
Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

273

Semantic Web Tools and Techniques
for Knowledge Organization:

An Overview†

Thimmaiah Padmavathi* and Madaiah Krishnamurthy**

*CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Food Science & Technology
Information Services (FOSTIS/Library), Mysore, Karnataka, India, <padmavathit@yahoo.com>

**Documentation Research & Training Centre (DRTC), Indian Statistical Institute, Bangalore,
Karnataka, <mkrishna_murthy@hotmail.com>

ThimmaiahPadmavathi is Senior Technical Officer at CSIR-Central Food Technological Research Institute,
FOSTIS/Library. She holds BSc and MLISc from Bangalore University, completed a post master’s training
course in information technology applications to library and information services at the National Center for
Science Information, Indian Institute of Science, Bangalore, and a doctoral degree from Bharathiar University.
Her core areas of expertise include semantic web technologies, computer based information services, digital li-
brary technologies, documentation, IT applications (web page design and content development) and library
automation.

Madaiah Krishnamurthy is an associate professor of information science at DRTC, Indian Statistical Institute,
Bangalore. He holds a master’s degree in applied economics and library and information science and a PhD
from Bangalore. He was a Fulbright Scholar in 2006 and visited the Graduate School of Library and Informa-
tion Science, University of Illinois at Urbana-Champaign (USA), and was recipient of ETD travel grant to at-
tend the 16th International Symposium on Electronic Theses and Dissertations in France in 2016. He is author
of over seventy articles. His research interests are digital libraries, institutional repositories, social networking,
library management and automation.

Padmavathi, Thimmaiah and Madaiah Krishnamurthy. 2017. “Semantic Web Tools and Techniques for Knowl-
edge Organization: An Overview.” Knowledge Organization 44(4): 273-290. 46 references.

Abstract: The enormous amount of information generated every day and spread across the web is diversified
in nature far beyond human consumption. To overcome this difficulty, the transformation of current unstruc-
tured information into a structured form called a “Semantic Web” was proposed by Tim Berners-Lee in 1989
to enable computers to understand and interpret the information they store. The aim of the semantic web is
the integration of heterogeneous and distributed data spread across the web for knowledge discovery. The core
of sematic web technologies includes knowledge representation languages RDF and OWL, ontology editors and reasoning tools, and on-
tology query languages such as SPARQL have also been discussed.

† The authors wish to thank the director, CSIR-CFTRI for his support and encouragement.

Received: 28 November 2016; Revised: 12 March 2017; Accepted 17 May 2017

Keywords: ontologies, OWL, query, domain knowledge, semantic web, knowledge discovery, knowledge representation

1.0 Introduction

The explosion of personal computers and major ad-
vances in the field of telecommunications were the be-
ginning of the web as its known today. The emergence of
web interconnected computers to work together and share
the necessary data paved the way for Berners-Lee (1989).
The growth of the World Wide Web (WWW) was

impressive for the past few years. Initially, the web was
for exchange of documents and data and for collabora-
tion. It was meant to be a network of workstations where
the programs and databases could share their knowledge
and work together in collaboration. Information is stored
in large databases kept in the servers where the programs
that run the servers generate web pages dynamically. In-
formation seekers use search engines for locating, com-

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

274

bining, and aggregating data from the internet in their
quest for information. Most of this information is en-
coded using the Hypertext Markup Language (HTML)
and thus is difficult to manipulate on a massive scale as it
is made for data representation on the web primarily for
human consumption and not for machine understanding
and interpretation.

This is the major disadvantage of the present Web, as
finding the right information from the huge collection of
web documents is becoming increasingly impossible.
Current information retrieval systems are imprecise, of-
ten yielding matches to thousands of pages. The major
limitations of the present web are seemingly high recall
and low precision; search output and results are highly
vocabulary sensitive; and, vocabulary of the query and of
web resources may require multiple queries or searches if
the information required is spread over several web
documents. These limitations coupled with the growing
volume of data and information available on the Web have
initiated discussions among the members of the web
community related to enhancing the present web to what
Berners-Lee (2001) called a semantic web.

The primary requirement of the semantic web is that
the underlying data need to be structured properly with
semantic and syntactic meaning so that computers can un-
derstand the data they store. The aim of the semantic web
iss to transform the current web consisting of hyperlinked
pages into a web of knowledge that is machine proc-
essable. Realization of the semantic web depends on a set
of web-related technologies designed to facilitate machine
processing of data and interoperability. The semantic web
promises to overcome the challenge of integrating and
querying highly diverse and distributed resources. Systems
based on the semantic web provide sophisticated frame-
works to manage and retrieve knowledge.

Knowledge organization systems (KOSs) play a major
role in structuring development of data for the semantic
web. KOS tools such as library classification systems, the-
sauri, taxonomies, controlled vocabularies, terminologies,
etc., can be exploited to support the development of the
semantic web. Among these, library classification systems,
especially faceted schemes, have been recognized as an
important source of structured and formalised vocabu-
laries that can be utilized to support the development of
the semantic web. All KOSs try to bring domain knowl-
edge formulated in a conceptual framework. Ontologies
are well known knowledge organization (KO) tools,
which can be utilized for capturing domain knowledge,
assigning semantic meaning to information and repre-
senting data for machine consumption.

Since its inception the semantic web has gained steady
acceptance in the science and technology community. Sev-
eral projects have been undertaken to demonstrate the

potential of the semantic web.WordNet, EuroWordNet,
GUM, Mikrokosmos, and SENSUS are linguistic ontolo-
gies which use words as grammatical units. The purpose
of this type of ontology is to describe semantic con-
structs rather than to model a specific domain. They of-
fer quite a heterogeneous amount of resources, used
mostly in natural language processing.

– WordNet (Miller et al. 1990, 1995) is a very large lexical

database for English created at Princeton University
and based on psycholinguistic theories. WordNet at-
tempts to organize lexical information in terms of
word meanings rather than word forms, though inflec-
tional morphology is also considered. For example, if
you search for “trees” in WordNet, you will have the
same access as if you searched for “tree.” WordNet 1.7
contains 121,962 words and 99,642 concepts. It is or-
ganized into 70,000 sets of synonyms (“synsets”), each
representing one underlying lexical concept. Synsets are
interlinked via relationships such as synonymy and an-
tonymy, hypernymy and hyponymy (Subclass-Of and Su-
perclass-Of), meronymy and holonymy (Part-Of and Hasa).
WordNet divides the lexicon into five categories:
nouns, verbs, adjectives, adverbs, and function words.

– AGROVOC (1980) is a controlled vocabulary covering
all areas of interest to the Food and Agriculture Or-
ganization of the United Nations (FAO). AGROVOC
is available as an RDF-SKOS linked dataset. It consists
of over 32,000 concepts, available in up to 21 lan-
guages, and linked to 16 other vocabularies and re-
sources.

– Bio2RDF (Belleau 2008) is an open-access semantic
web knowledge base that provides a mashup over 19
different data sets that include the Gene Ontology,
OMIM, Reactome, ChEBI, BioCyc and KEGG.

– BioGateway (Antezana 2009) is a semantic web re-
source that integrates the entire set of OBO Foundry
ontologies (including both accepted and candidate
OBO ontologies), the complete collection of annota-
tions from the Gene Ontology Annotation (GOA)
files, fragments of the NCBI taxonomy and SWISS-
PROT and IntAct. This project marked the fusion of
the semantic web to systems biology.

– Gene ontology (GO) (Gene Ontology 2008) is a major
bioinformatics initiative to unify the representation of
gene and gene product attributes across all species. GO
is part of a larger classification effort, the Open Bio-
medical Ontologies (OBO). The ontology covers three
domains: cellular component, molecular function and
biological process.

Medical ontologies are developed to solve problems such
as the demand for the reusing and sharing of patient

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

275

data, the transmission of these data, or the need for se-
mantic-based criteria for statistical purposes. The unam-
biguous communication of complex and detailed medical
concepts is a crucial feature in current medical informa-
tion systems. In these systems, several agents must inter-
act in order to share results and, thus, they must use a
medical terminology with a clear and non-confusing
meaning. The most notable ontologies are Galen, UMLS
and ON9.

