Von >bits< zu >words«
John von Neumanns linguistic turn als Ursprung
digitaler Schriftlichkeit

Gabriele Gramelsberger

1. Einleitung

Digitale Schriftlichkeit als Programmieren, Prozessieren und Codieren
von Schrift setzt bereits Schrift in zweifacher Weise voraus. Zum einen
als materialisierte Schrift der Mechanisierung und Elektrifizierung der
Sprache, die als logisch-elektronische Grundlage das Digitale erst er-
moglicht; zum anderen als Maschinencode. Es ist die Idee des Maschi-
nencodes, die John von Neumann als linguistic turn in die Instruierung
elektrischer Computer Mitte der 1940er Jahre einfithrte und die das ge-
samte Potential des Phinomens der digitalen Schriftlichkeit tiberhaupt
erst ermoglicht. Aus diesem linguistic turn, der von John von Neumann
spater kurzerhand »coding« genannt wurde, entwickelten sich ab Mit-
te der 1950er Jahre iiber erste Codierhilfen wie Assembler oder Compiler
die héheren Programmiersprachen," die nach iiber achttausend Jahren
Schriftentwicklung einen neuen Schrifttyp darstellen.” Alle Phinomene
des Digitalen - von der Automatisierung und Datafizierung bis hin zu

1 Herman H. Goldstine/John von Neumann: Planning and Coding Problems for
an Electronic Computing Instrument, 1947, Part I, Vol 1. In: John von Neumann
(Hg.): Collected Works, Bd. 5: Design of Computers, Theory of Automata and Numer-
ical Analysis. Oxford: Pergamon Press 1963, 80—151, 103.

2 Achttausend Jahre Schriftentwicklung unter Berticksichtigung der in China ge-
fundenen Jiahu-Zeichen (6.600 v. Chr.) und der Donauschrift (5.500 v. Chr.).

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

48

Digitale Schriftlichkeit

maschinellen Lernverfahren und Kiinstlicher Intelligenz — haben ihren
Ursprung in diesem linguistic turn.

Die Bezeichnung linguistic turn im Zusammenhang mit John von
Neumanns Einfithrung von Code und Coding ist eine retrospektive Zu-
schreibung der Computerhistoriker Mark Priestley und Thomas Haigh.
In einem Beitrag tiber frithe US-amerikanische Computer stellten sie
fest: »Computer programming took a linguistic turn, largely due to the
fact of John von Neumann during the famous >First Draft of a Report
on the EDVAC« came up with the first thing that we would recognize as
an order code, a machine programming linguistic coded instruction.«*
EDVAC [Electronic Discrete Variable Automatic Computer], dessen
Design von Neumann 1945 beschrieben hatte, wurde zum Vorbild aller
modernen Digitalcomputer. Mit EDVAC wurden Programme erstmals
als Daten behandelt, binir codiert und im internen Speicher verarbeitet.
Dieses Design wird bis heute von-Neumann-Architektur genannt. Den
Bericht iiber das Design von EDVAC leitete von Neumann wie folgt ein:

»The considerations which follow deal with the structure of a very
high speed automatic digital computing system, and in particular
with its logical control. [..] These instructions must be given in some
form which the device can sense: Punched into a system of punch-
cards or on teletype tape, [..]. All these procedures require the use
of some code, to express the logical and the algebraical definition of
the problem under consideration, as well as the necessary numerical
material.«*

Damit war die Bithne von Hardware und Software erdffnet, auf welcher
sich von da an - theatral formuliert — die Dramen des Digitalen abspie-
len sollten. Vor dem Hintergrund der Wirkmichtigkeit dieses linguistic

3 Mark Priestley/Thomas Haigh: Working on ENIAC: The Lost Labors of the In-
formation Age. In: MITH Digital Dialogues on opentranscrips.org, 02.18.2016. http
:/lopentranscripts.org/sources/mith-digital-dialogues/ (zuletzt abgerufen am
09.06.2023).

4 John von Neumann: First Draft of a Report on the EDVAC. University of Pennsyl-
vania: Moore School of Electrical Engineering 1945, 1.

- am18,02.2028, 06:38:12.

http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/
http://opentranscripts.org/sources/mith-digital-dialogues/

Gabriele Gramelsberger: Von »bits< zu >»words¢

turns ist die Analyse der verschiedenen Arten des Schriftgebrauchs fiir
ein kritisches Verstindnis der digitalen Schriftlichkeit von Interesse.

