyste-
men, die in vielen Anwendungen verwendet werden kénnen. Der Unterschied der einzelnen
Prozessfiihrungskomponententypen zueinander ist teilweise sehr gering. Allerdings ist er so
grof}; dass eine Nutzung der gleichen Komponente nicht moglich ist. Zusatzlich beinhalten

121

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

StartD1; V=0.3“ | CMD = =
ROM H Transitions- 5
StartD1| Al E conditon H
A2 = =
03] v - o

EI = —

E S STEP 2 —

=| A2 anNI: ,C1; On; SP=1"
anNI

Abbildung 6.5: Prinzipieller Aufbau einer Prozessfiihrungskomponente [WE15a]

die Komponenten orthogonal zueinander implementierbare Funktionen. Durch den gerin-
gen Abstand und die grofie Variantenvielfalt sind Prozessfithrungskomponenten ein gutes
Anwendungsgebiet fir das vorgestellte Konzept. Bereits bei Anwendungsfillen mit einer
geringen Variantenvielfalt und wenigen Funktionalititen steigt der Implementierungs- und
Wartungsaufwand ohne einen Mechanismus zur Wiederverwendung sehr stark an.

Der prinzipielle Aufbau einer Prozessfithrungskomponente ist in Abbildung 6.5 zu erken-
nen. Die Prozessfiihrungskomponente besteht aus dem Ausfihrungsrahmen und den ent-
haltenen Komponenten. Der Rahmen stellt die Schnittstelle zur Umgebung der Kompo-
nente dar und beinhaltet die Ausfithrungslogik. Am oberen linken Rand ist der Eingang
fiir die Kommandos zur Prozessfithrung dargestellt. Die Kommandos werden durch den
Ausfithrungsrahmen an den Eingang des Automaten, der dieses Kommando verarbeitet,
zugestellt. Beispielhaft ist dargestellt, dass das Kommando StartD1 an den Eingang des
Automaten A1 tubermittelt wurde. Eine Schrittkette kann ebenso ohne weitere Kapselung
in der Prozessfithrungskomponente realisiert werden (Step 1 und Step 2). In Step 2 ist
ein Kommando zu erkennen, das iiber den Ausgang anNI an eine weitere Komponente
itbermittelt wird. Durch die Kommandos werden die angebotenen Dienste der Prozessfiih-
rungskomponenten aufgerufen [WTPE17].

Ein Baustein zum Erkunden und Aufrufen der angebotenen Dienste einer Prozessfithrungs-
komponente ist in Abbildung 6.6 dargestellt [WE17]. Der Baustein modifiziert seine eigenen
Schnittstellen so, dass sie den Parametern der Prozessfithrungskomponente gleichen. Dies
wird iiber die Erkundung der Prozessfithrungskomponente umgesetzt. Dafiir verwendet der
Baustein die Schnittstelle zu einem Dienstsystem. Diese Schnittstelle wird in der Imple-
mentierung durch zusétzliche Bausteine realisiert. Wenn ein Kommando im Eingang CMD
vorliegt und der Eingang SEND auf TRUE gesetzt wird, wird der Dienstaufruf einschlief3-
lich der Werte fiir die Eingangsparameter an die Prozessfithrungskomponente iibertragen.
Die Ausgangsparameter des Bausteins werden regelméflig iiber Abfragen aktuell gehal-
ten. Der Baustein ermoglicht es, aus einer IEC 61131 Umgebung {iber ein Dienstsystem
auf einen Diensterbringer zuzugreifen. Dafiir ist der Baustein flexibel umgesetzt, um mit
unterschiedlichen Diensterbringern umgehen zu kénnen.

122

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfille

Service

Requester
BOOL EN ENO BOOL
BOOL RESET POSCMD STRING
BOOL SEND STATUS INT
STRING TARGET RD_1 ANY
STRING CMD RD_2 ANY
ANY SD_1 RD_n ANY
ANY SD 2
ANY SD m

Abbildung 6.6: Schnittstelle eines Bausteins zum Dienstaufruf [WE17]

In Abbildung 6.7 ist der Aufbau des Basys-Demonstrators zu erkennen. Es handelt sich
dabei um die Simulation eines Transportsystems fiir Paletten, auf denen aufgewickelte
Metallbander (Coils) transportiert werden.

Die Rechtecke in der Darstellung mit der Bezeichnung PEXX stellen Rollgdnge dar. In
diesen befinden sich die Antriebseinheiten, um die Paletten voran zu treiben. In diesem
Beispiel existieren vier Typen von Rollgéngen:

e Normal: Bidirektionaler Transport in horizontaler (Bild-)Richtung.

e Verfahrginge: Bidirektionaler Transport in horizontaler und vertikaler
(Bild-)Richtung.

e Drehteller: Bidirektionaler Transport in horizontaler (Bild-)Richtung und Drehen des
Rollgangs um 180°.

e Ofen: Bidirektionaler Transport in horizontaler (Bild-)Richtung und Erhitzen der
Ladung nach dem Schlieflen der Tore.

An der dargestellten Liste ist zu erkennen, dass die Funktionalitiat der verwendeten Ty-
pen in einigen Punkte deckungsgleich ist. So benétigen alle Rollgéinge die Funktionalitit
des bidirektionalen Transports. Die weiteren Funktionalitdten konnen additiv hinzugefiigt
werden. Es wurden alle Rollgdnge als Varianten des normalen Rollgangs mit erweiterten
Funktionalitaten betrachtet. Davon ausgehend wurden die Funktionalitdten implementiert
und die Transformationen in Form von Delta-Modellen abgelegt. In Abbildung 6.8 sind
exemplarisch zwei dieser Delta-Modelle dargestellt. Auf der linken Seite (Abbildung 6.8a)
ist ein Auszug aus dem Root-Delta fiir den normalen Rollgang zu erkennen. Das Delta-
Modell fiir die Integration der Funktionalitit Drehteller in den Prozessfithrungsbaustein
ist auf der rechten Seite (Abbildung 6.8a) dargestellt.

Ein Vorteil dieser Herangehensweise gegeniiber der vorher gangigen Praxis des Copy-and-
Modify ist, dass eine Anderung an einem Komponentensystem in alle von diesem abge-
leiteten Komponentensysteme eingefiigt wird. Bei nachtraglicher Anderungen an einem
Delta-Modell bzw. einem Komponentensystem ist zu priifen, ob es sich um das Beheben

123

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

Abbildung 6.7: Ubersicht iiber den Aufbau des verwendeten BaSys-Demonstrators.

eines Fehlers oder eine neue Variante handelt. Handelt es sich um eine neue Variante, ist das
Komponentensystem vom Ausgangssystem abgeleitet und es muss ein neues Delta-Modell
erstellt werden. Zusétzlich bietet die Herangehensweise die Moglichkeit, die Implementie-
rungen in anderen Anwendungsfillen und Projekten wiederzuverwenden, da ein Austausch
oder eine Erganzung von Funktionalitdten leicht moglich ist. Durch die Verwendung der im-
plementierten Transformationen ist der Mehraufwand im Rahmen des Engineerings tiber-
schaubar und insbesondere bei Fehlerbehebungen stellt das neue Vorgehen eine deutliche
Verbesserung im Hinblick auf den Zeitaufwand dar.

&0 rE0ZS

-1} cont_oceant_valne

[comt_caxm_valus &) etas)
-} cont_faove_cmoutslow 1) sdomp_workstate
-1} cont_Rove cBOutstop 1) assom_ocsuptedny
-} cont_fove_CBInSton Ly
1) cont_Move CRInS1ow L e
L} cont_Move PosOrBxit B Al calinda
=1} cont_LMove CBOmtSlow L} scsomp,_curza
|] conf_1Mowe_CBOutStop [aacmp_Uniocknod
=]} cont_LMove cRInstop 1} ssdcmp,_opModa
-1 § cont_Liove CBInslow (Yadicmy_Fitove:
1-1] cont_Exdode_Comsand () adscep, tidcve
-1} conf_Turn_50 Hm,‘m
1] vont_Turn_ximip [come_workstare valoe
L} addrocon Torn Start [} oomz_workstate_fisge
1) conz_Turn_CBLlock L) cone_cooupiedhy_tisgs
[} comt_Turn_xPos 1) comr_senderIn_valos
1) cont_Turn_inatSteptiase B b i e
() cont_Turn_sndStepiane) cont_cocast_valne

L) sont_soehst_flags
=L} come_cpbiode_ralus
L come_sptiode_tlage

(a) Aussschnitt Root- (b) Drehteller
Delta

=L § conz_Turn_wostTexe
[] conf Turn activeStep

Abbildung 6.8: Delta-Modelle fiir die Beschreibung von Prozessfiihrungsbausteinen.

124

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6.2 Anwendungsfille

6.2.3 Modulare Anlage M4P.AC

Der im Folgenden beschriebene Anwendungsfall befasst sich mit der Anwendung des vor-
gestellten Konzepts auf ein hybrides System. Da es sich um ein hybrides System handelt
und die eingefithrte Implementierung den Zusammenbau eines Hardwaresystems nicht un-
terstiitzt, ist der Anwendungsfall im rein deskriptiven Bereich angesiedelt. Trotz dieser
Einschrankung ist der Anwendungsfall fiir die Automatisierungstechnik relevant, da jedes
System einen Hardwareteil beinhaltet. Die Umwandlung in das konkrete Komponenten-
system benotigt in diesem Fall die Unterstiitzung eines Menschen bzw. einen vollstédndig
automatisierten Fertigungsprozess.

Beispielhaft fiir ein hybrides System ist die modulare Anlage M4P.Ac, die am Lehrstuhl fiir
Prozessleittechnik entwickelt und betrieben wird. Sie besteht aus drei Waben, die je nach
Produktionsauftrag und produziertem Produkt auf unterschiedliche Weise zusammenge-
schlossen werden konnen. Jede Wabe verfiigt iiber einen anderen technischen Aufbau. Dies
bedeutet eine unterschiedliche Hardware und Automatisierungslosung.

Der beispielhafte Aufbau eines Delta-Baums fiir die Beschreibung solcher Module ist in
Abbildung 5.9 zu finden. Vorteilhaft bei dieser Herangehensweise ist die Nutzung von
Losungen tber die Grenzen von Herstellern hinweg. Wenn eine Hard- oder Softwarekom-
ponente ausgetauscht wird, hat dies unter Umstédnden Auswirkungen auf die umgebenden
Komponenten. Diese Auswirkungen kénnen von einem erneuten Parametrieren bis zu einem
Austausch (von z. B. einem Treiberbaustein) reichen. Es ist wichtig zu berticksichtigen, dass
die Delta Varianten und die Betrachtung als Komponentensystem auf verschiedenen Hie-
rarchieebenen moglich ist. So konnen die unterschiedlichen Varianten eines Moduls durch
die Anderung einer Variante eines Tanks oder einer Pumpe sowie des dazugehérigen Steue-
rungssystems und der dazugehorigen Steuerung erzeugt werden. Durch die Anwendung des
Konzepts wird das Modul mit seinen Komponenten beschrieben und ebenso die Program-
mierung der Steuerungen als eine dieser Komponenten. Insbesondere bei den Steuerungen
erfolgt das Ubersetzen der Komponenten-Modelle in die konkreten Implementierungen je
nach System moglicherweise anders. Dies zeigt die vielfaltigen Freiheitsgrade bei der An-
wendung des Konzepts.