– GALEN (Rector et al. 1995), developed by the non-

profit organization OpenGALEN, is a clinical termi-
nology represented in the formal and medical-oriented
language GRAIL (Rector et al., 1997). This language
was specially developed for specifying restrictions used
in medical domains. GALEN was intended to be used
with different natural languages and integrated with
different coding schemata. It is based on a semanti-
cally sound model of clinical terminology known as
the GALEN COding REference (CORE) model.

– UMLS (Unified Medical Language System) (2008), de-
veloped by the United States National Library of
Medicine, is a large database designed to integrate a
great number of biomedical terms collected from
various sources such as clinical vocabularies or classifi-
cations (MeSH, SNOMED, RCD, etc.). It is structured
in three parts: Metathesaurus, Semantic Network and
Specialist Lexicon.

Engineering ontologies contain mathematical models that
engineers use to analyze the behavior of physical systems
(Gruber and Olsen 1994). These ontologies are created to
enable the sharing and reuse of engineering models
among engineering tools and their users. Among the
various engineering ontologies, the EngMath ontologies
and PhysSys are the most notable.

– EngMath (Gruber and Olsen 1994) is a set of Onto-

lingua ontologies developed for mathematical model-
ing in engineering. These ontologies include concep-
tual foundations for scalar, vector, and tensor quanti-
ties as well as functions of quantities, and units of
measure.

Chemistry ontologies model the composition, structure,
and properties of substances, processes and phenomena.
Some of the chemistry ontologies developed by the On-
tology Group of the Artificial Intelligence Laboratory at
UPM (Universidad Politécnica de Madrid) are: Chemicals
(composed of Chemical Elements and Chemical Crys-
tals), Ions (composed of Monatomic Ions and Poliatomic
Ions), and Environmental Pollutants. All of them are
available in WebODE.

– Chemicals is composed of two ontologies: Chemical
Elements and Chemical Crystals. These ontologies were
used to elaborate METHONTOLOGY (Fernández-
López et al. 1999), an ontology development method-
ology. The Chemical Elements ontology models
knowledge of the chemical elements of the periodic
table, such as what elements these are (oxygen, hydro-
gen, iron, gold, etc.), what properties they have
(atomic number, atomic weight,electronegativity, etc.),
and what combination constraints of the attribute val-
ues they have. Chemical Elements contains 16 classes,
20 instance attributes, one function, 103 instances and
27 formal axioms.

 Chemical Crystals was built to model the crystalline
structure of the chemical elements. Therefore, Chemi-
cal Elements imports this ontology. The ontology con-
tains 19 classes, eight relations, 66 instances and 26
axioms.

– Ions is built on top of Chemical Elements and is also
composed of two ontologies: Monatomic Ions (which
model ions composed of one atom only) and Polya-
tomic Ions (which model ions composed of two or
more atoms). Ions contains 62 concepts, 11 class at-
tributes, three relations and six formal axioms.

– Environmental pollutants ontology (Gómez-Pérez and
Rojas, 1999) imports Monatomic Ions and Polyatomic
Ions and is composed of three ontologies: Environ-
mental Parameters, Water and Soil. The first ontology
defines parameters that might cause environmental
pollution or degradation in the physical environment
(air, water, ground) and in humans, or more explicitly,
in their health. The second and third ontologies define
water and soil pollutants respectively. These ontologies
define the methods for detecting pollutant compo-
nents of various environments, and the maximum
concentrations of these components permitted ac-
cording to the legislation in force.

The objective of this paper is to provide an overview
about the semantic web technologies and tools which have
significant impact on knowledge integration, querying,
and knowledge sharing in many domains. Insight into the
currently available semantic web tools and technologies in
identifying and selecting the appropriate knowledge or-
ganization systems for domains under consideration are
discussed.

2.0 Semantic Web Technologies

The semantic web is a collection of technologies and
standards that allow machines to understand the meaning
(semantics) of information on the web. Since 2004, the
field has been dominated by formal languages and tech-

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

276

nologies included under W3C recommendations. The
semantic web technologies (SWT) are described below in
Figure 1.

2.1 Resource Description Framework (RDF)

Resource Description Framework (RDF) is the backbone
of W3C’s semantic web activity. RDF is the standard for
encoding metadata and other knowledge on the semantic
web—providing the language for expressing the meaning
of terms and concepts in a form that machines can readily
process. RDF Schema is language layered on top of RDF.
RDF Schema is a simple set of standard RDF resources
and properties that allows creating RDF vocabularies. The
data model used by RDF Schema is similar to the data
model used by object-oriented programming languages like
Java and allows creating classes of data (Brickley and Guha
2004). Each RDF statement is sets of triplets (Subject/
resource, Predicate/Property and Object/value) (Manola
and Miller 2004). The subject denotes the object the triple

is describing, the predicate identifies the attribute of the
subject within the statement and the object defines the
value of the predicate. An example of a statement is:
http://www.example.org/index.html has a creator whose
value is “Swaminathan M” The subject is the URL http://
www.example.org/index.html. The predicate is the word
“creator.” The object is the phrase “Swaminathan M.” This
statement can be represented graphically as shown in Fig-
ure 2.

2.2 Description Logics

Description Logics (DLs) (Baader et al. 2003) are a family
of knowledge representation languages that can be used
to represent the knowledge of an application domain in a
structured and formal fashion. Description Logics offer
a palette of description formalisms with differing expres-
sive power that is employed in various application do-
mains (such as natural language processing, databases,
etc.). In DL, the basic syntactic building blocks are ato-

Figure 1. Semantic Web Layer Cake illustrates the architecture of the Semantic
Web (Berners-Lee 2001, 20)

Figure 2. Graphic representation of a triple

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

277

mic concepts (unary predicates), atomic roles (binary pre-
dicates) and individuals (constants).

2.3 Web Ontology Language (OWL)

OWL is an ontology language built on top of two new
semantic web standards—Resource Description Frame-
work (RDF) and RDF Schema (RDF-S)—and designed to
be compatible with the eXtensible Markup Language
(XML) as well as other W3C standards. OWL has become
a W3C Recommendation. OWL is primarily concerned
with defining terminology which may include descriptions
of classes, properties and their instances. OWL is intended
to be used for greater machine interpretability of web con-
tent than that supported by XML, RDF, and RDF-S by
providing additional vocabulary along with a formal se-
mantics (Dean et al. 2004). OWL has three expressive sub-
languages: OWL Full, OWL DL, and OWL Lite. All three
of these languages allow describing classes, properties, and
instances. OWL Lite is primarily intended for users need-
ing a classification hierarchy and simple constraint features.
OWL DL has the closest correspondence with description
logics. Both OWL DL and OWL Lite require that every re-
source either be a class, object property, datatype property
or instance. OWL Full has the same features as OWL DL,
but loosens the restrictions. It is possible to treat a class as
an instance, and there is no need to explicitly declare the
type of each resource.

For example, an ontology that describes food science
vocabulary and bibliographic datahas the basic classes
and subclass relationships shown in Figure 3.

The following is a representation in OWL of Figure 3:

<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-

syntax-ns#””
xmlns:rdfs=http://www.w3.org/2000/01/rdf-

schema#”
xmlns:owl=http://www.w3.org/2002/07/owl#”>
<owl:Ontology rdf:about=”xml:base”/>
<owl:Class rdf:ID=”commodity”>
food.</rdfs:comment>
<owl:intersectionOf rdf:parsetype=”Thing”>
<owl:Class rdf:about=”commodity”/>
<owl:Restriction>
<owl:onProperty rdf:resource=”#descriptors”/>
</owl:Restriction>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
<owl:Class rdf ID=”ärticle”>
<rdfs:comment>article title.</rdfs:comment>
<rdfs:subclassOf rdf:resource=”journal”/>
<rdfs:subClassof rdf:resource=”#journal name”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:OnProperty rdf:resource=””#descriptors”/>
<owl:allValuesFrom rdf:resource=”#author”/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
</rdf:RDF>

Figure 3. Basic classes and subclasses.

