
Beyond the Code/Executable Dualism

Once the participant is immersed in the Virtual Reality or Metaverse game-space or is

experiencing theAugmentedReality flesh-of-the-worldwhich is hybrid ofwhatwas pre-

viously called digital-virtual andwhatwas previously called quark-atomic-physical, then

both superficial and deep changes to the codemust be possible and availablewhile inside

thatStarTrek-like “Holodeck.”Theworldwhich is neither natural nor artificial comes into

mature existencewhen this hybrid constitution is achieved through sharing betweenhu-

mansand theworld,or between technology andnature.Weneednewunderstandingand

designing of the game universe, beyond the duality of programmer and user.We dream

of a single-electron transistor, a latency-free network, a cosmos where we can make up

the rules, where one is free to devise any laws for the invented universe that one wishes.

Rather than replacing or escaping from physical reality, this new software will enhance

theWirklichkeit (substantiality, actuality) of the experimental ecological neo-habitat.

D. Fox Harrell’s Phantasmal Media

In his book Phantasmal Media: An Approach to Imagination, Computation, and Expression

(2013), D. Fox Harrell strives to establish a new relationship between the human or post-

human imagination and computing.731Writing code, or working actively with computa-

tionalmedia, are, forHarrell, activities of artistic, cultural, social, critical, andpersonally

empowering expression. The great expressive potential of computational media comes

from their capability to both reveal and construct what Harrell calls “phantasms.” Phan-

tasms concretize cultural ideas as imaginative sensory artifices. Computational media

are especially adept at detailing, fleshing out, and codifying cultural ideas. Phantasms

are subjective cognitive phenomena which are situated, distributed, and embodied.

They are combinations of mental imagery and collective ideology. Harrell classifies

phantasms as: senses of self, metaphors, social categories, narratives, poetic thinking.

Developers of computing systems – working with images, text, sound, video, anima-

tions, and other computer-based media, both expose oppressive phantasms which

perpetuate power relations and create new empowering phantasms.

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


286 Decoding Digital Culture with Science Fiction

Phantasms that can be created with computers combine sensory imagery with con-

ceptual ideas. They encapsulate beliefs, knowledge, social problems, the encounter be-

tween self and others, and experiences of everyday life. Cognitive processes bring to-

gether “epistemic spaces” and “image spaces.” “Image spaces give phantasms salience

and sensory structures,”writesHarrell.732He confronts the crucial question of how com-

puters can be deployed expressively. We are only beginning to understand “expressive

epistemologies.”These are human worldview-based data structures that enable digital-

ized imaginativeworlds andpoetic phantasms.Phantasmsare involved in apprehending

the world on levels ranging from simple events to complicated artworks. On the socially

critical side,computational phantasmsexpose the largelyfictional natureof social norms

which reproduce power and oppression. Power relations can be as “real” as the fascist

boot stomping on your face, but the existentialist philosophical position is that the first

step towards overthrowing power relations is to stop internalizing their self-justifying

narratives, and instead deconstruct them, in your ownmind.

The practice of making effective phantasms involves skillfulness in the translation

between subjective or cultural constructions of meaning and the data structures and al-

gorithmsof computer science.Harrell divides theknowledgefieldof creating compelling

expressions with software code and artistic digital design tools into (1) Subjective Com-

puting (creative, poetic, figurative, and ethical/political expressions that resonates with

the imaginative experiences of users), (2) Cultural Computing (Subjective Computing

grounded in cultural context), and (3) Critical Computing (raising Cultural Computing

to the level of confronting social phenomena and bringing about societal change).

A cultural phantasm is a group-shared phantasm that can be described according to

a comparative, descriptive, or computational cultural model. Cultural phantasms tend

to be socially entrenched to the point that we are often not aware of them. Computing

systems can be designed to render cultural phantasmsmore visible.

Critical Computing is the design of computing systems done while contemplating

the social and political values that they embody. “Agency play” is the expressive personal

and social impact of interactive systems, while combining user and system agencies.

