
Fortschritt-Berichte VDI

Dipl.-Ing. Peter Seibold,  
Erkelenz 

Nr. 853

Informatik/
Kommunikation

Reihe 10

Visuelle Odometrie  
in Echtzeit für ein 
Fluggerät

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


 

FernUniversität in Hagen 

DISSERTATION 

Visuelle Odometrie in Echtzeit  
für ein Fluggerät 

 

Der Fakultät für Mathematik und Informatik der FernUniversität in Hagen zur 
Erlangung des akademischen Grades eines 

Dr.-Ing. 
eingereichte Dissertation 

von 
Dipl.-Ing. Peter Ulrich Seibold 

aus 
Balingen 

 
 
 
 
 
 

Gutachter: 1. Prof. Dr.-Ing. M. Gerke 

  2. Prof. Dr.-Ing. J. Horstmann 
 
 
Datum der mündlichen Prüfung: 23.12.2016 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


III 

Danksagungen 
Die vorliegende Dissertation ist während meiner Forschungsarbeiten im 
Lehrgebiet Prozesssteuerung und Regelungstechnik der Fakultät für 
Mathematik und Informatik der FernUniversität in Hagen enstanden. 
Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Gerke, der meine 
Forschungsrichtung anregte und begleitete. Mit Akribie widmete er sich meiner 
Arbeit und gab mir zahlreiche sehr nützliche Hinweise. Bei einem herben 
Rückschlag bezüglich der Versuchsergebnisse ermutigte er mich einen 
anderen Weg zu beschreiten. 
Herrn Prof. Dr.-Ing. Horstmann danke ich für die Übernahme des 
Zweitgutachtens. Auch er gab mir in einem ausführlichen Gespräch einige 
Hinweise, die meine Arbeit abrundeten. 
Den Kollegen des Lehrgebiets danke ich für die Hilfe beim Umbau und der 
Ansteuerung des XY-Tisches, bei der Unstützung zu Messfahrten und den 
vielen Gesprächen. 
Mein herzlicher Dank gilt meiner Lebensgefährtin Monika, die mich 
unermüdlich antrieb die Ergebnisse zu Papier zu bringen, geduldig meine 
monatelange geistige Abwesenheit ertrug und meine orthografischen 
Kenntnisse deutlich erweiterte. 
 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


Fortschritt-Berichte VDI

Visuelle Odometrie  
in Echtzeit für ein 
Fluggerät

Dipl.-Ing. Peter Seibold,  
Erkelenz 

Informatik/
Kommunikation

Nr. 853

Reihe 10

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


© VDI Verlag GmbH · Düsseldorf 2017
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe 
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, 
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627
ISBN 978-3-18-385310-6

Seibold, Peter
Visuelle Odometrie in Echtzeit für ein Fluggerät
Fortschr.-Ber. VDI Reihe 10 Nr. 853. Düsseldorf: VDI Verlag 2017.
224 Seiten, 212 Bilder, 26 Tabellen.
ISBN 978-3-18-385310-6, ISSN 0178-9627,
¤ 76,00/VDI-Mitgliederpreis ¤ 68,40.
Für die Dokumentation: Bildregistrierung mit Stereokamera – Visuelle Odometrie – 3D-Positions-
bestimmung – Normierte Kreuzkorrelation (NCC) – Optischer Fluss – Subpixel

Die vorliegende Arbeit wendet sich an Wissenschaftler und Ingenieure im Bereich der Bildver-
arbeitung. Sie befasst sich mit der Ermittlung der Bewegung und Position eines unbemannten 
Fluggerätes mit einer Flughöhe zwischen 0,6 m und 100 m. Die Bilderfassung erfolgt durch eine 
Stereokamera mit kleiner Basisbreite. Zwei Methoden – optischer Fluss und gebietsbasierte 
Verfahren (block matching) – werden auf Verwendbarkeit zur Bewegungsanalyse geprüft und 
verglichen. Durch die kleine Basisbreite der Kamera sind besondere Anforderungen an die 
Subpixelgenauigkeiten gestellt, die eingehend evaluiert werden. Um Echtzeitbedingungen ein-
zuhalten, werden einige Vereinfachungen eingeführt wie z. B. Reduzierung der Bilinearkoeffi-
zienten für die Rektifizierung und situationsabhängige Bildverkleinerungen. Die Hardwareplatt-
formen CPU, FPGA, DSP und GPGPU werden auf Eignung untersucht

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; 
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

Schriften zur Informations- und Kommunikationstechnik
Herausgeber:

Wolfgang A. Halang, Lehrstuhl für Informationstechnik
Herwig Unger, Lehrstuhl für Kommunikationstechnik

FernUniversität in Hagen

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


V 

Inhaltsverzeichnis 
Abkürzungen IX 

Kurzfassung X 

1 Einleitung 1 

1.1 Luftschiff: Entstehung und Eigenschaften 1 

1.2 Aufbau der Bilderfassung 6 

1.3 Stand der Technik 7 

1.4 Aufbau der Arbeit 11 

2 Kameramodell und Bewegung 14 

2.1 Modell der Lochkamera 14 
2.1.1 Geometrische Transformationen 15 
2.1.2 Kalibrierung bei unverzerrter Abbildung 20 
2.1.3 Geometrie mehrerer Abbildungen einer Szene 22 
2.1.4 Rektifizierung 26 

2.2 Modell der Linsenkamera 27 

2.3 Fotosensoren auf Halbleiterbasis 28 

2.4 Abbildungsfehler 29 
2.4.1 Abbildungsfehler durch Objektive 29 

2.4.1.1 Vignettierung 29 
2.4.1.2 Verzeichnung 31 

2.4.2 Abbildungsfehler durch Sensoren 34 
2.4.2.1 Rauschen 34 
2.4.2.2 Blooming 35 
2.4.2.3 Smear-Effekt 35 
2.4.2.4 Moiré-Effekt (Unterabtastung) 35 

2.5 Behebung der Verzeichnungen 37 
2.5.1 Beschreibung radialer und tangentialer Verzeichnung 37 
2.5.2 Kalibrierung und Rektifizierung bei verzerrter Abbildung 38 

2.6 Ermittlung der Bewegung 41 
2.6.1 Stereogeometrie 41 
2.6.2 Translation 44 
2.6.3 Rotation 46 
2.6.4 Geschwindigkeitsbestimmung 48 

2.7 Zusammenfassung Kapitel 2 48 

3 Bewegungsabschätzung und optischer Fluss 49 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


VI 

3.1 Einleitung 49 

3.2 Voraussetzungen und Probleme bei der Bewegungserfassung 51 
3.2.1 Korrespondenzproblem 51 
3.2.2 Blendenproblem 52 
3.2.3 Beleuchtungsänderung 53 
3.2.4 Verdeckung 54 

3.3 Klassifizierung der Bewegungsabschätzungsmethoden 56 
3.3.1 Differentielle Methoden 57 
3.3.2 Gebietspaarung 57 

3.3.2.1 SAD 57 
3.3.2.2 SSD 57 

3.3.3 Energiebasierte Methoden 58 
3.3.4 Phasentechniken 58 
3.3.5 Merkmalsbasierte Methoden 58 

3.3.5.1 Harris Ecken Detektor 59 

3.4 Optischer Fluss, differenzielles Verfahren 60 
3.4.1 Smoothness Constraint nach B. K. Horn und B. G. Schunck 63 
3.4.2 Flusskonstanz nach Lucas&Kanade 65 
3.4.3 Vergleich der Verfahren nach Horn&Schunck und Lucas&Kanade 66 
3.4.4 Gaußpyramide 67 

3.5 Optischer Fluss, Korrelationsmethode 71 
3.5.1 ZNCC 71 
3.5.2 NCC 74 
3.5.3 Eigenschaften von NCC und ZNCC 75 

3.6 Zusammenfassung Kapitel 3 77 

4 Vergleich der Verfahren nach Lucas&Kanade und NCC 78 

4.1 Reichweite der Erkennung 78 

4.2 Helligkeitsempfindlichkeit 80 

4.3 Rotationsempfindlichkeit 81 

4.4 Berechnungszeit 88 

4.5 Subpixelgenauigkeit 88 
4.5.1 Subpixelgenauigkeit beim differentiellen Verfahren nach 

Lucas&Kanade 88 
4.5.2 Subpixelgenauigkeit bei der NCC 93 

4.5.2.1 Verbesserung durch Abzug des Mittelwertes 97 
4.5.2.2 Interpolation über Parabel 103 
4.5.2.3 Interpolation über Gaußkurve 106 
4.5.2.4 Interpolation über Geraden 106 
4.5.2.5 Vorzeichenabhängige Interpolation 107 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


VII 

4.5.2.6 Interpolation durch Bildvergrößerungen 109 
4.5.2.7 Neue Methode über 'inverse Parabel' 109 
4.5.2.8 Pixel-Locking 113 

4.5.3 Vergleich der Subpixelfunktionen 116 

4.6 Zusammenfassung Kapitel 4 122 

5 Versuchsergebnisse 123 

5.1 Virtuelle Welt 123 

5.2 XY-Tisch 128 
5.2.1 Ergebnisse 130 

5.2.1.1 Gerader Pfad 130 
5.2.1.2 Kreisbahn 131 

5.3 Flugaufnahmen mit Monokamera 134 

5.4 Auswertung von Stereoaufnahmen 138 
5.4.1 Kameradaten 138 

5.4.1.1 Daten nach Herstellerangaben 139 
5.4.1.2 Eigene Messungen 139 

5.4.2 Erfassungbereiche für Geschwindigkeiten und Abstände 142 
5.4.3 Prüfung der Kalibrierung und Rektifizierung über 

Abstandsberechnungen 144 
5.4.4 Prüfung der Bewegungsberechnung 149 
5.4.5 Verfahren für schnelle Berechnung bei realitätsnahen Versuchen 156 

5.4.5.1 Ausgleich des Intensitätsverlaufs 157 
5.4.5.2 Vereinfachung der bilinearen Interpolation 157 
5.4.5.3 Verringerung der Präzision der Bilinearkoeffizienten 158 
5.4.5.4 Reduzierung der Rektifikation auf benutzte Bereiche 159 
5.4.5.5 Suchbereich für die Bewegungserfassung einschränken 160 
5.4.5.6 Bildverkleinerung 161 
5.4.5.7 Nachbearbeitung: Ausschließen deutlich falsch berechneter Werte 164 

5.4.6 Realitätsnahe Versuche 167 

5.5 Zusammenfassung Kapitel 5 176 

6 Implementation in Hardware 177 

6.1 Berechnungszeiten 177 

6.2 Maschinennahe Programmierung 178 

6.3 Parallelisierung 178 

6.4 Hardwareprozessoren 179 
6.4.1 DSP 180 
6.4.2 FPGA 180 
6.4.3 GPGPU 181 

6.5 Zusammenfassung Kapitel 6 185 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


VIII 

7 Zusammenfassung und Ausblick 186 

Anhang 191 

A.1 Lochkamera: Belichtungszeit und Unschärfe durch Beugung 191 

A.2 Nützliche Eigenschaften digitaler Filter 192 

A.3 Summentabellen 197 

A.4 Berechnung der NCC über die Schwarzsche Ungleichung 199 

A.5 Synchronisations- und Bildratenbestimmung der Stereokamera 202 

Literaturverzeichnis 205 
 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


IX 

Abkürzungen 
3D dreidimensional 
DGPS Differential Global Positioning System 
DSP Digital Signal Processor 
FPGA Field Programmable Gate Array 
fps Bildrate (frames per second) 
GFLOPS Giga Floating Point Operations Per Second 
GPGPU General Purpose Computation on Graphics Processing Unit 
GPS Global Positioning System 
GPU Graphics Processing Unit 
IMU Inertial Measurement Unit 
NCC Normalized Cross Correlation 
NCCa Normalisierte Kreuzkorrelation approximiert 
NED North – East – Down 
SAD Sum of Absolute Differences 
SIFT Scale-Invariant Feature Transform 
SLAM Simultaneous Localization and Mapping 
SSD Sum of Squared Differences 
SURF Speeded Up Robust Features 
UAS Unmanned Aerial System 
YPR Yaw-Pitch-Roll 
ZNCC Zero-mean Normalized Cross Correlation 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


X 

Kurzfassung 
Unbemannte autonome Kleinfluggeräte gewinnen in den letzten Jahren 
zunehmend an Bedeutung, da durch Beobachtungen aus der Luft sowohl 
große Areale überwacht werden können als auch Detailansichten aus 
verschiedenen Perspektiven ermöglicht werden. Die Miniaturisierung der 
Sensoren und Aktuatoren erlaubt, leichte Fluggeräte mit niedrigem 
Energiebedarf zu erstellen. Durch diese Sensoren wird, sofern deren Taktrate 
und Präzision ausreichen, um die Bewegung des Fluggerätes zu erfassen und 
zu regeln, der autonome Flug – z. B. entlang eines vorgegebenen Pfades – 
ermöglicht. GPS (Global Positioning System), ein in der Robotik häufig 
eingesetztes System, liefert die horizontale absolute Position, allerdings ohne 
zusätzliche Infrastruktur nur mit Genauigkeiten im unteren Meterbereich und 
die auf ein fiktives Rotationsellipsoid bezogene Höhe auf etwa 10 m genau. 
Mit der Wiederholungsrate von ca. 1/s ist GPS für eine dynamische 
Bewegungsregelung nicht ausreichend schnell. Deshalb werden andere 
Sensoren hinzugezogen. Ein Inertialsensor (IMU) erfasst schnelle 
Bewegungen sehr gut und ist für eine Kurzzeitregelung geeignet. Da dieser 
Sensor Beschleunigungen misst, werden Strecken über zweifache Integration 
ermittelt. Dies ergibt allerdings schon nach kurzer Zeit, bedingt durch einen 
sich veränderten Gleichanteil im Messwert, quadratisch anwachsende Fehler, 
die durch weitere Sensoren kompensiert werden müssen. Dazu eignen sich 
u. a. Kameras, die klein und leichtgewichtig sind und unter Nutzung der 
visuellen Odometrie zur Verbesserung der Bewegungserfassung führen. 
Zudem kann mit Stereokameras sehr genau die Höhe des Fluggerätes über 
dem darunterliegenden Terrain bestimmt werden. Die Daten der drei Sensoren 
(GPS, IMU und Kameras) werden an ein vorhandenes Flugsystem über ein 
Kalmanfilter fusioniert. 
 
Die vorliegende Dissertation befasst sich mit der visuellen 3D-Odometrie, um 
die Position – damit auch die Höhe über Boden – und die momentane 
Geschwindigkeit eines unbemannten Fluggerätes (UAS, Unmanned Areal 
System) zu bestimmen. Als Fluggerät wird in dieser Arbeit ein Blimp (Luftschiff 
ohne Gerüst) der FernUniversität in Hagen verwendet.  
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Bild 1: Blimp der FernUniversität in Hagen 

Die besonderen Anforderungen sind gegeben durch die geringe Nutzlast, die 
eingeschränkte Energieverfügbarkeit bei einem Kleinluftschiff und die 
Echtzeitbildverarbeitung. Um permanente zeitaufwendige Nachkalibrierungen 
zu vermeiden, kommt eine rigide Stereokamera mit kleiner Basisbreite und 
geringer Masse zum Einsatz.  

 

Bild 2: Eingesetzte Stereokamera „Bumblebee“ der Firma Point Grey 

Zur Bestimmung des Abstandes zu einer Szene nehmen zwei Kameras diese 
Szene gleichzeitig auf. Über Bildregistrierungsmethoden wird die Position 
eines identischen Szenenausschnitts in beiden Aufnahmen bestimmt und über 
Triangulation der Abstand zur Szene ermittelt. Für die Bewegungsbestimmung 
werden in zwei nacheinander mit einer Kamera aufgenommenen Bildern 
identische Szenenausschnitte gesucht. Mit der bekannten Höhe lassen sich 
die Verschiebung der Kamera und damit die Position des Fluggerätes 
berechnen. Da die Zeiten der Kameraaufnahmen bekannt sind, kann daraus 
die Geschwindigkeit des Fluggerätes bestimmt werden. Für die Orientierung 
der Kameras, die ebenfalls in die Berechnung eingeht, werden Winkeldaten 
aus der IMU herangezogen.  
Durch die für große Abstände sehr geringe Basisbreite der Stereokamera von 
24 cm ist das Sichtfeld der eingesetzten Kameras ein Kompromiss zwischen 
maximal auflösbarer Höhe und maximal erfassbarer Geschwindigkeit. Deshalb 
werden Verfahren der Bildregistrierung untersucht, die durch 
Subpixelgenauigkeit eine höhere Auflösung ermöglichen. Hierzu zählen 
Gradientenverfahren, die ohnehin zunächst nur für Subpixelabstände definiert 

Basisbreite: 24 cm
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sind, oder flächenbasierte Verfahren. Zwei Verfahren, die Gradientenmethode 
nach Lucas & Kanade und ein flächenbasiertes Verfahren, die 
Kreuzkorrelation, werden auf Tauglichkeit mit realen Aufnahmen geprüft. 
Wichtige Eigenschaften sind hierbei die maximal erfassbare Translation, die 
Genauigkeit, die Empfindlichkeit auf Rotationen und der Einfluss von 
Belichtungsunterschieden.  
Eingehend wird die Subpixelgenauigkeit, u. a. hier mit nachrichtentechnischen 
Methoden, evaluiert. Zur Subpixelbestimmung im Zusammenhang mit der 
Kreuzkorrelation wird eine Funktion – hier 'inverse Parabel' genannt – 
eingeführt. Ziel ist es, eine Subpixelgenauigkeit kleiner als 0.3 px zu erreichen. 
Mit realen Abbildungen werden die gewählten Verfahren auf ihre 
Genauigkeiten bezüglich der erfassten Bewegungen überprüft. 
Die Echtzeitverarbeitung stellt in diesem Zusammenhang eine besondere 
Herausforderung dar. Deshalb werden mehrere Maßnahmen vorgestellt, die 
die Verarbeitung der großen Mengen an Daten vereinfachen, ohne an 
erforderlicher Präzision zu verlieren. Dazu zählen Gaußfilter mit 
Ganzzahlwerten und Divisor in Zweierpotenz, Reduzierung der 
Bilinearkoeffizienten für die Rektifizierung auf wenige Bit Genauigkeit, 
Einschränken der Gebiete für die Korrespondenzanalyse durch Ausschnitte 
und Bildverkleinerungen.  
Die Parallelisierbarkeit der Algorithmen und deren Einsatz in verschiedene 
Hardwareplattformen werden erläutert. 
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1 

1 Einleitung  

1.1 Luftschiff: Entstehung und Eigenschaften 
Noch vor ca. 150 Jahren wurde die Realisation eines lenkbaren Luftschiffes 
als unmöglich angesehen. So zitierte Ludwig Boltzmann in seinem Aufsatz 
„Über Luftschiffahrt“ [1] von 1894 das wissenschaftliche Umfeld so:  
„Allein wie vor Gauss die Lösung des Problems der Kreistheilung, so misslang 
auch bisher die Herstellung des lenkbaren Luftschiffes, so dass das Problem 
in bedenklicher Weise in Misscredit kam, ja grosse Theoretiker sich sogar zur 
Ansicht hinneigten, seine Lösung sei unmöglich.“  
Doch gleich im Anschluss kommt L. Boltzmann zu folgender Erkenntnis:  
„Die Unrichtigkeit der alten Formeln wurde klar erwiesen und ich glaube, Ihnen 
den Beweis liefern zu können, dass die Lösung des Problems nicht nur 
möglich ist, sondern aller Wahrscheinlichkeit nach schon in kurzer Zeit 
gelingen wird.“  
Am 13. August 1898 erteilte das Kaiserliche Patentamt Herrn Ferdinand Graf 
von Zeppelin das Patent Nummer 98580 für einen „Lenkbaren Luftfahrzug mit 
mehreren hintereinander angeordneten Tragkörpern“. 

 
Bild 3: Luftschiff des Grafen von Zeppelin 
Quelle: https://de.wikipedia.org/wiki/Datei:L-Luftschiff1.png 

In dieser Patentschrift ging es im Wesentlichen um: 
• schlankes, starres Gerippe aus Duraluminium, bestehend aus Ringen und 

Längsträgern 

• Gasraum, aufgeteilt in viele zylindrische Zellen 

• Steuerungsmöglichkeit mit Hilfe von Höhen- und Seitenrudern 

• zwei getrennte, fest mit dem Gerippe verbundene Gondeln 

• Vortrieb durch Propeller, montiert auf Höhe des größten Luftwiderstandes 

• Möglichkeit, mehrere solcher Schiffe wie Zugwaggons aneinander zu 
koppeln 
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Schon 1910 flog das erste Passagierluftschiff in Baden-Baden. Von nun an 
gerieten Luftschiffe in das allgemeine Interesse der Bevölkerung, auch wenn 
der Luxus eines Fluges nur wenigen ermöglicht wurde. Begonnen hatte das 
Ausnutzen des statischen Auftriebs nach dem Prinzip „leichter als (kalte) Luft“ 
mit den Versuchen der Gebrüder Montgolfier, die 1793 den ersten 
Heißluftballon aufsteigen ließen. Die Technik wird detailliert im Buch des 
Zeitgenossen Barthélemy Faujas De Saint-Fond [2] beschrieben. 
Die zivile Luftschifffahrt erfuhr ihren Schicksalsschlag 1937 mit dem Brand der 
Hindenburg LZ129. Das Ende der Zeppeline kam 1940, weder das Militär noch 
die Propaganda sahen einen weiteren Nutzen in Luftschiffen und deshalb 
wurden die beiden letzten großen Luftschiffe LZ127 und LZ131 vernichtet. 
Heute werden bemannte Luftschiffe überwiegend zu Rundflügen und für 
Werbezwecke eingesetzt. 
Andere Anwendungen finden langsam ihren Einzug. Denn Beobachtungen 
aus der Luft gewinnen zunehmend an Bedeutung, da sowohl große Areale 
überwacht werden können als auch Detailansichten unter verschiedenen 
Winkeln ermöglicht werden und dabei die gegenseitige Beeinflussung von 
Beobachtungsgerät und Betrachtungsobjekt in der Regel nur gering ist. Die 
Anwendungsgebiete sind vielfältig. Hier können auf ziviler Seite die 
Überprüfung technischer Systeme wie z. B. die Erkennung und Kontrolle von 
Hochspannungsleitungen [3], [4] und Gleisen, Zählen von Tierherden [5], 
geologische Untersuchungen und bei hoheitlichen Aufgaben die Unterstützung 
sicherheitstechnischer Anforderungen bei Großveranstaltungen, Grenzschutz 
und Katastrophenszenarien wie z. B. Waldbrände, Überflutungen aufgezählt 
werden. In der militärischen Nachsorge hilft die Betrachtung aus der Höhe, 
große Gebiete auf Kontaminierung abzusuchen und zu säubern. An Projekten 
zur Waldbrandbekämpfung [6] und Minenräumung [7] war die FernUniversität 
in Hagen beteiligt. 
Während Hubschrauber oder Flugzeuge viel Energie benötigen, um eine 
Aerodynamik aufzubauen, damit sie über dem Boden bleiben, hat ein 
Luftschiff, weil es leichter ist als Luft, also die Kräfte der Aerostatik nutzt, den 
Vorteil, mit wenig Antrieb eine erheblich höhere Missionsdauer ohne 
Energienachschub zu erreichen und es stürzt selbst bei einem Antriebsausfall 
nicht ab. Flugzeuge überfliegen zu schnell ein genauer und länger zu 
untersuchendes Gebiet, während Hubschrauber mit ihrem Rotorabwind 
gerade die sensiblen Flächen, die es zu beobachten gilt, stören oder sogar 
zerstören. Ein weiterer Vorteil eines Luftschiffes ist seine weitgehende 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


3 

Geräuschlosigkeit, die den Einsatz in urbanen Gebieten erleichtert. Allerdings 
ist die Zuladung im Verhältnis zum Volumen klein. So trägt ein m3 Helium in 
Luft bei Normalatmosphäre etwa 1 kg an Last. Ein großes Luftschiff kann zwar 
eine hohe Nutzlast tragen, hat aber den Nachteil, dass das sturmfeste und 
vandalismussichere Parken eine große Halle erfordert und der Transport zu 
einem entfernten Einsatzort sehr aufwendig ist. 
Die Bedingungen der langen Verweildauer in der Luft, des Langsamfluges und 
des nahezu unhörbaren Antriebs erfüllt ein Prallluftschiff mit Elektroantrieb. Ein 
Prallluftschiff, auch Blimp genannt, ist ein Luftschiff, dessen Gestalt, im 
Gegensatz zum Starrluftschiff, nicht durch ein Innenskelett, sondern durch die 
Form der Hülle und den Innendruck aufrechterhalten wird. Dadurch lässt es 
sich im leeren Zustand falten und leicht transportieren. Der Einsatz in weit 
entfernte Gebiete ist dadurch problemlos möglich. Andererseits weist ein 
kleines Luftschiff, Bild 4 , eine wesentlich größere Dynamik auf als ein großes 
Luftschiff, Bild 5. 
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Bild 4: Blimp der FernUniversität in Hagen 

 
Bild 5: Luftschiff Hindenburg im Größenvergleich zum Blimp der 
FernUniversität 
Quelle: http://www.alt-deutschland.com/0119Luftschiff1937gross.jpg 

Tabelle 1: Gegenüberstellung des Blimps der FernUniversität in Hagen zum 
Luftschiff Hindenburg 

 FernUni Blimp Hindenburg (aus [8]) 
Länge 9 m 245 m 
Max. Durchmesser 2.5 m 41 m 
Volumen 24 m³ 200 000 m³ 
Füllgas Helium Wasserstoff 
Eigenmasse 17 kg 119 t 
Nutzlast 6 kg  96 t 
Max. Geschwindigkeit 45 km/h 137 km/h 
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Grob kann aus Tabelle 1 das Verhältnis der seitlichen Querschnittsflächen zu 
500 und das Verhältnis der Massen zu 10000 errechnet werden. Die Windkraft 
Fw ist proportional zur Fläche. Mit Fw = mb, m ist die Masse, kann das 
Verhältnis der Beschleunigungen b, die die beiden Luftschiffe bei einer 
Windböe erfahren würden, zu 20 errechnet werden. Das heißt, würde die 
Hindenburg bei einer Windböe innerhalb einer Sekunde um einen Meter 
versetzt werden, so würde der Blimp bei derselben Windböe um 20 m zur 
Seite gehen. Dies könnte bei vertikalen Böen für den Blimp sogar fatal sein. 
Aus dieser Betrachtung ergibt sich eine besonders hohe Anforderung an die 
Manövrierfähigkeit und die Positionsregelung des Blimps. Hierzu werden 
geeignete Sensoren und deren Datenauswertung benötigt. 
 
Im Gegensatz zu landbasierten Fahrzeugen haben Fluggeräte Freiheitsgrade 
mit großen Auslenkungen. Dies sind drei translatorische Achsen 
(vorwärts/rückwärts, seitlich und auf/ab) und drei rotatorische Achsen (gieren, 
rollen und nicken). Diese sechs Achsen zu beherrschen, ist eine 
Herausforderung für den fernsteuernden Piloten. Denn um Areale zu 
beobachten, müssen vorgegebene Pfade abgeflogen oder Positionen 
eingehalten werden. Durch seitliche Luftströmungen oder Aufwinde sind diese 
Aufgaben sehr ermüdend und schwer zu bewältigen. Erschwerend kommt 
hinzu, dass die genaue Position des Luftschiffs aus großer Entfernung für den 
Piloten am Boden kaum erkennbar ist. Der Pilot muss deshalb durch 
Regelsysteme mit geeigneten Sensoren und Aktuatoren entlastet werden. 
 
Am Lehrgebiet Prozesssteuerung und Regelungstechnik der FernUniversität in 
Hagen wird an bodengestützten Robotern und Sensoren, luftgestützten 
Systemen und deren Kombination zu einem Verbund geforscht. In jüngerer 
Zeit wird ein spezieller Luftschiff-Typ (Blimp) als Flugroboter eingesetzt. 
Zielsetzung ist dabei einerseits die Erforschung von Sensor- und 
Regelungssystemen für einen semi-autonomen Blimp, um ihn als Flugroboter 
zu nutzen, und andererseits die Kopplung mit den vorhandenen 
bodengebundenen Robotern oder Sensoren zu einem effektiven Tandem-
System zu realisieren. 
 
Ziel dieser Arbeit ist, einen Beitrag zur autonomen Navigation eines Blimps zu 
erbringen. 
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Zusammenfassung 
Die Luftschifffahrt begann Ende des 18. Jahrhunderts und ruhte weitgehend 
ab Beginn des zweiten Weltkriegs. 
Die Vorteile eines Luftschiffs sind geringe Beeinflussung des 
Betrachtungsobjektes und geringe Energieumsetzung. Im Gegensatz zu 
Landfahrzeugen hat ein Luftschiff sechs Freiheitsgrade, die vom Piloten oder 
einer Regelung beherrscht werden müssen. Dadurch, dass das Luftschiff der 
FernUniversität klein ist, kann es leicht transportiert werden, ist dadurch aber 
auch sehr windempfindlich, wodurch die Steuerung erschwert wird. 
 

1.2 Aufbau der Bilderfassung 
Zwei nach unten gerichtete Kameras nehmen die Szene unterhalb des 
Fluggerätes auf. Die mit linker und rechter Kamera gleichzeitig 
aufgenommenen Bilder liefern den Abstand zum Boden. Die Verschiebung 
von korrespondierenden Bildpunkten zwischen dem aktuellen und dem 
vorhergehenden linken Bild wird über Bildverarbeitung ermittelt.  
Mit dem Abstand, den errechneten Verschiebungswerten und den 
Winkeldaten aus der IMU wird der zurückgelegte Pfad berechnet, s. Bild 6 und 
Bild 7. 
Da die Aufnahmen in definierten Zeitabschnitten erfolgen, können dann auch 
die momentanen Geschwindigkeitsvektoren bestimmt werden. 
 
 

 

Bild 6: Sensoren – Verarbeitung – Regelung – Aktuatoren 
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Bild 7: Korrespondenzsuche vom linken aktuellen Bild zum rechten aktuellen 
Bild und zum linken vorhergehenden Bild 

1.3  Stand der Technik 
Die multisensorgestützte autonome Navigation von unbemannten Fluggeräten 
(UAS, unmanned aircraft systems) rückt seit einigen Jahren zunehmend in das 
Forschungsinteresse der Robotik. Insbesondere die Miniaturisierung von 
Sensorsystemen erlaubt hier neue technische Ansätze, die bisher auf 
Flugdrohnen mit geringer Zuladung nicht implementierbar waren. 
Das Standardsystem zur Lokalisierung im Außenbereich, das GPS, wird als 
Basissystem in den meisten mobilen Robotern, die sich außerhalb von 
Gebäuden bewegen, zur Positionsbestimmung benutzt. Da GPS nur die 
absolute Position zu einem fiktiven Rotationsellipsoid (Erde) angibt, bleibt der 
Abstand eines Flugsystems, hier des Blimps, zum Boden zunächst unbekannt. 
Zudem ist der GPS-Empfang alleine wegen Verfügbarkeitslücken zu unsicher. 
Die Wiederholfrequenz ist für eine ausreichend schnelle Regelung zu gering 
und Positionsangaben mit Genauigkeiten besser als 3 m sind nur mit 
zusätzlicher Infrastruktur (DGPS)[9] erreichbar. 
Für kurzzeitige relative Positionsbestimmungen werden zusätzlich 
Inertialsysteme (IMU, Inertial measurement unit) eingesetzt. IMUs erfassen die 
Beschleunigung in drei zueinander orthogonalen Achsen und die Drehrate in 
drei Achsen. Die relative Position wird durch zweifache Integration der 
Beschleunigungen ermittelt. Diese Integrationen führen nach einiger Zeit zu 
großen Abweichungen [10]. 
Neben Inertialsensoren und GPS können Kameras die Multisensorregelungen 
ergänzen. Bildauswertungen sind bei autonomen Fluggeräten insbesondere 
dann nutzvoll, wenn es darum geht, langsam eine genaue Route abzufliegen 
oder gar eine Position zu halten, und besonders geeignet, weil Kameras sich 
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durch geringes Gewicht, kleine Leistungsaufnahme und minimales Volumen 
auszeichnen. 
 
Für die Positionsbestimmung der Flugnavigation über Bildverarbeitung werden 
folgende Methoden unterschieden [11]: 

• Beobachtung vom Boden (On-ground vision) 
Mit mehreren Kameras am Boden wird die Position des Fluggerätes 
bestimmt. 

• Visuelle Odometrie (Visual odometry) 
Über Bildsequenzen wird die kumulierte Position errechnet. Dies ist das 
Prinzip, das in dieser Arbeit vorgestellt wird. 

• Auf ein Ziel bezogene Navigation (Target relative navigation) 
Hier wird die Position relativ zu einem feststehenden Ziel (z. B. Landplatz) 
oder auch einem bewegten Ziel (z. B. Fahrzeug) erfasst. 

• Gelände oder Landmarken bezogene Navigation (Terrain/landmark 
relative navigation) 
Bekannte Geländeaufnahmen oder Landmarken werden mit den 
momentanen Aufnahmen verglichen und damit die absolute Position 
bestimmt. Dies kann die visuelle Odometrie unterstützen, indem hin und 
wieder die absolute Position neu bestimmt wird. Ein Verfahren hierzu wird 
weiter unten näher beschrieben. 

• Simultane Schätzung der Bewegung und der Struktur (Concurrent 
estimation of motion and structure) 
Ein bekanntes Verfahren ist die simultane Lokalisierung und 
Kartenerstellung (engl. SLAM). Hier wird die Position zu einem Merkmal 
geschätzt und in eine Karte eingetragen. Mit zunehmender Anzahl der 
geschätzten Positionen wird die eigene Positionsbestimmung genauer. 

• Bio-inspirierter optischer Fluss (Bio-inspired optic flow navigation) 
Ein Beispiel ist die Insektennavigation, die über den optischen Fluss 
stattfindet, der mit der Nähe zu einer Szene zunimmt und damit eine 
Abstandsschätzung ermöglicht. 

 
Das Problem der Navigation wird in der Roboterforschung oft im 
Zusammenhang mit gleichzeitiger Lokalisation und Kartenerstellung, engl. 
„simultaneous localization and mapping“ (SLAM) [12], [13], [14], [15], erwähnt. 
Die dort vorgeschlagenen Verfahren sind meist für geschlossene Räume 
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entwickelt und reduzieren die Lokalisation auf eine zweidimensionale 
Umgebung. Das Verfahren wird überwiegend für landbasierte Fahrzeuge 
benutzt, findet aber zunehmend Eingang im Zusammenhang mit unbemannten 
Fluggeräten. 
Prinzipiell werden bei SLAM sowohl Positionen von Merkmalen und die 
jeweilige Position der Kamera geschätzt. Die Schätzungen werden umso 
genauer, je öfter dieselben Merkmale aus verschiedenen Blickwinkeln 
wiedergefunden werden. Dabei werden die Schätzungen zumeist über ein 
Kalmanfilter zusammengeführt. Zusammen mit anderen Sensoren kann dann 
auch eine Monokamera zu einer verbesserten Positionsbestimmung 
genommen werden. In [16] wird in einem simulierten Modellhubschrauberflug 
ein mittlerer quadratischer Fehler des SLAM-Verfahrens von 2 m erreicht. Die 
Flugdauer war 35 s bei einer Strecke von etwa 10 m. 
In [17] werden Aufnahmen bei einem 90 m Flug bei der Integration der SLAM 
und IMU Daten in ein Kalmanfilter eine Genauigkeit von 6 m erreicht. 
Über visuelle Odometrie durch eine Monokamera mit Unterstützung von INS-
Daten und barometrischer Höhenbestimmung wird in [18] bei einem Flug in 
70 m Höhe auf einer 280 m langen Strecke eine maximale 
Positionsabweichung von 35 m erreicht. Allerdings ist nach 10 s des 70 s-
Fluges der Fehler schon bei 30 m. Da mit der barometrischen 
Höhenbestimmung der Abstand zu von der Kamera beobachteten Objekten 
nur grob geschätzt werden kann, wurde eine flache Ebene vorausgesetzt. 
 
Im Zusammenhang mit Luftschiffen sind nur wenige Arbeiten veröffentlicht, die 
sich mit Bildverarbeitung beschäftigen. Dazu zählen die Dissertation von M. 
Fach [19], Untersuchungen an der Universität Chemnitz [20] [21], die 
Dissertation von La Gloria [22] und einige Arbeiten am Institute of Systems and 
Robotics der Universität Coimbra, Portugal, die sich in der Dissertation von L. 
Mirisola wiederfinden [23]. 
 
M. Fach [19] berechnet mit Aufnahmen einer Monokamera den Abstand der 
Kamera zur Szene. Über Harris-Detektion werden Merkmale verfolgt und mit 
Hilfe der aus einer IMU gewonnenen Daten der Abstand berechnet. Über die 
Genauigkeit des optischen Verfahrens sind kaum Ergebnisse angegeben. Bei 
realen Versuchen wird nur auf die IMU eingegangen. 
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Die Arbeit von S. Sünderhauf et al. [21] bezieht sich auf ein Luftschiff. Durch 
Simulation ist gezeigt worden, dass mit Hilfe eines Kalmanfilters die Fusion 
von IMU-Daten mit Bildauswertungen die Positionsbestimmung verbessert. 
Für die Bildverarbeitung wurde eine Monokamera angenommen, die sich über 
Kurzeit-SLAM-Methode selbst lokalisierte. Hierbei wurden die Positionen der 
detektierten Landmarken mit ihren Positionsunsicherheiten als gegeben 
vorausgesetzt. Der Einsatz einer Stereokamera wurde ausgeschlossen, da die 
Basisbreite der Kamera mit etwa einem Meter veranschlagt wurde. 
 
Ebenfalls mit Simulation bei Modellierung des Luftschiffs und der Kamera 
kommt La Gloria [22] zu theoretischen Ergebnissen, wobei eine praktisch 
schwer realisierbare Stereobasisbreite von 2 m vorausgesetzt wurde. Die 
Detektion von Landmarken durch die Kamera wurde als gegeben 
vorausgesetzt. Der simulierte Flug in 200 m Höhe und über eine Strecke von 
2 km ergab einen Fehler von 10 m. 
 
Mit Hilfe einer Monokamera, dem SURF-Algorithmus [24] für die 
Bildregistrierung und den Winkeldaten eines Inertialsystems ermittelt L. 
Mirisola [23] die Bewegung eines Luftschiffs. Hierbei wird über die projektive 
Transformation jede Bildebene nach Norden und senkrecht zum Lot 
ausgerichtet. Kurzzeitig kann damit der Flugpfad des Luftschiffs nachgebildet 
werden. Allerdings war die Höhenbestimmung ungenau, so dass der Pfad 
zwar in der Form, aber nicht in der Skalierung, richtig wiedergeben wurde. 
Trotzdem verbesserte die Fusion der Kameradaten mit den Messwerten des 
Inertialsystems über ein Kalmanfilter die Ergebnisse. 
 
Ein Ansatz, die absolute Position zu bestimmen, ist in einer im 
Zusammenhang mit der vorliegenden Arbeit erstellten Masterarbeit zu finden 
[25]. Hier werden über den SIFT-Algorithmus [26] georeferenzierte 
Luftaufnahmen des Landes Nordrhein-Westfalen mit Aufnahmen von Google 
Earth verglichen. Ist die Position grob bekannt, kann mit dieser Methode über 
einen georeferenzierten Kartenausschnitt und einer momentanen 
Bildaufnahme der Kamera des Luftschiffs die absolute Position des Luftschiffs 
bestimmt werden. Unter der Annahme einer Kamera mit einem horizontalen 
Öffnungswinkel von 48° bei einer Auflösung von 1280 px ergeben sich bei 
dem Verfahren Positionsabweichungen von ±20 px, entsprechend ± 0.6 m bei 
50 m Höhe. 
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Ein ähnlicher Ansatz ist in [27] zu finden. 
 
In dieser Arbeit werden Algorithmen untersucht, die schnell und genau sind 
und weitgehend unabhängig vom Bildinhalt eine vorhersagbare 
Berechnungszeit benötigen. Deskriptorenmethoden wie SIFT und SURF 
haben dann Vorteile, wenn die zu vergleichenden Aufnahmen in der 
Perspektive, Skalierung und Rotation stark unterschiedlich sind. Die 
Berechnungen sind aufwendiger und vom Bildinhalt abhängig, da besondere 
Merkmale gesucht werden.  
Durch die schnelle Bildfolge und die Gleichzeitigkeit bei Stereoaufnahmen sind 
diese Einflüsse bei flächenbasierten Methoden durch unterschiedliche 
Blickwinkel gering. Eine Monookularkamera wird ausgeschlossen, da die 
genaue Höhe über Boden, deren Kenntnis im Landeanflug besonders wichtig 
ist, damit nicht genau erfasst werden kann. 

1.4 Aufbau der Arbeit 
In diesem Kapitel wurde auf die Geschichte der Luftschifffahrt und kurz auf 
die Dynamik des kleinen Luftschiffs der FernUniversität in Hagen im Vergleich 
zur Dynamik eines Großluftschiffs eingegangen. Die Berechnung der Höhe 
erfolgt mit zwei gleichzeitig aufgenommenen Abbildungen, während die 
Bewegung mit einer zusätzlichen und zeitversetzten Aufnahme ermittelt wird. 
Die Fusion der Ergebnisse in das Multisensorsystem wurde grafisch 
dargestellt und ist nicht Teil dieser Arbeit. Bisherige Arbeiten, insbesondere im 
Zusammenhang mit Luftschiffen, wurden erläutert. 
 
