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Abstract: Science maps are visual representations of the structure and dynamics of scholarly knowledge. They aim to show how fields, disci-
plines, journals, scientists, publications, and scientific terms relate to each other. Science mapping is the body of methods and techniques that
have been developed for generating science maps. This entry is an introduction to science maps and science mapping. It focuses on the concep-
tual, theoretical, and methodological issues of science mapping, rather than on the mathematical formulation of science mapping techniques.
After a brief history of science mapping, we describe the general procedure for building a science map, presenting the data sources and the
methods to select, clean, and pre-process the data. Next, we examine in detail how the most common types of science maps, namely the citation-
based and the term-based, are generated. Both are based on networks: the former on the network of publications connected by citations, the
latter on the network of terms co-occurring in publications. We review the rationale behind these mapping approaches, as well as the techniques
and methods to build the maps (from the extraction of the network to the visualization and enrichment of the map). We also present less-
common types of science maps, including co-authorship networks, interlocking editorship networks, maps based on patents’ data, and geo-
graphic maps of science. Moreover, we consider how time can be represented in science maps to investigate the dynamics of science. We also
discuss some epistemological and sociological topics that can help in the interpretation, contextualization, and assessment of science maps.
Then, we present some possible applications of science maps in science policy. In the conclusion, we point out why science mapping may be
interesting for all the branches of meta-science, from knowledge organization to epistemology.
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1.0 Introduction Science mapping is the body of methods and techniques
that have been developed to generate science maps. Science
Science maps, also known as scientographs, bibliometric net- mapping has a long tradition in bibliometrics and scien-
work visualizations, and knowledge domain maps, are visual tometrics, i.e., the quantitative studies of science (Chen
representations of the structure and dynamics of scholarly 2017; Van Raan 2019). In the last decades, it has increasingly
knowledge. They aim to show how disciplines, fields, spe- become an interdisciplinary area, witnessing important con-
cialties, authors, keywords, or publications relate to each tributions from data science, where science mapping belongs
other (Borner, Chen, and Boyack 2005; Chen 2013; Rafols, to the larger and increasingly important area of information
Porter, and Leydesdorft 2010; Small 1999; Van Raan 2019). visualization (Bérner, Chen, and Boyack 2005).
Science maps are usually generated based on the analysis of Science maps have several applications. They help to an-
large collections of scientific documents (Borner 2010; swer questions such as: What are the main topics within a cer-

Coboetal. 2011b). tain scientific domain? How do these topics relate to each
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other? How has a certain scientific domain developed over
time? Who are the key actors (researchers, institutions, jour-
nals) of a scientific field? Science maps help to investigate
how the structural units of science relate one another at the
micro and macro level (Leydesdorff 1987), what factors de-
termine the emergence of new scientific fields and the devel-
opment of interdisciplinary areas (Leydesdorff and Gold-
stone 2014), and, more generally, how scientific change func-
tions (Leydesdorft 2001; Lucio-Arias and Leydesdorff 2009).
At the same time, the information made accessible by science
maps can be highly relevant for science policy purposes.

Science maps, and especially the global maps, also known
as “atlases of science” (see Section 3.2: Field delineation),
can help to classify the sciences by showing their mutual re-
lationships (e.g., by showing the citation flows between
fields). In this sense, science maps are useful tools in Knowl-
edge Organization and have been used to build classifica-
tion systems with a bottom-up approach (see e.g., Waltman
and van Eck 2012). However, standard methods of science
mapping are not based on and do not result in semantic re-
lationships between categories (e.g., genus-species relation)
but association measures between units of analysis (e.g., co-
citation strength between publications, or co-authorship as-
sociation between authors). The closest to semantic rela-
tions that can be produced by standard science mapping ap-
proaches is the relation of inclusion obtained by clustering
techniques, in which higher-order clusters include lower-or-
der clusters (see Section 4.1.5: Enriching the map). Science
maps, hence, are not meant to replace taxonomies, classifi-
catory schemes, ontologies, and other classic knowledge or-
ganization systems (KOS) (Hjorland 2013; Mazzocchi
2018). Rather, they can integrate them by providing extra
information on the structure of science based on the analy-
sis of citation networks and other kinds of scientific net-
works. At the same time, the application of science maps is
not restricted to Knowledge Organization but extends to
the sociology of science and science policy.

1.1 Structure of the paper

This article is an introduction to science maps and science
mapping methodology. It is structured as follows. Section 2
offers a brief overview of the history of science mapping.
Section 3 presents the standard workflow behind a science
map and the preliminary steps of science mapping: data col-
lection, field delineation, data pre-processing, and network
extraction. Section 4 examines the different types of science
maps that can be generated from network data. Section 4.1
is devoted to citation-based maps, i.e., those maps that are
based on publications (or aggregates of publications) and ci-
tations (or citation-based relations) between publications.
This section describes in detail some procedures that are
common also to other science maps, such as the normaliza-

tion of the raw relatedness scores, and the two most diffused
visualization approaches, the graph-based and the distance-
based. It also presents some techniques that can be used to
complement the results of mapping and ease the interpreta-
tion of science maps, such as clustering. Section 4.2 dis-
cusses term-based maps, i.e., those maps that are based on
the analysis of the titles, abstracts, keywords, or biblio-
graphic descriptors of scientific publications. We will first
present the classic co-word analysis as developed in the soci-
ology of science and then focus on maps based on terms ex-
tracted automatically with Natural Language Processing
techniques. Section 4.3 briefly overviews science maps
based on co-authorship and interlocking editorship net-
works, whereas Section 4.4 reviews science maps based on
patents and geographic maps of science. Section 5 discusses
different strategies to include the dimension of time into
science maps. Section 6 is devoted to the last step in the sci-
ence mapping workflow, namely interpretation, and to dis-
cuss some general issues of science mapping, such as the im-
portance of the level of analysis and the applicability of sci-
ence mapping to the humanities. In section 7, some episte-
mological topics, which bridge across science mapping, so-
ciology of science, and philosophy of science are discussed:
the objectivity of science maps, the relationship between the
published side of science and the scientific practice, and the
meaning of citations. Section 8 overviews the potential ap-
plications of science maps in science policy. Lastly, the Con-
clusion will sketch how science mapping may be of interest
for all the disciplines that compose meta-science. In the Ap-
pendix, two tools currently available for producing science
maps, CiteSpace and VOSviewer, are briefly reviewed.

1.2 Three caveats about this paper

This entry focuses on conceptual, theoretical, and method-
ological issues of science mapping rather than on the rigor-
ous mathematical formulation of science mapping tech-
niques, as the basic ideas behind the techniques can often be
understood without reference to the formal machinery. Rel-
evant technical literature will be pointed out in the refer-
ences.

Secondly, we will focus on the methodology of science
mapping, rather than on specific exemplars of science maps.
We aim to provide the readers with the tools to understand
and independently assess the science maps they will encoun-
ter (or produce!), rather than offer our opinion on existing
maps. A wonderful collection of science maps can be found
in the Atlas of Science by Katy Borner (Bérner 2010) and in
the exhibit Places and Spaces: Mapping Science, which pop-
ularizes the topic of science mapping to the large public all
over the world since 2005.

Lastly, science mapping is not a static research field, but
itis constantly moving forward. New mapping methods are
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developed, old algorithms are dismissed, science mapping
tools are refined, larger maps are built as higher computing
capacity becomes available. Therefore, it is not uncommon
to find disagreement in the current science maps literature
(e.g., Boyack and Klavans 2010). In this article, we will try
as far as possible to remain neutral concerning these discus-
sions, presenting to the reader the different options without
taking a position.

2.0 A brief history of science mapping

Modern science mapping relies on the data provided by
large, multidisciplinary databases that index vast portions of
the scientific literature (see Section 3.1: Data sources for sci-
ence mapping). Before the creation of these databases in the
1960s, it was virtually impossible to generate science maps
in the modern sense. The idea of representing the structure
of human knowledge by visual aids, however, dates far back
in history.

2.1 Ancestors of science maps

Already in the Middle Age, the relationships between the
seven liberal arts, comprising the t7ivium and guadrivium,
were visually represented by allegories.> However, the most
popular visual metaphor in history for visualizing knowl-
edge has been the tree (Lima 2014). Its origins can be traced
back to Aristotle, and to the fsagoge, an introduction to Ar-
istotle’s logic written by Porphyry in the III century. In the
13th century, Ramon Lull depicted a tree of the sciences in
his Arbor Scientiae (1295). Descartes, in the Principia
Philosophiae (1644), used the same image to explain the re-
lationship between metaphysics, physics, and the applied
sciences. During the Enlightenment, the famous Ency-
copédie of Diderot and D’Alambert contained a tree-like
taxonomy of human knowledge (Systéme Figuré des Con-
naissances Humaines). Similar structures can be found also
in the XIX century, in philosophical treaties on the classifi-
cation and organization of the sciences.?

2.2 Modern science mapping

The tree-like representations of the sciences in the past usu-
ally had a philosophical aim. They served to reflect on the
most general principles that underlie human knowledge. At
the same time, they aimed at organizing scientific and schol-
arly disciplines, by creating hierarchies between them. Of-
ten, they were proposed with a normative spirit: more than
describing the actual organization of knowledge, they
wanted to reform and improve it. What they all shared was
a “top-down” approach. Starting from a certain idea of hu-
man knowledge and a certain set of classificatory categories,
a taxonomy was devised, which was then used to categorize

the individual items of knowledge, such as books or scien-
tific papers. The Dewey Decimal Classification, a library
classification system developed in 1876, epitomizes such a
top-down approach.

The creation of the Science Citation Index (SCI) in the
1960s by Eugene Garfield at the Institute for Scientific In-
formation, allowed for a first time a bottom-up approach.
As we will see better in the next sections (see Section 3.4:
Network extraction), the SCI indexed the citation-links be-
tween the articles published in scientific journals. In this
way, it allowed to reconstruct the network in which each sci-
entific article is embedded, and, by connecting all these net-
works, to reconstruct the structure of entire scientific areas.
In this way, a new method to map human knowledge be-
came possible. The historian of science Derek De Solla Price
was the first to suggest such an idea in 1965 (Price 1965).
Garfield himself proposed the method of historiographs to
reconstruct the temporal development of scientific ideas by
analyzing the citation links between publications (Garfield
1973) (see Section 5: The representation of time in science
mapping).