Computational creativity can bring to life the form of imagination that Harrell calls

the “poetic phantasm”: impactful mental imagery and ideas involving verse, metaphor,

allegory, or narratives. What he calls “expressive epistemologies” are especially inspir-

ing or evocative cultural productions such as artworks. “Polymorphic poetics” are, for

Harrell, aesthetically rich structural mappings in systems and interfaces among goals,

designs, and significations. Subjective, Cultural, and Critical computing systems stimu-

late and disseminate phantasms.733

Harrell seemsunclear on thequestionofwhether thedecisive level affecting if a given

technology empowers or disempowers people is the design or use of the technology. He

writes:

The values built into the structures of computer systems can serve to either empower

or disempower people. The same technologies that allow one to chat with a loved

one across an ocean in a different country, or that customize a user interface based

on where one lives, can be used for illegal surveillance and restriction of privacy. The

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Beyond the Code/Executable Dualism 287

same technologies that can be used for educational training or artful entertainment

can be used for online bullying…734

From the first sentence to the second sentence of this passage, Harrell contradicts him-

self in a way that indicates that he has not sufficiently thought this issue through.Which

is it? Are these values “built into the structures” of systems in their design at a funda-

mental level (my position) or are the values a matter of how the already-designed-and-

structured technology gets used?

The substantial value of Harrell’s work for the present study is his manifesto-like ad-

vocacy of the integration of “humanities and arts-based approaches to critical engage-

ment with society and the world” into computer science. He draws attention to the gap

between computational media artistic expression and “more mature media forms that

havemuchmore established conventions and strong communities” engaged in creativity

and theorizing. Yet I wish to point out another undifferentiated blurry area of Harrell’s

research. He writes:

Computational media systems all too often remain focused on self-reflexive explo-

ration of the media themselves, as opposed to producing transformative content.735

Are these two activities – “self-reflexive exploration of the media themselves” and “pro-

ducing transformative content” – really in such strict opposition to each other? Should

not the theory and practice of social transformation also include reflection on the nature

and form of the media itself that is deployed to attempt to bring about social change?

The more salient dividing line – between two conceptual sub-categories of the category

of “self-reflexive exploration of the media themselves” – would be between works which

are merely fascinated with stretching the technical possibilities of given software envi-

ronments (thus indistinguishable from standard SiliconValley practice) and thosewhich

reflect on the digital media technology in ways informed by philosophical or art- or me-

dia-theoretical questions about form and the underlying human-machine relationship

established by the media at hand.

Casey Reas and Ben Fry’s Processing Language

Casey Reas and Ben Fry are the inventors of the Processing programming language and

interactive development environment. Processing is an example of a relatively simple ob-

ject-oriented language to be used by artists, designers, and other creatives tomake gen-

erative art projects and interactive graphics. Processing is based on the more sophisti-

cated Java programming language. In their book Make: Getting Started with Processing, A

Hands-On Introduction to Interactive Graphics, Reas and Fry achieve more than teaching

the reader Creative Coding on a practical level with hands-on example programs called

“sketches.”736 They bring the reader along chapter-by-chapter into a deepening under-

standing of computer language conceptswhich correspond to the decade-by-decadehis-

tory of programming language paradigms as the successive innovations of functions

(1970s), event-driven programming (1980s), and the classes and software objects of ob-

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


288 Decoding Digital Culture with Science Fiction

ject-orientation (1990s)were introduced.Wepractice the pedagogicalmethod of double-

learning of the technical patterns of software code and the philosophical-cultural pat-

terns of some of the successive (past, present, and future) historical phases of informat-

ics.At each step of the learning process,we becomemore proficient asProcessingCreative

Coders and gain cultural science understanding.

