Working Together to Get the Job Done – The What, When, and How of Human–AI Collaboration in the Frontline

Bibliographische Infos


Cover der Ausgabe: SMR - Journal of Service Management Research Jahrgang 8 (2024), Heft 3-4
Kein Zugriff

SMR - Journal of Service Management Research

Jahrgang 8 (2024), Heft 3-4


Autor:innen:
, , , , , , ,
Verlag
Nomos, Baden-Baden
Erscheinungsjahr
2024
ISSN-Online
2942-3392
ISSN-Print
2511-8676

Kapitelinformationen


Kein Zugriff

Jahrgang 8 (2024), Heft 3-4

Working Together to Get the Job Done – The What, When, and How of Human–AI Collaboration in the Frontline

Im Shop erwerben(externer Link, öffnet in einem neuen Fenster)
Autor:innen:
ISSN-Print
2511-8676
ISSN-Online
2942-3392


Kapitelvorschau:

Literaturverzeichnis


  1. Ala-Heikkilä, V., & Järvenpää, M. (2023). Management accountants’ image, role and identity: employer branding and identity conflict. Qualitative Research in Accounting & Management, 20(3), 337–371. https://doi.org/10.1108/QRAM-04-2021-0064. Google Scholar öffnen
  2. Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2020). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548. Google Scholar öffnen
  3. Bankins, S., & Formosa, P. (2023). The Ethical Implications of Artificial Intelligence (AI) For Meaningful Work. Journal of Business Ethics, 185(4), 725–740. https://doi.org/10.1007/s10551-023-05339-7. Google Scholar öffnen
  4. Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2023). A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice. Journal of Organizational Behavior, 1–24. https://doi.org/10.1002/job.2735. Google Scholar öffnen
  5. Barbieri, L., Mussida, C., Piva, M., & Vivarelli, M. (2019). Testing the Employment Impact of Automation, Robots and AI: A Survey and Some Methodological Issues. IZA Discussion Paper, 12612. https://doi.org/10.2139/ssrn.3457656. Google Scholar öffnen
  6. Bauer, A., Wollherr, D., & Buss, M. (2008). Human-Robot Collaboration: A Survey. International Journal of Humanoid Robotics, 5(1), 47–66. https://doi.org/10.1142/S0219843608001303. Google Scholar öffnen
  7. Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2020). Robots or frontline employees? Exploring customers’ attributions of responsibility and stability after service failure or success. Journal of Service Management, 31(2), 267–289. https://doi.org/10.1108/JOSM-05-2019-0156. Google Scholar öffnen
  8. Bettencourt, L. A., & Gwinner, K. (1996). Customization of the service experience: The role of the frontline employee. International Journal of Service Industry Management, 7(2), 3–20. https://doi.org/10.1108/09564239610113442. Google Scholar öffnen
  9. Blaurock, M., Büttgen, M., & Schepers, J. (2024). Designing Collaborative Intelligence Systems for Employee-AI Service Co-Production. Journal of Service Research. https://doi.org/10.1177/10946705241238751 Google Scholar öffnen
  10. Blyler, A. P., & Seligman, M. E. P. (2024). AI assistance for coaches and therapists. The Journal of Positive Psychology, 19(4), 579–591. https://doi.org/10.1080/17439760.2023.2257642. Google Scholar öffnen
  11. Braun, A., Zweck, A., & Holtmannspötter, D. (2016). The ambiguity of intelligent algorithms: Job killer or supporting assistant. European Journal of Futures Research, 4(9), 1–9. https://doi.org/10.1007/s40309-016-0091-3. Google Scholar öffnen
  12. Browne, R. (2024, October 9). HSBC exec says there’s a lot of AI ‘success theater’ happening in finance. Retrieved December 10, 2024, from https://www.cnbc.com/2024/10/09/hsbc-exec-says-theres-a-lot-of-ai-success-theater-in-finance.html. Google Scholar öffnen
  13. Brynjolfsson, E., Mitchell, T., & Rock, D. (2018). What Can Machines Learn and What Does It Mean for Occupations and the Economy? AEA Papers and Proceedings, 108, 43–47. https://doi.org/10.1257/pandp.20181019. Google Scholar öffnen
  14. Cao, S., Jiang, W., Wang, J., & Yang, B. (2024). From Man vs. Machine to Man + Machine: The art and AI of stock analyses. Journal of Financial Economics, 160, 103910. https://doi.org/10.1016/j.jfineco.2024.103910. Google Scholar öffnen