2. Mechanisierung der Sprache

Der Digitalcomputer, das wird gern vergessen, ist der materialisierte
Endpunkt einer jahrhundertealten Entwicklung der Mechanisierung
und Elektrifizierung der Sprache.” Zu Beginn dieser Entwicklung stand
das philosophische Programm der Operationalisierung des Geistes. Ra-
tionalisten wie René Descartes und Gottfried Wilhelm Leibniz als auch
Empiristen wie John Locke und David Hume widmeten sich der Ana-
lyse und Operationalisierung der Erkenntnisfunktionen des Subjekts.
Von Descartes’ analytischem Problemldsungsverfahren iber Lockes
Definition von Wissen als »die Auffassung der Verbindung und Uber-
einstimmung oder der Nichtitbereinstimmung und des Widerstreits
unserer einzelnen Vorstellungen [...]. Darin allein besteht es«® bis hin
zu Leibniz’ Ersetzung von Ahnlichkeit durch Aquivalenz (salva veritate)
formierte sich die konzeptuelle Grundlage des Digitalen bereits in der
Neuzeit. Insbesondere Leibniz hatte nicht nur ein Faible fiir Logik und
Kalkiile und erfand das binire Rechnen, sondern er war sich schon 1693
iiber die Tragweite einer an Maschinen delegierten Sprache in Form von
Kalkillen bewusst. Sie wire zukiinftig eine »Erganzung der sinnlichen
Anschauung und gleichsam ihre Vollendung« und wiirde auch »in den
Beschreibungen der Mechanismen der Natur« dufderst nittzlich sein.”
Was mit den Analysen der Rationalisten und Empiristen entstand,
war ein formales Verstindnis von Verstandesfunktionen, das von allem
Inhaltlichen abstrahierend die Verstandesfunktionen als Operationen

5 Gabriele Gramelsberger: Philosophie des Digitalen. Zur Einfiihrung. Hamburg: Ju-
nius 2023.

6 John Locke: Versuch iiber den menschlichen Verstand. Berlin: Heimann 1872, 4.
Buch, Kap. 1, §2.

7 Gottfried Wilhelm Leibniz: De analysi situs/Kalkiil der Lage. In: Ders.: Philoso-
phische Werke, 1. Bd. Hamburg: Meiner 1996, 6976, 76.

- am18,02.2028, 06:38:12.

49

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

50

Digitale Schriftlichkeit

fasste. Bei aller Differenz gelangen beide philosophische Strémungen
am Ende zu sehr dhnlichen Operationsmodellen des Denkens. So waren
sie sich einig, dass Verstandesfunktionen in sehr einfachen Operationen
des Vergleichens, Feststellens von Identitit oder Nicht-Identitit, des
Auseinanderdividierens (Analyse) und des Zusammensetzens (Synthese)
bestanden. Das Feststellen von Identitit oder Nicht-Identitit (Negation)
sowie das Zusammensetzen in Form der Konjunktion und Disjunktion
konstituieren das Spektrum der aussagenlogischen Verkniipfungen,
die heute die primitiv-rekursive und entscheidungsdefinite Grundlage
des Digitalen auf Basis der Booleschen Algebra (AND, OR, NOT) bilden.
Hinzukommt, dass mit Leibniz’ Prinzip salva veritate sich eine Aussage
durch eine andere Aussage formal ersetzen lisst, wenn dadurch der
Wahrheitswert der Aussage oder des Satzes nicht verindert wird.

Doch auch wenn sich die Verstandesfunktionen als Operationen be-
reitsim 16. und 17. Jahrhundert abstrahieren liefRen, so fehlte es an einem
adiquaten Ausdrucksmittel. Denn seit der Antike nutzte die Philosophie
die aristotelische Logik (Syllogistik), die als eine Sprachlogik auf seman-
tische Inhalte konzentriert war. Erst George Boole gelang es in seinem
epochalen Werk The Mathematical Analysis of Logic von 1847, ein adiqua-
tes Ausdrucksmittel zu entwickeln. Boole hatte nichts geringeres als die
Formalisierung der Logik selbst zum Ziel. Dazu analysierte er die Struk-
tur der Urteilsformen der aristotelischen Syllogistik, um zu seinem »Cal-
culus of Logic« zu gelangen; »a method resting upon the employment of
Symbols, whose laws of combination are known and general, and who-
se results admit of a consistent interpretation.«® Die Gleichsetzung von
Logik und Zeichengebrauch, die heute symbolische Logik genannt wird,
erforderte aber die Einfithrung einer neuen Operation: eines formalen
Mechanismus der Klassifikation und der Auswahl von Individuen. Klas-
senbildung respektive Selektion, so Boole, sollten nicht mehr linger ein
Geschift der aristotelischen Metaphysik, sondern der Mathematik sein.
Erst dieser Selektionsmechanismus ermdoglichte es Boole, die Struktur

8 George Boole: The mathematical analysis of logic, being an essay towards a calculus
of deductive reasoning. Cambridge: Macmillan, Barclay, & Macmillan u.a. 1847, 4.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

der aristotelischen Logik zu formalisieren sowie die logischen Urteils-
formen als mathematische Gleichungen darzustellen.” Aus den aristote-
lischen Urteilsformen der allgemein bejahenden oder verneinenden Ur-
teile sowie der partikular bejahenden oder verneinenden Urteile wurden
Formeln: Aus »Alle X sind Y« wurde bei Boole »xy = x«, aus »Kein X ist Y«
wurde »xy = 0«, aus »Einige X sind Y« wurde »v = xy« und aus »Einige X
sind nicht Y« wurde »v = x(1-y)«. Mit diesen Formeln lief§ sich nun rech-
nen. Auf dieser Basis rekonstruierte Boole die aristotelische Logik als
formale Aussagenlogik, die spater axiomatisiert zur booleschen Algebra
wurde, die bis heute die logische Grundlage der Schaltungen von Digi-
talcomputern bildet. Die boolesche Algebra ist damit der zentrale Mark-
stein der Mechanisierung der Sprache. Allerdings, und darauf hatte et-
was spiter Charles S. Peirce aufmerksam gemacht, formalisierte Booles
Logikkalkiil nur einen Bruchteil logischer Schlussformen der aristoteli-
schen Syllogistik. Daher erweitere Peirce spiter Booles Kalkill zu einem
Relationskalkiil und entwarf damit eine erste Priadikatenlogik.™

