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1.0 Introduction 
 
Boolean logic was proposed by George Boole, principally in 
two books The Mathematical Analysis of Logic (1847) and 
An Investigation of The Laws of Thought on Which are 
Founded the Mathematical Theories of Logic and Probabili-
ties (1854) (Boole 1847; 1854; Burris 2018). The innovation 
here was definitive. It represents a step forward and away 
from Aristotelian logic, which had dominated logic for two 
thousand years; and it pre-dates and anticipates both mod-
ern logic (of which Boolean logic is a part) and abstract al-
gebras (of which Boolean algebra is a part). 

The main application areas of “Boolean logic” in know-
ledge organization are those of post-coordinate indexing 
and of search. We are all very familiar with back-of-the-book 
indexes. An index would typically consist of a number of 
entries; each entry would itself consist of a heading, perhaps 
with subheadings, and one or more locators (i.e. references, 
page numbers, urls, DOIs, ISBNs, etc.); the entries would 
usually be presented in alphabetical order of headings. In 
post-coordinate indexing, there might be separate entries 
with the headings “French” and “cooking”, and then a 
pseudo or virtual entry for the compound heading “French 

cooking” would be constructed on demand using as its loca-
tors a Boolean and-combination of the locators for “French” 
and “cooking”. The Boolean and-operation here amounts to 
that of set-intersection between the separate locator sets for 
“French” and “cooking”. A compound heading “Benelux 
royalty” might be constructed from (“Belgium” or “Nether-
lands” or “Luxembourg”) and “royalty”. The Boolean or-op-
eration is that of set-union between the sets of references. An 
entry for “French non-Provencal cooking” might be 
“French” and not “Provencal” and “cooking”. The Boolean 
not-operation in this setting is that of set-complement. So, 
and, or, and not are being used as the glue, or the connectors, 
to construct the compounds from the atoms or other com-
pounds. 

The idea of pre- and post-coordinate indexing comes 
from Mortimer Taube, in the 1950s (Taube 1951; 1953; 
Taube and Thompson 1951). But post-coordinate indexing 
was nearly impossible to do before the advent of computers 
(simply because, for example, working out the intersection 
of two or more large finite sets on demand, using just pencil 
and paper, was not practical). Computers changed the ter-
rain. Finite set operations became trivial. Also, separately, 
the need for pre-emptively creating index entries, even 
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atomic ones became less pressing. In some cases, the index 
entries could be produced real time. Computer search, of 
documents, and wide regions of the Web, became im-
mensely powerful. With many e-books, it is the practice 
now to omit an index, the reasoning being that the books 
include computerized full text search which makes an index 
unnecessary. So, for example, there could be a full text search 
of “French” and of “cooking” in the blink of an eye, and the 
results could be combined if need be. [What this reasoning 
misses, of course, is that at least some sought for terms or 
potential index entries do not exist verbatim in the text (that 
might be the case with synonyms), so a full-text search 
might miss the relevant references. But that is another 
story.] 

This Boolean combination of terms or atoms (or atomic 
concepts) fits well with faceted classification or faceted 
search. In mainstream faceted systems, there will be a small 
number of facets; for example, the Faceted Application of 
Subject Terminology (FAST) system uses as facets Topical, 
Geographic, Form (genre), Chronological, Personal names, 
Corporate names, Conferences/Meetings, and Uniform ti-
tles (Chan and O’Neill 2010; OCLC 2011). For our pur-
poses we can imagine that there are just two facets: place and 
time. Each facet will have its own set of values (or foci). For 
example, the place facet might have the values {England, 
France, Germany, … <and more>}, and the time facet might 
have the values {16th Century, 17th Century, 18th Century, … 
<and more>}. The facets are independent of each other. 
This means that any value from one facet can be combined 
with any value from another. For example, England can be 
combined with 17th Century to produce England and 17th 
Century (or, in real English, 17th Century England). The 
values within a single facet are usually taken to be depend-
ent, indeed mutually exclusive (Foskett 1977). So, for exam-
ple, if England is chosen then Germany cannot be chosen at 
the same time; it is excluded. However, this within-facet-
mutual-exclusivity possible requirement does not seem 
quite right. What essentially is “multi-select” within a facet 
seems perfectly acceptable (16th or 17th Century seems fine 
either as part of a heading or as part of a faceted search). At 
the end of the day, the Boolean operations of and, or, and 
not, used within and across facets, are useful for faceted clas-
sification and faceted search. For example, the Library of 
Congress Subject Headings (LCSH) is primarily a pre-coor-
dinated system (“Library of Congress Subject Headings: 
Pre- vs. Post-Coordination and Related Issues” 2007). Yet a 
2007 report of theirs (“Library of Congress Subject Head-
ings: Pre- vs. Post-Coordination and Related Issues” 2007, 
5) writes: 
 

LCSH is a system in which untold numbers of head-
ings can be constructed from individual elements that 
represent facets, such as topic, place, time, form, and 

language, and various aspects of topics. Although 
LCSH is primarily a pre-coordinate system, practice 
with many complex or multi-element topics requires 
post-coordination in order to achieve coverage. There 
are numerous cases in which elements cannot be com-
bined in single headings, even with subdivisions. In 
those situations, an array of headings may be assigned, 
that, taken together, are coextensive with the topic of 
an item.  
So, LCSH itself requires some degree of post-coordi-
nation of the pre-coordinated strings to bring out spe-
cific topics of works. 

 
The Medical Subject Heading list (MeSH), largely inspired 
by Frank Rogers, is another example of a knowledge organ-
ization system which makes use of faceting and post-coordi-
nation (Rogers 1953; 1960a; 1960b; Adams 1972; Coletti 
and Bleich 2001). Rogers was following Taube in emphasiz-
ing the construction of complex ideas by conjoining other 
ideas (Rogers 1960b, 381) : 
 

… define coordinate indexing as a system of subject 
cataloging which capitalizes on the concept of the log-
ical conjunction of ideas (the phrase comes from sym-
bolic logic)…. Taube is simply stressing the fact that 
complex ideas are often best expressed, or even solely 
expressed, by the intersection of two or more widely 
separated ideas, and by the intersection, or conjunc-
tion, of their separate word symbols when an attempt 
is made to catalog those ideas.  

 
We are treating indexing and classification as being very sim-
ilar operations. Indexing produces a data structure which is 
an “association list” or a “dictionary”. It is a structure that 
links identifiers (or names or headings) with lists (or sets) of 
values (or locators). These can be “inverted” so that for any 
locator the lists (or sets) of headings (or identifiers) that 
have that value can be produced. Classification is much the 
same, with one proviso. With subject classification, any 
book or page or web page may relate to multiple subjects 
(this is similar to plain indexing). With shelving classifica-
tion, any book can have only one place in the classification, 
because it can have only one place on a shelf (this is different 
to indexing). Usually, there will be hierarchies within the 
schemes, to permit the movement to and from broader and 
narrow topics or index entries (or to have books on similar 
subjects contiguous with each other on shelves). Indexes 
would also usually be presented in alphabetical order of 
headings, whereas classification systems might be entirely 
hierarchical. However, this small potential difference has no 
significance in the context of Boolean logic.  