In the 1960s and 1970s, two new techniques, both based
on citations, were developed to measure the association of
scientific papers: bibliographic coupling (Kessler 1963) and
co-citation (Small 1973; Marshakova 1973). They soon be-
came standard techniques for science mapping (see Section
4.1.2: The links in citation-based maps). Henry Small
started to use co-citation analysis to map scientific areas and
study their evolution over time. He generated the first sci-
ence maps based on co-citation analysis in 1977 to study the
field of collagen research (Small 1977).

In the 1980s, new methods of analysis were developed,
such as author co-citation analysis (White and Griffith
1981) and co-word analysis (Callon et al. 1983). At the same
time, the technical aspects of science mapping were dis-
cussed and sometimes disputed (Leydesdorft 1987). The
1990s saw important advancements in computer visualiza-
tion techniques and, in 1991, the first science mapping pro-
gram for the personal computer, SCI-map, was made avail-
able. In the 2000s, the improvement of computer capacity
allowed to produce the first global maps of science, based
on the analysis of thousands of journals and millions of
publications. New user-friendly science mapping tools,
such as CiteSpace and VOSviewer, were launched in the
2010s, so that nowadays also the non-experts can generate
their own science maps. In the last twenty years, science
mapping has become an increasingly interdisciplinary area,
with important contributions from computer scientists and
experts in information visualization, and the last ten years
have seen what has been called a “Cambrian explosion of sci-
ence maps” (Bérner, Theriault, and Boyack 2015).*
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3.0 Building a science map: the general workflow

The construction of a science map follows a general work-
flow that comprises the following steps (Bérner, Chen, and
Boyack 2005; Cobo et al. 2011b):

1) Data collection. Based on the research question of the
analyst, the data for the mapping are collected. In princi-
ple, any relational feature of the scientific activity can be
collected by different methods. In practice, however,
most science mapping studies are based on data stored in
bibliographic data sources. Hence, the data collection
consists in individuate appropriate queries to extract bib-
liographic data from those sources.

2) Pre-processing. The raw data are cleaned and, if needed,
further selected (for instance, only publications cited
over a certain threshold are retained). This step is crucial
since the goodness of the mapping depends on the qual-
ity of the underlying data.

3) Network extraction. Depending on the chosen unit of
analysis (publication, term, author, journal, institution,
etc.) and the kind of analysis (direct linkage, co-citation,
bibliographic coupling, co-word analysis, etc.) the corre-
sponding network is extracted from the data.

4) Normalization. Usually, the relatedness scores (e.g., the
raw number of co-citations between publications) are
notdirectly used to generate the science maps because ex-
perience and experimentation have shown that they can
create distortions due to the different sizes of the items
(Boyack and Klavans 2019). It is thus a common practice
to perform normalization on the raw values using simi-
larity measures.

5) Visualization. There are different options to visualize the
network. In graph-based visualizations, graph drawing al-
gorithms are used. In distance-based visualizations, dimen-
sionality reduction techniques are used to plot the data
into a two-dimensional (or, more rarely, three-dimen-
sional) layout, so that the distances between the points on
the map reflect the similarity of the units of analysis.

6) Enrichment. The elements of the map can be enriched
to provide more information. Frequently, clustering
techniques are used to find groups of similar nodes and
colors are used to distinguish nodes belonging to differ-
ent clusters.

7) Interpretation. The science map is interpreted, usually
with the help of experts in the mapped domain. The vis-
ual nature of the map enables the recognition of patterns
and structures, which can provide an answer to research
questions or help in addressing science policy issues.

In the next sections, we focus on the first three steps of sci-
ence mapping: data collection, data pre-processing, and net-
work extraction. Based on the type of network extracted,

different types of science maps can be generated. In section
4, each type is examined in detail. Note that citation-based
maps will allow us to describe the steps of normalization,
visualization, and enrichment that recur also in the genera-
tion of other types of science maps. Section 5 is an excursus
on how time can be represented in science maps, whereas
section 6 discusses the last phase of science mapping, i.c., the
interpretation.

3.1 Data sources for science mapping

Science mapping is a methodology that can in principle be
applied to a variety of data regarding the scientific enter-
prise. In practice, however, the main data sources for science
mapping are bibliographic databases. Other types of data
must be collected by the analysts.

Bibliographic databases are large multi-disciplinary data-
bases that collect the metadata of academic publications
(authors, title, abstract, keywords, affiliation of the authors,
publication year, etc.), along with their citations (hence
their name of “citation indexes”). The main citation indexes
are Clarivate’s Web of Science (WoS), Elseviers’ Scopus, and
Google Scholar.

Recently, two open bibliographic databases have joined
Google Scholar: Microsoft Academic (launched in 2006, it
stopped being updated in 2012 and was relaunched in
2016)° and Dimensions (launched in 2019)°. Moreover, in
2017 Crossref, a not-for-profit organization of publishers,
has made its citation data openly available. Comparisons be-
tween the coverage of these new databases and the coverage
of traditional databases are currently being undertaken by
the bibliometric community (Visser, van Eck, and Waltman
2020; Harzing 2019).

In addition to multi-disciplinary databases, there are also
specialized databases, focusing on specific disciplines (e.g.,
PubMed for medicine, and PsycInfo for psychology). Patent
data can be retrieved from specific data sources such as the
United States Patent and Trademark Office’, Google pa-
tents®, and the database of the European Patent Office.’

More detailed information about these databases can be
found in the dedicated entry of ISKO encyclopedia
(hetps://www.isko.org/cyclo/citation).

3.2 Field delineation

To produce a science map, we first need to individuate a set
of publications that reasonably represent the target of the
mapping. In bibliometric, this step is often called “field de-
lineation”. Field delineation is the collection of documents
that are both relevant and specific for the purpose of the
mapping (Zhao 2009).

At this point, an important difference can be made be-
tween global and local maps of science. Global maps of sci-
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ence (also known as atlases of science) aim to map the whole
science (Borner et al. 2012; Boyack, Klavans, and Bérner
2005; Boyack and Klavans 2019). To produce such maps,
the main criteria is to maximize coverage. Local maps of sci-
ence, on the other hand, focus on a limited portion of the
scientific literature (Rafols, Porter, and Leydesdorff 2010).
Such a portion can be a scientific field, a specialty, a research
topic, or the publication output of a university. In all these
cases, the accurate selection of the target publications is a
crucial step since an unrepresentative or wrong set of publi-
cations will produce a misrepresentation of the target.

Following Zitt and colleagues, we distinguish three gen-
eral strategies for field delineation: A) rely on external for-
malized resources, such as ready-made science classifica-
tions; B) create ad hoc information retrieval search; C) use
network exploration resources (i.e., science mapping itself)
(Laurens, Zitt, and Bassecoulard 2010; Zitt et al. 2019; Zitt
and Bassecoulard 2006).

The first strategy is based on ready-made classifications,
such as the ones used by Web of Science or Scopus to classify
their records. Other classificatory schemes are produced in
institutional settings (e.g., by research evaluation agencies
or by research councils) and, clearly, by libraries. Note that
sometimes the journal, rather than the individual article, is
the unit of classification, with the articles inheriting the cat-
egory of the journals where they are published. Following
this first strategy, representative literature is retrieved by us-
ing these ready-made classifications at different levels of
granularity (scientific field, specialty, sub-area, etc.). An ev-
ident shortcoming of this strategy is that it heavily relies on
the goodness of the chosen classifications.

The second strategy is based on creating, usually in close
interaction with domain experts, ad hoc searches to query
the databases. These queries can potentially include any
searchable part of the bibliographic records: words in titles
and abstracts, keywords, authors, affiliations, journals,
dates, references, and so on. A typical query combines a
search for specialized journals and a lexical search in comple-
ment. Note that the starting queries can be refined, for in-
stance by citation analysis. Once a core set of publications,
journals or even key authors is determined, new records are
added by following the citations (articles citing the core set)
or the references (articles cited by the core set), in an iterative
process.

The third strategy relies on science mapping methods
and, in particular, on clustering. The basic idea is to use bot-
tom-up clustering techniques that group publications based
not on a classificatory scheme, but on their reciprocal rela-
tions (for instance, their co-citation strength, see Section
4.1.2: The links in citation-based maps). Techniques of net-
work analysis, as well as experts’ knowledge, are then used to
select the relevant clusters. By iterating this procedure, an
increasingly precise field delineation is obtained.

All these approaches involve the double risk of losing rel-
evant publications and introducing noise (not relevant pub-
lications) in the dataset (Zitt et al. 2019). In fact, there is no
fit-to-all solution to field delineation. From an operative
point of view, a good strategy is to combine recursively the
different approaches, checking each time the set of retrieved
publications and refining accordingly the queries (an exam-
ple of this approach can be found in Chen 2017).

However, it is important to remember that, from a theo-
retical point of view, there is no ground truth basis for de-
fining research domains in a purely objective way. As the
ongoing discussion about research areas definition and clas-
sification shows, research classification should be conceived
as a social process involving multiple actors, from researchers
to journals to research evaluation agencies, rather than as a
static photograph of the structure of science. Classificatory
schemes as well as the boundaries between areas are con-
stantly negotiated and reshaped under the pressure of dif-
ferent social systems and infrastructures (Sugimoto and
Weingart 2015). As these systems serve different purposes
and are governed by different logics, frictions and inconsist-
ences between the classificatory schemes they produce are
to be expected (Astrém, Hammarfelt, and Hansson 2017).
For instance, an article can be classified as belonging to re-
search area X based on the institutional affiliation of its au-
thors and to research area Y based on the topic of the journal
where it is published. Even if field delineation is the first
step in many bibliometric analyses, including science map-
ping, its theoretical stakes should not be underestimated.

3.3 Data cleaning and pre-processing

When the field delineation is completed and the datasets are
retrieved from bibliographic databases, the data consist basi-
cally of large tables, in which each row corresponds to a pub-
lication and the columns represent the available metadata of
that publication (e.g., title, authors, abstract, publication
year, journal, cited references, etc.).Retrieved data usually
contain errors, for instance, misspelling of author names, er-
rors in the cited references, journal titles, and so on. Cleaning
the data is a pivotal step in the science mapping workflow be-
cause the quality of the results depends on the quality of the
data. This task, however, can be highly time-consuming and
can present difficult issues, such as the disambiguation of au-
thors with homonym names and the merging of authors with
multiple names (Strotmann and Zhao 2012).

After the cleaning, the data can be pre-processed. They
can be divided into different time sub-periods to carry out
longitudinal studies (see Section 5: The representation of
time in science mapping), or a portion of the retrieved data
can be furtherly selected based on some measure, such as the
most cited articles, the most productive authors, or the jour-
nals with the highest performance metrics.
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3.4 Network extraction

In general, a network is a structure made of nodes (also called
vertices) and links (also called edges). It can be represented as
a graph or as a matrix. Networks are valuable tools to repre-
sent and study a great variety of natural and social phenom-
ena, from the lineage of a family to patterns of contracts
among firms, to the spreading of a virus (Barabdsi 2014).