Learning any programming language begins with the “Hello World” program. As

Wendy Chun points out, this simple introductory iteration makes sense to the novice

and is readable.737 It consists of a series of declarations and imperatives. It produces

immediate results (two words get displayed in an app or a console) and hints subtly that

all code will instantly do something palpable and immediately verifiable. We learn that

computer programming started historically withmachine languages, then was followed

by assembly languages, and then higher-level languages. A typical program in the 1960s

(to continue my simplified decade-by-decade history of programming paradigms) was

the “spaghetti code” of a series of sequential instructions issued in linear fashion inside

a single “main” procedure. Similar to the single main() function, coding in Processing

begins with the setup() and draw() functions. In setup() is the code that is executed one

single time at the startup of the application.The draw() function contains the code that

handles what the software will do in response to user interaction events. We learn how

to do both direct and algorithmic-generative visual drawing.

Casey Reas and Ben Fry, Processing Integrated Development Environment

With the 1970s innovation of functions, program control could be delegated to a

helper routine. The code became more modular, reusable, and efficient. One goal was

to reduce the writing of duplicate code. In Chapter Nine of the book, Reas and Fry

introduce the artefact of functions which attained prominence with the C programming

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Beyond the Code/Executable Dualism 289

language of AT&T Bell Labs in the early 1970s. An input-output dialog takes places

between the “calling” and the “called” function. The “calling” function can pass data via

parameters to the “called” function to which it temporarily hands over control. When

the called function is finished, it sends control back to the caller, as well as a return value

as its output. Note that code and data are still strictly separate from each other. In this

paradigm, technology is a tool used instrumentally by the human-subject-who-is- in-

charge that acts on some non-living object.

In event-driven programming, explained by Reas and Fry in Chapter Four on Re-

sponse, the program is no longer proactively calculating something or sending instruc-

tions to processor.The software sits there passively in adraw() loop the code ofwhich gets

executed 60 times per secondwhile waiting reactively for a user input event – viamouse,

keyboard, microphone, or camera – to occur.This is a step beyond the programmer-as-

subject ruling over themachine-as-object model. It is a step towards the software as au-

tonomous and semi-alive.

As explained in Chapter Ten on Classes and Objects, the object-oriented Object is a

complex data type composed of many values of many variables which are grouped to-

gether. Software classes are defined either as built into the language,made available for

use in third-party libraries, or designed andwritten by the programmerherself.The soft-

ware class is the specification, and the software object is a single runtime instance of the

class.The class encapsulates the values of the properties (fields) of an object and the op-

erations (methods) on that object into a single “object-oriented” unified entity. Data and

code are unified. The software object is, in this programming paradigm, on its way to

becoming autonomous and self-aware. An object has introspection: it knows both its in-

ternal data and actions on itself.

Oliver Bown on Computational Creativity

In his book Beyond the Creative Species: Making Machines That Make Art and Music (2021),

Oliver Bown systematically considers the field of computational creativity.738 This in-

cludes examining creative Artificial Intelligence and Deep Learning neural nets, the au-

tomation of creative tasks bymachines, and the situation of human artists anddesigners

working in partnership with intelligent machines. Bown also investigates the impact of

generative software environments and technologies on the creation of music, visual art,

stories,poems,andgames.There is amarkeddifferencebetween systemsof autonomous

computational creative agents and the use of advanced AI techniques as support tools by

a human artist.

The study of creativity touches upon perennial questions about emotions, beauty,

the sublime, culture, interpersonal relations and individual experience and psychobiog-

raphy. Bown also thinks about the consequences of these human and machinic modu-

lations for the so-called “creative industries.” He argues that, to fathom computational

creativity, we should not only ponder computationally creative algorithms, butmust en-

gagewith creative artistic activity. Bown explores the psychology of creativity and how it

may synergize with algorithmic automation. His work is at the meeting point between

interaction design and complex systems.

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


290 Decoding Digital Culture with Science Fiction

Bown sees the study of computational creativity as a transdisciplinary endeavor. It

requires a multiplicity of approaches ranging from anthropology and cognitive neuro-

science to design, art theory, philosophy, and creative practice research. It encompasses

the sciences of evolutionary biology, Artificial Life, and AI. Within conventional com-

puter science, it involves the sub-fields of algorithms,human-computer interaction, and

user experience.