Fiir diesen Anwendungsfall wurde eine Bibliothek erstellt, die die Funktionalitéat der Kom-
ponenten dieses Systems in der Laufzeitumgebung nachbildet. Aus dieser wurden die Typ-
Modelle generiert. Aus den simulierten Komponentensystemen konnten anschliefend die
Instanz-Modelle erzeugt werden. Beispielhaft ist ein Instanz-Modell in Abbildung 6.9b zu
erkennen. In Abbildung 6.9a ist ein Delta zur Beschreibung der modularen Anlage darge-
stellt.

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

) Plant Comphogal
-|_) Metad Flaned
1) Pempe
-} Task
-{) Ventiisnient
1) revgp.
() msakt
4 {) Frodukt
() ventiizuiant
-} VentilTulantTraibar

) PPant LB Lane
-1) PampeTenizer
1 521 bmr t¥amt 1 Zutamt
-} el lwme tvamt i LA Lamt
-] ss1iver thmpe
[mesairianes
b} Tann
() Vent 1n1ant

L ventiisniastTrainer
() Prevens 1zatans

|) FrEvent Lanant

b1} Soliwar tVastiiZolenr
1) o1 lwnr tvamt 1 LabLame

5 {) sstivertremce

) Pampan

) PempalrT ratbar

5) e

(a) Root-Delta der modularen Anlage mit den Operationen. (b) Instanz-Modell der
modularen Analge

Abbildung 6.9: Delta-Modelle fiir die Beschreibung von Prozessfiihrungsbausteinen.

6.3 Evaluierung der Implementierung

Im Folgenden wird zur Evaluierung der Funktionsfahigkeit der Implementierung eine Reihe
von exemplarischen Anwendungsszenarien vorgestellt. Zu jedem Anwendungsszenario wird
die Reaktion der Applikation beschrieben. Die Ubersicht der Szenarien ist in Tabelle 6.1 zu
finden. Es ist zu erkennen, dass die aufgefiihrten Szenarien aus Normal- und Fehlerféllen
bestehen. Die Reaktion auf einen detektierten Fehler ist Anwendungs-spezifisch. So ist das
Loschen eines Objekts durch die Anwendung eines Delta-Modells, das nicht existiert, ein
Fehler. Allerdings beeintréachtigt dieser Fehler nicht die Funktionalitdt der Implementie-
rung. Gleichwohl ist er ein Indikator, dass die Anwendung des Delta-Modells nicht wie
vorgesehen funktioniert hat. Dies kénnte zum Beispiel die Anwendung eines Delta-Modells
in einem neuen Kontext sein. Ziel der Implementierung ist in diesem Fall, den Nutzer auf
den Fehler aufmerksam zu machen und mit dem Prozess fortzufahren.

126

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

UnNpleJy Ioum aqessny pun uonerad() Iop SUNIYISneiydIN

uorned() p usiynysny
UNpeJA Ioule 9qessny pun uoljerdd() Iop SUNIYNISNeIydIN

uonyerad() op uaaynysny
~SBUNpeIN I9ule o(edsny pun uolyead() op SUNIYNISNeIdIN
sBunpeyy Ioute oqessny pun uoljerod() Iop SUNIYNISNeIYdIN
W::Ew? Ioume aqessny pun uorpeisd() Iop SUNIYNISNRIYIIN
uorjerad() Iop ueryysny
TBunppoy Ioum oqessny pun uoread() IOp SUNIYISIRIYDIN
UNPEJA IoUld 9qe3sny pun uoljerod() Iop SUNIYNISNeIyoIN

r Implemeptierung

1e.

63&@‘@1“

uonerd() Iep Suniynysny

[[PPOJN-0INJed] Ud Ul

sunupIouly Iop W USPUNCIDA S[[PPOJN-BIR(] SOP Ue3o[uy
US[[PPOIN

-dA1, wop nz ejueuodWOY-XORIYAN Iop Uesnnzury ‘sunp
-[PIN Ioumd oqessny ‘S[[PPOJN Uopuoyoaldsiuo sop uode[uy
Jop[owagd 0sua(e uopIom zuonb

-9SU0Y] S[B ULSUNPUIqIaA UaIRqjdNUNIoA JOTU SIP ‘D)Uuaua[H
USPUS[D] I9P 9(eSsny Pun [[PPOJ\ SOp WSy So[erired
S[[PPOJN Sop Ua3e[uy

S[[OPOJN Sop uaSa[uy

}I919SIX0 JUYOIU OIP ZURISU[-ULUSUOAUWIOY IoUID UdYISO]
ZURISU[-UDJUOUOAUWOY] 19U UIYDISO]

SI9JoUIRIR] USPUAISIISIXS JUOIU SOUL WIOPUY

SI0)PUIRIR] SOUID WIDPUY

SUNIYOIY USYOS[R] Iop Ul SUNPUIGIDA IoULd qmvmwﬁdw

1Io1)sIx0 dA T, Utey 1op Nz Nz SUNpuIqIop Iould ue3a[uy

LIOTYSIXD JYOIU I9P 1104 WOUID NZ SUNPUIGIOA IOUD UdSo[Uy

SUNPUIQIDA IoUIe UsIo[UY

dAT -usjuouodwoy] WOUIPURYIOA JOIU 1l “d()-08NNZUlY IoUlD UOPUIMUY
91ueu0dWO}] USPUSISIISIXS IoULd I UOIRID()-0SNJNZUTH IOUD USPUIMUY
(zrejsug-00e}I0MU]

uored()-0SNNZUI USINOLIOY 19Ul USPUIMUY
S[[oPOIA-B} e Jop Sunpusmuy

‘zrejsur-uajuanoduIoyy)

E@E@wm%mﬁ@wgodOQEOM ToMZ sne S[[opOJ\-e}[9(] Soulo Qowﬁwﬂpm

(waguanodmIoy[-XO(PIT AY) TS[[OPOIN
-d£7, uepue[ye] 19q WISAS USIOINUOY WP SNk S[[PPOJN-ZURISU] SopP UaSNozIH

(uoguanoduioy] XoqsorRe) US[[PPOIN

-dA T, wopua[ye) 10 WISAG UQJOI[UOY WP SN S[[OPOJ\-ZUR)SU] SOP USFNOZIH
WOYSAG U9JOIUOY WP SN S[[OPOJ\-ZURISU] SOp USNOZIG

Yoyjorqug Ioumo sne S[PPOJN-dA T, soure uasnoziy

(ouraysAsaremyjog) SunSnozIa[opPoIN

uonyeyIddy 1ep stuqeSry

Sunqroayosaqe

uslieuszss3unpusmuy 31p 43qN YdIsieq() :T°9 3||PqeL

127

tar

mit, flir oder In KI-

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

https://doi.org/10.51202/9783186266088

6 Prototypische Realisierung und Anwendungsfille

Dieses Vorgehen fiihrt dazu, dass es zu Folgefehlern kommen kann. Ist es beispielsweise
nicht méglich, eine Komponente in der Implementierung anzulegen, ist es ebenso nicht
moglich, Verbindungen zu dieser Komponente anzulegen. Die Applikation protokolliert
alle diese Folgefehler und stellt als Ergebnis ein unvollstdndiges Komponentensystem zur
Verfiigung. Ob dieses Ergebnis genutzt werden kann, muss der Nutzer fiir jeden Einzelfall
manuell entscheiden.

Die Aufstellung in Tabelle 6.1 soll einen Uberblick iiber die implementierte Funktionalitéit
geben und einen Eindruck vermitteln, wozu die Applikation verwendet werden kann. Ein
Ziel ist es, die Applikation in die bestehenden Implementierungen nahtlos einzufiigen und
dem Nutzer die Anwendung in konkreten Aufgaben so einfach wie moglich zu gestalten.
Daher sind die ausgegebenen Fehlermeldungen so aussagekriftig formuliert, dass der Nutzer
genau erkennen kann, wo der Fehler liegt. So wird beispielsweise der Name der Delta-
Operation und der Grund ihrer nicht ordnungsgeméfien Anwendung angegeben.

128

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

7 Diskussion der Ergebnisse

Das Ziel, ein Konzept zur Unterstiitzung der Wiederverwendung in komponentenbasierten
Architekturen vorzulegen, konnte erreicht werden. Durch die Beriicksichtigung der tech-
nischen Komponenten und der Meta-Metamodelle bei der Entwicklung der Metamodell
kann die Integration in bestehende Architekturen erreicht werden (R1). Zusatzlich wur-
den Ablaufe fiir die Verwendung der Modelle konform zum aktuell in der Praxis gdngigen
Vorgehen vorgestellt. Das Delta-Modell erlaubt die modellbasierte Beschreibung der Va-
riabilitit (R2) und die Integration von bestehenden Losungen (R3), da die Komponenten-
und Delta-Modelle leicht nachtraglich erzeugt werden konnen.

Durch die Nutzung des Komponenten-Modells kann von der konkreten Implementierung
abstrahiert (R4) werden. Das Komponenten-Modell kann zur Abbildung von hybriden Sy-
stemen verwendet werden (R13). Dadurch wird die Variabilitidt im Komponentensystem
unabhéngig von den konkreten Komponenten beschrieben. So kann das in den Kompo-
nentensystemen enthaltene Wissen genutzt werden. Die Referenz vom Typ-Modell einer
Komponente zu beliebig vielen Komponenten-Typen oder anderen Vorlagen (z. B. Proto-
typen) erméglicht die Abbildung von unterschiedlichen Versionen einer Komponente (R6).
So sind die kompatiblen Komponenten-Typen zu einem Typ-Modell explizit beschrieben.

Das Delta-Modell beschreibt nicht nur die Transformation der Komponentensysteme, son-
dern auch die Beziehungen zwischen den Delta-Modellen und somit den Varianten (R5).
Durch ein Feature-Modell werden Varianten von Produkten zusammengefasst. So wird der
Kontext von Varianten und Produkte fir (potentielle) Nutzer explizit und einfach inter-
pretierbar dargestellt. Durch erkundbar abgelegte Modellinstanzen und das vorgestellte
Metamodell wird die automatisierte Interpretation der Modelle unterstiitzt (R12).

