doi.org/10.37544/1436-4980-2025-05-30

Additive Fertigung von Titanaluminiden

Qualitätssteigerung beim PBF-LB/M-Hochtemperaturprozess

E. Uhlmann, J. Polte, A. Gordei, G. Esser, J. Fock

ZUSAMMENFASSUNG Das pulverbettbasierte Laserstrahlschmelzen (PBF-LB/M) bietet vielversprechende Möglichkeiten zur Fertigung komplexer Titanaluminid-Bauteile. Jedoch stellen hohe Temperaturgradienten $\Delta \vartheta$ und Eigenspannungen σ Herausforderungen dar, die Rissbildung und Porosität Φ verursachen. In dieser Studie wird die Vorheizung der Substratplatte als Strategie zur Reduktion dieser Defekte untersucht. Die Ergebnisse zeigen, dass eine Erhöhung der Vorheiztemperatur ϑ_{Sub} die Bauteilqualität durch geringere Rissbildung ω und höhere Dichte ρ signifikant verbessert.

STICHWÖRTER

Additive Fertigung, Titanaluminide, PBF-LB/M

Additive Manufacturing of titanium aluminide – Quality improvement by high-temperature PBF-LB/M

ABSTRACT Powder bed fusion-laser beam melting (PBF-LB/M) enables the production of complex titanium aluminide parts. However, high temperature gradients $\Delta \vartheta$ and residual stresses σ lead to cracking and porosity Φ . This study investigates substrate preheating as a strategy to mitigate these defects. The findings demonstrate that increasing the preheating temperature ϑ_{Sub} significantly enhances part quality by reducing crack formation ω and improving density ρ .

1 Einleitung

Die Additive Fertigung (englisch: Additive Manufacturing, AM) eröffnet durch einen schichtweisen Aufbau eines dreidimensionalen Körpers neue Gestaltungsmöglichkeiten und erlaubt dadurch unter anderem eine Gewichtsreduktion des fertigen Bauteils. Durch die zunehmende industrielle Anwendung der AM-Technologien stieg der globale Markt für AM-Produkte und Dienstleistungen im Jahr 2023 um 18,3 % auf einen Gesamtwert von 20,04 Milliarden US-Dollar [1]. Diese Entwicklung zeigt das wachsende Potenzial der Technologie in Schlüsselbranchen wie der Luft- und Raumfahrt und Automobilindustrie. Viele Werkstoffe können bereits zu hochqualitativen Bauteilen mit der Additiven Fertigung verarbeitet werden, jedoch stellen schwer schweißbare Werkstoffe, wie Titanaluminide (Ti-Al), weiterhin Herausforderungen dar. Ti-Al haben das Potenzial, Superlegierungen auf Nickelbasis in Anwendungsgebieten zu ersetzen, bei denen es auf Gewichtsreduktion und Temperaturstabilität ankommt [2]. Die Dichte der Ti-Al Legierung beträgt ρ_{TiAl} = 3,9 g/cm³. Diese Dichte ρ ist lediglich halb so groß wie die Dichte der Superlegierungen auf Nickelbasis mit $\rho_{\text{Ni-Basis}}$ = 8,3 g/cm³. Dabei sind die spezifischen Eigenschaften der Ti-Al Legierung, wie die spezifische Festigkeit R_{spez}, wesentlich höher [3]. Der Werkstoff Ti-Al bietet aufgrund seiner hohen Festigkeit R_m bei geringer Dichte ρ und seiner Beständigkeit gegen hohe Temperaturen θ erhebliche Vorteile für die Luft- und Raumfahrtindustrie. Trotz dieser Vorteile stellt die Fertigung von Ti-Al, insbesondere mittels pulverbettbasiertem Laserstrahlschmelzen (PBFLB/M), eine große Herausforderung dar. Diese

Herausforderungen resultieren hauptsächlich aus den hohen Temperaturgradienten $\Delta \theta$ und Temperaturgnderungsraten $\dot{\theta}$, die während des Fertigungsprozesses auftreten und zu Eigenspannungen σ führen. Diese Eigenspannungen σ können wiederum Risse und andere Defekte im Werkstoff verursachen.