In science mapping, we are interested in those networks
that can capture the structure of science at different levels
and from different points of view. In fact, these networks
are the basic structure on which science maps are built.

From the same set of bibliographic records, it is possible
to generate different networks, depending on the type of
nodes and links we decide to focus on. The nodes will rep-
resent the unit of analysis of the final map, whereas the links

the type of relationship displayed.
4.0 Types of science maps

Science maps can be classified into different types depend-
ing on the kind of data, and hence the kind of network, they
are based on. In principle, any feature of the scientific enter-
prise that can be represented in relational terms, i.e., as a net-
work of nodes and links, can be used to generate a science
map. In citation-based maps, the units of analysis (the
nodes) are publications or aggregates of publications (e.g.,
journals or authors), and the relationships between them

(the links) are citations or association measures based on ci-
tations (bibliographic coupling and co-citation). In term-
based maps, the units of analysis are textual items (themes,
keywords or terms) and the relationships are co-occurrence
frequencies (e.g., the number of times two keywords are
used together in a set of publications). In co-authorship
maps, the units are the authors and the links are the number
of co-authored publications. In interlocking editorship
maps, the units are the journals and the links are the number
of persons who are shared between the editorial boards of
two journals). In addition to these, there are also science
maps based on patents data and geographic maps of science,
which will be the topic of Section 4.4.

4.1 Citation-based maps

4.1.1 The nodes in citation-based maps: publications
and aggregates of publications

In the most basic citation-based map, the nodes represent
individual publications and the links the citations (refer-
ence-links) among them. An example of citation network is
provided in Figure 1, where it is visualized as a directed net-
work in which nodes represent publications and arrows the
reference-links (citations) between them. Some publica-
tions are both citing and cited (e.g., publication a), some
publications are only cited (e.g., publication f), and some
publications cite without being cited (e.g., publication e).

Figure 1. Example of citation network. Nodes represent document and ar-

rows the citations between them.
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The same information can be represented as an adja-
cency matrix, whose elements indicate whether pairs of
nodes are connected (“adjacent”) in the network or not.
When the publication in the row cites a publication in the
column, the corresponding element in the matrix is 1, 0 oth-
erwise.!’

QU S ™
o O O - O O © © N
O O 0O 0 0 O O = ™
O O O H O O = oo
O O O O = O O H
oo O 0 0 O O O O a8
O 0O O O H O O Y%
©C O O H O = O Ok
o O 0O 0 O O - o >

>0y Y o

Since publications are provided with metadata, such as their
authors or the journals in which they are published, it is pos-
sible to build aggregates of publications sharing the same
metadata (Radicchi, Fortunato, and Vespignani 2012). By
aggregating publications at a higher and higher level, we can
reach higher units of the analysis and networks based on
new types of nodes.

To understand this mechanism, we show how to build a
journal citation network (Leydesdorff 2004; McCain 1991)
starting from the document citation network of Figure 1.
We start by coloring the nodes according to the journals
where they are published, and the citation links according
to the journal to which they point (Figure 2).

The journal citation network is obtained by substituting
each article with its journal of publication and then using
the journals as nodes of the network. A link between two
journals is drawn when they exchange at least one citation.
Note that in this new network, it is possible to provide links
with weight, that is the number of citations that each jour-
nal receives from other journals (or from itself). In the pre-
vious network, there was not a proper weight but only an
on/off relationship (presence of a reference-link or not).
There are also some loops, produced by articles citing arti-
cles published in the same journal (these loops correspond
to journal self-citations). The resulting journal citation net-
work is shown in Figure 3.

By the same aggregation process, we can construct au-
thor citation networks (e.g., McCain 1990; Radicchi et al.
2009), or reach higher units of analysis, such as institutions
and even countries (e.g., Glinzel 2001).

Figure 2. Citation network with document-nodes colored based on the jour-

nal they were published in. The color of the arrows corresponds to the color

of the citing journal.
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Figure 3. Example of journal citation network. Out-citations, in-citations, and

self-citations between journals are colored, respectively, in green, orange, and

violet.

4.1.2 The links in citation-based maps: direct
citations, bibliographic coupling, and
co-citations

Until now, we considered only citations as links in the cita-
tion network. The presence of a reference-link between two
publications usually attests that they are somehow associ-
ated, for instance, that they share the same topic or research
method (see Section 7.3: The meaning of citations). Maps
in which the links are direct citations are called “direct-link-
age” or “cross-citations” or “inter-citation” maps (Waltman
and van Eck 2012). In science mapping, however, there are
two other common techniques used to measure the related-
ness or strength of association of publications (or their ag-
gregates): bibliographic coupling (Kessler 1963) and co-ci-
tation (Small 1973; Marshakova 1973).

In bibliographic coupling, a link between two publica-
tions is established when they share at least one publication
in their respective bibliographies, i.e. when they have at least
one reference in common. The weight of the link is propor-
tional to the number of shared references. Co-citation is, in
a certain sense, the reverse of bibliographic coupling. In a
co-citation network, a link is drawn between two publica-
tions if they are cited together at least by a third publication,
and the weight of the link (the so-called co-citation
strength) is proportional to the number of common cita-
tions they gather (i.e., the number of co-citations).

Figure 4 shows the bibliographic coupling network gen-
erated from the citation network of Figure 1. Note that
publication fhas no link with other publications because, in
our example, it did not have any cited reference (i.e., no out-
going link).

Figure 5 shows the co-citation network. Analogously,
publication ¢ has no link with other publications because it
had no citations (i.e., no incoming link).

Note that citations are directed links because we can dis-
tinguish between a sender and a receiver of the citation. In
network theory terminology, they are called “arcs” (Wasser-
man and Faust 1994). In contrast, bibliographic coupling
and co-citation links are un-directed links because biblio-
graphic couplings and co-citations are symmetrical. In net-
work theory terminology, they are called “edges” (Wasser-
man and Faust 1994).

Starting from a matrix whose rows are the citing publica-
tions and columns are the cited publications, it is possible to
derive by matrix algebra operations the two co-occurrence
matrices representing the bibliographic coupling network
or the co-citation network (Van Raan 2019).

Note that direct citations, bibliographic coupling, and
co-citation analysis can be applied not only to single publi-
cations, but also to aggregates of publications. For instance,
if authors are used as units in co-citation analysis, we have
Author Co-Citation Analysis (e.g., White and McCain
1998; Kreuzman 2001), if journals are used as units, we have
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Figure 4. Bibliographic coupling network generated based on the citation net-
work in Figure 1. Nodes are publications, links show bibliographic coupling
between publications. Note that publication f has no bibliographic coupling
links with other publications in the network.

o 0

[a

)

Figure 5. Co-citation network generated based on the citation network in Fig-
ure 1. Nodes are publications, links show co-citation between publications.
Note that publication e has no co-citation links with other publications in the
network.
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Journal Co-Citation Analysis (e.g., McCain 1991). By com-
bining in this way methods and units of analysis, several
types of bibliometric networks can be generated (Waltman
and van Eck 2014). Figure 6 shows an example of co-citation
map using individual publications as units of analysis.

4.1.3 Normalization

Usually, the raw frequencies of citations, bibliographic cou-
plings or co-citations are not directly used as input of the
visualization process that leads to the final form of the sci-
ence map. This is because the raw frequencies do not
properly reflect the similarity between the items (van Eck
and Waltman 2009). To understand why, suppose that de-
partment AA and department BB publish comparable arti-
cles, but department AA, having more researchers than de-
partment BB, publishes 10 times more articles. Other things
being equal, one would expect that the articles from depart-
ment AA will receive in total about ten times as many cita-
tions as the articles from department BB and thus to have
about ten times as many co-citations with other depart-
ments in the same discipline as department BB. However,

hawthorne j.,

the fact that department AA has more co-citations with
other departments than department BB does not indicate
that it is more like other departments than department BB.
It only shows that department AA publishes more articles
than journal BB because it is bigger. To correct such a dis-
tortion due to the different size of the units of analysis, we
need to transform the raw co-citation scores, adjusting them
by some stable quantity, an operation called “normaliza-
tion” (van Eck et al. 2010).

In science mapping, similarity measures are used to per-
form such a normalization. Following Ahlgren and col-
leagues, we distinguish two main approaches to calculating
these similarities: the local or direct and the global or indi-
rect (Ahlgren, Jarneving, and Rousseau 2003). In the for-
mer approach, the focus is on the co-occurrence frequencies
of the items, that are then adjusted for different quantities.
Examples include the cosine (the most popular one), the as-
sociation strength (used in VOSviewer, see the Appendix),
the inclusion index, and the Jaccard index (van Eck and
Waltman 2009). In the latter approach, the focus is on the
way two items are related to all the other items in the dataset
under study. This means that what is compared to obtain

fantl j, 2002, ghilos rev, v11

[anonymous],

9, p@los pers

derose k, 1998)philos rev, v1

, knowledge

lewis d, 199G @ustralas j phi

nozick r., 198 philo:
williamson t#

[ )

@

joyce j., 1999,@in causal d%

plantinga a., 1993, warrant pr
@

D, knowledge
bohjour I, 1988) structure em
@burge t, 19934philos'rev, v10

ryor j,,2000 neus, v34, p517
pryor, 2000488 p

Mior t. m. 4855 Bhat
*c on :nqé:’ aw.e_o

W \ Ay’
lewis d., 1 unterfactual e
Y@ty R
fine kit, 1975MWese, v30,
k{iplggsaul, 1

Qnamity neée evamﬁ 179$ariefcigs refe.

frankfurt h., 4971, j philos,

dretske # 198fknowledge flo

) brewer b;-19! erception re
& S 99)-percep!

fischer john martin, 1998, res _0 \ 3 - == S TR
quine willard orman, 1960, g~ @ _ - ~ mcdowall:; 1894, ﬂingw'cﬁd,v
bird a, 1998, philos quart, v4 N/ U2 fodor jerry, 1990, theory cont NS S N
lewis'd., 1 @rality worl nagel t 1974,@hilos rev;u83_~——cam 02, reference

van inwag@r, 1990, mat b

sider t., ZOOwdimensionali

[%g VOSviewer

ty®m;; 1995, 10 problems cons

Figure 6. Example of co-citation map. The field mapped is analytic philosophy. The nodes represent documents. A link is drawn between

two nodes when they are co-cited. Size of the nodes is proportional to the number of citations gathered by the document; thickness of the

links is proportional to the co-citation strength; nodes’ colors indicate the cluster to which they are attributed by the clustering algorithm.