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

278

3.0 Ontologies

The idea of ontologies as computational artefacts has
appeared in artificial intelligence (AI) and computer sci-
ence. However, the term “ontology” denotes the study of
existence in philosophy. In information systems, ontolo-
gies are conceptual models of what “exists” in some do-
mains, transformed into and represented in a machine-
interpretable form by using knowledge representation
techniques. They are not limited to computer science and
AI research, but have practical applications in a wide range
of areas including medicine, geographic information
systems, and biological information systems. They have
been applied in diverse research areas such as knowledge
engineering, knowledge representation, knowledge man-
agement, database design, natural language processing,
information retrieval, etc. There are many definitions of
ontologies from different researchers. One popular defi-
nition of an ontology is by Gruber (1993, 1) who defined
it as an “Explicit specification of a conceptualization.”

3.1 Ontology Components

Gruber (1993, 2) identified five kinds of ontology com-
ponents: classes, relations, functions, formal axioms, and
instances:

a. Classes represent concepts, which are considered
generic entities in the broad sense;
b. Relations represent a type of association between
concepts of the domain;
c. Functions are a special case of relations;
d. Formal axioms serve as model sentences that are
always true. They are normally used to represent
knowledge that cannot be formally defined by other
ontology components; and,
e. Instances are used to represent elements or indi-
viduals in ontology.

Noy and McGuinness (2001, 3) described ontology as a
formal, explicit description of concepts in a domain of
discourse, including:

– Classes: the formal representation of concepts
are the focus of most ontologies. Classes de-
scribe concepts in the domain, properties of
each concept describing various features and at-
tributes of the concept.

Example:
- A class of millet represents all kinds of millet.
- Specific millets are instances of this class.

- A class can have subclasses that represent
concepts that are more specific than the su-
perclass.

- The class of all millets can be divided into
foxtail millet, kodo millet, little millet, pearl
millet, etc.

– Slots describe properties of classes and in-
stances.

– Taxonomies are used to organize classes and in-
stances in the ontology.

– Hierarchical and associative relationships are re-
lationships between concepts. A relation repre-
sents the dependency between concepts in the
domain.

An ontology can be characterized as comprising four tu-
ples (Davies, Studer and Warren 2006, 118):

O= <C,R,I,A.>
C is a set of classes representing concepts to reason
about in the given domain such as: Pests, Diseases,
Prevention etc.
R is a set of relations holding between those
classes, such as: relation “Harmed_By”
I is a set of instances, where each instance can be
an instance of one or more classes and can be
linked to other instances by relations such as: Angu-
lar, Red, Bacterial_Blight etc.
A is set of axioms such as: if plant’s leaves turns
yellow to brown causing defoliation, spray Carben-
dazim(1g).

3.2 Ontology Benefits

Noy and McGuinness (2001, 1) have proposed the fol-
lowing possible uses for ontology:

– To share a common understanding of the struc-
ture of information among people or software
agents;

– To enable reuse of domain knowledge;
– To make domain assumptions explicit;
– To separate domain knowledge from the opera-

tional knowledge;
– To analyze domain knowledge.

The first application is one of the common goals in de-
veloping ontologies that could be targeted towards hu-
man understanding in which case conceptual graphs,
topic maps or UML class diagrams could be used as rep-
resentation media. The second one assumes the use of a
common language for representation so others can reuse
it for their domains. For example, we can reuse a general

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

279

ontology, such as the UNSPSC ontology, and extend it to
describe a domain of interest. The third application of
ontology, to make implicit or tacit knowledge available,
makes it possible to change these assumptions easily if
the knowledge about the domain changes. The fourth
and fifth use as proposed by Noy and McGuinness
(2001) is oriented towards the architectural design and
end application uses. Thus in the specific context of in-
teroperability of information systems, the potential use
of ontologies may be summarised as (Kabilan 2007, 44):
“Ontology can be used as a central component of inter-
operability of Information Systems application to data,
information, knowledge, and meta level.”

3.3 Ontology Classification

There are several classifications of computer science on-
tologies, based on different parameters.

Uschold and Gruninger (1996, 6) have discussed in
detail the principles, methods and characteristics of on-
tologies. They have classified ontologies into following
major categories depending on formality by which a vo-
cabulary is created.

– Highly informal: expressed loosely in natural language;
– Semi-informal: expressed in a restricted and structured

form of natural language greatly increasing clarity by
reducing ambiguity;

– Semi-formal expressed in an artificial formally defined
language, e.g. Ontolingua version of the Enterprise
Ontology;

– Rigidly formal: meticulously defined terms with for-
mal semantics, theorems and proofs of such proper-
ties as soundness and completeness, e.g. TOVE.

Guarino (1998, 7-8) classifies them based on their level
of generality in:

– Top-level ontologies describe domain-independent

concepts such as space, time, object, event, etc., which
are independent of specific problems;

– Domain and task ontologies describe the vocabulary
related to a generic domain or a generic task or activ-
ity;

– Application ontologies describe concepts depending
on a particular domain and task that are often speciali-
zations of both the related ontologies.

Gómez-Perez, Fernández-López, and Corcho (2003, 2-3)
classify ontology based on the level of specification of
relationships among the terms gathered on the ontology,
in:

– Lightweight ontologies, which include concepts, con-
cept taxonomies, and relationships between concepts
and properties that describe concepts;

– Heavyweight ontologies, which add axioms and con-
straints to lightweight ontologies;

– Those axioms and constraints clarify the intended
meaning of the terms involved in the ontology.

3.4 Ontology Design Principles

To guide and evaluate our designs, we need objective cri-
teria that are founded on the purpose of the resulting ar-
tefact, rather than based on a priori notions of naturalness
or truth. Gruber (1993) proposed a preliminary set of
design criteria for ontologies whose purpose is knowl-
edge sharing and interoperation among programs based
on a shared conceptualization.

– Clarity: the concepts in an ontology should be defined

in a formal way that communicates the intended mean-
ing of defined terms. Definitions should be objective;
the motivation for defining a concept might occur from
social context or computational needs.

– Coherence: an important criterion for ensuring the con-
sistence of concepts that are defined formally. It should
allow inferences that are logically consistent with the de-
fining axioms.

– Extendibility: an ontology should be designed to antici-
pate the uses of the shared vocabulary. It should pro-
vide a conceptual foundation for a range of certain
tasks, and the representation should be crafted so that
one can extend and specialise the ontology monotoni-
cally.

– Minimal encoding bias: result when a representation
choice is made merely for the convenience of notation
or implementation. Encoding bias should be minimized
because knowledge-sharing agents may be implemented
in different representation systems and styles of repre-
sentation.

– Minimal ontological commitment: an ontology should
require the minimal ontological commitment adequate
to support the anticipated knowledge sharing activities.

These criteria have now become the basis for any ontol-
ogy designer for AI and information systems. These cri-
teria define the requirements only on the ontology arte-
fact that is to be designed and developed. They aim only
to ensure that the ontology is correct, cohesive and true.
They do not reflect upon the intended purpose for the
designed ontology. The domain view, that a designer
adopts may be different depending on the intended use
of the ontology.

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

280

3.5 Ontology Design Methodologies

The construction of ontologies may be improved if
some methodology is applied. The goal of using a meth-
odology is to obtain a good result following a set of steps
which usually are based on best practices. Most of the
methodologies for building ontologies are based on the
experience of people involved in their construction. In
several cases, methodologies are extracted from the way
in which a particular ontology was built. Nowadays, me-
thodologies are more focused on modelling knowledge
than on developing applications. Thus, such methodolo-
gies are suitable alternatives for modelling knowledge in-
stead of good alternatives for managing an information
technology project centered on ontologies. Some signifi-
cant ontology design and development methodologies are
briefly summarized below. These specific methodologies
were selected because the first two were amongst the first
information-systems-oriented ontology design method-
ologies, and were successfully tested in developing enter-
prise ontologies. The third is a popular guide to develop-
ing ontologies in most widely used, open-source ontology
editors. The fourth methodology is based on the Unified
Software Development Process or Unified Process (UP)
that gives a detailed account of the activities to be carried
out similar to a software development project plan. The
final methodology is based on the first two and is also
based on software development principles.

3.5.1 Uschold and Gruninger’s Skeletal Method

Uschold and Gruninger (1996) provide guidelines for on-
tology designing based on their experiences in designing
the Enterprise Ontology (Uschold et al. 1995). The proc-
esses are shown in Figure 4.

– Purpose and Scope: identifying the purpose, scope and

domain of an ontology to be constructed besides de-
termining the users and developers.