2 Einfluss der Vorheiztemperatur auf den Fertigungsprozess

Ein besonders vielversprechender Lösungsansatz zur Reduktion von Eigenspannungen σ ist die Einbringung zusätzlicher Energie E9 durch Vorwärmung der Substratplatte auf eine bestimmte Vorwärmtemperatur der Substratplatte θ_{Sub} , bevor der Laserstrahl den Schmelzprozess initiiert. Das Hauptziel dieses Ansatzes besteht in der Verringerung der Temperaturgradienten Δ9, die während des PBF-LB/M Prozesses auftreten. Die Vorwärmtemperatur der Substratplatte ϑ_{Sub} stellt somit einen entscheidenden Prozessparameter für den PBF-LB/M-Herstellungsprozess dar. Des Weiteren führt das Vorwärmen der Substratplatte zu einer Energiezufuhr E9 in das Pulver, wodurch eine geringere Volumenenergiedichte des Lasers E_V erforderlich ist, um die Überhitzung des Schmelzbades und Aluminiumverdampfung EVAI zu vermeiden. Das Zusammenwirken der Energie durch Vorwärmung der Substratplatte E9 und der Volumenenergiedichte des Lasers E_V ist bisher noch kaum erforscht. Somit müssen Parametersätze, die für eine bestimmte Vorwärmtemperaturen der Substratplatte ϑ_{Sub} bestehen, für andere Vorwärmtemperaturen der Substratplatte ϑ_{Sub} immer neu angepasst und entwickelt werden. Die Parametersätze für das PBF-LB/M Fertigungsverfah-

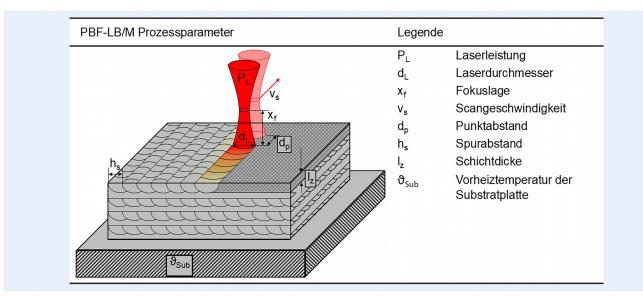


Bild 1. Schematische Darstellung der Belichtungsparameter beim PBF-LB/M Fertigungsverfahren [4]. Grafik: Fraunhofer IPK

ren unter Verwendung eines gepulsten Lasers (englisch: pulsed laser, pw) setzen sich aus der Laserleistung P_L , dem Punktabstand p_d , dem Spurabstand h_s , Belichtungszeit t_e der Schichtdicke l_z und der Fokuslage f_z zusammen, siehe \boldsymbol{Bild} 1 $[4;\,5].$

Aus den bekannten Parametern der Laserleistung P_L , Belichtungszeit t_e , Schichtdicke l_v , Laserdurchmesser d_L und Punktabstand p_d kann die Volumenenergiedichte gepulster Laser $E_{V,pw}$ nach **Gleichung 1** berechnet werden.

$$E_{V,pw} = \frac{P_L \cdot t_e}{l_z \cdot d_L \cdot p_d} \tag{1}$$

Die Volumenenergiedichte gepulster Laser $E_{V,pw}$ ist ein wichtiger Parameter für die Qualitätskontrolle und Überwachung der Bauteile und lässt sich über alle seine Parameter variieren [6]. Die Gesamtvolumenenergiedichte E_G lässt sich aus der Energie durch Vorheizung der Substratplatte E_{ϑ} und der Volumenenergiedichte gepulster Laser $E_{V,pw}$ nach **Gleichung 2** berechnen.