Im folgenden Kapitel 2 werden Grundlagen zur Geometrie einer Kamera 
bezüglich der Position, Abbildungen, linsenbedingten Verzeichnungen und 
deren Behebung beschrieben. Weitere Abbildungsfehler durch Objektive und 
Sensoren, die die Ergebnisse der Bildregistrierung beeinflussen, werden 
erklärt. Die geometrischen Verhältnisse bei Stereokameraanordnungen und 
deren Überführung in eine scheinbar planparallele Anordnung durch 
Rektifizierung werden modelliert und ermöglichen aus Bildpunkten auf 
Weltpunkte zu schließen, um Bewegungen und Abstände zu ermitteln. 
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Das 3. Kapitel widmet sich der Bildregistrierung. Es geht um die Frage: „Wie 
hat sich ein homologer1 Bildpunkt bewegt?“ Zur Beantwortung werden 
Verfahren klassifiziert und kurz vorgestellt, um sich dann auf zwei Methoden – 
Gradientenverfahren nach Lucas&Kanade und Kreuzkorrelation – zu 
konzentrieren. Durch die Umformung der Gleichungen für die Kreuzkorrelation 
werden mit Hilfe von Summentabellen zügige Berechnungen ermöglicht. Die 
Verfahren werden in ihrer Funktion mit ihren Vor- und Nachteilen verglichen, 
um dann anhand von Versuchen mit Abbildungen im folgenden Kapitel eine 
Entscheidung zu treffen. 
 
Das Kapitel 4 stellt u. a. anhand realer Luftaufnahmen die Verfahren 
hinsichtlich ihrer Bewegungserfassung bei Beleuchtungsunterschieden, 
Rotationen und großen Translationen dar. Die Subpixelgenauigkeit, die 
aufgrund der geringen Basisbreite der Stereokamera sehr wichtig ist, wird 
eingehend untersucht. Über eine eigene Methode (Bildverkleinerungen) 
werden exakte Bildverschiebungen erzeugt, um die Subpixelgenauigkeit zu 
prüfen. Dabei wird eine neue Funktion eingeführt, die die Subpixelgenauigkeit 
signifikant erhöht. 
 
Mit diesen Ergebnissen werden in Kapitel 5 Versuche durchgeführt. Die 
ersten Versuche finden in reproduzierbaren Umgebungen, d. h. in einer 
virtuellen Welt und mit Hilfe eines XY-Tischs statt. 
Flugaufnahmen mit einer Monokamera werden anhand von Mosaikbildern 
überprüft. 
Eingehend wird die Bilderfassung der Stereokamera hinsichtlich der 
Kalibrierung und Rektifizierung auf Genauigkeit verifiziert. Es werden 
Verfahren und Vereinfachungen zur schnelleren Berechnungen von Strecken, 
Geschwindigkeiten und Höhen eingeführt und auch gezeigt, wie 
Verdeckungen detektiert und überbrückt werden können. Den Abschluss der 
Versuche bilden Fahrten entlang von Gebäuden mit Verdeckungen und 
entlang einer Böschung zur Bestimmung von Geschwindigkeiten und 
Abständen. 
 

                                         
1 Homologe Bildpunkte sind Bildpunkte in verschiedenen Aufnahmen, die zum selben 
Szenenpunkt gehören. 
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Im Kapitel 6 werden verschiedene Hardwareplattformen auf ihre Eignung für 
Echtzeitberechnungen untersucht. Dabei wird auf die Parallelisierbarkeit des 
gewählten Verfahrens zur Bildregistrierung eingegangen. 
 
Nach der Zusammenfassung folgt der Anhang, in dem Beugungseffekte 
bezüglich der Lochkamera, Vereinfachungen von Filtern, Summentabellen, 
NCC über Schwarzsche Ungleichung erklärt und Messverfahren hinsichtlich 
des Zeitverhaltens der Stereokamera erläutert werden. 
 
Das Literaturverzeichnis ist nach der Reihenfolge des ersten Zitierens 
sortiert. 
 
Die Quellen der Abbildungen sind, sofern es keine eigenen Bilder sind, 
jeweils darunter angegeben. 
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2 Kameramodell und Bewegung 
Eine Kamera bildet eine dreidimensionale Umwelt auf eine zweidimensionale 
Ebene ab. Üblicherweise erfolgt die Beleuchtung durch sichtbares Licht. 
Mit vielen in kurzen Zeitabständen gespeicherten Aufnahmen lassen sich 
Bewegungsabläufe festhalten. Üblich sind bei kommerziellen Kameras etwa 
30 Bilder pro Sekunde. Extremwerte sind z. B. die Aufnahme eines Pflanzen-
wachstums mit einem Bild pro Stunde oder ballistische Untersuchungen mit 

108 Bildern pro Sekunde. 

2.1 Modell der Lochkamera 
Das einfachste Kameramodell wird durch die Lochkamera dargestellt. 
 

 
Bild 8: Lochkamera 

 

 
Bild 9: Lochkamera im seitlichen Aufriss 

Das optische Zentrum der Lochkamera ist die Stelle des Lichteinlasses. 
Die Brennweite f ist der Abstand vom optischen Zentrum zur 
Abbildungsebene. Die Gegenstandsweite z ist der Abstand vom Gegenstand 
zum optischen Zentrum. 
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2.1.1 Geometrische Transformationen 

Ziel ist, aus den Bildkoordinaten eines Punktes den korrespondierenden Punkt 
in Weltkoordinaten zu finden. Während durch Projektion die Überführung einer 
3D-Szene in ein 2D-Bild möglich ist, kann aus einer 2D-Position nur der Strahl, 
auf dem sich der korrespondierende 3D-Punkt befindet, bestimmt werden. Die 
Bestimmung des Abstands zc wird in einem späteren Abschnitt erläutert. 
 
Bei der Kamerakalibrierung wird zwischen der inneren (intrinsischen) und 
äußeren (extrinsischen) Geometrie der Kamera unterschieden. Während die 
extrinsischen Parameter die Position und Orientierung der Kamera im Raum 
angeben, beschreiben die intrinsischen Parameter den Zusammenhang 
zwischen Kamera- und Bildkoordinatensystem. Im Folgenden werden die 
Indizes wie nachstehend benutzt: 

• b: Bildkoordinaten, Bezug ist die Bildebene (Sensor). 

• c: Kamerakoordinaten xc, yc, zc, Bezug ist das Projektionszentrum. 
xc, yc sind parallel zu xb, yb.  
zc zeigt in Richtung der Szene. 

• w: Weltkoordinaten. Sie liegen beliebig im Raum. 

 
Bildkoordinaten Intrinsische Kamerakoordinaten Extrinsische Weltkoordinaten

xb, yb Parameter xc, yc, zc Parameter xw, yw, zw 

Bild 10: Beziehung zwischen Kameraparametern und den verschiedenen 
Koordinatensystemen  

Im Gegensatz zu Bild 9 ist im Folgenden die Bildebene in Positivlage, d. h., sie 
liegt zwischen dem optischen Zentrum und der Objektebene. Die Positivlage 
ändert bis auf Vorzeichen nichts an der Geometrie. Alle Lichtstrahlen gehen 
durch das optische Zentrum. Dort liegt der Ursprung des orthogonalen 
Kamerakoordinatensystems. Die z-Achse des Kamerakoordinatensystems 
geht am Bildhauptpunkt senkrecht durch die Bildebene in Richtung 
Objektebene und ist die optische Achse. Die Brennweite f ist der Abstand 
zwischen dem optischen Zentrum und dem Bildhauptpunkt. Die x-Achse und 
y-Achse des Bildkoordinatensystems sind parallel zu den entsprechenden 
Kamerakoordinaten. Ein vom Weltpunkt Pw ausgehender Lichtstrahl geht 
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durch das optische Zentrum und bildet dabei einen Punkt auf der Bildebene 
ab, s. Bild 11. 
 

Kamerakoordinatensystem

Bildkoordinatensystem

Weltkoordinatensystem

Bild 11: Projektion des Punktes Pw auf die Bildebene einer Lochkamera 

Zunächst seien die intrinsischen Parameter anhand der Zentralperspektive, 
Bild 12, betrachtet. 

Objektebene

Bildeben

Projektionszentrum

zc yb

xb

xc

yc

 
Bild 12: Zentralperspektive 

Über die Strahlensätze sind die Verhältnisse der Abbildung gegeben mit 

  ; = = y cx c
b b

c c

f yf xx y
z z

 (2.1) 

 Unter Verwendung homogener Koordinaten ergibt sich 

e 
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0 0

1 0 0
1 0 0 1 1

cb x

b y c
c

xx f
y f y

z

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.2) 

In der Regel sind die Pixel eines Sensors gleichverteilt und es gilt für die 
Brennweiten: 

 x yf f f= =  (2.3) 

 
Im Allgemeinen befindet sich das optische Zentrum nicht in der 
Abbildungsmitte. Gleichung (2.2) wird dann zu 
 

 

N N

0
1 0

1 0 0 1

cb x

b y c
c

c

xx f c
y f c y

z
z

X XKb c

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠���	��


 (2.4) 

wobei cx, cy jeweils der Versatz des optischen Zentrums von der Bildmitte ist. 
K ist die Kamerakalibriermatrix der linearen unverzerrten Abbildung [28] [29]. 
Um die Position eines Punktes in Kamerakoordinaten (oder auch 
Weltkoordinaten) aus einem Bildpunkt zu gewinnen, sind Rückschlüsse von 
Bildkoordinaten auf Kamerakoordinaten erforderlich. Die Umkehrung der 
Gleichung (2.4) ist allerdings nicht eindeutig, wenn nur die Bildkoordinaten 
bekannt sind, denn es kann zunächst ohne Kenntnis von zc nur der Strahl 
bestimmt werden, auf dem sich der Szenenpunkt befindet. 

 
1

c c bX z K X−=  (2.5) 

Mit

 

 1

1 0

0 1

0 0 1

x

y

c
f f

K c
f f

−

⎛ ⎞
−⎜ ⎟

⎜ ⎟
⎜ ⎟=

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.6) 

folgt: 
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1

b x

c
b y

c c

c

x c
f

x
y c

y z
f

z

−⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞

−⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (2.7) 

 
Über die extrinsische Kamerakalibrierung kann eine Beziehung zwischen einer 
beliebigen Kameraposition und -orientierung und einem 
Weltkoordinatensystem modelliert werden. 
Da sich die Kamera auf einem Luftschiff befindet, ist es sinnvoll, das an die 
Luftfahrt angelehnte Koordinatensystem zu nehmen. Nach den 
Luftfahrtnormen DIN 9300 und ISO 1151 sind die Koordinaten rechtwinklig, 
wobei die x-Achse nach vorne, die y-Achse nach rechts und die z-Achse nach 
unten weist. Im englischen Sprachraum wird dieses Koordinatensystem als 
NED-System (North – East – Down) bezeichnet. 
Für die Rotation ist in der Luftfahrtnorm festgelegt, dass zuerst um die z-
Achse, dann um die y-Achse und schließlich um die x-Achse im Uhrzeigersinn 
(Rechte-Hand-Regel) gedreht wird. Die Drehreihenfolge wird auch mit YPR 
(Yaw-Pitch-Roll) benannt, s. Bild 13. 
 
 

 
Bild 13: Koordinatensystem in NED –Darstellung 
Gierwinkel ϕz, Nickwinkel ϕy und Rollwinkel ϕx in YPR-Darstellung 

Die extrinsische Kamerakalibrierung ergibt sich aus der 
Koordinatentransformation von Weltkoordinaten in Kamerakoordinaten und ist 
gegeben durch: 

 c wc wX R X T= +  (2.8) 
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Xc und Xw sind die Koordinaten desselben 3D-Punktes. T ist die Translation 
vom Weltkoordinatensystem zum Kamerakoordinatensystem. 
Die Rotation Rwc vom Weltkoordinatensystem zum Kamerakoordinatensystem 
ist: 

 
1 0 0 cos 0 sin cos sin 0
0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

y y z z

wc x x z z

x x y y

R
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

⎛ ⎞−⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠

 (2.9) 

Mit der invertierten Gleichung (2.8) erhält man den Bezug von 
Kamerakoordinaten zu Weltkoordinaten: 

 T T
w wc c wcX R X R T= − +  (2.10) 

Gleichung (2.8) ist allgemeingültig. Mit ihr lassen sich die Kamerakoordinaten 
in das für die Regelung wichtige Volumenzentrum [30] oder in den 
Rotationspunkt [10] des Luftschiffes transformieren. Weiterhin kann die 
Kamera mit Hilfe der aus der IMU gewonnenen Winkel scheinbar lotrecht 
positioniert werden, um Trajektorien und Geschwindigkeiten in Bezug auf den 
Boden, z. B. am Ort der Bodenstation, zu berechnen. 
Während die Koordinatentransformation der Kamera zum Volumenzentrum 
nur einmal berechnet wird, muss die weitere Transformation zur Bodenstation 
bei jeder Bewegung des Luftschiffs neu berechnet werden. 
Diese Berechnung kann wesentlich verkürzt werden, da die Dynamik des 
Blimps, auch bei Windböen, träge genug ist, um für die Rotationen kleine 
Winkel anzusetzen. 
Die Winkelgeschwindigkeiten des Blimps der FernUniversität sind maximal: 

• Gieren 20°/s 

• Nicken 2.5°/s 

• Rollen 2.5°/s 

Wobei das Rollen durch eine Regelung auf ±3° eingeschränkt ist. 
Bei einer Bildrate von 10 oder mehr Bildern pro Sekunde sind die größten 
Winkel zwischen zwei Aufnahmen kleiner als ein Zehntel der oben 
angegebenen Zahlen. Somit kann mit geringem Fehler angenommen werden, 
dass sinϕ = ϕ und cosϕ = 1 ist, (ϕ in rad). Der sich ergebende Fehler für xw, yw, 
zw bei gleichen Längen der Luftschiffkoordinaten xL, yL, zL ist dann kleiner  
2⋅10-5. 
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Die Koordinatentransformation von einem Punkt XL zu einem Punkt Xw in 
homogener Matrix dargestellt, sieht folgendermaßen aus: 

 

1
1

1
0 0 0 1 1

Lx y z y x z x

Lz x y z y z x y
w

y x z L

xt
yt

X
t z

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

− + ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ − ⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟−
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 (2.11) 

Die Gesamtkoordinatentransformation von Bildkoordinaten mit bekanntem zc 
zu den Weltkoordinaten der Bodenstation ist: 

,b c c L wX z X X X→ → →  

In Bild 14 sind die Kamera-, Luftschiff- und die Weltkoordinaten (Xc, XL, Xw) mit 
den Richtungen der z-Achsen gekennzeichnet. 

 
Bild 14: Position des Luftschiffs mit den beteiligten z-Achsen 

2.1.2 Kalibrierung bei unverzerrter Abbildung 

Ausgehend von Gleichung (2.8) ist der Zusammenhang zwischen Bild- und 
Weltkoordinaten so herzustellen:  

 b wsX PX=  (2.12) 

wobei P die Projektionsmatrix, die sowohl die intrinsischen wie die 
extrinsischen Parameter enthält, ist: 

 ( | )P K R T=  (2.13) 

s ist ein Skalierungsparameter. 
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Gleichung (2.12) wird geschlossen dargestellt, indem P durch 12 Parameter 
ersetzt wird:  

 
1 2 3 4

5 6 7 8

9 10 11 12 1

w
b

c
b

w

x
x s L L L L

y
y s L L L L

z
s L L L L

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

 (2.14) 

Ein Vielfaches von Xw würde denselben Bildpunkt Xb erzeugen, deshalb kann 
L12 = 1 gesetzt werden. 
s wird dann zu: 

 9 10 11 1w w ws L x L y L z= + + +  (2.15) 

Gleichung (2.14) wird nun umformuliert zu: 

 
1 2 3 4

5 6 7 8

w w w
b

w w w
b

L x L y L z Lx
s

L x L y L z Ly
s

+ + +
=

+ + +
=

 (2.16) 

Durch eine weitere Umstellung erhält man: 

 1 2 3 4 9 10 11

5 6 7 8 9 10 11

b w w w b w b w b w

b w w w b w b w b w

x L x L y L z L L x x L x y L x z
y L x L y L z L L y x L y y L y z

= + + + − − +

= + + + − − +
 (2.17) 

Stehen nun n Punktepaare ( , ) ( , , ) , 1,2,...,bi bi wi wi wix y x y z i n↔ =  zur Verfügung, 

kann ein überbestimmtes lineares Gleichungssystem aufgestellt werden: 
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# (2.18) 

Die optimale Lösung L* lässt sich mit der Methode der kleinsten Quadrate über 
die Pseudoinverse von A bestimmen zu: 

 1( )T TL A A A b∗ −=  (2.19) 

Aus den L-Parametern lassen sich die intrinsischen Parameter cx, cy, fx, fy und 
die extrinsischen Parameter R und T berechnen [29]. 
 
 

2.1.3 Geometrie mehrerer Abbildungen einer Szene 

Montagebedingt sind die beiden Bildebenen der Stereokamera nicht auf einer 
Ebene und haben unterschiedliche Orientierungen. Dies führt zu aufwendigen 
Berechnungen der Zuordnung von Bildpunkten zu Weltpunkten bei der 
Stereogeometrie. Um dies zu vermeiden, kann über die Epipolargeometrie 
eine scheinbar planparallele Anordnung der Bildebenen errechnet werden.  
Die Epipolargeometrie beschreibt die Beziehung zwischen Abbildungen 
derselben Szene durch mehrere Kameras und hängt nur von den intrinsischen 
und extrinsischen Parametern, also der relativen Lage der Kameras, ab. In 
dieser Arbeit wird diese Beziehung ausschließlich für ein Zweikamerasystem 
betrachtet, obwohl die Epipolargeometrie für multiple Kameraanordnungen 
gültig ist [31]. 
 
An Bild 15 seien die Verhältnisse der Epipolargeometrie an einem Beispiel 
gezeigt. 
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Bild 15: Epipolargeometrie 

Legende: 
• Bezeichnungen mit Hochstrich, z. B. I', beziehen sich auf die rechte 

Kamera. 

• I : Bildebene 

• xb, yb : Bildkoordinaten 

• Oc: Optisches Zentrum, Ursprung des Kamerakoordinatensystems 

• L: Epipolarlinie 

• e : Epipol 

• B : Basislinie 

• π: Epipolarebene 

• R, T :Rotationsmatrix, Translationsvektor 

• Pb : Bildpunkt 

• Pw : Weltpunkt 

• P2w: Zweiter Weltpunkt auf der Linie Oc-Pw 

 
Die beiden Kameras, deren relative Position durch die Rotation R und 
Translation T gegeben ist, sind einander zugewandt. Der Weltpunkt Pw, 
dessen Strahl durch das optische Zentrum Oc geht, wird als Punkt Pb auf der 
Bildebene I der linken Kamera abgebildet. Ziel ist es, den korrespondieren 
Bildpunkt P'b auf der Bildebene I' der rechten Kamera mit möglichst wenig 
Aufwand zu finden. 
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Da jeder Punkt auf der Linie Oc-Pw in demselben Punkt Pb abgebildet wird, ist 
der Schluss von Pb auf P'b mehrdeutig, was an der Abbildung des Punktes P2w, 
der in der Bildebene I denselben Punkt Pb erzeugt, aber in der Bildebene I' 
nicht mehr in P'b abgebildet ist, deutlich wird. 
Dadurch, dass alle Strahlen der abgebildeten Punkte durch die optischen 
Zentren Oc und O'c gehen, lässt sich eine Ebene definieren, auf der alle 
Strahlen, die ausgehend von einem Bildpunkt Pb alle diesbezüglich möglichen 
Weltpunkte in der Bildebene I' abbilden. Zwei der unendlich vielen Strahlen 
sind in Bild 15 ausgehend von Pw und P2w gezeigt. Die gesuchte Ebene, die 
Epipolarebene π, ist durch die drei bekannten Punkte, die optischen Zentren 
Oc, O'c und den Bildpunkt Pb, bestimmt. Die Schnittlinien der Epipolarebene 
mit den Bildebenen I und I' sind die Epipolarlinien L und L'. Jeder Bildpunkt auf 
der Epipolarlinie L hat seinen korrespondierenden Bildpunkt an unbekannter 
Stelle auf der Epipolarlinie L'. Dies ist äquivalent mit der Tatsache, dass die 
Linie, die auf Pb abgebildet wird, zur Linie L' korrespondiert. 
Damit ist der Suchbereich für den korrespondierenden Bildpunkt zum 
eindimensionalen Problem geworden. Alle Weltpunkte auf einer bestimmten 
Epipolarebene, solange von den Kameras sichtbar, sind in den Bildebenen auf 
den korrespondierenden Epipolarlinien zu finden. Sind die Weltpunkte nicht 
auf dieser Ebene, so gibt es eine neue Epipolarebene mit neuen 
Epipolarlinien. Alle Epipolarebenen haben die Basislinie B gemeinsam und 
hängen damit von nur einem Parameter ab. Damit gehen alle Epipolarlinien 
durch die Epipole e bzw. e'. 
Den Rückschluss von einem Punkt Pb der einen Bildebene auf die 
Epipolarlinie L' der zweiten Kamera erhält man über die Fundamentalmatrix F: 

 ' bL FP=  (2.20) 

Die Fundamentalmatrix ist die algebraische Darstellung der Epipolargeometrie 
und errechnet sich aus Rotation R, Translation T und den 
Kamerakalibriermatrizen der beiden Kameras K und K'[32][33]:  

 ' 1[ ]T
xF K T RK− −=  (2.21) 

Die Translationsmatrix nimmt hierbei folgende schiefsymmetrische Form an: 
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y x

T T
T T T

T T

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 (2.22) 

Der Ausdruck 

 [ ]xE T R=  (2.23) 

ist die Essentialmatrix und enthält die extrinsischen Kameraparameter 
(Translation und Rotation), also Informationen zu den relativen Positionen der 
beiden Kameras zueinander. Die Fundamentalmatrix enthält zusätzlich 
Informationen über die innere Geometrie. 
 
Bild 16 und Bild 17 zeigen die Verhältnisse bei einer in Bezug zur linken 
Kamera versetzten und gedrehten rechten Kamera. Die Suche beschränkt 
sich nur auf die korrespondierende Epipolarlinie. Man kann die Suche noch 
weiter einschränken, indem die gefundenen Positionspaare als Bezug 
genommen werden. Denn wird nun ein weiterer korrespondierender Bildpunkt 
auf derselben Epipolarlinie gesucht, so befindet sich dieser in der gleichen 
Richtung wie im linken Bild. D. h., ein Punkt, der weiter rechts auf derselben 
Epipolarlinie im linken Bild ist, wird dann, solange er sichtbar ist, im rechten 
Bild auf der korrespondierenden Eipipolarlinie auch weiter rechts gefunden. 
 
 

 
Bild 16: Bild der linken Kamera mit 
einigen Epipolarlinien 

Bild 17: Bild der rechten Kamera mit 
korrespondierenden Epipolarlinien 
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2.1.4 Rektifizierung 

Ziel der Rektifizierung ist, beide Kamerabilder so zu transformieren, als wären 
die optischen Achsen parallel, beide Abbildungen auf einer gemeinsamen 
Ebene liegend und die x-Achsen sich deckend. Dadurch wird erreicht, dass 
korrespondierende Bildpunkte nur noch auf einer gemeinsamen Linie gesucht 
werden müssen. 
In [34] wird ein Verfahren beschrieben, um zwei Kamerabilder zu rektifizieren. 
Vorausgesetzt ist, dass die Kalibrierungsparameter der beiden Kameras 
bekannt sind und beide Kameras dieselben intrinsischen Werte haben, also 
K1 = K2 = K ist. 
Die Originalprojektionsmatrizen sind: 

 
[ ]
[ ]

1 1 1 1 1

2 2 2 2 2

|

|
o

o

P K R R C

P K R R C

= −

= −
 (2.24) 

Ziel ist, dass beide Kameras scheinbar dieselbe Orientierung R haben und 
sich in der Lage nur um den Abstand der beiden optischen Zentren C1 und C2 
unterscheiden. Damit gilt für die neuen Projektionsmatrizen: 

 
[ ]
[ ]

1 1

2 2

|

|
n

n

P K R RC

P K R RC

= −

= −
 (2.25) 

Für die Rotation  

 
1

2

3

T

T

T

r

R r

r

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.26) 

gelten folgende Forderungen: 
• Die neue x-Achse ist parallel zur Basislinie: 

 1 2
1

1 2

C Cr
C C

−
=

−
 (2.27) 

• Die neue y-Achse ist senkrecht zur neuen x-Achse, 

 2 1r k r= ×  (2.28) 
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wobei k ein Einheitsvektor ist, der z. B. aus dem z-Einheitsvektor des 
linken Bildes gebildet wird, wenn dieser als Basis genommen und nur die 
z-Achse des rechten Bildes verändert wird. 

• Die neue z-Achse (hier dann des rechten Bildes) ist orthogonal zu der x-
und y-Achse: 

 3 1 2r r r= ×  (2.29) 

Damit lassen sich Transformationen H1, H2 berechnen, die Originalbildpunkte 
Xbo in rektifizierte Bildpunkte Xbrect versetzen: 

 1 1 1

2 2 2

brect bo

brect bo

X H X
X H X

=

=
 (2.30) 

2.2 Modell der Linsenkamera 
Eine Lochkamera ist wegen der geringen Auflösung durch Beugung und der 
langen Belichtungszeiten für Filmaufnahmen nicht geeignet, s. Anhang Kap. 
A.1, obwohl sie eine unbegrenzte Tiefenschärfe hat, verzerrungsfrei ist und 
damit viel Rechenzeit ersparen würde. 
Die Linsenkamera ist für Aufnahmen bewegter Szenen wesentlich geeigneter 
als die Lochkamera, da sie wegen ihrer größeren Lichtdurchlässigkeit bei 
gleichen Verhältnissen kürzere Belichtungszeiten, wie sie bei Filmaufnahmen 
erforderlich sind, zulässt. 
Bei den folgenden Betrachtungen wird vorausgesetzt, dass das Licht 
monochromatisch sei und damit die Systeme dispersionsfrei sind. 
Für dünne Linsen wird angenommen, dass der Lichtstrahl beim Übergang von 
Luft nach Glas und wiederum zur Luft nur in der mittleren Ebene der Linse 
gebrochen wird. 
 

g

G
f´ f

B

 f

 b  
Bild 18: Lichtbrechung bei dünnen Linsen 
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Bild 18 zeigt einige wichtige Lichtstrahlen: 
• Strahlen, die parallel zur optischen Achse verlaufen, gehen durch den 

Brennpunkt. 

• Strahlen durch den optischen Mittelpunkt werden nicht gebrochen. 

• Strahlen durch den gespiegelten Brennpunkt f’ verlaufen auf der Bildseite 
parallel. 

Die Anwendung der Strahlensätze führt zur Abbildungsgleichung: 

 1 1 1
f b g

= +  (2.31) 

Analog gilt:  

 B b f
G f

−
=  (2.32) 

Da der Brennpunkt für eine Linse unverändert bleibt, muss bei einer anderen 
Gegenstandsweite die Bildweite angepasst werden oder eine gewisse 
Unschärfe akzeptiert werden. 
Die verwendete Kamera hat eine feste Brennweite. Eine Unschärfe wird erst 
ab Abständen kleiner 0.6 m wahrgenommen. Geringe Unschärfe bei kurzen 
Abständen ist für die Genauigkeit der hier vorgestellten Verfahren ohne 
Bedeutung. 

2.3 Fotosensoren auf Halbleiterbasis 
Halbleitersensoren haben nahezu andere lichtempfindliche Medien verdrängt. 
Die Eigenschaften der digitalen Kameras überragen bei Weitem die der 
Analogkameras. Dazu gehören Kompaktheit, Aufnahmen unter schlechten 
Lichtverhältnissen, schnelle Verfügbarkeit der Aufnahmen und einfache 
Nachbearbeitung. Maschinelles Sehen wäre ohne Digitaltechnik erheblich 
erschwert. 
Die Funktionsweise und das Rauschverhalten von CCD- und CMOS-Sensoren 
sind detailliert in [35] und [36] dargestellt. 
In dieser Arbeit wird letztlich eine Stereokamera mit CCD-Sensor verwendet, 
da sie sich durch niedrigen Dunkelstrom, geringeres Rauschen, fehlendes 
sogenanntes „Fixed Pattern Rauschen“ und einen Global-Shutter auszeichnet. 
Das „Fixed Pattern Rauschen“ erzeugt für jeden Bildpunkt einen zufälligen 
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aber immer gleichen additiven Intensitätszuwachs. Durch einen „Global-
Shutter“ werden alle Bildpunkte gleichzeitig aufgezeichnet  

2.4 Abbildungsfehler 
Abbildungsfehler entstehen einerseits durch das optische System, 
andererseits durch die eingesetzten Sensoren und haben zum Teil 
erheblichen Einfluss auf die Messgenauigkeiten. 

2.4.1 Abbildungsfehler durch Objektive 

Für die Messtechnik sind Abbildungsfehler relevant, da sie erhebliche 
Messungenauigkeiten erzeugen können. Auf Fehler, die zur Unschärfe, 
besonders am Bildrand, führen [37], weil Lichtstrahlen vom selben Objektpunkt 
verschiedene Wege durch das Objektiv nehmen, wird hier nicht eingegangen, 
da sie einer Tiefpassfilterung nahe kommen und zu vernachlässigende 
Ungenauigkeiten ergeben. Dazu zählen sphärische Aberration, Koma und 
Bildfeldwölbung. 
Zwei Effekte, Vignettierung und Verzeichnung, sind im Zusammenhang mit 
dieser Arbeit einflussreich und werden im Folgenden näher erläutert. 
 

2.4.1.1 Vignettierung 

Bildpunkte am Rande der Bildfläche sind dunkler als die Punkte in der Nähe 
der optischen Achse. Dieser Randlichtabfall wird Vignettierung genannt. Er 
beruht zum großen Teil darauf, dass seitliche Lichtstrahlen eine geringere 
wirksame Fläche der Blende oder des Linsensystems passieren können. Hier 
ist der Lichtabfall in grober Näherung proportional zur vierten Potenz des 
Kosinus des Winkels zur optischen Achse [38]. Andere 
Vignettierungsursachen wie Richtungsempfindlichkeit der CCD-Sensoren oder 
durch Hindernisse, wie Gegenlichtblenden, kommen hinzu. 
Da die Vignettierung von der Brennweite und der Blendenzahl abhängt, ist es 
schwierig eine allgemeingültige Formel zu finden. 
Zur Messung des Intensitätsverlaufs wurde eine weiße, matte Fläche im freien 
Feld an einem trüben und damit weitgehend schattenfreien Tag 
aufgenommen. Das Vignettierungstestfoto mit der Bumblebeekamera von 
Point Grey hat als niedrigste Intensität den Wert von 54 % bezogen auf den 
Maximalwert, s. Bild 19. 
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Bild 19: Links: Foto einer Szene mit konstantem Grauwert. Die Zahlen geben 
die relative Helligkeit in Bezug auf den hellsten Punkt des Bildes an. Das Bild 
wurde mit der linken Kamera Bumblebee von Point Grey aufgenommen. Die 
rechte Grafik stellt jeweils den Helligkeitsverlauf der mittleren Zeile für beide 
Kameras dar. 

Der Intensitätsverlauf, Bild 20 und Bild 21, ist für beide Objektive sehr 
gekrümmt, so dass die Abbildung eines identischen Szenenausschnitts, die 
sich z. B. im linken Bild in der Mitte und im rechten Bild am Rand befindet, 
starke Helligkeitsunterschiede aufweist. Die Intensitätsmaxima befinden sich 
entgegen der Erwartung nicht in der Bildmitte (Zeile 425, Spalte 612), sondern 
bis zu 137 Pixel daneben, s. Tabelle 2. 

Bild 20: Intensitätsverlauf des linken 
Objektivs der Bumblebeekamera 

Bild 21: Intensitätsverlauf des 
rechten Objektivs 
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Tabelle 2: Intensitätsmaximum/-minimum und Ort für linkes und rechtes Bild 

Intensität 
Linkes 

Bild 
Rechtes 

Bild 
Niedrigster 

Wert 
125 115 

Bei Zeile 850 850 
Bei Spalte 1224 1224 

Höchster Wert 234 228 
Bei Zeile 288 344 

Bei Spalte 597 602 
 
Der Einfluss der unterschiedlichen Intensitäten ist insbesondere zwischen 
linker und rechter Kamera so groß, dass für die Stereobildauswertung nur 
intensitätsunabhängige Bildregistrierungsverfahren genommen werden 
können, während der Intensitätsverlauf innerhalb derselben Kamera 
geringeren Einfluss auf die Bildregistrierung hat. 
Versuche innerhalb des 8 Bit-Zahlenraumes, die Intensitäten über eine Tabelle 
auszugleichen, bringen zwar eine deutliche Verbesserung der 
Bildregistrierung, aber die Kontrastverminderung in der wichtigen Bildmitte 
führt zu ungenaueren Ergebnissen bei der Abstandsbestimmung großer 
Abstände. 

2.4.1.2 Verzeichnung 

Verzeichnungen erlauben zwar eine Zuordnung eines Szenenpunktes zu 
einem Bildpunkt, aber sie lassen ohne weitere Kenntnisse keine genaue 
Angabe über die Position des Szenenpunktes zu. Es wird zwischen 
dominanten radialen und meist kleinen tangentialen Verzeichnungen 
unterschieden. 
Bei radialen Verzeichnungen entsteht, je nachdem, ob die Blende auf der 
Gegenstandsseite oder Abbildungsseite der Linse ist, eine Tonnen- oder 
Kissenverzeichnung [37]. Dort ist die Richtung des Abbildungspunktes vom 
optischen Zentrum richtig, aber die Entfernung ist zu kurz oder lang, s. Bild 22. 
Es ergibt sich dann eine Tonnen- oder Kissenverzeichnung, s. Bild 23. 
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Bild 22: Radiale Verzeichnung, der verzeichnete Punkt ist um rd-r radial 
verschoben 

 
 

  
Bild 23: Tonnen- und Kissenverzeichnung (Quelle: [37]) 

Ein Beispiel einer realen Aufnahme mit einer Bumblebeekamera ist in Bild 24 
gezeigt. Sie weist eine Tonnenverzeichnung auf. Die Abweichungen am 
Bildrand sind zum Teil über 50 px, s. Bild 25. 

  
Bild 24: Originalbild, 
tonnenverzeichnet 

Bild 25: Gleiches Bild nach 
Kalibrierung,die blauen 
Randbereiche sind unbesetzte 
Pixel. 

r
rd P(x, y)

Pd(xd, yd)

Opt. Zentrum
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Ein einfacher Ansatz ist, anstatt einer Korrekturmatrix eine Gleichung für 
radiale Entzerrung, die nach dem quadratischen Term abgebrochen wurde, zu 
nehmen [39]: 

 '
21

xx
k x

=
+

 (2.33) 

 
Die tangentiale Verzeichnung, s. Bild 26, entsteht zum großen Teil aus der 
Dezentrierung des Linsensystems, ist meist klein, da sie fast immer 
weitgehend vom Kamerahersteller behoben wird. 
 

 
Bild 26: Tangentiale Verzeichnung  
Quelle : Analytical Photogrammetry, Lecture notes Ferris State University, 2000 

Zur Darstellung der Tangentialverzeichnung, s. Bild 27, die bei üblichen 
Kameras nicht erkennbar ist, wird einer kalibrierten Abbildung, Bild 28, eine 
sehr große tangentiale Verzeichnung zugefügt. 

  
Bild 27: Ausschließlich tangential 
verzeichnete Abbildung 

Bild 28: Gleiche Abbildung nach 
Kalibrierung 
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In Bild 29 ist die Kombination von radialer (entlang eines Radius) und von 
tangentialer Verzeichnung (entlang der Tangente) eines Bildpunktes 
dargestellt. 
 

 

Bild 29: Radiale und tangentiale Verzeichnung 

 
Da in dieser Arbeit die Subpixelgenauigkeit eminent wichtig ist, werden 
Verzeichnungen weitgehend durch Kalibrierung behoben, s. Kapitel 2.5. 

 

2.4.2 Abbildungsfehler durch Sensoren 

Zu den optischen Fehlern des Objektivs kommen noch die Fehler des Sensors 
hinzu. 

2.4.2.1 Rauschen 

Dunkelrauschen ist ein in Halbleitern erzeugtes thermisches Rauschen und 
wird bei längerer Belichtung im Bild sichtbar. Durch Mittelung mehrerer 
Aufnahmen derselben Szene [35] und durch Subtraktion eines Dunkelbildes 
kann Rauschen vermindert werden.  Dies ist in der Regel nur bei wenig 
beleuchteten Szenen erforderlich. 
Ortsfestes Rauschen ist insbesondere bei kleinen CMOS-Sensoren 
dominant. Es entsteht hauptsächlich durch die hohe aber von Pixel zu Pixel 
leicht unterschiedliche Verstärkung, die notwendig ist, um Ladungen in 
Spannungen umzuwandeln. Es kann durch bestimmte Filtertechniken in der 
Sensorelektronik stark vermindert werden [40]. 
Rauschen hat bei guten Belichtungen der Tageslichtflüge des Luftschiffs kaum 
Einfluss. 
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2.4.2.2 Blooming 

Blooming entsteht durch lokale Überbelichtungen. Hier werden überschüssige 
Ladungen zu den für den Ausleseprozess gekoppelten Bildelementen weiter 
transportiert. 

2.4.2.3 Smear-Effekt 

Der Smear-Effekt tritt während des Ausleseprozesses auf. Die nicht 
vollkommen abgedunkelten Auslesezellen werden beim Ausleseprozess 
mitbelichtet und werden als Strich im Bild sichtbar. 

2.4.2.4 Moiré-Effekt (Unterabtastung) 

Der Moiré-Effekt entsteht durch Unterabtastung, weil die Pixeldichte nicht 
ausreicht, um alle Helldunkelstellen abzubilden. Dies fällt besonders bei 
periodischen engen Mustern auf. Der Effekt kann nicht durch Nachbearbeitung 
behoben werden, da durch die Unterabtastung Informationen verloren gehen 
[39][41]. 
Bei Unterabtastung können Muster entstehen, die in Richtung und Abstand 
nicht mehr der Szene entsprechen, s. Bild 30. 
 

 
Bild 30: Links: ausreichend abgetastetes Bild, rechts: stark unterabgetastetes 
Bild  (Quelle: [41]) 

Das abgetastete Bild ( )sg x  ist in erster Näherung die Multiplikation der 

Bildfunktion ( )g x  mit einer „Nagelbrettfunktion“ δ – einem zweidimensionalen 
Dirac-Kammfilter – entsprechend dem Pixelabstand [39]. 

 ,
,

( ) ( ) ( )s m n
m n

g x g x x rδ= −∑  (2.34) 
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Eine genauere Beschreibung der Abtastfunktion wird erreicht, wenn man die 
endlichen Abmessungen der Abtastfläche des Bildsensors berücksichtigt. 
In Bild 31 ist eine Szene zu sehen, welche durch ein Gitter aufgenommen 
wurde. Das Gitter approximiert die „Nagelbrettfunktion“. Im rekonstruierten Bild 
werden die Quantisierungseffekte sichtbar. 

 

Bild 31: Abtastung  Links: Szene,         rechts: Abtastgitter (Quelle: [41]) 

 

Bild 32: Abtastung. Links: Szene durch Abtastgitter gesehen,  
rechts rekonstruierte Abbildung  (Quelle: [41]) 

Unterabtastung entsteht auch beim Bildverkleinern, wenn ungefiltert z. B. jeder 
zweite Bildpunkt der Zeilen und Spalten herangezogen wird, um ein auf ein 
Viertel verkleinertes Bild zu erstellen. 
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2.5 Behebung der Verzeichnungen 

2.5.1 Beschreibung radialer und tangentialer Verzeichnung 

In Kap. 2.4.1 wurden die Abbildungsfehler, die sich durch Objektive ergeben 
können, gezeigt. Hierbei ist die dominante Verzerrung durch Linsen die radiale 
Verzerrung, insbesondere bei kleinen Brennweiten [29][42]. 
Die Beziehung zwischen den verzerrten (engl. distorted) Kamerakoordinaten 
xcd, ycd und den verzerrten Bildkoordinaten xbd, ybd in der Ebene zc = 1 ist: 

 cd xbd

cd ybd

fx cx
fy cy

+⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

 (2.35) 

Da die Verzerrung mit der Entfernung (Radius r) zum Hauptpunkt zunimmt, ist 
es sinnvoll, diese Abhängigkeit zu benutzen: 

 2 2
c cr x y= +  (2.36) 

Zwischen den verzerrten Kamerakoordinaten und den unverzerrten 
Kamerakoordinaten existiert eine Funktion F: 

 ( )cd c

cd c

x x
F r

y y
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.37) 

F(r) kann durch eine Taylorentwicklung angenähert werden: 

 
0

( ) i
i

i
F r a r

∞

=

= ∑  (2.38) 

Da die Verzerrung symmetrisch zum Hauptpunkt ist, entfallen Terme mit 
ungerader Potenz. Als realistisch wird eine Genauigkeit von 1/50 Pixel 
angesehen [43], deshalb wird Gleichung (2.38) in der Regel nach der 4. 
Potenz abgebrochen [42]. Nur bei extremen Verhältnissen, wie sie durch 
Fischaugenlinsen entstehen, wird noch die 6. Potenz hinzugefügt. 
Gleichung (2.37) wird zu: 

 2 4
1 2(1 )cd c

cd c

x x
d r d r

y y
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.39) 

Die tangentiale Verzerrung ist unabhängig von der radialen Verzerrung und 
wird durch folgende Beziehung beschrieben: 
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2 2

3 4
2 2

3 4

(2 ) ( 2 )
( 2 ) (2 )

cd cc c c

cd cc c c

x xd x y d r x
y yd r y d x y

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.40) 

Die Zusammenfassung von radialer und tangentialer Verzerrung führt dann zu: 

 
2 2

2 4 3 4
1 2 2 2

3 4

(2 ) ( 2 )
(1 )

( 2 ) (2 )
cd c c c c

cd c c c c

x x d x y d r x
d r d r

y y d r y d x y
⎛ ⎞+ +⎛ ⎞ ⎛ ⎞

= + + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2.41) 

Sind die unverzerrten Kamerakoordinaten xc, yc gesucht, kann in erster 
Näherung folgende Gleichung benutzt werden, um dann iterativ auf genauere 
Werte zu kommen. 