With subject indexing, to develop an example, the head-
ings (subject identifiers) essentially are tags which are used 
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to tag the references (or locators). The headings themselves 
will often be from a controlled vocabulary (LCSH and 
MeSH are examples) and sometimes those controlled vocab-
ularies will have a grammar that permits the construction of 
new headings using some Boolean connectives, especially 
and, either explicitly or implicitly. LCSH, a partially faceted 
system, allows the attachment of place and time to many 
headings; this is implicitly to join place and time to the head-
ing using and. The other Boolean connectives or and not are 
not so often seen in the post-coordinated construction of 
headings. However, they are common in pre-coordinated 
components of a controlled vocabularies, and also in set-
tings that do not use a controlled vocabulary at all e.g. in the 
pervasive free tagging in social media (e.g. #not-funny), or, 
separately, in many keyword systems.  

Search is similar to and, in many cases, symbiotic with, 
indexing and classification. Indexing is itself highly non-
trivial (see, for example, (Vickery 1953; 1975; Weinberg 
2009; Wellisch 1991; Zafran 2010; Hjørland 2018)). We will 
assume here that the indexes are available of the requisite 
quality. Search, in its simplest form, might consist merely of 
looking through an index in the back of a book. The user in 
this setting will be trying to make a match, complete or ap-
proximate, on available headings (i.e. on the pre-coordi-
nated headings). Computerized search engines can do 
more. Let us assume that they also can match, completely or 
approximately, on any pre-coordinated headings in the 
search system as a whole (the software will use thesauri and 
similar devices to be able to do this). Then the “French 
cooking” heading mentioned earlier might not even exist as 
a heading until someone somewhere types into a search en-
gine a string like “French and cooking”. Once search creates 
that heading, it may disappear immediately, it may be 
cached for one minute, one hour, or for one day, or it may 
be added sui generis as a heading in its own right. If thou-
sands of users search for “French and cooking” likely the 
heading “French cooking” will be added as a pre-coordinate 
pre-emptively indexed entry (and cease to be processed in a 
post-coordinated fashion). 

At the core here are manipulations with set-intersection, 
set-union, and set-complement, and parallel to these are Bool-
ean operations of and, or and not. Of course, ordinary folk 
are not familiar with set theory and are not going to be able 
to launch, say, an online search with “French set-intersect 
cooking”. But Boolean operations put a human face on this: 
“French and cooking”. 
 
2.0 Boolean logic 
 
Boolean logic is the logic of the truth-values True and False 
and the three functions not, and, and or. A convenient entry 
into understanding the syntax and common writing prac-
tices of Boolean logic is provided by our experiences with 

elementary arithmetic and algebra. In such fields, there are 
expressions like: 
 

(3+4) × -(y + z) 
 
In this, there are values (the numbers), there are variables 
(the y and z), there are two-place functions written infix 
(the + and ×), there is a one-place function written prefix 
(the -), the functions are applied to values or variables or a 
mixture of the two, and there are parentheses to disambigu-
ate expressions. Moving to our main topic, an example ex-
pression in Boolean logic is 
 

(True v False) & ~(P v Q) 
 
There is the same mix here of values, variables, infix and pre-
fix functions, and parentheses. In mathematics and com-
puter science, functions that are written infix (i.e. between 
their arguments) are often called “operators”. In straight out 
logic or philosophy, Boolean functions are often called 
“connectives”. So, “Boolean functions”, “Boolean opera-
tors”, and “Boolean connectives” are more-or-less syno-
nyms. 

In Boolean logic, True and False are often abbreviated T 
and F (and, in some settings, 1 and 0). It is common to use 
symbols to represent the connectives, but, unfortunately, 
there is no complete standardization and there is a variation 
in the symbols that might be used. Here are some choices 
that might be encountered:  
 

“not” : ∼ (symbol name: “tilde”), 
  ¬ (symbol name: “not”) 
“and” : ∧ (symbol name: “and”),  
 & (symbol name: “ampersand”), 
  . (symbol name: “period”) 
“or” :  ∨ (symbol name: “vel”) 
+ (symbol name: “plus”) 

 
Then formulas are constructed using these symbols, and 
sometimes parentheses also to resolve ambiguities. Here are 
some examples: 
 

True 
False 
~ True 
False & True 
~ False ∧ True 
~(False & True) 
True + ~ False 
True & (False v ¬ False) 

 
As illustrated in the earlier example above, there are often 
also variables. Quite what would be used as variables de-
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pends on the context and application, but upper-case letters 
would be common e.g. P, Q, R, … 

The connective not applies to just one argument, and it 
is written prefix (i.e. before the formula it applies to). The 
connectives and and or apply to two arguments, and they 
are written infix (i.e. between the arguments they apply to). 
The arguments, or components, can be atomic formulas, 
but they can also be compound formulas. The usual prac-
tice, and it is a prudent one, is to use parentheses liberally. 
Not i.e. ~ is applied to the formula immediately following it 
(it is the connective with highest precedence). Parentheses 
are not necessary for this, but they can be used optionally. 
But with formulas with several ands and ors parentheses are 
pretty much a necessity. Some writers give and a higher 
“precedence” than or. This would mean that a formula like 
 

True & False v True  
 
should be read 
 

(True & False) v True  
 
not 
 

True & (False v True) 
 
However, assigning precedence to and and or is by no means 
universal— it is not even common. Ergo, parentheses 
should be used in complex formulas.  

True and False (the truth values) are the core of Boolean 
logic. However, Boolean logic applies in many areas. That 
is, its inherent “logic” applies widely. One central example, 
useful for illustration, concerns propositional logic, an ele-
mentary form of reasoning using propositions. Indicative 
sentences in a natural language, English, for instance, are ei-
ther true or false. For example, “The Eiffel Tower is in Paris.” 
is an indicative sentence (which happens to be true). Such 
sentences express statements or propositions. Not all pieces 
of language express propositions. For example, the question 
“What day is it today?” is not either true or false (although 
reasonable answers to it will be either true or false); again, 
the greeting “Have a nice day!” is not either true or false. 
Statements or propositions or sentences can be atomic or 
compound. “The Eiffel Tower is in Paris.” expresses an 
atomic proposition; whereas “The Eiffel Tower is in Paris 
and the Eiffel Tower is 25 kilometers from the nearest 
ocean.” expresses a compound proposition composed of 
two atomic propositions (one true one and one false one). 
There are many ways to construct compound propositions 
from atomic propositions and other compound proposi-
tions, but propositional logic focusses on five connectives 
only: “not”, “and”, “or”, “if…then”, and “if and only if”. 
There is a larger set of connectives here than is in use in basic 

Boolean logic, but it turns out that Boolean logic can model 
propositional logic very well. 