$$E_{G} = E_{\vartheta} + E_{V,pw} \tag{2}$$

Die zusätzliche Vorwärmung der Substratplatte hat sich bei verschiedenen Anwendungen als vielversprechend erwiesen, insbesondere bei der Verarbeitung schwer schweißbarer Werkstoffe [7; 8]. Der Ansatz trägt zur Minimierung der Rissbildung ω bei, reduziert die Eigenspannungen σ und verbessert die mechanischen Eigenschaften der hergestellten Bauteile erheblich. Die Mehrheit der industriellen PBF-LB/M-Maschinensysteme setzt auf Widerstandsheizungen, die typischerweise eine Vorheiztemperatur der Substratplatte von bis zu $\vartheta_{\text{Sub}} \leq 200\,^{\circ}\text{C}$ ermöglichen. Die neuesten Maschinensysteme sind sogar in der Lage, Vorheiztemperaturen der Substratplatte von bis zu $\vartheta_{\text{Sub}} \leq 500\,^{\circ}\text{C}$ zu erreichen [9; 10].

3 Experimentelle Untersuchungen

3.1 Versuchsaufbau und Methoden

Im Rahmen des PBF-LB/M-Fertigungsverfahrens für die Legierung Ti48Al2Cr2Nb wurden empirische Untersuchungen zur Optimierung der Prozessparameter durchgeführt. Hierzu

wurden insgesamt 120 Proben unter Anwendung von 60 verschiedenen Parametersätzen und zwei unterschiedlichen Vorwärmtemperaturen der Substratplatte von $\theta_{Su} = 200$ °C und θ_{Su} = 500 °C hergestellt. Die Fertigung erfolgte mit dem PBF-LB/ M-System "RenAM 500Q HTBV" (englisch: High Temperature Build Volume) der Firma Renishaw plc, New Mills/UK. Dieses System verfügt über eine stationäre Vorwärmeinheit, welche die Substratplatte auf eine Vorwärmtemperatur der Substratplatte von bis zu $\theta_{Sub} \le 500\,^{\circ}\text{C}$ erwärmen kann. Im Rahmen der Untersuchung wurden die Proben hinsichtlich ihrer Rissbildung, Porosität Φ und Dichte ρ analysiert, um den Einfluss der Vorwärmtemperaturen θ_{Sub} auf die Prozessstabilität und Bauteilqualität zu evaluieren. Die Ergebnisse früherer Studien belegen, dass eine zu hohe Laserleistung P_L zu einer verstärkten Rissbildung ω führt [11]. Daher ist es von entscheidender Bedeutung, eine hohe Temperaturänderungsrate <a> zu verhindern und durch eine Optimierung der Parameter, insbesondere durch kleinere Punktabstände p_d und höhere Belichtungszeiten t_e, ein optimales Ergebnis zu erzielen. Die Schichtdicke lz wird bei allen Proben konstant auf $l_z = 50 \mu m$ gehalten. Die Untersuchung mit einer Schichtdicke l_z = 50 µm dient dem Vergleich mit wirtschaftlichen Fertigungsprozessen, da PBFLB/M-Fertigungsprozesse mit einer Schichtdicke 1, < 50 µm aktuell nicht wirtschaftlich sind [6]. Bild 2 gibt einen Überblick über die Randbedingungen, die variierten Parameter und die gefertigten Proben für die Parameterstudie.

Die erste Analyse der 120 hergestellten Proben erfolgt mittels der archimedischen Verdrängungsmethode. Die Messergebnisse werden mithilfe statistischer Versuchsmethoden (englisch: Design of Experiment, DoE) bewertet und der Einfluss der verschiedenen Parameter auf die Dichte ρ der Proben analysiert. Im Anschluss an die Dichtemessung werden insgesamt zehn gefertigte Proben für die weitere optische Analyse ausgewählt. Die Rissbildung wurde durch die Analyse von mikroskopischen Aufnahmen der äußeren Oberfläche untersucht, wobei die gesamte Risslänge $\omega_{\rm l}$ ermittelt wurde. Hierbei wurden mikroskopische Aufnahmen der Seitenflächen der Proben angefertigt, um insbesondere Phänomene wie Delaminationen präzise zu detektieren. Im nächsten Schritt wurden Schliffbilder angefertigt und mit einem