  15. Cantrell, S., Davenport, T. H., & Kreit, B. (2022a, November 22). Strengthening the bonds of human and machine collaboration. Retrieved August 13, 2024, from https://www2.deloitte.com/us/en/insights/topics/talent/human-machine-collaboration.html. Google Scholar öffnen
  16. Cantrell, S., Griffiths M., Jones, R., & Hiipakka, J. (2022b). Building tomorrow’s skills-based organization. Jobs aren’t working anymore. Retrieved August 13, 2024, from https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Skills-Based-Organization.pdf. Google Scholar öffnen
  17. Cascio, W. F., & Montealegre, R. (2016). How Technology Is Changing Work and Organizations. Annual Review of Organizational Psychology and Organizational Behavior, 3(1), 349–375. https://doi.org/10.1146/annurev-orgpsych-041015-062352. Google Scholar öffnen
  18. Chandra, S., Shirish, A., & Srivastava, S. C. (2022). To Be or Not to Be …Human? Theorizing the Role of Human-Like Competencies in Conversational Artificial Intelligence Agents. Journal of Management Information Systems, 39(4), 969–1005. https://doi.org/10.1080/07421222.2022.2127441. Google Scholar öffnen
  19. Cheng, X., Chen, Y., Wang, P., Zhou, Y., Wei, X., Luo, W. & Duan, Q. (2024). A novel ChatGPT-based multimodel framework for tourism review mining: a case study on China’s five sacred mountains. Journal of Hospitality and Tourism Technology, 15(4), 592–609. https://doi.org/10.1108/JHTT-06-2023-0170. Google Scholar öffnen
  20. Chin, T., Cheng, T.C.E., Wang, C., & Huang, L. (2024). Combining artificial and human intelligence to manage cross-cultural knowledge in humanitarian logistics: a yin–yang dialectic systems view of knowledge creation. Journal of Knowledge Management, 28(7), 1963–1977. https://doi.org/10.1108/JKM-06-2023-0458. Google Scholar öffnen
  21. Choi, D.-J., Park, J. J., & Lee, S. (2020). Artificial intelligence for the diagnosis of heart failure. npj Digital Medicine, 3(54), https://doi.org/10.1038/s41746-020-0261-3. Google Scholar öffnen
  22. Choi, S., Yi, Y., & Zhao, X. (2024). The human touch vs. AI efficiency: How perceived status, effort, and loyalty shape consumer satisfaction with preferential treatment. Journal of Retailing and Consumer Services, 81, 103969. https://doi.org/10.1016/j.jretconser.2024.103969. Google Scholar öffnen
  23. Chong, T., Yu, T., Keeling, D. I., & De Ruyter, K. (2021). AI-chatbots on the services frontline addressing the challenges and opportunities of agency. Journal of Retailing and Consumer Services, 63, 102735. https://doi.org/10.1016/j.jretconser.2021.102735. Google Scholar öffnen
  24. Clark, N. (2023, March 27). TRUST THE BOTS' Brits must learn to trust latest computers and not fear AI, says Tech Secretary. Retrieved August 13, 2024, from https://www.thesun.co.uk/news/21854543/brits-learn-trust-latest-computers-michelle-donelan/. Google Scholar öffnen
  25. Coelho, F., & Augusto, M. (2010). Job Characteristics and the Creativity of Frontline Service Employees. Journal of Service Research, 13(4), 426–438. https://doi.org/10.1177/1094670510369379. Google Scholar öffnen
  26. Dahlin, E. (2019). Are Robots Stealing Our Jobs? Socius, 5. https://doi.org/10.1177/2378023119846249. Google Scholar öffnen
  27. Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of AI assistance on student agency. Computers & Education, 210, 104967. https://doi.org/10.1016/j.compedu.2023.104967. Google Scholar öffnen
  28. De Keyser, A., Köcher, S., Alkire (née Nasr), L., Verbeeck, C., & Kandampully, J. (2019). Frontline Service Technology infusion: conceptual archetypes and future research directions. Journal of Service Management, 30(1), 156–183. https://doi.org/10.1108/JOSM-03-2018-0082. Google Scholar öffnen
  29. Dégallier-Rochat, S., Kurpicz-Briki, M., Endrissat, N., & Yatsenko, O. (2022). Human augmentation, not replacement: A research agenda for AI and robotics in the industry. Frontiers in Robotics and AI, 9, 997386. https://doi.org/10.3389/frobt.2022.997386. Google Scholar öffnen
  30. Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The Future of Human-AI Collaboration: A Taxonomy of Design Knowledge for Hybrid Intelligence Systems. Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.034. Google Scholar öffnen