In propositional logic, propositions, statements, or in-
dicative sentences are the “bearers” of truth i.e. each of them 
has a truth value of either True or False. We will not be look-
ing here at what conditions are required for a proposition to 
be true; we will just take it that each of the propositions ei-
ther is true or is false. For example, we take it that the prop-
osition “The Eiffel Tower is in Paris” either is true or is false. 
Notice here that from the point of view of logic we are not 
concerned whether anyone knows it to be true or knows it 
to be false, or believes it to be true, or believes it to be false. 
We just want there to be the two possibilities (that it is true, 
that it is false) and that the proposition is one of them. 
Then, in a particular context, instead of writing out the sen-
tences or propositions in natural language, perhaps several 
times over, propositional variables, perhaps P, Q, R … are 
used to stand for the propositions. The results are examples 
like: 
 

~P (in English, “not-P”) 
P & Q (in English, “P and Q”) 
~R v Q (in English, “not-R or Q”) 

 
Propositional variables stand for propositions, atomic or 
compound. So, it would be possible to use P to stand for the 
atomic “The Eiffel Tower is in Paris” or, alternatively, for the 
compound “The Eiffel Tower is in Paris and the Eiffel 
Tower is 25 kilometers from the nearest ocean.” However, 
it would be unusual and idiosyncratic to adopt the second 
alternative. The heuristic reason being: it wise to analyze 
with the finest granularity available so as to reveal logical 
structure. The second alternative ignores the Boolean con-
nective “and” and that would not be good.  

There is an assumption about the atomic truth bearers. 
It is that they are independent. This means that all combi-
nations of truth values are possible. So, for example, if P and 
Q are atomic propositions then it must be possible for P to 
be true while Q is also true, P true while Q is false, P false 
while Q is true and P false while Q false. As an example 
where independence is violated, consider the propositions 
“All swans are white”, P say, and “All swans in New Zealand 
are white”, Q say; in this case, it is not possible for P to be 
true and Q false; P and Q are not independent and are thus 
not suitable as atomic truth bearers. 

The connectives are functions. They take as input, or ar-
guments, the truth values of their components, and they 
have as output, or value, exactly one of the truth values True 
or False. The behavior of the connectives can be laid out in 
truth-tables. These describe the function values for the dif-
ferent function arguments. To assist with this, we will use 
A, B, C, etc. as variables to stand for entire formulas in the 
Boolean logic. 
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Consider a formula with the form ∼A. If the formula A 
is true, then the compound formula ∼A is false. If the for-
mula A is false, then the compound formula ∼A is true. 
Summing this up in a table: 
 

A ~A 
True False 
False True 

Table 1. Truth-table for ~. 
 
Similar considerations apply to the other connectives. If A 
is true and B is true, then (A&B) is true. If A is true and B is 
false, then (A&B) is false. If A is false and B is true, then 
(A&B) is false. If A is false and B is false, then (A&B) is false. 
Summing this up in a table: 
 

A B A&B 
True True True 
True False False 
False True False 
False False False 

Table 2. Truth-table for &. 
 
If A is true and B is true, then (A∨B) is true. If A is true and 
B is false, then (A∨B) is true. If A is false and B is true, then 
(A∨B) is true. If A is false and B is false, then (A∨B) is false. 
Summing this up in a table: 
 

A B AvB 
True True True 
True False True 
False True True 
False False False 

Table 3. Truth-table for v. 
 
Our interest is with Boolean logic itself so we will omit 
truth-tables for if… then and if and only if. 

The truth value of compound formulas, or propositions, 
is fixed entirely by the truth value of their (immediate) con-
stituents; and the truth value of the constitutions is fixed by 
the truth value of their constituents, and so on, decompos-
ing down to atomic formulas or propositions.  

In a standard truth-table for an expression, there are col-
umns for each atomic formula in the expression, and a col-
umn for the expression itself. So, for example, if the expres-
sion has 3 different atomic formulas in it, there will be 4 col-
umns. Each row is a different combination of truth-values 
for the atomic formulas. So, an expression with 3 atomic 
formulas will have 8 rows. [Sometimes truth-tables will con-
tain extra columns for non-atomic subexpressions of an ex-

pression. This is just to facilitate the evaluation of the for-
mulas.] 

Truth-tables extend to more complicated cases. We just 
work our way out from the atomic formulas to the ever 
more complex compound formulas. Consider the formula 
∼(∼(∼A)). There are two possibilities for A itself, that it is 
true, and that it is false. Let us follow them through in turn. 
If A is true, ∼(∼(∼A)) amounts to ∼(∼(∼True)) which 
amounts to ∼(∼(False)) which amounts to ∼(True) which 
amounts to False. If A is false, ∼(∼(∼A)) amounts to 
∼(∼(∼False)) which amounts to ∼(∼(True)) which amounts 
to ∼(False) which amounts to True. Summing this up in a 
table: 
 

A ~A ~~A ~~~A 
True False True False 
False True False True 

Table 4. Truth-table for ~~~A. 
 
3.0 Some facts or results about Boolean logic 
 
3.1 The adequacy of the connective set 
 
Boolean formulas are functions from the truth-values of their 
(atomic) constituents to the truth-values {True, False}. A 
question is: are the formulas, in particular their connective set 
{~, &, v}, rich enough to be able to portray all such functions? 
They are indeed, and this can be proved by conjunctive normal 
forms. [As a matter of terminology: formulas with main con-
nective and are often called “conjuncts”, and formulas with 
main connective or are often called “disjuncts”.] 

To focus our thinking, consider how many such func-
tions there are. Suppose there were three atomic constitu-
ents A, B, C, and each of these might have the values True 
or False, then there would be 8 lines or rows in an individual 
truth-table; for each of these lines or combinations a func-
tion itself might have the value True or False; so there are 28 

= 256 different functions. More generally, for n atomic con-
stituents there are 2r functions, where r= 2n. 

We can construct a formula for any of these functions as 
follows. Define a literal to be either A or ~A, where A is 
atomic. [Note that a literal is False either if it has the form A 
and A is False, or if it has the form ~A and A is True.] Then 
define a clause to be a disjunct of literals. So, for example, a 
clause might be: 
 

(A v ~B v C) 
 
Notice that a clause is False only if all of the literals in it are 
themselves False, otherwise the clause will be True. Finally, 
a formula is in conjunctive normal form if it is a conjunct of 
clauses. So, for example, 
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(A v ~B v C) & (~A v B v C) 
 
is in conjunctive normal form. And note here that a formula 
in conjunctive normal form is false only it at least one of the 
clauses in it is False; otherwise it is True. 

Now, a disjunct, or clause, is False only if all of its literals 
are False. So, for example, (A v ~B v C) is False only if A is 
False and B is True and C is False. Then a conjunct of clauses 
is False only if at least one of its clauses is False. So, for exam-
ple, (A v ~B v C) & (~A v B v C) is False only if either (A v 
~B v C) is False or (~A v B v C). 

This allows us to produce from any truth-function a for-
mula that represents it. We do that by direct construction 
from the “False” lines. To give an example. Consider the 
function: 
 

A B C ?  
True True True False 1 
True True False True 2 
True False True True 3 
True False False True 4 
False True True True 5 
False True False True 6 
False False True False 7 
False False False True 8 

Table 5. Table for an example truth-function. 
 