Bown cites the idea of the avant-garde experimental musician Brian Eno that listen-

ers will soon embrace self-evolving generative compositions as preferable to fixed com-

positions. Eno thinks of himself not as a human composer composing a single compo-

sition to be heard over and over, but rather as creating a system that, in turn, composes

an ever-changing composition that is entirely flexibly and spontaneously varying.Musi-

cal patterns will be generated on the fly spawned by an algorithm andwill respond to the

events ofmood or user input.Musicwill be parameterized– just like generative software

or interactive visual artworks.

In their installations, new media artists make use of computers, electronics, video,

Internet (net.art), telerobotics, telematic networks, remote telepresence,mechanical en-

gineering, bionics, and transgenics. Interactive participatory works and environments

invite the user to discover “polysensoriality.” The perceptual-motoric-tactile dimension

of embodiment is restored to equal standing with the symbolic-rational dimension em-

phasized bymuch of traditional art.The artist who utilizes information technologies de-

signs an open-ended work the trajectory and outcome of which are not predefined by

the artist, but which rather depend to a great degree, and in a “post-humanist” way, on

both the actions of the human participant-user and the “semi-living entity” which is the

generative intelligence of the work.

Walter M. Elsasser and the Trans-Computational

Much of the current prevailing biological paradigm reduces understanding of the liv-

ing organism to the combinatorial model or formula of the genetic code. But the ge-

netic message is only a signifier of the complete reproductive process. “The message of

the genetic code,” writes Walter M. Elsasser in Reflections on aTheory of Organisms: Holism

in Biology, “does not amount to a complete and exhaustive information sequence that

would be sufficient to reconstruct the new organism on the basis of coded data alone.”739

This reductionism on the part of biologists corresponds to the prevailing computational

paradigm of binary or digital computing of the twentieth century. It is almost as if, ac-

cording to Elsasser, biologists decided, since this is the limit of the computing power

that we have, we will devise a biology that functions within the restrictions of what we

can compute.

The question is: how to handle complexity. In conventional computer programming,

this ishandledessentiallywith theCartesianor top-downMethod–breakdownthecom-

plex problem into smaller,moremanageable parts or sub-problems. But it is impossible

to apply the CartesianMethod to, for example, quantum-mechanical (quantum physics)

generalized complementarities like the wave-particle duality or the Heisenberg Uncer-

tainty Principle. Whereas the top-down method may work for mechanical systems, it

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Beyond the Code/Executable Dualism 291

cannot be of much use when we aspire to the understanding or creation of something

that is living or semi-living. The approach that I propose is to identify relationships of

similarity, to find samples or patterns that capture something of the vitality and com-

plexity of the whole without breaking it down in a reductionist way. This resembles the

“perceptrons” approach pioneered by Frank Rosenblatt.740

According to Elsasser, we need Holistic Biology where the living organism in its

full complexity is considered. The structural complexity of even a single living cell is

“transcomputational.” Elsasser writes that the computational problem of grasping a

living organism (or organic structure) is a problem of unfathomable complexity. The

single living cell is involved in a network of relationships with all of life. The individ-

ual member of a species decodes in real-time, in each new circumstance, its species-

memory. It creatively retrieves this species-memory through a process of information

transfer that is effectively “invisible,” and does not take place via any intermediate stor-

age or physical transmission media. This holistic information transfer happens over

space and time, “without there being any intervening medium or process that carries

the information.”741 Whereas the genetic code ismemory as “homogeneous replication,”

holistic memory, for Elsasser, is one of “heterogeneous reproduction.”

Elsasser’s interrogation of howwe could consider organic life as an information sys-

tem and his ideas about the trans-computational, invisible data transfers, and the logic

of similarity or resemblance are useful notions for thinking about a possible paradigm

shift towards a post-combinatorial computer science.

https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


https://doi.org/10.14361/9783839472422-015 - am 13.02.2026, 07:25:20. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

