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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Konzept zur Anwendung von Deep Transfer Learning am Beispiel der Fertigungsvorgangsermittlung

Deep Transfer Learning  
in der Arbeitsplanung

M. Hussong, M. Glatt, J. C. Aurich

Für die Nutzung von Deep Learning zur Unterstützung der 
 Prozesse innerhalb der Arbeitsplanung wird eine Vielzahl von 
Daten benötigt. In der industriellen Praxis ist die Aufbereitung 
solcher Datensätze sehr komplex und mit hohen Aufwand 
 verbunden. Durch die Nutzung von Deep Transfer Learning 
kann die benötigte Datenmenge reduziert werden. Am Beispiel 
der Fertigungsvorgangsermittlung wird ein Konzept vorge-
stellt, das die Anwendung von Deep Transfer Learning inner-
halb der Arbeitsplanung ermöglicht. 

Deep transfer learning in process planning 
– A concept for applying deep transfer lear-
ning in process planning using the exam-
ple of manufacturing operations selection

A large amount of data is required for the use of deep learning 
to support process planning. In industrial practice, the prepa-
ration of such data sets is very complex and requires a lot of 
manual effort. By using deep transfer learning, the required 
amount of data can be reduced. Therefore, using the example 
of manufacturing operation selection, a concept is introduced 
that enables the application of deep transfer learning within 
process planning.

1 Motivation

Kürzer werdende Produktlebenszyklen und der Trend zu kun-
denindividuellen Produkten steigern den Aufwand der Arbeits -
planung im industriellen Umfeld, besonders in Einzel- und Klein-
serienfertigung [1]. Vor diesem Hintergrund bietet eine Unter-
stützung der Arbeitsplanung durch computerbasierte Systeme 
(englisch: computer aided process planning, CAPP) weitreichen-
de Einsparpotenziale.

Aktuelle Ansätze zur Umsetzung von CAPP-Systemen ver-
wenden meist Methoden des Deep Learning [2]. Die Methoden 
des Deep Learning sind tiefe künstliche neuronale Netze (eng-
lisch: deep artificial neural networks, ANN), die Zusammenhänge 
in Daten durch Training erfassen können und für Vorhersagen 
anwendbar machen. Zum Training von ANN wird eine große 
Menge an Daten benötigt, deren Aufbereitung in der industriellen 
Praxis sehr komplex und mit einem großen manuellen Aufwand 
verbunden ist [3]. Um die benötigte Menge an Daten zu reduzie-
ren, kann Deep Transfer Learning (DTL) verwendet werden. Im 
DTL werden ANN genutzt, um Wissen aus einer Quelldomäne in 
eine Zieldomäne zu übertragen [4]. Als Quelldomäne können 
beispielsweise Datensätze mit Bildern alltäglicher Objekte und für 
die Zieldomäne ein industrieller Datensatz mit Bildern von Bau-
teilen aus der Produktion genutzt werden [5]. Durch die Kombi-
nation an Daten aus Quell- und Zieldomäne kann die benötigte 
Menge an Daten für die Zieldomäne im Vergleich zum klassi-
schen Training von maschinellen Lernalgorithmen reduziert 
 werden bei gleichzeitiger Erhaltung beziehungsweise Steigerung 
der Vorhersagegenauigkeit [6, 7]. 

Um die benötigte Datenmenge für Aufgabenstellungen in der 
Arbeitsplanung zu reduzieren, wird in diesem Beitrag ein Kon-
zept zur Anwendung von DTL vorgestellt. Dieses Konzept wird 
beispielhaft an der Fertigungsvorgangsermittlung beschrieben, 
kann analog aber auch auf andere Aufgabenstellungen der 
 Arbeitsplanung übertragen werden. 

In den nächsten beiden Kapiteln werden die Arbeitsplanung 
und das DTL beschrieben. Gegenstand von Kapitel 3 ist die 
 Beschreibung des Konzepts. Abschließend werden eine Zusam-
menfassung und ein Ausblick gegeben.

2  Unterstützung der Arbeitsplanung  
 durch CAPP-Systeme

Die Arbeitsplanung bildet den Übergang zwischen der Ent-
wicklung und Fertigung eines Produktes [8]. Die Eingangsgrößen 
der Arbeitsplanung werden dementsprechend von der Produkt-
entwicklung definiert und umfassen Toleranz-, Oberflächen- und 
Materialangaben sowie geometrische Formelemente, welche die 
Gestalt des Bauteils beschreiben [9]. In der industriellen Praxis 
werden die beschriebenen Größen in Form von 3D-CAD-Model-
len oder Technischen Zeichnungen festgelegt, was die Daten-
grundlage für Entscheidungen in der Arbeitsplanung bildet. 

