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𝑆a dimensionslose Texturtiefe, -amplitude 𝑆a = 𝑠a𝑟′ 𝑏2⁄   

𝑆d dimensionsloser Texturabstand (engl. distance) 𝑆d = 𝑠d 𝑏⁄   

𝑆Roel Temperatur-Exponent der ROELANDS-Viskositätsgleichung  

𝑡 Zeit  

𝑡 standardisierter Effekt  

𝑇  dimensionslose Zeit 1D: 𝑇 = 𝑢m𝑡 𝑏⁄   

2D: 𝑇 = 𝑢m𝑡 𝑎⁄   

𝑇  Temperatur in Kelvin  

𝑇g Glasübergangstemperatur  

𝑢 Geschwindigkeit in x-Richtung  

𝑢 Verschiebung in x-Richtung  

𝑈  dimensionslose Geschwindigkeitskennzahl 𝑈 = 𝜂0𝑢m𝐸′𝑟𝑥′   

𝑈  elektrische Spannung  

𝑼 Verschiebungsmatrix  
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Nomenklatur XI 

 

𝑣 Geschwindigkeit in y-Richtung  

𝑣 Verschiebung in y-Richtung  

𝑉  Volumen  

𝑤 Geschwindigkeit in z-Richtung  

𝑤 Verschiebung in z-Richtung  

𝑤∗ Testfunktion  

𝑊  dimensionslose Lastkennzahl 1D: 𝑊 = 𝐹n𝐸′𝑙𝑟′  

2D: 𝑊 = 𝐹n𝐸′𝑟𝑥′ 2  

𝑥 kartesische Raumkoordinate  

𝑥Start Beginn der ersten Textur zum Startzeitpunkt der Simulation  

𝑋 dimensionslose kartesische Raumkoordinate 1D: 𝑋 = 𝑥 𝑏⁄   

2D: 𝑋 = 𝑥 𝑎⁄   

𝑦 kartesische Raumkoordinate  

𝑌  dimensionslose kartesische Raumkoordinate 1D: 𝑌 = 𝑦 𝑏⁄   

2D: 𝑌 = 𝑦 𝑎⁄   

𝑧 kartesische Raumkoordinate  

𝑍 dimensionslose kartesische Raumkoordinate Schmierspalt: 𝑍 = 𝑧 ℎ⁄   

Solid 1D: 𝑍 = 𝑧 𝑏⁄  

thermisch: 𝑍sol = 𝑧𝑎,  
 𝑍liq = 𝑧ℎ 

𝑍Roel Druck-Exponent der ROELANDS-Viskositätsgleichung  

Griechische Buchstaben 

𝛼 Signifikanzniveau  

𝛼li,re Neigungswinkel der Flanke trapezförmiger Mikrotexturen  

𝛼Stern kodierte Sternstufe des CCD-Versuchsplanes  

𝛼𝜂 Druck-Viskositätskoeffizient   

𝛽𝜌 Volumenausdehnungskoeffizient  

𝛽𝜂 Temperatur-Viskositätskoeffizient   

𝛾 Schubverzerrung  

𝛾 PEKLENIK-Faktor  

𝛾̇ Scherrate  

𝛾(𝑝) Penalty-Funktion des Druckes  

𝛿 elastische Deformation in z-Richtung  

𝛿 ̅ dimensionslose elastische Deformation in z-Richtung  
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XII Nomenklatur 

 

𝛿i,j KRONECKER-Delta (mathematischer Operator) 𝛿i,j = (1 0 0
0 1 0
0 0 1

)  

𝛿𝑚ℜ Masse des infinitesimalen Volumenelements  

𝛿𝑉ℜ infinitesimales Volumenelement  

𝜀 Dehnung  

𝜖 Fehler der Regression  

𝜀 ̅ dimensionsloser Diffusions-Koeffizient  

𝜁  ̅ dimensionsloser Konvektions-Tensor  

𝜂 dynamische Viskosität  

𝜂 ̅ dimensionslose dynamische Viskosität 𝜂̅ = 𝜂 𝜂0⁄   

𝜂H hertzscher Beiwert für die Kontaktbreite  

𝜗 Temperatur in °C  

𝜃 Dichteverhältnis, Spaltfüllungsgrad  

Θ HEAVISIDE-Funktion  

𝜆 Schmierfilmkennzahl  

𝜆 Wärmeleitfähigkeit  

𝜆R Festkörpertraganteil  

Λ spezifische Schmierfilmdicke  

𝜇 Reibungszahl  

𝜈 Querdehnzahl  

𝜈 kinematische Viskosität  

𝜉H hertzscher Beiwert für die Kontaktlänge  

𝜋 Kreiszahl  

𝜌 Hauptkrümmung  

𝜌 Dichte  

𝜌 ̅ dimensionslose Dichte 𝜌 ̅ = 𝜌 𝜌0⁄   

𝜌Σ kumuliertes Krümmungsmaß  

𝜚 Höhe der Rauheitsspitzen  

𝜎 Normalspannung  

𝜎R quadratischer Mittenrauwert 𝜎R = √𝑅12 + 𝑅22  
Σ Summe  

𝜏  Schubspannung  

𝜏e äquivalente Schubspannung 𝜏e = √𝜏𝑧𝑥2 + 𝜏𝑧𝑦2   

𝜏i,j molekülbedingter Impulstransport pro Zeit u. Flächeneinheit  
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Nomenklatur XIII 