  31. Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., & Ahuja, M., Albanna, H., Albashrawi, M A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., …, & Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. Google Scholar öffnen
  32. Ergin, E., Karaarslan, D., Şahan, S., & Bingöl, Ü. (2023). Can artificial intelligence and robotic nurses replace operating room nurses? The quasi-experimental research. Journal ofe Robotic Surgery, 17, 1847–1855. https://doi.org/10.1007/s11701-023-01592-0. Google Scholar öffnen
  33. Flavian, C., Perez-Rueda, A., Belanche, D., & Casalo, L. V. (2021). Intention to use analytical artificial intelligence (AI) in services– the effect of technology readiness and awareness. Journal of Service Management, 33(2), 293–320. https://doi.org/10.1108/JOSM-10-2020-0378. Google Scholar öffnen
  34. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting & Social Change, 114, 254–280. http://dx.doi.org/10.1016/j.techfore.2016.08.019. Google Scholar öffnen
  35. Glikson, E., & Woolley, A. W. (2020). Human Trust in Artificial Intelligence: Review of Empirical Research. Academy of Management Annals, 14(2). https://doi.org/10.5465/annals.2018.0057. Google Scholar öffnen
  36. Goodrich, M. A., & Schultz, A. C. (2007). Human-Robot Interaction: A Survey. Foundations and Trends in Human-Computer Interaction, 1(3), 203–275. https://doi.org/10.1561/1100000005. Google Scholar öffnen
  37. Gordon, H. J., Demerouti, E., Le Blanc, P. M., Bakker, A. B., Bipp, T., & Verhagen, M. A. M. T. (2018). Individual job redesign: Job crafting interventions in healthcare. Journal of Vocational Behavior, 104, 98–114. https://doi.org/10.1016/j.jvb.2017.07.002. Google Scholar öffnen
  38. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2018). Viewpoint: When Will AI Exceed Human Performance? Evidence from AI Experts. Journal of Artificial Intelligence Research, 62, 729–754. https://doi.org/10.1613/jair.1.11222. Google Scholar öffnen
  39. Harborth, D., & Kümpers, K. (2022). Intelligence augmentation: Rethinking the future of work by leveraging human performance and abilities. Virtual Reality, 26(3), 849–870. https://doi.org/10.1007/s10055-021-00590-7. Google Scholar öffnen
  40. He, C., Teng, R., & Song, J. (2023). Linking employees’ challenge-hindrance appraisals toward AI to service performance: the influences of job crafting, job insecurity and AI knowledge. International Journal of Contemporary Hospitality Management, 36(3), 975–994. https://doi.org/10.1108/IJCHM-07-2022-0848. Google Scholar öffnen
  41. Hollander, J. (2024, December 11). AI in Hospitality: Here's What You Need to Know. Retrieved on December 17, 2024, from https://hoteltechreport.com/news/ai-in-hospitality. Google Scholar öffnen
  42. Holman, D. J., Axtell, C. M., Sprigg, C. A., Totterdell, P., & Wall, T. D. (2010). The mediating role of job characteristics in job redesign interventions: A serendipitous quasi‐experiment. Journal of Organizational Behavior, 31(1), 84–105. https://doi.org/10.1002/job.631. Google Scholar öffnen
  43. Huang, M.-H., & Rust, R. T. (2024). The Caring Machine: Feeling AI for Customer Care. Journal of Marketing, 88(5), 1–23. https://doi.org/10.1177/00222429231224748. Google Scholar öffnen
  44. Huang, M.-H., & Rust, R. T. (2021). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1), 30-41. https://doi.org/10.1177/1094670520902266. Google Scholar öffnen
  45. Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459. Google Scholar öffnen
  46. Huang, S., Yang, J., Fong, S., Zhao, Q. (2021). Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives. International Journal of Biological Sciences, 17(6), 1581–1587. https://doi.org/10.7150/ijbs.58855. Google Scholar öffnen
  47. Huang, S., Yin, H., & Lv, L. (2019). Job characteristics and teacher well-being: The mediation of teacher self-monitoring and teacher self-efficacy. Educational Psychology, 39(3), 313–331. https://doi.org/10.1080/01443410.2018.1543855. Google Scholar öffnen
  48. IEEE (2024). Technology Megatrends. Retrieved August 13, 2024 from https://engage.ieee.org/FD-Megatrends-2024.html. Google Scholar öffnen