Die Arbeitsplanung kann in Grob- und in Detailplanungsauf-
gaben aufgeteilt werden. Die Grobplanung umfasst die Bestim-
mung des Rohmaterials und die Aufgabe der Vorgangsfolge -
ermittlung. Die Ermittlung der Vorgangsfolge ist grundsätzlich 
zweigeteilt und bestimmt zuerst alle Vorgänge beziehungsweise 
Technologien, die für die Fertigung eines Bauteils benötigt 
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 werden (Fertigungsvorgangsermittlung). Anschließend werden 
die identifizierten Fertigungsvorgänge in eine Reihenfolge über-
führt, die eine fertigungsgerechte Bearbeitung des Bauteils 
 ermöglicht [8]. Im Anschluss an die Vorgangsfolgeermittlung 
wird für die definierten Fertigungsvorgänge eine Detailplanung 
vorgenommen, welche die nachfolgenden Aufgaben umfasst.

Für die identifizierten Fertigungsvorgänge innerhalb der Vor-
gangsfolgeermittlung werden zunächst Werkzeuge, Vorrichtungen 
und Halterungen bestimmt. Dabei wird die Anzahl an Einspann-
vorgängen festgelegt, welche Einfluss auf die Fertigungsdauer des 
Werkstücks haben. Danach werden die Maschinenparameter, wie 
etwa die Schnittgeschwindigkeit beim Fräsen, bestimmt. Zusätz-
lich zu den Maschinenparametern wird der Verfahrweg des 
Werkzeugs festgelegt, aus dem sich die gefertigten Geometrien 
am Werkstück ergeben. Durch die Bestimmung der Einspannun-
gen, der Schnittparameter und des Verfahrwegs des Werkzeugs 
lassen sich für die verschiedenen Fertigungsvorgänge die Ferti-
gungszeiten ableiten. Aus den Fertigungszeiten können schließ-
lich die Fertigungskosten für das Bauteil kalkuliert werden. 

Für die Unterstützung der genannten Aufgaben der Arbeits-
planung werden CAPP-Systeme eingesetzt, die auf Methoden des 
Deep Learning basieren. Eingangsgrößen für ein CAPP-System, 
das auf Methoden des Deep Learning basiert, sind 3D-CAD-
 Modelle, die analysiert werden, um beispielsweise als Ausgangs-
größe die benötigten Fertigungsvorgänge zu identifizieren. So 
können Arbeitsplanungsaufgaben vereinfacht und teilweise auto-
matisiert werden. Dies führt zur Reduktion von manuellen Auf-
wänden, was die Durchführung von Aufgaben der Arbeitsplanung 
beschleunigt, woraus letztlich Kosteneinsparungen resultieren [9]. 

Zur Anwendung von Methoden des Deep Learning in CAPP-
Systemen wird eine große Menge an Daten benötigt, die diversi-
fiziert und für überwachtes Lernen annotiert werden muss. Eine 
breite Diversifikation der Daten erlaubt auch vereinzelt auftreten-
de Ereignisse mithilfe von ANN zu erfassen und zu analysieren. 
Für die Arbeitsplanung können somit auch komplexe und außer-
gewöhnliche Geometrien analysiert werden, was zu einem breiten 
Anwendungsspektrum der ANN führt. In der industriellen Praxis 
ist die Aufbereitung solcher diversifizierter und annotierter 
 Datensätze sehr komplex und mit großem manuellen Aufwand 
verbunden [3]. Für die Diversifizierung müssen im Vorfeld der 
Datenaufbereitung statistische Analysen durchgeführt werden, um 
auch selten auftretenden Ereignisse zu identifizieren und im 
 Datensatz verteilungsgerecht abzubilden. Hinzu kommt die 
 Annotation der Daten in der Aufbereitungsphase, die für die 
 große Menge an Datenpunkten mit Softwareapplikationen manu-
ell durchgeführt werden muss [10]. Die Anwendung von Trans-
fer Learning bietet die Möglichkeit die Datenmenge und dadurch 
den Aufwand für die Aufbereitung der Datensätze zu reduzieren 
und gleichzeitig Deep Learning für CAPP-Systeme zu nutzen. 