Der Prozess zur Integration von geédnderten Varianten bzw. neuen Versionen von Kom-
ponenten wird durch die Manager-Bausteine realisiert (R7). Die vorgestellten Referenzen
zwischen den Modellen untereinander und zu den Komponentensystemen erméglicht die ge-
naue Verfolgung der vorliegenden Komponenten sowie ihrer Abhangigkeiten. So kénnen die
Manager-Bausteinen neue Versionen von Komponenten oder neue Varianten propagieren.
Das an die Versionsverwaltung angelehnte Konzept setzt auf in Versionsverwaltungssy-
stemen bewéhrte Strategien, um die geforderte Funktionalitit bereitzustellen. Durch die
Verwendung eines Servers und beliebig vieler Clients wird eine Integration in verteilte Sy-
steme ermoglicht (R8). Der zentrale Server zur Bereitstellung von Varianten ist ebenso
an die Versionsverwaltung angelehnt (R9). So kénnen die zur Wiederverwendung vorgese-
hen Artefakte innerhalb von Organisationseinheiten verbreitet werden. Eine doppelte und
somit potentiell inkonsistente Datenhaltung wird so vermieden.

Die funktionalen Anforderungen, beschrieben in Kapitel 3, werden erfiillt. Fiir die Wieder-
verwendung ist die Nutzung der Delta-Modelle in einem anderen Kontext niitzlich. Das

129

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

7 Diskussion der Ergebnisse

Konzept stellt so einen Ansatz fiir die Verwaltung von Varianten in Komponentensystemen
(z.B. Funktionsbausteinnetzen) dar.

Ebenso werden die nicht-funktionalen Anforderungen erfiillt und die Integration in beste-
hende Prozesse (R10) wird durch die Beriicksichtigung von Prozessen aus dem Engineering
wie der NA 35 oder dem ACPLT/SDP sichergestellt. Die Verwendung von Komponenten
als Grundlage der Wiederverwendung ermoglicht die Nutzung bestehender Paradigmen
und Sprachen (R11) aus der Automatisierungstechnik. Durch den Aufbau als Objektstruk-
turen und die Verwendung einer Laufzeitumgebung, die den Zugriff auf Objekte erlaubt,
konnen die Modelle Grundlage fiir eine automatisierte Weiterverarbeitung sein (R12).

Delta-Modelle werden selbst bei einfachen Aufgaben sehr schnell so komplex, dass sie
ohne eine automatisierte Bearbeitung schwer anzuwenden sind. Durch die Nutzung der
objektorientierten Modellierung fir jede Operation werden die Modelle selbst relativ grof3.
Andere Ansitze fur die Abbildung der Delta-Modelle sind, eine andere Form der Mo-
dellierung der Deltas oder eine optimierte Form der Implementierung des vorgestellten
Modells zu verwenden. Gleichwohl dndert sich fiir den Nutzer dadurch nicht die Menge
der Informationen, die ihm bei der Anwendung des Konzepts zur Verfiigung gestellt wer-
den. Dementsprechend muss diese Informationsmenge durch ein Engineering-Tool fiir den
Nutzer handhabbar gemacht werden. Durch eine automatisierte Informationsverarbeitung
kann der Nutzer unterstiitzt werden.

Positiv an Delta-Modellen ist, dass die Objekte der Wiederverwendung von der Art und
der Grofle frei gewdhlt werden konnen. So konnen je nach Anwendungsfall die wieder-
verwendbaren Objekte moglichst gut definiert werden (vgl. [Bér89]). Das Zusammenfassen
und Trennen von Delta-Modellen ermdglicht einen Aufgaben- und Zielgruppen-orientierten
Einsatz von Objekten der Wiederverwendung. So entsteht eine Grundlage zu einem Wie-
derverwendungsmanagement in komponentenorientierten Systemen.

Im vorgestellten Konzept wurde in zwei Punkten von den Delta-Modellen in der Software-
technik abgewichen. Es wurde eine Reihenfolge in die Delta-Operationen integriert, da es
bei der Anwendung auf hierarchische Systeme erforderlich ist, zunichst die iiberlagerten
Komponenten anzulegen. Zusétzlich wurden die Regeln fir die Anwendung der Delta-
Operationen enger gefasst. So ist ist es nicht regelkonform, eine Hinzuftigen-Operation auf
ein Objekt anzuwenden, das bereits existiert. Dies stellt einen Fehler dar, der méglicher-
weise ein Indiz fiir ein grofieres Problem ist. Daher muss der Sachverhalt protokolliert und
dem Nutzer zur Kenntnis gebracht werden.

Die beschriebene Variabilitdt beschrénkt sich auf Variabilitdt in den Modellen. So kann
durch die Einfithrung einer neuen Version mit einem grofieren Funktionsumfang ein neues
Komponentensystem realisiert werden. Dieses wird nur dann im Modell als neue Variante
dargestellt, wenn eine neue Komponente im Typ-Modell angelegt wird. Erfolgt dies nicht,
entsteht zwar ein neues Produkt, allerdings wird dieses nicht modelliert. Dies kann zu
einem unvollstdndigen Modell fithren, wenn das Typ-Modell nicht aktualisiert wird.

Die Einfithrung des vorgestellten Konzepts erfordert neben der technischen auch eine or-
ganisatorische Umsetzung. Das bedeutet, dass die Ablaufe in einer Organisationseinheit so
gestaltet werden miissen, dass alle Komponentensysteme auf einem zentralen Server abge-
legt werden. Den dafiir nétigen Prozess zu definieren, ist relativ einfach méglich. Damit der
Prozess in der téglichen Praxis verwendet und der Nutzen durch die Wiederverwendung

130

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

realisiert wird, miissen die Anwender fiir diesen Prozess gewonnen werden. Dies kann bei-
spielsweise durch eine nahtlose Integration in bestehende Tools und die Herausarbeitung
des Nutzens fiir den Einzelnen passieren.

Wird das im Rahmen dieser Arbeit entwickelte Konzept an den vorgestellten Grundsétzen
zur ordnungsgemaflen Modellierung gemessen, so werden die relevanten Kriterien erfillt.
Die entwickelten Metamodelle sind semantisch und syntaktisch richtig aufgestellt. Grundla-
ge dafiir ist das SIC-Modell und das ACPLT/RTE bzw. OPC UA Metamodell. Die Modelle
bilden nur die fiir den beschriebenen Anwendungsfall nétigen Aspekte klar und tbersicht-
lich ab. Daher werden die Forderungen nach Klarheit und Relevanz ebenso erfiillt. Da alle
benotigten Sichten auf den Anwendungsfall durch die Metamodelle adressiert werden, ist
ein systematischer Aufbau gegeben. Die Forderungen nach der Wirtschaftlichkeit und der
Vergleichbarkeit sind im Rahmen dieser Arbeit von untergeordneter Bedeutung. Bei der
Verwendung der Modelle im Rahmen des vorgestellten Konzepts besteht allerdings durch
die Wiederverwendung ein enormes Einsparpotential.

131

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde ein Konzept zur Unterstiitzung der Wiederverwendung
von komponentenbasierten Architekturen vorgestellt. Fiir die Wiederverwendung wurden
Delta-Modelle zur Beschreibung der Variabilitdt genutzt. Kern des Konzepts sind ein Me-
tamodell fiir Komponenten und ein Metamodell fiir Delta-Modelle. Ausgehend von diesen
Modellen wurden Transformationen und Prozesse zu deren Nutzung entwickelt. Die Delta-
Modelle sollen in der dezentralen Entwicklung zur Nutzung von existierenden Losungen
verwendet werden. Dafiir wurden eine Architektur und Prozesse zur Anwendung vorge-
stellt.

Die Erprobung des Konzepts wurde anhand einer prototypischen Implementierung de-
monstriert und es wurden Randbedingungen und Empfehlungen fir seine Verwendung
formuliert. Neben den Datenmodellen und Transformationen wurde ein Abstandsmaf fir
Delta-Modelle entwickelt, mit dessen Hilfe entschieden werden kann, ob Produkte Vari-
anten voneinander sind. Zusétzlich wurde ein Vorschlag gemacht, wie durch die farbliche
Kodierung der Komponenten in einer Visualisierung Varianten dargestellt werden kénnen.

Zukinftige Arbeiten kénnen sich mit der Anwendung des Konzepts in der Fertigungstech-
nik beschéaftigen. Dafiir muss der Aufbau der dort verwendeten Systeme und die spezifi-
schen Prozesse dieser Doméne beriicksichtigt werden. Die Nutzung von Fertigungszellen
mit verschieden Systemen und einem hohen Anteil gleicher Komponenten bietet sich dafiir
an. In diesem Bereich existieren bereits verschiedene Ansétze, die Funktionalitdten dieser
Zelle und der darin verbauten Aktoren zu klassifizieren. Die Nutzung von Komponenten-
Modellen kann zu einem Nutzen von Strukturmodellen und den damit verbundenen Vor-
teilen fiir die automatisierte Interpretation der Topologie in der Fertigungsautomation
fithren.

Die Weiterentwicklung der Architektur fiir die dezentrale Wiederverwendung kénnte von
der Server-Client-Struktur hinzu einer Peer-to-Peer-Struktur konnte Untersucht werden.
Fiir gewisse Anwendungsfille konnte der Verzicht auf einen zentralen Server Vorteile bieten.

Ebenso ist die Integration von virtuellen Komponenten in ein Komponentensystem ein
weiterer Ansatz, der verfolgt werden kann. Dies kann im Bereich des Testens von hybriden
Systemen einen Fortschritt bedeuten oder die virtuelle Inbetriebnahme erleichtern. Im
Kontext von Industrie 4.0 wird die virtuelle Inbetriebnahme als Weg zur Reduktion von
Kosten und Aufwénden diskutiert.

Das Konzept kann eine Grundlage fiir die Verteilung von Funktionalitét zwischen unter-
schiedlichen Rechenknoten sein. Die Varianten mit ihren unterschiedlichen Anforderungen
an die Performance und den individuellen Features kann zu einer Anpassung oder Ver-
schiebung von Last genutzt werden. Dies ist ein Ansatz, die verbaute Hardware besser
auszulasten bzw. Lastspitzen durch Verteilung der Last auf andere Knoten abzufedern.

