Beyond the Code/Executable Dualism

Once the participant is immersed in the Virtual Reality or Metaverse game-space or is
experiencing the Augmented Reality flesh-of-the-world which is hybrid of what was pre-
viously called digital-virtual and what was previously called quark-atomic-physical, then
both superficial and deep changes to the code must be possible and available while inside
that Star Trek-like “Holodeck.” The world which is neither natural nor artificial comes into
mature existence when this hybrid constitution is achieved through sharing between hu-
mans and the world, or between technology and nature. We need new understanding and
designing of the game universe, beyond the duality of programmer and user. We dream
of a single-electron transistor, a latency-free network, a cosmos where we can make up
the rules, where one is free to devise any laws for the invented universe that one wishes.
Rather than replacing or escaping from physical reality, this new software will enhance
the Wirklichkeit (substantiality, actuality) of the experimental ecological neo-habitat.

D. Fox Harrell's Phantasmal Media

In his book Phantasmal Media: An Approach to Imagination, Computation, and Expression
(2013), D. Fox Harrell strives to establish a new relationship between the human or post-

human imagination and computing.”™

Writing code, or working actively with computa-
tional media, are, for Harrell, activities of artistic, cultural, social, critical, and personally
empowering expression. The great expressive potential of computational media comes
from their capability to both reveal and construct what Harrell calls “phantasms.” Phan-
tasms concretize cultural ideas as imaginative sensory artifices. Computational media
are especially adept at detailing, fleshing out, and codifying cultural ideas. Phantasms
are subjective cognitive phenomena which are situated, distributed, and embodied.
They are combinations of mental imagery and collective ideology. Harrell classifies
phantasms as: senses of self, metaphors, social categories, narratives, poetic thinking.
Developers of computing systems — working with images, text, sound, video, anima-
tions, and other computer-based media, both expose oppressive phantasms which
perpetuate power relations and create new empowering phantasms.

13.02.2026, 07:25:20. op


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

286

Decoding Digital Culture with Science Fiction

Phantasms that can be created with computers combine sensory imagery with con-
ceptual ideas. They encapsulate beliefs, knowledge, social problems, the encounter be-
tween self and others, and experiences of everyday life. Cognitive processes bring to-
gether “epistemic spaces” and “image spaces.” “Image spaces give phantasms salience
and sensory structures,” writes Harrell.”?* He confronts the crucial question of how com-
puters can be deployed expressively. We are only beginning to understand “expressive
epistemologies.” These are human worldview-based data structures that enable digital-
ized imaginative worlds and poetic phantasms. Phantasms are involved in apprehending
the world on levels ranging from simple events to complicated artworks. On the socially
critical side, computational phantasms expose the largely fictional nature of social norms
which reproduce power and oppression. Power relations can be as “real” as the fascist
boot stomping on your face, but the existentialist philosophical position is that the first
step towards overthrowing power relations is to stop internalizing their self-justifying
narratives, and instead deconstruct them, in your own mind.

The practice of making effective phantasms involves skillfulness in the translation
between subjective or cultural constructions of meaning and the data structures and al-
gorithms of computer science. Harrell divides the knowledge field of creating compelling
expressions with software code and artistic digital design tools into (1) Subjective Com-
puting (creative, poetic, figurative, and ethical/political expressions that resonates with
the imaginative experiences of users), (2) Cultural Computing (Subjective Computing
grounded in cultural context), and (3) Critical Computing (raising Cultural Computing
to the level of confronting social phenomena and bringing about societal change).

A cultural phantasm is a group-shared phantasm that can be described according to
a comparative, descriptive, or computational cultural model. Cultural phantasms tend
to be socially entrenched to the point that we are often not aware of them. Computing
systems can be designed to render cultural phantasms more visible.

Critical Computing is the design of computing systems done while contemplating
the social and political values that they embody. “Agency play” is the expressive personal
and social impact of interactive systems, while combining user and system agencies.