  49. Jarmas, B. & Raed, Z. (2018). Stress And Burnout Among Lecturers And Pedagogical Instructors In Colleges Of Education. European Journal of Education Studies, 4(4), 142–160. https://doi.org/10.5281/ZENODO.1210049. Google Scholar öffnen
  50. Johnson, A. (2023, May 30). Which Jobs Will AI Replace? These 4 Industries Will Be Heavily Impacted. Retrieved August 13, 2024, from https://www.forbes.com/sites/ariannajohnson/2023/03/30/which-jobs-will-ai-replace-these-4-industries-will-be-heavily-impacted/. Google Scholar öffnen
  51. Jorzik, P., Klein, S. P., Kanbach, D. K., & Kraus, S. (2024). AI-driven business model innovation: A systematic review and research agenda. Journal of Business Research, 182, 114764. https://doi.org/10.1016/j.jbusres.2024.114764. Google Scholar öffnen
  52. Jussupow E, Spohrer K, Heinzl A. (2022). Identity threats as a reason for resistance to artificial intelligence: survey study with medical students and professionals. JMIR Formative Research, 6(3), 28750. https://doi.org/10.2196/28750. Google Scholar öffnen
  53. Khoa, D. T., & Chan, K. W. (2023). Being Alone or Together: How Frontline Anthropomorphized Robots Affect Solo (vs. Joint) Service Consumption. Journal of Service Research. https://doi.org/10.1177/10946705231218405. Google Scholar öffnen
  54. Kiesler, D. J. (1983). The 1982 Interpersonal Circle: A taxonomy for complementarity in human transactions. Psychological Review, 90(3), 185–214. https://doi.org/10.1037/0033-295X.90.3.185. Google Scholar öffnen
  55. Kim, E. (2024, October 1). Amazon recently rolled out a new AI chatbot that is ‘safer than ChatGPT’ for employees to use. Retrieved December 10, 2024, from https://www.businessinsider.com/amazon-cedric-safer-ai-chatbot-employees-2024-9. Google Scholar öffnen
  56. Kim, S. (Sam), Kim, J., Badu-Baiden, F., Giroux, M., & Choi, Y. (2021). Preference for robot service or human service in hotels? Impacts of the COVID-19 pandemic. International Journal of Hospitality Management, 93, 102795. https://doi.org/10.1016/j.ijhm.2020.102795. Google Scholar öffnen
  57. Klenert, D., Fernández-Macías, E., & Antón, J.-I. (2023). Do robots really destroy jobs? Evidence from Europe. Economic and Industrial Democracy, 44(1), 280–316. https://doi.org/10.1177/0143831X211068891. Google Scholar öffnen
  58. Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. https://doi.org/10.1016/j.ijhm.2022.103317. Google Scholar öffnen
  59. Kong, H., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management, 33(2),717–734. https://doi.org/10.1108/IJCHM-07-2020-0789. Google Scholar öffnen
  60. Koo, B., Curtis, C., & Ryan, B. (2021). Examining the impact of artificial intelligence on hotel employees through job insecurity perspectives. International Journal of Hospitality Management, 95, 102763. https://doi.org/10.1016/j.ijhm.2020.102763. Google Scholar öffnen
  61. Kossek, E. E., & Ollier-Malaterre, A. (2020). Desperately seeking sustainable careers: Redesigning professional jobs for the collaborative crafting of reduced-load work. Journal of Vocational Behavior, 117, 103315. https://doi.org/10.1016/j.jvb.2019.06.003. Google Scholar öffnen
  62. Koponen, J., Julkunen, S., Laajalahti, A., Turunen, M., & Spitzberg, B. (2023). Work Characteristics Needed by Middle Managers When Leading AI-Integrated Service Teams. Journal of Service Research. https://doi.org/10.1177/10946705231220462. Google Scholar öffnen
  63. Larivière, B., Bowen, D., Andreassen, T. W., Kunz, W., Sirianni, N. J., Voss, C., Wünderlich, N. V., & De Keyser, A. (2017). ‘Service Encounter 2.0’: An investigation into the roles of technology, employees and customers. Journal of Business Research, 79, 238–246. https://doi.org/10.1016/j.jbusres.2017.03.008. Google Scholar öffnen
  64. Le, K. B. Q., Sajtos, L., & Fernandez, K. V. (2023). Employee-(ro)bot collaboration in service: An interdependence perspective. Journal of Service Management, 34(2), 176–207. https://doi.org/10.1108/JOSM-06-2021-0232. Google Scholar öffnen