132

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[AE17]

[AIb03]

[App90]

[ASEOS]

[Ava06]

[Bat05]

[BFK*17]

[BHH*16]

AZARMIPOUR, Mahyar ; EPPLE, Ulrich: Interoperabilitidt von OPC UA und
DDS; Nichtredigierter Manuskriptdruck. In: Automation 2017 : technology
networks processes : 18. Leitkongress der Mess- und Automatisierungstechnik
: Kongresshaus Baden-Baden, 27. und 28. Juni 2017 / VDI VDE, VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik Bd. 2293. Disseldorf : VDI
Verlag GmbH, Jun 2017 (VDI-Berichte), 87-88. — Datentriger: 1 USB-Stick
1.1

ALBRECHT, Harald: On Meta-Modeling for Communication in Operational
Process Control Engineering. In: at-Automatisierungstechnik/Methoden und

Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 51 (2003),
Nr. 7/2003, S. 339-340 4.4.1

APPEL, Andrew W.: A runtime system. In: Lisp and Symbolic Computation
3 (1990), Nr. 4, S. 343-380 2.1.1

ABEL, Dirk (Hrsg.) ; SPOHR, Gerd-Ulrich (Hrsg.) ; EPPLE, Ulrich (Hrsg.):
Integration von Advanced Control in der Prozessindustrie: Rapid Control Pro-
totyping. 1. Aufl. Weinheim : Wiley-VCH, 2008. http://dx.doi.org/
10.1002/9783527626373. http://dx.doi.org/10.1002/9783527626373. —
ISBN 3527312056 2.1.1, 2.1.3

AvAK, Bjorn: Variant management of modular product families in the market
phase 4.3.1

BATORY, Don: Feature models, grammars, and propositional formulas. In:
International Conference on Software Product Lines Springer, 2005, S. 720
4.3.2

BrocH, Henry ; FAy, Alexander ; KNOHL, Torsten ; HOERNICKE, Mario
; BERNSHAUSEN, Jens ; HENSEL, Stephan ; HAHN, Anna ; URBAS, Leon:
A microservice-based architecture approach for the automation of modular
process plants. In: Emerging Technologies and Factory Automation (ETFA),
2017 22nd IEEE International Conference on IEEE, 2017, S. 1-8 2.1.1, 2.1.4,
5.1.1

BERNSHAUSEN, J ; HALLER, A ; HoLMm, T ; HOERNICKE, M ; OBST,
M ; LADIGES, J: Namur-Modul Type Package. Modulbeschreibung
fir die effiziente Automatisierung modularer Anlagen. In: atp edition—
Automatisierungstechnische Praxis 58 (2016), S. 1-2 2.2.1

133

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Bérsg)

[Bra04]

[BRS95]

[BSF+09)]

[BSG12]

[BUN]

[CGR*12]

[CHS10]

[CSFPOS]

[CW9g]

[DB+07)

134

BORSTLER, Jiirgen: Wiederverwendbarkeit und Softwareentwicklung-
Probleme, Losungsansdtze und Bibliographie. RWTH, Fachgruppe Informatik,
1989 4.2,4.2.1, 7

BRAUTIGAM, Lars-Peter: Kostenverhalten bei Variantenproduktion. Wies-
baden : Deutscher Universitatsverlag, 2004 (Schriften zum Produktions-
management). http://dx.doi.org/10.1007/978-3-322-81758-7. http:
//dx.doi.org/10.1007/978-3-322-81758-7. - ISBN 3-8244-8109-X 4.3.1

BECKER, Jorg ; ROSEMANN, Michael ; SCHUTTE, Reinhard: Grundsétze
ordnungsméaBiger modellierung. In: Wirtschaftsinformatik 37 (1995), Nr. 5,
S. 435-445 4.4, 4.4, 4.4.1

BARTH, M. ; STRUBE, M. ; FAY, A. ; WEBER, P. ; GREIFENEDER, J.: Object-
oriented engineering data exchange as a base for automatic generation of si-
mulation models. In: 2009 35th Annual Conference of IEEE Industrial Elec-
tronics, 2009. — ISSN 1553-572X, S. 2465-2470 4.4.1

BucHHOLZ, Meike ; SOUREN, Rainer ; GELBRICH, Katja: Theorie der Vari-
antenvielfalt: Ein produktions- und absatzwirtschaftliches Erklirungsmodell:
Zugl.: llmenau, Techn. Univ., Diss., 2012. Wiesbanden : Springer Gabler,
2012 (Springer Gabler Research). — ISBN 978-3-8349-4199-2 4.3.1, 4.3.1,
4.3.3

Bundesministerium fir Wirtschaft und Energie: Plattform Industrie 4.0.
http://www.plattform-i40.de/I40/Navigation/DE/Home/home.html 1.1

CzARNECKI, Krzysztof ; GRUNBACHER, Paul ; RABISER, Rick ; SCHMID,
Klaus ; WAsowskl, Andrzej: Cool Features and Tough Decisions: A Com-
parison of Variability Modeling Approaches. In: Proceedings of the 6th In-
ternational Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’12), ACM, 2012, S. 173-182 4.3, 4.3.2

CLARKE, Dave ; HELVENSTELIN, Michiel ; SCHAEFER, Ina: Abstract Delta
Modeling. In: SIGPLAN Not. 46 (2010), Oktober, Nr. 2, 13-22. http://
dx.doi.org/10.1145/1942788.1868298. — DOI 10.1145/1942788.1868298.
— ISSN 0362-1340 4.3.2, 4.6, 4.3.3, 8

COLLINS-SUSSMAN, Ben ; FITZPATRICK, Brian W. ; PiLaTO, C M.: Version
control with subversion. O’Reilly, 2008 4.2.3

CONRADI, Reidar ; WESTFECHTEL, Bernhard: Version models for software
configuration management. In: ACM Computing Surveys (CSUR) 30 (1998)
Nr. 2, S. 232-282 4.2.3

DALGARNO, Mark ; BEUCHE, Danilo u.a.: Variant management. In: 3rd
British Computer Society Configuration Management Specialist Group Con-
ference Bd. 1, 2007 4.3.1

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[DF04]

[Die02]

[DINO2]

[DIN14]

[DLPHOS]

[DMG*17]

[Dud]

[EE13]

[EMPA17]

(Ens01]

Literaturverzeichnis

DranT, R ; FEDAIL, M: CAEX-ecin neutrales Datenaustauschformat fiir
Anlagendaten-Teil 1 und 2. In: Automatisierungstechnische Prazis-atp 46

(2004), Nr. 2, S. 52-56 2.2.1

DieETZSCH, Andreas: Systematische Wiederverwendung in der Software-
Entwicklung. Wiesbaden and s.. : Deutscher Universitdtsverlag, 2002.
http://dx.doi.org/10.1007/978-3-663-11580-9. http://dx.doi.org/
10.1007/978-3-663-11580-9. — ISBN 978-3-8244-2151-0 2.1.2, 2.2.1, 2.2.1,
4.2.1

DIN Deutsches Institut fiir Normung e.V.: Technische Produktdokumentation
- CAD-Modelle, Zeichnungen und Sticklisten - Teil 1: Begriffe. Berlin, 2002
4.3.1, 4.3.1

DIN Deutsches Institut fir Normung e.V.: DIN SPEC 40912: Kernmodelle -
Beschreibung und Beispiele. Berlin, 2014 2.2.1, 1, 2.2.1, 2.8, 2.2.1, 4.4, 4.7,
441,441,443, 412,443,413, 5.1.1, 8

DRATH, Rainer ; LUDER, Arndt ; PESCHKE, Jorn ; HUNDT, Lorenz:
AutomationML-the glue for seamless automation engineering. In: Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE International
Conference on IEEE, 2008, S. 616623 4.4.2

DRrATH, Rainer ; MALAKUTI, Somayeh ; GRUNER, Sten ; GROTHOFF, Juli-
an A. ; WAGNER, Constantin A. ; EPPLE, Ulrich ; HOFFMEISTER, Michael
; ZIMMERMANN, Patrick: Die Rolle der Industrie 4.0 ,Verwaltungsschale“
und des ,digitalen Zwillings* im Lebenszyklus einer Anlage : Navigationshil-
fe, Begriffsbestimmung und Abgrenzung. In: Automation 2017 : technology
networks processes : 18. Leitkongress der Mess- und Automatisierungstechnik
: Kongresshaus Baden-Baden, 27. und 28. Juni 2017 / VDI VDE, VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik Bd. 2293. Diisseldorf : VDI
Verlag GmbH, Jun 2017 (VDI-Berichte), 93-94. — Datentrager: 1 USB-Stick
1.1,2.1.3, 221, 4.2.4

DUDENREDAKTION ; DUDENVERLAG (Hrsg.): Version. https://www.duden.
de/node/703510/revisions/1668452/view 4.2.3

EvVERTZ, Lars ; EPPLE, Ulrich: Laying a basis for service systems in process
control. In: 18th Conference on Emerging Technologies € Factory Automation
(ETFA), 2013, S. 1-8 1.1, 2.1.4, 4.4.3

EppLE, Ulrich ; MERTENS, Martin ; PALM, Florian ; AZARMIPOUR, Mahyar:
Using Properties as Semantic Base for Interoperability. In: IEEFE transactions
on industrial informatics (2017), 9 Seiten. http://dx.doi.org/10.1109/
TII.2017.2741339. — DOI 10.1109/T1I.2017.2741339. — ISSN 1941-0050. —
Online-First 3.2, 4.4.3

ENSTE, Udo: Fortschritt-Berichte VDI Reihe 8, Mefs-, Steuerungs- und Rege-
lungstechnik. Bd. 884: Generische Entwurfsmuster in der Funktionsbaustein-
technik und deren Anwendung in der operativen Prozefifihrung: Zugl.: Aa-

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Epp08g]

[FA09)]

[FFVH12]

[FLK*14]

[FRO7]

[FVHF*+15]

[Gas12]

[GE13]

[GHJIV11]

136

chen, Techn. Hochsch., Diss., 2000. Als Ms. gedr. Diisseldorf : VDI-Verl.,
2001. — ISBN 3183884089 2.2.1, 4.1, 5.1.3

EpprLE, Ulrich: Begriffliche Grundlagen der leittechnischen Modellwelt. In:
Automatisierungstechnische Praxis : atp 50 (2008), Nr. 4, 83-91. http://
publications.rwth-aachen.de/record/133133. — ISSN 0178-2320 2.2.1,
44

FrUH, Karl F. (Hrsg.) ; AHRENS, Wolfgang (Hrsg.): Handbuch der Pro-
zessautomatisierung: Prozessleittechnik fir verfahrenstechnische Anlagen. 4.,
iiberarb. Aufl. Miinchen : Oldenbourg, 2009. — ISBN 9783835631427 2.1,
2.1.1, 2.1.1, 3.1

FELDMANN, Stefan ; FucHs, Julia ; VOGEL-HEUSER, Birgit: Modularity,
variant and version management in plant automation—future challenges and
state of the art. In: DS 70: Proceedings of DESIGN 2012, the 12th Interna-
tional Design Conference, Dubrovnik, Croatia, 2012 4.2.3, 4.2.4

Fucas, Julia ; LEGAT, Christoph ; KERNSCHMIDT, Konstantin ; FRANK,
Timo ; VOGEL-HEUSER, Birgit: Interdisziplindrer Produktlinienansatz zur
Unterstiitzung der Wiederverwendbarkeit im Maschinen-und Anlagenbau. In:
13. Fachtagung: Entwurf komplezer Automatisierungssysteme (EKA 2014),
2014 4.2.4