Computational creativity can bring to life the form of imagination that Harrell calls
the “poetic phantasm”: impactful mental imagery and ideas involving verse, metaphor,
allegory, or narratives. What he calls “expressive epistemologies” are especially inspir-
ing or evocative cultural productions such as artworks. “Polymorphic poetics” are, for
Harrell, aesthetically rich structural mappings in systems and interfaces among goals,
designs, and significations. Subjective, Cultural, and Critical computing systems stimu-
late and disseminate phantasms.”?

Harrell seems unclear on the question of whether the decisive level affecting if a given
technology empowers or disempowers people is the design or use of the technology. He
writes:

The values built into the structures of computer systems can serve to either empower
or disempower people. The same technologies that allow one to chat with a loved
one across an ocean in a different country, or that customize a user interface based
on where one lives, can be used for illegal surveillance and restriction of privacy. The

13.02.2026, 07:25:20. op


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Beyond the Code/Executable Dualism

same technologies that can be used for educational training or artful entertainment
can be used for online bullying..”?*

From the first sentence to the second sentence of this passage, Harrell contradicts him-
selfin a way that indicates that he has not sufficiently thought this issue through. Which
is it? Are these values “built into the structures” of systems in their design at a funda-
mental level (my position) or are the values a matter of how the already-designed-and-
structured technology gets used?

The substantial value of Harrell's work for the present study is his manifesto-like ad-
vocacy of the integration of “humanities and arts-based approaches to critical engage-
ment with society and the world” into computer science. He draws attention to the gap
between computational media artistic expression and “more mature media forms that
have much more established conventions and strong communities” engaged in creativity
and theorizing. Yet I wish to point out another undifferentiated blurry area of Harrell’s
research. He writes:

Computational media systems all too often remain focused on self-reflexive explo-
ration of the media themselves, as opposed to producing transformative content.”

Are these two activities — “self-reflexive exploration of the media themselves” and “pro-
ducing transformative content” — really in such strict opposition to each other? Should
not the theory and practice of social transformation also include reflection on the nature
and form of the media itself that is deployed to attempt to bring about social change?
The more salient dividing line — between two conceptual sub-categories of the category
of “self-reflexive exploration of the media themselves” — would be between works which
are merely fascinated with stretching the technical possibilities of given software envi-
ronments (thus indistinguishable from standard Silicon Valley practice) and those which
reflect on the digital media technology in ways informed by philosophical or art- or me-
dia-theoretical questions about form and the underlying human-machine relationship
established by the media at hand.

Casey Reas and Ben Fry’s Processing Language

Casey Reas and Ben Fry are the inventors of the Processing programming language and
interactive development environment. Processing is an example of a relatively simple ob-
ject-oriented language to be used by artists, designers, and other creatives to make gen-
erative art projects and interactive graphics. Processing is based on the more sophisti-
cated Java programming language. In their book Make: Getting Started with Processing, A
Hands-On Introduction to Interactive Graphics, Reas and Fry achieve more than teaching
the reader Creative Coding on a practical level with hands-on example programs called

“sketches.””¢

They bring the reader along chapter-by-chapter into a deepening under-
standing of computer language concepts which correspond to the decade-by-decade his-
tory of programming language paradigms as the successive innovations of functions

(1970s), event-driven programming (1980s), and the classes and software objects of ob-

13.02.2026, 07:25:20. op

287


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

288

Decoding Digital Culture with Science Fiction

ject-orientation (1990s) were introduced. We practice the pedagogical method of double-
learning of the technical patterns of software code and the philosophical-cultural pat-
terns of some of the successive (past, present, and future) historical phases of informat-
ics. At each step of the learning process, we become more proficient as Processing Creative
Coders and gain cultural science understanding.