 
2 2

3 4
2 4 2 2

1 2 3 4

(2 ) ( 2 )1
1 ( 2 ) (2 )

c c cd c c c

c c cd c c c

x x x d x y d r x
y y yd r d r d r y d x y

⎡ ⎤⎛ ⎞+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≈ = −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

�
�

 (2.42) 

cx�  und cy� sind die angenäherten Werte für die korrekten Koordinaten xc und yc. 

Das rekursive Substituieren von xc und yc mit cx�  und cy�  im rechten Teil der 

Gleichung (2.42) führt nach einigen Iterationen zu einer ausreichenden 
Approximation. 

2.5.2 Kalibrierung und Rektifizierung bei verzerrter Abbildung 

Auf Bildpunkte bezogen wird Gleichung (2.42) umgeformt zu: 

 
2 4 2 2

1 2 3 4
2 4 2 2

1 2 3 4

( ) ( ) (2 ) ( 2 )
( ) ( ) ( 2 ) (2 )

bd b b x b x w w x w x

bd b b x b x w y w w y

x x d x c r d x c r d x y f d r x f
y y d y c r d y c r d r y f d x y f

⎛ ⎞− − + − + + +⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟− − + − + + +⎝ ⎠ ⎝ ⎠

(2.43) 

Mit verschiedenen Welt- und Bildpunktepaaren lässt sich dann wieder ein 
überbestimmtes Gleichungssystem aufstellen, das dann die 
Verzerrungsparameter d1 bis d4 liefert. Es sind mehr als 1000 Iterationen 
erforderlich [29], um eine ausreichende Genauigkeit zu erlangen. 
Aus den errechneten Parametern lassen sich Matrizen aufstellen, die die Pixel 
der verzeichneten Abbildung in eine unverzeichnete Abbildung transformieren. 
Mit der Rektifizierung nach Kapitel 2.1.4, S. 26 erhält man dann eine scheinbar 
frontal parallele Stereokameraanordnung mit unverzeichneten Bildern. 
Durchgesetzt haben sich allerdings andere Methoden der Kalibrierung, die den 
Kalibrierungsprozess weitgehend geschlossen ausführen. Hier seien die drei 
wichtigsten Verfahren nach Tsai [44], Heikkila & Silven [42] und Zhang [45] 
aufgezählt. Ein Vergleich einiger Methoden ist in [46] zu finden. 
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In der vorliegenden Arbeit wird ein Verfahren, welches eine Kombination der 
Methode nach Zhang und Heikkila ist und von Jean-Yves Bouguet [47] 
umgesetzt wurde, benutzt. 
 
Der Ablauf der Kalibrierung und der Rektifizierung sei an Bild 33 bis Bild 38 
erklärt und erfolgt in diesen Schritten: 

• Gleichzeitige Aufnahme eines Schachbrettmusters mit bekannten Maßen 
entsprechend Bild 33 mit linker und rechter Kamera aus mindestens drei 
verschiedenen Positionen. 

• Bestimmen der Kalibrierungswerte für linke und rechte Kamera mit Hilfe der 
Eckenpositionen. Ergebnis ist eine Liste von Entzerrungsparametern. 

• Bestimmen der Rektifizierungswerte für die Stereokombination. Zu den 
Entzerrungsparametern werden die Translations- und die Rotationswerte 
hinzugefügt. Diese Werte wurden mit Hilfe eines Matlabprogramms1 von 
Jean-Yves Bouguet [47] erstellt. 

• Jedem Bildpunkt im rektifizierten Bild wird ein Punkt im Originalbild 
zugeordnet. Dabei werden unganzzahlige Positionen im Originalbild 
gefunden, die durch bilineare Interpolation aus ganzzahligen 
Pixelpositionen gewonnen werden. Als Ergebnis dienen Matrizen mit vier 
bilinearen Koeffizienten für jeden rektifizierten Bildpunkt, die Bilder 
entsprechend Bild 34 und Bild 37 erzeugen. 

Um die Pixel außerhalb der Rechtecke (Bild 34 und Bild 37) nicht erst zu 
berechnen, werden die effektiven Parameter nach einem eigenen Verfahren 
extrahiert und sortiert2. 

                                         
1 Matlab® ist eine Programmierumbung für Mathematik der Firma The Mathworks inc. 
2  P. Seibold: http://www.mathworks.com/matlabcentral/fileexchange/47167-
recalculate-rectification-indices-for-rectangle-image 
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Bild 33 Bild 34 Bild 35 

  
Bild 36 Bild 37 Bild 38 

Bild 33: linkes Originalbild  

Bild 34: linkes Bild kalibriert und rektifiziert. Das große Rechteck (rot) ist für 
das größtmögliche rektifizierte Bild. Das kleinere Rechteck (grün) ist der 
Rahmen für den größtmöglichen gemeinsamen Bildausschnitt. 

Bild 35: linkes Bild kalibriert und rektifiziert mit größtmöglichem gemeinsamem 
Rechteckausschnitt 

Bild 36 - Bild 38: wie vorhergehende Abbildungen, allerdings jeweils für das 
rechte Bild der Stereokamera. 

Die Tabellen der Bilinearkoeffizienten sind sehr umfangreich, da zur 
Berechnung jeden Bildpunkts vier Gleitkommawerte erforderlich sind. Die 
Datenmenge kann reduziert werden, indem die Genauigkeit der Koeffizienten 
reduziert wird. Eine weitere Reduzierung, was auch den Rechenaufwand 
drastisch verkleinert, ist der Verzicht auf die Interpolation, d. h. direkt den 
benachbarten Pixelwert zu nehmen. In Bild 39 ist die Fehlerverteilung bei 7 Bit 
Genauigkeit im Vergleich zur vollen Gleitkommagenauigkeit bei einer 
typischen Abbildung dargestellt. 11010 Pixel (1 %) weisen einen nur um eins 
zu großen Wert auf und 6370 Pixel (0.6 %) sind um eins zu klein. 1023020 
(98.4 %) von insgesamt 1040400 Pixel sind richtig. Bei Anwendung der 
Nächster-Nachbarn-Interpolation sieht das Ergebnis zunächst desolat aus. 
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64 % der Werte sind falsch. In Kapitel 5.4.5.2, S. 157 wird diese Methode 
trotzdem untersucht. 

  
Bild 39: Pixelfehler bei 7 Bit 
Genauigkeit für die Interpolation im 
Vergleich zu Gleitkommagenauigkeit 

Bild 40: Pixelfehler bei Anwendung 
der Nächster-Nachbarn-Interpolation 
im Vergleich zu 
Gleitkommagenauigkeit 

 

2.6 Ermittlung der Bewegung 
Bei der Ermittlung der Bewegung durch eine auf das Flugsystem montierte 
Kamera wird davon ausgegangen, dass die darunter liegende Szene starr ist. 
Dies ist in der Regel der Fall bei Beobachtungen aus großer Höhe, da 
bewegte Objekte in der Szene dann klein in Bezug zur Gesamtfläche sind und 
damit geringen Einfluss in Bezug auf einen größeren Bildausschnitt haben. 

2.6.1 Stereogeometrie 

Während GPS eine ungenaue Höhe über einem fiktiven Rotationsellipsoid 
angibt und ein Barometer ständig neu kalibriert werden muss und nur die 
relative Höhe misst, haben Höhenbestimmungen mit Kameras den Vorteil, 
dass damit die absolute Höhe über Grund bestimmt werden kann. 
Diese Tiefeninformationen des sichtbaren Teils einer Szenenoberfläche 
können über Triangulation mit Hilfe einer Stereokamera gewonnen werden. 
Durch die Rektifizierung braucht nur noch der einfache Fall der frontal 
parallelen Anordnung zweier gleicher Kameras betrachtet werden. Beide 
Kameras haben parallele optische Achsen, die in Richtung der Szene, die in 
Bild 41 unten ist, zeigen, und beide optische Zentren sind auf derselben zu 
den optischen Achsen orthogonalen Basislinie. 
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Ol

xl xr

Or

bl br

B

Z

Pw

Bezeichnungen: 
Ol, Or: Optisches Zentrum links, rechts 
B: Basisabstand (Abstand der
Kameras) 
bl, br: Abstand links, rechts 
f: Brennweite 
z: Abstand des Punktes Pw 

xl, xr: x-Lage des Bildpunktes links und 
rechts in Bezug zu den optischen 
Zentren  
Pw: Weltpunkt 

Bild 41: Tiefeninformation über Triangulation mit frontal parallelen Kameras 
 
Mit zwei Kamerakoordinatensystemen, die jeweils ihren Ursprung in den 
optischen Zentren Ol und Or haben, lässt sich über die Strahlensätze der 
Abstand z eines Weltpunktes Pw in z-Richtung der Kamerakoordinatensysteme 
bestimmen. 
Mit 

 
 und 

l l r r

r l

f z f z
x b x b

B b b

= =
−

= +

 (2.44) 

wird der Abstand Z zu: 

 
l r

Bfz
x x

=
−

 (2.45) 

 l rd x x= −  (2.46) 

Die Differenz d der abgebildeten x-Positionen eines Weltpunktes auf beiden 
Bildebenen wird Disparität genannt. 
Mit bekanntem Pixelabstand p auf dem Sensor kann die Brennweite fpx in 
Pixeln – dies ist bei der Kalibrierung üblich – angegeben werden: 

 px
ff
p

=  (2.47) 

Damit errechnet sich z mit der Disparität dpx, ebenfalls in Pixel, zu: 
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 px

px

Bf
z

d
=  (2.48) 

 
Eine Verdopplung der Basisbreite oder der Brennweite führt zu einer 
Verdopplung der Disparität d bei gleichen Abständen z. Um große Abstände 
aufzulösen, sind entweder große Brennweiten, große Basisbreiten oder eine 
hohe Subpixelgenauigkeit erforderlich. Die Erfassung des Nahbereichs wird 
durch die abnehmende Bildschärfe und eingeschränkte maximale Disparitäten 
der benutzten Kamera auf 0.6 m begrenzt. 
In Bild 42 wird die gemessene Distanz in Abhängigkeit von der Disparität der 
Stereokamera Bumblebee gezeigt. Beide Teilkameras sind kalibriert und 
rektifiziert und damit scheinbar frontal parallel. 
Die Kenndaten der Kamera sind: 

• Basisbreite B: 0.2396 m 

• Brennweite fpx: 1401 px , entspricht 5.3 mm bei einem Sensorpixelabstand 

von 3.75 μm 

• Auflösung rektifiziert: 850 x 1224 px 

 
Bild 42: Gemessene Distanz bei verschiedenen Disparitäten, Brennweite 
5.3 mm, Stereobasisbreite 24 cm 

Wie stark der prozentuale Fehler mit zunehmender Disparität abnimmt, wird in 
Bild 43 gezeigt. 
Bei der gängigen Missionsflughöhe des Luftschiffs von 42 m ist die Disparität 8 
Pixel. Beträgt der maximale Disparitätsmessfehler ± 0.3 Pixel, liegt die 
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tatsächliche Flughöhe zwischen 40.5 m und 43.6 m. Während des 
Landeanflugs ist der prozentuale Messfehler deutlich geringer. Aus dem 
Fehlertrichter, Bild 44, ist bei 1.3 m Flughöhe der Messfehler von nur ±1.5 mm 
entnehmbar. Die Genauigkeit der Höhenabschätzung steigt mit der 
Subpixelgenauigkeit, die in Kapitel 4.5 behandelt wird. 
 

 
Bild 43: Fehlertrichter bei verschiedenen Disparitäten und einem 
Disparitätsfehler von ±0.3 Pixel,Brennweite 5.3 mm, Stereobasisbreite 24 cm 

2.6.2 Translation 

Die Translation ist die Bewegung des Sensors der Kamera in x- und y-
Richtung ausgehend vom optischen Zentrum. Die Bewegung wird aus der 
Verschiebung zweier aufeinanderfolgender Bilder, die der Sensor 
aufgenommen hat, errechnet mit Verfahren, die in Kap. 3 vorgestellt werden. 
Gesucht ist also, wie viel Meter Bewegung einer Bildverschiebung von wie viel 
Pixeln entspricht. 
Aus der Brennweite f und dem Abstand z zur betrachteten Szene lässt sich die 
Beziehung zwischen der Strecke xb auf der Bildebene und der Strecke xc in 
Kamerakoordinaten herstellen . 
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Bild 44: Geometrie bei Translation 

Zunächst ist die Kamera an der Position 1. Es gilt: 

 1
1

c
b

fxx
z

=  (2.49) 

Nach der Translation ist die Kamera an der Position 2. Für denselben 
Szenenpunkt ergibt sich: 

 2
2

c
b

fxx
z

=  (2.50) 

Die Strecke xw berechnet sich nun zu: 

 1 2 1 2( )w c c b b
zx x x x x
f

= − = −  (2.51) 

 

Mit der Brennweite fpx in Pixel kann direkt aus den Pixelwerten auf der 
Bildebene xb1px und xb2px auf die Strecke geschlossen werden: 

 1 2( )w b px b px
px

zx x x
f

= −  (2.52) 

Letztlich ist die Geometrie für die Translation gleich der Stereogeometrie. Die 
Translation xw entspricht der Basisbreite B aus Gleichung (2.48). 
Durch Zusammenführen der Gleichung für den Abstand (2.48) in die 
Gleichung für die Translation (2.52) ergibt sich, dass die Translation 
unabhängig von der Brennweite ist. Das heißt, Veränderungen der 
Kalibrierung bezüglich der Brennweite beeinflussen nicht die Messgenauigkeit 
für die Translation xw: 
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 1 2( )w b px b px
px

Bx x x
d

= −  (2.53) 

 
Ein Beispiel für eine Translation ist mit Bild 45 gegeben. 
Die Translation von 4.5 px in x-Richtung und 18.8 px in y-Richtung wurde nach 
der Gradientenmethode von Lucas und Kanade berechnet, wobei im mittleren 
Fenster der Durchschnitt aller Flusswerte gebildet wurde. 
 

 
Bild 45: Ermittlung der Translation mit Hilfe des optischen Flusses nach 
Lucas&Kanade. Links: Bild mit Berechnungsfenster, rechts: nachfolgendes 
Bild mit positioniertem Fenster, nur jeder 32. Flussvektor ist gezeigt 

2.6.3 Rotation 

Mit einer Kamera kann auch die Rotation um die optische Achse bestimmt 
werden. 
Die Rotation wird in ähnlicher Weise wie die Translation ermittelt. Allerdings 
werden hierzu zwei Fenster benötigt, um dann den Winkel zu berechnen. In 
Bild 47 sind in der linken Abbildung zwei kleine Fenster gezeigt, für die der 
optische Fluss zwischen beiden Abbildungen berechnet wird. An den 
Flussvektoren kann die Rotation gut erkannt werden. 
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Bild 46: Erstes Bild Bild 47: Nachfolgendes Bild 

Ermittlung der Rotation mit Hilfe des optischen Flusses nach 
Lucas&Kanade. Mit den Abständen der beiden kleinen Fenster im rechten 
Bild in x- und y-Richtung wird der Winkel berechnet. 

Um die Rotation zu berechnen, wird die Verschiebung der kleinen Fenster 
ermittelt. 
Der Winkel ϕ berechnet sich aus den Abständen Ax, Ay, die sich im zweiten 
Bild ergeben, s. Bild 47 und Bild 48. Im ersten Bild, Bild 46, ist der Abstand 
gesetzt zu Ay = 0. 

 arctan y

x

A
A

ϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.54) 

Bild 48 ist ein Ausschnitt aus Bild 47 mit den eingezeichneten Parametern zu 
Gleichung (2.54). 
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Bild 48: Ausschnitt aus Bild 47 zur Bestimmung der Rotation um die optische 
Achse 

2.6.4 Geschwindigkeitsbestimmung 

Die momentanen Geschwindigkeiten vx, vy werden aus den momentanen 
Translationen in x- und y-Richtung x, y und der Bildrate fps bestimmt zu: 

 x

y

v x fps
v y fps

= ⋅

= ⋅
 (2.55) 

2.7 Zusammenfassung Kapitel 2 
Mit dem Lochkameramodell können die Beziehungen zwischen Weltpunkten 
und Bildpunkten beschrieben werden. Über die Epipolargeometrie ist die 
Geometrie mehrerer Bilder einer Szene beschrieben. Sie ermöglicht die 
Rektifizierung zweier Kameras, was den späteren Korrespondenzsuchprozess 
wesentlich vereinfacht. Da die Lochkamera eine zu geringe Auflösung und 
eine zu hohe Belichtungszeit hat, wird die Linsenkamera eingeführt. Diese hat 
wiederum andere Nachteile, insbesondere die Vignettierung und die 
Verzeichnung. Die Verzeichnung lässt sich weitgehend über Kalibrierung 
beheben. Hinzu kommen noch Effekte des Halbleiterbildsensors, die in dieser 
Anwendung nicht dominant sind. 
Nachdem die Stereokamera kalibriert und rektifiziert ist, können aus 
Bildpunkten die Bewegung und der Abstand berechnet werden. Allerdings 
müssen in jeweils zwei Bildaufnahmen die korrespondierenden Punkte 
gefunden werden. Verfahren hierzu werden im folgenden Kapitel vorgestellt. 
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3 Bewegungsabschätzung und optischer Fluss 

3.1 Einleitung 
Unter optischem Fluss versteht man nach B. Horn und B. Schunck [48] die 
Verteilung der scheinbaren Geschwindigkeiten der Bewegung von 
Helligkeitsmustern in einem Bild. 
 
Schon 1867 beschreibt H. Helmholtz im „Handbuch der Physiologischen 
Optik“ [49], wie der optische Fluss vom Menschen wahrgenommen wird, 
folgendermaßen: 
„Wenn wir vorwärts gehen, so bleiben die Gegenstände, welche sich am 
Wege ruhend befinden, hinter uns zurück; sie gleiten in unserem 
Gesichtsfelde scheinbar an uns vorbei, und zwar in entgegengesetzter 
Richtung, als wir fortschreiten. Entferntere Gegenstände thun dasselbe, aber 
langsamer, während sehr entfernte Gegenstände, wie die Sterne, ruhig ihren 
Platz im Gesichtsfelde behaupten, so lange wir die Richtung unseres Körpers 
und Kopfes beibehalten. Es ist leicht ersichtlich, dass die scheinbare 
Geschwindigkeit der Winkelverschiebungen der Gegenstände im 
Gesichtsfelde hierbei ihrer wahren Entfernung umgekehrt proportional sein 
muss, so dass aus der Geschwindigkeit der scheinbaren Bewegung sichere 
Schlüsse auf die wahre Entfernung gemacht werden können.“ 
 
J. Gibson illustriert den „Fluss der bildlichen Wahrnehmung“ 1950 [50] mit 
Pfeilen und spricht hierbei von Geschwindigkeit und Richtung. In Bild 49 zeigt 
er, wie eine Person – im Flugzeug sitzend – eine Szene (Flugplatz) 
wahrnimmt, wenn sie sich nach rechts blickend vorwärtsbewegt. Die Szene 
gibt die oben zitierte Beschreibung von H. Helmholtz wieder. 
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Bild 49: Wahrnehmung des Bewegungsfeldes  (Quelle: [50]) 

Im Gegensatz zu Menschen und Tieren, die stereoskopisch ihre Umwelt 
wahrnehmen, nutzen insbesondere Insekten den optischen Fluss zur 
Navigation. So können Bienen z. B. einen Tunnel in etwa mittig durchfliegen 
ohne anzustoßen [51]. 
Hierbei ist zwischen Bewegungsfeld und optischem Fluss zu unterscheiden. B. 
Jähne [39] definiert das Bewegungsfeld als Projektion der Bewegungen einer 
3D-Szene auf die Bildebene, während der optische Fluss den Grauwertfluss in 
der Bildebene wiedergibt [39][52]. In Bild 50 wird deutlich, dass der 
Grauwertfluss nicht mit dem Bewegungsfeld übereinstimmen muss. Beide 
Teilbilder zeigen jeweils eine Kugel mit Lambertscher Oberfläche 
(Strahlungsdichte richtungsunabhängig). Obwohl sich die linke Kugel, Bild 
50a, dreht und das Bewegungsfeld eine Rotation um die senkrechte Achse 
abbildet, ist kein optischer Fluss feststellbar. Die Helligkeitswerte 
nacheinander aufgenommener Bilder unterscheiden sich nicht. Im Gegensatz 
dazu ist bei der rechten Szene, Bild 50b, durch die Beleuchtungsänderung – 
hier dreht sich eine Lichtquelle um die senkrechte Achse – ein optisches 
Flussfeld vorhanden, obwohl die Kugel steht. Es ist also ersichtlich, dass nicht 
jede Bewegung zu einem optischen Fluss führt und nicht jede 
Grauwertänderung auf einer Bewegung beruht. 
Die Schlussfolgerung, je mehr Textur eine Szene aufweist, umso mehr stimmt 
in der Regel der optische Fluss mit dem Bewegungsfluss überein, ist richtig 
[52].  
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 a)  b)  

Bild 50: Bewegung und resultierender optischer Fluss an einer Kugel gezeigt, 
a) Die Kugel bewegt sich: kein optischer Fluss  
b) Die Beleuchtung bewegt sich: optischer Fluss 
Quelle: B. K. Horn, Robot Vision, MIT Press, 1986 

 
Klarer wird das Verhalten des optischen Flusses, wenn eine Ebene betrachtet 
wird, die senkrecht zur optischen Achse steht. 

 
a) Bewegung in 

Querrichtung 
 Bewegung in  
Z-Richtung 

c) Rotation 

Bild 51: Optischer Fluss einer Szene, die senkrecht zur optischen Achse ist. 
Quelle: H. A. Mallot, Sehen und die Verarbeitung visueller Information, Vieweg Verlag, 2001 

3.2 Voraussetzungen und Probleme bei der 
Bewegungserfassung 

3.2.1 Korrespondenzproblem 

Das Grundproblem der Bildregistrierung ist, einen Abbildungspunkt eines 
Szenenpunktes in einer zweiten Abbildung wiederzufinden. 
Aus Bild 52 ist zu erkennen, dass die Zuordnung der Bildpunkte der gleichen 
Objektpunkte verschiedener Bilder oft nur geschätzt werden kann. Die richtige 
Einschätzung ist umso wahrscheinlicher, wenn sich korrespondierende 
Bildpunkte in etwa in der gleichen Position befinden. Dies gilt insbesondere, 
wenn sich die betrachteten Gebiete nicht durch andere Merkmale (z. B. Farbe, 
Größe oder Form) unterscheiden. 
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Bild 52: Korrespondenzproblem. Die dunklen Kreise sind von der ersten 
Aufnahme. Die hellen Kreise geben die Position im 2. Bild wieder. Die Teile 
sind weder durch Form, Größe noch Farbe zu unterscheiden.  
In a) wird angenommen, dass die nahen Nachbarn zueinander gehören.  
In b) ist keine Zuordnung erkennbar. (Quelle: [39]) 

 

3.2.2 Blendenproblem 

 
Bild 53: Blendenproblem: In Bild a kann der Fluss aus der Umgebung 
bestimmt werden. In Bild b kann nur die vertikale Komponente des Flusses 
bestimmt werden. (Quelle: [53]) 

Das Blendenproblem ist ein Spezialfall des Korrespondenzproblems. In der 
Regel wird zur Ermittlung des optischen Flusses nur ein kleines Gebiet, wie 
durch eine Blende betrachtet, einbezogen. In Bild 53, Teil a kann der optische 
Fluss für die Ecke ermittelt werden und damit auch für das Gebiet in der Nähe 
der Ecke. Im Teilbild b kann beim betrachteten Ausschnitt nicht bestimmt 
werden, wie ein Punkt sich bewegt hat. Der Verschiebungsvektor bleibt bis auf 
seine vertikale Komponente unbekannt. Der Fluss nach der differenziellen 
Methode kann nur in Richtung des Gradienten bestimmt werden. 
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Bei periodischen Mustern, z. B. Bild 54, kann auch selbst die vertikale 
Komponente zum Objekt nicht bestimmt werden. Erst wenn die Blende so weit 
geöffnet ist, dass Randbereiche des Gitters mit einbezogen werden, wird die 
Verschiebung bestimmbar. 
 

 
Bild 54: Periodisches Muster erlaubt bei Verschiebungen keine eindeutige 
Zuordnung  (Quelle: [39]) 

Bei Isointensitätswerten gibt es keinen Gradienten, somit ist der optische Fluss 
nicht bestimmbar. Das Problem kann umgangen werden, indem die lokalen 
Operationen auf ein größeres Gebiet mit Struktur erweitert werden. Allerdings 
wird dann die Auflösung des optischen Flusses geringer. 

3.2.3 Beleuchtungsänderung 

Die Grundvoraussetzung für die Berechnung des optischen Flusses nach 
Horn&Schunck oder Lucas&Kanade ist, dass die Bildpunkte eines 
Objektpunktes annähernd dieselbe Intensität aufweisen.  
Die meisten Beleuchtungsänderungen sind multiplikativ, d. h., sie bewirken 
eine prozentuale Intensitätswertänderung, Kontraständerung genannt. 
Ursache hierfür kann die Vignettierung, s. Kapitel 2.4.1, Belichtungszeit- oder 
Blendenänderung oder Eigenschatten des Flugsystems sein. Änderungen des 
Außenlichts (z. B. durch Wolken) sind hier nicht relevant, da diese Prozesse 
im Vergleich zur Bildfolge langsam ablaufen. Die anderen genannten 
Helligkeitsänderungen sind nicht determiniert und bewirken Fehler in der 
Berechnung des optischen Flusses. 
Additive Intensitätsänderungen entstehen im Sensor, wenn sich z. B. trotz 
geschlossenem Verschluss der Kamera Ladungen ansammeln, s. Kapitel 
2.4.2, oder verschiedene Kameras benutzt werden. 
Lichtspiegelungen führen zu lokalen und vom Blickwinkel abhängigen 
Übersteuerungen, die keine Bestimmung des optischen Flusses zulassen. 
In Kapitel 4.2 wird gezeigt, wie sich Beleuchtungsänderungen auswirken. 
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3.2.4 Verdeckung 

  
Linkes Stereobild Rechtes Stereobild 

Bild 55: Verdeckung bei Aufnahmen aus verschiedenen Positionen 

Bild 55 zeigt eine Szene, bei welcher ein Hintergrundobjekt (Baum) durch ein 
Objekt im Vordergrund (Mauer) bei einer Aufnahme aus einer anderen 
Position verdeckt wird. Hier ist der Baumstamm im linken Bild, kleines 
Quadrat, noch sichtbar, während er im rechten Bild verdeckt wird. Es gibt also 
keine Korrespondenz der betreffenden Bildpunkte und führt zu 
Fehlinterpretationen. 
Die Ansätze dieses Problem zu erfassen, sind sehr aufwendig, da es 
einerseits schwierig ist, alle Verdeckungen zu erkennen, andererseits werden 
nicht vorhandene Verdeckungen als solche erkannt [54]. 
Ein gängiges Verfahren, Verdeckungen zu detektieren, ist in [55] vorgestellt. 
Hier werden zunächst entlang einer Epipolarlinie die zum ersten Bild I1 
korrespondierenden Pixel im zweiten Bild I2 gesucht und danach die zum 
zweiten Bild korrespondierenden Pixel ermittelt. Sind beide Korrespondenzen 
gleich – linke Pfeile in Bild 56 – ist die Berechnung vermutlich richtig. Bei 
unterschiedlichen Korrespondenzen – rechte Pfeile – wird von einer 
Verdeckung ausgegangen. 
 

 
Bild 56: Konsistente und inkonsistente Korrespondenzen (Quelle [55]) 
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Die bekannten Verfahren führen zu einer Vervielfachung des 
Rechenaufwandes. Deshalb wird in dieser Arbeit eine vereinfachte Methode 
vorgestellt.  
Die meisten Verdeckungen sind klein im Vergleich zum großen Hintergrund. 
Wird ein größerer Bildausschnitt genommen, verringert sich der Einfluss der 
Verdeckung und der Hintergrund gewinnt bei der Bildregistrierung ein 
größeres Gewicht, so dass es wahrscheinlicher wird, dass nur der Hintergrund 
in die Berechnung eingeht.  
Hierzu wird zunächst im rektifizierten Bild mit voller Auflösung über die 
Korrelation ein Bildausschnitt aus der Mitte des linken Bildes im rechten Bild 
gesucht (Bild 57 und Bild 58 ) und dann mit derselben Fenstergröße in Pixel, 
also beide Male z. B. 32 px Kantenlänge, in auf ein Viertel Kantenlänge 
verkleinerten Bildern wiederholt (Bild 59 und Bild 60). Die Disparitätssuche 
läuft in beiden Fällen sehr schnell, da nur in einem Bildstreifen gesucht werden 
muss. Sind die Disparitäten um mehrere Pixel unterschiedlich, wird von einer 
Verdeckung ausgegangen und die Translationsberechnung erfolgt auch in 
verkleinerten Bildern, allerdings dann ungenauer. 
Allerdings kommt es trotzdem zu Fehlberechnungen. Durch die Trägheit des 
Fluggerätes sind Beschleunigungen beschränkt. Sobald diese aufgrund von 
Berechnungen der Bildverarbeitung überschritten werden, kommen 
ersatzweise vorhergehende Werte für die Translation zum Tragen. 
 

  
Bild 57: Zu suchendes Teilbild bei 
Verdeckung im linken Stereobild mit 
voller Auflösung 

Bild 58: Gefundenes Teilbild bei 
Verdeckung im rechten Stereobild 
mit voller Auflösung 
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Bild 59: Zu suchendes Teilbild bei 
Verdeckung im linken auf 1/4 
verkleinertes Stereobild 

Bild 60: Gefundenes Teilbild bei 
Verdeckung im rechten auf 1/4 
verkleinertes Stereobild 

 
 

3.3 Klassifizierung der 
Bewegungsabschätzungsmethoden 

Zur Klassifizierung der Verfahren zur Bildregistrierung sind verschiedene 
Ansätze veröffentlicht. Hier werden zwei oft zitierte Artikel erwähnt, die 
Abhandlungen von J. Barron et al. [56] und B. Zitová mit J. Flusser [57]. 
 
B. Zitová et al. [57] teilen die Methoden in die zwei Gruppen gebietsbasierte 
und merkmalsbasierte Techniken auf. 
Zu den gebietsbasierten Methoden zählen sie unter anderem die normalisierte 
Kreuzkorrelation, s. Kapitel 3.5, und Phasentechniken, s. Kapitel 3.3.4. 
Bei merkmalsbasierten Methoden wird angenommen, dass es 
korrespondierende Merkmale in den Bildern gibt. Dies wird Kapitel 3.3.5 näher 
erklärt.  
 
J. Barron et al. [56] teilen die Methoden zur Bildregistrierung in vier Gruppen 
ein: 

1. Differentielle Methoden 

2. Gebietspaarung (engl. Matching) 

3. Energiebasierte Techniken 

4. Phasentechniken 
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3.3.1 Differentielle Methoden 

Die beiden bekanntesten differentiellen Methoden nach Horn & Schunk und 
Lucas&Kanade werden detailliert in Kapitel 3.4 vorgestellt. 

3.3.2 Gebietspaarung 

Bei der Gebietspaarung (engl. Matching) wird ein Maß angewendet, welches 
je nach Verfahren bei kleinstem oder größtem Ergebnis Gebiete mit der 
größten Übereinstimmung findet. Als Verfahren sind SAD (sum of absolute 
differences), SSD (sum of squared differences) und NCC (normalized cross 
correlation) geläufig. 

3.3.2.1 SAD 

Hier wird die Summe der absoluten Differenzen zwischen einem Teilbild 
(Template) T und einem zu durchsuchenden Bild I gebildet. Das Teilbild T liegt 
dann vermutlich an der Stelle x,y im Bild I, wenn diese Summe den kleinsten 
Wert hat. 

 
1 1

( , ) ( , ) ( , )
n m

i j

SAD x y I x i y j T i j
= =

= + + −∑∑  (3.1) 

3.3.2.2 SSD 

Die Summe der quadrierten Differenzen ist ähnlich wie die Summe der 
absoluten Differenzen. Nur wird anstatt des Absolutwertes das Quadrat 
gebildet. 
 

 ( )2

1 1
( , ) ( , ) ( , )

n m

i j

SSD x y I x i y j T i j
= =

= + + −∑∑  (3.2) 

 
Ein Vergleich bezüglich SAD, SSD, NCC und weiterer Verfahren ist in einer 
Dissertation [58] durchgeführt. Dort ergibt sich, dass NCC, insbesondere bei 
multiplikativen Helligkeitsschwankungen, besonders robust ist. Zu ähnlichen 
Ergebnissen kommt A. Giachetti [59], der zusätzlich feststellt, dass SSD und 
NCC in Rechenzeitaufwand und Fehler sich ähnlich verhalten. Die 
normalisierte Kreuzkorrelation (NCC) wird in Kapitel 3.5 vorgestellt. 
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3.3.3 Energiebasierte Methoden 

Ein oft zitiertes Verfahren ist von D. Heeger [60] entwickelt worden. Die Bilder 
müssen mit 12 Gaborfiltern (Gaußbandpässe, Bewegungsenergiefilter) 
gefiltert werden. Aus den Ergebnissen werden dann nach der Methode der 
kleinsten Fehlerquadrate die geschätzten Verschiebungen ermittelt. Gaborfilter 
werden u. a. für Fingerabdruckvergleiche und Gesichtserkennungen 
verwendet. Aufgrund des erwarteten Rechenaufwandes und des 
eingeschränkten Bereiches auf Verschiebungen im Subpixelbereich wird 
dieses Verfahren hier nicht weiter in Betracht gezogen. 

3.3.4 Phasentechniken 

Nach B. Jähne [39] enthält die Phase der Fouriertransformation eines Bildes 
mehr Informationen zum Bild als die Amplitude der Fouriertransformation. 
 
Zwei Bilder seien um u,v in x- und y-Richtung verschoben: 

 2 1( , ) ( , )I x y I x u y v= − −  (3.3) 

Durch Anwendung der Fouriertransformation auf Gleichung (3.3) erhält man: 

 ( )
2 1( , ) ( , )x yj u v

x y x ye ω ωω ω ω ω− +=F F  (3.4) 

Die fouriertransformierten Bilder I1 und I2 unterscheiden sich also nur durch 
eine Phasenverschiebung. Diese kann über das Kreuzleistungsspektrum 
berechnet werden. 

 
*

( )1 2
*

1 2

( , ) ( , )
( , ) ( , )

x yj u vx y x y

x y x y

e ω ωω ω ω ω
ω ω ω ω

− +=
F F

F F
 (3.5) 

Die Stelle des Maximums der Rücktransformation des 
Kreuzleistungsspektrums ergibt die geschätzte Translation (u,v) [61]. 
Die Vorteile dieser Technik sind die geringe Rauschempfindlichkeit und 
Resistenz gegen Beleuchtungsänderungen [62]. 
 

3.3.5 Merkmalsbasierte Methoden 

Bei merkmalsbasierten Methoden wird angenommen, dass es 
korrespondierende Merkmale in den Bildern gibt. Diese können 
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ausgezeichnete Punkte, Endpunkte oder Zentren bestimmter Linien oder 
Gewichtsschwerpunkte verschiedener Gebiete sein. Eine verbreitete Methode 
ist der Harris Ecken Detektor [63], der zunehmend vom SIFT-Algorithmus [26] 
und SURF-Algorithmus [24] abgelöst wird. 

3.3.5.1 Harris Ecken Detektor 

Ecken sind im Idealfall rechtwinklig und haben einen hohen Kontrast zur 
Umgebung. Die Eigenschaft von Ecken ist, dass sie bei Positionsänderungen 
unabhängig von der Bewegungsrichtung hohe Intensitätsänderungen 
verursachen, während z. B. Linien bei Verschiebungen in Linienrichtungen 
keine Änderungen verursachen. 
Ausgehend von der etwas umgeschriebenen Gleichung (3.2), wobei T in 
Gleichung (3.6) ein um u und v verschobener Ausschnitt aus demselben Bild 
ist, folgt: 

 ( )2

1 1
( , ) ( , ) ( , )

n m

H i j i i
i j

SSD u v I x y I x u y v
= =

= − + +∑∑  (3.6) 

Der zweite Term der Gleichung (3.6) kann durch eine Taylorreihenentwicklung 
approximiert werden zu: 

 ( , ) ( , ) ( , ) ( , )x yI x u y v I x y uI x y vI x y+ + ≈ + +  (3.7) 

Ix, Iy sind die jeweiligen Ableitung nach x oder y. 
So wird SSDH zu  

 ( )2

1 1
( , ) ( , ) ( , ) (  )

n m

H x i j y i i
i j

u
SSD u v uI x y vI x y u v A

v= =

⎛ ⎞
≈ + = ⎜ ⎟

⎝ ⎠
∑∑  (3.8) 

mit 

 
2

2
1 1

n m
x x y

i j x y y

I I I
A

I I I= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑  (3.9) 

 

Die Eigenwerte λ1, λ2 des Strukturtensors A lassen Rückschlüsse auf die 

Intensitätsverteilung von Bildregionen an der Stelle x,y zu. 
 
Es sind drei Fälle zu unterscheiden: 
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• λ1 ≈ λ2 ≈ 0:  Es liegt keine Struktur vor, es handelt sich hier um eine 
homogene Region. 

• λ1 � 0, λ2 ≈ 0: Es liegen eine Kante oder Rampe vor. 

• λ1 ≥ 0, λ2 � 0: Eine zweidimensionale Struktur, z. B. eine Ecke, liegt vor. 

Um nun korrespondierende Ecken in zwei Bildern und damit die Verschiebung 
zu ermitteln, kann ein Verfahren angewandt werden, wie es von Z. Zhang et 
al. in [64] vorgestellt wird. Es wird zunächst um eine Ecke in Bild 61a an der 
Stelle x1, y1 ein Fenster (Korrelationsfenster genannt) definiert. Nachdem in 
Bild 61b ein Suchfenster um das Gebiet der gesuchten Korrespondenz gelegt 
ist, wird um alle Punkte im Suchfenster die Korrelation mit dem 
Korrelationfenster gebildet. Der Ort mit der besten Korrelation ist dann die 
Stelle des gesuchten Punktes. Liegt eine ungenaue Vermutung vor, so muss 
das Fenster vergrößert werden. 
 

 
             Bild 61a              Bild 61b 

Bild 61: Fenster zur Findung korrespondierender Ecken 

 

3.4 Optischer Fluss, differenzielles Verfahren  
Die Grundannahme für die Berechnung des optischen Flusses nach dem 
differenziellen Verfahren ist, dass ein Szenenpunkt immer – auch nach einer 
Bewegung – seine Intensität beibehält (engl. brightness consistency). 
Zunächst sei der eindimensionale Fall, also z. B. eine Bildzeile, für den 
optischen Fluss betrachtet. Die Bildzeile habe zum Zeitpunkt t eine 
Intensitätfunktion I(x,t). Zu einem späteren Zeitpunkt t+∆t ist die Funktion um 
∆x verschoben, s. Bild 62. Es gilt dann: 

 N
( ) ( )

( , ) ( , )
G x F x

I x t I x x t t= + Δ + Δ���	��
  (3.10) 
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Die Ableitung F'(x) der Funktion F(x) an der Stelle x wird angenähert durch: 

 ' 1 1( ) ( )( ) G x F xF x
x

−
≈

Δ
 (3.11) 

Damit kann die Verschiebung ∆x geschätzt werden zu: 

 1 1
'

1

( ) ( )
( )

G x F xx
F x

−
Δ ≈  (3.12) 

 

 
Bild 62: Differenzielle Methode zur Bestimmung des optischen Flusses für den 
eindimensionalen Fall 

Für den zweidimensionalen Fall gilt: 

 ( ,  ,  ) ( ,  ,  )I x y t I x dx y dy t dt= + + +  (3.13) 

Kleine Verschiebungen nach einer Zeit dt  um dx  und dy  können durch eine 
Taylorreihenentwicklung um den Punkt ( , , )x y t  dargestellt werden: 

 ( ,  ,  ) ( ,  ,  ) I I II x dx y dy t dt I x y t dx dy dt
x y t

ε∂ ∂ ∂
+ + + = + + + +

∂ ∂ ∂
 (3.14) 

ε  fasst die Terme höherer Ordnung zusammen. Diese werden in der Regel 
zur Berechnung des optischen Flusses vernachlässigt, d. h., es wird 
annähernd lineares Verhalten in der Umgebung von ( , , )x y t  vorausgesetzt. Aus 
den Gleichungen (3.13) und (3.14) folgt dann: 
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 0I I Idx dy dt
x y t

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (3.15) 

Dies ist gleich: 

 0I dx I dy I
x dt y dt t

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (3.16) 

Meist wird Gleichung (3.16) vereinfacht geschrieben: 

 0x y tI u I v I+ + =  (3.17) 

Die Gleichung (3.17) wird im englischen Sprachraum „Optical Flow Constraint 
Equation“ genannt und sagt aus, dass die Intensität eines abgebildeten 
Szenenpunktes sich bei Verschiebung und auch zeitlich nicht ändern darf. 

, x yI I  sind die partiellen Ableitungen der Intensitätswerte in x- und y-Richtung; 

u und v sind die gesuchten Flussvektoren in x- und y-Richtung. Sie werden 
auch Geschwindigkeitsvektoren genannt, weil sie sich aus der Ableitung des 
Weges nach der Zeit errechnen. 