  65. Le, K. B. Q., Sajtos, L., Kunz, W. H., & Fernandez, K. V. (2024). The Future of Work: Understanding the Effectiveness of Collaboration Between Human and Digital Employees in Service. Journal of Service Research. https://doi.org/10.1177/10946705241229419. Google Scholar öffnen
  66. Lee, M. K., Jain, A., Cha, H. J., Ojha, S., & Kusbit, D. (2019). Procedural Justice in Algorithmic Fairness: Leveraging Transparency and Outcome Control for Fair Algorithmic Mediation. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–26. https://doi.org/10.1145/3359284. Google Scholar öffnen
  67. Li, M., Yin, D., Qiu, H., & Bai, B. (2021). A systematic review of AI technology-based service encounters: Implications for hospitality and tourism operations. International Journal of Hospitality Management, 95, 102930. https://doi.org/10.1016/j.ijhm.2021.102930. Google Scholar öffnen
  68. Li, C.-Y., & Zhang, J.-T. (2023). Chatbots or me? Consumers’ switching between human agents and conversational agents. Journal of Retailing and Consumer Services, 72, 103264. https://doi.org/10.1016/j.jretconser.2023.103264. Google Scholar öffnen
  69. Lindner, J. (2024a, June 17). AI in Healthcare Statistics: Latest Data & Summary. Retrieved August 4, 2024, from https://wifitalents.com/statistic/ai-in-healthcare/#sources. Google Scholar öffnen
  70. Lindner, J. (2024b, May 29). AI In Finance Industry Statistics: Latest Data & Summary. Retrieved August 4, 2024, from https://wifitalents.com/statistic/ai-in-finance-industry/. Google Scholar öffnen
  71. Loeb, W. (2024, February 6). Amazon’s Rufus Is A New Chatbot For Shoppers. Retrieved December 10, 2024, from https://www.forbes.com/sites/walterloeb/2024/02/06/amazons-rufus-is-a-new-chatbot-for-shoppers/. Google Scholar öffnen
  72. Lu, L., Hua, M., Sun, X., Zou, R., & Lin, B. (2024). AI robots over sommeliers? Exploring the service provider effect on diners’ wine ordering decisions at restaurants. International Journal of Hospitality Management, 122, 103879. https://doi.org/10.1016/j.ijhm.2024.103879. Google Scholar öffnen
  73. Lyons, J. B., Sycara, K., Lewis, M., & Capiola, A. (2021). Human–Autonomy Teaming: Definitions, Debates, and Directions. Frontiers in Psychology, 12, 589585. https://doi.org/10.3389/fpsyg.2021.589585. Google Scholar öffnen
  74. Ma, E., Bao, Y., Huang, L., Wang, D., & Kim, M. (Sunny). (2023). When a Robot Makes Your Dinner: A Comparative Analysis of Product Level and Customer Experience Between the U.S. and Chinese Robotic Restaurants. Cornell Hospitality Quarterly, 64(2), 184–211. https://doi.org/10.1177/19389655211052286.  Google Scholar öffnen
  75. Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2022). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334–354. https://doi.org/10.1108/IJM-03-2021-0173. Google Scholar öffnen
  76. Marinova, D., de Ruyter, K., Huang, M.-H., Meuter, M. L., & Challagalla, G. (2017). Getting Smart: Learning From Technology-Empowered Frontline Interactions. Journal of Service Research, 20(1), 29–42. https://doi.org/10.1177/1094670516679273. Google Scholar öffnen
  77. Marti, C. L., Liu, H., Kour, G., Bilgihan, A., & Xu, Y. (2024). Leveraging artificial intelligence in firm-generated online customer communities: a framework and future research agenda. Journal of Service Management, 35(3), 438–458. https://doi.org/10.1108/JOSM-10-2023-0443. Google Scholar öffnen
  78. McCulloch, A. (2009). The student as co‐producer: learning from public administration about the student–university relationship. Studies in Higher Education, 34(2), 171–183. https://doi.org/10.1080/03075070802562857. Google Scholar öffnen
  79. McGrath, J. E. (1984). Groups: Interaction and performance (Vol. 14). Englewood Cliffs. Google Scholar öffnen
  80. McLeay, F., Osburg, V. S., Yoganathan, V., & Patterson, A. (2021). Replaced by a Robot: Service Implications in the Age of the Machine. Journal of Service Research, 24(1), 104–121. https://doi.org/10.1177/1094670520933354. Google Scholar öffnen
  81. Mei, X., Lee, H.-C., Diao, K-y., Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P. M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li., S., Shan, H., Lv, J., Zhao, T., Xia, J., …, Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. nature medicine, 26, 1224–1228. https://doi.org/10.1038/s41591-020-0931-3. Google Scholar öffnen