 

𝜏stab Gewichtungsfaktor für SUPG und GLS Stabilisierung  

cos 𝜏  Hilfsgröße zur Bestimmung der hertzschen Beiwerte  

𝜙 Flussfaktor  

𝜓 kombinierter Normierungsfaktor der REYNOLDS-Gleichung  

𝜔 Winkelgeschwindigkeit  

Ω𝑐 Kontaktfläche (engl. contact)  

𝜕Ω𝑐 Rand der Kontaktfläche  

∇ Nabla-Operator (Vektor der partiellen Ableitungsoperatoren) ∇= ( 𝜕𝜕𝑥 , 𝜕𝜕𝑦 , 𝜕𝜕𝑧)  

Indizes 

0 Initialzustand, Zustand bei Umgebungsbedingungen 

1, 2 Kontaktkörper 1 bzw. 2 

c zentral (engl. central) 

cav Kavitation (engl. cavitation) 

e äquivalent (engl. equivalent) 

f,l bei trapezförmigen Texturen: f für in Bewegungsrichtung nachfolgend, engl. following und l 
für führend, engl. leading 

g Glasübergang 

gas gasförmig 

i Körper oder Oberfläche 

i,j in Strömungsmechanik: 
i = molekulare Transportrichtung, j = Komponente des Geschwindigkeitsvektors 

i,j in Strukturmechanik: 
i = Körper, j = Hauptkrümmungsebene 

lim limitiert, nach oben begrenzt 

liq Fluid (engl. liquid) 

m mittel 

max maximale, größte  

min minimale, kleinste 

mix Mischung (engl. mixture) 

p Druck 

s Schub, Scherung 

sol Festkörper (engl. solid) 

x, y, z kartesische Raumrichtungen 
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XIV Abstract 

 

AAbstract 

Due to increased requirements for machine elements and technical systems with regard 
to their energy efficiency, in the last decades there has been a focus in tribology orient-
ed sciences and research on methods and treatments to reduce friction. Amongst oth-
ers, a selective surface machining defining surface features on a microscopic scale was 
found to be an appropriate solution for friction reduction. These surface features can be 
divided into stochastically distributed yet oriented grooves or discrete surface features. 
Focusing on the latter in this thesis, a positive effect on friction has mainly been prov-
en for them for low loaded sliding contacts as the cylinder/liner-contact whereas no 
clear decision can be done for elastohydrodynamic (EHL) contacts. The goal of this 
thesis therefore is to provide a literature overview of the known mechanisms of discrete 
microtextures in different contact situations, to develop a deeper understanding regard-
ing rolling-sliding EHL contacts as well as to perform a proof of concept for their fric-
tion reduction potential in these contact situations. To achieve this, a focus was made 
on numerical studies and their implementation but also experiments were undertaken. 

First, friction measurements in a cam/follower tribo system – representing rolling-
sliding EHL contacts and running mostly in mixed lubrication – were conducted. 
Therefore different shapes and arrangements of microstructures were applied on flat-
base tappets. A friction reduction potential of up to 18 % compared to a polished sur-
face reference resulted in best case. But also a noteworthy amount of running in wear 
had to be detected that need deeper investigation. 

Second, resembling a “numerical loupe” and in order to look deeper into microtextured 
rolling/sliding EHL contacts and the mechanisms and effects occurring a simulation 
model of these contacts was developed. Deviating from the widespread approach in 
EHL research of self-developed program codes and sequential numerical solution algo-
rithms, the decision was made in favor of adopting commercial FE software and using a 
fully-coupled solution approach. Extended comparison with data from literature proved 
the feasibility of this approach and showed only small deviations that could be ex-
plained with differences in the numerical implementation. This was followed up by a 
broad study of non-newtonian and thermal effects as well as of different microtexture 
shapes and loading conditions. These studies provided findings for the importance of 
slip effects and medium loading conditions but high enough lubricant viscosity as well 
as favorable microtexture dimensions. 

Summarizing, this thesis provides further insights into microtextured EHL contacts 
from a numerical point of view while giving confident prospects for their friction reduc-
tion potential in experiments.  
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