 
Bild 63: Vierpixelausschnitte aus zwei Abbildungen 

tI  und die partiellen Ableitungen ,  x yI I  können, wie unten gezeigt, innerhalb 

zwei aufeinanderfolgender Bilder, s. Bild 63, gebildet werden: 

 ( ), 1, , , 1, 1, 1, , , 1, 1 , , 1 1, 1, 1 1, , 1
1
4x i j k i j k i j k i j k i j k i j k i j k i j kI I I I I I I I I+ + + + + + + + + + + += − + − + − + − (3.18) 

 ( )1, , , , 1, 1, , 1, 1, , 1 , , 1 1, 1, 1 , 1, 1
1
4y i j k i j k i j k i j k i j k i j k i j k i j kI I I I I I I I I+ + + + + + + + + + + += − + − + − + − (3.19) 
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 ( ), , 1 , , 1, , 1 1, , , 1, 1 , 1, 1, 1, 1 1, ,
1
4t i j k i j k i j k i j k i j k i j k i j k i j kI I I I I I I I I+ + + + + + + + + + += − + − + − + −  (3.20) 

Anschaulicher dargestellt, sehen obige Gleichungen folgendermaßen aus: 

 ( )1       
4xI d c b a D C B A= − + − + − + −  (3.21) 

 )(1      -  
4yI a c b d A C B D= − + − + − +  (3.22) 

 )(1      -  
4tI C c A a D d B b= − + − + − +  (3.23) 

 
Alleine mit der Gleichung (3.17) können die Werte von u und v nicht ermittelt 
werden. Es müssen weitere Einschränkungen (engl. constraints) gefunden 
werden. Die beiden bekanntesten Ansätze, der von Horn&Schunck und der 
von Lucas&Kanade, werden hier vorgestellt. 

3.4.1 Smoothness Constraint nach B. K. Horn und B. G. 
Schunck 

B. K. Horn und B. G. Schunck stellen fest, dass bei unabhängiger Verteilung 
der Helligkeitsmuster wenig Hoffnung auf die Berechnung des optischen 
Flusses für alle Bildpunkte besteht [48]. Deshalb werden Annahmen, die auf 
die meisten Szenen zutreffen, getroffen. Hierzu gehört, dass Gegenstände 
undurchsichtig und endlich groß sind und sich fest bewegen oder deformieren. 
Mit diesen Annahmen kann davon ausgegangen werden, dass benachbarte 
Punkte sich ähnlich bewegen und damit das Flussfeld sich nur langsam 
ändert. 
Das Minimieren der Summe der quadrierten partiellen Ableitungen erfüllt diese 
Bedingung: 

 
2 22 2

0u u v v
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + →⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (3.24) 

Da nicht angenommen werden kann, dass die Funktionen (3.17) und (3.24) 
exakt gleich null sind, wird ein Energiefunktional 2E gebildet, welches durch 
Minimierung die Werte für den optischen Fluss liefert. 
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 2 2 2 2
I SE E E dxdyα= +∫∫  (3.25) 

mit 

 I x y tE I u I v I= + +  (3.26) 

und 

 
2 22 2

S
u u v vE
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (3.27) 

Entsprechend der Variationsrechnung nach Euler-Lagrange [37] lässt sich das 
Integral aus Gleichung (3.25) auflösen zu: 

 
2 2 2

2 2 2

x x y x t

x y y y t

I u I I v u I I

I I u I v v I I

α

α

+ = ∇ −

+ = ∇ −
 (3.28) 

Der Regularisierungsparameter α  dient dazu, Fehler, die durch Quantisierung 
und Rauschen entstehen, zu gewichten. Die Laplace Operatoren 2 2 und ∇ ∇u v  
können durch folgende Gleichungen approximiert werden: 

 ( ) ( )2 2
, , , , , , , , und i j k i j k i j k i j ku k u u v k v v∇ ≈ − ∇ ≈ −  (3.29) 

u und v sind lokale Mittelwerte, während k ein Proportionalitätsfaktor ist. 
 
Die Gleichungen (3.28) können damit umgeschrieben werden zu: 

 
( ) ( )

( )

2 2 2

2 2 2

x x y x t

x y y y t

I u I I v u I I

I I u I v v I I

α α

α α

+ + = −

+ + = −
 (3.30) 

Daraus kann nach dem Gauß-Seidel-Verfahren [37] eine iterative Methode zur 
Bestimmung der Flusswerte gebildet werden: 

 
( )

( )

1
2 2 2

1
2 2 2

n n
x x y tn n

x y

n n
y x y tn n

x y

I I u I v I
u u

I I

I I u I v I
v v

I I

α

α

+

+

⎡ ⎤+ +⎣ ⎦= −
+ +

⎡ ⎤+ +⎣ ⎦= −
+ +

 (3.31) 

Zu Beginn sind nu  und nv  unbekannt und werden als null angenommen. 
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Mit den Gleichungen (3.31) lassen sich die Flussvektoren für jedes Pixel 
errechnen. 
 

3.4.2 Flusskonstanz nach Lucas&Kanade 

Im selben Jahr – 1981 – wie Horn&Schunck entwickelten Lucas&Kanade [65] 
einen anderen Ansatz zur Bestimmung des optischen Flusses. Dieser Ansatz 
bezieht sich ebenfalls auf die Optical Flow Constraint Equation (3.17). Die 
Unterbestimmtheit wird hier durch die Annahme gleicher Bewegungen 
innerhalb eines kleinen Szenenausschnitts, also des gleichen Flusses u,v 
innerhalb eines kleinen Bildausschnitts, gelöst. Gleichung (3.17) wird dann für 
diesen Bereich, der quadratisch mit der Kantenlänge m um das betreffende 
Pixel ist, erweitert zu: 

 

N

(1,1) (1,1) (1,1)
(1,2) (1,2) (1,2)

   
( , ) ( , ) ( , )

( , ) ( , ) ( , )

x y t

x y t

x y t

x y t

I I I
I I I

u
I x y I x y I x yv

I m m I m m I m m

bUA

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞

= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

# # #

# # #

��	�
����	���


 (3.32) 

Das Gleichungssystem ist überbestimmt. 
Ziel ist es,  

 2AU b−  (3.33) 

zu minimieren. 
Aus  

 AU b=  (3.34) 

wird die Normalgleichung [37] gebildet: 

 ( ) 1T TU A A A b
−

=  (3.35) 

Mit Gleichung (3.32) wird dies zu: 
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12

2
x x y x t

x y y y t

I I I I I
U

I I I I I

−
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑

 (3.36) 

Wenn beide Eigenwerte λ1 und λ2 von TA A  ungleich null sind, ist TA A  
invertierbar und der optische Fluss U kann errechnet werden. Sind z. B. beide 
Eigenwerte null, so ist der betreffende Bereich in der Abbildung homogen und 
der optische Fluss kann nicht errechnet werden. 
Es ist sinnvoll, bei der Berechnung die Ableitungen in der nahen Umgebung 
des betreffenden Pixels, für welches der optische Fluss ermittelt wird, höher zu 
gewichten und den Einfluss der entfernteren Ableitungen zu verringern. Man 
führt deshalb eine Gewichtsfunktion W ein [66]. Gleichung (3.36) wird dann zu: 

 
12 2 2 2

2 2 2 2
x x y x t

x y y y t

W I W I I W I I
U

W I I W I W I I

−
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑

 (3.37) 

Es kann also hierzu z. B. mit m = 5, s. Gleichung (3.32), ein Gaußfilter 
genommen werden: 

 

1 14 34 14 1
14 196 476 196 14

1 34 476 1156 476 34
4096

14 196 476 196 14
1 14 34 14 1

W

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.38) 

Zur schnellen Berechnung der Filterung sind Überlegungen aus dem Anhang, 
Kapitel A.2, hilfreich. 

3.4.3 Vergleich der Verfahren nach Horn&Schunck und 
Lucas&Kanade 

Die Lucas&Kanade-Methode ist ein lokales Verfahren und liefert ein nicht so 
dichtes Flussfeld, wie es bei dem globalen iterativen Verfahren nach 
Horn&Schunck möglich ist [67]. Der Fluss ist in kleiner Umgebung bei 
Lucas&Kanade konstant, allerdings auch weniger rauschempfindlich. Ein 
Ansatz, die Vorteile beider Verfahren zu kombinieren, ist in [67] zu finden. 
Nur wenige relevante Vergleiche [68], [69], [70], [56], [71], [72], [73], [74] 
verschiedener Verfahren wurden veröffentlicht. Hierbei wurden zumeist 
synthetische Bilder (z. B. Yosemite Park Sequence) benutzt, so dass Einflüsse 
auf Bilder realer Szenen unberücksichtigt blieben und damit die Bedingungen 
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zur Gewinnung des optischen Flusses leicht erfüllt wurden (frei von 
Beleuchtungsschwankungen, Reflexionen und Moiréeffekten digitaler 
Aufnahmen). Die Ergebnisse der vorliegenden Untersuchungen sind schwer 
vergleichbar, da unterschiedliche Bewertungskriterien für die Güte der 
Berechnungen zum optischen Fluss herangezogen wurden. In fast allen 
Untersuchungen wurde das Gradientenverfahren von Lucas & Kanade mit 
einbezogen. Dabei bewährte sich dieser Algorithmus durch Effizienz und 
Genauigkeit. Keiner der Tests untersuchte allerdings bisher die Eignung auf 
Koppelnavigation für Fluggeräte. Eigene Versuche zeigen an realen Bildern 
doch Schwächen der differenziellen Methoden, die zum Teil auf den im 
folgenden Abschnitt beschriebenen Einschränkungen beruhen. 

3.4.4 Gaußpyramide 

Da die differentiellen Methoden annähernd Linearität voraussetzen, lassen 
sich, streng genommen, nur Verschiebungen kleiner als ein Pixel berechnen. 
Bei Versuchen mit realen Bildern, s. Kapitel 4.1, S.78, ergab sich die maximal 
richtig berechenbare Verschiebung zu 1.16 Pixel. Diese Einschränkung lässt 
sich durch Bildverkleinerungen in Grenzen beheben. 
Für jede Bildgröße gilt, dass Verschiebungen von einem Pixel, aber nicht viel 
mehr, berechnet werden können. Wird die Verschiebung z. B. zweier auf halbe 
Breite und Höhe verkleinerten Bilder zu U errechnet, so ist die Verschiebung 
dann im Originalbild 2U. 
Zur Berechnung werden Bildverkleinerungen in mehreren Eben durchgeführt. 
Dies führt zur s. g. Gaußpyramide, s. Bild 64. 
Auch wenn die Pyramide mit beliebigen Skalierungsfaktoren erstellt werden 
kann, ist es einfacher, bei jeder Stufe die Bildgröße auf halbe Kantenlänge zu 
verkleinern, denn dann ist keine Interpolation notwendig, weil nur jedes zweite 
Pixel zur Verkleinerung herangezogen wird. 
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Bild 64: Übliche Gaußpyramide. Jede höhere Ebene l hat die halbe 
Kantenlänge, also ein Viertel der Pixel der vorhergehenden Ebene (Quelle: [75]) 

Um das Abtasttheorem nicht zu verletzen, wird jedes Bild vor der 
Verkleinerung tiefpassgefiltert. Das Gaußfilter ist wegen der Eigenschaft, eine 
maximale Flankensteilheit ohne Überschwingen bei gleichzeitig schmalem 
Filter im Ortsbereich zu haben, besonders geeignet, siehe auch Anhang A.2. 
Die übliche Gaußpyramide wird entwickelt vom Originalbild, Ebene 0l = , bis zu 
einer Ebene l n= , indem jeweils jeder vierte Pixelwert über ein Gaußfilter 
gebildet wird. 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


69 

Pyramide für ein Bild 
Eben

e 
Pyramide für darauf folgendes 

Bild 

 
32 x 32 

4  
 

 
64 x 64 

3  
 

 
128 x 128 

2 
 

 

 
256 x 256 

1 

 
 

512 x 512 

0 

 

Bild 65: Gaußpyramiden für zwei aufeinander folgende Bilder. Die Bilder der 
Ebene 0 sind die Originalbilder. Die anderen Ebenen werden durch ein 5 x 5-
Gaußfilter und sukzessive Elimination jedes zweiten Pixels in x- und y-
Richtung gebildet. 

 
Mit der Gaußpyramide lassen sich also größere Pixelversätze errechnen. Gilt 
zum Beispiel, dass in einem Bildpaar je Ebene der Versatz bis zu zwei Pixel 
berechnet werden kann, so gilt Tabelle 3 für die Ebenen nach Bild 65: 
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Tabelle 3: Maximal errechenbarer Gesamtversatz bei zwei Pixel Versatz pro 
Bildebene der Gaußpyramide. 

Ebene 
Maximaler 
Versatz 

4 2 

3 2*2+2 = 6 

2 2*6+2 = 14 

1 30 

0 62 
 
Allgemein gilt: 

 Maximaler Gesamtversatz (2 1)nu= −  (3.39) 

u ist der maximale errechenbare Versatz in einer Bildebene, n die Anzahl der 
Ebenen. 
Die Anzahl der Ebenen ist begrenzt durch die Subpixelgenauigkeit, da sich die 
Fehler bis zur Ebene 0 potenzieren. Eigene Versuche haben ergeben, dass ab 
Ebene 5 bei 512 x 512 px großen Originalaufnahmen – entspricht einem 
16 x 16 px Bild in Ebene 5 – die Berechnungen ungenau werden. Dies wird 
auch in [76] bestätigt und ist aus Bild 65 ersichtlich, denn dort sind schon kaum 
Details erkennbar und homogene Bildanteile nehmen zu. 

 
Bild 66: Vergrößerung des Bilds der Ebene 4 aus Bild 65 oben links 

Zu beachten ist, dass für eine schnelle Berechnung die Außenmaße vom 
Originalbild (Ebene 0) bis zur vorletzten Ebene jeweils ganzzahlig durch zwei 
teilbar sein müssen, da sonst bei der Bildverkleinerung interpoliert werden 
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müsste und die Zuordnung der Flusswerte von Ebene zu Ebene schwieriger 
wäre. 
In Kapitel 4.1 wird gezeigt, welcher Versatz in realen Bildern pro Ebene 
errechnet werden kann. 
 

3.5 Optischer Fluss, Korrelationsmethode 
Im Gegensatz zur Gradientenmethode, die für jedes Pixel den optischen Fluss 
bestimmt, wird beim Region-Based Matching nur die Verschiebung eines 
Gebietes ermittelt. Ein Verfahren ist die Kreuzkorrelation. Ein Teilbild der 
ersten Aufnahme wird in einer zweiten Aufnahme gesucht, indem dort für alle 
möglichen Positionen die Kreuzkorrelation gebildet wird. Die Position mit der 
maximalen Korrelation ist dann die wahrscheinlichste Position desselben 
Szenenausschnittes. 
Ein Beispiel ist in den Bild 67a und b zu finden, in denen das Teilbild jeweils 
schwarz umrahmt ist. Die Kamera hat sich über dem Boden nach rechts 
bewegt. Deshalb ist das Teilbild mit der maximalen Korrelation im 
nachfolgenden Bild weiter links zu finden. 

 

 

 
Bild 67a: Bild und gesuchtes 
Teilbild 

 Bild 67b: Nachfolgendes Bild 
und gefundenes Teilbild 

3.5.1 ZNCC 

Um die Empfindlichkeit gegen Helligkeitsschwankungen sowohl in additiver als 
auch in multiplikativer Form zu vermindern, werden die Werte der sich 
überlappenden Flächen normalisiert und von allen Pixeln der 
Flächenmittelwert abgezogen. Man erhält die mittelwertfreie normalisierte 
Kreuzkorrelation (engl. ZNCC, Zero mean Normalized Cross Correlation) 
[77][78]. 

 ,

2 2
, ,

[ ( , ) ( , )][ ( , ) ]
( , )

[ ( , ) ( , )] [ ( , ) ]

+ + − −
=

+ + − −

∑
∑ ∑

x y

x y x y

I u x v y I u v T x y T
ZNCC u v

I u x v y I u v T x y T
 (3.40) 
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hierbei ist ZNCC(u,v) der normierte und mittelwertfreie Korrelationskoeffizient 
an der Stelle u,v. 
I(x,y) ist der Helligkeitswert an der Stelle x,y des zu durchsuchenden Bildes. 
T(x,y) ist der Helligkeitswert an der Stelle x,y des gesuchten Teilbildes 
(template). 

 und I T sind jeweils die Helligkeitsmittelwerte in den durch die Teilbildgröße Nx, 
Ny vorgegebenen Umgebungen. 
Zur schnelleren Berechnung kann die Gleichung (3.40) weiter aufgelöst 
werden. 
Für T lässt sich schnell und einmalig das mittelwertfreie Bild berechnen. Der 
Normierungsunterterm für das Teilbild wird zusammengefasst zu: 

 ( , ) ( , )x y T x y Tτ = −  (3.41) 

Für den Mittelwert 
_ _

T und I  gilt: 

 
_

1 1

1 ( , )
xN Ny

x yx y

T T x y
N N = =

= ∑∑  (3.42) 

 
1 1

1( , ) ( , )
xN Ny

x yx y

I u v I u x v y
N N = =

= + +∑∑  (3.43) 

( , )I u v  muss für jedes u,v neu berechnet werden. 
Zur besseren Übersicht werden die unabhängigen Variablen u, v, x, y, die in 
Gleichung (3.40) explizit aufgeführt werden, im Folgenden nicht mitgeführt. Die 
Berechnungen sind angelehnt an einer Veröffentlichung von K. Briechle und 
U. Hanebeck [79]. 
Der Zähler Z der ZNCC lässt sich so umformen: 

 

_

, ,

, , ,

[ ] [ ] [ ] 
x y x y

x y x y x y

Z I I T T I I

I I I I

τ

τ τ τ τ

= − − = −

= − = −

∑ ∑
∑ ∑ ∑

 (3.44) 

Da Folgendes gilt, 
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,
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( ) ( ) 1

( ) 0

x y x y
x y x y x y x y x y

x y x y

x y
x yx y

x y

T T
T T

N N N N

T
T N N

N N

τ = − = −

= − =

∑ ∑∑ ∑ ∑ ∑ ∑

∑∑
 (3.45) 

 
vereinfacht sich Gleichung (3.44) zu: 

 ,

,
( , ) ( , ) ( , )

x y

x y

Z I

Z u v I u x v y x y

τ

τ

=

= + +

∑
∑

 (3.46) 

Wird das Bild I in x- und y-Richtung zu Bild I' gespiegelt, entspricht obige 
Gleichung einer Faltung: 

 '
,

( , ) ( , ) ( , )
x y

Z u v I u x v y x yτ= − −∑  (3.47) 

Somit können durch Fouriertransformation und Rücktransformation die nicht 
normierten Korrelationskoeffizienten ermittelt werden. 

 1 ' *( , ) ( ) ( )Z u v I τ− ⎡ ⎤= ⎣ ⎦F F F  (3.48) 

Hierbei ist F-1 die inverse Fouriertransformation und F* die konjugiert komplexe 

Fouriertransformation. Durch die Fouriertransformation kann die Anzahl der 
Multiplikationen, insbesondere bei relativ großen Teilbildern, erheblich 
reduziert werden. Sind Mx = My = M die Kantenlängen des zu durchsuchenden 
Bildes und Nx = Ny = N Kantenlängen des Teilbildes, so erfordert die direkte 
Faltung nach Gleichung (3.47) 

 2 2( 1)N M N− +  (3.49) 

Multiplikationen und mit Fouriertransformationen nach Gleichung (3.48)  

 2
212 logM M  (3.50) 

Multiplikationen [77]. Mit N = 32 und M = 512 ist das Verhältnis der Anzahl der 
Multiplikationen von Gleichung (3.49) zu Gleichung (3.50) 2.4·108 zu 2.8·107. 
 

Für die Berechnung des Nenners aus (3.40) ergeben sich die folgenden 
Vereinfachungen. 
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Der Ausdruck 
_

2
,

[ ( , ) ]
x y

T x y T−∑  kann einmalig berechnet werden und gilt 

dann für alle u,v. 
Der andere Term des Nenners ist aufwendiger zu berechnen und lässt sich so 
umformen: 

 2 2 2 2
, , , , ,

[ ( , ) ( , )] [ ] 2  + + − = − = − +∑ ∑ ∑ ∑ ∑x y x y x y x y x y
I u x v y I u v I I I I I I (3.51) 

2
,x y

I∑ lässt sich für jedes u,v über Summentabellen [80] errechnen, s. auch 

Anhang A.3. 
Mit Hilfe von (3.43) wird der zweite Term von (3.51) umgeformt zu: 

 ( )2

, , , , ,

1 12  2  2   2  
x y x y x y x y x y

x y x y

I I I I I I I
N N N N

= = =∑ ∑ ∑ ∑ ∑  (3.52) 

Der dritte Term ergibt: 

 
( ) ( ) ( )2 2 2

, , ,2
2 2, , ,

1
( ) ( )

x y x y x y

x y x y x y
x y x y x y

I I I
I

N N N N N N
= = =

∑ ∑ ∑
∑ ∑ ∑  (3.53) 

Damit wird der Nenner von Gleichung (3.40) zu 

 2 2 2
, , ,

1 [ ]
x y x y x y

x y

I I
N N

τ−∑ ∑ ∑  (3.54) 

Die jeweiligen Summen I2 und I für jedes u,v lassen sich auch hier schnell über 
Summentabellen ermitteln. 
Mit diesen Umformungen kann die ZNCC wesentlich zügiger berechnet 
werden. 
 

3.5.2 NCC  

Die ZNCC ist in ihrer Berechnung aufwendig. Daher wird hier die normalisierte 
Kreuzkorrelation (engl. Normalized Cross Correlation, NCC) vorgestellt. Die 
Vor- und Nachteile der ZNCC zur NCC werden im nachfolgenden Kapitel 
(3.5.3) erläutert. Die normalisierte Kreuzkorrelation NCC wird über folgende 
Gleichung errechnet: 
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( , ) ( , )
x y

x y x y

I x u y v T x y
NCC u v

I x u y v T x y

+ +
=

+ +

∑
∑ ∑

 (3.55) 

Der Ort der größten Übereinstimmung ist an der Stelle u,v, an der NCC(u,v) 
maximal ist. Die linke Wurzel des Nenners kann wieder über Summentabellen 
errechnet werden. Die rechte Wurzel muss nur einmal berechnet werden. 
Trotzdem ist die konventionelle Berechnung der NCC bisher zu aufwendig, um 
mit einem normalen Prozessor einen Echtzeitbetrieb einer Regelung zu 
ermöglichen. 
In einer Veröffentlichung von S. D. Wei und S. H. Lai [81] wird ein Verfahren 
vorgestellt, welches die Berechnung mit Hilfe einer sukzessiven Approximation 
und eines Eliminationsverfahrens wesentlich schneller ablaufen lässt. Dieses 
Verfahren beruht auf der Schwarzschen Ungleichung:  

 2 2( ) ( ) ( ) ( )
b b b

a a a

I x T x dx I x dx T x dx≤∫ ∫ ∫  (3.56) 

Im Durchschnitt ist diese Methode etwa zehnmal schneller als die direkte 
Berechnung der NCC. Allerdings sind die Rechenzeiten nicht vorhersehbar 
und können je nach Bildinhalt die Rechenzeiten der direkten NCC sogar 
überschreiten. Deshalb ist das Verfahren für die Echtzeitberechnung nicht 
geeignet. 
Das Verfahren wird im Anhang, Kap. A.4, detailliert erklärt. 

3.5.3 Eigenschaften von NCC und ZNCC 

Unterschiedliche Aufnahmesituationen können die Bildhelligkeit verändern. 
Dies kann verursacht werden unter anderem durch: 

• Unterschiedliche Belichtungszeiten 

• Unterschiedliche Blenden 

Dadurch ändert sich die Intensität des Teilbildes T in Bezug auf das Bild I um 
einen Faktor k. Man spricht von multiplikativer Helligkeitsänderung, denn T 
wird in Gleichung (3.55) dann zu kT. Dies entspricht einer Kontraständerung. 
Die NCC ist durch ihre Normalisierung invariant zu diesem Faktor, wie aus 
folgender Gleichung ersichtlich ist: 
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 (3.57) 

In einigen Fällen, insbesondere bei verschiedenen Kameras, kommen noch 
additive Intensitätsänderungen hinzu. 
Zusammen mit der multiplikativen Änderung wird die Intensität des Teilbildes 
dann zu: 

 T kT c→ +  (3.58) 

k ist dann die multiplikative Änderung (Kontrast) und c die additive Änderung 
(Helligkeit). 
 
Der Übersicht halber wird [ ( , ) ( , )] zu I u x v y I u v I+ + − � zusammengefasst. T wird 
mit kT+c substituiert. Gleichung (3.40) wird dann zu: 
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 (3.59) 

Daraus folgt, dass die ZNCC invariant ist zu additiven und multiplikativen 
Lichtänderungen. 
Die Vorteile der ZNCC gegenüber der NCC sind eher geringfügig. In der Regel 
zeigen Versuche mit realen Bildern geringe Abweichungen in der Erkennung 
[82][83] oder sagen aus, dass NCC mit realen Bildern sogar besser ist als 
ZNCC [59]. Die Rechenzeit ist bei der ZNCC etwa doppelt so groß wie bei der 
NCC [84]. 
Allerdings sind die Verhältnisse anders bei Aufnahmen derselben Szene durch 
verschiedene Kameras. Hier kann der Gleichanteil der Helligkeit selbst beim 
gleichen Modell desselben Herstellers dominant werden und somit die 
Anwendung der ZNCC, also z. B. bei Stereoaufnahmen, erforderlich sein. 
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3.6 Zusammenfassung Kapitel 3 
Probleme der Bildregistrierung sind hauptsächlich unterschiedliche 
Bildintensitäten, das Blendenproblem – insbesondere bei Kanten – und 
Verdeckung. Die Gradientenmethode zur Bestimmung des optischen Flusses 
und die Kreuzkorrelation sind die beiden favorisierten Methoden. Vorteil der 
Gradientenmethode im Vergleich zur Kreuzkorrelation ist die implizite 
Subpixelgenauigkeit. Der Nachteil ist die globale Intensitätsempfindlichkeit, die 
die Kreuzkorrelation (NCC oder ZNCC) nicht aufweist. Größere 
Verschiebungen lassen sich bei dem Gradientenverfahren mit Hilfe von 
Gaußpyramiden erfassen, aber – wie im folgenden Kapitel gezeigt wird – ist 
diese Methode stark begrenzt. 
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4 Vergleich der Verfahren nach Lucas&Kanade und 
NCC 

In diesem Kapitel werden anhand einiger Versuche beide Verfahren verglichen 
bezüglich:  

• Maximal erkennbarer Verschiebung 

• Helligkeitsempfindlichkeit 

• Rotationsempfindlichkeit 

• Berechnungszeit 

• Subpixelgenauigkeit 

4.1 Reichweite der Erkennung 
Der optische Fluss nach der differenziellen Methode erlaubt zunächst nur 
einen Versatz kleiner oder gleich einem Pixel zu bestimmen. Es kann daher 
nur ein Versatz innerhalb der Strecke zwischen zwei Pixeln errechnet werden, 
da z. B. die Ableitung zwischen einem 2. und 3. Pixel negativ zur Ableitung 
zwischen dem 1. und 2. Pixel sein könnte und damit die Berechnung falsch 
wäre. 
Um maximal berechenbare Verschiebungen der Gradientenmethode ohne 
Gaußpyramiden zu verifizieren, werden aus mit dem Flugsystem 
aufgenommenen Filmsequenzen jeweils Bildpaare innerhalb derselben 
Aufnahme, die um ein, zwei oder drei Pixel zueinander verschoben sind, auf 
ihren optischen Fluss untersucht. Jeweils 2500 Bildpaare verschiedener 
Landschaftsszenen wurden untersucht. In Bild 68 sind die Ergebnisse 
dargestellt. 
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Bild 68: Gegenüberstellung von tatsächlichen Bildverschiebungen zu 
errechneten Bildverschiebungen bei dem Verfahren nach Lucas&Kanade. 
Dargestellt sind die errechneten Minimal- und Maximalwerte aus 2500 
Bildpaaren. 

 
Aus Bild 68 kann entnommen werden, dass die Berechnung für genau einen 
Pixel Versatz immer exakt ist (auf 1/100 Pixel genau). Bei zwei Pixel Versatz 
ist die maximale Abweichung schon 0.69 Pixel und ab drei Pixel Versatz wird 
das Ergebnis unbrauchbar. 
 
Nimmt man nun an, dass die Genauigkeit bei zwei Pixel Versatz ausreicht, 
ließe sich mit der Lucas&Kanade-Methode mit Hilfe der Gaußpyramiden nach 
Kapitel 3.4.4 bei fünf Pyramidenebenen ein Gesamtversatz von bis zu 62 
Pixel, s. Gleichung (3.39), errechnen. 
Die Abweichungen in Tabelle 4 wurden mit Ausschnitten aus demselben Bild 
errechnet. Die Realität mit verschiedenen Bildern, zeitlich und räumlich 
versetzte Aufnahmen der gleichen Szene, ergibt einen deutlich niedrigeren 
berechenbaren Gesamtversatz. Hierzu wurde aus verschiedenen 
Filmsequenzen jeweils der optische Fluss aus einem Bild und dem 6. 
nachfolgenden Bild errechnet. Die ermittelten Versätze wurden mit den 
Berechnungen der NCC verglichen. Die ersten falschen Werte ergaben sich 
bei einem Versatz von 36 Pixel, während ab 40 Pixel Versatz die 
Lucas&Kanade-Methode deutlich versagte, s. Tabelle 4. 
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Tabelle 4: Gegenüberstellung vom tatsächlichen Bildversatz zum errechneten 
Bildversatz bei dem Verfahren nach Lucas&Kanade mit verschiedenen Bildern 
und Pyramidenbearbeitung 

Versatz [Pixel]     ≤36 >36 

Lucas&Kanade Abweichung von NCC ±<1 unbrauchbar 

 
Bei 5 Pyramidenebenen kann nach Gleichung (3.39) umgekehrt der maximal 
erfassbare Versatz zu 1.16 Pixel errechnet werden.  
Das heißt, in realen Bildern sind mit der Lucas&Kanade-Methode 
Verschiebungen innerhalb einer Bildebene der Gaußpyramide, die geringfügig 
über ein Pixel hinausgehen, zunehmend unsicher. 

4.2 Helligkeitsempfindlichkeit 
Durch Helligkeitsänderungen der beobachteten Szene kann sich die 
Belichtung (aufgrund der Aufnahmezeit oder der Blende) einer Kamera 
ändern. Um dies nachzubilden, wurde nach einem Flug über eine Landschaft 
die Intensität jeden zweiten Bildes durch eine Multiplikation mit 0.95 um 5 % 
geändert. Wie erwartet, versagt die differentielle Methode dann. Bild 69 zeigt 
ein aus 29 Bildern zusammengesetztes Mosaikbild1, in dem die 
Fehlerkennung deutlich wird, und den chaotischen Fluss bei einem Bildpaar. 
Helligkeitsänderungen unter 1 % sind gerade noch verträglich bei der Methode 
nach Lucas&Kanade. 
Die NCC ist erwartungsgemäß für Helligkeitsänderungen unempfindlich, s. 
Bild 70. 

                                         
1 Ein Mosaikbild ist ein aus mehreren sich inhaltlich überlappenden Bildern 
zusammengesetztes Gesamtbild. 
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Bild 69: Differentielle Methode bei Helligkeitsänderung um 5 %, Links: 
Mosaikbild, rechts chaotischer optischer Fluss zwischen zwei Bildern 

 
Bild 70: Mosaikbild bei NCC mit Helligkeitsänderungen 
Quelle: Bild 69 und Bild 70, eigene Veröffentlichung [85] 

 

4.3 Rotationsempfindlichkeit 
Der zu betrachtende Bereich der Gierwinkel des Experimentierluftschiffes ist 
maximal 20°/s. Mit einer Bildrate der Kamera von 12 Bilder/s sind dies 
maximal 1.7° pro Bildpaar. 
Um die Winkelpräzision zu ermitteln, wurden als Vorlage verschiedene 
Abbildungen, s. Bild 71 bis Bild 73, 115-mal mit Hilfe von Matlab® um jeweils 
ein Grad um das Zentrum gedreht. Bei jedem Drehwinkel wurden dann 100 
Bildpaare für die drei Abbildungen berechnet, indem z. B. für 4° Drehwinkel 
das erste mit dem fünften Bild, das zweite mit dem 6. Bild usw. gepaart wurde. 
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Bild 71 bis Bild 73 stellen einige sich ergebende optische Flüsse bei 
Rotationen dar. 

 
Bild 71: Optischer Fluss bei der Rotation der Abbildung eines Laubbaumes  
um 4° 

 
Bild 72: Optischer Fluss bei der Rotation der Abbildung einer Baumgruppe  
um 4° 

 
Bild 73: Optischer Fluss bei der Rotation der Abbildung einer Wiese um 8° 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


83 

Bei der Berechnung des Winkels nach der Methode von Lucas&Kanade, 
durchgezogene Linie mit der Bezeichnung L&K in Bild 74, Bild 76 und Bild 78, 
ist der Fehler bis 8° unter 5 %. Ab 9° Rotation werden die Abweichungen 
erheblich. Dies wird am Ende des Kapitels erläutert. 
Die Berechnung mit der NCC zeigt größere Abweichungen und erreicht 5 % 
Fehler schon bei 3°, bleibt allerdings bis 9° unter 10 %. Ab 10° weichen die 
berechneten Winkel erheblich vom erwarteten Wert ab. 
 
Bei der Position wird keine Verschiebung erwartet, da die Bilder (scheinbar) 
exakt um das Zentrum rotiert wurden. Dass dies nicht stimmt, wird später mit 
Bild 80 genauer untersucht.  
Bei der Berechnung nach Lucas und Kanade, Bild 75, Bild 77 und Bild 79, ist 
die Verschiebung immer kleiner als wenige Hundertstel Pixel und somit 
vernachlässigbar. 
Die NCC ist bezüglich der ermittelten Position sehr empfindlich auf Rotationen 
und verlässt ab 3° den Subpixelbereich, s. Bild 77. 
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Bild 74: Maximaler prozentualer 
Winkelfehler bei der Rotation von Bild 71 

Bild 75: Maximaler Positionsfehler in x- 
oder y-Richtung bei der Rotation von 
Bild 71 

 
Bild 76: Maximaler prozentualer 
Winkelfehler bei der Rotation von Bild 72 

Bild 77: Maximaler Positionsfehler in x- 
oder y-Richtung bei der Rotation von 
Bild 72 

  
Bild 78:Maximaler prozentualer 
Winkelfehler bei der Rotation von Bild 73 

Bild 79: Maximaler Positionsfehler in x- 
oder y-Richtung bei der Rotation von 
Bild 73 
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Zu beachten ist, dass jeweils die größten Abweichungen aus 100 Bildpaaren 
in den Grafen dargestellt sind. Die Mittelwerte sind allerdings meist nicht viel 
kleiner. Beispielhaft bei drei Grad Rotation werden in Tabelle 5 die Maximal-, 
Minimal- und Mittelwerte der Winkel und der Verschiebung in x-Richtung für 
die Berechnung nach Lucas und Kanade gezeigt. Die Verschiebung in y-
Richtung ist erwartungsgemäß sehr ähnlich und wird nicht dargestellt. Der 
Winkelfehler schwankt um 1 %. Die Verschiebung ist im Subpixelbereich und 
damit kaum relevant. 

Tabelle 5: Berechnete Winkel und x-Positionen für 3° Rotation bei der 
Berechnung nach Lucas und Kanade 

Berechnete  
Werte 

Laubbaum  
von Bild 71 

Bäume  
von Bild 72 

Wiese  
von Bild 73 

Max. Winkel 3.030° 3.049° 3.044° 
Min. Winkel 2.996° 2.991° 3.007° 
Mittelwert 
Winkel 

3.014° 3.015° 3.021° 

Max. x 0.031 px 0.039 px 0.034 px 
Min. x 0.022 px 0.019 px 0.025 px 
Mittelwert x 0.026 px 0.029 px 0.028 px 

 
Schlechter sind die Verhältnisse bei der Berechnung mit der NCC, denn dort 
sind die Winkelfehler noch akzeptabel, aber die ermittelte Position verlässt bei 
Bild 72 den Subpixelbereich, s. Tabelle 6. 

Tabelle 6: Winkel und x-Position für 3° Rotation bei der Berechnung mit NCC 

Berechnete  
Werte 

Laubbaum 
von Bild 71 

Bäume 
von Bild 72 

Wiese 
von Bild 73 

Max. Winkel 3.105° 3.097° 3.047° 
Min. Winkel 2.860° 2.954° 2.944° 
Mittelwert 
Winkel 

2.997° 3.032° 2.997° 

Max. x 0.084 px 0.234 px -0.004 px 
Min. x -0.123 px -1.020 px -0.161 px 
Mittelwert x -0.067 px -0.534 px -0.104 px 
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Auffällig ist, dass die Verschiebungen nicht um den Nullpunkt variieren, 
sondern stetig im positiven Bereich mit dem Winkel anwachsen, s. Bild 79 
L&K-Linie, was auf einen Fehler bei der Rotation der Bildvorlage deutet, wie 
auch durch Bild 80 bestärkt wird. Hier wird ein Bild, Bild 71, sukzessiv 100-mal 
um 5° im Uhrzeigersinn und 100-mal im Gegenuhrzeigersinn gedreht. Bei der 
Berechnung nach Lucas & Kanade ist das Zentrum der Position bei 
x,y = 0.04, 0.05 bzw. symmetrisch hierzu bei x,y = -0.05, -0.04. Erwartet wird 
x,y = 0,0. Hieraus ergibt sich, dass die Rotation der Bildvorlage durch Matlab® 
nicht genau im Zentrum des Bildes erfolgt, sondern drehrichtungsabhängig 
etwas versetzt ist. 
 

 
Bild 80: x- und y-Positionen in px bei multiplen Rotationen um 5° im 
Uhrzeigersinn (rechts im Bild) und Gegenuhrzeigersinn (links im Bild),  
Berechnung nach Lukas&Kanade 

Bei steigendem Winkel werden die optischen Flussvektoren in den vom 
Rotationszentrum entfernten Bereichen so groß, dass sie mit der 
Gradientenmethode nicht mehr berechnet werden können. In Bild 81 ist der 
optische Fluss bei 4° Rotation sehr gleichmäßig bis in die äußeren 
Bildbereiche, während bei 14° Rotation, wie in Bild 82 gezeigt, der optische 
Fluss vom Zentrum ausgehend immer ungleichmäßiger wird. Dies ist 
begründet durch den optischen Fluss, der im Randbereich zu groß wird, um 
erfasst zu werden. 
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Bild 81: 4° Rotation: Gleichmäßiger 
optischer Fluss bis in die 
Randbereiche  

Bild 82: 14° Rotation: Zunehmend 
chaotischer optischer Fluss vom 
Zentrum aus 

Dass die Position bei der NCC zunehmend mit dem Winkel falsch berechnet 
wird, liegt an verschiedenen Bildinhalten zwischen dem gedrehten und 
ungedrehten Bild. So haben bei 5° Rotation in einem 32 x 32 px Fenster die 
korrespondieren Pixel am äußeren Rand einen Abstand von mehr als 3 px und 
tragen damit zur Korrelation kaum bei. Dies zeigt sich auch an abnehmenden 
Korrelationwerten bei steigenden Winkeln, s. Bild 83. 
 

 
Bild 83: Durchschnittliche Korrelationswerte bei Rotationen zwischen 1° und 
14° 
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Zusammenfassung 
Das Resümee ist, dass die NCC ab 2° mit zunehmenden Fehlern auf 
Rotationen reagiert, während die Berechnung nach Lucas und Kanade bis 9° 
Positionsfehler im Subpixelbereich liefert. Sollen bei großen Verschiebungen 
und großen Rotationen genaue Positionen ermittelt werden, so kann hierzu die 
Kombination beider Verfahren genommen werden, indem zunächst mit der 
NCC die Position grob bestimmt wird und dann die gewonnenen 
Bildausschnitte mit der Gradientenmethode nachberechnet werden. 

4.4 Berechnungszeit 
Die Berechnungszeit ist in Matlab® für die Gradientenmethode dreimal höher 
als für die NCC. 

4.5 Subpixelgenauigkeit 
Um eine genauere Positionsbestimmung zu erhalten, können noch Bruchteile 
der Pixelverschiebungen – Subpixel – herangezogen werden. Die 
Subpixelgenauigkeit ist hier relevant, da dieselbe Kamera für die Translations- 
und Höhenbestimmung genommen werden soll, denn die Translation bei 
hohen Geschwindigkeiten und geringen Abständen erfordert eine Abbildung, 
die wenige Pixel pro abgebildete Wegstrecke beinhaltet, also eine kleine 
Brennweite, während die Höhenbestimmung bei großen Abständen einige 
Pixel Disparität für ausreichende Genauigkeit erfordert, also eine große 
Brennweite oder große Basisbreite der Stereokamera. Bei einer großen 
Basisbreite der Stereokamera ist das Gewicht zu groß für ein kleines 
Fluggerät und auch zu instabil, was eine ständige Neukalibrierung erfordert. 
Damit nur eine Brennweite bei akzeptabler Basisbreite benutzt werden kann, 
muss die Genauigkeit über Subpixelberechnung erhöht werden. 
Welche Subpixelgenauigkeit erwartet werden kann, wird in den folgenden 
Abschnitten ermittelt. 