Nodes are positioned according to their co-citation strength, so that the more frequently they are cited together, the closer they appear on

the map. The visualization was produced with VOSviewer.
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the similarity between two items are their entire profiles,
i.e., the entire rows (or columns) of the co-occurrence ma-
trix, and not their simple co-occurrence frequency. Pear-
son’s correlation coefficient (r), the cosine!’, and the Chi-
Squared distance are examples of indirect similarity measure
based on the global approach (McCain 1990; White and
Griffith 1981). However, the reliability of Pearson’s r as a
similarity measure has been contested (Ahlgren, Jarneving,
and Rousseau 2003; van Eck and Waltman 2008).

In general, there is no agreement on what the best nor-
malization procedure is and on what similarity measures
should be used in science mapping (Boyack and Klavans
2019; Leydesdorft 2008; Van Raan 2019). In the scien-
tometric community, the discussion still goes on after 35
years (e.g., Zhou and Leydesdorft 2016). However, it is im-
portant to remember that, depending on the chosen proce-
dure, the resulting science maps can be rather different (Bo-
yack, Klavans, and Bérner 2005).

4.1.4 Visualization

Visualization is the step in the science mapping process in
which the information contained in the network is dis-
played in a visual layout comprehensible to human under-
standing. Following Waltman and Van Eck (2014), we dis-
tinguish two basic types of visualizations: graph-based and
distance-based. They are not the only approaches available
but are probably the most common in science mapping.'

In graph-based visualization, the network is visualized as
a graph made of nodes and edges (Figures 1, 2, 3, 4, and 5
are examples of graph-based visualizations). The edges (links
between nodes) are displayed to indicate the relatedness of
nodes. The most common technique for creating such
graphs are force-directed graph drawing algorithms, such as
the Kamada and Kawai and the Fruchterman and Reingold
(Chen 2013).

To understand the underlying mechanism of these algo-
rithms, imagine the network as a physical system, in which
the nodes are little balls electrically charged and the links are
springs that connect them. The electric charge creates a re-
pulsive force between the balls, counterbalanced by the at-
tractive force generated by the springs. The algorithms basi-
cally simulate the network as such a physical system made of
balls and springs and apply two opposite forces to the nodes,
one attractive (proportional to the weight of the link be-
tween two nodes) and the other repulsive, until the system
comes to a state of mechanical equilibrium. The final layout
is the one corresponding to such an equilibrium state. Note
that several configurations are possible since usually there is
no unique equilibrium state.

Force-directed graph drawing algorithms are imple-
mented in software for network analysis and visualization,
such as Gephi" and Pajek."* An example of a graph-based

science map created with Pajek and visualized with the
Kamada and Kawai algorithm can be found in (Leydesdorff
and Rafols 2009, Figure 4). An example of a graph-based sci-
ence map created with Gephi can be found in (Weingart
2015, Figure 4)

The other visualization approach is distance-based. In
distance-based visualizations, the distance of nodes on the
map reflects their similarity, so that similar nodes are placed
closer and dissimilar nodes far away. Note that in graph-
based visualization, on the other hand, the position of the
nodes is not directly related to their similarities, but it is a
product of the “pull and push” mechanism of the drawing
algorithm. In distance-based visualizations, links can be
shown or not.

Distance-based visualizations are conceptually closer to
geographic maps than graph-based visualizations. Geo-
graphic maps represent relationships in space by placing ob-
jects thatare close in the physical space near on the maps and
objects that are distant in the physical space further apart on
the map. Distance-based maps have the same goals, but in-
stead of being based on physical distances, they are based on
similarities between objects.

To produce a distance-based visualization, therefore, the
similarities between the nodes must be transformed into dis-
tances." The distance matrix that is thus obtained is concep-
tually analogous to the table reporting the distances be-
tween pairs of cities in a geographic atlas. The task consists
of reconstructing from the relative distances the positions
of the items on the map, i.e., in finding the coordinates of
the items in a two-dimensional space starting from their re-
ciprocal distances.

To fulfill this task several statistical techniques have been
developed. The most important belong to the family of
multi-dimensional scaling (MDS) methods (Borg and
Groenen 2010). They aim to find the coordinates of the
points in a lower-dimensional space (usually, a plane) such
that the distances of the points on the lower-dimensional
space reflect as accurately as possible the original distances
of the points. The average difference between the distances
on the map and the original distances tells us how much the
map distorts the original configuration. The amount of dis-
tortion is used to calculate the stress of the map. The various
algorithms for MDS essentially adjust the positions of the
points until a minimum value of stress is reached.'

It is important to underlie that distance-based visualiza-
tions can be rotated, flipped, and mirrored. Since the out-
put of MDS is not a set of fixed coordinates but a set of rel-
ative distances between the points, any geometrical transfor-
mations that leave them unaltered can be applied. An exam-
ple of distance-based visualization can be found in (White
and McCain 1998, Figure 2).

When interpreting the output of MDS, that is usually a
two-dimensional map, is it very important to be aware that
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the algorithms can generate visual artifacts, i.e., structures or
patterns that are visible on the map but that are not present
in the original data. For instance, Van Eck and co-authors
(2010) note that variants of MDS tend to produce quasi-
circular layout when used on big matrices and that they tend
to locate items with a high number of co-occurrences to-
ward the center of the map.

However, the trickiest artifacts have to do with the issue
of dimensionality reduction, i.e. with the very core of MDS.
Imagine that we have four points in a three-dimensional
space, each one located at the same distance from the others,
like the vertices of a three-sided pyramid, all sides of equal
length (Borg and Groenen 2010, chap. 13.3). When we try
to place the four points in a two-dimensional plane, we can
respect the equal distance only for three points out of four.
The fourth point will lie almost at the center of a bi-dimen-
sional triangle (as if we were looking at the pyramid from
the above) so that its distance from the other points will al-
ways be shorter than the distances between the three points
themselves.”” Without knowing the original three-dimen-
sional structure and by looking only at the two-dimensional
map, we would wrongly conclude that the fourth point is
closer to the other three. The wrong conclusion raises from
the fact that the two-dimensional map necessarily distorts
the three-dimensional structure because it suppresses the
third dimension, which however carries essential infor-
mation (the equal distance between the fourth point and
the other three points). By losing such information, it intro-
duces an artifact. Interestingly, MDS can generate also the
opposite artifact: points that are placed far away in the map
can be however connected by “tunnels” in hidden dimen-
sions (Leydesdorff and Rafols 2009). Imagine a paper sheet
with two distant points on it: if we bend the sheet, we can
make the two points very close in the third dimension, real-
izing a “tunnel” between them. If we consider only their dis-
tance on the two dimensions of the sheet, however, they will
appear to be distant.

In sum, dimensionality reduction techniques do allow us
to obtain significant insights into the structure of biblio-
metric networks because they reveal the main features of
such a structure. At the same time, since those features may
lie in more than two dimensions, one must be aware of the
inevitable distortions introduced by the dimensionality re-
duction itself.

4.1.5 Enriching the map

With the visualization of the network, we reach the basic
form of the science map. At this point, the interpretation of
the map can already begin. However, it is common to enrich
the basic form by displaying further information on it.

A first option is to use the size of the nodes and the width
of the links to convey their properties. In a co-citation map,

for instance, the size of the nodes can be used to represent
the number of citations collected by the units of analysis
(publication, journal, author, etc.) and the links can be
drawn thicker or darker to express the strength of the con-
nections (e.g., number of co-citations between two nodes).
Alternatively, the size of the nodes can be used to represent
the centrality of the nodes, using one of the different no-
tions of centrality defined in network theory. The most
common include degree centrality, betweenness centrality,
closeness centrality, and eigenvector centrality (Wasserman
and Faust 1994). The degree centrality of a node is propor-
tional to the number of its links so that it is higher for highly
connected nodes. Betweenness is a measure of brokerage of
gatekeeping, that is of how much a node is an “obligatory
passage” in the network. In science mapping, it is sometimes
used to measure interdisciplinarity (Leydesdorff 2007).
Closeness measures how close a node is to the other nodes
in the network. Nodes with high closeness are the ones that
can be reached with few steps'® from any other node in the
network. Lastly, eigenvector centrality is a measure of the in-
fluence of a node in the network. The underlying idea of
eigenvector centrality is that the influence of a node de-
pends on the influence of the nodes to which it is con-
nected, so that a node connected with other central nodes
increases its centrality.

A turther option to enrich the map is to use colors to dis-
tinguish visually different clusters of nodes. Networks typi-
cally display an internal organization in clusters or commu-
nities, that is groups of highly interconnected nodes (Radic-
chi, Fortunato, and Vespignani 2012). In distance-based vis-
ualizations, clusters result as sets of close points, separated
from other clusters by blank space. The techniques of clus-
ter analysis can be used to detect such communities. One
common method is hierarchical agglomerative clustering
(Chen 2013). All the units of the map (the nodes) begin
alone in groups of size one, then, at each iteration of the
clustering algorithm, similar groups are merged, until all the
nodes belong to one super-cluster. A resolution parameter
controls the granularity of the clustering, i.e., the size of the
communities. Different agglomerative methods are charac-
terized by the definition of distance between clusters they
use and by the metric employed to calculate the distances
(there are lots of options besides the familiar Euclidian dis-
tance). In single-linkage clustering, the distance between
two clusters is set equal to the distance between their closest
nodes. In complete-linkage clustering, on the other hand, it
is equal to the distance between the most distant nodes in
the two clusters. Lastly, in centroid linkage clustering, it is
equal to the distance between the “centers” or average points
(centroids) of the clusters. These clustering procedures,
however, are only a small fraction of the available tech-
niques and algorithms for clustering and community detec-
tion. In the last years, the techniques based on modularity,
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originally developed in physics, are becoming increasingly
popular (Thijs 2019)."”

Clusters can be labelled automatically by extracting
terms from the titles, abstracts, and keywords of the publi-
cations in the clusters (Chen 2006) (see Section 4.2.2: Co-
word analysis based on automatically extracted terms). Each
cluster is thus provided with a word-profile and its most rel-
evant words can be superimposed on the map to facilitate
the interpretation of the clusters (Chen, Ibekwe-SanJuan,
and Hou 2010).