When constructing, our interest is only in the lines which 
have the value False, namely lines 1 and 7. The clause: 
 

(~A v ~B v ~ C) 
 
will give us line 1 as False. The clause: 
 

(A v B v ~ C) 
 
will give us line 7 as False. And the conjunctive normal form 
formula:  
 

(~A v ~B v ~ C) & (A v B v ~ C) 
 
will give us the entire function or truth-table, True lines and 
False lines. Any line that we have not constructed to be False 
is True. 

Some functions do not have any False lines at all in their 
truth-tables. Every line has the value True. A conjunctive 
normal form for such functions can be produced merely by 
putting the two different literals of the same atomic variable 
into a single clause (no conjunctions needed) e.g. 
 

(A v ~A)  

This construction technique is completely general. This 
means that all truth functions can be represented as formu-
las in Boolean logic. 
 
3.2 Is the connective set minimal? NAND and NOR 
 
Formulas using {~, &, v} are rich enough to represent any 
Boolean truth-function. But might a smaller number of 
connectives be able to do the same job? The answer to that 
is that it can be done even by a single connective, and there 
are two such single connectives that can do it: NAND and 
NOR. This was discovered by Charles Peirce and Henry 
Sheffer, about the beginning of the 19th century. Roughly, 
NAND amounts to and with a negation in front of it, and 
NOR amounts to or with a negation in front of it. NAND, &ഥ, has the truth-table: 
 

A B A &ഥ  B 
True True False 
True False True 
False True True 
False False True 

Table 6. Truth-table for A &ഥ B. 
 
Then our original Boolean connectives not, and, and or can 
be define in terms of this. For example, ~A amounts to A &ഥ  
A i.e. A NAND A 
 

A A A &ഥ  A ~A 
True True False False 
False False True True 

Table 7. The NAND counterpart of ~A. 

 
NAND (and NOR) do not lend themselves to intuitive rea-
soning in the same way that not, and and or do. However, 
they are extremely important. Boolean logic has become the 
basis of modern digital computers and the fact that one style 
of fabrication of transistors (say, for a NAND gate) could 
do everything effected a great simplification. 
 
3.3 Standard equivalences or common theorems 
 
Some formulas are logical truths; that is, they evaluate to 
true no matter what the truth values of their constituents. 
Most prominent among these is: 
 

A v ~ A             The law of excluded middle 
 
The Aristotelian law of excluded middle or Tertium non da-
tur (the third is not given) means that every proposition ei-
ther is true or is false. This law or principle is part of Boolean 
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logic (but it is not uncontroversial in a wider setting; for ex-
ample, it is denied by intuitionistic propositional logic). 
Then there is Aristotle’s law of non-contradiction: 
 

~(A&~A)          The law of non-contradiction 
 
Some formulas are logical falsehoods; that is, they evaluate 
to false no matter what the truth values of their constitu-
ents. A plain contradiction: 
 

A & ~A 
 
is an example of a logical falsehood. 

Some pairs of formulas are logically equivalent to other; 
that is, the truth-table for one of them is identical to the 
truth-table for the other. We can use the triple-bar symbol ≡ 
to indicate equivalence. Here are some important equiva-
lences 
 

A & True ≡ A Identity for & 
True & A ≡ A Identity for & 
 
A v False ≡ A Identity for v 
False v A ≡ A Identity for v 
 
A ≡ ~~A Double Negation 
 
A & ~A  ≡ False Complement for & 
A v ~A  ≡ True Complement for v 
 
A ≡ A & A Idempotence for & 
A ≡ A v A Idempotence for v 
 
A & B ≡ B & A Commutativity of & 
A v B ≡ B v A Commutativity of v 
 
A & (B & C) ≡ (A & B) & C  Associativity of & 
A v (B v C) ≡ (A v B) v C Associativity of v 
 
A & (B v C) ≡ (A & B) v (A & C) Distributivity of & 

over v 
A v (B & C) ≡ (A v B) & (A v C) Distributivity of v 

over & 
 
∼(A & B) ≡ ~A v ~B De Morgan Law 1 
∼(A v B) ≡ ~A & ~B De Morgan Law 2 

 
These equivalences can be proved using many different 
proof techniques. But truth-tables themselves bear witness 
to their soundness. For example, here is a truth-table for the 
left-hand side of De Morgan law 1 (including values for the 
sub-expressions to show how the evaluation is carried out): 
 

A B A&B ~(A&B) 
True True True False 
True False False True 
False True False True 
False False False True 

Table 8. Truth-table for L.H.S. of De Morgan law 1. 
 
And here is a truth-table for the right-hand side of De Mor-
gan Law 1: 
 

A B ~A ~B ~A v 
~B 

True True False False False 
True False False True True 
False True True False True 
False False True True True 

Table 9. Truth-table for R.H.S. of De Morgan law 1. 
 
The truth-table values for ~(A&B) and ~A v ~B are the 
same, which means that the expressions or formulas are 
equivalent. 
 
3.4 Proofs and axioms systems 
 
Some arguments, using truth-tables, were given above for 
the soundness or logical truth of various equivalences. Al-
ternatively, some formulas, either from these equivalences 
or from other formulas, could be adopted as “axioms” and 
various theorems proved from them. For example, the com-
mutativity of & could be taken as an axiom i.e. 
 

A & B ≡ B & A    
 
then theorems like 
 

(A & B) & (C & D) ≡ (D & C) & (B & A) 
 
are available. Once axioms enter, then questions arise to 
what the axioms should be? Is there a minimal number? Are 
convenient axioms independent? And so on. 

These questions have been studied, especially the ques-
tion of what is the absolute minimum. Within this realm it 
is often usual to use only the NAND connective i.e. &ഥ. This 
gives a convenient count in as much as the axioms can be 
counted, and the NANDs can be counted. Henry Sheffer 
produced a 3 axiom system in 1913; in 1967, Carew Mere-
dith proposed his final 2 axiom system. Then, in 2000, Ste-
phen Wolfram discovered a single axiom solution (Wolfram 
2018): 
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((A &ഥ  B) &ഥ  C) &ഥ  (A &ഥ  ((A &ഥ C) &ഥ A)) ≡ C    One sin-
gle axiom for Bool-
ean logic 

 
There is here one axiom with 6 NANDs. Wolfram asserts 
“… this one little axiom was enough to generate all of logic”. 
Well, perhaps more accurately, it is enough to generate all of 
Boolean logic. We can get all of Boolean logic from this by 
simple algebraic transformations.  
 
4.0 More on using natural language to motivate the 

properties of the connectives 
 
While the and, or, and not of Boolean logic are similar to 
central use cases of and, or, and not in natural language, they 
are not exactly the same. For example, the and in natural lan-
guage can often have a temporal element in it. “He fell off 
his bike and he went to hospital” is not the same as “He 
went to hospital and he fell off his bike.”. This means that 
the “and” in natural language is often not commutative (as 
it is in Boolean logic). 