FRANCE, Robert ; RUMPE, Bernhard: Model-driven development of complex
software: A research roadmap. In: 2007 Future of Software Engineering IEEE
Computer Society, 2007, S. 37-54 4.4.2

FAy, Alexander ; VOGEL-HEUSER, Birgit ; FRANK, Timo ; ECKERT, Karin
; HADLICH, Thomas ; DIEDRICH, Christian: Enhancing a model-based en-
gineering approach for distributed manufacturing automation systems with
characteristics and design patterns. In: Journal of Systems and Software 101
(2015), S. 221-235. http://dx.doi.org/10.1016/5.jss.2014.12.028.
DOI 10.1016/j.jss.2014.12.028 1.1

GASSER, Tom M. (Hrsg.): Berichte der Bundesanstalt fir Strassenwe-
sen F, Fahrzeugtechnik. Bd. 83: Rechtsfolgen zunehmender Fahrzeugauto-
matisierung: Gemeinsamer Schlussbericht der Projektgruppe ; Bericht zum
Forschungsprojekt F 1100.5409013.01. Bremerhaven : Wirtschaftsverl.
NW Verl. fiir neue Wiss, 2012 http://bast.opus.hbz-nrw.de/volltexte/
2012/587/. — ISBN 978-3-86918-189-9 2.1

GRUNER, Sten ; EPPLE, Ulrich: Paradigms for unified runtime systems in
industrial automation. In: Control Conference (ECC), 2018 European, 2013,
3925-3930 6.1

GamwMmA, Erich ; HELM, Richard ; JoHNSON, Ralph E. ; VLISSIDES, John:
Design patterns: Elements of reusable object-oriented software. 39. printing.
Boston : Addison-Wesley, 2011 (Addison-Wesley professional computing se-
ries). — ISBN 0201633612 4.4.1

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[GJHV11]

[GPE16]

[GPP16]

[GR5]

[Griil7]

[Har87]

[HCO1]

[HHK*13]

[HKR*11]

[HMW12]

[HRRS11]

Literaturverzeichnis

GAMMA, Erich ; JOHNSON, Ralph ; HELM, Richard ; VLISSIDES, John: Ent-
wurfsmuster: Elemente wiederverwendbarer objektorientierter Software. Pear-
son Deutschland GmbH, 2011 4.2.2

GROTHOFF, Julian A. ; PALM, Florian ; EPPLE, Ulrich: Modelltransformati-
on als Softwareadapter fiir OPC Unified Architecture. In: 7. Jahreskolloquium
"Kommaunikation in der Automation”: 80.11.2016 : KommA 2016 Kommuni-
kation in der Automation / Jirgen Jasperneite, Ulrich Jumar (Hrsg.) ; eine
Kooperation von: inIT, IFAK. Lemgo, 2016 4.4.1

GRUNER, Sten ; PFROMMER, Julius ; PALM, Florian: RESTful Industrial
Communication with OPC UA. In: IEEE Transactions on Industrial In-
formatics (2016), S. 1. http://dx.doi.org/10.1109/TII.2016.2530404. —
DOI 10.1109/T11.2016.2530404. — ISSN 1551-3203 2.2.2, 6.1

GOLDBERG, Adele ; RUBIN, Kenneth S.: Succeeding with Objects. Decision
Frameworks for Project Management. In: Reading, Mass.: Addison-Wesley,|
c1995 (1995) 4.2.1

GRUNER, Sten: Ressourcenadaptive Anwendungen fiir die operative Prozess-
leittechnik, RWTH Aachen, Dissertation, 2017 2.1.1, 2.1.1, 2.1.1

HAREL, David: Statecharts: A visual formalism for complex systems. In:
Science of computer programming 8 (1987), Nr. 3, S. 231-274 5.4.2

HEINEMAN, George T. ; CouNciLL, William T.: Component-based software
engineering: Putting the pieces together. Boston, Mass. : Addison-Wesley,
2001. — ISBN 0-201-70485—4 2.2.1, 2.10, 8

HABER, Arne ; HOLLDOBLER, Katrin ; KoLAssA, Carsten ; LooK, Markus ;
RuMPE, Bernhard ; MULLER, Klaus ; SCHAEFER, Ina: Engineering delta mo-
deling languages. In: Proceedings of the 17th International Software Product
Line Conference ACM, 2013, S. 22-31 4.3.3

HABER, Arne ; Kurz, Thomas ; RENDEL, Holger ; RUMPE, Bernhard ;
SCHAEFER, Ina: Delta-oriented architectural variability using monticore. In:
Proceedings of the 5th European Conference on Software Architecture: Com-
panion Volume ACM, 2011, S. 6 4.3.3

HELVENSTEIIN, Michiel ; MuscHEVICI, Radu ; WONG, Peter Y.: Delta mo-
deling in practice: a Fredhopper case study. In: Proceedings of the Sizth In-
ternational Workshop on Variability Modeling of Software-Intensive Systems
ACM, 2012, S. 139-148 4.3.3

HABER, Arne ; RENDEL, Holger ; RUMPE, Bernhard ; SCHAEFER, Ina: Delta

Modeling for Software Architectures. In: Dagstuhl-Workshop MBEES: Mo-
dellbasierte Entwicklung eingebetteter Systeme VII Citeseer, 2011 4.3.3

137

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[HSF*13] HoLM, Thomas ; SCHROCK, Sebastian ; FAY, Alexander ; JAGER, Tobias

138

[IEC04]

[IECO5]

[IEC10]

[IEC14a]

[IEC14b)]

[IEC14c]

[IEC16]

[IEC17]

(1SO11]

(1S012]

[JT00]

; LOWEN, Ulrich: Engineering von “Mechatronik und Software* in auto-
matisierten Anlagen: Anforderungen und Stand der Technik. In: Software
Engineering (Workshops), 2013, S. 261-272 2.1, 2.1.3, 2.1.3, 2.2.2, 3.1

International Electrotechnical Commission: [EC 61131:Programmable con-
trollers - Part 1: General information . 2004 2.3, 3.1, 5.1.2, 8

International Electrotechnical Commission: IEC 61499: Function blocks. 2005
2.1.1,2.1.1, 2.1.4, 2.2.1, 2.2.2

International Electrotechnical Commission: IEC 625/1. OPC Unified Archi-
tecture Part 1-10, Release 1.0. 2010 2.2.2, 4.4, 4.4.1, 4.4.1

International Electrotechnical Commission: IEC 61131: Internationales Elek-
trotechnisches Warterbuch - Teil 351: Leittechnik. 2014 4.4

International Electrotechnical Commission: [EC 61131:Programmable con-
trollers - Part 3: Programming languages. 3rd. 2014 5,2.1.1, 2.4, 2.2.2, 5.1.4,
53.3,8

International Electrotechnical Commission: IEC 62714: Engineering data ex-
change format for use in industrial automation systems engineering - Au-
tomation markup language - Part 1: Architecture and general requirements.
Juni 2014 4.4.2

International Electrotechnical Commission: [IEC 62424: Representation of
process control engineering - Requests in P&I diagrams and data exchange
between PE&ID tools and PCE-CAE tools. Juli 2016 2.2.1, 2.2.1, 2.2.2, 3.2,
442524, 5.3.2

International Electrotechnical Commission: IEC 61360:Standard data element
types with associated classification scheme - Part 1: Definitions - Principles
and methods. 3rd. 2017 4.4.3

International Electrotechnical Commission: ISO/IEC 25010: Systems and
software engineering — Systems and software Quality Requirements and Eva-
luation (SQuaRE) — System and software quality models. 2011 4.1, 4.2

International Electrotechnical Commission: ISO/IEC 19505-1: Information
technology — Object Management Group Unified Modeling Language (OMG
UML) — Part 1: Infrastructure. April 2012 4.4.2

JonN, Karl-Heinz ; TIEGELKAMP, Michael: SPS-Programmierung mit IEC
61131-3: Konzepte und Programmiersprachen, Anforderungen an Program-
miersysteme, Entscheidungshilfen. 3., neubearb. Aufl. Berlin and Heidelberg
and New York and Barcelona and Hongkong and London and Mailand and Pa-
ris and Singapur and Tokio : Springer, 2000 (VDI-Buch). — ISBN 3540664459
2.1.1, 2.1.1, 2.2.2

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[Kam17]

[KBD*08]

[KCH*90]

[KCH*92]

[KCJ*10]

[KE12]

[KLD02]

[KLL*14]

[Koe85]

[KPST14]

Literaturverzeichnis

KAMPERT, David: Operative Verwendung merkmalbasierter Information in
der Automatisierung; Als Manuskript gedruckt. Dusseldorf, RWTH Aachen
University, Dr., 2017. http://dx.doi.org/10.18154/RWTH-2017-06589. —
DOI 10.18154/RWTH-2017-06589. — 1 Online-Ressource (X, 124 Seiten) :
lustrationen, Diagramme S. — Auch veréffentlicht auf dem Publikationsser-
ver der RWTH Aachen University; Dissertation, RWTH Aachen University,
2017 2.1.1, 4.4

KRAMER, Stefan ; BAMBERG, Andreas ; DUNNEBIER, Guido ; HAGENMEYER,
Veit ; PIECHOTTKA, Uwe ; SCHMITZ, S: Prozessfithrung: Beispiele, Erfahrung
und Entwicklung. In: Chemie Ingenieur Technik 80 (2008), Nr. 9, S. 1341-
1342 2.1

Kang, Kyo C. ; CoHEN, Sholom G. ; HESs, James A. ; Novak, William E. ;
PETERSON, A S.: Feature-oriented domain analysis (FODA) feasibility study
/ Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst. 1990. —
Forschungsbericht 4.3.2

Kang, Kyo C. ; COHEN, Sholom ; HOLIBAUGH, Robert ; PERRY, James
; PETERSON, A S.: A reuse-based software development methodology /
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEE-
RING INST. 1992. — Forschungsbericht 4.2.1

KARNOUSKOS, Stamatis ; COLOMBO, Armando W. ; JAMMES, Francois ;
DELSING, Jerker ; BANGEMANN, Thomas: Towards an architecture for
service-oriented process monitoring and control. In: IECON 2010 - 36th An-
nual Conference of IEEE Industrial Electronics, 2010, S. 1385-1391 2.2, 2.1.1,
8

KAMPERT, David ; EPPLE, Ulrich: Kernmodelle fiir die Systembeschreibung -
Ein Konzept zur Vereinfachung. In: Atp-Edition : automatisierungstechnische
Prazis 54 (2012), Nr. 7/8, 40-48. http://publications.rwth-aachen.de/
record/140375. — ISSN 0178-2320 2.1

KanNg, Kyo C. ; LEE, Jaejoon ; DONOHOE, Patrick: Feature-Oriented Product
Line Engineering. In: IEEFE software 19 (2002), Nr. 4, S. 58-65 4.3.2