A last method for enriching the science map is to use the
overlay (Rafols, Porter, and Leydesdorff 2010). In science
overlay maps, the results of the mapping are laid over a back-
ground, that can be, for instance, a global map of science.
The background serves as a reference system that facilitates
the interpretation of the results. For instance, the scientific
output of a university can be overlaid on a global map of
science to get an insight into the scientific coverage of the
university or its impact (see Section 8: Science maps and sci-
ence policy).

4.2 Term-based maps

Term-based science maps are used to extract and visualize
the intellectual content of a corpus of publications based on
the analysis of the terms associated with those publications
(Borner, Chen, and Boyack 2005). These terms can be the
keywords or descriptors of the publications, or they can be
extracted automatically from titles and abstracts or even the
full texts of articles. Term-based science maps allow to ex-
plore at a fine-grained level the intellectual content of pub-
lications since titles, abstracts, and keywords are meant to
report the main topics, concepts, and results of scientific ar-
ticles (He 1999; Van Raan and Tijssen 1993).

An important advantage of term-based mapping com-
pared to citation-based mapping is that it applies to fields
characterized by the scarce presence of citations, such as ap-
plied research and technology (Callon et al. 1983).

Depending on the method by which the terms character-
izing a publication are extracted, we can distinguish two
types of term-based maps. Classic co-word analysis, devel-
oped by Callon and colleagues, is based on human-assigned
keywords. Natural Language Processing (NLP)-based co-
word analysis, on the other hand, is based on terms that are
automatically extracted from the texts by natural language
processing techniques.

Independently of the method, however, co-word analysis
rests on some assumptions that have been contested. The
main one is that words and terms have a stable meaning
across fields and over time so that they can be used as reliable
proxies of scientific concepts and ideas (Leydesdorft 1997).
However, this assumption may be false, and historians of
science have indeed shown that the phenomenon of mean-

ing-shift occurs in science (Kuhn 2000). A possible reply to
this criticism is that words in co-word analysis are not used
as carriers of meaning but as simple links between texts
(Courtial 1998). From an operative point of view, meaning
shift can be avoided by restricting the time scope of the anal-
ysis to a relatively short period and semantically homogene-
ous areas (Mutschke and Quan-Haase 2001).

4.2.1 Classic co-word analysis and the strategic
diagrams

The first term-based maps were developed in the 1980s by a
team of sociologists of science based at the Centre de Soci-
ologie de 'Innovation at the Ecole des Mines in Paris. They
were designed to study the interaction between scientific
knowledge and technological innovation, and, more gener-
ally, the relations between science and society (Callon et al.
1983). Itis important to point out that the theoretical foun-
dation of co-word analysis developed by Callon and others
lies in the tradition of the Science and Technology Studies,
and in particular in the Actor-Network Theory developed
by Bruno Latour and others (Callon, Law and Rip 1998;
Latour 2003). However, as a mapping method, co-word
analysis can be employed without endorsing such a theoret-
ical framework.

Callon and colleagues focused in particular on the de-
scriptors employed by documentation services to index the
content of scientific and technological publications (Cal-
lon, Courtial and Laville 1991). The method of co-word
analysis, then, consists first in collecting all the descriptors
of the target documents. After a process of cleaning, in
which variants and synonyms are merged and not relevant
descriptors removed (see Section 3.3: Data cleaning and pre-
processing), the co-occurrence frequency of each pair of de-
scriptors is calculated. Two descriptors co-occur if they are
used together in the description of a single document. A co-
occurrence matrix reporting the co-occurrence frequencies
of each pair of descriptors is thus produced, and the raw val-
ues are then normalized (see Section 4.1.3: Normalization).

In the classic co-word methodology, as described by Cal-
lon and colleagues, the visualizations produced by co-word
analysis are “strategic diagrams” (sometimes called “cogni-
tive maps”), which are a special kind of science map that
should not be confused with distance-based visualizations.
To create a strategic diagram, clusters of frequently co-oc-
curring descriptors or keywords are created by some cluster-
ing technique. Such clusters are called “themes” and are de-
scribed by two characteristics: centrality and density. The
centrality of a cluster is given by its external link, i.e., the
number of links it has with other clusters. The density of a
cluster is defined as the proportion between the links that
are present in the keywords cluster and the number of pos-
sible links. Each theme is thus defined by two variables, cen-
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trality and density, that constitute its coordinates in the stra-
tegic diagram (He 1999). Then, the strategic diagram is di-
vided into four quadrants (Mutschke and Quan-Haase
2001). The themes in the first quadrant are characterized by
high density and high centrality and constitute the main-
stream of the scientific field. The themes in the second
quadrant, characterized by high centrality and low density,
are unstructured themes that may be described as “band-
wagon” themes. The themes in the third quadrant are char-
acterized by high density and low centrality: they have a
well-developed maturity but lacks ties to other themes in the
field. They are the “ivory tower” themes. Lastly, the themes
in the fourth quadrant, characterized by low centrality and
low density, comprise both topics that are fading away and
new topics that are emerging. In longitudinal analysis, the
trajectory of a theme can be followed through the quadrants
of the strategic diagram. An example of a strategic diagram
can be found in (Cobo et al. 2011a, Figure 6).

The method of co-word analysis based on descriptors or
other kinds of keywords may suffer from the so-called “in-
dexer effect” (Law and Whittaker 1992). Indexing may re-
flect the prejudices or points of view of the human indexers
and may be inconsistent between different indexers or
change over time. The indexer effect is a problem common
to all human-based classifications. The study of research
classification systems reveals that they cannot be taken at
face value as they are the result of complex disciplinary ne-
gotiations in which both intellectual and academic interests
are involved.?

4.2.2 Co-word analysis based on automatically
extracted terms

The indexer effect can be partially avoided by recurring to
the automatic extraction of terms from titles, abstracts, or
even the full texts of articles. However, even if this method
does not rely on the choices of an indexer, it is not free of
human intervention. In fact, it shifts from the choices of the
indexer to the choices of the authors of scientific publica-
tions, who decide what words should be included in the ti-
tles and abstracts. The issue of meaning shift, therefore, is
not solved.

Natural Language Processing (NLP) techniques are used
to extract terms from the textual data (Taheo 2018). In gen-
eral, terms are “n-grams”, i.e., sequences of n items (usually
words). A special category of n-grams are noun-phrases, i.e.,
sequences that consist exclusively of nouns and adjectives
and that end with a noun (e.g., “text mining”, “network
analysis”). Algorithms for term detection usually comprise
several steps: first, the text is split up into sentences and sen-
tences split up into single words (tokenization), then so-
called stop-words are removed (words such as “and”, “or”,
etc.), and the remaining words are assigned to a part of

speech, such as verb, noun, adjective, etc. (part-of-speech
tagging). Noun-phrases are then identified, and, lastly, vari-
ants (e.g., plurals) are merged into one form. Once the list
of noun-phrases is obtained, a fraction of them is retained.
A common strategy is to select only the most relevant noun-
phrases. It is important not to confuse relevance with fre-
quency: frequency is a brute measure of the occurrences of
a term, whereas relevance can be conceived as a measure of
how specific a term is (Sparck Jones 1972). To understand
the difference between the two, take a term such as
“method”. In the scientific literature, it is denoted by a high
frequency; however, it is scarcely relevant to characterize a
scientific article, since is occurs probably in most scientific
articles. Knowing that an article contains the term
“method” is a very thin indication of its content. Because of
its being too generic, “methods” therefore has a low rele-
vance. A term such as “cardiovascular”, on the other hand,
is less frequent than “method” but conveys more infor-
mation about the specific topic of an article. Therefore, it
has a high relevance. Relevance scores serve to discriminate
generic from specific terms. A common metric used in text
mining to calculate relevance scores is TF-IDF, short for
“term frequency-inverse document frequency” (Salton and
McGill 1983). The underlying idea is that the relevance of a
term is proportional toits occurrences and inversely propor-
tional to the number of documents in which it occurs.
Terms that occur very frequently in a few documents will
score higher on TF-IDF than terms that occur very fre-
quently in most of the documents. From this basic idea,
more refined metrics to calculate the TF-IDF have been de-
veloped (Thijs 2019).

After the selection step, the number of documents in
which each pair of terms appear is calculated and the corre-
sponding co-occurrence matrix generated. The process is
then the same as citation-based maps. Usually, the raw co-
occurrence frequencies are normalized (see Section 4.1.3:
Normalization), and then the term map is obtained in the
form of a distance- or graph-based visualization (see Section
4.1.4: Visualization). Further techniques, such as clustering,
can be applied to enrich the map (see Section 4.1.5: Enrich-
ing the map). Note that term-based maps thus obtained are
different from the strategic diagrams produced by classic co-
word methodology. They represent the topics recurring in
the set of publications analyzed, rather than the properties
of their themes. An example of term-based map is shown in
Figure 7.

4.3 Other network-based maps

Besides citation networks and term networks, several other
networks can be used to generate science maps. In this sec-
tion, we briefly present co-authorship networks and inter-
locking editorship networks.
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Figure 7. Example of term-based map. The field mapped is human geography. The nodes represent the most occurring terms in the field.

Size of the nodes is proportional to the term’s occurrence. A link is drawn between two terms if they co-occur in the same title or abstract.

The thickness of the link between two nodes is proportional to the number of co-occurrences of the terms. The color of the nodes corre-

sponds to the cluster they are attributed to by the clustering algorithm. Nodes are positioned in the map based on their co-occurrences, so

that terms frequently occurring together are closer on the map. The visualization was produced with VOSviewer.

4.3.1 Co-authorship networks

Co-authorship networks are science maps in which the
nodes represent authors and the links the relation of co-au-
thorship, i.e., the number of articles authored together by
each pair of authors (Newman 2001). Since co-authorship
usually implies a strong relationship of collaboration (Katz
and Martin 1997; Liu et al. 2005), co-authorship networks
are used to reconstruct and investigate the social networks
of researchers, the so-called “invisible colleges” (Crane
1972). It must be remembered, however, that co-authorship
is only a proxy of scientific collaboration and that some type
of collaborative work occurring in research (e.g., the work
of laboratory technicians) do not lead automatically to the
authorship (Laudel 2002). More generally, the practice of
authorship and the requirements for being awarded author-
ship varies in different areas (Lariviere et al. 2016). Further
issues that complicate the interpretation of co-authorship
data are “ghost” and “honorary” authorship, as well as the
phenomenon of “hyper-authorship” (Cronin 2001). Espe-
cially in bio-medical fields, there is evidence that sometimes
scientists are included as co-authors of articles even if they
did not contribute to the research process (“gift” or “hon-

orary” authorship), while others are denied legitimately
earned authorship (“ghost” authorship) (Wislar etal. 2011).
Honorary authorship can artificially inflate the relevance of
some researchers in the co-authorship network, whereas the
ghost authors remain simply invisible to standard co-au-
thorship analysis. Furthermore, in some areas such as high-
energy physics and again biomedicine, the last years have
witnessed massive levels of co-authorship. Cronin has
coined the term “hyper-authorship” to describe such a
growing phenomenon of publications with hundreds, if
not thousands of co-authors. For instance, in 2015, a publi-
cation in high-energy physics counted 5000 co-authors. Hy-
per-authorship does not only challenge the standard con-
ception of authorship but also raises several issues about re-
sponsibility and accountability, which have been widely dis-
cussed by editors of biomedical journals (see e.g., ICMJE
2019). The presence of hyper-authorship is an important
factor that must be considered when a field is investigated
by of co-authorship networks.