4.5.1 Subpixelgenauigkeit beim differentiellen Verfahren nach 
Lucas&Kanade 

Zur Untersuchung der Subpixelgenauigkeit wird zunächst ein Ausschnitt T1 
aus einem Bild I1 in einem Bild I2 mit Hilfe der NCC gesucht, s. Bild 84 bis  
Bild 87. Das Teilbild T2 aus dem Bild I2 hat die größte Übereinstimmung mit 
dem Teilbild T1 aus dem nachfolgenden Bild I2. 
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Bild 84: Bild I1 mit gesuchtem 
Teilbild T1 

 Bild 85: Nachfolgendes Bild I2 mit 
gefundenem Teilbild T2 

 

 

 
Bild 86: Teilbild T1 eines Bildes I1  Bild 87: Teilbild T2 des 

nachfolgenden Bildes I2 mit der 
größten NCC 

 
Dass die Übereinstimmung nicht perfekt ist, zeigt die Differenzbildung der 
Teilbilder T1 und T2 (Ableitung It), s. Bild 88. Die Darstellung ist dreifach 
überhöht, wobei schwarz dem Wert 255/3 entspricht und weiß der Null. Die 
größte Differenz zweier Pixelwerte der ungefilterten Bilder ist hier 72. 
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Bild 88: Absolute Differenz der Teilbilder T1 und T2 , (dreifach überhöht),  
Weiß zeigt die kleinsten Differenzen 

Dann werden mit dem differentiellen Verfahren die Flusswerte gebildet. 
Obwohl sich die Kamera nur geringfügig zur stillstehenden Szene bewegt hat 
und sich daher annähernd gleiche Flusswerte für benachbarte Pixel ergeben 
müssten, sind die Flusswerte der zweiten Aufnahme in Bezug zur ersten 
Aufnahme bei kleinem Ableitungsfenster, hier 5 x 5 Pixel groß, wertemäßig 
breit gestreut, s. Bild 89. 
 

 

 

 
Bild 89: Histogramm für 
Flusswerte, 5 x 5 
Ableitungsfenster 

 Bild 90: Histogramm für 
Flusswerte, 5 x 5 
Ableitungsfenster, mit 
Tiefpassfilterung 

 Die Diagramme, Bild 89 und Bild 90, zeigen die Häufigkeit der Flusswerte v in 
zehntel Pixelschritten und sind ein Maß für die Unsicherheit der 
Berechnungsergebnisse. 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


91 

Im Diagramm von Bild 89 sind die Häufigkeiten breit verteilt zwischen v = 0.4 
und v = 0.2. 
Die spatiale Verteilung des Flussfeldes ist nicht glatt, d. h., kleine und große 
Flusswerte sind über das Bild verteilt, s. Bild 91. 
Eine vorhergehende Tiefpassfilterung der Bilder führt zu einer weiteren 
Verbesserung, denn mehr Flusswerte liegen in der Nähe des Mittelwertes, s. 
Bild 90. Folgerichtig weisen auch die Ableitungen Ix, Iy, It geringere 
Schwankungen auf. 

 
Bild 91: Spatiale Verteilung der Flusswerte v, Ableitungsfenster 5 x 5,  
Bilder und Ableitungen sind nicht tiefpassgefiltert 

 
Nimmt man größere Ableitungsfenster, also geht von der Konstanz der 
Ableitungen in einem größeren Gebiet aus, was hier der Fall sein sollte, da 
sich die gesamte Szene gleichförmig in Bezug auf die Kamera bewegt, wird 
die Streuung der Flusswerte wesentlich geringer, s. Bild 92. Werden das Bild 
oder die Ableitungen gefiltert, so ist die Streuung noch etwas geringer, s. Bild 
93. 
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Bild 92: Histogramm für 
Flusswerte, 17 x 17 
Ableitungsfenster,  
Bilder ungefiltert. 

 Bild 93: Histogramm für 
Flusswerte, 17 x 17 
Ableitungsfenster,  
Bilder gaußgefiltert 

 
In Bild 94 ist die Glattheit der Flusswerte zu erkennen. Der absolut kleinste 
Flusswert -0.28 Pixel ist in Bild 94 an der Stelle x, y  = 1, 16 und damit links 
unten vom Zentrum von Bild 86 positioniert. 95 % der Flusswerte liegen im 
Fenster von -0.30 bis -0.40. Alle Werte liegen im Bereich -0.28 bis -0.40. 
Die erhöhten Werte beim Maximum (x, y = 0, 20, links oben in Bild 94) deuten 
auf eine Rotation hin, die tatsächlich stattfand, da bei einer Rotation der 
optische Fluss mit der Entfernung zum Rotationszentrum steigt. 

 
Bild 94: Spatiale Verteilung der Flusswerte v, Ableitungsfenster 17 x 17,  
Bilder sind tiefpassgefiltert 
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Kleine Ableitungsfenster erlauben eine größere Auflösung der Flusswerte für 
einzelne Pixel, sind aber dann ungenauer. 
Die erreichbare Genauigkeit bei realen Bildern ist etwa 0.06 Pixel, s. Kapitel 
4.5.3. Dies wird auch bestätigt durch eine Arbeit von J. Klappstein [86], der 
etwa 0.1 Pixel angibt. Ein anderer Artikel [54] erwähnt, ohne weitere 
Untersuchungen, Genauigkeiten bis zu 1/256 Pixel, allerdings abhängig von 
Bildqualität, Bildinhalt und dem Berechnungsaufwand. 
 

4.5.2 Subpixelgenauigkeit bei der NCC 

Die zweidimensionale Kreuzkorrelation ergibt zunächst nur ganzzahlige 
Pixelpositionen für die beste Übereinstimmung zweier Bildgebiete an. Im 
Folgenden werden Ansätze zur Erlangung einer Subpixelgenauigkeit 
beschrieben und bewertet. Hierzu wird der Korrelationsverlauf in der 
Umgebung der besten Übereinstimmung analysiert in Bezug auf: 

• Größe des Korrelationsfensters 

• Bildinhalt 

• Helligkeitsmittelwert 

Mit diesen Erkenntnissen werden verschiedene Approximationsfunktionen auf 
ihre Übereinstimmung zum Korrelationsverlauf untersucht. Aus diesen 
Approximationsfunktionen werden die Subpixelwerte ermittelt. 
 
Um die Subpixelgenauigkeit zu verifizieren, werden aus einem sehr großen 
Bild, s. Bild 95, 500 jeweils um ein Pixel nach rechts verschobene 4096 x 4096 
Pixel große Teilbilder entnommen und auf ein Zweiunddreißigstel verkleinert. 
Diese verkleinerten Teilbilder – in den Abmaßen 128 x 128 Pixel – sind 
dadurch jeweils exakt um ein 32tel Pixel zum benachbarten Teilbild 
verschoben. Mit weiteren Abbildungen, s. Bild 96 und Bild 97 , wurde auch so 
verfahren, um den Einfluss von Bildinhalten auf die Berechnungen 
auszuschließen. Bei der Bildverkleinerung wird angenommen, dass der 
Einfluss auf das Korrelationsverhalten gering ist.  
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Bild 95: Bild, um genaue Verschiebungen zu ermitteln. 15515 x 5917 Pixel 
Quelle: http://jleporcq.free.fr/BaladesUnes/FumayPlatale/Images/Grandes/FumayPlatale016.jpg 

 

 

Bild 96: 2. Bild, um genaue Verschiebungen zu ermitteln. 10000 x 7071 Pixel 
Quelle: http://www.stadt-zuerich.ch/hbd/de/index/hochbau/ausgeschriebene_ww/luggwegstrasse.html 

 

 
Bild 97: 3. Bild, um genaue Verschiebungen zu ermitteln. 12577 x 8385 Pixel 
Quelle: http://farm9.staticflickr.com/8296/7888915552_30c3b2eedf_o_d.jpg 
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Ein einfacher Ansatz ist die Interpolation der Korrelationswerte, die nur an 
ganzzahligen Pixelpositionen bekannt sind, mit einer Parabelfunktion 
durchzuführen, um damit die Lage des tatsächlichen Maximums besser zu 
bestimmen [87][88][89][90]. Hierbei wird davon ausgegangen, dass die 
Korrelationswerte um ihr Maximum normalverteilt und symmetrisch sind.  
Bild 98 und Bild 99 geben dem groben Anschein nach für die Kreuzkorrelation 
eines Bildes mit einem Ausschnitt aus demselben Bild eine Gaußkurve wieder, 
wobei hier nur die Verschiebung in einer Richtung betrachtet wird. Die Breite 
der glockenähnlichen Kurve ist abhängig von der Größe des 
Korrelationsfensters, s. Bild 98, und vom Bildinhalt, s. Bild 99. 
 

 
Bild 98: Verlauf der Kreuzkorrelation bei verschiedenen Größen des Teilbildes 
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Bild 99: Verlauf der Kreuzkorrelation bei verschiedenen Bildinhalten und 
konstanter Teilbildgröße 

In Bild 100 ist die dreidimensionale Darstellung der Quasi-Autokorrelation in x- 
und y-Richtung eines Bildausschnittes mit dem Bild, aus dem dieser 
Ausschnitt entnommen wurde, gezeigt. Deshalb ist hier die Korrelation bei 
Übereinstimmung sehr dominant und erreicht den größtmöglichen 
Maximalwert 1.0. Diese Quasi-Autokorrelation ist keine exakte Autokorrelation, 
weil ein Ausschnitt eines Bildes mit einem Gesamtbild korreliert wird und damit 
beide Funktionen nicht identisch sind. 
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Bild 100: Grafische Darstellung der Korrelationswerte bei einer Korrelation 
eines Bildausschnittes aus demselben Bild und dem Bild selbst 

4.5.2.1 Verbesserung durch Abzug des Mittelwertes 

Bei der ZNCC wird für die Berechnung der Korrelation bei jeder 
Pixelumgebung der Mittelwert neu berechnet. Dies hat den Vorteil, dass die 
schlecht korrelierten Gebiete deutlich niedrigere Korrelationswerte liefern als 
es bei der NCC wäre. Das heißt, das Korrelationsmaximum ist bei der ZNCC 
wesentlich dominanter als bei der NCC. Wenn nur das Maximum gesucht wird, 
ist dies nicht relevant. Wird Subpixelgenauigkeit gefordert, ist ein dominantes 
Maximum der Korrelation nützlich. Um nicht aufwendig immer wieder den 
Mittelwert zu bilden, wird nur der Mittelwert des Teilbildes genommen und 
sowohl vom Teilbild als auch von dem zu durchsuchenden Gesamtbild 
abgezogen. Damit wird unter der Annahme, dass das Teilbild und das zu 
durchsuchende Bild annähernd den gleichen Mittelwert haben, erreicht, dass 
der Mittelwert für beide Bilder in der Umgebung des Maximums nahe bei null 
liegt. 
Es wird hier nur der eindimensionale Fall, eine Bildzeile G, der sich leicht auf 
den zweidimensionalen Fall übertragen lässt, erläutert. Beim Hinzuaddieren 
eines Mittelwertes m zur Bildzeile G und eines Ausschnittes T nimmt das 
Korrelationsintegral folgende Form an: 

 [ ][ ]
/2

/2

( ) ( ) ( )
F

F

C T t m G t m dtτ τ
−

= + + +∫  (4.1) 
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C ist der Korrelationswert an der Stelle T, G ist das zu durchsuchende 
Gesamtbild, T ist das Teilbild aus G, t die Ortsvariable, m der Mittelwert. 
Da das Teilbild T eine limitierte Breite von F hat, sind damit die 

Integrationsgrenzen mit dem um τ versetzten Fenster mit 
2
F

± festgesetzt. 

Das obige Integral (4.1) nimmt ausmultipliziert folgende Form an: 

 
/2 /2 /2 /2

2

/2 /2 /2 /2

1 2 3 4

( ) ( ) ( ) ( ) ( )
F F F F

F F F F

Term Term Term Term

C T t G t dt mT t dt mG t dt m dtτ τ
− − − −

= + + + +∫ ∫ ∫ ∫
����	���
 ��	�
 ��	�
 ��	�


 (4.2) 

Im mittelwertfreien Fall, mit m = 0, liegt das klassische 
Kreuzkorrelationsintegral vor, s. Term1 der Gleichung (4.2). 
 
Mit der groben Annahme, dass eine Aufnahme mit strukturiertem Inhalt 
farbigem Rauschen entspricht, dies wird in Kapitel 4.5.2.7 erhärtet, kann das 
Korrelationsintegral C für einen Mittelwertabzug m betrachtet werden. 
Das unbegrenzte Integral über Rauschen ist null. Angenähert gilt dies auch für 
ein begrenztes Integral. Da auch die Multiplikation von nicht korrelierten 
Rauschsignalen wieder ein Rauschsignal ergibt, ist der Term 1 immer 
angenähert null, außer bei T  =  0, da dann das Teilbild T und der Ausschnitt 
aus dem Gesamtbild G übereinstimmen. Die Terme 2 und 3 sind immer 
annähernd null. Der Term 4 liefert unabhängig von T einen Wert, der 
quadratisch mit dem Mittelwert m wächst, während der Term1 im 
Korrelationsmaximum unverändert bleibt. Das heißt, die Dominanz des 
maximalen Korrelationswertes nimmt mit zunehmendem Mittelwert m ab. 
Bild 101a-c verdeutlichen die Verhältnisse der Gleichungen (4.1) und (4.2) bei 
zusätzlicher Normierung. Bild 101a ist ein Rauschsignal mit Amplituden 
zwischen 0 und 255, wie es bei üblichen Digitalkameras der Fall ist. Der 
Mittelwert m ist 127.5, was bei ausgeglichener Ausleuchtung einer Szene 
gegeben ist. Dieses Rauschsignal, das eine Bildzeile darstellen soll, wird mit 
einem 256 px breiten Ausschnitt, Bild 101b, aus der Mitte des Rauschsignals 
korreliert und liefert eine Korrelationsfunktion, die in Bild 101c dargestellt ist. 
Der Zahlenwert von Term4 aus Gleichung (4.2) errechnet sich bei einer 
Fensterbreite F von 256 px und dem Mittelwert von 127.5 zu: 

 2 2 64 127.5 256 4.16 10Term m F= ⋅ = ⋅ = ⋅  (4.3) 
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Während das eigentliche Korrelationsintegral, Term1, bei einem Rauschen mit 
einer Standardabweichung von z. B. 36σ =  sich errechnet zu [91] 

 2 2 61 36 256 0.32 10Term Fσ= ⋅ = ⋅ = ⋅  (4.4) 

hat C abseits des Korrelationsmaximums den Wert des Terms 4 und im 
Korrelationsmaximum den Wert von Term1 plus Term4. Damit ergibt sich das 
Verhältnis vom maximalen Korrelationswert zu abseitigen Korrelationswerten 
zu: 

 1 4 1.08
4

Term Term
Term

+
=  (4.5) 

Das heißt, dass der maximale Korrelationswert bei diesem Rauschsignal mit 
einer Standardabweichung von 36 nur etwa 8 % höher ist als die umgebenden 
Korrelationswerte. 
 
Bei den gleichen Signalen, aber mittelwertfrei, s. Bild 102a-c, ragt das 
Korrelationsmaximum dominant aus den umgebenden Korrelationswerten 
heraus. Bei unbegrenzten Rauschsignalen wäre die Korrelation exakt null 
außerhalb des Korrelationsmaximums. Bei ortsbegrenzten Rauschsignalen 
schwankt der Term1 geringfügig um die Nulllinie. 
Mit Rauschsignalen ist die Korrelationsgleichung (4.1) für mittelwertbehaftete 
Signale erläutert worden. Bei Bildern, hier aus einer Bildzeile (Bild 95) 
entnommen, sind die Signale nicht deterministisch, allerdings wird mit Bild 
103a-c und Bild 104a-c gezeigt, dass die Verhältnisse den Rauschsignalen 
ähnlich sind. Auch hier ragt das Korrelationsmaximum beim 
mittelwertbehafteten Signal kaum aus der Umgebung heraus, s. Bild 103c, 
während das mittelwertfreie Bild ein sehr dominantes Korrelationsmaximum 
liefert, Bild 104c. 
Erwartungsgemäß haben die Bereiche in Bild 104c rechts und links vom 
Maximum eine größere Amplitude als bei Rauschsignalen, da Bildinhalte sich 
ähneln können und damit nicht mehr vollkommen zufällig sind. 
Da die Signale (Bildausschnitte) ortsbegrenzt sind und auch kein reines 
Rauschen darstellen, wird die Umgebung des Maximums bei größerem 
Mittelwert immer flacher, s. Bild 105. 
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Rauschen mit Gleichanteil Rauschen ohne Gleichanteil 

 
Bild 101a: Mittelwertbehaftetes 
Rauschen 

 
Bild 102a: Mittelwertfreies Rauschen 

 

 
Bild 101b: Teil aus Bild 101a 
symmetrisch um 1000 px 

 
Bild 102b: Teil aus Bild 102a 
symmetrisch um 1000 px 

 
Bild 101c: Korrelationsergebnis der 
mittelwertbehafteten Rauschsignale 

 
Bild 102c: Korrelationsergebnis der 
mittelwertfreien Rauschsignale 
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Bildzeile 
Intensität von 0 bis 255 

Bildzeile 
mittelwertfrei 

 
Bild 103a: Mittelwertbehaftete Bildzeile 

 
Bild 104a: Mittelwertfreie Bildzeile 
 

 
Bild 103b: Teil aus Bild 103a 
symmetrisch um 1500 px  

 
Bild 104b: Teil aus Bild 104a 
symmetrisch um 1500 px 

 
Bild 103c: Korrelationsergebnis der 
mittelwertbehafteten Bildzeilen  

 
Bild 104c: Korrelationsergebnis der 
mittelwertfreien Bildzeilen  
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Bild 105: Gestrichelte Linie: Ausschnitt aus Bild 103c, (mit Mittelwert) um das 
Korrelationsmaximum, durchgezogene Linie: Ausschnitt aus Bild 104c  
(ohne Mittelwert) um das Korrelationsmaximum 

Wie stark der Kurvenverlauf vom Mittelwert abhängt, wird in folgendem Bild 
(Bild 106) deutlich. Hier ist eine Bildzeile aus dem hellen Wolkenbereich der 
Bild 95 berechnet. Der Mittelwert der Intensität ist mit 218 sehr hoch. Während 
die direkt benachbarten Korrelationswerte links und rechts vom Maximum (bei 
1499 px und 1501 px), Bild 106, bei der mittelwertfreien Korrelation immerhin 
um 0.02 niedriger sind, sind bei der mittelwertbehafteten Korrelation die 
benachbarten Werte nur um 4·10-6 niedriger. 

 
Bild 106: Korrelationsverlauf bei kontrastarmer Bildzeile, gestrichelt: Bildzeile 
mit Mittelwert, durchgezogen: Bildzeile ohne Mittelwert 

Bei der oberen Linie, fast eine Gerade, führen schon sehr kleine 
Abweichungen in der Umgebung des Korrelationsmaximums zu falschen 
Interpolationen, die insbesondere dann entstehen, wenn die Bilder zwar 
dieselbe Szene abbilden, aber aus unterschiedlichen Blickwinkeln 
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aufgenommen werden und damit leicht unterschiedliche Bildinhalte haben 
oder wenn mit einfacher Genauigkeit (6 signifikante Stellen) gerechnet wird.  
Der Mittelwert hat also unerwünschten Einfluss auf die Interpolationen zur 
Subpixelberechnung, die in den nächsten Kapiteln erläutert werden. 

4.5.2.2 Interpolation über Parabel 

Wie schon erwähnt, ist die Subpixelgenauigkeit für die Positionsermittlung der 
Kamera erforderlich, weil die Kameradaten bei gleichen Objektiven für die 
Translations- und Höhenbestimmung ein Kompromiss zwischen erfassbarer 
Translation und Genauigkeit der Höhenbestimmung sind.  
Im Folgenden werden Methoden zur Subpixelbestimmung erläutert. 
 
Da der Verlauf der Korrelationskurve vom Bildinhalt abhängt, kann keine 
genaue Funktion dafür angegeben werden. Eine markante Eigenschaft des 
Korrelationsverlaufs ist die weitgehende Symmetrie in der Nähe des 
Maximum, die je nach Bildinhalt variiert. Deshalb sind symmetrische 
Funktionen zur Approximation besonders geeignet.  
Die Parabel ist eine symmetrische Funktion. Mit einer gewissen Genauigkeit 
(diese wird in Kap. 4.5.3 quantifiziert) gilt also die Interpolation über eine 
Parabelkurve der Form: 

 2y a x b x c= ⋅ + ⋅ +  (4.6) 

 
Die Position umax, die den angenäherten größten NCC-Wert und damit die 
Verschiebung in Subpixelgenauigkeit angibt, errechnet sich aus den NCC-
Werten y1, y2, y3 – in Bild 107 gezeigt – mit der Scheitelwertsgleichung der 
Parabel zu: 
 

 

1 3
max max

1 2 3

1 max max

2 max max

3 max max

2 4 2
mit:

( 1, )
( , )

( 1, )

NCC

NCC NCC

max NCC NCC

NCC NCC

y yu u
y y y

y NCC u v
y NCC NCC u v
y NCC u v

−
= +

− +

= −

= =

= +

 (4.7) 

Für die v-Richtung gilt Entsprechendes. 
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Bild 107: Typischer Verlauf einer Korrelation mit den für die Parabelfunktion 
relevanten NCC-Werten y1, y2, und y3 

Beispiel: 
Zwei um genau 0.3750 Pixel versetzte Bildausschnitte werden miteinander 
korreliert. Das Ergebnis ist ein ausgeprägtes Maximum bei u, v = 17, 17, s. 
Bild 108. 

 
Bild 108: Korrelation eines Bildes mit einem um 0.3750 Pixel versetzten 
Bildausschnitt aus demselben Bild. 
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Die Werte der NCC um dieses Maximum (0.9986) bei u,v  = 17,17 sind in 
Tabelle 7 gezeigt. 

Tabelle 7: Werte der NCC in der Umgebung des Maximums 

0,9260 0,9340 0,9412 0,9432 0,9420 v 
↓ 0,9523 0,9657 0,9782 0,9790 0,9703 

 0,9693 0,9849 0,9986 0,9961 0,9803 

 0,9635 0,9730 0,9799 0,9749 0,9604 

 0,9421 0,9430 0,9427 0,9383 0,9298 

     u→ 

 
Mit dem maximalen NCC-Wert (in Tabelle 7 Mitte) und seinen zwei Nachbarn 
kann die Ausgleichsparabel berechnet werden. In Bild 109 ist die 
Ausgleichsparabel eingezeichnet. 

 

 
Bild 109: NCC-Werte in Bezug auf die Verschiebung u mit Ausgleichsparabel. 
Ausschnitt aus Bild 108 

Aus den drei NCC-Werten bei u = 16, 17,18 wurde die Ausgleichsparabel 
berechnet, s. Bild 109 . Dadurch ergibt sich ein Parabelmaximum bei 
u = 17.3424. Das wirkliche Maximum, der genaue Ort der Verschiebung, liegt 
allerdings bei u = 17.3750. Die Annäherung über eine Parabel ist recht nah an 
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der Wirklichkeit und trotzdem weiter verbesserungsfähig. Deshalb sind noch 
weitere Ansätze untersucht worden. 

4.5.2.3 Interpolation über Gaußkurve 

Etwas bessere Ergebnisse – weiter unten ausgewertet – erhält man durch die 
Interpolation über die Gaußkurve [92]. Die Berechnung ist allerdings 
aufwendiger, da Logarithmen bestimmt werden müssen. 

 
2

0( )b x xy ae− −=  (4.8) 

x0 gibt die Position umax des Maximums an und errechnet sich zu: 

 1 3
max max

1 2 3

ln ln
2ln 4ln 2lnNCC

y yu u
y y y

−
= +

− +
 (4.9) 

Die Gaußinterpolation führt im Vergleich zur Parabelinterpolation zu einer 
leicht verbesserten Positionsbestimmung, wie später noch gezeigt wird. 

4.5.2.4 Interpolation über Geraden 

Eine sehr einfache Interpolation, die ebenfalls von der Symmetrie der 
Korrelationskurve ausgeht, ist die Spiegelung einer Geraden in der Umgebung 
des Korrelationsmaximums. Diese Methode ist in [93] angedeutet.  
Eine Gerade wird durch den Punkt mit dem maximalen ZNCC-Wert (y2) und 
dem kleinsten Punkt der drei ZNCC-Werte gelegt, s. Bild 110. Im mittleren 
ZNCC-Wert (hier y3) wird die Gerade mit der negativen Steigung gespiegelt. 
Der Subpixelwert u liegt im Schnittpunkt, der sich so berechnen lässt: 

 y3 y1u  für y1 y3
2y2 2y3

−
= ≥

−
 (4.10) 

und 

 y1 y3u  für y1 y3
2y1 2y2

−
= <

−
 (4.11) 

Für den Korrelationsverlauf in Bild 110 ergibt sich für die Lineare 
Approximation ein Subpixelwert von 0.3673, während die Parabelfunktion mit 
0.2903 deutlich näher am erwarteten Wert von 0.3125 liegt. 
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Die Interpolation über Geraden wird nicht weiter verfolgt, da sie in der Regel 
größere Abweichungen der Subpixelwerte im Vergleich zu den anderen 
vorgestellten Methoden liefert. 
 

 
 

 
Bild 110: Approximation mit gespiegelten Geraden 

 

4.5.2.5 Vorzeichenabhängige Interpolation 

Die Motivation für die Einführung der vorzeichenabhängigen Interpolation 
sehen S. Masao und O. Masatoshi [94] hauptsächlich im s. g. Pixel-Locking. 
Hier handelt es sich um auffällige Häufungen von Subpixelwerten bei der 
Parabelapproximation in der Nähe ganzzahliger Pixelwerte. Bei einer sehr 
großen Anzahl von zufälligen Bildverschiebungen wäre zu erwarten, dass alle 
Subpixelwerte gleichverteilt sind. In einem späteren Abschnitt wird tiefer auf 
das Pixel-Locking eingegangen.  
Die Betrachtung des Pixel-Lockings führt S. Masao und O. Masatoshi [94] zu 
einem weiteren Ansatz, die Subpixelbestimmung zu verbessern. Ausgehend 
von einer Fehlerkurve bei der Parabelapproximation, wie sie in Bild 111 
nachvollzogen wurde, ist zu erkennen, dass der größte Fehler etwa in der 
Nähe von -0.25 oder +0.25 Pixel liegt. Der Verlauf der Kurve ist prinzipiell mit 
der Kurvenform, der Lage des Maximums und des Minimums etwa gleich, 
allerdings sind die Abweichungen vom Bildinhalt abhängig. 
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Bild 111: Fehlerverlauf bei Subpixelverschiebungen. Durchgezogene Linie: 
Ausschnitt aus Bild 96. Gestrichelte Linie: Ausschnitt aus Bild 95. 

 
In [94] wird mit Hilfe der Mittelwertbildungen zweier um ein Pixel nach rechts 
und links verschobenen Bilder mit sich selbst  

 1
( ) ( 1)( )  für 0.5 0

2m
I u I uI u u+ +

= − ≤ Δ <  (4.12) 

 2
( ) ( 1)( )  für 0 0.5

2m
I u I uI u u+ −

= ≤ Δ ≤  (4.13)  

erneut die NCC berechnet. Natürlich braucht die NCC nur für zwei 
Bildversätze neu errechnet zu werden, denn die Ganzpixelposition ist schon 
vorher errechnet worden. Für die vertikale Richtung v gilt dasselbe. In den 
Gleichungen (4.12) und (4.13) muss dann u mit v substituiert werden.  
Die Subpixelpositionen werden wieder nach der Parabelscheitelpunktfunktion 
(4.7) (oder für die Gaußapproximation nach (4.9) ) errechnet. Da die 
Mittelwertbildung genau einer Verschiebung um 0.5 Pixel entspricht, muss bei 
einer Berechnung für ursprünglich negative Subpixel 0.5 abgezogen werden 
und bei positiven Subpixel 0.5 hinzugefügt werden. 
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4.5.2.6 Interpolation durch Bildvergrößerungen 

Ähnlich wie durch die Mittelung benachbarter Bildausschnitte kommt man 
durch Vergrößerung eines Bildes auf feinere Auflösungen [95]. Die Bilder 
werden hierzu durch bikubische Interpolation auf das 16-Fache vergrößert und 
dann die gewonnenen NCC-Werte über eine Parabelfunktion interpoliert. Nach 
den Autoren ist der Subpixelgenauigkeitsgewinn um ca. 40 % höher 
gegenüber der Verarbeitung der Originalbilder. Da der Rechenaufwand sehr 
groß ist, wird dieser Ansatz nicht weiter verfolgt. 

4.5.2.7 Neue Methode über 'inverse Parabel' 

Bilder können nicht nur im spatialen Raum, sondern auch im Frequenzraum 
betrachtet werden. In Analogie zur Zeitfunktion (z. B. in der 
Nachrichtentechnik) gilt im spatialen Raum die Ortsfunktion. Das heißt, die 
Zeit in Sekunden in der Nachrichtentechnik korrespondiert zur Strecke in Pixel 
in der Bildverarbeitung. Damit können die bekannten Theoreme der 
Nachrichtentechnik angewendet werden. Im Weiteren werden wegen der 
Anschaulichkeit nur eindimensionale „Bilder“, also Bildzeilen, betrachtet. 
 
In grober Näherung kann ein Bild als weißes Rauschen angesehen werden. 
Die Autokorrelation ist dann immer null, außer wenn beide Bilder übereinander 
liegen.  

 
Bild 112: Autokorrelation vom weißen Rauschen 

 
Als Nächstes ist bekannt, dass die spatiale Frequenz eines Bildes begrenzt ist, 
da die kleinste örtliche Periode durch 2 Pixel, z. B. schwarz und weiß, 
gegeben ist. Im einfachsten Fall kann die Bandbegrenzung durch eine 
Multiplikation des Spektrums der Autokorrelationsfunktion mit einem Rechteck 

dargestellt werden. Die Rücktransformation ist dann eine sin u
u

-Funktion, s. 

Bild 113. 
 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


110 

 
Bild 113: Autokorrelationsfunktion von rechteckbandbegrenztem weißen 
Rauschen 

Wie sich später herausstellt, ist die Approximation durch die sin u
u

-Funktion 

schon etwas besser als durch eine Parabel. 
Die Autokorrelation ist eine Faltung mit derselben, aber zeitinversen, Funktion. 
Das dazugehörige Spektrum wird Energiedichtespektrum genannt, da es sich 
entsprechend Gleichung (4.14) mit dem Betragsquadrat des Spektrums eines 
Signals – hier eines Bildes – errechnet [91]. 

 { }
2

( )* ( ) ( )I u I u I u− → F  (4.14) 

Betrachtet man das Energiedichtespektrum realer Landschaftsbilder und 
Luftaufnahmen, so zeigt sich, dass alle einen ähnlichen Verlauf haben, 
unabhängig davon, ob die Aufnahmen von strukturierten Gebieten (Städte, s. 
Bild 96) oder natürlichen Landschaften sind. Ein typischer Verlauf des 
Energiedichtespektrums, der genauer untersucht wird, ist in Bild 114 als 
durchgezogene Linie dargestellt. 
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Bild 114: Energiedichtespektrum eines Bildes (s. Bild 95) mit passender 
Exponential- und Gaußapproximation 

Zur Erstellung des Energiedichtespektrums wurden Zeilen aus einem Bild vom 
Mittelwert (Gleichanteil) befreit, zum Erzeugen einer stetigen Periodizität 
global mit einer Gaußfensterfunktion multipliziert und dann fouriertransformiert. 
Die Beträge dieser Fouriertransformierten sind nun quadriert und addiert 
worden. 
Zunächst sieht es so aus, dass eine Bildkorrelation in groben Zügen einer 
Gaußkurve entspricht, gepunktete Linie in Bild 114. Aus der logarithmischen 
Darstellung des Energiedichtespektrums, Bild 115, kann allerdings ersehen 
werden, dass eine Exponentialfunktion eine bessere Approximation als eine 
Gaußfunktion ist. Die Gaußfunktion weicht schon bei niedrigen Frequenzen 
sehr schnell vom Energiedichtespektrum ab. 
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Bild 115: Energiedichtespektrum eines Bildes (s. Bild 95) mit passender 
Exponential- und Gaußapproximation, wie Bild 114, allerdings mit 
logarithmischer Koordinate 

Da das Energiedichtespektrum aus einem reellen Signal, nämlich einem Bild, 
gewonnen wurde, ist es eine gerade Funktion. Die Rücktransformation des 
Doppelexponentialspektrums [91] ergibt.: 

 2 1 
(1 )

fe
x π

− →
+

 (4.15) 

 
 
 
 

→

 
Frequenzraum 

fe−
 

 

→
Spatialer Raum 

2
1

(1 )x π+
 

Bild 116: Exponentialfunktion und Rücktransformation 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


113 

Allgemeiner ausgedrückt, nimmt die Ortsfunktion aus (4.15) diese Form an: 

 2

1
ax bx c+ +

 (4.16) 

Diese Funktion wird in dieser Dissertation als 'inverse Parabel' bezeichnet. 
 
Mit drei Punktepaaren  

 1 1 2 2 3 3

1 2 3 2

( , ),   ( , ),   ( , ) 
mit 1 und +1  
x y x y x y

x x x x= − =
 (4.17) 

lässt sich die Position xs des Scheitelpunktes bezüglich x2 errechnen zu: 

 1 2 2 3
4 2 21 3 2 3 1 2

y y y y
xs y y y y y y

−
=

− −
 (4.18) 

 

4.5.2.8 Pixel-Locking 

Pixel-Locking bezeichnet den Effekt, dass bei vielen zufälligen Bildversätzen, 
deren Subpixelverschiebungen über Approximationsfunktionen berechnet 
werden, in der Nähe von ganzzahligen Werten dominante Häufungen der 
berechneten Subpixelwerte vorhanden sind. In Bild 117 sind die Häufungen 
um die ganzzahligen Werte 0, 1, 2, 3 besonders auffällig.  
Pixel-Locking ist eingehend durch S. Masao und O. Masatoshi besprochen [94] 
und oft zitiert worden. 

 
Bild 117: Pixel-Locking. Kumulation der Verschiebungswerte bei ganzen 
Zahlen nach einer Grafik aus [94]. Die Subpixelwerte wurden über eine 
Parabelapproximation errechnet. 
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Werden viele zufällige Bildverschiebungen subpixelgenau berechnet, wird eine 
Gleichverteilung der Berechnungswerte erwartet. Wenn die Gleichverteilung 
nicht gegeben ist, liegt ein systematischer Fehler in der 
Subpixelberechnungsmethode vor. 
Die in Bild 117 sehr dominante Häufung um die ganzzahligen Verschiebungen 
konnte in eigenen Berechnungen in dieser Stärke nicht bestätigt werden. In 
[96] wird erwähnt, dass der Effekt des Pixel-Lockings besonders stark bei 
Bildern mit Objekten, die wenige Pixel an Fläche einnehmen, ausgeprägt ist. 
 
Eigene Berechnungen über verschiedene Bilder und insgesamt 46332 
Bildpaare führten bei Verschiebungen bei einigen Verfahren der 
Subpixelbestimmung auch zu einer Dominanz der Häufigkeiten beim 
ganzzahligen Wert, der in Bild 118a - e bei 0.016 (hell schraffierter Balken) 
liegt. 
Die Häufigkeitsgrafen sind am besten von links nach rechts zu lesen. Z. B. 
stellt der schraffierte Balken die Häufigkeit der errechneten Werte, die 
zwischen -0.016 und +0.016, also um den ganzzahligen Wert null liegen, dar. 
Bei der Parabelapproximation, Bild 118a, ist das Verhältnis der Häufigkeiten 
um ± 0.25 px zu den Häufigkeiten um 0 px wie 1300 zu 1900 oder 1:1.5. , 
während nach Bild 117 das Verhältnis etwa 5 ist und damit in dieser Stärke 
nicht bestätigt ist. 
Die Gaußkurvenapproximation, Bild 118b, verhält sich bezüglich der 
Häufigkeitsverteilung ähnlich wie die Parabelapproximation. 
Die anderen Berechnungen sind weitgehend gleichverteilt, wobei die 
vorzeichenabhängige Approximation, Bild 118e, am ausgeglichensten ist. Die 
vorzeichenabhängige Approximation wurde hier im Endschritt mit der 'inversen 
Parabel' durchgeführt. 
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a 

 

b 

 

c 

 

d 

 

e 

 

Bild 118a - e: Häufigkeitsverteilung der errechneten Verschiebungen bei 
verschiedenen Approximationen. Die tatsächlichen Verschiebungen sind 
gleichverteilt. 
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4.5.3 Vergleich der Subpixelfunktionen 

In den vorhergehenden Unterkapiteln sind Funktionen vorgestellt worden, die 
den Korrelationsverlauf annähernd nachbilden. Die erhöhte Häufung der 
Subpixelwerte um ganzzahlige Verschiebungen führte nach [94] zur 
vorzeichenabhängigen Interpolation.  
Die Approximationsfunktionen 

• Parabel 

• Gaußfunktion 

• sinc-Funktion 

• 'inverse Parabel' 

• vorzeichenabhängige Interpolation 

• und zusätzlich das Gradientenverfahren nach Lucas&Kanade 

werden in diesem Kapitel auf Subpixelgenauigkeit untersucht und quantifiziert. 
 
In Bild 119 ist die NCC, durchgezogene Linie, im Bereich von –1.5 bis 1.5 
Pixel mit den verschiedenen Ausgleichskurven abgebildet. Die 
Ausgleichskurven wurden so eingepasst, dass sie genau an den 
Verschiebungen u = -1, 0 und +1 die NCC-Kurve schneiden oder berühren. Zu 
erkennen ist, dass alle Kurven im relevanten Bereich von u = -1 bis +1 
zunächst einander ähnlich sind. 

 
Bild 119: NCC mit verschiedenen Ausgleichsfunktionen, Mittelwert des 
Teilbildes wurde abgezogen 

Bild 120 
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Doch durch eine Betrachtung im Detail, Bild 120, ist der Unterschied der 
Approximationen erkennbar. Die Kurven stellen von rechts nach links die NCC 
und dann die Approximationen mit 'inverser Parabel', mit Gaußkurve, mit sinc-
Funktion und mit regulärer Parabel dar. In dieser Reihenfolge ist auch die 
Genauigkeit zum betrachteten Subpixelwert, hier 0.3073. Die 'inverse Parabel' 
schmiegt sich wesentlich besser an die NCC als die Gaußapproximation und 
ist einfacher zu berechnen. Die sinc-Funktion wird nicht weiter betrachtet, da 
sie aufwendig zu berechnen ist und keine besonders gute Approximation ist. 

 

 
Bild 120: Ausschnitt aus Bild 119 

Wird der Mittelwert vom Teilbild bei der Berechnung der NCC nicht von beiden 
Bildern abgezogen, so ist die 'inverse Parabel' immer noch die bessere 
Approximation, allerdings nicht mehr so deutlich, s. Bild 121 und Bild 122. 
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Bild 121: Wie Bild 119, allerdings nicht mittelwertfrei, nur für Parabel- und 
'inverse Parabelfunktion', andere Funktionskurven liegen zwischen den 
Parabelfunktionen 

 
Bild 122: NCC mit verschiedenen Ausgleichsfunktionen,  
ohne Abzug des Mittelwerts des Teilbildes 

Bei einer Verschiebung von –0.2500 Pixel ergibt sich eine Grafik, wie sie in 
Bild 123 gezeigt ist. Bei der Berechnung der NCC sind nur die NCC-Werte bei 
u = -1, 0 und 1 bekannt. Durch diese drei Punkte gehen die 
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Approximationskurven, deren Maxima die vermuteten Subpixelpositionen 
angeben. 

 
Bild 123: NCC, Approximation mit einfacher und 'inverser Parabel'  
bei einer Verschiebung um –0.25 Pixel 

Aus Bild 124 – ein Ausschnitt aus Bild 123 – kann ersehen werden, dass die 
'inverse Parabel' in diesem Fall einen wesentlich genaueren Wert liefert als die 
reguläre Parabel. 

 
Bild 124: Ausschnitt im Bereich des Maximums aus Bild 123 

Die Auswertung von 46332 Bildpaaren, die zwischen –0.5 bis +0.5 Pixel um 
jeweils 1/32 Pixel verschoben sind, ergibt eine Verbesserung der maximalen 
Abweichung zwischen der Parabelapproximation und der Approximation durch 
die 'inverse Parabel' um fast den Faktor 2, s. Tabelle 8. Während bei der 
Parabelapproximation 99.7 % (entspricht einem 2σ-Wert bei einer 
Standardabweichung) der Subpixelabweichungen in einem Bereich zwischen -
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0.076 und +0.076 liegen, ist bei der 'inversen Parabel' der Fehlerbereich 
eingeengt auf ±0.049 Pixel. 
Die vorzeichenabhängige Approximation unterscheidet sich je nach 
Anwendung der Approximation über Parabel oder 'inverse Parabel' 
hauptsächlich beim maximalen Fehler (0.044 px), der bei der regulären 
Parabel 0.058 px ist. 
Die Standardabweichung wurde hier aufgeführt, weil dies bei ähnlichen 
Statistiken üblich ist, hat in diesem Zusammenhang allerdings wenig 
Bedeutung, da die Fehlerverteilung keiner Glockenkurve mehr ähnelt, s. Bild 
125a, b. 
Bei der vorzeichenabhängigen Approximation, Bild 125e, und der 'inversen 
Parabelapproximation', Bild 125d, konzentrieren sich die Fehler um ±0 px, also 
nahe der Fehlerfreiheit. 
Der Berechnungsaufwand ist bei der Parabel und 'inversen Parabel' gleich 
gering, mit Abstand gefolgt von der Gaußkurvenapproximation und der 
vorzeichenabhängigen Approximation. Die Berechnung nach Lucas & Kanade 
ist die aufwendigste Methode und hier nicht sehr genau. Die Methode wurde in 
dieser Arbeit auf Schnelligkeit optimiert und kann bezüglich 
Subpixelgenauigkeit verfeinert werden. 
Durch ihre Genauigkeit und einfache Berechnung wird die 'inverse 
Parabelapproximation' bevorzugt. 