– Building the Ontology: starts with three aspects cap-

ture, coding, and integration of existing ontologies.
– Capture: suggest identification of the key concepts

and relationships in the domain of interest, produc-
tion of precise, unambiguous text definitions for such
concepts and relationships, identification of terms to
refer to such concepts and relationships and finally
agreeing concepts, relationships, and their names.

– Coding: includes explicit representation of the concep-
tualisation captured in the previous stage in some for-
mal language. This will involve committing to the basic
terms that will be used to specify the ontology (e.g.
class, entity, relation), choosing a representation lan-
guage and code the ontology.

– Integrating Existing Ontologies: propose the use of
existing ontologies in the ontology capture or coding
or both the processes.

– Evaluation: agree that evaluation of produced ontol-
ogy is vital and refers to other related research done in
the same domain and to adapt it for ontologies.

– Documentation: documenting the ontology process
that facilitates both formal and informal documenta-
tion.

3.5.2 Gruninger and Fox Method

Gruninger and Fox (1995) proposed a more formal de-
sign approach compared to Uschold’s skeletal method.
This methodology is based on the experience in develop-
ing the TOVE project ontology Gruninger (1995) within
the domain of business processes and activities model-
ling. The steps proposed are illustrated in Figure 5.

– Capture of motivating scenarios: the development of

ontologies is motivated by scenarios that arise in the
application. Any proposal for a new ontology or ex-
tension to ontology should describe one or more mo-
tivating scenarios and the set of intended solutions of
problems presented in the scenarios.

– Formulation of informal competency questions: these
are based on the scenarios obtained in the preceding

Figure 4. Main processes of the Uschold and Gruninger method.

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

281

step and can be considered as expressiveness require-
ments that are in the form of questions. Ontology
must be able to represent these questions using its
terminology, and be able to characterize the answers to
these questions using the axioms and definitions.

– Specification of the terminology of the ontology
within a formal language: the terminology of the on-
tology must be specified using first-order logic. Once
the informal competency questions are available, the
set of terms used can be extracted from the questions.
These terms will serve as a basis for specifying the
terminology in a formal language.

– Formal Competency Questions: once the competency
questions have been posed informally, and the termi-
nology of the ontology has been defined, the compe-
tency questions are defined formally.

– Specification in First-Order Logic—Axioms: axioms
in the ontology specify the definitions of terms in the
ontology and constraints on their interpretation; they
are defined as first-order sentences using the predi-
cates of the ontology. Axioms must be provided to
define the semantics, or meaning, of these terms. This
development of axioms for the ontology about the
competency questions is, therefore, an iterative proc-
ess.

– Completeness Theorems: once the competency ques-
tions have been formally stated, it is necessary to de-
fine the conditions under which the solutions to the
questions are complete.

3.5.3 Noy and McGuinness Method

Noy and McGuinness’ (2001) approach is more like a
user manual for an ontology to be designed specifically
using the Protégé ontology editor. They illustrate the
process of capturing the concepts, the slots, and the role

restrictions. But, on analysis, their basic design method-
ology is similar to that proposed by the Gruninger-Fox
methodology or the Uschold-Gruninger method. Noy
and McGuinness proposed a knowledge engineering me-
thod for building ontologies. They describe an iterative
approach to ontology development and start with a
rough first pass at the ontology. They have emphasized
three fundamental rules in ontology design:

– There is no one correct way to model a domain—

there are always viable alternatives;
– Ontology development is necessarily an iterative proc-

ess;
– Concepts in the ontology should be close to objects

(physical or logical) and relationships in your domain
of interest. These are most likely to be nouns (objects)
or verbs (relationships) in sentences that describe your
domain.

They provide a step-by-step instruction for the user to
design the ontology using the Protégé, ontology editor.
The steps are described below and Figure 6 illustrates the
main steps in this methodology.

– Determine the domain and scope of the ontology:

suggest starting the development of ontology by de-
fining its domain and scope. They adopt the compe-
tency questions idea as suggested by Gruninger and
Fox (1995).

– Consider reusing existing ontologies: suggest consider-
ing what someone else has done and checking if we
can refine and extend existing sources for a particular
domain and task. Reusing existing ontologies may be a
requirement if the system needs to interact with other
applications that have already committed to particular
ontologies or controlled vocabularies.

Figure 5. Gruninger and Fox Design Methodology.

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

282

Figure 6. Noy and McGuiness Method.

– Enumerate important terms in the ontology: they be-

gin by identifying key concepts and terminologies rele-
vant for the domain.

– Define the classes and the class hierarchy: they pro-
pose a combination of the top-down and bottom-up
approach. The first step usually starts by defining
classes whatever the approach is used. In their view,
none of these three methods suggested by Uschold
and Gruninger (1996) is inherently better than any of
the others. The approach to take depends strongly on
the personal view of the domain.

– Define the properties of classes—slots: define the
classes and describe the internal structure of concepts.

– Define the facets of the slots: slots can have different
facets describing the value type, allowed values, the
number of the values (cardinality), and other features
of the values the slot can take.

– Create instances: the last step is creating individual in-
stances of classes in the hierarchy.

It may be noticed that the method is simple, explicit to
follow for an information system designer except for the
shortcoming that it is not implementation tool independ-
ent.

3.5.4 UPON (Unified Process for Ontology building)

Nicola, Missikoff and Navigli’s (2009) approach is based
on Unified Process for Ontology (UPON), an incre-
mental methodology for ontology building. It stems its
characteristics from the UP, one of the most widespread
and accepted methods in the software engineering com-
munity, and uses the UML to support the preparation of
all the blueprints of the ontology development (figure 7).

The UPON methodology has the following phases:

– Requirements workflow: capturing requirements con-

sists in specifying the semantic needs and user view of
the knowledge to be encoded in the ontology.

– The analysis workflow: the conceptual analysis con-
cerns the refinement and structuring of the ontology
requirements identified in the previous workflow.

– The design workflow: the main goal of this workflow
is to give an ontological structure to the set of glossary
entries gathered in the reference glossary.

– The implementation workflow: the purpose of this
workflow is to encode the ontology in a rigorous, for-
mal language.

– The test workflow: the test workflow is conceived to
verify the semantic and pragmatic quality of the on-
tology since syntactic quality is checked in the previous
workflow and social quality can be checked only after
its publication.

3.5.5 METHONTOLOGY

The METHONTOLOGY framework by Fernandez,
Gomez-Perez and Juristo (1997) enables the building of
ontologies from scratch or from reusing other ontologies.
The ontology development process is based on the IEEE
standard (1996, 2006) software life cycle process for car-
rying out each activity. Several of the steps proposed here
are similar to those of Uschold and Gruninger (1996),
and Gruninger and Fox (1995). But the prominent differ-
ence is their stress on the evaluation and documentation
steps. Each phase consists of activities that pass through
many stages as shown in Figure 8.

– Planification: the designer should plan the entire de-

velopment process like the tasks, time and resource al-
location, etc.

– Specification: the goal of the specification phase is to
produce either an informal, semi-formal or formal on-

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

283

tology specification document written in natural lan-
guage, using a set of intermediate representations or
using competency questions, respectively. This phase is
similar to the competency questions phase as recom-
mended by Gruninger and Fox (1994) and Uschold
and Gruninger (1996).

– Knowledge Acquisition: independent activity in the
ontology development process. They support the use
of existing knowledge bases and knowledge acquisi-
tion using techniques as proposed by Uschold and
Gruninger (1996). Experts, books, handbooks, figures,
tables and even other ontologies are sources of
knowledge from which the knowledge can he eluci-
dated using in conjunction techniques such as brain-
storming, interviews, formal and informal analysis of
texts, and knowledge acquisition tools.

– Conceptualization: structures the domain knowledge
in a conceptual model that describes the problem and
its solution regarding the domain vocabulary identified
in the ontology specification activity. The activities to
be carried out are as follows:
- Build a complete glossary of terms (GT) to identify

which terms include concepts, instances, verbs and
properties.

- Group the gathered terms in GT as concepts and
verbs.

- Build concept classification tree following the guide-
lines as prescribed in Gomez-Perez, Fernandez, and
De Vicente (1996). Verbs which represent actions in
the domain are described using Vicente (1997).