The or in natural language really has two senses: inclu-
sive-or and exclusive-or. The first means one-or-the-other-or-
both and the second means one-or-the-other-and-not-both. 
An example of the first is “(From the wild celebrations we 
can tell that) Jane passed the exam or Jim passed the exam.”; 
an example of the second is “The getaway car took the left 
fork in the road or the getaway car took the right fork in the 
road.” Latin has separate words for these connectives “vel”, 
for the inclusive-or, and “aut”, for the exclusive-or. Boolean 
logic, plain and simple, uses the inclusive-or. However, in 
computer science and electrical engineering there is applica-
tion for the exclusive-or. In those contexts, often an exclu-
sive-or connective, XOR, or ⊕ ,will be defined with the 
truth-table: 
 

A B A⊕B 
True True False 
True False True 
False True True 
False False False 

Table 10. Truth-table for XOR. 
 
[XOR is not something new in as much as it can be defined 
as (A v B) & ~(A & B).] 

In sum, many of the laws or equivalences of Boolean 
logic do not hold universally in natural language. One con-
sequence of this is that Boolean searches using a search en-
gine need some care. Of course, the underlying software to 
a search engine will have some sophisticated algorithms and 
tuning to ferret out what the searchers might mean as op-
posed to what they actually say in terms of Boolean logic. 

5.0 Boolean algebras 
 
The structure of the expressions in Boolean logic form an 
algebra, in the sense of abstract algebras. This means that 
their structure can be studied as an advanced mathematic 
topic, in a similar way to the study of algebraic structures 
like groups, rings, modules, vector spaces, lattices, or fields. 
It would be usual in these settings to drop the use of True 
and False and use 1 and 0 instead. Then some of the equiv-
alences above (identity, commutativity, associativity, and 
distributivity) can be used as axioms to define an algebra, 
namely: Boolean algebra. There are many examples of Bool-
ean algebras in abstract mathematics (the algebra of sets, 
mentioned above, with set-intersection, set-union, etc. is 
one). There are some profound theorems about Boolean al-
gebras; the Stone representation theorem is one example 
(Stone 1936). 
 
6.0 Some application areas 
 
6.1 Classification and search 
 
6.1.1 Venn diagrams 
 
As explained above, Boolean connectives are often used in 
knowledge organization as a front-end to set theoretic oper-
ations. Also useful in this context are the familiar Venn dia-
grams (Bednarek 1970). These can be used to illustrate set-
complement, set-intersection, and set-union. 
 

 
Figure 1. Venn diagram for sets A and B 
with the set A shaded. 

 
The rectangle as a whole represents the Universe. The circle 
labeled “A” represents the set of As (i.e. the set of those items 
in the Universe that have the property A). Outside the cir-
cle, i.e. outside the shaded area, but inside the rectangle, rep-
resents the complement, or complement set, of A i.e. ~A. 
The conventions are similar for B: the circle labeled B repre-
sents the set of Bs. The common intersection area represents 
those items which are both A and B i.e. A & B. The contents 
inside either of the two circles represents the union of A and 
B i.e. A v B. There is also the notion of relative complement, 
which are items in one set but not the other e.g. A & ~B. In 
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sum, diagrams like the following may be used to depict the 
relevant areas 
 

 
Figure 2. Venn diagrams for complement, union, intersection, and 
relative complement. 
 
This schematic can be extended to three or more sets (i.e. to 
three or more circles or elliptic boundaries). 

There is an important point of interpretation here. In 
Boolean logic, the values are True and False and a formula 
like P & Q denotes, say, True & False which, in this case, 
would have the value False. In a Venn diagram, the circles 
represent sets. The As and Bs represent properties which 
may or may not be possessed by items in the set universe as 
a whole. For example, consider the universe of people. There 
are the properties A= “x is agreeable” and B= “x is benevo-
lent”. Then, the circle labeled A can be used to depict the 
people that are agreeable, and outside the circle A depicts 
the people that are not agreeable. A similar convention can 
be used for B. Then the intersection area labeled “A & B” 
represents the people who are both agreeable and benevo-
lent. So, the actual formula A&B is not a formula of Bool-
ean logic, rather it is the anding of two properties. This can 
be done formally in predicate logic, but not in propositional 
logic or Boolean logic. In set theory, there is the axiom or 
principle of comprehension which states that a property, 
atomic or compound, can be used to define a set. That is 
what is happening here. Naïve set theory has a “set-builder” 
notation, usually: 
 

{x:Φ(x)} or  
{x|Φ(x)}  

 
where Φ(x) is an “open sentence” (which is a sentence with 
free variable x). So the areas in the Venn diagrams of Figures 
1 and 2 would be described as {x:A(x)}, {x:B(x)}, {x:A(x) & 
B(x)}, {x:A(x) v ~B(x)}, etc. . Notice here the use of the 

Boolean connectives ~, & and v within the set-builder nota-
tion. Set theory has its own notation, typically “-” for com-
plement, “∩” for intersection and “∪” for union. So, the set 
operations, and the use of Boolean connectives, within set-
builder notation, are related as follows: 
 

 A  =  {x: A(x)} 
-A =  {x: ~A(x)}  complement 
A ∩ B  =  {x: A(x) & B(x)} intersection 
A ∪ B  =  {x: A(x) v B(x)} union 

 
There is also the characteristic function which can be used 
to produce True or False statements from set membership 
or the application of properties. Without going into any 
more detail, Venn diagrams and Boolean logic can be used 
to mimic parts of each other. When post-coordination, or 
search, puts together the terms “French” and “cooking” to 
produce “French and cooking” i.e. “French cooking”, really 
it is doing set operations rather than strict Boolean logic op-
erations. 

It is fairly standard, and mainstream, to maintain that 
there are at least two prototypical examples of Boolean logic 
or Boolean algebra. The first uses the truth-functional op-
erations of and, or, and not, together with the truth values 
True and False; and the second uses the set-theoretic opera-
tions of intersection, union, and complement, together with 
the Universe set and the Null set. 

In the case of knowledge organization, the universe of 
discourse for Venn diagrams, or the set-theoretic operations, 
is that of references or identifiers or locators such as ISBNs 
of books, page numbers, urls, DOIs, etc.  
 
6.1.2 Regular expressions 
 
There is more that can be said about search and Boolean 
logic. One question that arises in a search framework is what 
is desirable as the form of the input for a search? An initial 
thought is that it should be a single word, or expression, say 
“house” or a Boolean combination of single words, say 
“house or apartment”. This overlays Venn diagrams neatly. 
A search for “house or apartment” produces the locators for 
“house” and the locators for “apartment” and adds the two 
locator sets together i.e. it uses their union. Other cases will 
be similar. 