  82. Meyer, L. M., Stead, S., Salge, T. O., & Antons, D. (2024). Artificial intelligence in acute care: A systematic review, conceptual synthesis, and research agenda. Technological Forecasting and Social Change, 206, 123568. https://doi.org/10.1016/j.techfore.2024.123568. Google Scholar öffnen
  83. Mirbabaie, M., Brünker, F., Möllmann Frick, N.R.J., & Stieglitz, S. (2022). The rise of artificial intelligence – understanding the AI identity threat at the workplace. Electronic Markets, 32, 73–99. https://doi.org/10.1007/s12525-021-00496-x. Google Scholar öffnen
  84. Morrow, E., Zidaru, T., Ross, F., Mason, C., Patel, K. D., Ream, M., & Stockley, R. (2023). Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Frontiers in Psychology, 13, 971044. https://doi.org/10.3389/fpsyg.2022.971044. Google Scholar öffnen
  85. Mozafari, N., Weiger, W. H., & Hammerschmidt, M. (2022). Trust me, I’m a bot – repercussions of chatbot disclosure in different service frontline settings. Journal of Service Management, 33(2), 221–245. https://doi.org/10.1108/JOSM-10-2020-0380. Google Scholar öffnen
  86. Neri, E., Coppola, F., Miele, V., Bibbolino, C., & Grassi, R. (2020). Artificial intelligence: Who is responsible for the diagnosis? La Radiologia Medica, 125, 517–521. https://doi.org/10.1007/s11547-020-01135-9. Google Scholar öffnen
  87. Nguyen, T.-M., & Malik, A. (2022). A Two-Wave Cross-Lagged Study on AI Service Quality: The Moderating Effects of the Job Level and Job Role. British Journal of Management, 33, 1221–1237. https://doi.org/10.1111/1467-8551.12540. Google Scholar öffnen
  88. Obermiller, C., Fleenor, P., & Peter, R. (2005). Students as Customers or Products: Perceptions and Preferences of Faculty and Students. Marketing Education Review, 15(2), 27–36. https://doi.org/10.1080/10528008.2005.11488902. Google Scholar öffnen
  89. Özen, İ. A., & Özgül Katlav, E. (2023). Aspect-based sentiment analysis on online customer reviews: A case study of technology-supported hotels. Journal of Hospitality and Tourism Technology, 14(2), 102–120. https://doi.org/10.1108/JHTT-12-2020-0319. Google Scholar öffnen
  90. Paluch, S., Tuzovic, S., Holz, H. F., Kies, A., & Jörling, M. (2022). “My colleague is a robot” – exploring frontline employees’ willingness to work with collaborative service robots. Journal of Service Management, 33(2), 363–388. https://doi.org/10.1108/JOSM-11-2020-0406. Google Scholar öffnen
  91. Pantano, E., & Scarpi, D. (2022). I, Robot, You, Consumer: Measuring Artificial Intelligence Types and their Effect on Consumers Emotions in Service. Journal of Service Research, 25(4), 583–600. https://doi.org/10.1177/10946705221103538. Google Scholar öffnen
  92. Pappas, A., Fumagalli, E., Rouziou, M., & Bolander, W. (2023). More than machines: the role of the future retail salesperson in enhancing the customer experience. Journal of Retailing, 99(4), 518–531. https://doi.org/10.1016/j.jretai.2023.10.004. Google Scholar öffnen
  93. Paschen, J., Wilson, M., & Ferreira, J. J. (2020). Collaborative Intelligence: How Human and Artificial Intelligence Create Value Along the B2B Sales Funnel. Business Horizons, 63(3), 403–414. Google Scholar öffnen
  94. Paul, S., Yuan, L., Jain, H. K., Robert, L. P., Spohrer, J., & Lifshitz-Assaf, H. (2022). Intelligence Augmentation: Human Factors in AI and Future of Work. AIS Transactions on Human-Computer Interaction, 14(3), 426–445. https://doi.org/10.17705/1thci.00174. Google Scholar öffnen
  95. Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855. Google Scholar öffnen
  96. Plumwongrot, P., & Pholphirul, P. (2023). Are Robots stealing jobs? Empirical evidence from 10 developing countries. Economics of Innovation and New Technology, 32(6), 873–889. https://doi.org/10.1080/10438599.2022.2051020. Google Scholar öffnen
  97. Prentice, C., Dominique Lopes, S., & Wang, X. (2019). Emotional intelligence or artificial intelligence– an employee perspective. Journal of Hospitality Marketing & Management, 29(4), 377–403. https://doi.org/10.1080/19368623.2019.1647124. Google Scholar öffnen