- In the data dictionary, describe and gather all the
useful and potentially usable domain concepts, their
meanings, attributes and instances

Figure 7. UPON framework (Nicola, Missikoff and Navigli 2009, 260)

Figure 8. METHONTOLOGY: Constituent activities and their states (Uschold and Gruninger 1996, 35)

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

284

- In the verbs dictionary, express the meaning of
verbs in a declarative way.

– Formalization: to transform the conceptual model into
a formal or semi-compatible model. We need to for-
malize it using frame-oriented or description logic rep-
resentation systems.

– Integration: of ontologies is required when building a
new ontology. Reusing other ontologies that are al-
ready available may be considered instead of starting
from scratch.

– Implementation: in this phase the ontology is codified
in a formal language which is machine processable
implementation language.

– Evaluation: is to carry out a technical judgment of the
ontologies, their software environment, and documen-
tation about a frame of reference during each phase
and between phases of their life cycle.

– Documentation: as there are no guidelines to docu-
ment ontologies because of the absence of method-
ologies to build ontologies, they propose documenta-
tion as an activity to be done during the whole ontol-
ogy development process.

– Maintenance: any time there might be a need for in-
cluding or modifying definitions in the ontology. To
maintain the ontology is an important activity to be
done carefully. Guidelines for maintaining ontologies
are also required.

3.6 Ontology Development Tools

Most of the languages are supported by tools and six tools
have been found most relevant viz., Ontolingua, WebOnto,
WebODE, Protege-2000, OntoEdit and OilEd.

Ontolingua was the first ontology tool developed in the
Knowledge Systems Laboratory (KSL) at Stanford Univer-
sity at the beginning of the 1990s. The Ontolingua system
provides users with the ability to publish, browse, create,
and edit ontologies stored on an ontology server. The on-
tology editor is the main application inside the server and
works with a form- based web application. The underlying
language is the Ontolingua language. It provides many of
the facilities that are crucial for promoting the use of on-
tologies and knowledge level agent interaction such as
semi-formal representation language, browsing and re-
trieval of ontologies from repositories (Farquhar 1997).

WebOnto is a web-based tool for visualization, brows-
ing, and development of ontologies and knowledge mod-
els specified in OCML. It was developed by the Knowl-
edge Media Institute at the Open University as part of
several European research projects in the late 90s. Web-
Onto is a Java client connected to a customized web server.
It adopts the knowledge model of OCML and distin-
guishes between domain, tasks, problem-solving methods

and applications. Its main advantage over other available
tools is that it supports editing ontologies collaboratively,
allowing synchronous and asynchronous discussions about
the ontologies being developed (Domingue and Motta
1999).

WebODE is scalable ontological engineering on the
web. It has been developed by the Ontology and Knowl-
edge Reuse Group, at the Technical University of Madrid.
It has three-tier architecture: the user interface, the appli-
cation server, and the database management system. Web-
ODE’s ontology editor allows the collaborative edition of
ontologies at the knowledge level, supporting the concep-
tualization phase of METHONTOLOGY and most of
the activities of the ontology’s life cycle (reengineering,
conceptualization, implementation, etc.). The workbench
is built on an application server basis, which provides high
extensibility and usability by allowing the addition of new
services and the use of existing services. WebODE’s
knowledge model is extracted from the set of intermedi-
ate representations of METHONTOLOGY such as con-
cepts, groups of concepts, relations, constants and in-
stances. (Arpírez 2003).

Protegé is a free, open-source ontology editor that as-
sists users in the construction of large electronic knowl-
edge bases. It was developed by Stanford Medical Infor-
matics (SMI) at Stanford University. It was written in Java
and runs on a wide variety of operating systems. The Pro-
tégé system has dozens of plugins. These plugins provide
alternative visualization mechanisms, enable management
of multiple ontologies, including merging and version
management, allow the use of various inference engines
and problem solvers with Protégé ontologies, and provide
other functionalities. It also provides a Java API for appli-
cation developers to access and modify all aspects of Pro-
tégé knowledge bases and its user interface. Protégé stores
ontologies in many different formats including relational
databases, OWL, XML, RDF, and HTML. It supports the
latest OWL 2 Web Ontology Language and RDF specifi-
cations from the World Wide Web Consortium.

OntoEdit has been developed by AIFB in Karlsruhe
University (Sure et.al. 2002). It is similar to the previous
tools. It is an extensible and flexible environment, based
on a plugin architecture, which provides functionality to
browse and edit ontologies. It supports multilingual de-
velopment, and the knowledge model is related to frame-
based languages.

OilED supports the construction of OIL-based on-
tologies. The basic design has been influenced by similar
tools such as Protégé, OntoEdit. It integrates a reasoner
(FaCT) and extends the expressive power of other frame-
based tools, but ignores services and flexibility completely.
OilEd is a demonstration tool (Bechhofer 2001).

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

285

After a detailed study on tools, a comparison is pre-
sented with respect to their features. Table 1 shows com-
parison of the ontology tools.

3.7 Reasoning Tools

A semantic reasoner, reasoning engine, rules engine, or
simply a reasoner, is a piece of software able to infer lo-
gical consequences from a set of asserted facts or axioms.
The notion of a semantic reasoner generalizes that of an
inference engine. The inference rules are commonly spe-
cified using an ontology language, and often a description
language. There are many reasoners which use first-order
predicate logic to perform reasoning. Forward chaining
and backward chaining are the strategies of ontology rea-
soners (Wikipedia 2015). In forward chaining an infer-
ence engine searches the inference rules until it finds one
where the IF clause is known to be true. When found it
can conclude, or infer, the THEN clause, resulting in the
addition of new information to its dataset. It starts with
some facts and applies rules to find all possible conclu-
sions. The forward-chaining method of inference in-
creases storage size and overhead associated with inser-
tion and removal operations in an attempt to improve re-
trieval performance in a knowledge base. In backward
chaining an inference engine would search the inference
rules until it finds one which has a THEN clause that

matches the desired goal. If the IF clause of that infer-
ence rule is not known to be true, then it is added to the
list of goals (in order for goal to be confirmed it must
also provide data that confirms this new rule). This ap-
proach starts with the desired conclusion and works
backward to find supporting facts. (Hebeler et al. 2009).

Among the large number of reasoners available, the
popular reasoners suited for protégé are Pellet, RACER,
FACT++, Snorocket, HermiT, CEL, ELK, SWRL-IQ
and TrOWL.

Pellet is an open source Java-based OWL-DL reasoner
developed by The Mind Swap group. It is the first rea-
soner to support all of OWL-DL, i.e. the Description
Logic (DL) SHOIN (D), and has been extended to OWL
2 DL SROIQ(D). It is implemented in Java and is open
sourced under a liberal license. Pellet is a Description
Logic reasoner based on tableaux algorithms and incor-
porates novel optimization technique for incremental rea-
soning against dynamic knowledge bases. It uses the type
system approach to support reasoning with datatypes. It
reasons ontologies through Jena as well as OWL-API in-
terfaces and also supports the explanation of bugs. (Sirin
et al. 2007).

Racer also known as RACERPro is a reasoner for OWL
DL and it was the first OWL reasoner. The RacerPro sys-
tem is tailored for supporting ontology-based application
which mainly build on the exploitation of assertional rea-

Feature Ontolingua Webonto Webode Protégé Ontoedit Oiled

Developers Stanford Univ. Knowledge
Media Inst Univ. of Madrid Stanford Univ. Ontoprise University of

Manchester

Availability Open Source Open Source Open Source Open Source Software Li-
cense

Freeware

Semantic
Web Archi-
tecture

Standalone &
Client Server Client Server Application Server

Standalone &
Client Server

Eclipse cli-
ent/server Standalone

Extensibility - - Plug-ins Plug-ins Plug-ins Plug-ins

Backup Man-
agement

No No No No No No

Ontology
Storage File & DBMS File File File & DBMS DBMS File

Import from
languages

RDF(S), OWL,
HTML, XML,
RDF

RDF(S), OWL,
HTML, XML,
RDF

XML, RDF(S), OIL,
DAML+OIL, OWL,
CARIN, FLogic, Jess,
Prolog

RDF(S), OWL,
HTML, XML,
RDF

XML(S),
OWL,
RDF(S),

RDF(S), OIL,
DAML+OIL, and
the SHIQ XML
format.

