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Nomenklatur

Lateinische Buchstaben

a axialer Induktionsfaktor [-]
a′ tangentialer Induktionsfaktor [-]
B Anzahl der Blätter [-]
c Blattsehnenlänge [m]
Ca aerodynamische Dämpfung [Nms/rad]
Cl Auftriebsbeiwert [-]
Clα Steigung der Auftriebskurve [-]
Cd Widerstandsbeiwert [-]
CT Schubbeiwert [-]
CM Momentenbeiwert [-]
CN Dämpfung des Endanschlagss in der Nabe [Nms/rad]
Cpt Pitch-Pendel-Kopplungs-Koeffizient [-]
Fzf Zentrifugalkraft [N]
FA Auftriebskraft [N]
FS Schubkraft [N]
FV Vortriebskraft [N]
FW Widerstandskraft [N]
h Höhe über Grund [m]
J Massenträgheitsmoment des Rotors um y-Achse [kgm2]
k Lineare Steigung des Höhenwindgradienten [-]
kzf Steifigkeit durch Zentrifugalwirkung [Nm/rad]
kN Steifigkeit des Endanschlags in der Nabe [Nm/rad]
ka aerodynamische Steifigkeit durch Pitch-Pendel-Kopplung [Nm/rad]
K.. dimensionslose Kennzahl [-]
Lk Längenparameter der Turbulenzrichtung [m]
MEA Endanschlagsmoment um y-Achse [Nm]
Ma durch Aerodynamik verursachte Momente um y-Achse [Nm]
Mzf durch Zentrifugalkraft verursachtes Moment um y-Achse [Nm]
MJ durch Massenträgheit verursachtes Moment um y-Achse [Nm]
My Nabenbiegemoment um y-Achse [Nm]
pT Kräfte in Schwenkrichtung pro Längeneinheit [N/m]
pN Kräfte in Schlagrichtung pro Längeneinheit [N/m]
R Rotorradius [m]
Re Reynoldszahl [-]

IX

https://doi.org/10.51202/9783186433015-I - Generiert durch IP 216.73.216.36, am 20.01.2026, 17:42:10. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186433015-I


Nomenklatur

r lokaler Blattradius [m]
S Kreuzspektrum [-]
T Periodendauer [Hz]
u Windgeschwindigkeit [m/s]
u∞ ungebremste Windgeschwindigkeit vor Rotor [m/s]
Ū Mittlere Windgeschwindigkeit auf Nabenhöhe [m/s]
v Anströmgeschwindigkeit des Profils [m/s]
Wkin kinetische Energie des Pendelrotors in Pendelrichtung [J]
Wpot potentielle Energie des Pendelrotors in Pendelrichtung [J]
WP endel Energie der Pendelbewegung [J]

Griechische Buchstaben

α Anstellwinkel [◦]
γ Lock-Zahl [-]
δ3 Winkel zwischen der mechanischen Pendelachse und der y-Achse der Nabe [◦]
ζ Pendelwinkel [◦]
ζfrei freier Pendelwinkel [◦]
ζmax maximaler Pendelwinkel [◦]
ζEA Endanschlagswinkel [◦]
ζ∗ Amplitude des Pendelwinkels bei stetigem Wind [◦]
ϕ Winkel bei Drehschwingung [◦]
Θ Pitchwinkel [◦]
ν kinematische Viskosität [m2/s]
ξ Lehrsches Dämpfungsmaß [-]
φ Anströmwinkel [◦]
ρ Luftdichte [kg/m3]
λ Schnelllaufzahl [-]
σr Blattüberdeckungsgrad [-]
σu Standardabweichung des turbulenten Windes [m/s]
Ω Rotordrehfrequenz [min−1]
ωD gedämpfte Eigenfrequenz [Hz]
ω0 ungedämpfte Eigenfrequenz [Hz]
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Nomenklatur

Abkürzungen

BEM Blade Element Momentum Theory
CFD Computational Fluid Dynamics
DLC Design Load Case
ECD Extreme Coherent Gust with Direction Change
EDC Extreme Direction Change
EOG Extreme Operation Gust
EWM Extreme Wind Speed Model
EWS Extreme Wind Shear
FEM Finite Element Methode
FFT Fast Fourier Transform
FVM Free Wake Vortex Methode
IEC International Electrotechnical Commission
NACA National Advisory Committee for Aeronautics
NASA National Aeronautics and Space Administration
NREL National Renewable Energdy Laboratory
NTM Normal Turbulence Model
NWP Normal Wind Profile
SCD Super Compact Drive
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Zusammenfassung