3. Elektrifizierung der Sprache

Doch Mechanisierung der Sprache alleine geniigt nicht, um diese an Ma-
schinen wie den Digitalcomputer zu delegieren. Hier kommt ein wei-
terer Schriftgebrauch ins Spiel, der die Elektrifizierung der Sprache er-
moglichte und ein Jahrhundert nach Boole von Claude Shannon ins Spiel
gebracht wurde. Im Kontext der Telefonie entwickelte sich zu Beginn
des 20. Jahrhunderts die Theorie der gepulsten Signaliibertragung von

9 Was die Logik hierfiir pradestinierte, war aus Booles’ Perspektive Folgendes:
»That which renders Logic possible, is the existence in our minds of general no-
tions, — our ability to conceive of a class, and to designate its individual mem-
bers by a common name. The theory of Logic is thus intimately connected with
that of Language.« Boole: Mathematical Analysis of Logic, 4—5.

10 CharlesS. Peirce: Description of a Notation for the Logic of Relatives, Resulting
from an Amplification of the Conceptions of Boole’s Calculus of Logic. In: Mem-
oirs of the American Academy of Sciences 9 (1870), 317—378.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

52

Digitale Schriftlichkeit

Sprache. Die Frage, die es dabei zu 16sen galt, war, welche diskrete Uber-
tragungsrate die effizienteste fiir ein analoges Sprachsignal wire, ohne
Informationen der Sprachiibertragung zu verlieren. Die Bell Lab For-
scher Harry Nyquist und Ralph Hartley entwickelten eine Theorie der
Abtastung und Quantisierung (Quantisierungsstufen) kontinuierlicher
Signale fiir die elektrische Kommunikation. Um den Ubergang vom phy-
sikalischen Phinomen elektromagnetischer Trigerwellen zum Symbol
zu fassen, bedarf es des Wechsels von Sinuswellen zu Logarithmen so-
wie der Zuordnung von reellen Zahlen (digits) zu den einzelnen Quan-
tisierungsstufen. Auf diese Weise lisst sich ein kontinuierliches Signal
in ein Digitalsignal transformieren, welches jeder Quantisierungsstufe
einen eindeutigen (reellen) Zahlenwert zuordnet.

Im Sinne einer effizienten Ubertragung von Informationen fiihrte
Shannon 1948 einen statistisch-stochastischen Ansatz in die elektrische
Informationsiibertragung ein, indem er die Informationsentropie (H)
als Mafleinheit fiir den Informationsgehalt einer Symbolfolge definier-
te. Dabei betrachtete Shannon den Informationsgehalt einer Symbolfol-
ge rein statistisch als Hiufigkeitsvorkommnis von Sprachzeichen und
Zeichenkombinationen. In natiirlichen Sprachen wie dem Englischen ist
folgendes offensichtlich: »The letter E occurs more frequently than Q, the
sequence TH more frequently than XP etc.«" Der entscheidende Kunst-
griff, den Shannon anwandte, war aber folgender: Er stellte Informa-
tionen mit Markov-Ketten dar, um die Wahrscheinlichkeit des Vorkom-
mens eines Symbols in einer Symbolreihe sowie die Wahrscheinlichkeit
der Abhingigkeit des Vorkommens eines Symbols von den vorhergehen-
den vorherzusagen. Je komplexer das Vorhersagemodell (Markov-Ket-
te), desto mehr nihert sich die Vorhersage den tatsichlichen Symbolvor-
kommnissen an. Auf dieser Basis kann Shannon nun die Entropie einer
Symbolfolge (Nachricht) bestimmen, um so die notwendigen Ubertra-
gungskapazititen in Form von Bits pro Sekunde (binary digit) zu berech-
nen. Eine hohe Entropie bedeutet eine hohe Redundanz, also statistische

11 Claude Shannon: A Mathematical Theory of Communication. In: Bell System
Technical Journal 27 (1948), 379—423 und 623-656, 385.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

Regelmifigkeit, in einer Symbolfolge. Ein Werk wie James Joyces Finne-
gans Wake hat eine niedrige Entropie im Unterschied zu Basic English, das
nur etwa 850 Worter umfasst. Je redundanter eine Nachricht ist, desto
geringer muss die Kapazitit fiir eine verlustfreie Dateniibertragung sein
und desto weniger Bits werden fiir die Codierung einer Nachricht be-
notigt. Eine Nachricht, bestehend aus zwei gleichwahrscheinlichen Zei-
chen, hat nach Shannon den Informationsgehalt log2(3) und benétigt 1
Bit zur Ubertragung. Ob ein Bit (Binirzahl) mit den Ziffern o und 1 dar-
gestellt wird, hingt von der gewihlten Konvention des Alphabets ab.