Export to
languages

RDF(S), OWL,
HTML, XML,
RDF, F-Logic

RDF(S), OWL,
HTML, XML,
RDF

XML, RDF(S), OIL,
DAML+OIL, OWL,
CARIN, FLogic, Jess,
Prolog

RDF(S), OWL,
HTML, XML,
RDF, F-Logic

OWL,
RDF(S), F-
Logic, Excel

DAML+OIL,
RDF(S),OWL

Axiom lan-
guage

Yes(PAL) - Yes(WAB) Yes(PAL) F-Logic Yes

Ontology li-
braries

Yes - No Yes Yes -

Table 1. Comparison of the ontology tools

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

286

soning (Abox reasoning). It was the first system which effi-
ciently supported concrete domains for Tbox and Abox
reasoning and later extended to also support inverse roles
and qualitative number restrictions as part of the descrip-
tion logic (DL) SHIQ, a practically relevant subset of
OWL. (Haarslev et al. 2011).

Fact++. A description logic reasoner implements a tab-
leaux decision procedure for the well known SHOIQ de-
scription logic, with additional support for datatypes, in-
cluding strings and integers. FaCT++ is implemented using
C++ to create a more efficient software tool, and to
maximise portability. The latest version of FaCT++ sup-
ports OWL and is based on the description logic SROIQ.
A tableau-based decision procedure is implemented for
general TBoxes and incomplete support for ABoxes.
(Tsarkov and Horrocks 2006).

Snorocket for Protegé is a Java implementation of the
polynomial classification algorithm described by Baader,
Lutz and Suntisrivaraporn (2006) for the lightweight de-
scription logic EL++ and packaged for use as a reasoner in
Protegé.

Hermit is a new reasoner for SHOIQ+ (and OWL)
based on novel algorithms and optimizations (Shearer et
al. 2008). It is available as an open-source Java library and
includes both a Java API and a simple command-line in-
terface. It can process ontologies in any format handled
by the OWL API, including RDF/XML, OWL Func-
tional Syntax, KRSS, and OBO. HermiT shows signifi-
cant performance advantages over other reasoners across
a wide range of real-world ontologies. In several cases,
HermiT can classify ontologies that no other reasoner
can process. It also includes support for some non-
standard ontology features, such as description graphs.

CEL is known for its scalability of reasoning in the
lightweight DL EL++, which has been proved suitable
for several ontology applications (Baader, Lutz and Sun-
tisrivaraporn 2006). Recently, the DL EL++ has been
adopted as the logical underpinning of the OWL 2 EL
profile of the new Web Ontology Language. To integrate
the reasoner to the OWL user community, they have im-
plemented the OWL API for CEL. This shows CEL’s
reasoning capabilities to Protegé users.

ELK is a specialized reasoner for the lightweight ontol-
ogy language OWL EL. The practical utility of ELK is in
its combination of high performance and comprehensive
support for language features. It employs a consequence-
based reasoning engine that can take advantage of multi-
core and multi-processor systems. A modular architecture
allows ELK to be used as a stand-alone application, Pro-
tégé plug-in or programming library (either with or without
the OWL API) (Kazakov, Krötzsch and Simančík 2012).

SWRL-IQ (SWRL Inference and Query Tool allows
users to create, edit, save, and submit queries to an under-

lying inference engine based on XSB Prolog. Some dis-
tinct features from other reasoning tools are goal-
oriented backward-chaining reasoning, flexible constraint
handling that allows for very declarative rules and queries,
powerful SWRL extensions, and tracing and debugging
features for the explanation of reasoning results. It is im-
plemented in a flexible way to allow for different syntax
front ends and reasoning back ends (Daniel and Riehe-
mann 2012).

TrOWL is a tractable reasoning infrastructure for
OWL 2, which comes with a family of ontology lan-
guages. It contains a profile checker to detect which pro-
file an ontology may already fit into, and has support for
heavyweight reasoning using a plug-in reasoner such as
Fact++, Pellet, Hermit, or Racer. TrOWL is based
around two primary technologies: Language transforma-
tions, and lightweight reasoners (Thomas, Pan and Ren
2010).

A comparison of ontology reasoners is presented with
respect to their attributes in Table 2.

4. RDF Storage and Retrieval Systems

Ontologies are often used to improve data access. For
this purpose, existing data must be linked to an ontology
and appropriate access mechanisms have to be provided.
Ontologies are expressed in different query languages
(RDF, OWL, DAML, etc.) and stored in different types
of repositories (databases, text files, URLs, etc.), there is a
need to access the semantic content in a common way for
all the applications. Different ontology frameworks im-
plement different APIs to access ontologies (Sesame, Je-
na, etc.). The most common approach for accessing on-
tology-based data is via an RDF storage and retrieval
technologies.

4.1 Jena Semantic Web Framework

Jena is a Java framework for building semantic web applica-
tions from Apache Software (2011). It provides a pro-
grammatic environment for RDF, RDFS and OWL,
SPARQL and includes a rule-based inference engine. It is
an open source project and its development started with
HP Labs Semantic Web Program. The Jena Framework in-
cludes RDF API, Reading and writing RDF in RDF/XML,
N3 and N-Triples, an OWL API, In-memory and persis-
tent storage, RDQL- a query language for RDF and
SPARQL query engine, SPARQL server which can present
RDF data and answer SPARQL queries over HTTP.

Jena has the graph as its core interface around which
the other components are built. The main feature is its
rich Model API for manipulating RDF graphs. Using the
API one can choose to store RDF graphs in memory or

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

287

in persistent stores. Jena uses ARQ query engine that sup-
ports the SPARQL (pronounced “Sparkle”) RDF Query
Language. It also offers an RDF Triple Store facility with
SPARQL interface to be used on top of other database
systems.

The Jena package contains also other systems; among
those, there is Fuseki, an SPARQL Server offering an
SPARQL endpoint on the top of any of the mentioned
systems. An older equivalent of Fuseki is the Joseki
SPARQL Server. It can run as an operating system ser-
vice, as a Java web application (WAR file), and as a stand-
alone server. It provides security (using Apache Shiro)
and has a user interface for server monitoring and ad-
ministration. It provides the SPARQL 1.1 protocols for
query and update as well as the SPARQL Graph Store
protocol.

4.2 Ontology Query Languages

RDF query language is used to get information out of a
knowledge base and manipulate stored data in RDF for-
mat (Bailey, Bry, Furche and Schaffert 2005). The end us-
ers and developers can write desired queries and use the
query results across a broad range of information on the
Web. Several languages have been proposed for querying
RDF documents, and SPARQL is introduced as a stan-
dard query language for RDF documents by W3C.

Several query languages such as RQL (RDF Query
Language), SeRQL (Sesame RDF Query Language),
SquishQL, RDFPath, Versa, TRIPLE, DAML+OIL
Query Language, RDQL, RDFQL, N3, iTQL, RStar,
SPARQL, etc., have been introduced for RDF documents.
All of these query languages were intended to provide a
proper query language for RDF documents. Some of the
major ones are described below.

OWL Query Language (OWL-QL) is a formal language
and protocol for a querying agent and an answering agent
to use in conducting a query-answering dialogue using
knowledge represented in the Ontology Web Language
(OWL) (Fikes et al. 2003). It is an updated version of the
DAML Query Language (DQL) developed by the Joint
United States/European Union ad hoc Agent Markup
Language. OWL-QL is intended to be a candidate standard
language and protocol for query-answering dialogues
among Semantic Web computational agents during which
answering agents i.e. servers may derive answers to ques-
tions posed by querying agents i.e. clients. It is designed to
be ideal and easily adaptable to other declarative formal
logic representation languages, including, in particular,
first-order logic languages such as KIF and the earlier W3C
languages, RDF, RDF-S, and DAML+OIL.