Learning any programming language begins with the “Hello World” program. As
Wendy Chun points out, this simple introductory iteration makes sense to the novice
and is readable.”” It consists of a series of declarations and imperatives. It produces
immediate results (two words get displayed in an app or a console) and hints subtly that
all code will instantly do something palpable and immediately verifiable. We learn that
computer programming started historically with machine languages, then was followed
by assembly languages, and then higher-level languages. A typical program in the 1960s
(to continue my simplified decade-by-decade history of programming paradigms) was
the “spaghetti code” of a series of sequential instructions issued in linear fashion inside
a single “main” procedure. Similar to the single main() function, coding in Processing
begins with the setup() and draw() functions. In setup() is the code that is executed one
single time at the startup of the application. The draw() function contains the code that
handles what the software will do in response to user interaction events. We learn how
to do both direct and algorithmic-generative visual drawing.

Casey Reas and Ben Fry, Processing Integrated Development Environment

With the 1970s innovation of functions, program control could be delegated to a
helper routine. The code became more modular, reusable, and efficient. One goal was
to reduce the writing of duplicate code. In Chapter Nine of the book, Reas and Fry
introduce the artefact of functions which attained prominence with the C programming

13.02.2026, 07:25:20. op


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Beyond the Code/Executable Dualism

language of AT&T Bell Labs in the early 1970s. An input-output dialog takes places
between the “calling” and the “called” function. The “calling” function can pass data via
parameters to the “called” function to which it temporarily hands over control. When
the called function is finished, it sends control back to the caller, as well as a return value
as its output. Note that code and data are still strictly separate from each other. In this
paradigm, technology is a tool used instrumentally by the human-subject-who-is- in-
charge that acts on some non-living object.

In event-driven programming, explained by Reas and Fry in Chapter Four on Re-
sponse, the program is no longer proactively calculating something or sending instruc-
tions to processor. The software sits there passively in a draw() loop the code of which gets
executed 60 times per second while waiting reactively for a user input event — via mouse,
keyboard, microphone, or camera — to occur. This is a step beyond the programmer-as-
subject ruling over the machine-as-object model. It is a step towards the software as au-
tonomous and semi-alive.

As explained in Chapter Ten on Classes and Objects, the object-oriented Object is a
complex data type composed of many values of many variables which are grouped to-
gether. Software classes are defined either as built into the language, made available for
use in third-party libraries, or designed and written by the programmer herself. The soft-
ware class is the specification, and the software object is a single runtime instance of the
class. The class encapsulates the values of the properties (fields) of an object and the op-
erations (methods) on that object into a single “object-oriented” unified entity. Data and
code are unified. The software object is, in this programming paradigm, on its way to
becoming autonomous and self-aware. An object has introspection: it knows both its in-
ternal data and actions on itself.

Oliver Bown on Computational Creativity

In his book Beyond the Creative Species: Making Machines That Make Art and Music (2021),
Oliver Bown systematically considers the field of computational creativity.”® This in-
cludes examining creative Artificial Intelligence and Deep Learning neural nets, the au-
tomation of creative tasks by machines, and the situation of human artists and designers
working in partnership with intelligent machines. Bown also investigates the impact of
generative software environments and technologies on the creation of music, visual art,
stories, poems, and games. There is a marked difference between systems of autonomous
computational creative agents and the use of advanced Al techniques as support tools by
a human artist.

The study of creativity touches upon perennial questions about emotions, beauty,
the sublime, culture, interpersonal relations and individual experience and psychobiog-
raphy. Bown also thinks about the consequences of these human and machinic modu-
lations for the so-called “creative industries.” He argues that, to fathom computational
creativity, we should not only ponder computationally creative algorithms, but must en-
gage with creative artistic activity. Bown explores the psychology of creativity and how it
may synergize with algorithmic automation. His work is at the meeting point between
interaction design and complex systems.

13.02.2026, 07:25:20. op

289


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

290

Decoding Digital Culture with Science Fiction

Bown sees the study of computational creativity as a transdisciplinary endeavor. It
requires a multiplicity of approaches ranging from anthropology and cognitive neuro-
science to design, art theory, philosophy, and creative practice research. It encompasses
the sciences of evolutionary biology, Artificial Life, and Al. Within conventional com-
puter science, it involves the sub-fields of algorithms, human-computer interaction, and
user experience.