But then everyone with some familiarity of knowledge 
organization, indexing, and thesaurus construction will be 
aware of stemming, wild cards, and other manipulations. It 
is possible for a search, with a single atomic input, to retrieve 
locators for {house, houses, housing, farmhouse, lighthouse, 
farmhouses, lighthouses, etc.} (see, for example, (Stock and 
Stock 2013a)). Now the input form is going to be a pattern 
(which perhaps might be a literal). The next step is to be 
aware of regular expressions (Goyvaerts 2020) and text 
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search algorithms. Regular expressions (regexs) come from 
the logician Stephen Kleene, and they were brought into 
Unix and computer programs by Ken Thompson (Kleene 
1956; Thompson 1968). More-or-less every modern text 
search algorithm by computer is going to use regular expres-
sions as its input. To give an example: 

[A-Za-z]*(House|house)[a-z]* 
is a regular expression, a pattern, that will match zero or 

more upper- or lower-case letters, followed by “House” or 
“house”, followed by zero or more lower case letters. So, for 
example, this pattern will match “house”, “houses”, 
“House”, “lighthouse” etc. But it will not match “housing” 
(if we would like to match “housing” as well, we would use 
a different regular expression). Then: 

/[A-Za-z]*(House|house)[a-z]*/g 
would find all of the matches in the text i.e. find “glob-

ally”. Now, regular expressions are much more powerful in 
forming patterns than are plain Boolean operators, and reg-
ular expressions do not themselves make extensive use of 
Boolean operators (they can use or, and, to a lesser extent, 
not).  

This means that behind the scenes, with programmers 
and text processing experts, there is no such thing as Bool-
ean search. With everyday folk, it is a different story, alt-
hough Boolean search is very hard to do competently. In 
sum, Boolean search is for experts, but experts rarely, if ever, 
use it. Experts would use some variation of the more pow-
erful regex search. 

A plain Boolean search is not going to be able to retrieve 
the collective locators for {house, houses, housing, farmhouse, 
lighthouse, farmhouses, lighthouses, etc.}. It is true that a 
Boolean search for “house or houses or housing or farm-
house or lighthouse or farmhouses or lighthouses” should 
return a set of locators. However, this type of search, and its 
success, is limited to what the user or searcher can envisage 
when launching the search. Imagine that the user never even 
thought of “outhouses” as a possibility. If that literal were 
not among the Boolean input, its locators would not be re-
trieved. But the corresponding regex search would capture 
locators for “outhouses”. 

We should perhaps be a little more sensitive to the scale 
of the expertise of the searcher. It is not the case that there 
are just experts and beginners. There are shades of grey in 
between. Correspondingly, a search engine might have ordi-
nary search, allowing Boolean search, but perhaps not much 
more. Then it might have “Advanced search” perhaps expos-
ing wildcards etc. as a human friendly interface to parts of 
regex search. Then it might even allow full-blown regex 
search. 

Another consideration here is how the text is processed 
or indexed in the first place. Regex search processes explicit 
text. It can do that real time, or it can do it in advance 
preemptively to produce an index. To a limited degree it can 

deal with challenges like synonyms, if the programmers are 
smart. For example, it can be set up to retrieve locators for 
the concept “automobile” where the text does not have in-
stances of that word at all but instead has occurrences of the 
word “car”. But human indexers can improve on computers 
and regex searches in challenging cases. The human indexers 
understand the text and this, for example, might allow them 
to say that an entire book is on “unrequited love”. Regex 
search would fail at this, if “unrequited love”, or its syno-
nyms, did not appear explicitly in the text. 

Plenty of material is indexed by humans. The Library of 
Congress Subject Headings (LCSH) are attached to most 
print books by humans. The Medical Subject Headings 
(MESH) are also assigned by humans. There are many more 
examples. In these areas, pure Boolean search makes some-
thing of a comeback intellectually. In essence, the searches 
are for those items tagged with heading1 or those items 
tagged with (heading1 or heading2), etc. Regex search can 
be used here also. For example, a regex input can easily 
search through 300,000 or so LCSH headings and find all 
the locators, maybe books, within a particular library’s col-
lection. But LCSH is a controlled vocabulary, and a good 
librarian will know most of what is there, i.e. most of the 
headings, verbatim. So, a good librarian will be able search 
effectively in settings like these using just Boolean search. 

In sum, where there is search or indexing of large quan-
tities of free text, where the focus tends to be on the explicit, 
and the searchers are experts, likely there will be regex search 
and little use for Boolean operators. In cases where humans 
have intermediated and added value to the indexing or clas-
sification, and the searchers either are experts on the index-
ing or at least understand Boolean search, likely Boolean 
search will still have a role. 
 
6.2 Faceting 
 
There is insight to be gained by looking at faceting in terms 
of, on the one hand, the headings or search strings it permits, 
and, on the other, the sets of locators that it produces and 
their interactions. Almost all traditional classification systems 
that have faceting (e.g. LCSH, MeSH, Colon, Universal Dec-
imal Classification (UDC), Art and Architecture Thesaurus 
(AAT), etc.) use controlled vocabularies with a defining 
grammar (Library of Congress Subject Headings 2020; 
MeSH 2010; Ranganathan 1952; McIlwaine 1997; White-
head 1989). They do use, for example, and, between foci 
across facets. (This use may be implicit, of course.) Earlier, in 
the Introduction, we saw the imagined example of an Eng-
land focus being combined with a 17th Century focus to pro-
duce the composite 17th Century England. But real cases of 
classification systems (LCSH, MeSH, etc.) will often have a 
grammar that prevents these cross-facet uses from being com-
mutative. For example, the grammar may permit a heading 
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with <place> and <time> in that order, but then not a similar 
heading with <time> and <place> in that order. Also, as men-
tioned, or would be pretty rare across facets, as would not. In 
sum, it is a bit of a stretch to assert that familiar controlled 
vocabulary headings, with facets, permit the construction of 
new headings using Boolean logic. In contrast, if the headings 
are not from a controlled vocabulary, as might be the case 
with social media tagging, anything goes. Search strings, of-
fered as input to a normal search engine, would usually be al-
lowed to have any form (any vocabulary, any grammar, and, 
sometimes, even in many different natural languages). Most 
modern search engines would also accept a composite of 
component strings appended together by Boolean connec-
tives (mostly with full commutativity, distributivity etc.). 
They also would be able to take the components sequentially 
to narrow or broaden on the results obtained to that point, 
making a search into a process with feedback. This is im-
portant, especially for search by experts (Hjørland 2015). 
Search engines, as described, do use something akin to Bool-
ean logic on the search strings. Faceting is not much in evi-
dence here (after all, the user has much freedom with the 
search strings and is not constrained by faceting).  

However, many web sites, for example, online retailers like 
Amazon, do provide faceted search for their goods and ser-
vices. For example, the user may search under a facet of “gifts” 
(and be offered a menu choice among such foci as “wedding 
gifts”, “birthday gifts”, “xmas gifts” etc.”) and combine this 
with a menu choice from a facet of “price” (and be offered 
“inexpensive”, “moderate cost”, “expensive”, etc.). This kind 
of faceted search for goods and services does have the charac-
teristics of a Boolean logic. Whether the topic of faceted 
search for goods and services is properly a part of the disci-
pline of knowledge organization is an open question. It can 
be remarked, though, that the much-admired Art and Archi-
tecture Thesaurus covers much more than locators or refer-
ences. It covers “art, architecture, and material culture” i.e. it 
includes goods and services. 