In sum, co-authorship networks are useful tools to inves-
tigate scientific collaboration, but, since they are based on
formal authorship, they should be interpreted in the light of
detailed knowledge of the authorship practices of the area
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under investigation, taking into consideration also possible
distortions due to ghost, honorary and hyper-authorship.

4.3.2 Interlocking editorship networks

Interlocking editorship is a method to map relationships be-
tween journals. Two journals are connected in the interlock-
ing editorship network when they have at least one member
of the editorial board in common (Baccini and Barabesi
2010). The editors of a scientific journal play a relevant role
as “gatekeepers” of scientific disciplines since they manage
the peer review process and make the final decision on the
publication of articles (Crane 1967). Therefore, interlock-
ing editorship networks can be used to reveal groups of jour-
nals whose editors endorse similar policies. Interlocking ed-
itorship networks seem to be highly correlated with journal
co-citation networks, showing that similar editorial policies
may reflect similar intellectual approaches to the discipline
(Baccini et al. 2019).

4.4 Other types of science maps

In a broader sense of the term, we can include into the cate-
gory of science maps also other visual representations of sci-
ence that are not directly based on networks of scientific
publications or that integrate network data with other types
of data. Maps based on the analysis of patents belong to the
first category and geographic maps of science to the second.

4.4.1 Maps based on patents data

Several maps can be generated from the analysis of patents,
which are especially interesting for studying the dynamics
of technology systems and the interaction between science
and technology (Jaffe and Trajtenberg 2002). A first kind of
patent map is based on the patents’ metadata stored in pa-
tent databases. Patents, like publications, have several
metadata, such as the applications, the region where a pa-
tent is in force, the classification category, the application
year, etc. Moreover, patents frequently include references to
the scientific literature and other patents as well. All these
metadata can be used to generate networks of patents or net-
works of patent features (Federico et al. 2017). For instance,
Boyack and Klavans created a map of patents based on the
IPC (International Patent Classification). The map shows
the relations between patents based on their co-classifica-
tion: patents that are classified in the same category form
clusters (Boyack and Klavans 2008). Other patent maps can
be generated based on the citation network of patents, ap-
plying the equivalents of the direct linkage, bibliographic
coupling, and co-citation methods to patents (von Wart-
burg, Teichert, and Rost 2005). Analyzing the references to
scientific publications contained in patents allows tracing

the links between scientific knowledge and technological
applications (Meyer 2000), whereas, by studying the scien-
tists that are both authors of scientific publications and in-
ventors of patents, it is possible to map the overlap between
scientific and technological literature (Murray 2002). In the
last years, text-mining techniques see Section 4.2.2: Co-
word analysis based on automatically extracted terms) have
increasingly been applied to patent mapping (Ranaei et al.
2019). These methods allow us to automatically extract key-
words from patent documents and then built patent maps
or term-maps of patents (Lee, Yoon, and Park 2009; Tseng,
Lin, and Lin 2007).

4.4.2 Geographic maps of science

The science maps we presented so far focused on the ab-
stract spaces of science, such as citation, term, and collabo-
ration spaces. Classic science maps aim at Visualizing pat-
terns and trajectories occurring in these abstract dimen-
sions. Science, however, is also a concrete activity occurring
in specific places on our planet (Finnegan 2015). In fact, sci-
ence is produced in geographic sites that are not equally dis-
tributed on the Earth but are concentrated in few, highly de-
veloped areas. From those sites, scientific knowledge travels,
as publications and researchers move around the globe. Ge-
ographic maps of science aim at describing the spatial diffu-
sion of scientific activities and the circulation of scientific
knowledge in the geographic space. They are a key research
topic in spatial scientometrics (Frenken, Hardeman, and
Hoekman 2009) and an important tool in the geography of
science (Livingstone 2003). By showing the unequal spatial
distribution of science and research in different countries,
they offer interesting insights into the structure of the
global research system (Wichmann Matthiessen, Winkel
Schwarz, and Find 2002).

Geographic maps of science are created by locating on a
geographic map, e.g., a map of the Earth, the nodes of the
network we focus on. For instance, the authors of a co-au-
thorship network can be placed on the map based on the co-
ordinates of their research institutions. Or a network of cit-
ies collaborating in the production of scientific papers can
be constructed and plotted on a map (Leydesdortf and
Persson 2010). Or citation flows between universities can be
geographically visualized (Borner et al. 2006). The tool
CiteSpace (see the Appendix) provides a specific utility to
generate geographic maps of science.

5.0 The representation of time in science mapping

There are different options to include the dimension of time
into science maps. A first option consists in longitudinal
mapping (Cobo et al. 2011a; Petrovich and Buonomo 2018;
Petrovich and Tolusso 2019): based on the publication year
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of the bibliographic records, subsets of publications belong-
ing to different timespans are created and each of them is
mapped separately. Note that any mapping technique can be
used, from co-citation analysis to co-word analysis. Each map
will represent a sort of “photograph” of the field under inves-
tigation in a certain timespan. The sequence of maps allows
visualizing the temporal dynamics of the field. A second op-
tion consists in representing on the same map the trajectories
of the units that change their relative position is subsequent
maps (White and McCain 1998). A third option is animating
the map: instead of a static visualization, a short movie is cre-
ated interpolating the layouts of the network in different mo-
ments (Leydesdorff and Schank 2008).

The first maps including the temporal dimension, how-
ever, used a timeline to represent time. Garfield called them
“historiographs” (Garfield 2004). In the timeline-based ap-
proach, each node of the network (classically, a publication
in a citation network) is linked to a specific point in time
(e.g., the publication year). The visualization, then, uses two
dimensions: the vertical one is the timeline, whereas the hor-
izontal one is used to represent the relatedness of the items
(Waltman and van Eck 2014). The result is a citation net-
work spread over a timeline. Garfield tested the validity of
the historiographs as tools for reconstructing the history of
science by comparing the narration of the discovery of the
DNA written by Asimov with the historiograph based on
the bibliographies of the corresponding publications (Gar-
field 1973). He found a good overlap between the two: the
key events in the discovery according to Asimov appeared
also in the historiograph.

Alluvial maps are another form of timeline-based visuali-
zation. Starting from different phases in the evolution of a
network, the networks relative to each phase are divided into
different clusters, and then the trajectories of corresponding
clusters in subsequent networks are visualized as a stream.
The fusions and fissions of clusters over time is visualized as
multiple streams flow over time (Rosvall and Bergstrom
2010)."

By combining co-citation mapping and temporal visual-
ization, an amazing visualization of the temporal develop-
ment of the journal Nature in the last 150 years was recently
produced (Gates et al. 2019).2

6.0 Interpreting a science map

Interpreting a science map means linking the visual and ge-
ometrical properties of the map to substantive features of
the mapped area or field. For instance, clusters of co-cited
publications can be mapped to scientific sub-specialties or
research topics, bibliographic coupling networks can be in-
terpreted as the research fronts of scientific specialties, co-
authorship networks as invisible colleges of scientists, and
clusters of journals sharing many editors as structures of ac-

ademic power. The interpretation of science maps typically
involves close interaction with experts of the mapped do-
main, ie., experienced researchers that have a deep, albeit
qualitative, knowledge of the structure of the target field
(Tijssen 1993). Good science maps, however, should not be
mere quantitative counterimages of the qualitative knowl-
edge of the domain experts. They should provide also new
insights and useful knowledge for science policy purposes.

An important aspect to consider in the interpretation is
the level of analysis of the science map, i.e., the units of anal-
ysis and the type of relationship displayed by the map. Units
and relations do not only affect the scale of the map, butalso
the dimension of the scientific enterprise that is captured.
Term-based maps and citation-based maps using the docu-
ment as unit of analysis highlight the epistemic or cognitive
dimension of science, what philosophers of science call the
“context of justification” (Lucio-Arias and Leydesdorff
2009). They show the shared epistemic base of a field
(Persson 1994). However, they can overemphasize the sta-
bility of scientific knowledge, overshadowing the continu-
ous social negotiation of scientific claims (Knorr-Cetina
2003). Co-authorship maps. author co-citation analysis,
and interlocking editorship maps, on the other hand, shed
light on the social network underlying science, i.e., the “con-
text of discovery” in philosophical terms. When the journal
is selected as unit of analysis, the communication system is
highlighted (Cozzens 1989). Hence, the different method-
ologies of science mapping offer a partial representation of
the multi-dimensional nature of science and scholarship,
that should be considered during the interpretative phase.

General theories and models of the structure and dynam-
ics of science can also help in the interpretation of science
maps, providing general interpretative insights (Boyack and
Klavans 2019; Chen 2017; Scharnhorst, Borner, and Bes-
selaar 2012). At the same time, however, it is pivotal to con-
sider the specific academic and epistemic cultures of the
field under study. The interpretation of a science map of a
social scientific area, for instance, cannot be based on ex-
actly the same concepts than the interpretation of a science
map of a biomedical area, as the social sciences and biomed-
icine differ in terms of research methods, epistemic culture,
specialized terminology, use of the references, centrality of
the journal system, and so on.

The humanities are a good case in point to highlight the
importance of the specificity of research areas. Science map-
ping and, more generally, scientometrics and bibliometrics,
have mainly focused on the sciences since the times of Price
and Garfield (Franssen and Wouters 2019). Bibliometric
methods such as citation analysis were tailored to the cita-
tion norms and practices of the sciences. In the humanities,
however, citations are frequently used not only to refer to
other scholars’ work but also to point out sources and pri-
mary materials, the equivalent of experimental data for the
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sciences (Hellqvist 2009). Negative or contradictory cita-
tions of the works of other scholars are relatively more com-
mon than in the sciences. In fields such as philosophy,
where argumentation is the key epistemic practice, critical
citations play a central role (Petrovich 2018). These field-
specific citation practices must be considered in the inter-
pretation of citation-based science maps of humanistic areas
(Hammarfelt 2016). Moreover, publications in the human-
ities frequently do not target (only) fellow scholars, but also
the wider public audience (Nederhof 2006). This changes
the level of specialized and standardized terminology used
and, consequently, affect the capacity of term-based science
maps to capture themes and topics.” To these interpretative
caveats, one should add the limitations of the existing data-
bases to adequately capture publications in the humanities,
as they are often published as monographs and in national
languages (Hammarfelt 2017).