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 5

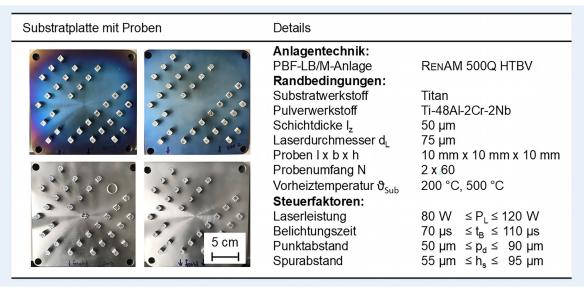


Bild 2. Randbedingungen und Parameterbereich der gefertigten Proben. Grafik: Fraunhofer IPK

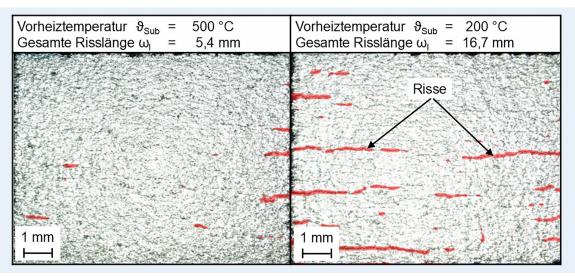


Bild 3. Mikroskopische Aufnahmen der Proben ID 1-24 und ID 2-8 mit markierten Rissen in rot. Grafik: Fraunhofer IPK

Mikroskop analysiert. Die Porosität Φ wurde aus den mikroskopischen Aufnahmen der Probenschliffe bestimmt.

3.2 Analyse der gefertigten Proben

Aus der Analyse der Probewürfel konnten einige Rückschlüsse der Auswirkungen der Bearbeitungsparameter auf die Dichte ρ geschlossen werden. Ein kleiner Punktabstand p_d und eine lange Belichtungszeit t_e führen zu einer hohen Dichte ρ . Des Weiteren ist zu berücksichtigen, dass eine hohe Laserleistung P_L , einen größeren Spurabstand h_s erfordert, um hohe Dichten ρ zu erreichen. Außerdem besitzt die höhere Vorwärmtemperatur θ_{Sub} einen positiven Einfluss auf die Dichte ρ der Proben. Zusammenfassend lässt sich feststellen, dass die höchste Dichte ρ bei der Herstellung der Probe mit der höchsten Vorwärmtemperatur der Substratplatte θ_{Sub} und der höchsten Volumenenergiedichte des Lasers E_V erreicht wurde.

Die optische Untersuchung beginnt mit einer externen Rissanalyse der zehn ausgewählten Proben mit den höchsten Dichten ρ . Die externen Mikroskopiebilder der ausgewählten Proben wurden unter Zuhilfenahme von Schwarz-Weiß-Masken und der Anwendung künstlicher neuronaler Netze (englisch: Convolutional Neural Network, CNN) analysiert. Die Ergebnisse sind für zwei Proben in **Bild 3** dargestellt. Das trainierte CNN markiert die Risse mit roten Linien.

Die Ergebnisse zeigen, dass bei einer höheren Vorwärmtemperatur von ϑ_{Sub} = 500 °C die hergestellten Proben im Gesamtvergleich eine geringere gesamte Risslänge ω_l aufweisen. Es kann davon ausgegangen werden, dass die Rissbildung durch hohe thermische Spannungen σ_{th} und Phasenübergänge angetrieben wird. Die Bildung der spröden Phase α_2 -Ti $_3$ Al während des Abkühlprozesses dient der Spannungskonzentration und trägt somit zur Rissbildung bei. Durch Vorwärmung der Substratplatte können Temperaturgradienten $\Delta \vartheta$ und Eigenspannungen σ reduziert werden, was zu einer Verringerung der Rissbildung führt. In den meisten Fällen hat eine hohe Volumenenergiedichte des Lasers E_V einen negativen Einfluss auf die Qualität, in Bezug auf die gesamte Risslänge ω_l . Eine höhere Volumenenergiedichte des Lasers E_V