KowaAL, Matthias ; LEGAT, Christoph ; LOREFICE, David ; PREHOFER,
Christian ; SCHAEFER, Ina ; VOGEL-HEUSER, Birgit: Delta modeling for
variant-rich and evolving manufacturing systems. In: NAIR, Anil R. (Hrsg.) ;
PRAHOFER, Herbert (Hrsg.) ; ZoITL, Alois (Hrsg.) ; JETLEY, Raoul (Hrsg.) ;
DuUBEY, Alpana (Hrsg.) ; KUMAR, Atul (Hrsg.): the 1st International Work-
shop on Modern Software Engineering Methods for Industrial Automation,
2014, S. 3241 4.3.1, 4.3.3

KOoEN, Billy V.: Definition of the Engineering Method. American Sisiety for
Engineering Education, 1985 2.1.3

KowaAL, Matthias ; PREHOFER, Christian ; SCHAEFER, Ina ; TRIBASTONE,
Mirco: Model-based Development and Performance Analysis for Evolving

139

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

140

Manufacturing Systems. In: at - Automatisierungstechnik 62 (2014), Nr. 11.
http://dx.doi.org/10.1515/auto-2014-1098. — DOI 10.1515/auto-2014—-
1098. — ISSN 0178-2312 4.3.3

[Kru95] KRUCHTEN, Philippe B.: The 44 1 view model of architecture. In: IEEFE
software 12 (1995), Nr. 6, S. 42-50 4.1, 4.4.2, 8

[Kru04] KRUCHTEN, Philippe: The rational unified process: an introduction. Addison-
Wesley Professional, 2004 2.2.1, 4.4, 4.4.2

[Lee08] LEE, Edward A.: Cyber physical systems: Design challenges. In: Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE Inter-
national Symposium on, 2008, S. 363-369 1.1

[Lim94] Lim, W. C.: Effects of reuse on quality, productivity, and economics. In:
IEEFE Software 11 (1994), Nr. 5, S. 23-30. http://dx.doi.org/10.1109/
52.311048. DOI 10.1109/52.311048. ISSN 0740-7459 2.1.2, 4.2, 4.2,
4.3.3

[Lin94] LiNGNAU, Volker: Betriebswirtschaftliche Studien. Bd. 58: Variantenmanage-
ment: Produktionsplanung im Rahmen einer Produktdifferenzierungsstrategie:
Zugl.: Berlin, Techn. Univ., Diss., 1994 . Berlin : Schmidt, 1994. — ISBN 3
503-03619-9 4.3.1, 4.3.1

[LKS16] LiTY, Sascha ; KOWAL, Matthias ; SCHAEFER, Ina: Higher-order Delta Mo-
deling for Software Product Line Evolution. In: Proceedings of the 7th Inter-
national Workshop on Feature-Oriented Software Development. New York,
NY, USA : ACM, 2016 (FOSD 2016). — ISBN 978-1-4503-4647-4, 39-48
4.3.3

[LMO6] LEITNER, Stefan-Helmut ; MAHNKE, Wolfgang: OPC UA-service-
oriented architecture for industrial applications. (2006). http:
//www2.cs.uni-paderborn.de/cs/ag-engels/GI/0RA2006-Papers/
leitner-final.pdf 4.9, 8

[Lofl1l] LOFFLER, Carina: IPA-IAO Forschung und Prazis. Bd. 519: Systematik der
strategischen Strukturplanung fir eine wandlungsfihige und vernetzte Pro-
duktion der variantenreichen Serienfertigung: Zugl.: Stuttgart, Univ., Diss.,
2011. Heimsheim : Jost-Jetter, 2011 http://nbn-resolving.de/urn:nbn:
de:bsz:93-opus-70492. - ISBN 978-3-939890-90-4 2.1.4

[LS17] LAcCKES, Richard ; SIEPERMANN, Markus ; SPRINGER GABLER VERLAG
(Hrsg.): Gabler Wirtschaftslezikon. http://wirtschaftslexikon.gabler.
de/Archiv/74918/wiederverwendbarkeit-v8.html. Version:2017 4.3

[LU17] LEON URBAS, Christian K. u.: Namur Open Architecture. In: atp edition 59
(2017), Nr. 01-02, 20-37. http://dx.doi.org/10.17560/atp.v59i01-02.
620. — DOI 10.17560/atp.v59i01-02.620. — ISSN 2364-3137 1.1

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[Lun03]

[Mah14]

[MBOO]

[Mer12]

[Mey88]

[Mey09]

[MPH*07)

[NAMOY6)

[NAMO2]

[NAMO3)]

[NAMOS]

[NAM13]

[NAM14]

Literaturverzeichnis

LUNZE, Jan: Automatisierungstechnik: Methoden fiir die Uberwachung und
Steuerung kontinuierlicher und ereignisdiskreter Systeme ; ... mit 74 An-
wendungsbeispielen und 84 Ubungsaufgaben. Miinchen : Oldenbourg, 2003.
— ISBN 3486274309 2.1, 3.1

MAHLER, Carsten: Automatisierungsmodule fiir ein funktionsorientiertes Au-
tomatisierungsengineering. (2014) 4.2.4, 4.5

MCFARLANE, Duncan C. ; BUSSMANN, Stefan: Developments in holonic pro-
duction planning and control. In: Production Planning & Control 11 (2000),
Nr. 6, S. 522-536. http://dx.doi.org/10.1080/095372800414089. — DOI
10.1080/095372800414089. — ISSN 09537287 1.1

MERTENS, Martin: Fortschritt-Berichte VDI / Reihe 8 Mess-, Steuerungs-
und Regelungstechnik. Bd. 1207: Verwaltung und Verarbeitung merkmalba-
sierter Informationen: Vom Metamodell zur technologischen Realisierung: Aa-
chen, Techn. Hochsch., Diss., 2011. Aachen : Hochschulbibliothek Rheinisch-
Westfilische Technischen Hochschule Aachen, 2012 http://nbn-resolving.
de/urn:nbn:de:hbz:82-opus-39896. — ISBN 9783185207082 4.4, 4.4.3

MEYER, Bertrand: Object-oriented software construction. Bd. 2. Prentice
hall New York, 1988 1.1, 4.2

MEYER, Bertrand: Object-oriented software construction. 2. ed., 15. print.
Upper Saddle River, NJ : Prentice Hall PTR, 2009. — ISBN 0136291554 1.2,
4.2, 4.2

METZGER, Andreas ; POHL, Klaus ; HEYMANS, Patrick ; SCHOBBENS, Pierre-
Yves ; SAVAL, Germain: Disambiguating the Documentation of Variability
in Software Product Lines: A Separation of Concerns, Formalization and Au-
tomated Analysis. In: 15th IEEE International Requirements Engineering
Conference (RE 2007), 2007, S. 243-253 4.3.2

NAMUR Arbeitskreis 1.6: NA 63 - Package Units. 1996 2.1.2, 2.2.2

NAMUR Arbeitskreis 1.9: NE 58 - Abwicklung von qualifizierungspflichtigen
PLT - Projekten. 2002 2.1.1

NAMUR Arbeitskreis 1.1: NA 35 - Abwicklung von PLT-Projekten. 2003
2.1.3,26,2.1.3, 8

NAMUR Arbeitskreis 1.11: NE 121 - Qualitdtssicherung leittechnischer Sy-
steme. 2008 2.1.3, 3.1

NAMUR Arbeitskreis 1.12: NE 148 - Anforderungen an die Automatisie-
rungstechnik durch die Modularisierung verfahrenstechnischer Anlagen. 2013
2.1.2

NAMUR Arbeitskreis 2.2: NE 152 - Regelgiitemanagement: Uberwachung und
Optimierung der Basisregelung von Produktionsanlagen. 2014 3.1

141

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[NAM16]

[ODU13]

[OMG15]

[OMG16]

[ORA]

[Ot£09]

[PBLO5]

[PE94]

[PE17]

[PGGS16]

[PGP*15]

142

NAMUR Arbeitskreis 1.11: NE 160 - Ein Referenzmodell fir allgemeine
Prozedurbeschreibungen. 2016 4.4, 4.4.3

OBST, Michael ; DOHERR, Falk ; URBAS, Leon: Wissensbasiertes Assistenzsy-
stem fiir modulares Engineering. In: at - Automatisierungstechnik 61 (2013),
Nr. 2, S. 103-108. http://dx.doi.org/10.1524/auto0.2013.0011. - DOI
10.1524/aut0.2013.0011. — ISSN 0178-2312 4.2.4, 4.5

Object Managment Group: OMG Unified Modeling Language. http://www.
omg.org/spec/UML/2.5. Version: 2015. — Version 2.5 2.2.1, 2.2.1, 2.9, 8

Object Managment Group: Meta Object Facility (MOF) 2.5.1 Core Specifica-
tion. http://www.omg.org/spec/MOF/2.5.1. Version: 2016. — Version 2.5.1
44.1,48,44.1,8

ORACLE: SVN Workflow. https://docs.oracle.com/middleware/1212/
core/MAVEN/config_svn.htmMAVEN8826 4.2.3, 4.1, 8

OTTE, Stefan: Version control systems. In: Computer Systems and Telematics
(2009) 4.2.3

Ponr, Klaus ; BOCKLE, Giinter ; LINDEN, Frank: Software Product Line
Engineering: Foundations, Principles, and Techniques. Berlin, Heidelberg
: Springer-Verlag Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/
3-540-28901-1. http://dx.doi.org/10.1007/3-540-28901-1. — ISBN 3—
540-24372-0 4.3.1, 4.2, 4.3.1, 4.4, 4.3.2, 8

PoLKE, Martin ; EPPLE, Ulrich: Prozessleittechnik: Mit 8 Tabellen. 2., vollig
iberarb. und stark erw. Aufl. Miinchen und Wien : Oldenbourg, 1994. — ISBN
3486225499 2.1, 2.1.1, 2.2.2

PaLwM, Florian ; EPPLE, Ulrich: openAAS - Die offene Entwicklung der Ver-
waltungsschale. In: Automation 2017 : technology networks processes : 18.
Leitkongress der Mess- und Automatisierungstechnik : Kongresshaus Baden-
Baden, 27. und 28. Juni 2017 / VDI VDE Gesellschaft Mess- und Automati-
sierungstechnik Bd. 2293. Disseldorf : VDI Verlag GmbH, Jun 2017 (Verein
Deutscher Ingenieure: VDI-Berichte), 103-104. — Datentrager: 1 USB-Stick
2.1.4, 2.1.4, 2.2.2, 4.4.3

PFROMMER, Julius ; GRUNER, Sten ; GOLDSCHMIDT, Thomas ; SCHULZ,
Dirk: A common core for information modeling in the Industrial Internet of
Things. In: at - Automatisierungstechnik 64 (2016), Nr. 9. http://dx.doi.
org/10.1515/auto-2016-0071. — DOI 10.1515/auto-2016-0071. — ISSN
0178-2312 4.4