RDQL (RDF Data Query Language) is a query lan-
guage for RDF in Jena models. It provides a data-oriented
query model so that there is a more declarative approach to

 Pellet RACER FACT++ Snorocket HermiT CEL ELK SWRL-IQ TrOWL
License DULI:AGPL Own GLGPL Own GLGPL Apache Apache - DULI:AGPL

Availability Open source Commercial
Open
source Commercial Open source

Open
source Open source - Commercial

Methodology
Tableau
based

Tableaux
based

Tableau
based

Completion
rules

Hypertableau
based

Completion
rules

Consequence
based

SWRL
rules

Completion
rules

Soundness Yes Yes Yes Yes Yes Yes Yes Yes Yes

Completeness Yes Yes Yes Yes Yes Yes Yes No Yes

Expressivity SROIQ(D) SHIQ SROIQ(D) EL+ SROIQ(D) EL+ EL - SROIQ

Native Profile DL,EL DL DL EL DL EL EL - DL,EL

Rule Support Yes(SWRL) Yes(SWRL) No No Yes(SWRL) No
Yes(Own ru-

le) Yes(SWRL) No

Platforms all all all all all Linux all all all

ABOX
Reasoning Yes Yes Yes No Yes Yes No Yes Yes

OWL API Yes Yes Yes Yes Yes Yes Yes No Yes

OWL Link API Yes Yes Yes No Yes Yes - No No

Protégé
Support Yes Yes Yes Yes Yes Yes Yes Yes Yes

Jena Support Yes No No No No No - No Yes

Implementation
Language Java LISP C++ Java Java LISP Java Prolog Java

Table 2. Comparison of the reasoners.

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

288

complement the fine-grained, procedural Jena API. As it is
“data-oriented” it only queries the information held in the
models; there is no inference being done. The RDQL sys-
tem only takes the description of what the application
wants, in the form of a query, and returns that informa-
tion, in the form of a set of bindings (W3C, 2004). RDQL
is an implementation of the SquishQL RDF query lan-
guage, which itself is derived from rdfDB. This class of
query languages regards RDF as triple data, without
schema or ontology information unless explicitly included
in the RDF source.

RQL (RDF QUERY LANGUAGE) is still the only de-
clarative language for querying both explicitly stated triples
of RDF/S graphs and inferred ones by transitivity of sub-
sumption and type relationships. It is a typed, functional
language with limited recursion which relies on a formal
model for RDF/S graphs permitting the interpretation of
instances using one or more schema vocabularies
(Karvounarakis et al. 2002). RQL adapts the functionality
of semistructured/XML query languages to the peculiari-
ties of the RDF/S data model but, it integrates smoothly
RDF/S reasoning with querying (called /semantics-aware
querying/). It provides sophisticated /pattern matching fa-
cilities/ under the form of generalized path expressions
(GPEs) featuring variables on both labels for nodes (i.e.,
classes) and edges (i.e., properties).

SPARQL is an RDF query language and data access
protocol for the semantic web. Its name is a recursive ac-
ronym that stands for SPARQL Protocol and RDF Query
Language. It was standardized by W3C’s SPARQL Work-
ing Group in 2008. The W3C Recommendation of
SPARQL consists of a query language, an XML format in
which query results will be returned, and a protocol of
submitting a query to a query processor service remotely.
The advantage of having a query language such as
SPARQL are: to query RDF graphs to get specific infor-
mation; to query a remote RDF server and to get stream-
ing results back; to run automated regular queries again
RDF dataset to generate reports; to enable application de-
velopment at a higher level, i.e., application can work with
SPARQL query results, not directly with RDF statements.
(Eric et al. 2006).

For example, a basic SPARQL query can be written as
follows:

SELECT ?title
FROM <http://example.org/book/book1>
WHERE
{
<http://example.org/book/book1>

<http://purl.org/dc/elements/1.1/title> ?title
}

This query is composed of a SELECT clause identifying
the variables to appear in the query results, a FROM clause
indicating the dataset to be queried, and the WHERE
clause providing the basic graph pattern matches the data
graph. Variables in SPARQL start with a “?” or a “$”. The
graph pattern of this example above is simple and consists
of a single triple pattern with a single variable “?title” in
the object position. Only the bindings for this variable will
be returned.

5.0 Conclusion

The paper provides a clear insight about the semantic web
technologies, tools and languages. RDF, SPARQL, triple
store and ontology facilitate the integration and analysis of
heterogeneous multi-disciplinary data. Knowledge repre-
sentation (KR) paradigms underlying all these technologies
and languages are diverse and are based on combinations
of several formalisms. We have tried to show the most im-
portant features of each of these technologies.

References

AGROVOC Multilingual Agricultural Thesaurus. 1980.

AIMS. http://aims.fao.org/vest-registry/vocabularies/
agrovoc-multilingual-agricultural-thesaurus

Antezana, Erick, Ward Blonde, Michel Egana, Alistair
Rutherford, Alistair, Robert Stevens, Bernard De
Baets, Vladimir Mironov and Martin Kuiper. 2009.
“BioGateway: A Semantic Systems Biology Tool for
the Life Sciences.” BMC Bioinformatics 10 no. 10: S11.

Arpírez, Julio C, Oscar Corcho, Mariano Fernández-López,
and Asuncion Gómez-Pérez. 2003. “WebODE in a
Nutshell.” AI Magazine 34 no. 3: 37-48.

Baader, Franz, Carsten Lutz and Boontawee Suntisriva-
raporn. 2006. “CEL-A Polynomial-time Reasoner for
Life Science Ontologies.” In Automated Reasoning, IJCAR
2006, ed. U. Furbach and N. Shankar. Lecture notes in
computer science 4130. Berlin: Springer, 287-91.

Bailey, James, François Bry, Tim Furche and Sebastian
Schaffert. 2005. “Web and Semantic Web Query Lan-
guages: A Survey.” http://www.en.pms.ifi.lmu.de/publica

 tions/PMS-FB/PMS-FB-2005-14.pdf
Bechhofer, Sean, Ian Horrocks, Carole A. Goble, and

Robert Stevens. 2001. “OilEd: A Reasonable Ontology
Editor for the Semantic Web.” In Description Logics, ed.
Carole A. Goble, Deborah L. McGuinness, Ralf
Möller and Peter F. Patel-Schneider. CEUR Workshop
Proceedings 49. Berlin: Springer, 396-408.

Belleau, Francois, Marc-Alexandre Nolin, Nicole Touri-
gny, Philippe Rigault and Jean Morissette. 2008.
“Bio2RDF: Towards a Mashup to Build Bioinformatics

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

289

Knowledge Systems.” Journal of Biomedical Informatics 41:
706-16.

Berners-Lee, Tim, Ora Lassila and James Hendler. 2001.
“The Semantic Web.” Scientific American 284 no. 5: 34-43.

Brickley, Dan and Ramanathan V. Guha. 2004. “RDF Vo-
cabulary Description Language 1.0: RDF Schema.”
W3C Recommendation. http://www.w3.org/TR/

 2014/REC-rdf-schema-20140225/
Baader, Franz, Ian Horrocks and Ulrike Sattler. 2005. “De-

scription Logics as Ontology Languages for the Seman-
tic Web.” In Mechanizing Mechanical Reasoning: Essays in
honor of Jörg H. Siekmann on the Occasion of his 60th Birth-
day, ed. Dieter Hutter and Werner Stephan. Lecture
notes in computer science 2605. Berlin: Springer, 228-
248.

Dagobert, Soergel. 1999. “The Rise of Ontologies or the
Reinvention of Classification.” Journal of the American
Society for Information Science 50: 1119-20.

Daniel, Elenius and Susanne Riehemann. 2012. “SWRL-
IQ.” http://protegewiki.stanford.edu/wiki/SWRL-IQ

Davies, John, Rudi Studer and Paul Warren. 2006. Seman-
tic Web Technologies: Trends and Research in Ontology-Based
Systems. London: John Wiley & Sons.

Dean, Mike, Guus Schreiber, Frank van Harmelen, Jim
Hendler, Ian Horrocks, Deborah L. McGuinness, Peter
F. Patel-Schneider and Andrea L. Stein. 2004. “OWL
Web Ontology Language Reference.” W3C Recom-
mendation. http://www.w3.org/TR/2004/REC-owl-

 ref-20040210/
Domingue, John and Enrico Motta. 1999. “Knowledge

Modeling in Webonto and OCML.” http://kmi.
 open.ac.uk/projects/ocml/
Eric, Prud’hommeaux and Andy Seaborne. 2006.

