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Zusammenfassung

Pendelendanschlage bei Zweiblatt-Windenergieanlagen

Zweiblatt-Windenergieanlagen gelten als ein moglicher Anlagentyp fir den Offshore-
Einsatz, weil sie das Potential bieten, Kosten zu reduzieren. Allerdings sind die dyna-
mischen Belastungen einer Zweiblattanlage im Vergleich zu einer Dreiblattanlage durch
deren symmetrischen Rotor komplexer. Eine mogliche Losung fiir den Umgang mit dieser
Dynamik besteht in der Verwendung einer Pendelnabe, die die auf die Anlage wirkenden
Krifte und Momente unter normalen Betriebsbedingungen erheblich reduzieren kann.
Pendelnaben werden in der Literatur héufig hinsichtlich ihrer positiven Wirkung auf die
Betriebslasten erwéhnt, jedoch wird zeitgleich fast immer darauf verwiesen, dass durch
die konstruktiv zwingend erforderliche Begrenzung des Pendelns (den Pendelendaschlag)
grofle Lasten entstehen, die die Vorteile von reduzierten Betriebslasten wieder zunichte
machen wiirden. Konkrete Angaben tiber die Gréenordnung der zu erwartenden Lasten
durch Pendelendanschlédge oder auch Hinweise zu einer geeigneten Auslegung der Pendel-
parameter bleiben jedoch unbeantwortet.

Um diesen Sachverhalt genauer zu untersuchen, werden in der vorliegenden Arbeit fol-
gende Forschungsfragen untersucht: welche Situationen fithren zu Pendelendanschligen,
welche Parameter bieten gute Moglichkeiten, deren Intensitat zu reduzieren und gibt es
Kennzahlen, um anlageniibergreifend die Intensitdt und damit auch die Auslegung des
Pendelendanschlags beschreiben zu kénnen?

Die Methodik dieser Arbeit besteht dabei in einer Kombination aus analytischer Betrach-
tung der mechanischen Grundlagen der Pendelnabe und aeroelastischen Simulationen von
Extremlastfillen der beiden Zweiblattanlagen CART2 (600kW) und SCD3MW (3 MW).
Fiinf dimensionslose Kennzahlen zur Beschreibung des Nabenbiegemoments durch Pendel-
endanschlidge werden im Rahmen dieser Arbeit aufgezeigt. Da sich die Kennzahlen weitest-
gehend anlagenunabhéngig verhalten, werden durch sie Vergleiche zwischen verschiedenen
Pendelnaben hinsichtlich der Intensitét der zu erwartenden Pendelendanschlige ermdog-
licht. Anhand verschiedener Kennzahl-Kombinationen wird zudem gezeigt, dass eine Pen-
delnabe so ausgelegt werden kann, dass ihre Extremlasten weit unter denen einer starren
Zweiblattanlage liegen. Allerdings kann die Auslegung auch so erfolgen, dass die Lasten
durch Pendelendanschléige die Extremlasten einer starren Nabe bei weitem iibersteigen.

Zusammenfassend werden mit dieser Arbeit neue und wichtige Erkenntnisse iiber

Zweiblatt-Pendelnaben aufgezeigt. Der Schluss liegt nahe, dass dieser Anlagentyp durch-
aus fir zukiinftige Windenergieanlagen in Betracht gezogen werden sollte.
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Abstract

Teeter end impacts on two bladed wind turbines

Two bladed wind turbines are generally regarded as a possible alternative for application
in the offshore area as they show a potential to save cost of energy. Still, in contrast to
three bladed turbines, the dynamic behavior of two bladed turbines is more challenging
because of the rotor’s symmetry. A possible solution to handle these larger dynamic loads
is the use of a teeter hinge, which can significantly reduce loads in normal operating
conditions.

Scientific literature underlines the advantages of teeter hinges for fatigue loads. However, it
is frequently mentioned, that the necessary restriction of the teeter movement (the teeter
restraint) can lead to large loads, which make the load reducing advantage on fatigue
loads of the teeter hinge obsolete. Information about the magnitude of those teeter end
impacts or instructions about a suitable design of a teeter hinge must remain uncertain.

This study examines the following research questions: Which situations lead to teeter end
impacts, which parameters of a teeter hinge offer possibilities to reduce the intensity of
teeter end impacts, and are there dimensionless numbers to characterize the intensity of
teeter end impacts independent of the turbine-size?

The methodology of this study combines the use of analytical equations of the mechanics of
the teeter movement and aeroelastic simulations of extreme load cases of the two turbines
CART2 (600kW) and SCD3MW (3 MW).

As a result of this study five dimensionless numbers describing the intensity of the hub
bending moment coming from the teeter end impact can be shown. As the behavior of
these dimensionless numbers is mostly independent of the turbine, they allow comparisons
of different teetered turbines regarding the expectable intensity of teeter end impacts.
Based on different combinations of the dimensionless numbers the study is able to show
that a teetered turbine can be designed in a way that its extreme loads coming from end
impacts are far below the extreme loads of a rigid hub. However, it has also been shown
that a teeter hinge can be designed in such a way that extreme loads of teeter end impacts
become much more severe than the ones of a rigid hub.

In summary, this work shows new and important findings about teetered turbines. Con-

sequently this type of turbine should more widely be regarded as a possibility for future
wind turbines.
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