Shannons Wechsel von der Analyse zur Vorhersage erforderte die
Kenntnis iiber die typischen Wahrscheinlichkeiten des Vorkommens
von Symbolen in einer Sprache. Andrej A. Markov hatte dies fiir die
Buchstabensequenzen in der russischen Literatur Ende des 19. Jahr-
hunderts untersucht.” Friedrich W. Kaeding hatte die Hiufigkeit von
Buchstaben, Silben und Wértern mit einem Team von iiber eintausend
Freiwilligen fiir die deutsche Sprache analysiert und 1898 publiziert.”
Am Ende hatte Kaeding ein Korpus von iiber 10 Millionen Worter und
60 Millionen Buchstaben zusammengetragen; ein Korpus, das in einem
derartigen Umfang erst wieder ab den 1970er Jahren mit Hilfe von Com-
putern generierbar wurde. Diese quantitativ-statistischen Analysen der
Sprache waren nicht nur Vorliufer der heutigen Digital Humanities,
sondern ermoglichten erst die Verbindung von elektrischer Energie und
Symbol.

Beide Arten des (Schrift-)Sprachgebrauchs, der logische und der
statistisch-stochastische, verbinden sich in Flip-Flop-Schaltungen

12 Andrej A. Markoff: Wahrscheinlichkeitsrechnung. Ubers. v. Heinrich Liebmann.
Leipzig: Teubner 1912; Philipp von Hilgers/Vladimir Velminski (Hg.): Andrej A.
Markov. Berechenbare Kiinste. Ziirich/Berlin: diaphanes 2007.

13 Friedrich W. Kaeding: Haufigkeitsworterbuch der deutschen Sprache: Festgestellt
durch einen Arbeitsausschuss der deutschen Stenographiesysteme. Steglitz bei Ber-
lin: Selbstverlag des Herausgebers/E.S. Mittler & Sohn 1898; Toni Bernhart: Von
Aalschwanzspekulanten bis Abendrotlicht. Buchstibliche Materialitit und Pa-
thos im Haufigkeitsworterbuch der deutschen Sprache von Friedrich Wilhelm
Kaeding. In: Ralf Klausnitzer/Carlos Spoerhase/Dirk Werle (Hg.): Ethos und Pa-
thos der Geisteswissenschaften. Berlin/Boston: De Gruyter 2015, 165-190.

- am18,02.2028, 06:38:12.

53

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

54

Digitale Schriftlichkeit

(on/off) als Grundeinheiten der elektrifizierten Information, insofern,
wie Shannon schrieb, »a relay or a flip-flop circuit can store one bit
of information.«** Flip-Flop-Schaltungen sind aus mehreren Logik-
gattern zusammengesetzte Schaltungen. Logikgatter wiederum sind
Anordnungen von Schaltungen zur (biniren) Realisierung boolescher
Funktionen gemif Shannons Schaltalgebra von 1938, die die logischen
Operatoren AND, OR, XOR sowie deren Negationen reprisentieren.”
Aus diesen Schaltungen lisst sich die gesamte arithmetische und
logische Funktionalitit digitaler Computer wie auch ihre Datenprozes-
sierungs- und -speicherkapazititen konstruieren.

4. John von Neumanns linguistic turn

Digitale Schriftlichkeit griindet in diesen beiden, hoch technisierten Ar-
ten des (Schrift-)Sprachgebrauchs, die jedoch am Ende nur Signale oder
Bits iibriglassen und daher einer mnemotechnischen Erschliefung be-
diirfen. Eine solche mnemotechnische Erschliefung ist notwendig, um
den Vorteil der freien Programmierbarkeit von Computern als allgemei-
nen Maschinen nutzen zu kénnen. Ohne diese Erschlief3ung ist die Ein-
gabe eines Programms mithsam, denn fiir jede neue Aufgabenstellung
mussten die zahlreichen Schaltungen der ersten elektrischen Computer
einzeln per Hand verbunden werden. Beispielsweise mussten die 17.468
Elektronenréhren, 7.200 Dioden, 1.500 Relais, 70.000 Widerstinde und
10.000 Kondensatoren der Rechen-, Zihl- und Speichereinheiten von
ENIAC (Electronic Numerical Integrator and Computer), der Vorlaufer
von EDVAC, fiir jede neue Berechnung neu verkabelt werden. »Setting
up the ENIAC meant plugging and unplugging a maze of cables and set-
ting arrays of switches. In effect, the machine had to be rebuilt for each

14 Shannon: A Mathematical Theory of Communication, 379.
15 Claude Shannon: A Symbolic Analysis of Relay and Switching Circuits. In: Trans-
actions of the American Institute of Electrical Engineers 57 (1938), 38—80.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

new problem it was to solve.«'® Wihrend das Verkabeln (Programmein-
gabe) per Hand Tage dauerte, konnte ENIAC, basierend auf Daten, die
mit Lochkarten eingegeben wurden, komplexe Berechnungen in Stun-
den oder sogar Minuten l6sen. Doch auch die Zerlegung von Berechnun-
gen per Hand in Teilberechnungen und schaltungsgerechte Abliufe so-
wie die Ubersetzung in einen Plan der Verkabelung, dauerten ihre Zeit,
ebenso wie die Fehlersuche und -korrektur. ENIAC, so wird kolportiert,
rechnete nur rund zwei Stunden pro Woche. Der Rest der Zeit musste in
die Verkabelung wie auch Fehlersuche investiert werden.