Tabelle 8: Subpixelabweichungen bei verschiedenen Approximationen und der 
Gradientenmethode 

Approximations-
methode        

Parabel Gauß
Lucas

& 
Kanade

'Inv. 
Parabel'

Vorzeichen-
abhängige 

Approximation 
mit 'inv. 
Parabel' 

Max. absolute 
Abweichung 

0.093 0.070 0.057 0.053 0.044 

99.7 % haben eine 
Abweichung 
zwischen 

±0.076 ±0.066 ±0.052 ±0.049 ±0.040 

Standardabweichung 0.050 0.035 0.021 0.022 0.015 
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a 

 

b 

 

c 

 

d 

 

e 

 
Bild 125a - e: Häufigkeiten der Subpixelberechnungsabweichungen bei 
verschiedenen Approximationen, die schraffierte Säule stellt Abweichungen 
zwischen –0.005 und +0.005 px um den Sollwert 0 px dar.  
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4.6 Zusammenfassung Kapitel 4 
Die Gradientenmethode nach Lucas&Kanade hat im Vergleich zur 
normalisierten Kreuzkorrelation einige Schwächen für die Verwendung einer 
auf einem Fluggerät montierten Kamera, um Positionen zu bestimmen.  
Der maximal berechenbare optische Fluss in einer Pyramidenebene ist 
1.16 px. Dies ergibt bei 5 Pyramidenebenen eine Reichweite des 
feststellbaren Versatzes von 36 px 
Bei relativ kleinen Helligkeitsunterschieden (5 %) ist der optische Fluss nicht 
mehr zu ermitteln. Allerdings ist die NCC bei Rotationen schon ab 2° ungenau, 
während die Gradientenmethode bis 9° gute Ergebnisse liefert. 
Eingehend wurde die für diese Arbeit wichtige Subpixelgenauigkeit für die 
NCC und die Gradientenmethode untersucht. In den Vergleichen wurden für 
die NCC die Approximation über Parabel, Logarithmus, sinc-Funktion, 
vorzeichenabhängige Approximation und eine neue Methode – genannt 
'inverse Parabel' – einbezogen. Das vielzitierte Pixel-Locking – erhöhte 
Häufigkeit nicht exakt berechneter Subpixelverschiebungen ganzzahliger 
Pixelpositionen – konnte nicht in dem dargestellten Ausmaß bestätigt werden. 
Die Ergebnisse zur Subpixelgenauigkeit sind in untenstehender Tabelle 
nochmals aufgeführt. 

Tabelle 9: Subpixelabweichungen bei verschiedenen Approximationen und der 
Gradientenmethode 

Approximations-
methode    

Parabel Gauß
Lucas

& 
Kanade

'Inv. 
Parabel'

Vorzeichenabhängige 
Approximation mit 

'inv. Parabel' 

Max. absolute 
Abweichung 

0.093 0.070 0.057 0.053 0.044 
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5 Versuchsergebnisse 
Zu grundsätzlichen Untersuchungen sind künstliche Umgebungen oder die 
Suche im selben Bild sehr nützlich, da das erwartete Ergebnis exakt bekannt 
ist. Bei diesen Versuchen gehen Artefakte wie Änderung der Beleuchtung, 
Verzerrungen durch die Optik und andere Beleuchtungsverhältnisse nicht ein. 
Auf Untersuchungen mit künstlichen Bildern, deren Verhältnisse genau 
bekannt sind und deshalb in vielen Untersuchungen ohne Praxisbezug 
herangezogen werden, wird hier nicht eingegangen, sondern es werden drei 
nicht künstliche Umgebungen, eine virtuelle Welt, ein XY-Tisch und reale 
Aufnahmen betrachtet. 

5.1 Virtuelle Welt 
Die virtuelle Welt wird durch die Virtual Reality Modeling Language (VRML) 
erstellt. VRML ermöglicht, 3-D-Szenen mit Geometrien und verschiedenen 
Ausleuchtungen aus beliebigen Blickwinkeln zu betrachten. Der Vorteil dieser 
Vorgehensweise ist, dass die Verhältnisse genau bekannt sind. Der Nachteil 
ist, dass sie weit entfernt von der Realität ist. Trotzdem lassen sich Verfahren 
in dieser Umgebung als Grundvoraussetzung validieren. 
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Bild 126: Fotovorlage für 
die virtuelle Welt 
Quelle: www. bergfex.de 

Bild 127: Gerader 
Flug nach unten 
mit kumulierter 
Pfadberechnung 

Bild 128: Flussvektoren 
zwischen zwei Bildern 

Bild 127 zeigt einen einfachen Flugpfad innerhalb der virtuellen Welt, die ein 
Foto einer Landschaft – Bild 126 – im Sichtfeld hat. Das Flussfeld wurde mit 
der Methode von Lucas&Kanade berechnet. Da nur die Flussvektoren in der 
Mitte des Vektorfeldes – Bild 128 – zur Berechnung der Verschiebung 
genommen werden, sind Randeffekte ohne Bedeutung. Die maximale 
Abweichung vom Sollwert der Verschiebung zwischen zwei Bildern beträgt 
0.1 px sowohl in x- als auch in y-Richtung. Der kumulierte Fehler der 
Pfadstrecke ist 0 px. Die Berechnung der Orientierung, die sich nicht änderte, 
lieferte einen maximalen Fehler von 0.3°. Während in diesem einfachen 
nachgebildeten Flug die Fehler vernachlässigbar sind, stellt sich die Situation 
bei einem stark gekrümmten simulierten Flug über ein teilweise homogenes 
Landschaftsbild anders dar. 
Eine spiralförmige Bahn, in Bild 129 die rote Linie, wird simuliert abgeflogen. 
An den großen roten Quadraten werden orientierungsrichtige Bildausschnitte 
generiert. Jeweils zwei aufeinanderfolgende Bilder werden zur Berechnung 
des optischen Flusses herangezogen. Die errechnete Position in Bezug auf 
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das vorhergehende Bild ist jeweils durch das kleine gelbe Quadrat 
wiedergegeben und zeigt meist eine geringe Abweichung zur erwarteten 
Position. Die kumulierten Positionen, durch gelbe Kreise dargestellt, geben 
den errechneten Flugpfad, der sichtlich vom tatsächlichen Pfad abweicht, 
wieder. 
 

 
Bild 129: Virtuelle Welt, spiralförmiger Flug 
 
Beispielhaft sei das Ergebnis der Flussvektorberechnung an einem fehlerhaft 
berechneten Bildpaar gezeigt, s. Bild 130 und Bild 131. Die Fehlberechnungen 
entstehen hauptsächlich in den höheren Gaußpyramidenebenen, da durch die 
starke Bildverkleinerungen homogene Bereiche oder auch Kanten entstehen 
können, deren Verschiebung nicht richtig berechnet werden kann.  
Die Flussvektoren am Bildrand, die nicht in das Gefüge der umgebenden 
Vektoren passen, sind unbedeutend, da nur die Umgebung im Bildzentrum zur 
Positionsbestimmung gewertet wird. Aber auch hier ist zu erkennen, dass trotz 
Rotation der Bilder einige Flussvektoren im mittleren Bildbereich nicht zirkular 
verlaufen, was zu einer Fehlbestimmung der Position und der Orientierung 
führt, s. Tabelle 10  
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Bild 130: Erste Aufnahme Bild 131: Nachfolgende Aufnahme 
Flussvektorfeld bei einem Bildpaar mit fehlerhaften Berechnungsergebnissen 

Korrespondierende Bildpunkte werden mit Flussvektoren verknüpft, wie der 
rote Vektor beispielhaft zeigt. Der Bildpunkt am Pfeilbeginn in der linken 
Abbildung, Bild 130, korrespondiert im nachfolgenden Bild (rechte Abbildung) 
mit dem Bildpunkt an der Pfeilspitze. Der Pfeilbeginn in der linken Abbildung 
und die Pfeilspitze in der rechten Abbildung weisen auf denselben 
Szenenpunkt hin. 
 

Tabelle 10: Relative Positions- und Orientierungswerte bei einem Bildpaar mit 
fehlerhaften Berechnungsergebnissen 

 realer Wert berechneter Wert 

Position in x-Richtung -11 px -6.8 px 

Position in y-Richtung 2 px -0.8 px 

Orientierung 15.7° 7.5° 
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In Bild 132 und Bild 133 sind die Flussvektorfelder im mittleren Bildbereich 
gleichmäßig und führen zu guten Ergebnissen, die in Tabelle 11 aufgeführt 
sind. 
 

  
Bild 132: Erste Aufnahme Bild 133: Nachfolgende Aufnahme 
Flussvektorfeld zu einem Bildpaar mit richtigen Ergebnissen im mittleren 
Bildbereich 

 
Die Abweichungen vom realen Wert sind geringfügig, s. Tabelle 11. 
 

Tabelle 11: Relative Positions- und Orientierungswerte bei einem Bildpaar mit 
guten Berechnungsergebnissen 

 realer Wert berechneter Wert 

Position in x-Richtung -10 px -10.4 px 

Position in y-Richtung 20 px 19.2 px 

Orientierung 10.6° 10.9° 

 
Obwohl der berechnete Pfad, in Bild 129 gelbe Kreise, dem Anschein nach 
deutlich vom realen Pfad (große rote Quadrate) abweicht, sind die kumulierten 
Fehler im einstelligen Prozentbereich, s. Tabelle 12. 
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Tabelle 12: Kumulierte Positions- und Orientierungswerte bei einem 
spriralförmigen Pfad entsprechend Bild 129 

 realer Wert berechneter Wert 

Gesamtstreckenlänge 
1108 px 1099 px 

(0.8 % Abweichung) 
Entfernung von tatsächlicher 
Endposition 

- 47 px 

kumulierte Orientierungswinkel 
790° 811° 

(2.7 % Abweichung) 
 
Dass die Ermittlung von Position und Orientierung über den optischen Fluss 
prinzipiell funktioniert, ist in zahlreichen Versuchen in der virtuellen Welt 
erwiesen worden. Dennoch bleibt der Einfluss einer realen Kamera hier 
unberücksichtigt. 
 

5.2 XY-Tisch 
Um reale Bildsequenzen mit einer Kamera zu erstellen und trotzdem 
nachprüfbare Ergebnisse zu erhalten, wurde ein XY-Tisch angesteuert. 

 
Bild 134: XY-Tisch mit montierter Kamera 
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Der Tisch hat die Maße 2.2 x 1.2 x 3.1 [B x H x T in m]. Die Laufkatze hat 
einen Fahrbereich von ca. 2 m x 3 m und wird mit der montierten Kamera auf 
0.1 mm genau positioniert. Die Kamera lässt sich um ± 170° in 0,075°-
Schritten drehen. Durch Verstellen des optischen Zooms können zusätzlich 
verschiedene Grundhöhen über Boden nachgebildet werden. 
 

 

Bild 135: Positionsregelung des XY-Tisches 

Die Steuerung erfolgt über einen Host-PC, der einem Target-PC die 
Sollposition übergibt. Der Target-PC stellt die Position mit einer Regelung, die 
im 10 ms-Takt erfolgt, ein und meldet das Erreichen der Zielposition dem Host. 
Die Kamera wird im Zoom und Drehwinkel ebenfalls vom Host-PC gesteuert 
und gibt eine Ausführungsbestätigung zurück. Dann wird ein Bild gespeichert. 
Mit dieser Apparatur kann ein vorgegebener Pfad „abgeflogen“ und die 
Ergebnisse der Bilderauswertung können mit den Sollwerten verglichen 
werden. Weiterhin kann eine Stereokamera beliebiger Basisbreite 
nachgebildet werden, indem ein zweiter Pfad, der parallel zum ersten Pfad 
verläuft, „abgeflogen“ wird. Für Abstandsmessungen wurde die 
Kamerablickrichtung horizontal ausgerichtet und auf eine Tafel zugefahren. 
Zusätzlich erfolgt eine qualitative Beurteilung über ein Mosaikbild. Hier werden 
die einzelnen Bilder der Filmsequenz mit den berechneten Positionen und 
Winkeln zu einem Gesamtbild (Mosaikbild) zusammengefügt. Fehler der 
Winkelberechnung werden dann besonders deutlich. 
 

 
Host-PC 

 
Target-PC
(XY Regelung) 

TCP/IP Pos. 
erreichtXY

 
XY-Tisch 

Position

XY

 
Kamera 

RS232

Drehwinkel, Zoom

Fertig

Videodaten
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5.2.1 Ergebnisse 

5.2.1.1 Gerader Pfad 

Eine Filmsequenz über einen geraden Pfad ist der einfachste Fall für die 
Berechnung der Verschiebungen und wird von beiden Verfahren 
(Lucas&Kanade und NCC) recht gut bewältigt, wobei das Gradientenverfahren 
einen bemerkbaren Winkelfehler aufwies, s. Tabelle 13, während die 
Translationsfehler bei beiden Verfahren gering waren. Bild 136 und Bild 137 
zeigen das jeweilige Mosaikbild. 
 
 

  
  

Bild 136: Gerader Pfad, 
Berechnung nach Lucas&Kanade 

Bild 137: Gerader Pfad, 
Berechnung mit NCC 
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Tabelle 13: Ergebnisse bei der Berechnung nach Lucas&Kanade (L&K),  
s. Bild 136 und mit NCC, s. Bild 137 

 Erwartete kumulierte 
Werte 

Abweichung 
absolut 

Abweichung 
prozentual 

Methode  L&K NCC L&K NCC 

x-Richtung 0 px 3 px 2 px - - 

y-Richtung 477 px 1 px 1 px 0.2 % 0.2 % 

Winkel 0° 3.6° 0.2° - - 

 

5.2.1.2 Kreisbahn 

Weitaus schwieriger richtig zu berechnen, sind die Verschiebungen bei einer 
Kreisbahn. Während das Gradientenverfahren, Bild 138, hier hauptsächlich an 
der Schrittweite (47 px) scheiterte, lieferte die NCC, Bild 139, gute Ergebnisse, 
siehe Tabelle 14.  
Qualitativ kann das Ergebnis auch anhand des Mosaikbildes, Bild 139, 
beurteilt werden: Die Straße im linken Teil, in der Realität gerade, bleibt 
weitgehend gerade. 
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Bild 138: Kreisbahn mit 5° 
Winkeländerung und großen 
Schritten, 
Berechnung nach Lucas&Kanade 

Bild 139: Gleiche Bahn wie links, 
Berechnung über NCC 

 

Tabelle 14: Kumulierte Strecken und Winkel mit Abweichungen von der 
Endposition bei der Berechnung über NCC, s. Bild 139 

 Kumulierte 
Absolutwerte 

Abweichung vom 
erwarteten Wert 

Fehler 

x-Richtung 734 px 17 px 2.3 % 

y-Richtung 958 px 2 px 0.2 % 

Winkel 145.0° 0.6° 0.4 % 

 
Weitere eigene Vergleiche sind in [85] veröffentlicht. 
Die Reichweite der Gradientenmethode mit 36 px ist zu gering für den Einsatz 
in einem dynamischen Flugsystem. Die Auswirkungen der geringen 
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Reichweite seien mit den Verhältnissen beim Landeanflug anhand der 
Geometrie bei der Translation berechnet. 
 
Folgende Daten seien gegeben: 

• Brennweite fpx: 1401 px (entspricht 5.3 mm) 

• Bildrate fps: 12/s 

• Höhe über Boden z: 2 m 

• Geschwindigkeit beim Landeanflug: 1 m/s (3.6 km/h) 

 
Die Verhältnisse sind in Bild 44 dargestellt. 
Aus der Bildrate und der Geschwindigkeit errechnet sich die geflogene Strecke 
xw zwischen der Aufnahme an Position 1 und der Aufnahme an Position 2 zu 
1/12 m.  
 

 
Bild 44 Geometrie bei Translation (aus Kapitel 2.6.2) 

Mit der Gleichung für die Translation, sie sei hier wiederholt, 

 1 2( )w b px b px
px

zx x x
f

= −  (2.52) 

errechnet sich die Verschiebung xb1px- xb2px zu 58 px. 
Wie das Beispiel verdeutlicht, wird beim Landeanflug – hier mit einer 
Verschiebung von 58 px – die Reichweite von 36 px der Gradientenmethode 
deutlich überschritten. 
Deshalb wird die Gradientenmethode aus den weiteren Betrachtungen 
ausgeschlossen. 
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5.3 Flugaufnahmen mit Monokamera 
Zunächst wird für die Aufnahmen während der Flüge mit dem Blimp der 
FernUniversität eine Hero3 Kamera der Firma GoPro verwendet. Diese 
Kamera hat eine so stark verzerrende Linse, dass eine Kalibrierung mit 
üblichen Mitteln erfolglos blieb. Durch geringes Gewicht und internen Speicher 
für die Aufzeichnung ist sie für erste Tests geeignet. Die ausgewerteten 
Bildbereiche befinden sich hierbei in der Nähe der weitgehend 
verzeichnungsfreien Bildmitte und Subpixel werden nicht berücksichtigt. 
Die Translation und Rotation der Bildsequenzen werden mit der NCC 
berechnet und die Bilder entsprechend der Berechnungen zu einem 
Mosaikbild zusammengefügt. Zur Prüfung wird bei kurzen 
Aufnahmesequenzen das erste Bild in Farbe mit transparentem Mittelteil dem 
Mosaikbild überlagert. Im transparenten Teil ist dann in schwarz-weiß das 
letzte dem Mosaikbild zugefügte Bild zu sehen. An den nahtlosen Übergängen 
ist dann das Gelingen der Berechnung erkennbar. 
Bild 140 ist das Mosaikbild, das nach einem kurzen Flug über einen Weg 
erstellt wird. In der Mitte des Bildes ist der errechnete Flugpfad mit der 
farbigen Linie dargestellt. Das dunkle Quadrat in der Mitte ist die erste 
Position, während das grüne Quadrat weiter oben für die letzte Position steht. 
In Bild 141 sind an den nahtlosen Übergängen vom ersten Bild (in Farbe) zum 
letzten Bild (in s/w) die richtigen Berechnungen zu erkennen. 
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Bild 140: Flug über einen Weg. 
Bilder übereinandergelegt zu einem 
Mosaikbild entsprechend der 
berechneten Translation und Rotation.

Bild 141: Überlagertes erstes Bild (in 
Farbe) mit transparentem Mittelteil, 
welches das letzte Bild (in s/w) 
durchscheinen lässt. 

 
Ein weiterer Flug zeigt die Genauigkeit der Winkelmessung nach 86 
Aufnahmen. Der Anfangswinkel des mittleren Weges auf der Bild 142 ist 83°. 
Nachdem sich das Fluggerät mit der Kamera um 25.5° gedreht hat, nimmt der 
Weg in Bild 143 einen Winkel von 57.5° ein.  
Der Winkel der kumulierten Rotationsberechnungen ist 28.5°. Um diesen 
Winkel wird Bild 143 nach links gedreht und als letztes Bild dem ersten Bild 
(Bild 142) überlagert, um das Mosaikbild, Bild 145, zusammenzusetzen. 
Richtig ist eine Rotation um 25.5°. Die Differenz von 3° ergibt bei 85 
sequentiellen Bildpaaren einen durchschnittlichen Fehler von 0.035°. 
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Bild 142: Flug mit starker Rotation, 
erstes Bild,  
Winkel des mittleren Weges 83° 

Bild 143: Flug mit starker Rotation, 
letztes Bild,  
Winkel des mittleren Weges 57.5° 

 
In der Bild 145 ist das erste Bild der Flugaufnahmen (Bild 142) als Farbbild mit 
transparentem Mittelteil dem letzten Bild (Bild 143) überlagert, wobei das letzte 
Bild um die errechnete Translation und Rotation zurückversetzt bzw. 
zurückrotiert wird. Diese Rückpositionierung ist sowohl in Bild 144 als auch im 
Mittelteil der Bild 145 zu sehen.  
Zusätzlich zur Winkelabweichung ist in Bild 145 eine Translationsabweichung 
erkennbar, die hauptsächlich durch Skalierungsänderung wegen eines 
geringeren Abstandes zur Szene begründet ist. 
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Bild 144: Mit berechneten Winkeln 
und Translationen überlagerte Bilder, 
Winkel des mittleren Weges 86° 
(Sollwinkel 83°), 
letztes Bild ist obenauf 

Bild 145: Erstes Bild als Farbbild mit 
transparentem Mittelteil dem letzten 
Bild überlagert 

 

Bei längeren Filmaufnahmen überlappt das erste Bild nicht mehr das letzte 
Bild, deshalb erfolgt die Kontrolle nur noch nach Augenschein.  
Ein Beispiel ist ein Landeanflug auf eine Betonstraße (Bild 146). Die kleinen 
nummerierten Quadrate sind jeweils in der Mitte der laufenden Aufnahmen 
und geben den von der Kamera erfassten Flugpfad wieder. 
Die Richtigkeit der Berechnung wird aus dem kontinuierlichen Verlauf des von 
der Kamera aufgezeichneten Flugpfades und den nahtlosen Bildübergängen 
entnommen. 
  

erstes Bild 

letztes Bild 
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Bild 146: Landung auf einer Betonpiste 

5.4 Auswertung von Stereoaufnahmen 

5.4.1 Kameradaten 

Für Stereoaufnahmen dient die Bumblebeekamera XB3 der Firma Point Grey 
(Bild 147). Die Kamera hat sich bei anderen Forschungsvorhaben bewährt, 
allerdings wurde sie aufgrund der relativ kleinen Basisbreite1 von 24 cm nicht 
für große Entfernungen eingesetzt, sondern meistens innerhalb von 
Gebäuden.  

 
Bild 147: Bumblebeekamera der Firma Point Grey 

                                         
1 Eine andere Kamera, Cameleon Academic Pack von Optomotive mit variabler 
Basisbreite, erwies sich als ungeeignet, da u. a. durch Überbelichtungen 
unbrauchbare Bilder entstanden. 

Erstes Bild mit 
überdeckenden Anteilen 

der Bilder 2 bis 10 

Letztes Bild  
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Im Folgenden werden einige Kenndaten und eigene Messungen zur 
Bumblebee aufgeführt. 

5.4.1.1 Daten nach Herstellerangaben  

Physische Daten: 
• Drei Objektive im Abstand von jeweils 12 cm, hier werden nur die beiden 

äußeren Objektive benutzt. 

• Abmessungen: 277 x 37 x 41.8 [mm] 

• Masse: 505 g 

Elektrische Daten: 
• Betriebsspannung: 12 V 

• Leistungsaufnahme: 4 W  

Anschlüsse: 
• IEEE-1394b fire-wire-Anschluss für Bildübertragung und 

Kameraeinstellungen 

• Mehrzweckanschluss für Triggersignale (unbenutzt) 

Sensor- und Objektivdaten: 
• Sensor: Sony ICX445 (CCD) 

• Sensordiagonale: 6 mm 

• Pixelgröße:3.75 x 3.75 [µm] 

• Pixelanzahl: 1280 x 960 

• Maximale Bildrate: 16/s 

• Nominale Brennweite: 6 mm 

5.4.1.2 Eigene Messungen 

Synchronisation und Bildratenkonstanz 
Um die Synchronisation und Bildratenkonstanz zu ermitteln, wurden 
Aufnahmen von einem schnell rotierenden Ventilator und blinkenden LEDs 
erstellt. Die Berechnungsmethoden sind im Anhang Kap. A.5, S. 202 
beschrieben. 
Die Synchronisation der linken und rechten Kamera ist besser als 15 µs. 
Hierbei ist die rechte Kamera immer voreilend. Der sich ergebende 
Abstandsfehler für Geschwindigkeiten unter 50 km/h bleibt kleiner als 0.1 %. 
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Die Bildrate ist, wie nominal spezifiziert, 12/s im Durchschnitt. Allerdings 
weichen einige Bildfolgezeiten um bis zu 1.3 ms ab. Da die Abweichung direkt 
danach jeweils negativ dazu ist, heben sich die Fehler auf. 
 
Intensitätsverlauf 
Der Intensitätsverlauf der Bumblebeekamera wurde schon im Kapitel 2.4.1.1, 
S. 30 dargestellt und sei hier noch einmal gezeigt. 

 
Bild 148: Intensitätsverlauf der Bumblebeekamera 

 
Blooming-Effekt 
Ein manchmal störender Effekt der Kamera ist, dass Überbelichtungen einen 
sogenannten Bloomingeffekt ergeben. In Bild 149 ist deutlich der Effekt durch 
eine spiegelnde Fläche auf der linken Seite zu erkennen, wodurch sich eine 
vertikale Linie bildet, die wiederum zu fehlerhaften Positionserkennungen 
führen kann. 
 

 
Bild 149: Blooming-Effekt links im Bild 
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Kalibrierungs- und Rektifizierungsergebnisse 
Die aufgeführten folgenden Werte sind Ergebnisse nach der Kalibrierung und 
anschließender Rektifizierung. Auffällig sind die hauptsächlich durch die 
Rektifizierung scheinbar veränderte Brennweite und der Ort der optischen 
Zentren. 
 
Kenndaten der Bumblebee-Kamera nach Kalibrierung und Rektifizierung: 

• Gemeinsame Brennweite fpx: 1401 px (entspricht 5.3 mm, nominal: 6 mm) 

• Optisches Zentrum linke Kamera cclx, ccly: +10.5 px, +11.0 px 

• Optisches Zentrum rechte Kamera ccrx, ccry: -10.8 px, +11.0 px 

• Nutzbare Pixel: 1224 x 850 

• Basisbreite B, Abstand der optischen Zentren: 0.2397 m 

Bei beiden Kameras ist der Durchtritt der optischen Achse etwa 11 px von der 
Bildmitte, s. Bild 150, was für die Bildverarbeitung ohne Einfluss ist, allerdings 
in die Entfernungsgleichung (5.1) eingeht. 
 

  
Bild 150: Lage der optischen Zentren (Kreise) im linken und rechten Stereobild 

 
Die Disparität dpx bezieht sich auf die optischen Zentren. Damit wird der 
Abstand z errechnet zu: 

 px

px rx lx

Bf
z

d cc cc
=

+ −
 (5.1) 
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5.4.2 Erfassungbereiche für Geschwindigkeiten und 
Abstände 

Mit den vorgenannten Daten und folgenden festgesetzten Daten lassen sich 
die Erfassungsbereiche für die Abstände und Geschwindigkeiten in Bezug zu 
einer Szene errechnen. Die Stereobasis sei dabei parallel zur Verbindungslinie 
Bug-Heck des Luftschiffs, denn dann stehen mit der Bildbreite in Flugrichtung 
mehr Pixel zur Verfügung, um Translationen zu berechnen. 

• Die Bildrate sei 12/s. 

• Bildbreite: 1224 px 

• Die Subpixelgenauigkeit sei 0.3 px. 

• Der maximal zugelassene Fehler sei 10 %. 

 

Tabelle 15: Minimal, normal und maximal erfassbare Flughöhen mit 
Messfehlern 

Fall für Abstand Abstand Disparität
Fehler bei 0.3 px 

Subpixelgenauigkeit
min. Abstand 0.62 m 538 px 0.06 % 

normale Flughöhe 50 m 6.7 px 4 % 

max. Abstand  
bei 10 % Fehler 

102 m 3.3 px 10 % 
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Tabelle 16: Minimal und maximal detektierbare Geschwindigkeit bei 
verschiedenen Flughöhen und dazugehörige Messfehler 

Fall 
Grenzfall für 

Geschwindigkeit 
Geschwindigkeit Versatz

Fehler bei 0.3 px 
Subpixelgenauigkeit

1 
min. Geschwindigkeit 
bei 1 m Flughöhe 

0.09 km/h 3 px 10 % 

2 
min. Geschwindigkeit 
bei 50 m Flughöhe 

4.6 km/h 3 px 10 % 

3 
max. Geschwindigkeit 
bei 1 m Flughöhe 

17 km/h 560 px 0.1 % 

4 
max. Geschwindigkeit 
bei 50 m Flughöhe 

866 km/h 560 px 5 % 

 
Zu Fall 1: 

Erst bei einem Versatz von 3 px für die Translation ergibt sich die 
geforderte Genauigkeit von 10 %. Der Messbereich für die minimal 
erfassbare Geschwindigkeit kann beliebig erweitert werden, indem für die 
Translationsberechnung ältere Bilder herangezogen werden. Der Fehler 
nimmt dann proportional mit der Zeitdifferenz zwischen den 
Aufnahmezeitpunkten ab. 

 
Zu Fall 2: 

Wie Fall 1. 
 

Zu Fall 3: 
Die maximal erfassbare Geschwindigkeit bei niedriger Flughöhe kann 
annähernd verdoppelt werden, indem der zu suchende Bildausschnitt nicht 
wie sonst üblich in der Mitte, sondern am Rand der Abbildung positioniert 
wird. Um nochmals 10 km/h wird der Messbereich erweitert, wenn linke 
und rechte Kamera zur Translationsberechnung herangezogen werden, so 
dass bei 1 m Abstand Geschwindigkeiten bis zu 45 km/h erfasst werden 
können. 
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Zu Fall 4: 
Der Fehler von 5 % für die maximale Geschwindigkeit bei 50 m Flughöhe 
ist dominant durch die Unsicherheit bei der Flughöhenbestimmung 
begründet. 

5.4.3 Prüfung der Kalibrierung und Rektifizierung über 
Abstandsberechnungen 

Bei gelungener Kalibrierung und Rektifizierung muss sich bei der Abbildung 
eines sehr entfernten Objektes eine Disparität nahe null ergeben. Hierzu 
werden Objekte, deren Abstand zur Kamera bekannt ist, aufgenommen. Die 
Entfernungen wurden mittels topographischen Karten des Landes Nordrhein-
Westfalen ermittelt. 
Aus Tabelle 17 ist eine Aufstellung von Disparitätsberechnungen anhand von 
drei Objekten, die jeweils an verschiedenen Bildpositionen abgebildet sind, 
dargestellt.  
Die Berechnungen an äußeren linken Bildrändern weisen Abweichung vom 
erwarteten Disparitätswert von etwa 0.5 px auf. Die Abweichung am rechten 
Bildrand ist mit 0.1 px kleiner. Ist das Objekt in der Bildmitte abgebildet, 
beträgt die maximale Abweichung 0.08 px, was eine sehr gute Präzision ist, 
zumal die Strukturen der Abbildungen verwischt wirken, wie aus Tabelle 17 , 
zu sehen ist. 
Dieser Versuch zeigt, dass die Kalibrierung und Rektifizierung der 
Stereokamera gut gelungen ist. 
Die Randfehler sind kaum wirksam, da als Referenz immer ein Ausschnitt aus 
der Bildmitte genommen wird und bei großen Abständen der 
korrespondierende Bildausschnitt auch nahezu in der Bildmitte ist. Die 
Bildränder kommen erst bei kurzen Abständen oder großen 
Geschwindigkeiten, d. h. bei großer Disparität, zum Tragen. Z. B. ist bei 
1000 mm Abstand die erwartete Disparität 335.83 px. Bei einem 
Disparitätsfehler von +0.4 px ergibt sich ein für das Fluggerät unbedeutender 
Abstandsfehler von 1.2 mm. Bei großen Geschwindigkeiten, also 
beispielsweise einer Verschiebung von 600 px, bewirkt ein Fehler von 0.4 px 
unabhängig vom Abstand einen Geschwindigkeitsfehler von 0.07 %. 
Die Subpixelgenauigkeit ist im mittleren Bildbereich sehr gut und wird in 
Tabelle 18 mit für ein kleines UAV relevanten Abständen verifiziert. 
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Die Rektifizierung selbst, d. h. u. a. gleiche horizontale Epipolarlinien auf 
beiden Abbildungen, ist sehr gut, denn bis auf wenige Ausnahmen 
(bildstrukturbedingt) sind die berechneten vertikalen Abweichungen vom 
gesuchten Ausschnitt zum gefundenen Ausschnitt im Subpixelbereich. Zum 
Bestimmen der Abweichung sind bei 365 Bildpaaren die 
Disparitätsabweichungen in vertikaler Richtung ermittelt worden. Korrelationen 
bei Verdeckung oder homogenen Gebieten sind ausgeschlossen. Daraus 
ergibt sich, dass das rechte Bild um etwa 0.07 px in vertikaler Richtung nach 
unten versetzt ist. Deshalb ist die Suche entlang einer Bildzeile ausreichend, 
was den Korrelationsalgorithmus wesentlich schneller ablaufen lässt. 
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Tabelle 17: Disparität bei weit entfernten Objekten, die jeweils in der Mitte oder 
an den Rändern abgebildet sind 

Objekt Position 
im Bild 

gesuchtes 
Teilbild 

Abstand
[m] 

Abstand 
berechnet

[m] 

Disparität 
erwartet 

[px] 

Disparität 
berechnet 

 und 
(Abweichung)

 [px] 

Gebäude 
links 1197 14958 0.28 

0.14 
(-0.14) 

Gebäude 
mittig 

  
1197 1466 0.28 

0.23 
(-0.05) 

Gebäude 
rechts 

  
1197 -13820 0.28 

-0.02 
(-0.30) 

Kirche 
links 1093 7949 0.31 

0.13 
(-0 18)

Kirche 
mittig 

 
1093 1533 0.31 

0.23 
(-0.08) 

Kirche 
rechts  

  
1093 -1316 0.31 

-0.21 
(-0.56) 

Straßen-
leuchte 

links  
419 549 0.80 

0.69 
(-0.11) 

Straßen-
leuchte 
mittig   

419 438 0.80 
0.77 

(-0.03) 

Straßen-
leuchte 
rechts   

419 1139 0.80 
0.33 

(-0.47) 
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Für einen weiteren Versuch zur Bestimmung der Genauigkeit bei der 
Abstandsberechnung ist eine Tafel mit einem großen Foto in Abständen 
zwischen 1 m und 25 m aufgestellt worden, s. Bild 151 und Bild 152.  
Für 40 m und 65 m Abstand wurden Gebäudefassaden abgebildet, s. Bild 153 
und Bild 154.  
Die Abstände werden durch einen Laserentfernungsmesser mit 0.1 % 
Genauigkeit bestimmt. 
In Tabelle 18 sind die erwarteten und die berechneten Abstände mit 
prozentualer Abweichung und der absoluten Abweichung der Disparität 
aufgeführt. Die Abweichung von 0.12 px bei einem Meter Abstand entspricht 
einem Messfehler von 360 µm.  
Für Berechnungen der Abstände zwischen 1 m und 65 m ist die 
Fehlbestimmung bei diesen Messungen kleiner als 0.4 %. Die Disparität 
weicht nur um maximal 0.12 px vom erwarteten Wert ab. 
  
Die Abstandsmessungsgenauigkeit ist damit für die Bestimmung der Flughöhe 
über Boden sehr gut. 
 

 
Bild 151: Tafel bei 24 m,  
rektifiziertes Bild 

Bild 152: Tafel bei 2 m,  
Bild vor der Rektifizierung 
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Bild 153: Gebäudefassade bei 40 m Bild 154: Gebäudefassade bei 65 m 

 

Tabelle 18: Erwartete und berechnete Abstände 

Abstand, 
erwarteter 

Wert 

Abstand, 
berechneter 

Wert 

Abstand, 
Abweichung

Abweichung der 
Disparität vom 

erwarteten Wert 
0.984 m 0.984 m -0.04 % 0.12 px 
1.974 m 1.973 m -0.01 % 0.02 px 
2.976 m 2.975 m -0.03 % 0.04 px 
4.969 m 4.972 m 0.06 % -0.04 px 
7.982 m 7.969 m -0.17 % 0.07 px 
9.995 m 9.968 m -0.27 % 0.09 px 
14.97 m 14.95 m -0.13 % 0.03 px 
19.97 m 19.98 m 0.06 % -0.01 px 
25.01 m 24.98 m -0.10 % 0.01 px 
40.01 m 39.86 m -0.38 % 0.03 px 
64.96 m 64.84 m -0.18 % 0.01 px 

 
Die Disparitäten in Tabelle 18 werden mit der 'inversen Parabel' berechnet. 
Ein Vergleich mit der regulären Parabel lieferte nur sehr gering – im 
Tausendstel Pixelbereich – bessere Werte. Daraus kann geschlossen werden, 
dass die Anwendung der 'inversen Parabel' bei realen Stereoaufnahmen nur 
bei der Verkleinerung großer Bildbereiche eine deutliche Verbesserung ergibt. 
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5.4.4 Prüfung der Bewegungsberechnung 

Die Abständsberechnung wird mit Aufnahmen, die gleichzeitig von der linken 
und rechten Kamera erstellt werden, ermittelt und liefert gute Ergebnisse. 
Voraussetzung für die Bewegungsrechnung ist die Abstandsberechnung, da 
damit aus nacheinander aufgenommenen Bildern von den Translationen in 
Pixel auf Translationen in metrischen Längen geschlossen wird. Die Fehler der 
Abstandsberechnung gehen somit in die Fehler der Translation ein.  
Die Strecken werden über Koppelnavigation ermittelt, indem die über visuelle 
Odometrie errechneten inkrementellen Bewegungsinformationen integriert 
werden.  
Um die Gesamtgenauigkeit zu ermitteln, werden Messungen mit drei Szenen, 
deren Dimensionen bekannt sind, durchgeführt. 
 
Erste Szene 
Mit einem Laborwagen und aufmontierter Kamera wird entlang einer Tafel 
(Bild 155) mit verschiedenen Abständen zur Tafel einmal hin- und 
hergefahren, so dass die letzte Position nahe bei der ersten Position ist. Nach 
den Berechnungen für 135 sequentielle und Stereobildpaare, wobei die 
Translationsschritte entsprechend der Bewegungsrichtung addiert oder 
subtrahiert werden, müsste das Ergebnis nahe null sein.  
Die Positionen der gefundenen kleinen Rechtecke in Bild 156 und Bild 157 
werden dem Prüfungsobjekt zugeordnet. Die erwarteten Abstände in x- und y-
Richtung werden aus den Zuordnungen ermittelt. Die Positionsdifferenzen 
zwischen den erwarteten Abständen und berechneten Abständen sind in  
Tabelle 19 aufgeführt. 
Nach 2.481 m zurückgelegtem Weg ist der Fehler für die horizontale Richtung 
10 mm, entsprechend 0.4 %. 
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Bild 155: Objekt zur Prüfung der Kamerabewegung 

 

  
Bild 156: Erste gefundene Position 
(kleines Quadrat) 

Bild 157: Letzte gefundene Position 
(kleines Quadrat) 

 

Tabelle 19: Erwartete Positionsdifferenz und Positionsdifferenz aus 
Berechnung zwischen erstem und letztem gefundenen Teilbild bei 2.481 m 
Wegstrecke 

 Erwartete 
Positionsdifferenz 

Positionsdifferenz 
aus Berechnung 

Fehler Fehler 
bezogen 

auf 2.481 m

Horizontal 3 mm 13 mm 10 mm 0.4 % 

Vertikal -2 mm 4 mm 6 mm - 
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Eine zweite Versuchsfahrt führt zu ähnlich genauen Ergebnissen. Das kleine 
Quadrat in Bild 159 , welches sich an der letzten gefundenen Position 
befindet, ist gegenüber dem Quadrat der ersten gefundenen Position,  
Bild 159, nach rechts um 9 mm und etwas nach oben um 3 mm verschoben. 
Damit stimmen die kumulierten Werte der Positionsdifferenzen aus den 
Berechnungen mit der wahren Strecke fast überein, siehe Tabelle 20. Somit ist 
der Fehler bei dem zurückgelegten Weg von 2.672 m etwa 0.07 %. 
 
 

 

 

 
Bild 158: Erste gefundene Position 
(kleines Quadrat) 

 Bild 159: Letzte gefundene Position 
(kleines Quadrat) 

 

Tabelle 20: Erwartete Positionsdifferenz und Positionsdifferenz aus 
Berechnung zwischen erstem und letztem gefundenen Teilbild bei 2.672 m 
Wegstrecke 

 Erwartete 
Positionsdifferenz

Positionsdifferenz 
aus Berechnung 

Fehler Fehler 
bezogen 

auf 2.672 m
Horizontal 9 mm 7 mm 2 mm 0.07 % 

Vertikal 3 mm 2 mm 1 mm - 

 
Zweite Szene 
Ein Außenversuch bei größeren Abständen, größeren Strecken und schlecht 
strukturierten Bildern führt zu etwas größeren Fehlern. Die Kamera ist hier auf 
einem Stativ montiert und rotiert von links nach rechts mit Blickrichtung 
entlang einer Hauswand, s. Bild 160 und Bild 161. 
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Bild 160: Hauswand zur Berechnung 
einer Strecke, Sicht aus einer 
Kameraorientierung 

Bild 161: Luftbild mit bezeichneter 
Hauswand und Kameraposition 
(Quelle des unterlegten Luftbilds: Google maps) 

 
Während der Kamerarotation weichen die projizierten Streckenabschnitte Δxc 
zunehmend mit dem Blickwinkel φ der Kamera vom gesuchten wahren 
Streckenabschnitt Δxw ab (s. Bild 162), deshalb gehen die Blickwinkel in die 
Streckenberechnung ein: 

 2

arctan

1
cos

w

c w
w c

x
N

x xx x
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

ϕ =

ΔΔ = = Δ +
ϕ

 (5.2) 

 

xw: Kumulierte Strecke 

Δxw: Streckenabschnitt auf der 
Wand zwischen zwei 
aufeinanderfolgenden Bildern 

Δxc: Projizierter, von der Kamera 
wahrgenommener, 
Streckenabschnitt 

φ:  Blickwinkel der Kamera, Bezug 
ist die Normale 

N:  Länge der Normalen 
 

Bild 162: Trigonometrische Verhältnisse beim Blick auf die Hauswand 
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Der Abstand N der Normalen zur Kamera wird mit der Stereokamera 
bestimmt. Der Fußpunkt der Normalen ist am ersten unteren Fenster von  
Bild 160. Die Strecke xw auf der Wand des Gebäudes wird sukzessive 
ermittelt. Ausgehend vom Fußpunkt der Normalen, φ = 0, wird schrittweise die 
Strecke xw mit Gleichungen (5.2) ermittelt, wobei das neue xw jeweils das 
vorhergehende xw+ Δxw ist. 
Die realen Positionen werden über die Fensterabstände, die genau 1.20 m 
betragen, bestimmt. Die linke untere Ecke des Quadrates des ersten 
Teilbildes, Bild 163, ist 0.9 m von der linken Kante des ersten Fensters 
entfernt und 0.3 m über dem unteren Fenster. Die linke untere Ecke des 
Quadrates des letzten Bildes ist 0.8 m von der linken Kante des letzten 
Fensters entfernt und 0.27 m unter dem Fenster.  
 