Also, many modern online public access catalogs (OPACs) 
offer faceted search; for example, WorldCat, the world’s larg-
est catalog, does (“WorldCat.Org: The World’s Largest Li-
brary Catalog” 2020). Systems like these often offer narrow-
ing by choice of facet (e.g. keyword, subject, title, author, year, 
audience, etc.). Some of the facets, such as keyword, subject, 
and title, accept free-text; others require a choice among fixed 
values (with WorldCat, the facet “Content” requires a choice 
of a single focus from {Fiction, Non-fiction, Biography, The-
sis/dissertation}). Typically, what is happening here is that 
there are extensive bibliographical records in the background 
(WorldCat has access to 2 billion records). Then these records 
have extensive metadata fields (e.g. author, subject, title, 
ISBN, accession number, etc.) What a faceted search interface 
does is to allow access to these metadata fields in a semi-struc-
tured and rational way. Before the widespread use of comput-

ers in libraries, there would have been card catalogs perhaps 
with separate “entry points” to provide access and search by 
author, title, and subject. But computers have the potential to 
offer as an entry point any field that is among the metadata. 
Some OPACs may accept and process Boolean operations 
within a facet (e.g. author: Dickens or Austen); practices on 
this are unclear and probably not uniform. The systems often 
take free text, so “author: Dickens or Austen” would be ac-
cepted as input; but what processing would be done, and 
what the output would be, would likely vary from system to 
system. 

The interactions of sets of locators produced by faceted, or 
indeed, by plain Boolean search, is as has been described ear-
lier. Providing the sets come from the same underlying Uni-
verse (in this case locators), then set-intersection, set-union, and 
set-complement are sufficient. However, if faceted classifica-
tion, in combination with Boolean logic, is going to be used 
with “goods and services” issues arise. Imagine that a web site 
sells socks. It sells long socks and short socks, and cotton socks 
and wool socks. The set-theoretic Universe here is well-de-
fined (i.e. socks), as are the various subsets and set-operations, 
and a search, for example, for “long, and not cotton” is per-
fectly sound in terms of Boolean logic. But most classification 
theorists want to go a lot further with their faceting than this. 
Julius Kaiser, to use a historical example, wanted to have the 
kind (i.e. facet) “concretes” and the kind “processes” and to 
combine these to form, for example, “the rusting of iron” (i.e. 
iron and rusting) (Kaiser 1911). Something very different is 
going on here. No doubt Kaiser himself had his eye on loca-
tors. So, roughly speaking, he would form an index heading 
for “the rusting of iron” and expect that the locators (i.e. page 
numbers) for that heading within a given book would ap-
proximate the intersection of the set of locators for “iron” and 
the set of locators for “rusting”. This is absolutely fine. But it 
does not work so well if taken away from locators into the ac-
tual world of things and processes. Suppose a modern-day 
Kaiser left librarianship, opened a foundry, and started selling 
the concrete “iron” and, additionally, services including pro-
cesses like “smelting”. A universe that includes both concretes 
and processes has items of different kinds. Then a label like 
“the smelting of iron” does not seem to denote the set-theo-
retic intersection of iron and smelting. Any intersection of two 
sets is also subset of the two sets individually (in the Venn di-
agram above A&B is a subset of A and a subset of B). This 
would mean that “the smelting of iron” is a member of the 
concretes. The original Kaiser surely would not have said that. 
 
6.3 Computer programming languages 
 
Almost all computer programming languages have Booleans 
i.e. {True, False} as a datatype. Then Boolean operators are of-
ten used in expressions or in control statements. For example, 
using an imaginary programming language schematic: 
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If ((not password has at least six characters) or 
 (not passwords uses at least one special charac-

ter) or 
 (not (password has one upper case character 

and  
 password has one lower case character)) or 
 (not password has a numeric character)) 
then 
 writeln “Passwords need to be at least six char-

acters long and include upper  
 and lower case characters, a special char-

acter, and a numeric character.” 
 
6.4 Database queries and query languages 
 
Many databases expose their data to searchers at large. Then, 
often, a search query would be able to use the Boolean opera-
tors of and, or and not. The resulting query language would 
amount to a formal or semi-formal Boolean query language. 
The PubMed database is an example of this (“PubMed” 
2020). This use is similar to online search using a search en-
gine in a web browser. It is not exactly the same because ordi-
nary folk use web browsers, and they may struggle with Bool-
ean operators. Whereas users querying databases using query 
languages usually have some expertise and will be comfortable 
with Boolean operators. This difference between ordinary 
folk and expert searchers has some significance. For example, 
Hjørland argues powerfully that experts using Boolean 
searches are the match of any other technique, if not actually 
superior to other techniques; this would not be true of neo-
phytes (Hjørland 2015; Hearst 2011). 
 
6.5 Propositional logic 
 
This has been described above. 
 
6.6 Probability theory 
 
Boolean logic is central to probability theory. It is possible to 
set up probability theory either in terms of true or false prop-
ositions or in terms of sets of events and their unions, inter-
sections etc. (Howson and Urbach 1993). Either way Bool-
ean logic is right at the heart of it (Hailperin 1986). This reli-
ance on Boolean logic in probability theory can be traced back 
to Boole himself. Theodore Hailperin writes (1984, 199): 
 

Boole, more than anyone before him, realized and ex-
ploited the close relationship between the logic of not, 
and, and or and the formal properties of probability. 
He forced this relationship to be closer than it really is 
by restricting himself to or in the exclusive sense (so that 
probabilities of an or-compound added) and by believ-
ing that all events were expressible ultimately in terms 

of independent events (so that the probabilities of an 
and-compound multiplied)…. Boole believed… that he 
had solved the central problem [of probability theory]. 

 
Plenty of work has been done on probability since Boole’s 
time, but certainly Boolean logic still has a major role in the 
field. 
 
6.7 Switching and computers 
 
In 1938, Claude Shannon made extensive using of “switching 
algebra” in his analysis of electric circuits (Shannon 1938). 
This was part of his Master of Science degree. Switching alge-
bra was basically Boolean algebra. Shannon writes (2): 
 

This calculus is shown to be exactly analogous to the 
Calculus of Propositions used in the symbolic study 
of logic. 

 
and (8): 
 

We are now in a position to demonstrate the equiva-
lence of this calculus with certain elementary parts of 
the calculus of propositions. The algebra of logic … 
originated by George Boole, is a symbolic method of 
investigating logical relationships. 

 
The core ideas are fairly simple. Two switches in series will 
light a lamp, or allow electricity to flow, if and only if both 
are switched on (i.e. and). 
 

 
Figure 3. Switch arrangement for &. 

 
Two switches in parallel will allow electricity to flow if and 
only if at least one of them switched on (i.e. or). 
 

 
Figure 4. Switch arrangement for v. 

 
Producing a schematic for not is a little more challenging. 
An easy way is just to posit a not switch, which when the 
switch is “on” no current flows and when the switch is “off” 
current actually does flow. [Those of a Rube Goldberg turn 

https://doi.org/10.5771/0943-7444-2021-2-177 - am 13.01.2026, 14:31:26. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/0943-7444-2021-2-177
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


Knowl. Org. 48(2021)No.2 
M. Frické. Boolean Logic 

189 

of mind can produce a negation switch as follows. There is 
an electromagnet which when “on” holds another switch 
open (by magnetism), then, when the electromagnet is “off” 
the other switch is closed by a spring (there is no magnetic 
force holding it open). The result is, when the electromag-
netic is on, the other switch is off, and when the electromag-
netic is off, the other switch is on— that is negation or not.] 