Eben diese Situation fand John von Neumann vor, als er sich als Ma-
thematiker mit dem Bau aber auch dem Instruieren der ersten elektro-
nischen Computer in den USA beschiftigte. Von Neumann, ein unga-
rischer Mathematiker, der bei David Hilbert in Géttingen studiert und
sich in Berlin habilitiert hatte, emigrierte 1929 in die USA. Er war wih-
rend des Zweiten Weltkrieges in Los Alamos im Manhattan-Projekt fiir
die Berechnung der Ausbreitung von Explosionswellen zustindig. Aller-
dings erwiesen sich die Ausbreitungsmodelle basierend auf partiellen
Differentialgleichungen als zu komplex, als dass sie per Hand analytisch
16sbar waren. Der Mathematiker Stanislav Ulam beschrieb die Situation
1943 in Los Alamos wie folgt:

»The blackboard was filled with very complicated equations that you
could encounter in other forms in other offices. [..] looking at these
| felt that | should never be able to contribute even an epsilon to the
solution of any of them. But during the following days, to my relief, |
saw that the same equations remained on the blackboard. | noticed
that one did not have to produce immediate solutions.«'’

Vor diesem Hintergrund erkannte von Neumann nicht nur die Bedeu-
tung freiprogrammierbarer Digitalrechner, sondern entwickelte Metho-

16 Paul E. Ceruzzi: A History of Modern Computing. Cambridge, MA: The MIT Press
1998, 21.

17 Stanislaw Ulam: Von Neumann: The Interaction of Mathematics and Comput-
ing. In: Nicholas Metropolis/Jack Howlett/Gian-Carlo Rotta (Hg.): A History of
Computing in the Twentieth Century. New York: Academic Press 1980, 93—99, 95.

- am18,02.2028, 06:38:12.

55

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

56

Digitale Schriftlichkeit

den zur Diskretisierung von Differentialgleichungsmodellen, um diese
numerisch zu berechnen respektive die Berechnungen an Computer de-
legieren zukénnen. Heute nennen wir diese Methode numerische Simu-
lation partieller Differentialgleichungsmodelle, beispielsweise von Wet-
ter- oder Klimamodellen — oder kurz: Computersimulation.’®

Die Mithsambkeit der Verkabelung von ENIAC zur Berechnung
kurzer Programme einerseits sowie die Notwendigkeit andererseits,
immer umfangreichere Berechnungen fiir Differentialgleichungsmo-
delle durchzufiithren, waren der Grund, warum von Neumann iiber »a
very high speed automatic digital computing system, and [..] its logical
control« nachdachte.” Er entwarf nicht nur die bis heute verwendete
Architektur von Digitalcomputern, die Programme als Daten behandel-
te und iiber Lochkarten einlesbar oder sogar intern speicherbar machte,
sondern vollzog fiir seine neue Maschine einen linguitsic turn.*® Konkret
meint dies die Verwendung von Codeworten fir die logische Kontrolle
der Maschine. »It is therefore our immediate task to provide a list of
the orders which control the device, i.e. to describe the code used in
the device, and to define the mathematical and logical meaning and
the operational significance of its code words.«*" Von Neumann gibt
am Ende seines Designs von EDVAC eine Liste von Codeworten und
deren Bedeutung. Beispielsweise meint das Codewort »ij=1« in seiner
Kurzform »whup« den Befehl »to carry out the operation w in CA and to

18 Der Begriff Computersimulationen reicht iiber die numerische Simulation
partieller Differentialgleichungen (deterministische Simulation) hinaus und
bezeichnet weitere Simulationsformen wie stochastische Simulationen (z.B.
Monte-Carlo-Simulation). Gabriele Gramelsberger (Hg.): From Science to Com-
putational Sciences. Studies in the History of Computing and its Influence on Today's
Sciences. Ziirich/Berlin: diaphanes 2011.

19 von Neumann: Report on the EDVAC, 1. Von Neumann konzipierte Computer als
Maschinen mit Rechenwerk (arithmetisch-logische Einheit), Steuerwerk, Bus-
einheit (Daten- und Energielibertragung zwischen den Komponenten), Spei-
cherwerk sowie Eingabe-/Ausgabewerk.

20 Thomas Haigh/Mark Priestley/Crispin Rope: ENIAC in Action: Making and Remak-
ing the Modern Computer. The MIT Press: Cambridge, MA 2016.