  
Bild 163: Position des ersten 
gefundenen Teilbildes (kleines 
Quadrat) 

Bild 164: Position des letzten 
gefundenen Teilbildes (kleines 
Quadrat) 

Die gesamte wahre Strecke ergibt sich zu 12.5 m, während die berechnete 
Strecke 12.4 m beträgt, s. Bild 165. Dies entspricht einem Fehler von etwa 
0.8 %. 
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Bild 165: Hauswand mit Maßen zur Berechnung von Strecken 

Die teilweise überbelichteten Bildbereiche, die die Bildstruktur reduzierten, 
siehe Bild 167, führten zu schlechten Korrelationen und damit zu Sprüngen im 
Abstandsverlauf, siehe Bild 166, denn bei den Abständen um 27 m ergibt ein 
Disparitätsunterschied von 0.5 px schon eine Abstandsabweichung von 1 m. 

 
Bild 166: Berechnete Abstände der Hauswand zur Kamera und 
Streckenverlauf 
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gesuchtes Teilbild 

 
gefundenes Teilbild 

Bild 167: Teilbilder der linken und rechten Kamera nahe dem letzten 
Stereobildpaar 

Dritte Szene 
Ein weiterer Versuch mit einer beschatteten Fassade und längerer 
Gesamtstrecke, Bild 168, führt zu ähnlichen Ergebnissen. Die Kamera rotiert 
wie beim vorhergehenden Beispiel, allerdings hin und her. Es gelten dieselben 
Winkelgleichungen. Nachdem die Fassade 5-mal von rechts nach links oder 
umgekehrt überstrichen wurde, ergab sich eine Gesamtstrecke von 69.60 m. 
Berechnet wurden 70.79 m, was einem Fehler von 1.7 % entspricht. Jeweils 
beim Rücklauf, Bildnummer 270 und 403 der Tabelle 21, in die Nähe des 
Startpunkts, Bildnummer 1, stimmt die wahre Position mit der berechneten 
Position weitgehend überein. 
 
 

 
Bild 168: Gebäudefassade zur Abstands- und Streckenberechnung 

Startposition,
rechte Seite

Endposition, 
linke Seite 
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Tabelle 21: Wahre und berechnete Position und Strecken beim mehrfachen 
Überstreichen einer Fassade 

Position, 
Bild-

nummer 
 

Wahre 
Position

Berechnete
Position 

Wahre Strecke 
vom Nullpunkt, 

und (von 
vorhergehender 

Position)  

Berechnete 
Strecke vom 

Nullpunkt,  
und (von 

vorhergehender 
Position) 

Rechte 
Seite, 

1 
 

0 m - - - 

Linke 
Seite, 
104 

 

-14.29 -14.47 
14.29 

(14.29) 
14.47 

(14.47) 

Rechte 
Seite, 
270 

 

-0.45 -0.53 
28.13 

(13.84) 
28.41 

(13.94) 

Linke 
Seite, 
347 

 

-14.34 -14.54 
42.01 

(13.88) 
42.43 

(14.02) 

Rechte 
Seite, 
403 

 

-0.56 -0.29 
55.78 

(13.77) 
56.68 

(14.25) 

Linke 
Seite 
469 

 

-14.38 -14.41 
69.60 

(13.82) 
70.79 

(14.11) 

5.4.5 Verfahren für schnelle Berechnung bei realitätsnahen 
Versuchen 

Die bisherigen Versuche waren mit überwiegend flachen Szenen, die auch 
keine Verdeckung beinhalteten und mit mäßigen Geschwindigkeiten bei 
weitgehend konstanten Abständen durchgeführt worden, um die Genauigkeit 
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der Verfahren nachzuweisen. Die angestrebte Echtzeitverarbeitung und die 
Verdeckungsprobleme erfordern Erweiterungen und Vereinfachung der 
Verfahren, die in diesem Unterkapitel erläutert werden. 

5.4.5.1 Ausgleich des Intensitätsverlaufs  

Wie schon in Kap. 2.4.1.1 (Vignettierung) gezeigt, hat die Bumblebeekamera 
einen stark gekrümmten Intensitätsverlauf. 

 
Bild 169: Intensitätsverlauf für linke und rechte Kamera 

Versuche innerhalb des 8-Bit-Zahlenraumes, die Intensitäten über eine 
Tabelle auszugleichen, bringen zwar eine deutliche Verbesserung der 
Bildregistrierung, aber die Kontrastverminderung in der wichtigen Bildmitte 
führt zu ungenaueren Ergebnissen bei der Bestimmung großer Abstände mit 
der Stereokamera. Diese Methode wird deshalb nicht benutzt. 
Um die Einflüsse der multiplikativen und additiven Intensitätsunterschiede der 
linken und rechten Kamera auszugleichen, wird für die weiteren Versuche nur 
die ZNCC zur Berechnung der Bewegung und des Abstandes benutzt. 

5.4.5.2 Vereinfachung der bilinearen Interpolation 

Nächster-Nachbar-Interpolation 
Ein großer Rechenaufwand ist die für die Rektifizierung erforderliche bilineare 
Interpolation, die für jeden Bildpunkt vier Multiplikationen und vier Additionen 
verlangt. Eine drastische Vereinfachung ergibt sich durch die Nächster-
Nachbarn-Interpolation, die jedem rektifizierten Bildpunkt einen Bildpunkt aus 
dem Originalbild zuordnet. Zur ersten Verifizierung wird der Versuch aus Kap. 
5.4.3, Tabelle 19 mit der Methode des Nächsten-Nachbarn wiederholt. Der 
Zeitvorteil ist erheblich, denn in Matlab® wird damit nur 1/5 der Rechenzeit 
benötigt. 
Wie unten stehende Tabelle 22 zunächst vermuten lässt, sind die 
Abweichungen geringfügig, denn die mittlere Abweichung der absoluten 
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Disparitäten ist nur 0.10 px. Dies gilt allerdings nur bei gut strukturierten 
Abbildungen. 
Ist die Vorlage mit Bereichen schwacher Struktur, kommt es mit der Nächster-
Nachbarn-Interpolation zu erheblichen Fehlberechnungen.  
Bei 26 von 469 Korrelationen waren die Abweichungen größer als ein Pixel. 
Damit ist die Nächster-Nachbar-Interpolation zu ungenau. 
 

Tabelle 22: Abweichungen der Abstände und Disparitäten bei Rektifizierung 
mit Nächster-Nachbar-Interpolation im Vergleich zur bilinearen Interpolation 

Abstandsabweichung  Abweichung der Disparität 
vom erwarteten Wert  Abstand, 

erwarteter 
Wert 

bei 
Nächster- 
Nachbar- 

Interpolation 

bei  
bilinearer 

Interpolation

bei 
Nächster- 
Nachbar- 

Interpolation

bei  
bilinearer 

Interpolation

0.984 m -0.08 % -0.04 % 0.28 px 0.12 px 
1.974 m 0.07 % -0.01 % -0.12 px 0.02 px 
2.976 m -0.09 % -0.03 % 0.10 px 0.04 px 
4.969 m -0.08 % 0.06 % 0.05 px -0.04 px 
7.982 m -0.16 % -0.17 % 0.07 px 0.07 px 
9.995 m -0.37 % -0.27 % 0.13 px 0.09 px 
14.97 m -0.40 % -0.13 % 0.09 px 0.03 px 
19.97 m 0.15 % 0.06 % -0.03 px -0.01 px 
25.01 m 0.28 % -0.10 % -0.04 px 0.01 px 
40.01 m 2.07 % -0.38 % -0.17 px 0.03 px 
64.96 m 0.32 % -0.18 % -0.02 px 0.01 px 

Mittlerer 
Fehler der 
Absolut-

werte 

0.4 % 0.1 % 0.10 px 0.04 px 

5.4.5.3 Verringerung der Präzision der Bilinearkoeffizienten 

Eine weitere Vereinfachung ist, die Präzision der Bilinearparameter für die 
Rektifizierung auf 7 Bit Genauigkeit zu reduzieren. Dies hat in der Hardware 
den Vorteil, dass weniger Daten transportiert werden müssen und je nach 
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System Ganzzahloperationen schneller ablaufen. Die sich ergebenden 
Abweichungen der Intensitätswerte der rektifizierten Bildpunkte zur 
Gleitkommagenauigkeit werden hier nochmal gezeigt, s. Bild 170. 
 

 
Bild 170: Pixelfehler bei 7 Bit Genauigkeit für die Interpolation  
im Vergleich zu Gleitkommagenauigkeit 

Bei 1600 Verschiebungen in x- und y-Richtung und bei gleich vielen 
Disparitäten ist – bis auf eine Ausnahme – die maximale absolute Abweichung 
von der erwarteten Verschiebung oder Disparität, die sich durch die bilineare 
Interpolation bei voller Präzision im Vergleich zur 7 Bit bilinearen Interpolation 
ergibt, immer kleiner als 0.006 px und damit vernachlässigbar. Die Ausnahme 
tritt bei einem fast homogenen Bereich auf, und hier hat zufälligerweise die 7 
Bit bilineare Interpolation das richtige Ergebnis geliefert. 
 

5.4.5.4 Reduzierung der Rektifikation auf benutzte Bereiche 

Für die Translationsbestimmung wird immer das linke Bild der Stereokamera 
verwendet. Hier werden nur die Pixel rektifiziert, die in ein maximal großes 
Rechteck passen, das nur Bildpunkte enthält und damit auch ausschließlich 
die dafür benötigten Bilinearparameter herangezogen, s. Bild 171. 

 
Bild 171: Vollständig rektifiziertes Bild, genutzte Pixel sind im inneren 
Rechteck 
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Bei der Abstandsberechnung müssen nur die Bereiche rektifiziert werden, die 
auch benutzt werden. Da ein Ausschnitt aus dem linken Bild, s. Bild 172, im 
rechten Bild gesucht wird und das rechte Bild nur zur Abstandsberechnung 
verwendet wird, muss wegen der gleichen Epipolarlinien nur ein Streifen 
rektifiziert werden, s. Bild 173. 

Bild 172: Linkes Stereobild, 
Suchfenster 

Bild 173: Rechtes Stereobild, zu 
durchsuchender Streifen 

 

5.4.5.5 Suchbereich für die Bewegungserfassung einschränken 

Das Suchen eines Teilbildes im ganzen vorhergehenden Bild ist sinnvoll bei 
großen Bewegungen (hohe Geschwindigkeiten), würde allerdings bei voller 
Auflösung des Bildes einen zu großen Rechenaufwand erfordern. Deshalb 
werden im Folgenden einige Strategien vorgestellt. 
Bei geringen Bewegungen wird ein Teilbild (z. B. 32 x 32 px, s. Bild 174) in 
einem Fenster – großes Quadrat (z. B. 128 x 128 px) in Bild 175 – gesucht. 
Zusätzlich wird dieses Fenster entsprechend der vorhergehenden Bewegung 
positioniert, deutlich zu sehen in Bild 175, denn das Fenster ist nicht mehr in 
der Mitte des Bildes, sondern etwas weiter rechts. Die Kamera bewegte sich in 
diesem Beispiel von links nach rechts. Das vorhergehende Bild ist in Bild 174 
dargestellt. 
Die Vorhersage ist in diesem Beispiel sehr gut, denn das gefundene Teilbild, 
kleines Quadrat in Bild 175, befindet sich recht genau in der Mitte des zu 
durchsuchenden Bereichs, großes Quadrat in Bild 175. 
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Bild 174:  
Vorhergehendes Bild  
mit zu suchendem Teilbild 

Bild 175:  
Aktuelles Bild 
mit zu durchsuchendem 
Fenster (großes Quadrat) 
und gefundenem Teilbild 
(kleines Quadrat) 

Nachführung des zu durchsuchenden Fensters, 
 Bewegung der Kamera von links nach rechts 

 

5.4.5.6 Bildverkleinerung 

Bei der Verfolgung der vermuteten neuen Position sind einige Sonderfälle zu 
beachten: 

• Start 
Am Anfang ist die vorhergehende Bewegung unbekannt. Deshalb muss im 
ganzen Bild gesucht werden. Um einen immensen Rechenaufwand zu 
vermeiden, werden das aktuelle und das vorhergehende Bild auf 1/8 
Kantenlänge verkleinert (s. Bild 178) und der Suchprozess wird zunächst 
trotz geringerer Auflösung im gesamten Bereich dieser Bilder durchgeführt. 
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• Große Geschwindigkeit 
Die Geschwindigkeit oder die Beschleunigung ist so groß, dass die Gefahr, 
das Teilbild zu verlieren, deutlich wächst. Dann werden auf 1/4 oder 1/8, je 
nach Größe der Geschwindigkeit, verkleinerte Bilder genommen. In den auf 
1/4 verkleinerten Bildern (Bild 177) werden für das zu suchende Teilbild 
und das zu durchsuchende Fenster die gleichen Kantenlängen wie im Bild 
der vollen Auflösung genommen. Ein Teilbild mit einer Kantenlänge von 
32 px in einem auf ein Viertel verkleinertem Bild (Bild 177) hat bei gleicher 
Position den gleichen Bildinhalt wie ein Teilbild der Kantenlänge von 128 px 
im unverkleinerten Bild (Bild 176), allerdings ist die Auflösung verschieden. 

Die 1/8 großen Bilder (Bild 178) werden immer komplett mit einem 
20 x 20 px großen Teilbild durchsucht. 

• Geringe Flughöhe 
Wenn der Abstand – die Flughöhe des UAS – über dem Boden gering ist, 
ergeben kleine Bewegungen schon große Verschiebungen in der 
Abbildung. Es werden unter 15 m Flughöhe 1/4 große Bilder verwendet und 
unter 6 m Flughöhe werden 1/8 große Bilder benutzt. 

• Homogener Bildbereich 
Ist das zu suchende Teilbild – z. B. durch Überbelichtung oder 
Unterbelichtung – homogen, wird die vorhergehende Berechnung 
herangezogen. 

Die Homogenität kann durch Addition der absoluten Differenzen 
benachbarter Pixel des Teilbildes ermittelt werden. Wenn die Summe nahe 
null ist, gilt das Teilbild als homogen. 
Bei Aufnahmen von überflogenen Gebieten entstehen mit den verwendeten 
Kameras homogene Bildbereiche nur durch Unter- oder Überbelichtung. 
Deshalb wird in dieser Arbeit nur der Intensitätsmittelwert des Teilbildes, 
der ohnehin für die Korrelation berechnet werden muss, herangezogen. Ist 
dieser Mittelwert null, so ist das Bild unterbelichtet. Bei einem Wert von 255 
ist das Teilbild überbelichtet. 
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Bild 176: Volle Bildgröße Bild 177:  
1/4 Größe 

Bild 178:  
1/8 Größe 

Bild 176 bis Bild 178: Verschiedene Bildauflösungen zur Berechnung der 
Verschiebungen und Disparitäten in Abhängigkeit von der 
Translationsgeschwindigkeit und des Abstandes. 
Die kleinen Quadrate stellen die Größe für das zu suchende Teilbild dar, 
während die großen Rahmen die Maße des zu durchsuchenden Fensters 
wiedergeben. 

 
Die Verkleinerung führt zu größeren Fehlern, die aber bei hohen 
Geschwindigkeiten prozentual nicht sehr ins Gewicht fallen. Beim Vergleich 
der Verschiebungen in Pixel bei Verkleinerung der Bilder ergeben sich Werte 
entsprechend Tabelle 23. Hierbei wird zur Berechnung der Translation bei 1/4 
Bildgröße die errechnete Verschiebung in Pixel mit 4 multipliziert und bei 1/8 
Bildgröße wird die errechnete Verschiebung in Pixel mit 8 multipliziert. 

Tabelle 23: Absolute Fehler der Verschiebungsberechnung bei Verkleinerung 
der Bilder auf 1/4 und 1/8 Bildgröße 

 
1/4 Bildgröße 

Differenz zur vollen 
Bildgröße 

1/8 Bildgröße 
Differenz zur vollen 

Bildgröße 

Maximale Differenz 0.99 px 1.91 px 

Mittelwert der 
absoluten Differenzen 

0.2 px 0.4 px 

 
Wegen des Berechnungsaufwands wird die erste Verkleinerung auf 1/2 
Bildgröße mit einem kleinen 3 x 3 Gaußfilter durchgeführt, während die 
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weiteren Verkleinerungen bis zu 1/8 Bildgröße mit jeweils einem 5 x 5 
Gaußfilter vollzogen werden. 
Die Berechnungszeit der Kreuzkorrelation ist bei voller und 1/4 Bildgröße 
gleich, bei ein 1/8 Bildgröße etwas kürzer. 

5.4.5.7 Nachbearbeitung: Ausschließen deutlich falsch 
berechneter Werte 

Teilweise durch Verdeckung und seltener durch falsche Korrelationsmaxima 
sind errechnete Geschwindigkeiten falsch. Diese 
Geschwindigkeitsabweichungen werden über maximal real vorkommenden 
Geschwindigkeitszu- oder -abnahmen, die die Dynamik des Fluggerätes 
zulässt, detektiert. 
Die maximal auftretende Beschleunigung a des Blimps durch eine Windböe 
beträgt 2 m/s2. Bei einer Bildrate von 12/s ist das Zeitintervall Δt =  1/12 s. Aus 
Gleichung (5.3) ergibt sich, dass sich in der Zeit zwischen zwei Bildaufnahmen 
die Geschwingigkeit des verwendeten Fluggerätes um maximal 0.6 km/h 
ändert. 

 max 2

2 1 0.6 /
12

mv a t s km h
s

Δ = Δ = =  (5.3) 

Überschreiten die mit der Bildverarbeitung ermittelten 
Geschwindigkeitsänderungen den Wert Δvmax, werden vorhergehende 
Berechnungen herangezogen und die aktuelle Geschwindigkeitsberechnung 
nach folgender Formel (digitales Tiefpassfilter erster Ordnung) angeglichen: 

 ( ) ( 1) 0.97 ( ) 0.03f fv t v t v t= − ⋅ + ⋅  (5.4) 

mit: 
Momentane gefilterte Geschwindigkeit: vf(t) 
Vorhergehende gefilterte Geschwindigkeit: vf(t-1)  
Momentane errechnete Geschwindigkeit: v(t) 

 
Liegt keine Geschwindigkeitszu- oder -abnahme von über 0.6 km/h vor, wird 
die aktuelle Geschwindigkeit übernommen: 

 ( ) ( )fv t v t=  (5.5) 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


165 

Der Einfachheit halber könnte anstatt des Tiefpassfilters, Gleichung (5.4), 
direkt der alte Filterwert vf(t-1) genommen werden. Dies führt unter 
bestimmten Umständen dazu, dass dieser Wert nie verlassen wird und die 
wahre Geschwindigkeit nicht mehr erfasst wird, insbesondere dann, wenn 
erste berechnete Werte aufgrund zu geringen Abstandes der Kamera zur 
betrachteten Szene außerhalb des Erfassungsbereichs der Disparität liegt und 
damit falsche Abstände berechnet werden. Mit Gleichung (5.4) wird 
sichergestellt, dass die Berechnung zum wahren Wert der Geschwindigkeit 
führt. Der Tiefpassfilterkoeffizient von 0.03 ist ein Kompromiss zwischen 
schnellem Einschwingverhalten und Fehlbestimmung der Geschwindigkeit. 
Die Sprungantwort des Filters führt nach 75 Bildern zu einer 10 % Abweichung 
und nach 151 Bildern zu einer 1 % Abweichung. 
 
In Bild 179 ist der stark vereinfachte Ablauf der Bildverarbeitung zur Abstands- 
und Streckenberechnung gezeigt. 
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Bild 179: Vereinfachtes Flussdiagramm der Bildverarbeitung  

Nächstes linkes Bild rektifizieren, auf 1/4
und 1/8 verkleinern und alle 3 Bilder als
aktuelle Bilder speichern. 

Linkes Bild rektifizieren, auf 1/4 und 1/8
verkleinern und alle 3 Bilder als
vorhergehende Bilder speichern. 

Mittleren linken Streifen des zugehörigen
rechten Bildes rektifizieren. 

Teilbild aus Bildmitte des linken aktuellen
Bilds im Streifen des rechten Bilds über
ZNCC suchen. Abstand berechnen. 

Abstand < 6m oder
vorhergehende Ver-
schiebung sehr groß? 

Suchfenster entsprechend alten
gefundenen Verschiebungen in x- und y-
Richtung aus dem vorhergehenden linken
Bild im neuen linken Bild positionieren. 

Abstand < 15m oder
vorhergehende Ver-
schiebung groß? 

1/8 Bildgrößen 
verwenden.

1/4 Bildgrößen 
verwenden. Volle Bildgrößen verwenden.

Über NCC Verschiebungen in px ermitteln
und daraus mit dem Abstand und der
Bildrate die Strecke, Position und
Geschwindigkeit bestimmen. 

ja

ja

Teilbild homogen? 
Alte Ergebnisse 

verwenden. 
ja
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5.4.6 Realitätsnahe Versuche 

Die im Folgenden gezeigten Versuche sind mit komplizierteren Szenen 
durchgeführt worden, als sie bei Flugaufnahmen vorliegen würden, da sowohl 
Gebäude mit davor parkenden Fahrzeugen und auch die Vegetation 
überwiegend vertikale Strukturen aufweisen, die durch die Nähe und die 
seitliche Ansicht Verdeckungen wesentlich häufiger als bei einer Ansicht von 
oben auftreten lassen. Die Aufnahmen wurden mit einer auf einem Fahrzeug 
seitlich montierten Kamera erstellt. 
Die Genauigkeit des Verfahrens kann über die berechnete Geschwindigkeit 
geschätzt werden. Gibt es in der Geschwindigkeit Sprünge, so ist vermutlich 
eine Verdeckung vorhanden oder die Korrelation führte nicht zum erwarteten 
Ergebnis. 
Einige Beispiele zeigen Szenen, die zu Fehlinterpretationen führen. Hierzu 
gehören Verdeckung und periodische Bildausschnitte.  
Mit Bild 180 und Bild 181 ist ein Extremfall gezeigt. Dort sehen linke 
Kellerfenster und das Kellerfenster daneben gleich aus und zusätzlich 
verdeckt ein Baumstamm einen Teil der Szene. In diesem Fall war die 
errechnete Korrelation mit dem falschen Fenster mit 0.99 sehr hoch, so dass 
auch hierüber keine richtige Diskriminierung möglich wäre. 
 

Bild 180: Translation, zu suchender 
Bildausschnitt bei Verdeckung  

Bild 181: Gefundener Bildausschnitt: 
linkes kleines Quadrat 
richtige Position: rechtes kleines 
Quadrat 

Ein anderer Fall ist, wenn die Translation, Bild 182 und Bild 183, auf einer 
anderen Ebene, als es dem errechneten Abstand entspricht, bestimmt wird. In 
Bild 184 und Bild 185 wird für die Abstandsbestimmung der Laternenmast mit 
einbezogen und dessen Abstand zu 11.5 m berechnet, während für die 
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Translation nur die Hauswand im Abstand von 23.2 m verwendet wird. 
Erschwerend ist zusätzlich die dominierende gerade Kante des Kellerbereichs. 
Bei der darauffolgenden Aufnahme werden die Abstandsbestimmung und die 
Translationsberechnung durch den Masten vorgegeben. 
 

  
Bild 182: Translation, zu suchender 
Bildausschnitt bei Verdeckung, 
aktuelles Bild 

Bild 183: Gefundener Bildausschnitt: 
Gebäudeteil ohne Laternenmast, 
vorhergendes Bild 

 

  
Bild 184: Linkes Stereobild mit  
zu suchendem Fenster, 
(identisch mit Bild 182)  

Bild 185: Rechtes Stereobild mit 
gefundenem Bildausschnitt 
einschließlich Mast 

 
Die Entfernungsbestimmung wird erschwert, wenn die betrachtete Szene 
nahezu parallel zur optischen Achse ist und zusätzlich, wie in Bild 187 zu 
sehen ist, nur im oberen Teil des zu suchenden quadratischen Fensters eine 
dominante Struktur vorhanden ist. Zur Verdeckungsdetektion werden, wie in 
Kap. 3.2.4 dargestellt, ein kleiner und ein großer Bildanteil zur 
Abstandsbestimmung herangezogen, s. kleines und großes Quadrat in  
Bild 187. Im vorhergehenden linken Stereobild, Bild 186, ist noch etwas 
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Struktur im linken mittleren Teil des Quadrats zu erkennen, während in  
Bild 187 nur im oberen Teil des zu suchenden großen quadratischen Fensters 
eine dominante Struktur vorhanden ist. Dies führt dazu, dass im 
vorhergehenden Fall, Bild 186, der Abstand mit 13.1 m bestimmt wird und im 
darauf folgenden Bildpaar der Abstand für das große Quadrat zu 16.6 m und 
für das kleine Quadrat zu 13 m errechnet wird. Der Widerspruch bei den 
Abstandsberechnungen im selben Bild wird als Verdeckung detektiert, die 
allerdings nicht vorhanden ist. 
 
 

 
Bild 186: Szene weitgehend parallel 
zur optischen Achse, mit Struktur im 
Bildmittelteil des zu suchenden 
Fensters 

Bild 187: Szene weitgehend parallel 
zur optischen Achse, wenig Struktur 
im Bildmittelteil des zu suchenden 
Fensters 
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Fahrt entlang eines Gebäudes mit einigen Verdeckungen 
Die Aufnahmen sind während einer Fahrt mit etwa 20 km/h entlang eines 
Gebäudes, welches durch 13 Bäume, Fahnenmaste oder Laternen in kleinen 
Abschnitten verdeckt ist, erstellt worden. Das Bild 188 gibt den Verlauf 
abschnittsweise wieder. 
 

Abbildung Nr. 12 Abbildung Nr. 20 Abbildung Nr. 52 Abbildung Nr. 72 

Abbildung Nr. 92 Abbildung Nr. 112 Abbildung Nr. 132 Abbildung Nr. 152

Bild 188: Bildausschnitte aus einer Fahrt entlang eines Gebäudes mit einigen 
Verdeckungen und Angabe der Bildnummer innerhalb der Aufnahmesequenz 

In Bild 189 sind die berechneten Verläufe der Abstände und 
Geschwindigkeiten wiedergegeben. Die Hausfassade ist jeweils etwa 22 m 
von der Kamera entfernt, während die Fahnenmasten 15 m, die Bäume jeweils 
9 m und die beiden Laternen unterschiedlich entfernt sind. Da die Bildrate mit 
12 Bildern pro Sekunde konstant ist, gibt die Bildnummer auch proportional die 
Zeit wieder.  
Der Verlauf der Geschwindigkeit weist einige Sprünge auf. Bis auf den Sprung 
bei Bildnummer 14 – eine falsche Korrelation entlang der Kellerkante – sind 
die Abweichungen durch Verdeckungen bedingt, da dort die Translationen 
entweder auf anderen Ebenen als den berechneten Abständen bestimmt 
werden oder die Verdeckung zu große Bildunterschiede erzeugt, um richtige 
Korelationsergebnisse zu erlangen. 
Die Welligkeit der Geschwindigkeitskurve mit einer Periodendauer von etwa 
417 ms kann eventuell aus Vibrationen des Fahrzeugs erklärt werden. 
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Die Gebäudebreite ist 65.7 m. Werden alle berechneten Translationen von der 
linken bis zur rechten Hauskante addiert, ergibt sich eine Strecke von 66.2 m. 
Dies entspricht einem Fehler von 0.75 %. 

 

Bild 189: Berechnete Geschwindigkeiten und Abstände mit Bezeichnung der 
Verdeckungen bei einer Fahrt entlang eines Gebäudes mit einigen 
Verdeckungen 

Bild 190 gibt die nach den Gleichungen (5.4) und (5.5) bedingte Filterung der 
Geschwindigkeit, die bis auf die überlagerte Welligkeit einigermaßen glatt ist, 
wieder. 
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Bild 190: Wie Bild 189, aber mit gefilterten Geschwindigkeiten 

Fahrt entlang eines Gebäudes mit vielen Verdeckungen 
Bei dieser Fahrt sind viele Verdeckungen durch teilweise erfasste Autodächer, 
Personen, Laternen und Bäume aufgetreten. Das Bild 191 gibt die Situation 
wieder. Trotz der Verdeckungen sind meistens, wie dem Bild 192 entnommen 
werden kann, die Geschwindigkeiten richtig berechnet worden. 
In Bild 193 ist die gefilterte Geschwindigkeit gezeigt. 
 

Abbildung Nr. 15 Abbildung Nr. 41 Abbildung Nr. 58 Abbildung Nr. 91 

Abbildung Nr. 116 Abbildung Nr. 141 Abbildung Nr. 166 Abbildung Nr. 191

Bild 191: Bildausschnitte aus einer Fahrt entlang eines Gebäudes mit vielen 
Verdeckungen und Angabe der Bildnummer innerhalb der Aufnahmesequenz 
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Bild 192: Berechnete Geschwindigkeiten und Abstände bei einer  
Fahrt entlang eines Gebäudes mit vielen Verdeckungen 

 
 

 
Bild 193: Wie Bild 192, aber mit gefilterten Geschwindigkeiten 
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Fahrt entlang einer Böschung 
Die Fahrt entlang einer Böschung ist durch die fast zur optischen Achse 
parallelen Flächen mit geringer und periodischer Struktur, Abbildungen Nr. 15 
und 105 in Bild 194, den Verdeckungen innerhalb des Buschwerks, z. B. 
Abbildung Nr. 157, und der Nähe der zur beobachteten Szene bei relativ 
hohen Geschwindigkeiten in Bezug zum Abstand, siehe Abbildungen Nr. 212 
und 256, eine Herausforderung für den Algorithmus. In der zweiten Hälfte der 
Bildsequenz, ab Abbildung 280, gab es keine Verdeckungsprobleme mehr. 
Das führte zu einem einigermaßen glatten Geschwindigkeitsverlauf, der 
unverändert im gefilterten Verlauf, Bild 196, wiederzufinden ist. 
 
 

Abbildung Nr. 15 Abbildung Nr. 75 Abbildung Nr. 105 Abbildung Nr. 157 

Abbildung Nr. 212 Abbildung Nr. 256 Abbildung Nr. 377 Abbildung Nr. 557 

Bild 194: Bildausschnitte aus einer Fahrt entlang einer Böschung mit Angabe 
der Abbildungsnummer innerhalb der Aufnahmesequenz 
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Bild 195: Berechnete Geschwindigkeiten und Abstände bei einer Fahrt entlang 
einer Böschung 

 
 
 

 
Bild 196: Wie Bild 195, aber mit gefilterten Geschwindigkeiten 
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5.5 Zusammenfassung Kapitel 5 
Über eine virtuelle Welt und einen XY-Tisch wurde die grundsätzliche Funktion 
der Verfahren nach Lucas&Kanade und der Kreuzkorrelation nachgewiesen. 
Flugaufnahmen wurden mit einer Monokamera durchgeführt, da die benutzte 
Hardware für die Stereokamera zu schwer war. 
 
Der Kalibrierungs- und Rektifizierungserfolg der Stereokamera ist gut, auch 
wenn an den weniger wichtigen Rändern eine Abweichung von bis zu 0.6 px 
feststellbar ist. Das Ziel, eine Subpixelgenauigkeit von besser als 0.3 px für 
große Abstände, wurde erreicht. 
Die erfassbaren Geschwindigkeiten bei unterschiedlichen Höhen genügen den 
Anforderungen für das Experimentierluftschiff.  
Strecken und Abstände können mit dem vorgestellten Verfahren bei 
verdeckungsfreien Szenen mit Fehlern besser als 2 % berechnet werden. 
Geschwindigkeiten und Strecken sind bei Verdeckungen nur gefiltert 
brauchbar und weisen dann auch kleine Ausschläge auf. Bei Flügen über eine 
Landschaft sind Verdeckungen wesentlich seltener zu erwarten. 
Um eine Echtzeitverarbeitung zu garantieren, wurden Vereinfachungen 
vorgestellt, die die erforderliche Genauigkeit beibehalten. Hierzu zählen: 

• Verringerung der Präzision der Bilinearkoeffizienten 
Hierbei erwies sich eine 7-Bit-Genauigkeit als völlig ausreichend, während 
die Nächsten-Nachbar-Interpolation versagte. 

• Reduzierung der Rektifikation auf benutzte Bereiche 

• Suchbereich für die Bewegungserfassung einschränken 

• Bildverkleinerung je nach Situation 

Mit diesen Vereinfachungen werden im folgenden Kapitel verschiedene 
Plattformen zur Echtzeitberechnung vorgestellt. 
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6   Implementation in Hardware 
 

6.1 Berechnungszeiten 
Angestrebt ist eine Bildrate von 12/s. Dies ergibt eine zur Verfügung stehende 
Zeit von 83 ms für jede Bildfolge. 
Die umfangreichen Berechnungen für die Rektifizierungen und für die 
Kreuzkorrelationen nehmen auf normalen Arbeitsplatzrechnern zu viel Zeit in 
Anspruch, um eine Echtzeitfähigkeit zu erreichen, s. Tabelle 24. Zusätzlich ist 
noch die Leistungsaufnahme der Hardware zu berücksichtigen1.  

Tabelle 24: Rechenzeiten in Matlab® bei einem 64-Bit, 3.3-GHz-Prozessor,  
zu suchendendes Teilbild: 32 x32 px, zu durchsuchendes Fenster: 
128 x128 px, Bildmaße rektifiziert: 850 x 1224 px 

Prozess Benötigte 
Rechenzeit 

Ganzes linkes Bild rektifizieren 0.46 s 

Linkes Bild auf 1/4 und 1/8 verkleinern 0.06 s 

Benötigten Ausschnitt des rechten Bildes rektifizieren 0.002 s 

Rechten Ausschnitt auf 1/4 verkleinern 0.003 s 

Korrelation für Translation 0.44 s 

Korrelation für Abstand 0.09 s 

Sonstige Berechnungen 0.001 s 

Gesamtzeit  1.06 s 
 
Ein 32-Bit, 3.0 GHz-PC benötigt ungefähr die doppelten o. g. Rechenzeiten. 
Daraus ist zu ersehen, dass die Prozessdauer sehr plattformabhängig ist. 

                                         
1 Der Gedanke, die Bilddaten an die Bodenstation zu senden, dort zu verarbeiten und 
die Ergebnisse zurück zu senden, scheitert an der hohen erforderlichen Bandbreite 
bei einer Reichweite von mehreren Kilometern, für die keine Sendegenehmigung zu 
erhalten ist. 
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6.2 Maschinennahe Programmierung 
Die C-Sprache ist sehr maschinennah. Dadurch werden Befehle wesentlich 
schneller ausgeführt als in Matlab®. 
Der geforderten Berechnungszeit von 83 ms ist durch Programmierung in C++ 
deutlich näher zu kommen. Auf demselben Arbeitsplatzrechner, wie in Tabelle 
24 erwähnt, benötigte die Korrelation für eine Translation statt 440 ms nur 
noch 68 ms. Dies entspricht einem 6.5-fachen Zeitgewinn. 

6.3 Parallelisierung 
Ein vielversprechender Ansatz ist das Parallelisieren der Algorithmen. Ein 
Algorithmus ist dann parallelisierbar, wenn er in voneinander kausal 
unabhängigen Unteralgorithmen aufgeteilt werden kann. In der 
Bildverarbeitung sind insbesondere pixel-lokale Operationen für parallele 
Verarbeitung prädestiniert. 
Als Beispiel sei die Rektifizierung des linken Bildes erwähnt. Jedes der ca. 106 
Pixel des rektifizierten Bildes wird durch bilineare Interpolation aus 4 Pixeln 
des Originalbildes gewonnen. Die Berechnungen können für jeden 
rektifizierten Bildpunkt, da sie voneinander unabhängig sind, nebenläufig 
erfolgen. Diese nebenläufigen Berechnungen sind innerhalb der ersten sechs 
Prozesse der Tabelle 24 durchführbar. Zusätzlich sind die Prozesse „linkes 
Bild rektifizieren“ und „linkes Bild verkleinern“ mit „rechtes Bild rektifizieren“, 
„rechtes Bild verkleinern“ und „Korrelation für Abstand“ parallelisierbar,  
s. Bild 197. 
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Bild 197: Parallelisieren der Prozesse zur Abstands- und Streckenmessung 

6.4 Hardwareprozessoren 
Dezidierte Hardware hat neben der Berechnungsgeschwindigkeit, besonders 
wenn sie zusätzlich Prozesse parallel verarbeitet, den Vorteil, für ein kleines 
Fluggerät ein geringes Volumen und kleine Masse bei niedrigem 
Energiebedarf zu haben. 
Als Alternativen werden untersucht: 

• DSP (Digital Signal Processor) 

• FPGA (Field Programmable Gate Array)  

• GPGPU (General Purpose Graphics Processing Unit)  

Obwohl ein DSP Algorithmen nicht parallel verarbeiten kann, wird er trotzdem 
in die folgende Betrachtung miteinbezogen. 

Benötigten Auschnitt 
rektifizieren 

parallelisierbar 

Ausschnitt auf 1/4 
verkleinern 

parallelisierbar 

Korrelation für Abstand 
parallelisierbar 

Ganzes Bild 
rektifizieren 

parallelisierbar 

Bild auf 1/4 und 1/8 
verkleinern 

parallelisierbar 

Entscheidungsblock 

Korrelation für 
Translation 

mit voller oder 
reduzierter Auflösung

parallelisierbar 

Linkes Bild Rechtes Bild
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6.4.1 DSP 

Ein DSP verarbeitet Daten bei einer hohen Taktrate nacheinander und führt 
eine Multiplikation mit zusätzlich einer Addition in einem Taktzyklus durch. Die 
Programmierung erfolgt meist über die C-Sprache. 
Mit einem DSP in Ganzzahlarithmetik wurde die Echtzeitfähigkeit für die 
Berechnung der NCC nicht annähernd erreicht [97], obwohl hierzu das für 
serielle Verarbeitung schnelle Verfahren von S. D. Wei und S. H. Lai [81], s. 
Kap. A.4, implementiert wurde. 
Nach Recherchen des Autors ist kein Artikel über das Implementieren einer 
Bildverarbeitungskorrelation in ein DSP gefunden worden, so dass 
anzunehmen ist, dass die Korrelation hierfür nicht sinnvoll in einem DSP 
durchführbar ist. 
 

6.4.2 FPGA 

Ein FPGA verarbeitet viele logische Operationen nebenläufig und ist trotz der 
relativ niedrigen Taktrate sehr schnell. Zur Programmierung sind spezielle 
Hardwarebeschreibungssprachen entwickelt worden. VHDL (Very High Speed 
Integrated Circuit Hardware Description Language) und Verilog beschreiben 
das Verhalten einer Schaltung. Die kompilierten Anweisungen können z. B. in 
ein FPGA implementiert werden, das dann genau dem beschriebenen 
Verhalten folgt. Allerdings ist die Programmierung sehr zeitaufwendig und das 
Finden von Programmierfehlern komplex. 
 
In der Literatur [98], [99] sind erfolgreiche Implementierungen der NCC in ein 
FPGA erwähnt1. Der Zeitgewinn wird in [98] mit 80-fach gegenüber einem 
Arbeitsplatzrechner angegeben. Dies wäre für die Durchführung der Abstands- 
und Streckenmessung, wie in dieser Arbeit vorgestellt, ausreichend. Allerdings 
scheint der 80-fache Gewinn sehr hoch angesetzt zu sein, denn in einer 
anderen Literaturstelle [100] ist der Gewinn mit nur 10-fach angegeben. 
 

                                         
1 Ein eigener Versuch Bildverarbeitungsoperationen in ein FPGA-System einzufügen, 
scheiterte an der falschen Spezifikation des Bausteins, der anstatt bei 300 MHz nur 
bei 80 MHz fehlerfrei funktionierte. 
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6.4.3 GPGPU 

Eine GPGPU (General Purpose Graphics Processing Unit) ist im Wesentlichen 
eine GPU (Graphics Processing Unit), die für andere Anwendungen als nur 
grafische Darstellungen konzipiert ist. Die GPGPU hat einen erweiterten 
Befehlssatz und kann einfach über die C-Sprache programmiert werden. 
Während eine CPU für Programme mit vielen Verzweigungen ausgelegt ist, 
verarbeitet eine GPU Daten, die sehr schnell einfließen, parallel. Im 
Unterschied zu einer CPU besitzt eine GPU sehr viele (bis zu mehreren 1000) 
Recheneinheiten (ALUs), s. Bild 198. 
 