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 5

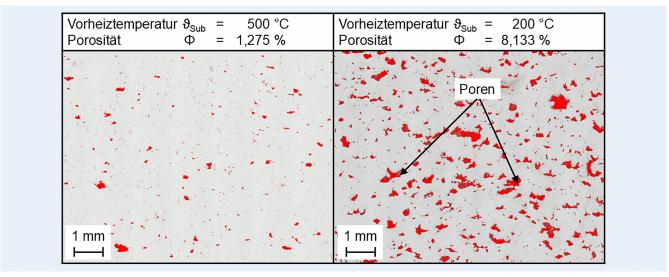
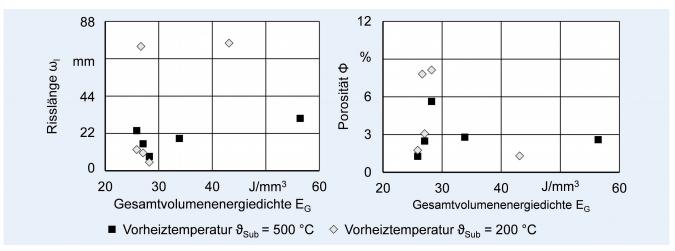



Bild 4. Monochromatische Mikroskopiebilder mit rot gefärbten Poren. Grafik: Fraunhofer IPK

Bild 5. Vergleich der Porosität Φ und der gesamten Risslänge ω_l für das PBF-LB/M-Verfahren mit Vorheiztemperaturen von ϑ_{Sub} = 200 °C und ϑ_{Sub} = 500 °C. *Grafik: Fraunhofer IPK*

führt zu einer größeren gesamten Risslänge ω_l . Zur Bestimmung der Porosität Φ wurden die Schliffe der ausgewählten Proben präpariert und lichtmikroskopisch untersucht. **Bild 4** veranschaulicht das Messervahren für Schliffbilder anhand von zwei ausgewählten Proben. Die Poren und sonstigen Defekte auf den Mikroskopiebildern sind nach der Oberflächenanalyse in roter Farbe gekennzeichnet. Im nächsten Schritt wird die Fläche A_{def} der Poren und Defekte von der Materialfläche A_{mat} subtrahiert und berechnet. Es konnte festgestellt werden, dass für die Herstellung von Proben mit geringer Porosität Φ eine hohe Vorheiztemperatur θ_{Sub} sowie eine hohe Laserleistung P_L erforderlich sind.

Nach der Analyse der Dichte ρ , Porosität Φ und gesamten Risslänge ω_l zeigt sich, dass die Optimierung der Parameter entscheidend für die Qualitätsverbesserung der gefertigten Bauteile ist. Die Volumenenergiedichte des Lasers E_{V^i} eine Schlüsselvariable im PBF-LB/M-Prozess, spielt dabei eine zentrale Rolle. **Bild 5** veranschaulicht die Zusammenhänge zwischen der Volumenenergiedichte des Lasers E_{V^i} der Vorheiztemperatur ϑ_{Sub} und den Qualitätsmerkmalen der Porosität Φ sowie der gesamten Risslänge ω_l . Der dargestellte Zusammenhang wird im folgenden Abschnitt zusammengefasst.

4 Zusammenfassung

Bei einer Vorheiztemperatur der Substratplatte von θ_{Sub} = 500 °C ist die gesamte Risslänge ω_l tendenziell geringer als bei einer Vorheiztemperatur der Substratplatte θ_{Sub} = 200 °C über den gesamten Bereich der Volumenenergiedichte gepulster Laser E_{V,pw}. Dies deutet darauf hin, dass höhere Vorwärmtemperaturen der Substratplatte ϑ_{Sub} die Neigung zur Rissbildung ω reduzieren können, aufgrund von geringeren Eigenspannungen σ während des Herstellungsprozesses. Die Porosität Φ ist bei einer Vorwärmtemperatur der Substratplatte von θ_{Sub} = 500 °C tendenziell niedriger im Vergleich zu Proben, die bei einer Vorheiztemperatur der Substratplatte θ_{Sub} = 200 °C hergestellt wurden. Dies zeigt, dass eine höhere Vorheiztemperatur der Substratplatte θ_{Sub} effektiv dazu beitragen kann, die Porosität Φ in den gefertigten Bauteilen zu verringern, was zu einer verbesserten Dichte ρ führt. Eine hohe Volumenenergiedichte des Lasers E_V resultiert in einer hohen Dichte ρ der Proben, was auf eine Verdampfung des Aluminiums rückschließen lässt.