“SPARQL Query Language for RDF.” https://www.
 w3.org/TR/2006/CR-rdf-sparql-query-20060406/
Farquhar, Adam, Richard Fikes and James Rice. 1997.

“The Ontolingua Server: A Tool for Collaborative On-
tology Construction.” International Journal of Human
Computer Studies 46: 707-27.

Fernandez, Mariano, Asuncion Gomez-Perez and Natalia
Juristo. 1997. “METHONTOLOGY: From Ontologi-
cal Art Towards Ontological Engineering.” AAAI
Technical Report SS-97-06, pp. 33-40.

Fikes, Richard, Patrick Hayes and Ian Horrocks. 2004.
“OWL-QL—A Language for Deductive Query An-
swering on the Semantic Web.” Web Semantics: Science,
Services and Agents on the World Wide Web 2 no. 1: 19-29.

The Gene Ontology Consortium. 2008. “The Gene Ontology
Project.” Nucleic Acids Research 36 suppl. 1: D440-4.
doi:10.1093/nar/gkm883

Gómez-Pérez, Asuncion and Rojas-Amaya, Ma Dolores.
1999. “Ontological Reengineering and Reuse.” In 11th
European Workshop on Knowledge Acquisition, Modeling and

Management (EKAW’99), Dagstuhl Castle, Germany, ed.
Dieter Fensel and Rudi Studer. LectureNotes in Artifi-
cial Intelligence 1621. Berlin: Springer, 139-56.

Gómez-Pérez, Asuncion, Mariano Fernández-López and
Oscar Corcho. 2003. Ontological Engineering. London,
Springer-Verlag.

Gruber, Thomas R. 1993. “A Translation Approach to
Portable Ontology Specifications.” Knowledge Acquisition
5: 199-220.

Gruber, Thomas R and Gregory Olsen. 1994. “An On-
tology for Engineering Mathematics.” InFourth Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning, Bonn, Germany, ed. Jon Doyle, Piero Tor-
asso and Erik Sandewall. San Francisco: Morgan
Kaufmann, pp. 258–269.

Grüninger, Michael and Mark Fox. 1995. “Methodology
for the Design and Evaluation of Ontologies.”
IJCAI’95, Workshop on Basic Ontological Issues in Knowledge
Sharing, April 13, 1995, Montreal. Berlin: Springer, 1-10.

Haarslev, Volker, Kay Hidde, Ralf Moller and Michael
Wessel. 2011. “The RacerPro Knowledge Representa-
tion and Reasoning Systems.” Semantic Web Journal
https://www.franz.com/agraph/cresources/white_

 papers
Hebeler, John, Mathew Fisher, Ryan Blace and Andrew

Perez-Lopez. 2009. Semantic Web Programming. New Jer-
sey: Wiley Publishing.

Hjørland, Birger. 2007. “Semantics and Knowledge Or-
ganization.” Annual Review of Information Science and Tech-
nology 41: 367-405.

Kabilan, Vandana. 2007. Ontology for Information Sys-
tems (O4IS) Design Methodology: Conceptualizing,
Designing and Representing Domain Ontologies. PhD
dissertation KTH Royal Institute of Technology,
Stockholm.

Karvounarakis, Gregory, Alexaki Sofia, Christophides Vas-
silis, Plexousakis Dimitris and Michel Scholl. 2002.
“RQL: A Declarative Query Language for RDF.” Euro-
pean projects C-Web (IST-1999-13479) and Mesmuses (IST-
2000-26074), WWW2002, May 7–11, Honolulu, Hawaii,
USA. New York: ACM, 592-603.

Kazakov, Yevgeny, Markus Krötzsch and František Si-
mančík. 2012. “ELK Reasoner: Architecture and
Evaluation.” Proceedings of the 1st International Workshop
on OWL Reasoner Evaluation (ORE-2012), ed. Ian Hor-
rocks, Mikalai Yatskevich and Ernesto Jiménez-Ruiz.
CEUR Workshop 858.

Manola, Frank and Eric Miller. 2004. “RDF Primer.”
W3C Recommendation. http://www.w3.org/TR/

 2004/REC-rdf-primer-20040210/
Miller, George A., Richard Beckwith, Christiane Fellbaum,

Derek Gross and Katherine Miller. 1990. “Introduction

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 44(2017)No.4

T. Padmavathi and M. Krishnamurthy. Semantic Web Tools and Techniques for Knowledge Organization: An Overview

290

to WordNet: An On-line Lexical Database.” International
Journal of Lexicography 3: 235-44.

Miller, George A. 1995. “WordNet: A Lexical Database for
English.” Communications of the ACM 38 no. 11: 39-41.

Nicola, Antonio De., Michele Missikoff and Roberto
Navigli. 2009. “A Software Engineering Approach to
Ontology Building.” Information Systems 34: 258-75.

Noy, Natalya F and Deborah L. McGuinness. 2001. “On-
tology development 101: A Guide to Creating your First
Ontology.” http://www.ksl.stanford.edu/people/dlm/

 papers/ontology-tutorial-noy-mcguinness.pdf
Rector, Alan L., William D. Solomon, William A. Nowlan

and T. William Rush. 1995. “A Terminology Server for
Medical Language and Medical Information Systems.”
Methods of Information in Medicine 34: 147-57.

Rector, Alan L, Sean Bechhofer, Carole A. Goble, Ian
Horrocks, William A. Nowlan and William D. Solo-
mon. 1997. “The GRAIL Concept Modelling Lan-
guage for Medical Terminology.” Artificial Intelligence in
Medicine 9: 139-71.

Sirin, Evren, Bijan Parsia, Bernardo C. Grau, Aditya Ka-
lyanpur and Yarden Katz. 2007. “Pellet: A Practical
OWL-DL Reasoner.” Web Semantics: Science, Services and
Agents on the World Wide Web 5 no. 2: 51-53.

Smith, Michael. K, Deborah L. McGuinness and Chris
Welty. 2004. “OWL Web Ontology Language Guide
W3C Recommendation.” http://www.w3.org/TR/

 2004/REC-owl-guide-20040210/
Sure, York and Victor Losif. 2002. “First Results of a Se-

mantic Web Technologies Evaluation.” Proceedings of the
Common Industry Program at the federated event co-locating the
three international conferences: DOA’02: Distributed Objects

and Applications; ODBASE’02: Ontologies, Databases and
Applied Semantics; CoopIS’02: Cooperative Information Sys-
tems, Irvine, California, 1-10.

Thomas, Edward, Jeff Z. Pan and Yuan Ren. 2010.
“TrOWL: Tractable OWL 2 Reasoning Infrastructure.”
In The Semantic Web: Research and Applications. Extended
Semantic Web Conference 2010, ed. L. Aroyo. Lecture
Notes in Computer Science 6089. Berlin: Springer.

Tsarkov, Dmitry and Ian Horrocks. 2006. “FaCT++ De-
scription Logic Reasoner: System Description.” staff.

 cs.manchester.ac.uk/~tsarkov/papers/TsHo06a.pdf
National Library of Medicine. 2008. “Unified Medical

Language System (UMLS).” https://www.nlm.nih.
 gov/research/umls/new_users/online_learning/OVR
 _001.html
Uschold, Mike and Michael Gruninger. 1996. “Ontolo-

gies: Principles Methods and Applications.” The Knowl-
edge Engineering Review 11: 93-155.

Veltman, Kim H. 2001. “Syntactic and Semantic Interop-
erability: New Approaches to Knowledge and the Se-
mantic Web.” The New Review of Information Networking 7:
159-83.

Veltman, Kim H. 2002. “Challenges for a Semantic Web.”
Proceedings of the International Workshop on the Semantic Web
2002 (at the Eleventh International World Wide Web Confer-
ence), Honolulu, Hawaii, May 7, 2002. http://semantic

 web2002.aifb.uni-
karlsruhe.de/proceedings/Position/veltmann.pdf

Veltman, Kim H. 2004. “Towards a Semantic Web for
Culture.” Journal of Digital Information 4, no. 4. https://

 journals.tdl.org/jodi/index.php/jodi/article/view/113

https://doi.org/10.5771/0943-7444-2017-4-273 - am 13.01.2026, 10:08:45. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2017-4-273
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