 

Bild 198: Architektur einer GPU im Vergleich zu einer CPU 
Quelle: http://docs.nvidia.com/cuda/cuda-c-programming-guide/ 

Der Einsatz einer GPU zur Berechnung der NCC ist in [101] mit 
Filmsequenzen, die mit dem Luftschiff der FernUniversität in Hagen 
aufgenommen wurden, untersucht worden. Die Algorithmen sind in C++ 
programmiert. Dabei sind die Prozesszeiten sowohl für den Ablauf in einer 
CPU als auch in einer GPU und der direkte NCC-Algorithmus mit dem 
Verfahren über die Schwarzsche Ungleichung, s. Gleichung (3.56), verglichen 
worden, s. Tabelle 25. 
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Tabelle 25: Durchschnittliche und maximale Rechenzeiten für die NCC auf 
einer CPU und einer GPU für eine Translation ohne vorhergehende 
Rektifizierung. 64-Bit, 3.3-GHz-Prozessor, zu suchendendes Teilbild: 
32 x 32 px, zu durchsuchendes Fenster: 128 x 128 px 

CPU-Zeit GPU-Zeit 
Methode 

Mittelwert Maximalwert Mittelwert Maximalwert

Direkte NCC 68 ms 68 ms 4.7 ms 4.7 ms 

NCC über 
Schwarzsche 
Ungleichung 

3.9 ms 12 ms 2.5 ms 26 ms 

 
Der Vergleich der Berechnungszeit für die Korrelation aus Tabelle 24 (440 ms) 
und Tabelle 25 (4.7 ms) lässt den Schluss zu, dass die verwendete GPU für 
die NCC-Berechnungen und die Rektifizierung etwa 100-mal schneller abläuft 
als in Matlab® und somit die Echtzeitforderung erfüllt werden kann. Allerdings 
ist zu beachten, dass die Berechnung auf der GPU zusammen mit einem 
schnellen Arbeitsplatzrechner erfolgt und die Leistungsaufnahme allein der 
GPU etwa 140 Watt und für das Komplettsystem 240 Watt ist. Damit ist dieses 
System derzeit nicht direkt auf einem kleinen Fluggerät einsetzbar. 
Deshalb wird die Implementierung auf eine mobile Plattform untersucht und 
zukünftig durchgeführt. Ausgewählt ist die Jetson TK1-Karte der Firma Nvidia 
wegen der Leistungsfähigkeit, der Masse und der Leistungsaufnahme, s.  
Bild 199. 
 

 
 

Bild 199: Nvidia Jetson TK1-Karte 
Quelle: http://www.nvidia.de/object/jetson-tk1-embedded-dev-kit-de.html 

133m

133m
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Einige Kerndaten der Nvidia Jetson TK1-Karte: 
• Grafikprozessor:  192 CUDA-Recheneinheiten, 158 GFLOPS1 (single 

precision) 

• CPU:  quad-core 2.3 GHz 

• Arbeitsspeicher:  2 GB DDR3L 933 MHz RAM 

• Datenspeicher:  16 GB Flash 

• Leistungsaufnahme: 12.5 W bei 12 V 

• Masse:  120 g 

Die Leistungsfähigkeit dieser Karte wurde auf der Internetseite 
http://arrayfire.com/arrayfire-on-nvidia-tegra-tk1/ getestet. Dort ergab sich für 
eine Faltung von einem 5 x 5 Filter mit einem 1280 x 720-px-Bild eine 
Berechnungszeit von 3.6 ms. Dies entspricht 2.5*109 Multiplikationen und 
Additionen pro Sekunde oder einer Multiplikation und Addition in 0.4 ns. 
Wird die Zeit von 0.4 ns als Grundlage für eine Abschätzung der gesamten 
Berechnungszeit für die Abstands- und Translationsbestimmung genommen, 
so ergibt sich eine Zeit von 4.4 ms, s. Tabelle 26. 
Die Zeiten zu den relativ wenigen Berechnungen für Divisionen und 
Quadratwurzeln können vernachlässigt werden, auch wenn laut Firma NVIDIA 
[102] Divisionen 9-mal und Wurzelberechnungen 4-mal länger dauern als 
Multiplikationen. 
 
Nicht berücksichtig ist hierbei, dass im Verfahren dieser Arbeit wesentlich 
mehr Daten transportiert werden müssen. Schon alleine für die Rektifizierung 
müssen alle Bilinearkoeffizienten in der GPU verarbeitet werden. Dies 
bedeutet einen etwa 4-fachen Datentransport gegenüber der o. g. Faltung, der 
nach [101], [103] erheblich in die Prozesszeit eingeht. 
Trotzdem ist die geforderte Berechnungszeit von 83 ms – entsprechend einer 
Bildrate von 12/s – zuversichtlich zu erreichen, auch dann, wenn für den 
Datentransport einige Millisekunden vergehen. 
 
 
 
 
 

                                         
1 GFLOPS: Giga-Gleitkommaoperationen pro Sekunde 
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Tabelle 26: Anzahl der Instruktionen und hochgerechnete Dauer für die 
Berechnung des Abstandes und der Translation der Kamera 

Prozess 
Anzahl 

Multiplikation und 
Additionen 

Benötigte Zeit bei 0.4 ns 
pro Multiplikation und 

Addition 
Linkes und rechtes Bild 
aus verschachtelten 
Daten extrahieren 

2.1*106 0.84 ms 

Ganzes linkes Bild 
rektifizieren 

4.2*106 1.68 ms 

Linkes Bild auf 1/4 
und 1/8 verkleinern 

1.3*106 0.52 ms 

Benötigten Ausschnitt 
des rechten Bildes 
rektifizieren 

0.083*106 0.03 ms 

Rechten Ausschnitt 
auf 1/4 verkleinern 

0.099*106 0.04 ms 

Korrelation für 
Translation 

1.9*106 0.76 ms 

Korrelation für 
Abstand 

1.2*106 0.48 ms 

Summe 11.3*106 4.4 ms 
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6.5 Zusammenfassung Kapitel 6 
Die Rechenzeit für den Gesamtablauf in der Matlabumgebung auf einem 
64-Bit-Arbeitsplatzrechner mit 3.3-GHz-Prozessor ist 1.06 s. 
Ein DSP wird ausgeschlossen, da die Echtzeitfähigkeit für Berechnung der 
NCC im Zusammenhang mit der Bildverarbeitung nicht belegt ist. Der serielle 
Prozessablauf eines DSP erschwert die Echtzeitfähigkeit. 
Die Programmierung eines FPGA für einen Prototypen wird wegen des 
immensen Programmierungsaufwandes und der nicht sicheren Einhaltung der 
Echtzeitanforderung nicht in Betracht gezogen. 
 
Eine GPGPU, beispielsweise von Nvidia, erfüllt alle Anforderungen bezüglich: 

• Parallelisierbarkeit:  192 Prozesse können nebenläufig durchgeführt 
werden 

• Leistungsfähigkeit:  158 GFLOPS  
(entspricht 6.5 Picosekunden pro Instruktion) 

• Abmaße:  13 cm x 13 cm 

• Leistungsaufnahme:  13 W 

 
Die Berechnungszeit wurde auf 4.4 ms geschätzt, so dass die 
Echtzeitberechnung bei einer Bildrate von 12/s, auch wenn der Datentransport 
nicht berücksichtigt wurde, zuversichtlich erreicht wird. 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


186 

7  Zusammenfassung und Ausblick 
In der vorliegenden Arbeit wird gezeigt, wie mit einer Stereokamera geringer 
Basisbreite über die visuelle Odometrie die Position und die Geschwindigkeit 
eines Fluggerätes ermittelt werden kann.  
 
Zwei Verfahren der Bildregistrierung – das Gradientenverfahren nach B. D. 
Lucas & T. Kanade und die normierte Kreuzkorrelation – sind auf die Eignung 
bezüglich Translationsbestimmung und Abstandsermittlung untersucht 
worden. 
Es stellt sich heraus, dass Gradientenverfahren trotz ihrer inhärenten 
Subpixelgenauig-keit ungeeignet für Fluggeräte sind, weil die maximal 
berechenbare Verschiebung (36 px) bei 512 x 512 px umfassenden Bildern 
nicht ausreicht, um große Translationen zu ermitteln. Diese ergeben nämlich, 
dass der Abstand korrespondierender Bildpunkte in zwei 
aufeinanderfolgenden Aufnahmen die maximal berechenbare Verschiebung 
überschreitet. Für die Bestimmung niedriger Flughöhen gilt analog, dass die 
Disparität größer als die maximal berechenbare Verschiebung der gleichzeitig 
aufgenommenen Bilder ist. Zudem führt die Helligkeitsverteilung innerhalb der 
Bilder zu erheblichen Fehlern des berechneten optischen Flusses. 
Die normierte Kreuzkorrelation ist nur durch ihre Bildgröße beschränkten 
maximal erfassbaren Verschiebungen und ihre Beleuchtungsrobustheit den 
Gradientenverfahren für die untersuchte Anwendung überlegen.  
Obwohl in der verwendeten Stereokamera gleiche Kameramodule für die linke 
und rechte Stereoaufnahme verwendet werden, unterscheiden sich die 
Intensitäten der Bilder derselben Szene sowohl um einen multiplikativen 
Faktor als auch einen additiven Anteil. Zusätzlich entsteht durch Vignettierung 
ein bei beiden Kameras unterschiedlicher Helligkeitsverlauf. Durch die 
Normierung der Kreuzkorrelation und den Abzug der Mittelwerte der 
betrachteten Bildgebiete wird der Einfluss der multiplikativen und additiven 
Helligkeitsunterschiede weitgehend behoben. 
 
Um eine ständige Neukalibrierung der Stereokamera zu vermeiden, wird ein 
rigides Kamerasystem verwendet. Da dieses System auch ein geringes 
Gewicht haben muss, ist es geometrisch klein und weist dadurch eine geringe 
Basisbreite von 24 cm auf. Die geringe Basisbreite hat zunächst Nachteile in 
Bezug auf die Auflösungen bei der Bestimmung großer Abstände, da z. B. mit 
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dem verwendeten Kamerasystem bei einem Abstand von 50 m eine 
Disparitätsdifferenz von 1 px schon einen Abstandsunterschied von 18 % 
ergibt.  
Während die Ermittlung großer Translationen eine kleine Brennweite erfordert, 
weil die hierzu zu berechnenden Verschiebungen sonst den Bildbereich 
überschreiten, ist für die Berechnung großer Abstände zunächst eine große 
Brennweite notwendig, da die Disparitäten sonst zu klein und damit ungenau 
werden. Dieser Konflikt wird durch eine höhere Pixelauflösung behoben, 
indem Subpixel bestimmt werden. 
 
Die erforderliche Subpixelgenauigkeit der Kreuzkorrelationsberechnung wird 
durch eine in diesem Zusammenhang neuartige Funktion – hier genannt 
'inverse Parabel' – erreicht. Im einfachsten Fall ist die 'inverse Parabel' eine 
1/x2-Funktion, die den Korrelationsverlauf, der zunächst nur für ganzzahlige 
Pixelpositionen bekannt ist, approximiert. Das Maximum dieser 
Approximationskurve ist im Idealfall genau an der als reelle Zahl berechneten 
Position des gesuchten Korrelationsmaximums, das die Bildverschiebung 
bestimmt. Die Dezimalstellen dieser berechneten Position sind die 
Subpixelwerte.  
Die mit der 'inversen Parabel' erreichte Subpixelgenauigkeit bei Bildern, die 
exakt um ein Mehrfaches von 1/32 Pixel versetzt sind, ist besser als 0.06 px. 
Um den berechneten Versatz zu verifizieren, werden in dieser Dissertation 
große Bildausschnitte, die um das Mehrfache eines Pixels versetzt sind, auf 
ein 1/32 verkleinert und jeweils miteinander korreliert. Bei realen 
Stereoaufnahmen erweist sich jedoch der Gewinn durch die Anwendung der 
'inversen Parabel' im Vergleich zur regulären Parabel geringer als erwartet. 
 
Bei der Verarbeitung von realen Aufnahmen mit Abständen zwischen 1 m und 
1.2 km zur Szene wird eine Subpixelgenauigkeit von unter 0.13 px erreicht. 
Hierbei wird immer die präzis kalibrierte Bildmitte zur Disparitätsberechnung 
herangezogen. Mit der erreichten Subpixelgenauigkeit können die für ein 
kleines UAV relevanten Abstände der Kamera zur Szene von 1 m zu 65 m mit 
einer Genauigkeit von ± 0.4 % Abstandsabweichung bestimmt werden. Bei 
400 m Abstand steigt der Abstandsfehler auf 4.5 % an. Die Genauigkeiten der 
Abstandsmessungen gehen auch in die Streckenberechnungen ein, die 
jeweils über Triangulation ermittelt werden.  
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Um Strecken zu berechnen, sind folgende Versuche durchgeführt worden: 
• Im Labor mit exakt bekannten geometrischen Verhältnissen ist die Kamera 

auf einem Laborwagen montiert und es werden Aufnahmen einer Tafel mit 
Bildmotiv ausgewertet.  
Ergebnis der Berechnung: maximal 0.4 % Abweichung zu den 
tatsächlichen Strecken (2.5 m und 2.7 m) 

• Im Außenbereich wurden Fassaden mit der auf einem Stativ rotierenden 
Kamera bewertet. 
Ergebnis: maximal 1.7 % Abweichung zu den tatsächlichen Strecken (12.5 
m und 69.6 m) 

• Eine Kamera ist auf einem PKW montiert, der entlang eines 65.7 m langen 
Gebäudes fährt. 
Ergebnis: 0.75 % Längenabweichung. 

 
Die Momentangeschwindigkeit wird mit der Translation und der Bildrate von 
12/s innerhalb von 83 ms ermittelt. Die Bildrate und damit die Bildfolgezeit der 
verwendeten Kamera ist im Durchschnitt sehr genau. Abweichungen der 
Zeitinterwalle zwischen zwei aufeinanderfolgenden Aufnahmen von bis zu 
1.28 ms kommen vor, werden aber durch die unmittelbar darauffolgende dazu 
negative Abweichung vollkommen kompensiert. Deshalb sind die prozentualen 
Geschwindigkeits- und Translationsmessfehler gleich. Die 
Geschwindigkeitsmessung wird qualitativ beurteilt, indem Aufnahmen mit der 
auf einem PKW montierten Kamera entlang einer Böschung und eines 
Gebäudes erstellt werden. Dabei unterscheiden sich einige Aufnahmen 
derselben Szene aus unterschiedlichen Blickwinkeln durch Objekte (z. B. 
Bäume oder Laternenmasten) im Vordergrund, die den Hintergrund abdecken, 
so stark, dass die Korrelation zu falschen Ergebnissen führt. 
Bei diesen realitätsnahen Versuchen sind Verdeckungen mit der eingeführten 
Erkennungsmethode, die über Bildverkleinerungen größere 
Szenenausschnitte bei gleicher oder kleinerer Berechnungszeit betrachtet, 
detektiert worden. Einige nicht detektierte Verdeckungen und auch 
Fehlberechnungen werden aufgrund der eingeschränkten Dynamik des 
Luftschiffs ausgeschlossen. In diesen Fällen werden vorhergehende 
Berechnungen für die Positionsbestimmung herangezogen. 
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Um Bedingungen für die Echtzeitverarbeitung einzuhalten, werden viele 
Vereinfachungen eingeführt, die eingehend auf die erforderliche Genauigkeit 
untersucht sind: 

• Reduzierung der Rektifizierung auf benutzte Bereiche 

• Reduzierung der Bilinearkoeffizienten auf 7 Bit 

• Nachführung des zu durchsuchenden Fensters 

• Situationsabhängige Bildverkleinerung 

Durch die gute Parallelisierbarkeit des Algorithmus zur Berechnung der 
Kreuzkorrelation werden in einer in einem PC eingebauten GPGPU 
Berechnungszeiten für die Translation in 4.7 ms erreicht. 
 
In der vorliegenden Dissertation ist gezeigt, dass durch visuelle Odometrie die 
relative Position, die momentane Geschwindigkeit und die genaue Höhe über 
Boden in Echtzeit trotz geringer Basisbreite der Stereokamera mit guter 
Genauigkeit berechenbar sind. Die Ergebnisse dieser Bildverarbeitung 
schließen die Lücke zwischen einem schnellen aber nur kurzzeitig genauen 
Inertialsystem (IMU) und einem GPS-System, welches relativ langsam die 
Position – allerdings in Weltkoordinaten – liefert. Durch die Fusionierung der 
IMU-, der Kamera- und GPS-Daten über ein Kalmanfilter wird die Regelung 
eines autonomen Fluggerätes in der Bewegung und der Navigation genauer. 
Das in dieser Dissertation vorgestellte Verfahren kann für verschiedene UAVs 
eingesetzt werden, wobei die Bildrate der Dynamik des Flugsystems jeweils 
angepasst werden muss. 
 
Der nächste Schritt ist die Umsetzung des Verfahrens in eine kleine GPGPU-
Plattform, die die Positionsberechnung in Echtzeit auf dem Luftschiff 
durchführt. 
Da die Gesamtberechnungszeit im einstelligen Millisekundenbereich liegen 
wird, sind noch weitere Berechnungen innerhalb der Bildfolgezeit von 83 ms 
möglich. Z. B. könnte das mittlere von drei Objektiven der in dieser 
Dissertation benutzten Bumblebeekamera mit einer erheblich kürzeren 
Brennweite versehen und damit der schwierige Landeanflug visuell unterstützt 
werden, indem vorhergehende Aufnahmen des Landeplatzes in Bezug zu 
momentanen Aufnahmen gebracht werden und somit die genaue absolute 
Position des Luftschiffs erfasst wird. Ein Verfahren hierzu ist – in Kapitel 1.3 
kurz vorgestellt – erarbeitet worden. 
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Ebenfalls können Probleme bezüglich Verdeckungen besser beseitigt werden, 
indem die Korrelation an mehreren Stellen der Aufnahme durchgeführt wird 
und über eine Mehrheitsentscheidung die vermutlich richtige Korrelation für die 
Abstands- und Translationsberechnung gewählt wird. 
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 Anhang 

A.1 Lochkamera: Belichtungszeit und Unschärfe durch 
Beugung  

Dadurch, dass die Öffnung der Lochkamera eine endliche Größe hat, wird ein 
Punkt als Unschärfekreis abgebildet. Die Öffnung zur Bildschärfeerhöhung 
beliebig zu verkleinern, ist wegen der Beugung des Lichtes an Kanten 
begrenzt. Die kritische Blende ist gegeben durch den minimalen 
Abbildungskreis, der sich aus der Öffnungs- und Beugungsabbildung ergibt 
[104][105][37]. Der Unschärfekreis wird dann für die Abbildung unendlich 
entfernter Punkte doppelt so groß wie die Öffnung. Der optimale Durchmesser 
d ergibt sich aus [106][104] zu  

 
2
fd λ

=  (A.1) 

Werden die Wellenlänge λ = 0.5 μm (grünes Licht) und die Brennweite 
f = 10 mm gewählt, so ergibt sich ein Durchmesser von d = 50 μm. Unendlich 
weit entfernte Punkte erscheinen dann als Kreise mit 100μm Durchmesser. 
Bei einem gängigen CCD-Sensor mit den Abmaßen von 7.2 mm x 9.6 mm 
folgt, wenn man eine Radienüberlappung von 30 % zulässt, eine Anzahl von 
ca. 14000 zu unterscheidenden Bildpunkten. Bei einer Lochkamera mit einem 
Sensor von 60 mm x 60 mm und einer Brennweite von 60 mm ergibt sich eine 
Auflösung von ca. 420000 Bildpunkten. Eine moderne Digitalkamera hat nach 
Herstellerangaben (Canon SX210) 14 x 106 Bildpunkte. Allerdings ist die 
effektive Anzahl der Bildpunkte auch dort durch Beugung, Nebensprechen und 
Linsenverzerrungen geringer, denn Auflösungsmessungen nach ISO 12233 
[107] [108] ergeben bei dieser Digitalkamera durchschnittlich 1280 Linienpaare 
für die Bildhöhe und somit insgesamt 8 x 106 unterscheidbare Bildpunkte. 
 
Durch die kleine Öffnung der Lochkamera dringt sehr wenig Licht ein und geht 
auf die Blendenzahl B ein. Sie errechnet sich aus Brennweite geteilt durch 
Öffnungsdurchmesser. Sie ist also bei o. g. Lochkamera BL = 200. Eine 
übliche Blende bei der Canon SX210 ist BC = 5. Die Belichtungszeit ist 
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proportional zur Lichtfläche und damit quadratisch zur Blendenzahl. Die 

Belichtungszeit muss also bei der Lochkamera 
2200 1600

5
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 mal größer sein. 

Damit ergibt sich, dass eine Lochkamera für einen kleinen Sensor eine viel zu 
geringe Auflösung aufweist und eine große Belichtungszeit hat. Die 
Lochkamera ist trotz ihrer Verzerrungsfreiheit daher für Bildbearbeitung 
ungeeignet. 
 

A.2 Nützliche Eigenschaften digitaler Filter 
Teilbarkeit durch 2n, n natürliche Zahl 
Das Teilen durch 2n  ist mit digitalen Prozessoren (z. B. CPU oder DSP) 
erheblich schneller, da es durch Rechtsschieben um n Bits realisiert werden 
kann. 
 
Ganzzahligkeit 
Viele Prozessoren arbeiten mit ganzen Zahlen schneller, daher sind 
Kommazahlen zu vermeiden. 
 
Separierbarkeit: 
Ein Filter W ist dann separierbar, wenn gilt: 

 * TW a V H= ⋅  (A.2) 

V und H sind Vektoren, a ist ein Skalierungsfaktor. 
Dadurch kann eine zweidimensionale Matrix, z. B. ein Bild I , mit zwei 
einfachen eindimensionalen Operationen zu einer gefilterten Matrix gI  

berechnet werden: 

 ( )* * * T
gI I a W I V H a= ⋅ = ⋅  (A.3) 

Erst wird das Bild I mit dem eindimensionalen vertikalen Faltungsvektor V 
spaltenweise gefaltet. Das Ergebnis wird dann zeilenweise mit dem 
horizontalen Vektor TH  gefaltet. 
Die separierbaren Faltungsvektoren für Gleichung (3.38) sind: 
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1
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* 1 14 34 14 1 * 34
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TH V

⎛ ⎞
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⎜ ⎟=
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⎜ ⎟
⎜ ⎟
⎝ ⎠

 (A.4) 

Meist werden isotrope Filter genommen. Sie bevorzugen keine Richtung und 
sind symmetrisch. Damit ist HT = V wie in Gleichung (A.4) dargestellt. Der 
Skalierungsfaktor a normiert das Filter, damit es eine Gesamtgewichtung von 
exakt eins erhält. Er wird also aus dem Kehrwert der Summe aller 
Filterkoeffizienten errechnet. 
 
Mit separablen Filtern der Dimension k·k werden anstatt k2 nur 2k 
Rechenoperationen benötigt pro Pixel [75]. 
 
Gaußfilter 
Eine Filterung ist erforderlich, um Rauschen zu vermindern, aber auch bei 
Unterabtastung von Bildern, wie es schon in Kapitel 2.4.2 gezeigt wurde. 
Deutlich wird es auch im folgenden Bild. 

 
Bild 200: Effekte durch Unterabtastung  
Quelle: G. Heising, Digitale Videotechnik, SS 02, TFH Berlin 

Im oberen Bild ist das Original mit steigenden Frequenzen zu sehen. Das 
mittlere Bild (rechts vergrößert) wurde gebildet durch Abtastung jedes vierten 
Pixels in vertikaler und horizontaler Richtung. Deutlich zu sehen ist die falsche 
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Abbildung bei hohen Frequenzen. Beim unteren Bild sind die hohen 
Frequenzen durch Tiefpassfilterung eliminiert. 
Ziel einer schnellen Filterung ist es, durch möglichst wenige 
Rechenoperationen eine gute Filterung zu erhalten. 
Wenige Rechenoperationen ergeben sich durch ein Filter mit wenigen 
Koeffizienten, also ein spatial kleines Filter. Die maximale Filterung wird durch 
ein möglichst an der Grenzfrequenz steiles Filter erreicht. Aus der 
Fouriertransformation ist bekannt, dass die Breite der Transformierten ( )ωF  
umgekehrt proportional ist zur Breite der Zeitfunktion ( )f x . Es gilt: 

 1( ) ( )f ax
a

ω→F  (A.5) 

Das Gaußfilter ist das Filter, das am kompaktesten sowohl im Orts- als auch 
im Frequenzbereich ist. Jede andere ortsbegrenzte Funktion ergäbe einen 
größeren Einfluss höherer Frequenzen [109]. Dabei wird bei der 
Diskretisierung zugrunde gelegt, dass Gaußfunktion bei größeren x-Werten 
null ist. Bei 3x σ=  ist der Funktionswert ca. 1 % der Amplitude. 
Zunächst sei die eindimensionale normierte Gaußfunktion betrachtet: 

 
2 2 2

2  
2 2

2

1( ) ( ( ))
2

x

f x e f x e
ω σ

σ

πσ

− −
= → =F  (A.6) 

Eine fouriertransformierte Gaußfunktion ist wieder eine Gaußfunktion. 
 

Bild 201: Ortsfunktion zweier Filter mit 
σ = 0.7 (dicke Linie) und σ = 2 (dünne 
Linie) 

Bild 202: Fouriertransformation der 
nebenstehenden Funktionen 
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Die Ortsfunktion und ihre Transformation, Gleichung (A.6), sind für zwei σ-
Werte in den Abbildungen 201 und 202 dargestellt. Erwartungsgemäß kann den 
Grafiken entnommen werden, dass eine breite Ortsfunktion – hier mit σ = 2 – 
eine schmale Fouriertransformierte liefert. 
Soll ein Bild verkleinert werden, so muss, um Aliasing zu vermeiden, das 
Abtasttheorem – mindestens 2 Abtastwerte pro Periode der höchsten 
Frequenz – eingehalten werden. Die höchste Frequenz ergibt sich beim 
Originalbild zu: 

 max
1

2
f

px
=  (A.7) 

Denn zwei nebeneinanderliegende Pixel unterschiedlicher Intensität ergeben 
die höchste Dichte der Abtastwerte. Mit der dimensionslosen Bezeichnung px 
wird dann die höchste Kreisfrequenz zu: 

 maxω π=  (A.8) 

Wird nun das Bild in x- und y-Richtung halbiert, wird auch die Abtastrate 
halbiert und alle Frequenzanteile des Originalbildes oberhalb 2π  müssen 
durch ein Tiefpassfilter eliminiert werden, um dem Abtastkriterium zu genügen. 
Ein Rechteckfilter von –π/2 bis π/2 im Frequenzbereich wäre ideal. Im 

Ortsbereich ergibt dies bekannterweise die sin( )x
x

-Funktion, welche langsam 

gegen Null konvergiert und deshalb viele Filterkoeffizienten für eine grobe 
Näherung benötig. Aus diesem Grunde wird das Rechteckfilter durch ein 
Gaußfilter approximiert, weil dieses, wie oben erwähnt, sowohl im Orts- als 
auch im Frequenzbereich kompakt ist. 

 
Bild 203: Rechteckfilter und Approximation durch Gaußfilter 
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Die Approximation wird lediglich durch Variation von σ durchgeführt. Je nach 
Fehlermaß kommt man zu verschiedenen Ergebnissen. Die Tschebyscheff-
Approximation (auch L∞-Approximation genannt) ist die Approximation, die für 
die größte Abweichung den minimalsten Wert liefert [37]. Andere 
Approximationen, z. B. „least squares“ (auch L2- Approximation genannt), 
können auch durchgeführt werden. Vielfach wird der Wert der Tschebyscheff-
Approximation genommen. Er errechnet sich zu [109]: 

 0.75σ =  (A.9) 

Dieses Filter kann einigermaßen mit fünf diskreten Werten dargestellt werden. 
Nimmt man z. B. drei diskrete Werte für das Filter, so muss σ viel kleiner 
gewählt werden, damit das Filter nicht einer Rechteckfunktion mit ihren vielen 
Nachteilen ähnelt. 

 
Bild 204: Optimales Filter mit fünf diskreten Werten. Das Filter nach Gleichung 
(3.38) entspricht in guter Näherung diesem Filter 

In Bild 204 ist die Amplitude so gewählt, dass bei den separierten Anteilen 
nach Gleichung (A.4) der kleinste Wert genau eins ist. Das dazugehörige 
zweidimensionale Filter ist hier gezeigt: 

 

Bild 205: Dreidimensionale Ansicht eines diskreten 5 x 5-Gaußfilters mit 
σ = 0.75 
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Da das Gaußfilter isotrop ist, filtert es in allen Richtungen gleich stark. 
 
Eine Beschreibung und ein eigenes Matlab®-Programm zur Erstellung von 
Gaußfiltern mit den o. g. Eigenschaften ist im Internet zu finden unter [110]  
 

A.3 Summentabellen 
Eine Summentabelle (engl. summed-area table) ermöglicht nach einer 
einmaligen Aufstellung die schnelle Berechnung der Summe eines beliebigen 
Rechtecks innerhalb einer Wertetabelle. Im Fall eines Bildes besteht die 
Wertetabelle I(x,y) aus den Intensitätswerten an den Stellen x,y.  
Die Methode wurde zum ersten Mal 1984 in einer Abhandlung von J. Crow [80] 
dargestellt. 
Mit dem Ursprung der Tabelle in der linken unteren Ecke errechnet sich die 
Summe S der Werte eines Rechtecks, welches den Ursprung beinhaltet und 
bis zur Stelle u,v reicht, zu: 

 
1 1

( , ) ( , )
v u

y x

S u v I x y
= =

= ∑∑  (A.10) 

Um die Summentabelle zu bilden, muss nicht jedes Mal die ganze Summe neu 
berechnet werden, sondern es kann rekursiv auf vorhergehende Summen 
zurückgegriffen werden: 

 ( , ) ( , ) ( 1, ) ( , 1) ( 1, 1)S u v I u v S u v S u v S u v= + − + − − − −  (A.11) 

Hierbei ist S(u,v) = 0 für u,v<1. Man kann auch einfach die Tabelle I um eine 
Zeile und Spalte mit Nullen nach unten und links erweitern. Die 
Summentabelle wird ausgehend vom Ursprung zeilen- oder spaltenweise mit 
Hilfe der Formel (A.11) gebildet. 
Das Bild 206a zeigt die Wertetabelle I für ein 4 x 4-Pixel-Bild. Die 
dazugehörige Summentabelle ist in Bild 206b zu sehen. Die Summe der 
Intensitätswerte des grauschattierten Gebiets, welches durch umax und vmax 

definiert ist, ergibt sich dann zu 45. 
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 1 2 3 4 

vmax 5 6 7 8 

 9 1 2 3 

 4 5 6 7 
Ur-

sprung   umax  
 

  19 33 51 73 

vmax 18 30 45 63 

 13 19 27 37 

 4 9 15 22 
Ur-

sprung   umax  
 

Bild 206a: Intensitätswerte  
eines Bildes 

 Bild 206b: Summentabelle  
zu Bild 206a 

 
Da für alle Rechtecke, die den Ursprung beinhalten, die Wertesumme 
abgelesen werden kann, können auch Summen für Rechtecke, die vom 
Ursprung entfernter sind, einfach errechnet werden, indem Summen für 
anliegende Rechtecke, die dann den Ursprung beinhalten, subtrahiert werden. 
An einem Beispiel ist dies einfach erklärt. 
 
 

vmax 1 2 3 4 

vmin 5 6 7 8 

 9 1 2 3 

 4 5 6 7 
Ur-

sprung   umin umax 

Bild 207a: Intensitätswerte eines 
Bildes. Summe des schraffierten 
Rechtecks soll errechnet werden. 

 vmax 19 33 51 73 

vmin 18 30 45 63 

 13 19 27 37 

 4 9 15 22 
Ur-

sprung   umin umax 

Bild 207b: Summentabelle 

 

 
max

min min

max max min max max min min min

Gebiet ab Ursprung linker Rand  unterer Rand
(senkrecht schraffiert) (waagerecht schraffiert)

( , ) 22

( , ) S(u -1,v ) ( , 1) ( 1,

maxv u

y v x u

I x y

S u v S u v S u v
= =

∑ ∑ ∑

=

= − − − + − −

∑ ∑

��	�
 ���	��
 ���	��

hinzufügen der doppelt abezogenen

Summe beim Ursprung.
(waagerecht und senkrecht schraffiert)

1)

=         73                33                   37                        19− − +

����	���


 (A.12) 

https://doi.org/10.51202/9783186853103 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:33. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186853103


199 

Die Formel aus Gleichung (A.12) gilt allgemein. Allerdings ist zu beachten, 
dass die entsprechenden Summanden null zu setzen sind, wenn umin –1 oder 
vmin –1 kleiner als die Ursprungskoordinaten sind. 
Die Anzahl der Additionen errechnet sich aus Folgendem:  
Angenommen sei ein großes quadratisches Fenster mit einer Breite von M px 
und ein kleines Fenster der Breite N px. Für jede Position des kleinen Fensters 
im großen Fenster soll die Summe aller Werte gebildet werden, so gilt für die 
direkte Berechnung als Anzahl der Additionen Ad 

 2 2( 1)dA M N N= − +  (A.13) 

und für die Anzahl As bei Berechnung über die Summentabelle 

 2 23( 1) 3( )sA M M N= + + −  (A.14) 

Für M = 128 und N = 32 ist der Gewinn bei der Berechnung über die 
Summentabelle 124-fach. 

In grober Näherung gilt für den Gewinn: 

 
2

 ,   
6

d

s

A N M N
A

=  (A.15) 

 

A.4 Berechnung der NCC über die Schwarzsche 
Ungleichung 

S. D. Wei und S. H. Lai [81] haben eine schnelle Berechnungsmethode für die 
NNC, die auf der Schwarzschen Ungleichung basiert, entwickelt. 
Aus der Schwarzschen Ungleichung (A.16) kann entnommen werden, dass 
ein Gebiet, welches beim rechten Teil der Gleichung einen kleineren Wert 
liefert als ein anderes Gebiet, welches mit dem linken Teil berechnet wurde, 
kein Maximum liefern kann. 

 

2 2( ) ( ) ( ) ( )
b b b

a a a

I x T x dx I x dx T x dx≤∫ ∫ ∫  (A.16) 

 
Die beste Übereinstimmung zwischen dem im Bild I und einem gesuchten 
Teilbild T ist an der Position u,v, bei der die NCC maximal ist. Im Prinzip 
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können alle u,v nach Gleichung(A.17) durchlaufen werden und dann der 
größte Wert gesucht werden. Dies ist ein großer Rechenaufwand. 

 ,

2 2
, ,

( , ) ( , )
( , )

( , ) ( , )
x y

x y x y

I x u y v T x y
NCC u v

I x u y v T x y

+ +
=

+ +

∑
∑ ∑

 (A.17) 

 
Der Nenner lässt sich, wie in Kapitel A.3 beschrieben, schnell berechnen. 
Daher muss der Zähler besonders betrachtet werden. 
Der Zähler kann schrittweise approximiert werden über die Schwarzsche 
Ungleichung [37]: 

 2 2( ) ( ) ( ) ( )
b b b

a a a

I x T x dx I x dx T x dx≤∫ ∫ ∫  (A.18) 

Analog gilt für Summen: 

 2 2

1 1 1

N N N

i i i i
i i i

I T I T
= = =

≤∑ ∑ ∑  (A.19) 

Werden die Summen feiner unterteilt, gilt folgerichtig: 

 2 2 2 2 2 2

1 1 1 1 1 1 1

N k k N N N N

i i i i i i i i
i i i i k i k i i

I T I T I T I T
= = = = + = + = =

≤ + ≤∑ ∑ ∑ ∑ ∑ ∑ ∑  (A.20) 

Hier wurde die Summe in zwei Terme aufgeteilt. 
Das heißt, je feiner die Unterteilung umso mehr nähert sich die Approximation 
der wahren Produktsumme des Zählers aus Gleichung (A.17). 
 
Für die normierte Kreuzkorrelation NCC nach Gleichung (A.17) ergibt für den 
Fall einer Zweiteilung des Teilbildes mit dem mittleren Teil der Gleichung 
(A.20) eine approximierte normierte Kreuzkorrelation NCCa: 
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2 2 2 2

1 1 1 1 1 1 1 1

2 2

1 1 1 1

( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

N k N k N N N N

x y x y x y k x y k

N N N N

x y x y

NCC u v NCCa u v

I x u y v T x y I x u y v T x y

I x u y v T x y

= = = = = = + = = +

= = = =

≤ =

+ + + + +

+ +

∑∑ ∑∑ ∑ ∑ ∑ ∑

∑∑ ∑∑

(A.21) 

 
Bild 208: Korrelation eines Ausschnittes von Bild I mit dem Teilbild T nach 
Gleichung (A.21) 

Bild 208 zeigt die Verhältnisse von Gleichung (A.21). Das Teilbild T wird in 
eine obere und untere Hälfte eingeteilt und mit dem darunterliegenden Bild I 
(in Bild 208 an der Stelle u,v = 3,4) in grober Näherung korreliert. 
Der Zähler von NCCa ist jeweils der obere Grenzwert für den Zähler der NCC. 
Alle feineren Unterteilungen des Zählerterms von NCCa ergeben kleinere oder 
gleich große Werte als die NCC und sie nähern sich immer mehr dem Zähler 
der NCC. Ist schließlich die Unterteilung auf der feinsten Ebene, also auf 
Pixelgröße, so ist dann die Approximation gleich dem wahren Wert 
(NCCa = NCC). 
Das Ziel ist nicht, die NCC für alle u,v auszurechnen, sondern das u,v zu 
finden, welches die größte NCC hat. Dadurch kann die Berechnung verkürzt 
werden, indem alle Kandidaten, die eine kleinere approximierte NCCa als die 
bisher größte NCCa haben, ausgeschlossen werden. Dies wird sukzessiv mit 
immer höherer Auflösung der Approximation durchgeführt, bis nur noch ein 
Kandidat – der mit der größten NCCa – übrig bleibt. Damit ist dann auch die 
NCC für den gefundenen Ort u,v bestimmt. 
Das Verfahren ist sehr schnell, hat aber den Nachteil, dass es bei niedrigen 
Korrelationen deutlich mehr Durchläufe erfordert, somit die Rechenzeit nicht 
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vorhersagbar ist und in einigen Fällen sogar länger braucht als die direkte 
Berechnung über die NCC. 

A.5 Synchronisations- und Bildratenbestimmung der 
Stereokamera 

Um die Gleichzeitigkeit der Aufnahmen von linker und rechter Kamera 
festzustellen, wird ein Ventilator mit einer hohen Umdrehungszahl, Bild 209 
und Bild 210, benutzt. Die Drehzahl wird mit einer Filmkamera ermittelt, indem 
der Drehwinkel zwischen zwei aufeinanderfolgenden Bildern unter 
Berücksichtigung der Unterabtastung bestimmt wird. 
Gemessen: 

• Umdrehungswinkel zwischen 2 Bildern: φ = 405° 

• Bildrate: fps = 16/s 

• Radius Ventilatormitte zu Markierung in m und px: r = 0.175 m , rpx = 180 px 

• Brennweite f in px: 1401 

• Positionsabweichung p der Markierung in vertikaler Richtung: p<0.3 px 

Die Positionsabweichung wird mit ZNCC bestimmt. Die maximale Abweichung 
beträgt 0.3 px, wobei das rechte Bild immer voreilend ist. 
Aus diesen Angaben lassen sich die Umlaufgeschwindigkeit vu der Markierung 
und der maximale Zeitversatz t zwischen der linken und rechten Aufnahme 
bestimmen: 
 
 

 2 19.8 
360u

mv r fps
s

ϕπ= =  (A.22) 

 15 
px u

rpt s
r v

μ= ≈  (A.23) 
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Bild 209: Linkes Bild eines sich 
drehenden Ventilators 

Bild 210: Dazugehöriges rechtes Bild 

 
Fehlerbestimmung: 
Es sei angenommen, das Luftschiff bewege sich in Richtung der 
Kamerabasisachse. 
Mit den Gleichungen (2.1) und (2.45) errechnet sich bei einer  

• Basisbreite B = 0.2397 m 

• Synchronisationsabweichung Δt = 15 µs 

• Geschwindigkeit v = 50 km/h 

• Tatsächliche Höhe ZT = 50 m 

die gemessene Höhe zu: 

 49.957 mTB ZZ
B t v

⋅
= =

+ Δ ⋅
 (A.24) 

 
Die Synchronisation der beiden Kameras ist ausreichend für 
Geschwindigkeiten unter 50 km/h, denn der Fehler der Höhenbestimmung 
bleibt unter 0.1 %. Andere Fehler, Kamerakalibrierung und 
Subpixelgenauigkeit, dominieren den synchronisationsbedingten Fehler. 
 
Bildratenbestimmung 
Um die Bildrate bzw. die Bildfolgezeit zu bestimmen, wird ein 15-Bit-
Binärzähler mit angeschlossenen LEDs betrieben. Die Leuchtdauer der 
niederwertigsten Leuchtdiode ist 10 µs. Die Kamerabelichtungszeit ist 5 µs. 
Bild 211 zeigt eine Aufnahme mit einigen leuchtenden Dioden. Aus den 
Differenzen zwischen zwei benachbarten Binärwerten wird die Bildfolgezeit 
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berechnet. Dabei wird deutlich, dass Abweichungen vom Sollwert, der 1/12s 
beträgt, von bis zu 1.28 ms auftreten, s. Bild 212. Allerdings ist die 
darauffolgende Bildfolgezeitabweichung negativ dazu, so dass sich der Fehler 
danach wieder aufhebt. Die Abweichungen müssen nicht durch die Kamera 
bedingt sein. Es kann auch im Zusammenspiel des Rechners mit der Kamera 
begründet sein. 

 
Bild 211: Aufnahme der Leuchtdioden an einem Binärzähler 

 

 
Bild 212: Abweichung der Bildfolgezeit vom Sollwert. 

Fehlerbestimmung: 
Der Fehler der momentan ermittelten Geschwindigkeit errechnet sich mit: 

• Nominale Bildfolgezeit t = 1/12s 

• Abweichung der Bildfolgezeit Δt = 1.28 ms 

• Istgeschwindigkeit vist, berechnete Geschwindigkeit vber 

zu: 

 1 1.5 %ist ber

ist

v v t
v t t
−

= − =
+ Δ

 (A.25) 

Dieser Fehler ist, wie schon erwähnt, von geringer Bedeutung, da er im 
Folgebild wieder aufgehoben wird. 
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