  98. Rampersad, G. (2020). Robot will take your job: Innovation for an era of artificial intelligence. Journal of Business Research, 116, 68–74. https://doi.org/10.1016/j.jbusres.2020.05.019. Google Scholar öffnen
  99. Reis, J. (2024). Customer Service Through AI-Powered Human-Robot Relationships: Where are we now? The case of Henn na Cafe, Japan. Technology in Society, 77, 102570. https://doi.org/10.1016/j.techsoc.2024.102570. Google Scholar öffnen
  100. Robinson, S., Orsingher, C., Alkire, L., De Keyser, A., Giebelhausen, M., Papamichail, K. N., & Temerak, M. S. (2020). Frontline encounters of the AI kind: An evolved service encounter framework. Journal of Business Research, 116, 366–376. https://doi.org/10.1016/j.jbusres.2019.08.038. Google Scholar öffnen
  101. Saviano, M., del Prete, M., Mueller, J., & Caputo, F. (2023). The challenging meet between human and artificial knowledge. A systems-based view of its influences on firms-customers interaction. Journal of Knowledge Management, 27, 101–111. https://doi.org/10.1108/JKM-12-2022-0940. Google Scholar öffnen
  102. Schepers, J. J. L., & Van Der Borgh, M. (2020). A Meta-Analysis of Frontline Employees’ Role Behavior and the Moderating Effects of National Culture. Journal of Service Research, 23(3), 255–280. https://doi.org/10.1177/1094670520918669. Google Scholar öffnen
  103. Shanks, I., Scott, M.L., Mende, M., van Doorn, J., & Grewal, D. (2024). Cobotic service teams and power dynamics: Understanding and mitigating unintended consequences of human-robot collaboration in healthcare services. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-024-01004-1. Google Scholar öffnen
  104. Sigala, M., Ooi, K.-B., Tan, G., Aw, E., Cham, T.-H., Dwivedi, Y., Kunz, W., Letheren, K., Mishra, A., Russell-Bennett, R., & Wirtz, J. (2024). ChatGPT in Service: Opportunities, Challenges, and Research Directions. Journal of Service Theory and Practice, ahead-of-print. Google Scholar öffnen
  105. Sinha, R., Chiu, C. (Chad), & Srinivas, S. B. (2021). Shared leadership and relationship conflict in teams: The moderating role of team power base diversity. Journal of Organizational Behavior, 42(5), 649–667. https://doi.org/10.1002/job.2515. Google Scholar öffnen
  106. Smids, J., Nyholm, S., & Berkers, H. (2020). Robots in the Workplace: A Threat to—or Opportunity for—Meaningful Work? Philosophy & Technology, 33(3), 503–522. https://doi.org/10.1007/s13347-019-00377-4. Google Scholar öffnen
  107. Sohn, S., Schnittka, O., & Seegebarth, B. (2024). Consumer responses to firm-owned devices in self-service technologies: Insights from a data privacy perspective. International Journal of Research in Marketing, 41(1), 77–92. https://doi.org/10.1016/j.ijresmar.2023.08.003. Google Scholar öffnen
  108. Spector, J. M., & Ma, S. (2019). Inquiry and critical thinking skills for the next generation: From artificial intelligence back to human intelligence. Smart Learning Environments, 6(1). https://doi.org/10.1186/s40561-019-0088-z. Google Scholar öffnen
  109. Subramony, M., Groth, M., Hu, X. ‘Judy’, & Wu, Y. (2021). Four Decades of Frontline Service Employee Research: An Integrative Bibliometric Review. Journal of Service Research, 24(2), 230–248. https://doi.org/10.1177/1094670521999721. Google Scholar öffnen
  110. Talmage-Rostron, M. (2024, January 10). How Will Artificial Intelligence Affect Jobs 2024–2030. Retrieved August 4, 2024, from https://www.nexford.edu/insights/how-will-ai-affect-jobs. Google Scholar öffnen
  111. Tang, P. M., Koopman, J., Mcclean, S. T., Zhang, J. H., Li, C. H., De Cremer, D., Lu, Y., & Ng, C. T. S. (2021). When conscientious employees meet intelligent machines: an integrative approach inspired by complementarity theory and role theory. Academy of Management Journal, 65(3), pp. 1019-1054. https://doi.org/10.5465/amj.2020.1516. Google Scholar öffnen
  112. Taxer, J. L., & Gross, J. J. (2018). Emotion regulation in teachers: The “why” and “how”. Teaching and Teacher Education, 74, 180–189. https://doi.org/10.1016/j.tate.2018.05.008. Google Scholar öffnen