7.0 Science maps and the philosophy of science

In this section, we deal with some epistemological and soci-
ological topics related to science mapping. We start by ask-
ing in what sense science maps offer objective representa-
tions of science, then, we discuss the difference between the
published side of science and science in the making, and,
lastly, we examine in more detail the meaning of citations.

7.1 On the objectivity of science maps

Are science maps an objective representation of the struc-
ture and dynamics of science? Clearly, the answer greatly de-
pends on the definition of objectivity we endorse (Daston
and Galison 2007; Reiss and Sprenger 2017).

In the previous sections, we saw how the creation of a sci-
ence map involves several methodological and technical deci-
sions from the science cartographer, such as the unit of anal-
ysis, the mapping technique, the normalization method, the
visualization approach, the clustering algorithm, and so on
(see Section 3.0: Building a science map). Each decision af-
fects the results and lead to different science maps. There-
fore, science maps, even when they are generated by com-
puter software, should not be conceived as free of human in-
tervention. Human choices occur frequently in the science
map workflow and should be made transparent in order to
warrant the reproducibility of science maps (Rafols, Porter
and Leydesdorft 2010). Therefore, if we equate objectivity
with the “lack of human intervention” (the so-called me-
chanical objectivity), then science maps, like any other map,
are not “objective”. Rather, they result from a combination
of the features of the mapped field, on the one hand, and the
methodological decisions of the science cartographer on the
other hand. However, we should acknowledge that no map
(including geographic maps) is “objective” in this sense. On

the other hand, if objectivity is intended as inter-subjective
agreement, then science maps are objective in so far as they
can be reproduced by different researchers, as long as that
they follow the same methodology.

A further sense of objectivity has not to do with a lack of
human interventions but a lack of human biases. According
to some authors, science maps are more objective than clas-
sic literature reviews precisely in the sense that science maps
would avoid the potential biases of human experts (e.g.,
Catherine and Doehne 2018; Kreuzman 2001; Small and
Griftith 1974; Weingart 2015). The idea is that the expert’s
knowledge of a research field is inevitably constrained by his
or her reading capacity: for how many papers one can read,
they will always represent no more than a tiny portion of the
literature available in most of the scientific fields. Even if
such limitations can be mitigated by recurring to teamwork
and by integrating the knowledge of many experts, the view
of scientific fields that can be achieved in this way will al-
ways be partial. Thus, there is the potential risk that the rep-
resentations of the scientific fields are distorted by the ex-
perts’ viewpoint (if not prejudices). By contrast, the net-
works on which science maps are based are the result of mil-
lions of micro-actions performed by the scientific commu-
nity itself, such as the choice of certain references or words.
Science maps allow keeping track of this myriad of micro-
actions. Consider for instance the bibliography of a research
article. Since the authors cite other publications that are rel-
evant to their work, the bibliography can be conceived as a
(very partial) representation of the field to which the paper
belongs. In so far as each new contribution must be related,
by references, to the existing body of knowledge (the field),
each paper can be compared to a mirror that reflects, albeit
partially, the entire field (Amsterdamska and Leydesdorff
1989). It is a sort of “photograph” taken from a certain
viewpoint. Hence, the aggregation of the bibliographies of
thousands of articles that is performed to produce a cita-
tion-based map can be compared to the merging of thou-
sands of partial photographs to make up a single, overall pic-
ture. In this aggregation process, different publications are
related to one another “unwittingly” by the scientific com-
munity itself. According to some authors, when enough
large aggregates of publications are considered, the biases
occurring in the individual bibliographies cancel out and a
balanced picture is obtained (Van Raan 1998). The under-
lying assumption is that, at least on average, the citation be-
havior of scientists follows a normative model, i.e., that cita-
tions are given because of the scientific content of the cited
reference and not because of non-scientific motives (see Sec-
tion 7.3: The meaning of citations).

By the same token, the networks of words visualized in
term-based maps allow reconstructing the terminology of a
scientific field because they reflect thousands of terminolog-
ical micro-choices made by the researchers when drafting the
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titles and abstracts of their papers. The relations between the
different terms are the results of these choices. Idiosyncratic
and non-standard terminological would again choices cancel
out when enough publications are considered.

In sum, science maps would be more objective than clas-
sic reviews because they are the result of a bottom-up ap-
proach (Petrovich 2019b). Instead of the traditional top-
down approach that can potentially introduce biases in the
field representation, science maps allow to represent “the
point of view of the scientific community on itself” (Small
1973; Small and Griffith 1974). Once again, science maps
are not objective because free of human choices. Rather,
they are objective because they are based on thousands of
human (micro)choices. The key difference between these
micro-choices and the decisions taken by the experts in the
top-down approach lies in the large number of the former.
Itis such a large amount that potentially guarantees the can-
celling out of the biases and, thus, a more balanced repre-
sentation of scientific fields. Far from being the “view from
nowhere” on science, science maps are the collection of
multiple, situated viewpoints on science.

A last point about the objectivity of science maps is
worth stressing: even if science maps provide bottom-up
representations of science, nonetheless they remain partial
from some points of view. First, a science map cannot rep-
resent more than what is contained in the data on which it
is based. Since the scope of data depends on the scope of the
bibliographic databases, science mapping techniques will
deliver very partial representations for those scholarly fields
that are scarcely covered by current databases, such as some
areas in the social sciences and humanities or scholarly pro-
duction in national languages (Franssen and Wouters 2019;
Nederhof 2006). This does not mean that science maps pro-
vide false or distorted representations: rather that they ulti-
mately depend on the scope and limits of the data on which
they are generated. The second reason why science maps are
partial is subtler, and it has to do with the nature of the bib-
liographic data and how they represent the scientific activ-
ity. We discuss this topic in the next paragraph.

7.2 Published science vs. science in the making

A defining trait of standard science maps is that they are gen-
erated based on the metadata of scientific publications, as
they are stored in bibliographic databases. However, publica-
tions (research articles, reviews, conference proceedings, pa-
tents, etc.) are only the final stage of a long and often rough
research process. They are not meant and should not be con-
sidered as simple mirrors of the research practices themselves
(Hyland and Salager-Meyer 2009; Wouters 1999a). The writ-
ing of a scientific paper involves the construction of a justifi-
catory structure in which each experiment and analysis con-
tribute to the justification of the paper’s claims (Gross et al.

2002). As sociological and anthropological studies have re-
vealed, real research practices can be alot less smooth than the
accounts we find in the scientific papers (Knorr-Cetina 2003;
Latour and Woolgar 1986; Townsend and Burgess 2009).
Real research is full of false starts, blind alleys, and mistakes.
Discoveries may occur because of serendipity or intuition, the
order of the experiments can be different both from the re-
search plan and from the methodology described in the final
paper, research targets may be affected by changes in funding,
availability of materials and expertise, even academic circum-
stances. Moreover, scientific writing is a literary genre that fol-
lows precise rules, ranging from the format (e.g., the division
of a research article into standard sections, such as Introduc-
tion, Methods, Results, and Discussion), to the writing style
(in some fields, an impersonal style is recommended to in-
crease the “objectivity” of the results) (Bazerman 1988; Hy-
land and Salager-Meyer 2009; Swales 2004). Journals® guide-
lines and peer-review reports can further affect the final form
of a paper.

Since standard science maps are based on the published
side of science, they cannot be used to investigate any re-
search practice that is not recorded in publications. Most of
what Bruno Latour has called the “science-in-action”, thus,
remains out of the reach of standard science mapping based
on bibliographic databases. Note, however, that science
mapping as a method can be potentially applied to any rela-
tional feature of the scientific enterprise. Other relational
features, describing the science-in-action, could be mapped
by new science mapping techniques (for instance, informal
exchanges between scientists at scientific congresses, e-mail
flows between laboratories, informal collaboration networks
not resulting in co-authorship, etc.). However, new ad hoc
databases must be built to map these features, a costly and
time-consuming enterprise (Boyack and Klavans 2019).

7.3 The meaning of citations

Citations are pivotal in science mapping: without the refer-
ence links connecting scientific publications, citation-based
maps would be simply impossible. However, citations are a
human product: they are the result of the choices made by
the authors during the writing of their scientific papers.
Why do scientists choose some references instead of others?
Do they cite only because of the scientific merit of the cited
works? How does the citation behavior of scientists change
in different scientific fields? In traditional citation analysis
and in standard science mapping, citations are treated
equally, i.c., all have the same value. However, some cited pa-
pers are widely discussed, while others are perfunctorily
cited. Some papers are even negatively cited. How can we
capture the different functions and values of citations?
Questions like these are discussed in scientometrics and
sociology of science under the label of citation theory (Born-
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mann and Daniel 2008; Cronin 1984; Wouters 1999b). Most
of them are discussed since the dawn of citation analysis and
still do not have received definite answers. A complete over-
view of citation theories is out of the scope of the present ar-
ticles.?*In this section, we will limit to present the two main
approaches, in so far as they can help to interpret and contex-
tualize the results of science mapping: the normative theory
and the socio-constructivist theory.

The normative theory was proposed within the frame-
work of the normative sociology of science developed by
Robert K. Merton and his school from the 1960s (Elkana et
al. 1978; Kaplan 1965; Merton 1974). According to this the-
ory, scientists cite to pay their intellectual debts: when they
use the results obtained by other scientists in their research,
the norms of science demand them to acknowledge the debt
by explicitly citing the relevant papers. Citations count as
“pellets of peer recognition” and play a fundamental role in
the reward system of science: they serve to distribute prestige
among scientists. An important consequence of the norma-
tive theory is that citations can be considered as reliable prox-
ies of scientific quality or impact. Thus, the normative theory
provides a theoretical justification for the use of citations in
evaluative contexts. However, the main claim of the norma-
tive theory (i.c., that the citation reflects the scientific merit
of the cited document, author, or journal) rests upon several
assumptions, e.g., that citations are made to the best possible
works, that all citations have equal weight, and that the cita-
tion of a document implies the use of the document by the
citing author (Nicolaisen 2007). Both the main claim and the
underlying assumptions have been criticized.