Then these “switches” can be wired together to produce 
an instantiation of any Boolean formula or combination e.g. 
P&Q&~R. (For more detail, see Enderton (2001, 54ff.). 

This starts to become very important with arrival of com-
puters and the use of binary (i.e. 0 and 1) to represent num-
bers (and then from numbers to everything else that could be 
represented in digital e.g. text, images, videos, film etc.). So-
called “logic gates” for and, or, nand, nor, etc. were devised to 
implement the Boolean Operations e.g. the XOR-gate: 
 

 
Figure 5. XOR-gate. 

 
To give an example of how this works. The addition of two 
single binary digits is as follows: 
 

0 + 0 = 0 
1 + 0 = 1 
0 + 1 = 1 
1 + 1 = 0 (carry 1) 

 
and the truth-table for exclusive-or is: 
 

A B A⊕B 
True True False 
True False True 
False True True 
False False False 

Table 11. Truth-table for XOR. 
 
which is the same (writing 1 for True and 0 for False and 
keeping in mind the need to look after the carry digit). 

It is but a short step from there to computers being ruled 
by Boolean logic (or Boolean algebra). We should perhaps 
acknowledge that a modern computer might have a billion, 
or more, logic gates in it. There is a little more to computers 
than one or two truth-tables. 
 
7.0 The shortcomings of Boolean logic for use in 

knowledge organization 
 
Boolean logic is not strong enough for every potential use in 
knowledge organization. In post-coordination, there are the 

familiar examples of the pairs “Venetian blind” and “blind Ve-
netian”, and “school library” and “library school”. So, for ex-
ample, if “school” and “library” are headings for pre-coordi-
nated index entries, then either of “school library” or “library 
school”, assembled post-coordinately, are going to produce 
many false positives. The problem here is that words like 
“blind”, “library”, “school” and “Venetian” are each individ-
ually both nouns and adjectives and can be assembled in dif-
ferent ways. Essentially, “library”, for example, is a homo-
graph of itself. Problems like these can be partially resolved by 
paying attention either to word order and proximity, or to the 
grammar and grammatical parts of speech. But Boolean logic 
on its own cannot solve this. Also, as alluded to earlier, the 
match between natural language and the Boolean connectives 
can be loose. As another example, if we invite friends and col-
leagues to our party, we would usually be inviting friends or 
colleagues (not just those individual folk who are both friends 
and colleagues i.e. in the intersection area of a Venn diagram), 
so and means or in cases like these. There is evidence that or-
dinary users basically do not understand Boolean operations 
in the context of search (e.g. they think that a search for “cats 
and dogs” will produce locators for cats together with locators 
for dogs (i.e. set-union not set-intersection)) (Hearst 2011). 
Also, users simply do not use Boolean operations in their 
searches (except and very occasionally) (Lowe et al. 2018). 
Most university libraries offer incoming freshmen instruc-
tion in Boolean search, as part of preparation for college life. 
But, really, once you have to instruct intelligent people how 
to use a basic, and presumed user-friendly, feature of a web-
browser, the mission is lost. The conclusion here is that Bool-
ean logic needs to be kept in the background for the designers 
and constructors of knowledge organization system, or for 
use by moderately expert users, and for it not to be exposed to 
ordinary end users (Hearst 2011). 

Search engines typically rank the results they return. 
There is an order to the links or items returned. It may be 
unreasonable to expect that Boolean logic be able to rank 
the returns of a single search item, say “French”. But, if there 
is already a pre-coordinated, or indexed, ranking of both 
“French” and “cooking” separately, should Boolean logic be 
able to help with the ranking of the Boolean combination 
of “French and cooking”? This is related to another point. 
All the sets discussed earlier are perfectly definite as to what 
is in them and what is not. Boolean logic works well with 
this: it has two values True/False, 1/0, Yes/No, is-a-mem-
ber/is-not-a-member. But there is the view that relevance 
admits of degrees. So that, for example, some items returned 
by a search for “French” are more relevant to the User’s in-
terest, and some less relevant. This means that the associated 
sets of locators are not definite in their boundaries, they are 
“fuzzy”. Boolean logic, with its 0s and 1s leads to “crisp” 
sets. If, indeed, relevance in knowledge organization needs 
to be fuzzy, if it needs fuzzy sets, Boolean logic is not appro-
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priate. There have been initiatives to extend Boolean logic, 
for example, to weighted Boolean logic (Stock and Stock 
2013b). The idea here is the indexer, or index process, at-
taches a number or weight to the index terms and locators; 
for example, a particular page in a book might be indexed 
“French 0.75” and “cooking 0.25”. Then the searcher at-
taches numbers to the search input; for example, search for 
“French 0.3 and cooking 0.7” and mathematics on the index 
and input produces an ordered set of locators ranked by rel-
evance. This proposal does not seem to have got very far, 
and it is easy to find potential reasons why. Indexing itself is 
unreliable (Weinberg 2009). Adding numbers to that unre-
liability is not going to help. Searchers struggle to use ordi-
nary Boolean search. Burdening them with additional num-
bers for the search task is not going to be lightening their 
load. Then the mathematics is akin to Ptolemy adding epi-
cycles. It is done after the case ad hoc and it does not antici-
pate the requirements by clear theoretical insight. 

But there are deeper problems though. In logic itself, Bool-
ean logic is not “fine-grained” enough to show that many 
valid arguments are indeed valid. This shortcoming led to the 
development of predicate logic by Frege, Peirce, and others 
(Frege 1879; Peirce 1931). Also, there was the proposal of 
lambda calculus, the calculus of anonymous functions, by 
Alonzo Church (1940). Now, the validity of arguments is not 
a central concern of knowledge organization. However, to en-
gage with validity there has to be an analysis of the concepts 
within the propositions and arguments (indeed, Frege’s main 
book has the title “Begriffsschrift”, which means “concept 
writing”). And concepts are absolutely central to knowledge 
organization. Concepts are used to classify. Concepts are the 
underlying structure to headers in indexing. Concepts are the 
meanings of search strings in search. So, knowledge organiza-
tion needs adequate tools for the analysis of concepts. Bool-
ean logic may be among those tools, but, really, it is the rather 
more powerful tools of lambda calculus and predicate calcu-
lus that are needed. 

This shortcoming of Boolean logic for the purposes of 
knowledge organization was well known to some of the pi-
oneers of knowledge organization. Ranganathan, for exam-
ple, knew that concepts, topics, subjects, or headings like “A 
comparison of tropical forests with temperate forests” could 
not be produced by Boolean operations. (He used “loose as-
semblages” for these (Ranganathan 1937) ). Ranganathan 
devised many connectors for combining subjects including, 
dissection, lamination, denudation, loose assemblage, and 
superimposition. This is to go further than Boolean logic. 
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