PaLm, Florian ; GRUNER, Sten ; PFROMMER, Julius ; GRAUBE, Markus ;
URBAS, Leon: Open Source as Enabler for OPC UA in Industrial Automation.
In: Proceeedings of 2015 IEEE 20th Conference on Emerging Technologies €
Factory Automation (ETFA), 2015. — ISBN 978-1-4673-7929-8 1.1

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[PSU*14)

[Riel7]

[SAG*17]

[Sam97]

[SBB*10]

[Sch10]

[Sch16a]

[Sch16b]

[Sch18§]

Literaturverzeichnis

PFROMMER, Julius ; SCHLEIPEN, Miriam ; USLANDER, Thomas ; EPPLE,
Ulrich ; HEIDEL, Roland ; URBAS, Leon ; SAUER, Olaf ; BEYERER, Jirgen:
Begrifflichkeiten um Industrie 4.0 : Ordnung im Sprachwirrwarr. In: Ent-
wurf komplexer Automatisierungssysteme - EKA 201/ : Beschreibungsmittel,
Methoden, Werkzeuge und Anwendungen ; 13. Fachtagung mit Tutorium, 1/.
bis 15. Mai 2014 in Magdeburg / Ulrich Jumar; Christian Diedrich (Hrsg.).
Magdeburg : ifak Institut fiir Automation und Kommunikation e.V., 2014, 8
S. 4.4.1

RIEDEL, Maik: Ein Beitrag zur wissensbasierten Unterstiitzung bei der Aus-
wahl technischer Ressourcen: Repréasentation und Auswertung von Prinziplo-
sungen auf Basis multidimensionaler, heterogener, vernetzter Merkmalrdume.

(2017) 5.1.1

ScHUH, Giinther ; ANDERL, Reiner ; GAUSEMEIER, Jiirgen ; TEN HOMPEL,
Michael ; WAHLSTER, Wolfgang: Industrie 4.0 Maturity Index: Die digitale
Transformation von Unternehmen gestalten. Herbert Utz Verlag, 2017 1.1,
1.1,2.14, 222

SAMETINGER, Johannes: Software engineering with reusable components:
With 26 tables. Berlin : Springer, 1997. — ISBN 3-540-62695-6 2.2.1

SCHAEFER, Ina ; BETTINI, Lorenzo ; BONO, Viviana ; DAMIANI, Ferruccio ;
TANZARELLA, Nico: Delta-oriented programming of software product lines.
In: International Conference on Software Product Lines Springer, 2010, S.
77-91 4.3.3

SCHAEFER, Ina: Variability Modelling for Model-Driven Development of Soft-
ware Product Lines. In: VaMoS 10 (2010), S. 85-92 4.3.3, 4.3.3

SCHULLER, Andreas: Ein Referenzmodell zur Beschreibung allgemeiner Pro-
zeduren im leittechnischen Umfeld. Diusseldorf, RWTH Aachen Universi-
ty, Dissertation, 2016. http://publications.rwth-aachen.de/record/
686692. — XIV, 148 Seiten : Diagramme S. — Als Manuskript gedruckt. -
Weitere Reihe: Lehrstuhl fiir Prozessleittechnik der RWTH Aachen; Disser-
tation, RWTH Aachen University, 2016 4.4, 6.1

SCHROCK, Sebastian: Interdisziplindre Wiederverwendung im Engineering
automatisierter Anlagen: Anforderungen, Konzept und Umsetzungen fir die
Prozessindustrie. VDI Verlag GmbH, 2016 2.1.3, 4.2.1, 4.2.2, 4.2.4, 4.3.1,
4.3.1,4.3.2

SCHAEFER, Ina: A Personal History of Delta Modelling. In: MULLER, Peter
(Hrsg.) ; SCHAEFER, Ina (Hrsg.): Principled Software Development: Essays
Dedicated to Arnd Poetzsch-Heffter on the Occasion of his 60th Birthday.
Cham : Springer International Publishing, 2018. — ISBN 978-3-319-98046-1
4.5

143

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[SCZ*16] SuI, Weisong ; CA0, Jie ; ZHANG, Quan ; L1, Youhuizi ; XU, Lanyu: Edge

[SDMO95]

[SEE09)

[SLUSS]

[SRC*12]

[SRVK10]

[$S817]

[TE18]

[UDKO12]

144

[VDI95]

Computing: Vision and Challenges. In: IEEE Internet of Things Journal 3
(2016), S. 637-646 2.1.4

STEYAERT, Patrick ; DE MEUTER, Wolfgang: A marriage of class-and object-
based inheritance without unwanted children. In: European Conference on
Object-Oriented Programming Springer, 1995, S. 127-144 4.2.2

SCHLUTTER, M. ; EPPLE, U. ; EDELMANN, T.: On Service-Orientation as a
New Approach for Automation Environments. In: Proceedings MATHMOD
09 Vienna (2009) 1.1, 8

STEIN, Lynn A. ; LIEBERMAN, Henry ; UNGAR, David: A shared view of
sharing: the treaty of Orlando. Brown University, Department of Computer
Science, 1988 4.2.2

SCHAEFER, Ina ; RABISER, Rick ; CLARKE, Dave ; BETTINI, Lorenzo ;
BENAVIDES, David ; BOTTERWECK, Goetz ; PATHAK, Animesh ; TRUJIL-
LO, Salvador ; VILLELA, Karina: Software diversity: State of the art and
perspectives. In: International Journal on Software Tools for Technolo-
gy Transfer 14 (2012), Nr. 5, S. 477-495. http://dx.doi.org/10.1007/
$10009-012-0253-y. — DOI 10.1007/s10009-012-0253~y. — ISSN 1433-2779
4.3.1,4.3.2,4.3.2,4.3.2,4.3.2,4.3.2,4.3.3

SPRINKLE, Jonathan ; RUMPE, Bernhard ; VANGHELUWE, Hans ; KARSAI,
Gabor: 3 Metamodelling. In: Model-Based Engineering of Embedded Real-
Time Systems. Springer, 2010, S. 57-76 4.4.1, 4.4.1

SCHUSTER, Sven ; SEIDL, Christoph ; SCHAEFER, Ina: Towards a Deve-
lopment Process for Maturing Delta-oriented Software Product Lines. In:
Proceedings of the 8th ACM SIGPLAN International Workshop on Feature-
Oriented Software Development. New York, NY, USA : ACM, 2017 (FOSD
2017). — ISBN 978-1-4503-5518-6, 41-50 4.3.3

TROTHA, Christian ; EPPLE, Ulrich: Assistenzsysteme in der Prozessindu-
strie : Ein Versuch der Klassifikation. In: [19. Leitkongress der Mess- und
Automatisierungstechnik, 2018-07-03 - 2018-07-04, Baden-Baden, Germany]
19. Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden (Ger-
many), 3 Jul 2018 - 4 Jul 2018, 2018, 529-542 2.1

URBAS, Leon ; DOHERR, Falk ; KRAUSE, Annett ; OBST, Michael: Modu-
larisierung und Prozessfithrung. In: Chemie Ingenieur Technik 84 (2012),
Nr. 5, S. 615-623. http://dx.doi.org/10.1002/cite.201200034. — DOI
10.1002/cite.201200034. — ISSN 0009286X 2.1.1, 4.2.4

Verein Deutscher Ingenieure: VDI/VDE 3696 - Herstellerneutrale Konfigu-
rierung von Prozefileitsystemen . 1995. — zriickgezogen 6.2.1

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[VGOT]

[VHOY]

[VHDB13]

[VHDF+14]

[VHDFG13]

[VHON18]

[VWB*09]

[WE15a]

[WE15b]

[WE17]

Literaturverzeichnis

VOELTER, Markus ; GROHER, Iris: Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development. In: 11th Inter-
national Software Product Line Conference (SPLC 2007), 2007, S. 233-242
43.1,4.3.2

VOGEL-HEUSER, B: Visions of automation engineering in 2020. In: Automa-
tion Technology in Practice (atp) (2009) 3.2, 4.2.3

VOGEL-HEUSER, Birgit ; DIEDRICH, Christian ; BROY, Manfred: Anforde-
rungen an CPS aus Sicht der Automatisierungstechnik. In: at — Automatisie-
rungstechnik 61 (2013), Nr. 10. http://dx.doi.org/10.1515/auto.2013.
0061. — DOI 10.1515/auto0.2013.0061. — ISSN 0178-2312 2.1, 2.1, 2.1.3, 2.1.4,
3.1, 8

VOGEL-HEUSER, Birgit ; DIEDRICH, Christian ; FAY, Alexander ; JESCHKE,
Sabine ; KOWALEWSKI, Stefan ; WOLLSCHLAEGER, Martin ; GOHNER, Peter:
Challenges for Software Engineering in Automation. In: Journal of Software
Engineering and Applications 07 (2014), Nr. 05, S. 440-451. http://dx.doi.
org/10.4236/jsea.2014.75041. — DOI 10.4236/jsea.2014.75041. — ISSN
1945-3116 1.1, 2.1, 2.1.3, 2.1.4, 2.2.2, 2.2.2, 3.1, 4.4.1

VOGEL-HEUSER, Birgit ; DIEDRICH, Christian ; FAY, Alexander ; GOHNER,
Peter: Anforderungen an das Software-Engineering in der Automatisierungs-
technik. In: Software Engineering, 2013, S. 51-66 2.1, 8

VOGEL-HEUSER, B. ; OCKER, F. ; NEUMANN, E. M.: Maturity variations
of PLC-based control software within a company and among companies from
the same industrial sector. In: 2018 IEEE Industrial Cyber-Physical Systems
(ICPS), 2018, S. 283-290 3.2, 4.5

VAJNA, Sandor ; WEBER, Christian ; BLEY, Helmut ; ZEMAN, Klaus ; HE-
HENBERGER, Peter: Grundlagen der Modellbildung. In: CAz fir Ingenieure
(2009), S. 97-157 4.4

WAGNER, Constantin ; EPPLE, Ulrich: Sprechende Kommandos als Grundla-
ge moderner Prozessfithrungsschnittstellen. Ini AUTOMATION 2015. Baden-
Baden, 2015 2.1.1, 2.1.4, 4.1, 6.1, 6.5, 8

WAGNER, Constantin ; EPPLE, Ulrich: Variant Management for Control
Blocks. In: Proceedings of the IEEE 20th International Conference on Emer-
ging Technologies and Factory Automation. Piscataway, NJ : IEEE, Sep 2015
4.1,45,6.2.1,8