21 von Neumann: Report on the EDVAC, 85. Unterstreichungen im Originaltext.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

dispose of the result. [...] h means that the result is to be held in Oc,. up
means, that the result is to be transferred into the minor cycle p in the
minor circle u.«**

Es ist die symbolische Ersetzung X (words) fir die Maschinenope-
ration Y, die den linguistic turn markiert. Was heute selbstverstindlich
anmutet, war 1945 neu und revolutionierte die Computerentwicklung.
Denn diese symbolische Ersetzung (Maschinencode fiir Maschinenope-
rationen) vereinfachte nicht nur die Eingabe eines Programms in einen
Computer, sondern stellte eine erste Form der Automatisierung dar und
zwar dessen, was bis dahin per Hand zur Verkabelung einer Maschine
ausgefithrt werden musste. 1951 ging Maurice Wilkes, der an der Ent-
wicklung des Manchester Computers beteiligt war, einen entscheiden-
den Schritt weiter. Er schlug vor, basale Schalt-, Rechen- und Steuer-
abliufe unterhalb der Ausfithrungsebene von Maschinencodes festzu-
legen, und nannte diese unverinderbare Form des Codes »micro-ope-
rations« (Microcode): »Each true machine operation is thus made up of
a sequence or >micro-programc«of micro-operations. [...] Only 40 micro-
orders are required to perform all these operations [add, subtract, multi-
ply, transfer etc.].«** Microcode wird in der Regel fest in einen Computer
respektive Prozessor integriert. Maschinencodes adressieren dann die
Microcodes, die lediglich Abfolgen von Nullen und Einsen sind.

Die mnemotechnische Revolution des Maschinencodes initiierte
eine Kaskade an Folgephinomenen, in deren Verlauf sich die symbo-
lische Ersetzung immer mehr an den menschlichen Sprachgebrauch
anniherte. Compiler waren erste Programme, die Programmcode in
Maschinencode iibersetzten, die dann in einem Computer wiederum
via Microcodes in Maschinenoperationen transferiert wurden. Allerd-
ings wurden diese ersten Programmierhilfen nicht von allen begeistert
aufgenommen. »At that time [1954], most programmers wrote Sym-
bolic machine instructions exclusively [...] they firmly believed that any
mechanical coding method would fail to apply the versatile ingenuity

22 von Neumann: Report on the EDVAC, 100.
23 Maurice V. Wilkes: The Best Way to Design an Automated Calculating Machine.
In: Manchester University Computer Inaugural Conference (1951), 182—184, 183—184.

- am18,02.2028, 06:38:12.

57

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

58

Digitale Schriftlichkeit

which each programmer felt he possessed and constantly needed in his
work.«** Diese ersten Programmierhilfen entwickelten sich Mitte der
1950er Jahre zu Programmiersprachen, die einerseits weitere Verein-
fachungen des Programmierens zum Ziel hatten (Automatisierung),
andererseits aus der Kombination einfacher Operationen zunehmend
komplexere Programmierbefehle ermdglichten. Dadurch konnte das
Moglichkeitspotential des frei programmierbaren Digitalcomputers
immer besser ausgeschopft werden. John Backus beispielsweise, der
die hohere Programmiersprache FORTRAN (Formula Translation)
entwickelte und 1954 vorstellte, stellte sich folgende Frage:

»What could be done now to ease the programmer’s job? Once asked,
the answer to this question had to be: Let him use mathematical no-
tations. But behind that answer [...] there was the really new and hard
question: Can a machine translate a sufficiently rich mathematical
language into a sufficiently economical machine program to make
the whole affair feasible?«*

Backus’ letzte Frage ist nicht trivial, denn es muss sichergestellt sein,
dass der Computer tatsichlich die programmierte Berechnung aus-
fithrt. Solange die Programminstrukteure dies direkt in Maschinencode
iibertragen, kann er oder sie dies selbst iiberpriifen. Wird die Uber-
setzung jedoch durch eine Programmiersprache via einen Compiler
oder einen Interpreter automatisiert, muss man sich auf diese Pro-
grammierhilfen verlassen. Die Entwicklung von Programmierhilfen
und Programmiersprachen stellte die erste Welle der Automatisierung
durch das Digitale dar. Viele weitere sollten folgen bis hin zum aktuellen
Hype der Kiinstlichen Intelligenz.

24 John Backus/William P. Heising: FORTRAN. In: IEEE Transactions on Electronic
Computing 13 (1964), 382385, 382.

25 John Backus: Programming in America in the 1950s. In: Nicholas Metropolis/
Jack Howlett/Gian-Carlo Rotta (Hg.): A History of Computing in the Twentieth Cen-
tury. New York: Academic Press 1980, 125135, 131.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