  113. The Drum (2024, June 6). Winning Retail Gold in The Drum Awards for Marketing Americas is Zulu Alpha Kilo and Sephora Canada’s campaign for the Colour iQ code. Here is the award-winning case study. Retrieved December 10, 2024, from https://www.thedrum.com/news/2024/06/06/sephora-shade-matching-tool-colour-iq-resonated-with-shoppers-here-s-why. Google Scholar öffnen
  114. The Economic Times (2023, April 6). Are robot waiters the future? Some restaurants think so. Retrieved August 4, 2024, from https://economictimes.indiatimes.com/news/international/business/are-robot-waiters-the-future-some-restaurants-think-so/articleshow/99286575.cms?from=mdr. Google Scholar öffnen
  115. Tursunbayeva, A., & Renkema, M. (2023), Artificial intelligence in health-care: implications for the job design of healthcare professionals. Asian Pacific Journal of Human Resources, 61, 845–887. https://doi.org/10.1111/1744-7941.12325. Google Scholar öffnen
  116. van Quaquebeke, N. V., & Gerpott, F. H. (2023). The Now, New, and Next of Digital Leadership: How Artificial Intelligence (AI) Will Take Over and Change Leadership as We Know It. Journal of Leadership & Organizational Studies, 30(3), 265–275. https://doi.org/10.1177/15480518231181731. Google Scholar öffnen
  117. Verma, S., & Singh, V. (2022). Impact of artificial intelligence-enabled job characteristics and perceived substitution crisis on innovative work behavior of employees from high-tech firms. Computers in Human Behavior, 131, 107215. https://doi.org/10.1016/j.chb.2022.107215. Google Scholar öffnen
  118. Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398. Google Scholar öffnen
  119. Wang, Y.-C., Chi, O. H., Saito, H., & Lu, Y. (Darcy). (2024). Conversational AI chatbots as counselors for hospitality employees. International Journal of Hospitality Management, 122, 103861. https://doi.org/10.1016/j.ijhm.2024.103861. Google Scholar öffnen
  120. Wirtz, J., Patterson, P.G., Kunz, W.H., Gruber, T., Lu, V.N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907–931. https://doi.org/10.1108/JOSM-04-2018-0119. Google Scholar öffnen
  121. World Economic Forum (2024, February 26). Why there will be plenty of jobs in the future — even with artificial intelligence. Retrieved August 4, 2024, from https://www.weforum.org/agenda/2024/02/artificial-intelligence-ai-jobs-future/. Google Scholar öffnen
  122. Williams, G. Y., & Lim, S. (2024). Psychology of AI: How AI impacts the way people feel, think, and behave. Current Opinion in Psychology, 58, 101835. https://doi.org/10.1016/j.copsyc.2024.101835. Google Scholar öffnen
  123. Wilson, H. J., & Daugherty, P. R. (2024, September-October). Embracing Gen AI at Work. Retrieved December 17, 2024, from https://hbr.org/2024/09/embracing-gen-ai-at-work. Google Scholar öffnen
  124. Wu, X., Shuhua L., Yonglin G., & Shujie F. (2024). Human or AI robot? Who is fairer on the service organizational frontline. Journal of Business Research, 181, 114730, https://doi.org/10.1016/j.jbusres.2024.114730. Google Scholar öffnen
  125. Xiao, L., & Kumar, V. (2021). Robotics for Customer Service: A Useful Complement or an Ultimate Substitute? Journal of Service Research, 24(1), 9–29. https://doi.org/10.1177/1094670519878881. Google Scholar öffnen
  126. Xu, J., Tang, X., Chang, E.-C., & Peng, H. (2024). Working with AI: The impact of organizational intelligent service strategy on employees’ perception of career achievement. Humanities and Social Sciences Communications, 11(1), 895. https://doi.org/10.1057/s41599-024-03265-1. Google Scholar öffnen
  127. Yi, J., Oh, Y. K., & Kim, J.-M. (2025). Unveiling the drivers of satisfaction in mobile trading: Contextual mining of retail investor experience through BERTopic and generative AI. Journal of Retailing and Consumer Services, 82, 104066. https://doi.org/10.1016/j.jretconser.2024.104066. Google Scholar öffnen
  128. Yu, F., Moehring, A., Banerjee, O., Salz, T., Agarwal, N., & Rajpurkar, P. (2024). Heterogeneity and predictors of the effects of AI assistance on radiologists. nature medicine, 30(3), 837–849. https://doi.org/10.1038/s41591-024-02850-w. Google Scholar öffnen

Zitation


Download RIS Download BibTex
Kein Zugriff
Sie haben keinen Zugriff auf diesen Inhalt.