Bown cites the idea of the avant-garde experimental musician Brian Eno that listen-
ers will soon embrace self-evolving generative compositions as preferable to fixed com-
positions. Eno thinks of himself not as a human composer composing a single compo-
sition to be heard over and over, but rather as creating a system that, in turn, composes
an ever-changing composition that is entirely flexibly and spontaneously varying. Musi-
cal patterns will be generated on the fly spawned by an algorithm and will respond to the
events of mood or user input. Music will be parameterized — just like generative software
or interactive visual artworks.

In their installations, new media artists make use of computers, electronics, video,
Internet (net.art), telerobotics, telematic networks, remote telepresence, mechanical en-
gineering, bionics, and transgenics. Interactive participatory works and environments
invite the user to discover “polysensoriality.” The perceptual-motoric-tactile dimension
of embodiment is restored to equal standing with the symbolic-rational dimension em-
phasized by much of traditional art. The artist who utilizes information technologies de-
signs an open-ended work the trajectory and outcome of which are not predefined by
the artist, but which rather depend to a great degree, and in a “post-humanist” way, on
both the actions of the human participant-user and the “semi-living entity” which is the
generative intelligence of the work.

Walter M. Elsasser and the Trans-Computational

Much of the current prevailing biological paradigm reduces understanding of the liv-
ing organism to the combinatorial model or formula of the genetic code. But the ge-
netic message is only a signifier of the complete reproductive process. “The message of
the genetic code,” writes Walter M. Elsasser in Reflections on a Theory of Organisms: Holism
in Biology, “does not amount to a complete and exhaustive information sequence that
would be sufficient to reconstruct the new organism on the basis of coded data alone.””*
This reductionism on the part of biologists corresponds to the prevailing computational
paradigm of binary or digital computing of the twentieth century. It is almost as if, ac-
cording to Elsasser, biologists decided, since this is the limit of the computing power
that we have, we will devise a biology that functions within the restrictions of what we
can compute.

The question is: how to handle complexity. In conventional computer programming,
thisis handled essentially with the Cartesian or top-down Method — break down the com-
plex problem into smaller, more manageable parts or sub-problems. But it is impossible
to apply the Cartesian Method to, for example, quantum-mechanical (quantum physics)
generalized complementarities like the wave-particle duality or the Heisenberg Uncer-
tainty Principle. Whereas the top-down method may work for mechanical systems, it

13.02.2026, 07:25:20. op


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Beyond the Code/Executable Dualism

cannot be of much use when we aspire to the understanding or creation of something
that is living or semi-living. The approach that I propose is to identify relationships of
similarity, to find samples or patterns that capture something of the vitality and com-
plexity of the whole without breaking it down in a reductionist way. This resembles the
“perceptrons” approach pioneered by Frank Rosenblatt.”°

According to Elsasser, we need Holistic Biology where the living organism in its
full complexity is considered. The structural complexity of even a single living cell is
“transcomputational.” Elsasser writes that the computational problem of grasping a
living organism (or organic structure) is a problem of unfathomable complexity. The
single living cell is involved in a network of relationships with all of life. The individ-
ual member of a species decodes in real-time, in each new circumstance, its species-
memory. It creatively retrieves this species-memory through a process of information
transfer that is effectively “invisible,” and does not take place via any intermediate stor-
age or physical transmission media. This holistic information transfer happens over
space and time, “without there being any intervening medium or process that carries

the information.””#

Whereas the genetic code is memory as “homogeneous replication,”
holistic memory, for Elsasser, is one of “heterogeneous reproduction.”

Elsasser’s interrogation of how we could consider organic life as an information sys-
tem and his ideas about the trans-computational, invisible data transfers, and the logic
of similarity or resemblance are useful notions for thinking about a possible paradigm

shift towards a post-combinatorial computer science.

13.02.2026, 07:25:20. op

291


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

13.02.2026, 07:25:20.


https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