The socio-constructivist approach to citations is
grounded in the socio-constructivist sociology of science, a
sociological paradigm that raised in different forms in the
1970s partly as a reaction to the normative school (Bloor
1991; Knorr-Cetina 2003; Latour 2003). According to socio-
constructivists, scientific facts are the result of an intricate
process of social negotiation among different actors. In the
social arena of science, scientists use any means necessary to
advance their claims and achieve a high status in the scientific
community. No normative system, such as the one described
by Merton, governs their actions. Socio-constructivists main-
tain that citations play a key role in the social negotiation of
scientific facts. In particular, they are used as means of per-
suasion: scientists trade on the authority of the cited authors
to strengthen their claims. Citations are rhetorical devices
that can be compared to “defense lines” prepared by the sci-
entists to defend their results from criticisms of adversary sci-
entists. Socio-constructivists note also that scientists often
distort the content of the documents they cite, in order to
show agreement with authoritative sources even when no
such an agreement exists. The reason is that scientists would
be more interested in who they cite, rather than in what the
cited documents say. Citations, therefore, would reflect the

social dynamics of the scientific community, rather than the
accumulation of scientific knowledge. An important conse-
quence is that they cannot be used as proxies of scientific
quality (MacRoberts and MacRoberts 2018).

Empirical research has shown that neither the normative
nor the socio-constructivist theory offer, alone, complete
explanations of the citation behavior of scientists. The mo-
tivations for citing are complex and multi-dimensional:
sometimes they reflect purely scientific reasons, as the nor-
mative theory holds, and sometimes obey to social-network-
ing purposes, as the socio-constructivist theory holds
(Tahamtan and Bornmann 2018). Besides the motivations
of scientists, also the characteristics of the communication
system of science (journals, publishers, and so on) affect the
probability of receiving citations (Cozzens 1989). For in-
stance, publications in languages different from English
tend to receive, on average, fewer citations, whereas review
articles tend to attract more citations than research articles
(Bornmann and Daniel 2008). The citation links between
documents and authors, therefore, are affected by many dif-
ferent factors, of which scientific merit is only one.

When interpreting the results of citation-based science
mapping, we should not overlook the complexity of the ci-
tation practices that determine the links in the citation net-
work. An understanding of the “citation culture” (Wouters
1999a) of the mapped field helps to interpret correctly a sci-
ence map.

8.0 Science maps and science policy

Since the first experiments in science mapping in the 1970s,
science maps have been presented recurrently as helpful de-
vices for science policy and research management. The idea
is that, since science maps offer a panoramic viewpoint of
the research landscape, they can also help to navigate it. Sci-
ence maps would offer for the abstract space of science the
same service of orientation that geographic maps provide
for the physical space (Small 1999).

Possible science policy topics that can be addressed with
the help of science maps include (Boyack, Klavans, and
Boérner 2005; Rafols, Porter, and Leydesdorft 2010):

a) Benchmarking: How is an organization perform-
ing compared to competitors?

b) Collaboration strategy: Who are the potential col-
laborators that can complement the research mis-
sion of the organization?

¢) Development analysis: How do the research themes
of an organization develop over time?

d) “Hotareas” detection: What are the scientific areas
that are growing faster? What is their potential for
technological transfer?
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One important advantage of science maps compared to clas-
sic reviews is that they allow also the non-experts to grasp
easily and quickly the main features of a scientific field be-
cause they rely on the recognition of visual patterns rather
than on deep scientific expertise. Therefore, they can be
used as a common base between researchers, science manag-
ers, analysts, and policymakers to discuss strategic decisions,
such as the allocation of resources (Bérner et al. 2012; Noy-
ons and Calero-Medina 2009).

Nonetheless, science maps should be used in science pol-
icy contexts with a clear understanding of their limits: sci-
ence maps can help the decision-making, but they do not
provide automatic answers. From this point of view, science
maps are not different from any scientometric indicator:
they provide partial representations of science whose cor-
rect interpretation should take into account many different
factors (see Section 7.1: On the objectivity of science
maps).) Not only science maps are error-prone (e.g., if
they are generated based on an incorrect field delineation
procedure, see Section 3.2: Field delineation), but, as we saw
above, their production involves several technical decisions
that can deeply influence the final maps (see Section 4.1.3:
Normalization and Section 4.1.4: Visualization). It is piv-
otal that such decisions should be made transparent, and
their consequences clear to the analysts and the policymak-
ers, so that science maps do not turn into “black boxes” (Ra-
fols, Porter and Leydesdorff 2010).

Fortunately, science maps are usually perceived as more
complex objects, compared to mono-dimensional scien-
tometric indicators such as citation counts or the Journal Im-
pact Factor. Thus, they tend to stimulate a higher level of re-
flexivity in their users compared to sheer numbers. Such re-
flexivity should always be preserved in science policy contexts,
where science maps must not be treated as “oracles”, even
when science politicians and research managers desire simple
and straightforward answers. When using science maps, it
must be remembered that science is a complex system, where
simple, ready-made answers can be given very rarely.

9.0 Conclusion

In this paper we have seen how the visual representation of
science by science maps takes different forms, depending on
the kind of data, the unit of analysis, the type of relation ex-
amined, and the overall mapping approach used. A science
map can take both the form of a bibliometric network and
that of a geographic map or of a patent map. Even artistic
representations of the sciences have been called, in a derivate
way, “science maps” (Borner 2010). Science maps find ap-
plication is different domains, from sociology of science to
science policy, from scientometrics to information visuali-
zation. As we have seen, science mapping, as a body of tech-
niques, stands at the crossroad of numerous disciplines: sci-

entometrics, library and information science, citation anal-
ysis, text analysis, statistics, network analysis, among others.

Given this manifold of methods, disciplines, and uses, it
is difficult to find a common trait that identifies the
uniqueness of science mapping. Perhaps, what most if not
all science maps share is a bottom-up approach to the inves-
tigation of the structure and dynamics of science (Petrovich
2019b). Compared with top-down knowledge organization
systems (KOSs), science maps aim at representing science
starting from the scientific products themselves rather than
from more or less a priori conceptual schemes. In this sense,
they may capture those structuration forces that shape the
overall configuration of the scientific system and that may
remain invisible to top-down KOSs. Science mapping may
be valuable to shed light on the self-organizing properties of
the scientific enterprise (Lucio-Arias and Leydesdorff
2009). Hence, we think that science maps can be of interest
for all the branches of meta-science, from library and infor-
mation science to sociology of science, from knowledge or-
ganization to epistemology.
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Notes

1. http://scimaps.org/home.html
https://en.wikipedia.org/wiki/Liberal_arts_education
#/media/File:Hortus_Deliciarum,_Die_Philosophie_
mit_den_sieben_freien_ K%C3%BCnsten.JPG
Numerous examples of classifications and visual repre-
sentations of the sciences over the centuries can be
found and explored in the Interactive Atlas of the Disci-
plines (http://atlas-disciplines.unige.ch/).

A detailed timeline with key milestones in science map-
ping history can be found in the Part 2 of Bérner (2010).
https://academic.microsoft.com/
hetps://www.dimensions.ai/

https://www.uspto.gov/
hetp://www.google.com/patents.

o X N W

http://www.epo.org/patents/patent-information.html.
. This is the adjacency matrix we obtain when we consider
the network as directed, i.c., when we distinguish between
the sender and the receiver of the citation. It is also possi-
ble to consider the citation network as #ndirected. In this
case, the elements of the matrix will be set to 1 when there
is alink between the publications, independently whether
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it is a citation (in-coming link) or a reference (out-going
link), obtaining a symmetrical matrix:

a b ¢ d e f g h
a 0 1 1 1 1 0 0 0
b 1 0 1 0 0 0 0 1
¢ 1 1 0 0 1 1 1 0
d 1 0 0 0 0 0 1 0
¢ 1 0 1 0 0 0 1 0
f 0 0 1 0 0 0 1 0
¢ 0 0 1 1 1 1 0 0
b 0 1 0 0 0 0 0 0

11. Note that there are two different similarity measures, a
direct and an indirect, both called “cosine”. The indi-
rect cosine (that corresponds to the original cosine in-
troduce by Salton and McGill (Salton and McGill
1983)) is based on the angular distance between two
vectors and it is calculated from the inner product of
the vectors (Jones and Furnas 1987). The direct cosine
is a simplified version of the indirect cosine and it cor-
responds to a variant of the Ochiai coefficient (Zhou
and Leydesdorff 2016).

12. An interesting alternative visualization, closely mod-

elled on geographic maps, is based on the so-called self-

organizing maps (SOM). We refer to (Skupin, Bib-
erstine, and Bérner 2013) for a detailed explanation of
this technically advanced visualization method.
https://gephi.org/

http://mrvar.fdv.uni-lj.si/pajek/

13.
14.
15. Note that not all the similarity measures fulfill the re-
quirements of a distance metric. For instance, negative
similarity measures (such as the ones produced by Pear-
son’s 7) cannot be used as distances because a negative
distance is meaningless. The other conditions to be sat-
isfied are that the distance of an object from itself should
be zero, that the distance between A and B should be
equal to the distance between B and A (symmetry), and
that the distance from A to B is at most as large as the
sum of the distance from A toCand the distance
from C to B (triangle inequality).

16. A technical but very clear explanation of MDS can be
found in (Borg and Groenen 2010, chaps 1-3) and in
(van Eck etal. 2010).

17. It is easy to see that it is a consequence of the triangle
inequality mentioned in the note above.

18.

19.

More precisely, shortest paths.

Hennig et al. (2016) offers an overview and technical
discussion of clustering techniques.

20. From this point of view, the history of the JEL codes

used in economics is very instructive (Cherrier 2017).

21. A ool for generating alluvial maps starting from net-
work data is available at https://www.mapequa-
tion.org/alluvial/

22. The map can be explored at https://www.nature.com/
immersive/d41586-019-03165-4/index.html A video
explaining the structure of the map is available at
https://www.youtube.com/watch?v=GW4s58u8PZo
&feature=youtu.be

23. Tam grateful to an anonymous reviewer for pointing me
out this difference in the use of specific terminology be-
tween the sciences and humanities.

See Tahamtan and Bornmann (2018; 2019) for an up-
dated overview and Petrovich (2019a) for a systematiza-

tion of the different theories.

24.

25. Asitis well known, the use of scientometrics for evalu-
ative purpose is a controversial topic that continue to
raise heated discussions among researchers and policy
makers. The presentation of this topic, however, falls
beyond the scope of this article. See Aksnes, Langfeldt,

and Wouters (2019) for an introduction.
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