Die Ergebnisse der vorliegenden Untersuchung demonstrieren, dass eine Erhöhung der Vorheiztemperaturen der Substrat-

WT WERKSTATTSTECHNIK BD. 115 (2025) NR.5

platte ϑ_{Sub} sowie eine sorgfältige Überwachung der Gesamtvolumenenergiedichte E_{G} als wesentliche Faktoren zu betrachten sind, um die Qualität der mittels PBF-LB/M hergestellten Ti-Al Bauteile zu optimieren. Ein weiterer bedeutsamer Aspekt ist die Aluminiumverdampfung EV_{Al} , die insbesondere durch hohe Laserleistungen P_{L} und eine zu hohe Gesamtvolumenenergiedichte E_{G} während des Prozesses hervorgerufen wird. Der Zusammenhang zwischen den Parameterkombinationen und der Aluminiumverdampfung EV_{Al} sowie deren Einfluss auf die Materialeigenschaften sollte Gegenstand zukünftiger, vertiefender Untersuchungen sein. Die Aluminiumverdampfung EV_{Al} kann sich nachteilig auf die Zusammensetzung und die mechanischen Eigenschaften der Legierungen auswirken.

- [8] Soliman, H. A.; Elbestawi, M.: Titanium aluminides processing by additive manufacturing – a review. The International Journal of Advanced Manufacturing Technology 119 (2022) 9-10, S. 5.583–5.614
- [9] Ali, H.; Le Ma; Ghadbeigi, H.; Mumtaz, K.: In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A 695 (2017) 695, S. 211–220
- [10] Caprio, L.; Chiari, G.; Demir, A. G.; Previtali: Development of Novel High Temperature Laser Powder Bed Fusion System for the Processing of Crack-Susceptible Alloys. Milano, Italy. 2018
- [11] Escher, C.; Mutke, C.: Additive Manufacturing of Tool Steels. HTM Journal of Heat Treatment and Materials 77 (2022) 2, S. 143–155

LITERATUR

- [1] Wohlers Associates: Wohlers report 2023. 3D printing and additive manufac-turing global state of the industry. Wohlers Associates, Fort Collins (Colo.), 2023
- [2] Leyens, C.; Peters, M.: Titanium and titanium alloys Fundamentals and applications. Weinheim: Wiley-VCH, 2003
- [3] Bartolotta, P; Barrett, J; Kelly, T; Smashey, R.: The use of cast Ti-48Al-2Cr-2Nb in jet engines. JOM; New York Bd. 49, Ausg. 5, (May 1997), S. 48
- [4] Uhlmann, E.; Bergmann, A.; Gridin, W.: Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting. Procedia CIRP 35 (2015), S. 8–15
- [5] Renishaw: RenAm 500Q/T/D/S; Additives Fertigungssystem, Bedienungsanleitung; H-5800-4346-01-C, 2018
- [6] Bergmann, A.: Vorgehensweise zur Auslegung des Laserstrahlschmelzens am Beispiel von Wolframkarbid-Kobalt. Berlin: Fraunhofer Verlag, 2019
- [7] Gokuldoss, P. K.; Kolla, S.; Eckert, J.: Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. Materials 10 (2017) 6

Univ.-Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann

Prof. Dr.-Ing. Julian Polte

Anzhelika Gordei, M.Sc. anzhelika.gordei@ipk.fraunhofer.de

 $\label{eq:Geromaximilian} \textbf{Gero} \quad \textbf{Maximilian} \quad \textbf{Esser}, \quad \textbf{M.Sc}.$ gero.maximilian.esser@ipk.fraunhofer.de

Jaro Fock, M.Sc.

jaro.fock@ipk.fraunhofer.de

Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK Pascalstr. 8–9, 10587 Berlin www.ipk.fraunhofer.de

LIZENZ

Dieser Fachaufsatz steht unter der Lizenz Creative Commons Namensnennung 4.0 International (CC BY 4.0)