5. Protodigitale Schriftlichkeit

Mit dem Ubergang von Maschinenoperationen und Microcode zu Ma-
schinencode und spiter zur Automatisierung durch die zunehmend
komplexeren Programmcodes der Compiler und hoheren Program-
miersprachen setzte sich nach achttausend Jahren Schriftentwicklung
ein neuer Typ von Schriftgebrauch durch: autooperative Schriften, die
einem Zeichengebrauch folgen, »den man den deklarativen Zeichen-
gebrauch nennen kénnte, bei dem ein Autor eine Aufgabe anschreibt
(deklariert), die dann von einer Maschine exekutiert wird.«** Digitale
Schriftlichkeit basiert auf diesem deklarativen Zeichengebrauch, der
wiederum in dem skizzierten Programm der Mechanisierung und
Elektrifizierung der Sprache griindet. Doch digitale Schriftlichkeit
verlisst sich auch auf den skizzierten linguistic turn, insbesondere auf
dessen erste Errungenschaft: Codeworte, Microcodes und schlieflich
Maschinencodes, die sich als Formen einer protodigitalen Schriftlich-
keit charakterisieren lassen. Das Adjektiv >protodigital« bezieht sich
darauf, dass Codeworte, Microcodes und Maschinencodes eine not-
wendige Vorform der digitalen Schriftlichkeit sind, gleichwohl es sich
um digitale Anweisungen handelt (Folgen von Bytes, die sowohl Da-
ten als auch Befehle reprisentieren). Deutlich wird dies auch durch
das Adjektiv >hohere<, das das Protodigitale insofern in sich trigt, als
Programmiersprachen nicht unmittelbar von Computerprozessoren
verstanden und ausgefiithrt werden kénnen, sondern interpretiert oder
kompiliert werden miissen. Diese Differenz im Schriftgebrauch hat zur
Folge, dass erst hohere Programmiersprachen die gesamte Vielfalt an
Moglichkeiten der digitalen Operativitit eréffnen, aber zum Preis der
Spezialisierung auf Teilbereiche wie die mathematische Operativitit
(FORTRAN), die logische Operativitit (Prolog), die Operativitit der
Datenverwaltung (SQL) und viele weitere Formen der Operativitit.
Die maschinischen Grundoperationen respektive Microcodes fungieren

26 Cernot Grube: Autooperative Schrift. In: Ders./Werner Kogge/Sybille Kramer
(Hg.): Kulturtechnik Schrift. Die Graphé zwischen Bild und Maschine. Miinchen: Fink
2005, 81-114, 82.

- am18,02.2028, 06:38:12.

59

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

60

Digitale Schriftlichkeit

dabei wie ein Baukasten, mit dem sich durch geschickte Kombinationen
zunehmend komplexere, aber eben auch spezialisiertere Programmier-
befehle kombinieren lassen. Wenn also von digitaler Schriftlichkeit die
Rede ist, sind einerseits diese maschinisch zugerichteten Schriftvor-
aussetzungen, aber anderseits auch die Ambiguitit einer zunehmenden
Erweiterung digitaler Operativitit bei gleichzeitiger Spezialisierung
mitzudenken.

Abb. 1: Entwicklung von friihen Programmierhilfen und -sprachen™

Doch bereits in den 1960er und 1970er Jahren zeigte sich, dass fur
von Neumanns wegweisende Konzepte, sowohl die des Computers wie

27 Parallel zu John von Neumann hatte sich der Berliner Konrad Zuse zwischen
1942 und 1945 Notizen zu einer hoheren Programmiersprache (Plankalkul) fir
seinen geplanten Computer Z3 gemacht, konnte diesen jedoch aufgrund des
Krieges nicht verwirklichen. Der Plankalkiil wurde erst 1972 vollstandig verof-
fentlicht und ist Anfang der 2000er Jahre erstmals rekonstruiert und imple-
mentiert worden. Konrad Zuse: Uber den allgemeinen Plankalkiil als Mittel zur
Formulierung schematisch-kombinativer Aufgaben. In: Archiv der Mathematik 1
(1948/49), 441—449; Friedrich L. Bauer/Hans Wossner: The »Plankalkiil« of Kon-
rad Zuse: A Forerunner of Today’s Programming Languages. In: Communications
of the ACM 15 (1972), 678—685.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

seiner mnemotechnischen Revolution (linguistic turn), ein hoher Preis zu
zahlen war. Backus hat dies 1978 treffend formuliert:

»In order to understand the problems of conventional programming
languages, we must first examine their intellectual parent, the von
Neumann computer. [..] Inits simplest form a von Neumann computer
has a central processing unit (or CPU), a store, and a connecting tube
that can transmit a single word between the CPU and the store (and
send an address to the store). | propose to call this tube the von Neu-
mann bottleneck. The task of a program is to change the contents of the
store in some major way; when one considers that this task must be ac-
complished entirely by pumping single words back and forth through
the von Neumann bottleneck, the reason for its name becomes clear.
Ironically, a large part of the trafficin the bottleneck is not useful data
but merely names of data, as well as operations and data used only to
compute such names.«*®

Es ist klar, dass dieser von-Neumann-Flaschenhals die Programmaus-
fithrung erheblich verlangsamte. Dies wurde und wird zwar durch zu-
nehmend kleinere und schnellere Mikroprozessoren kaschiert. Doch das
ist nur ein Aspekt. »More importantly, it is an intellectual bottleneck that
has kept us tied to a-word-at-a-time thinking instead of encouraging us
to think in terms of the larger conceptual units of the task at hand.«**
Das Problem wird bis heute durch die Entkopplung von Speicher und
Rechenwerken iiber Hierarchien an Zwischenspeicher praktisch gelést.
Maurice V. Wilkes, der das Konzept der Zwischenspeicher entwickelte,
motivierte seine »slave memories« wie folgt:

»The use is discussed of a fast core memory of, say, 32000 words as a
slave to a slower core memory of, say, one million words in such a way
thatin practical cases the effective access time is nearer that of the fast

28 John Backus: Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs. In: Communications of the ACM 21
(1978), 613—641, 615.