WAGNER, Constantin ; EPPLE, Ulrich: Integration von Serviceschnittstel-
len in Funktionsbausteinarchitekturen; Nichtredigierter Manuskriptdruck. In:
Automation 2017 : technology networks processes : 18. Leitkongress der Mess-
und Automatisierungstechnik : Kongresshaus Baden-Baden, 27. und 28. Juni
2017 / VDI VDE, VDI/VDE-Gesellschaft Mess- und Automatisierungstech-
nik Bd. 2293. Disseldorf : VDI Verlag GmbH, Jun 2017 (VDI-Berichte),
37-38. - Datentréiger: 1 USB-Stick 1.1, 2.1.4, 4.1, 5.1.1, 6.1, 6.2.2, 6.6, 8

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Literaturverzeichnis

[Web14]

[WESS7]

[WGE16]

[WGE*+17]

[WGE*18]

[WGKO15]

[WKS*16]

[WSFE16]

[WTE*17]

146

WEBER, Klaus H.: Engineering verfahrenstechnischer Anlagen: Praxishand-
buch mit checklisten und beispielen. Heidelberg : Springer Vieweg, 2014 (VDI-
Buch). http://search.ebscohost.com/login.aspx?direct=true&scope=
site&db=nlebk&db=nlabk&AN=846203. — ISBN 978-3-662-43528-1 1.1,
2.1.3,2.1.3, 3.1

WoobDrIELD, S. N. ; EMBLEY, D. W. ; ScorT, D. T.: Can Programmers
Reuse Software? In: IEEE Software 4 (1987), July, Nr. 4, S. 52-59. http:
//dx.doi.org/10.1109/MS.1987.231064. — DOI 10.1109/MS.1987.231064.
— ISSN 0740-7459 4.2

WAGNER, Constantin ; GRUNER, Sten ; EPPLE, Ulrich: Portabilitiat und Wie-
derverwendbarkeit von auf Funktionsbausteinnetzwerken basierenden Anwen-

dungen. In: Entwurf komplezer Automatisierungssysteme. Magdeburg, 2016.
— ISBN 978-3-944722-35-1 4.1,4.2.2, 4.2.4

WAGNER, Constantin ; GROTHOFF, Julian ; EPPLE, Ulrich ; DRATH, Rainer
; MALAKUTI, Somayeh ; GRUNER, Sten ; HOFFMEISTER, Michael ; ZIMER-
MANN, Patrick: The role of the Industry 4.0 asset administration shell and
the digital twin during the life cycle of a plant. In: 22nd IEEE Internatio-
nal Conference on Emerging Technologies and Factory Automation (ETFA),
2017, S. 1-8 2.1.3,2.1.4, 2.7, 2.2.1, 2.2.1, 3.1, 4.1, 4.4.1, 4.4.2, 8

WAGNER, Constantin ; GROTHOFF, Julian ; EPPLE, Ulrich ; GRUNER, Sten ;
WENGER, Monika ; ZOITL, Alois: Ein Beitrag zu einem einheitlichen Enginee-
ring fir Laufzeitumgebungen. In: Automation 2018 : Seamless Convergence of
Automation & IT : 19. Leitkongress der Mess- und Automatisierungstechnik
, 2018 4.4.3,4.14, 5.1.1, 8

WAHLER, Michael ; GAMER, Thomas ; KUMAR, Atul ; OrRIOL, Manuel: FA-
SA: A software architecture and runtime framework for flexible distributed
automation systems. In: Journal of Systems Architecture 61 (2015), Nr. 2, S.
82-111 4.4.1

WAGNER, Constantin ; KAMPERT, David ; SCHULLER, Andreas ; PALM,
Florian ; GRUNER, Sten ; EPPLE, Ulrich: Model based synthesis of au-
tomation functionality. In: at - Automatisierungstechnik 64 (2016), Nr. 3.
http://dx.doi.org/10.1515/auto-2015-0094. — DOI 10.1515/auto-2015-
0094. — ISSN 01782312 1.1, 3.2, 4.1, 4.4.1, 4.4.1, 4.10, 6.1, 8

WAGNER, Constantin ; SCHULLER, Andreas ; FLEISCHACKER, Christopher ;
EpPLE, Ulrich: An Educational Framework for Process Control Theory and
Engineering Tools. In: [The 11th IFAC Symposium on Advances in Control
Education, 01.06.2016-03.06.2016, Bratislava, Slovakia] The 11th IFAC Sym-
posium on Advances in Control Education, Bratislava (Slovakia), 1 Jun 2016
- 3 Jun 2016, 2016 4.1

WAGNER, Constantin ; TROTHA, Christian W. ; EPPLE, Ulrich ; METZUL,
Alfred ; DEBUS, Kai ; CHRISTOPH, Helle: Requirements for the Next Ge-
neration Automation Solution of Rolling Mills. In: [43rd Annual Conference

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

[WTPEL7)

[YGE13]

[YQE10]

Literaturverzeichnis

of the IEEFE Industrial Electronics Society (IES), IECON 2017, 2017-10-29 -
2017-11-01, Peking, Peoples R China] 43rd Annual Conference of the IEEE
Industrial Electronics Society (IES), Peking (Peoples R China), 29 Oct 2017
-1 Nov 2017, 2017 3.1, 4.1, 4.3.1

WAGNER, Constantin ; TROTHA, Christian von ; PALM, Florian ; EPPLE,
Ulrich: Fundamentals for the next Generation of Automation Solutions of
the Fourth Industrial Revolution. In: [The 2017 Asian Control Conference -
ASCC 2017, 2017-12-17 - 2017-12-20, Gold Coast, Australial, 2017 2.5, 2.1.1,
2.1.3,2.2.2, 4.1, 6.1, 6.2.2, 8

Yu, Liyong ; GRUNER, Sten ; EPPLE, Ulrich: An engineerable procedure
description method for industrial automation. In: IEEE 18th Conference on
Emerging Technologies € Factory Automation (ETFA), 2013, S. 1-8 2.1.3,
441, 6.1

Yu, Liyong ; QUIROS, Gustavo ; EPPLE, Ulrich: Service-Oriented Process
Control for Complex Multifunctional Plants: Concept and Case Study. In:
ETFA 2010: 15th IEEE International Conference on Emerging Technologies
and Factory Automation. Bilbao : IEEE, 2010 4.1

147

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

IP 216.73.216.36, am 20.01.2026, 12:55:25. ©
m

‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

SN 2
INGENIEUR.de =

TECHNIK - KARRIERE - NEWS

powered by VDI Verlag

Das TechnikKarriereNews-Portal fur Ingenieure.

Testen Sie Ihr Gehalt.

Mit dem Gehaltstest flr Ingenieure Uberprufen Sie schnell, ob Ihr Einkommen
den markttblichen Konditionen entspricht. Er zeigt Trends auf und
gibt Ihnen Orientierung, z. B. fur lhr nachstes Gehaltsgesprach.
Und lhre individuelle Auswertung kdnnen Sie jederzeit bequem aktualisieren.

JETZT KOSTENFREI TESTEN UNTER:
WWW.INGENIEUR.DE/GEHALT

httpsz//dol.org/10.51202/9783186266088 - Generlert durch IP 216.73.216.38, am 20.01.2026, 12:55:25. ©
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
T Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kéltetechnik
20 Rechnerunterstutzte Verfahren (CAD, CAM, CAE CAQ, CIM ..)
21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Gebdudeausristung

ISBN 978-3-18-526608-9

IP 216.73.216.36, am 20.01.2026, 12:55:25. © Inhal.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186266088

	Cover
	1 Einführung
	1.1 Motivation
	1.2 Problemdefinition und Lösungsweg
	1.3 Aufbau der Arbeit

	2 Grundlagen und Stand der Technik
	2.1 Grundlagen der Automatisierungstechnik
	2.1.1 Aufbau von Dezentralen Prozessleitsystemen
	2.1.2 Package Units und Modulare Anlagen in der Prozessindustrie
	2.1.3 Engineering von automatisierten Systemen
	2.1.4 Quo vadis Automatisierungstechnik? – Ein Ausblick im Zeitalter von Industrie 4.0

	2.2 Komponentenbasierte Architekturen
	2.2.1 Der Komponentenbegriff
	2.2.2 Komponentenbasierte Architekturen in der Automatisierungstechnik

	2.3 Zwischenfazit

	3 Anforderungen an das Konzept im Kontext der Automatisierungstechnik
	3.1 Besonderheiten in der Automatisierungstechnik
	3.2 Anforderungen an das Konzept

	4 Stand der Wissenschaft
	4.1 Eigene Vorarbeiten
	4.2 Grundlagen der Wiederverwendung
	4.2.1 Gegenstand der systematischen Wiederverwendung
	4.2.2 Arten der Wiederverwendung
	4.2.3 Versionen und Versionierung
	4.2.4 Wiederverwendung in der Automatisierungstechnik

	4.3 Grundlagen der Variantenbeschreibung
	4.3.1 Varianten und Variabilität
	4.3.2 Variabilitätsmodelle
	4.3.3 Delta-Modelle in der Softwaretechnik

	4.4 Modellierungsgrundlagen
	4.4.1 Ebenen der Modellierung - Metamodelle als Wegbereiter der Interoperabilität
	4.4.2 Modellierungssichten
	4.4.3 Modelle in der Automatisierungstechnik

	4.5 Diskussion des Stands der Wissenschaft

	5 Wiederverwendung in komponentenbasierten Architekturen
	5.1 Komponenten-Metamodell - Basis für die Wiederverwendung
	5.1.1 Modellbeschreibung
	5.1.2 Anwendungsregeln für die Komponenten-Metamodelle
	5.1.3 Einordnung des Komponenten-Metamodells
	5.1.4 Abgebildete Implementierungen

	5.2 � – Metamodell
	5.2.1 Modellbeschreibung
	5.2.2 Variantenbeschreibung mit Delta-Modellen
	5.2.3 Verketten von Delta-Modellen
	5.2.4 Visualisierung
	5.2.5 Mapping in den Problemraum

	5.3 Gesamtkonzept für die variantenbasierte Wiederverwendung
	5.3.1 Überblick über das Konzept
	5.3.2 Modelltransformationen
	5.3.3 Gegenstand der Wiederverwendung
	5.3.4 Die verteilte Nutzung der Modelle
	5.3.5 Verwendung in der Praxis

	5.4 Kritische Betrachtung des Konzepts
	5.4.1 Added Values
	5.4.2 Randbedingungen
	5.4.3 Handlungsempfehlungen

	6 Prototypische Realisierung und Anwendungsfälle
	6.1 Implementierung in ACPLT/RTE
	6.1.1 Umsetzung der Modelle
	6.1.2 Realisierung der dezentralen Struktur

	6.2 Anwendungsfälle
	6.2.1 PID-Regler-Baustein
	6.2.2 Prozessführungskomponenten
	6.2.3 Modulare Anlage M4P.AC

	6.3 Evaluierung der Implementierung

	7 Diskussion der Ergebnisse
	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