Pendelendanschläge bei Zweiblatt-Windenergieanlagen

Zweiblatt-Windenergieanlagen gelten als ein möglicher Anlagentyp für den Offshore-
Einsatz, weil sie das Potential bieten, Kosten zu reduzieren. Allerdings sind die dyna-
mischen Belastungen einer Zweiblattanlage im Vergleich zu einer Dreiblattanlage durch
deren symmetrischen Rotor komplexer. Eine mögliche Lösung für den Umgang mit dieser
Dynamik besteht in der Verwendung einer Pendelnabe, die die auf die Anlage wirkenden
Kräfte und Momente unter normalen Betriebsbedingungen erheblich reduzieren kann.
Pendelnaben werden in der Literatur häufig hinsichtlich ihrer positiven Wirkung auf die
Betriebslasten erwähnt, jedoch wird zeitgleich fast immer darauf verwiesen, dass durch
die konstruktiv zwingend erforderliche Begrenzung des Pendelns (den Pendelendaschlag)
große Lasten entstehen, die die Vorteile von reduzierten Betriebslasten wieder zunichte
machen würden. Konkrete Angaben über die Größenordnung der zu erwartenden Lasten
durch Pendelendanschläge oder auch Hinweise zu einer geeigneten Auslegung der Pendel-
parameter bleiben jedoch unbeantwortet.
Um diesen Sachverhalt genauer zu untersuchen, werden in der vorliegenden Arbeit fol-
gende Forschungsfragen untersucht: welche Situationen führen zu Pendelendanschlägen,
welche Parameter bieten gute Möglichkeiten, deren Intensität zu reduzieren und gibt es
Kennzahlen, um anlagenübergreifend die Intensität und damit auch die Auslegung des
Pendelendanschlags beschreiben zu können?
Die Methodik dieser Arbeit besteht dabei in einer Kombination aus analytischer Betrach-
tung der mechanischen Grundlagen der Pendelnabe und aeroelastischen Simulationen von
Extremlastfällen der beiden Zweiblattanlagen CART2 (600 kW) und SCD3MW (3 MW).
Fünf dimensionslose Kennzahlen zur Beschreibung des Nabenbiegemoments durch Pendel-
endanschläge werden im Rahmen dieser Arbeit aufgezeigt. Da sich die Kennzahlen weitest-
gehend anlagenunabhängig verhalten, werden durch sie Vergleiche zwischen verschiedenen
Pendelnaben hinsichtlich der Intensität der zu erwartenden Pendelendanschläge ermög-
licht. Anhand verschiedener Kennzahl-Kombinationen wird zudem gezeigt, dass eine Pen-
delnabe so ausgelegt werden kann, dass ihre Extremlasten weit unter denen einer starren
Zweiblattanlage liegen. Allerdings kann die Auslegung auch so erfolgen, dass die Lasten
durch Pendelendanschläge die Extremlasten einer starren Nabe bei weitem übersteigen.

Zusammenfassend werden mit dieser Arbeit neue und wichtige Erkenntnisse über
Zweiblatt-Pendelnaben aufgezeigt. Der Schluss liegt nahe, dass dieser Anlagentyp durch-
aus für zukünftige Windenergieanlagen in Betracht gezogen werden sollte.
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Abstract

Teeter end impacts on two bladed wind turbines

Two bladed wind turbines are generally regarded as a possible alternative for application
in the offshore area as they show a potential to save cost of energy. Still, in contrast to
three bladed turbines, the dynamic behavior of two bladed turbines is more challenging
because of the rotor’s symmetry. A possible solution to handle these larger dynamic loads
is the use of a teeter hinge, which can significantly reduce loads in normal operating
conditions.

Scientific literature underlines the advantages of teeter hinges for fatigue loads. However, it
is frequently mentioned, that the necessary restriction of the teeter movement (the teeter
restraint) can lead to large loads, which make the load reducing advantage on fatigue
loads of the teeter hinge obsolete. Information about the magnitude of those teeter end
impacts or instructions about a suitable design of a teeter hinge must remain uncertain.

This study examines the following research questions: Which situations lead to teeter end
impacts, which parameters of a teeter hinge offer possibilities to reduce the intensity of
teeter end impacts, and are there dimensionless numbers to characterize the intensity of
teeter end impacts independent of the turbine-size?

The methodology of this study combines the use of analytical equations of the mechanics of
the teeter movement and aeroelastic simulations of extreme load cases of the two turbines
CART2 (600 kW) and SCD3MW (3 MW).

As a result of this study five dimensionless numbers describing the intensity of the hub
bending moment coming from the teeter end impact can be shown. As the behavior of
these dimensionless numbers is mostly independent of the turbine, they allow comparisons
of different teetered turbines regarding the expectable intensity of teeter end impacts.
Based on different combinations of the dimensionless numbers the study is able to show
that a teetered turbine can be designed in a way that its extreme loads coming from end
impacts are far below the extreme loads of a rigid hub. However, it has also been shown
that a teeter hinge can be designed in such a way that extreme loads of teeter end impacts
become much more severe than the ones of a rigid hub.

In summary, this work shows new and important findings about teetered turbines. Con-
sequently this type of turbine should more widely be regarded as a possibility for future
wind turbines.
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