29 Backus: Can Programming Be Liberated, 615.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

62

Digitale Schriftlichkeit

memory than that of the slow memory. [...] By a slave memory | mean
one which automatically accumulates to itself words that come from
a slower main memory, and keeps them available for subsequent use
without it being necessary for the penalty of the main memory access
to be incurred again.«°

Bis heute arbeitet sich die Entwicklung von Computern wie auch Pro-
grammiersprachen am von-Neumann-Flaschenhals in der einen oder
anderen Weise ab, auch wenn Prozessoren unglaublich klein (2nm),
schnell (ExaFlop/s) und komplex (system on a chip) geworden sind und
die Datenvolumen unfassbare Ausmafle (Zettabytes) angenommen
haben. Doch wie umfangreich die digitale Schriftlichkeit, die uns als
sichtbares Phinomen auf der Oberfliche digitaler Gerite im Alltag
begleitet, auch immer ist, an der konzeptuellen Grundlage ihrer Pro-
grammierung, Prozessierung und Codierung hat sich bis heute nicht
viel gedndert, solange von-Neumann-Computer verwendet werden.
Allerdings macht sich mittlerweile ein Effekt bemerkbar, der im Para-
dox des linguistic turn seinen Ursprung hat. Dieses Paradox resultiert
aus dem Umstand, dass der linguistic turn Maschinenoperationen mne-
motechnisch erschlieRbar macht und so die Nihe zur Sprache wieder
herstellt, allerdings zum Preis eines sehr aufwendigen »a-word-at-a-
time thinking«, dass zur Produktion von Unmengen an Daten fithrt und
immer mehr Speicher und Computerleistung erfordert.* Diese mne-
motechnisch Revolution erméglichte jedoch erst die digitale Revolution
gerade wegen des anthropomorphen (Schrift-)Zugangs zum Digitalen.

30 Maurice V. Wilkes: Slave Memories and Dynamic Storage Allocation. In: [EEE
Transactions on Electronic Computers EC-14 (1965), 270—271, 270. Das Konzept
der Zwischenspeicher wie auch der Trennung von Programm- und Datenzwi-
schenspeichern hat neben dem von-Neumann-Computer (SISD-Computer, Sin-
gle Instruction, Single Data) zu neuen Computerarchitekturen wie Vektorrech-
nern (SIMD-Computer, Single Instruction, Multiple Data) oder Parallelrechnern
(MIMD-Computer, Multiple Instruction, Multiple Data) gefiihrt. Michael J. Flynn:
Some Computer Organizations and Their Effectiveness. In: IEEE Transactions on
Computers C-21 (1972), 948—960.

31 Backus: Can Programming Be Liberated, 615.

- am18,02.2028, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Gabriele Gramelsberger: Von »bits< zu >»words¢

Doch dieser anthropomorphe Zugang droht zunehmend verloren zu
gehen. Denn die Unmengen an ikonoklastischen Daten wie auch die
enormen Rechengeschwindgeiten von Billionen von Operationen pro
Sekunde unterlaufen schlichtweg die menschlichen Wahrnehmungsfi-
higkeiten. Hinzu kommt der zunehmende Einsatz von KI (Kiinstlicher
Intelligenz) zur automatisierten Kontrolle und Steuerung des Digitalen.
Zusammengenommen erleben wir heute einen Effekt der Deanthropo-
morphisierung des Digitalen, der uns immer weniger direkten Zugang
erlaubt.*® Im Zuge dieser Deanthropomorphisierung geht auch der
mnemotechnische Zugang durch von Neumanns linguistic turn verlo-
ren. Nicht nur weil Programmierung zunehmend an KI delegiert wird,
sondern weil die Milliarden smarter Objekte sich effizienter in binir-
codierten Microcodes oder elektrischen Signalen als in symbolischer
Maschinensprache unterhalten. Der Umweg itber mnemotechnische
Hilfen von Codeworten und den linguistic turn ist aufgrund der un-
glaublichen Automatisierungskomplexitit und -tiefe des Digitalen und
dessen Autooperativitit nicht linger notwendig. Sie ist allenfalls eine
nostalgische Reminiszenz an den Menschen.

32 Eine ausfihrliche Diskussion dieser Entwicklung findet sich in Gramelsberger:
Philosophie des Digitalen.

- am18,02.2028, 06:38:12.

63

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

- am 18.02.2026, 06:38:12.

https://doi.org/10.14361/9783839468135-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