Erste Ansätze adressieren die Nutzung von Transfer Learning 
in CAPP-Systemen. Kamal et al. verwenden induktives (englisch: 
inductive) Transfer Learning zur Erkennung von Bauteilfeatures 
und zur Beschreibung der geometrischen Ähnlichkeit unter-
schiedlicher 3D-CAD-Modelle [11]. Die Erkennung von Bauteil-
features zielt darauf ab, die Merkmale in 3D-CAD-Modellen zu 
ermitteln, die durch einen Fertigungsvorgang bearbeitet werden 
müssen [12]. Shi et al. verwenden DTL zur Erkennung von Fea-
tures. Hierzu wird ein vortrainiertes ANN von der Quelldomäne 

der Bildklassifikation genutzt, um die Bauteilfeatures auf Bildern 
unterschiedlicher Perspektiven zu erkennen [13]. Pedireddy et al. 
nutzen DTL zur Identifikation von Fräs- und Drehvorgängen in 
der Zieldomäne. Als Quelldomäne wird ein Datensatz für die 
 Erkennung von Bauteilfeatures verwendet. Die beiden Datensätze 
für Quell- und Zieldomäne sind synthetisch erstellt [14]. 

Die beschriebenen Ansätze fokussieren Transfer Learning 
hauptsächlich auf die Erkennung von Bauteilfeatures. Mit dem in 
diesem Beitrag vorgestellten Konzept soll ein Vorgehen beschrie-
ben werden, das die Adaption von DTL für weitere Bereiche der 
Arbeitsplanung ermöglicht. Dies wird am Beispiel der Ermittlung 
von Fertigungsvorgängen vorgenommen. Auch der Ansatz von 
Pedireddy et al. fokussiert die Erkennung von zwei Fertigungs -
vorgängen. Im Ansatz von Pedireddy et al. werden jedoch synthe-
tisch erstellte Datensätze genutzt, wogegen das Konzept in 
 diesem Beitrag die Verwendung realer 3D-CAD-Modelle aus der 
Industrie adressiert. 

3 Ansätze von Deep Transfer Learning

Transfer Learning ist eine Methode des Maschinellen Lernens, 
bei dem Wissen aus einer Quelldomäne auf eine Zieldomäne 
übertragen wird [4]. Findet eine Anwendung von ANN zur 
 Analyse von Quell- beziehungsweise Zieldomäne statt, wird dies 
als Deep Transfer Learning (DTL) bezeichnet. 

Das DTL unterscheidet vier Kategorien: Instanzbasiertes (eng-
lisch: instance-based) DTL ergänzt gezielt Datenpunkte aus der 
Quelldomäne im Datensatz der Zieldomäne und gewichtet diese, 
um die Datenmenge in der Zieldomäne zu erhöhen. Abbildungs-
basiertes (englisch: mapping-based) DTL vereint die Datenmenge 
aus der Quelldomäne mit der Zieldomäne, um einen großen und 
diversifizierten Datensatz für das Training der ANN zu erhalten. 
Gegnerbasiertes (englisch: adversarial-based) DTL basiert auf der 
Einführung von gegnerbasierten Schichten (englisch: adversarial 
layers), um Merkmale aus der Quell- und Zieldomäne zu bewer-
ten. Dadurch wird die Zielfunktion um einen zusätzlichen Term 
erweitert, sodass durch Minimierung der Zielfunktion, Merkmale 
definiert werden, die eine ähnliche Beschreibung von Quell- und 
Zieldomäne vornehmen. Netzwerkbasiertes (englisch: network-
based) DTL nutzt Teile eines ANN, das auf Basis der Daten der 
Quelldomäne trainiert wurde, zum Training auf den Daten der 
Zieldomäne [15]. 

Netzwerkbasiertes DTL zeigt im Gegensatz zu instanzbasier-
tem, abbildungsbasiertem und gegnerbasiertem DTL die größte 
Eignung für die Aufgaben der Arbeitsplanung. Für instanzbasier-
tes oder abbildungsbasiertes DTL wird die Zieldomäne mit Daten 
der Quelldomäne angereichert. Dies wäre im Kontext der 
 Arbeitsplanung in der industriellen Praxis mit hohem manuellem 
Aufwand verbunden, da für die Anreicherung der Zieldomäne 
künstliche Arbeitspläne erstellt werden müssten, die auf 
 Eingangsdaten der Quelldomäne basieren. Die Verwendung von 
gegnerbasiertem DTL weist im Gegensatz zu netzwerkbasiertem 
DTL aufgrund der Analyse von 3D-CAD-Modellen als Eingangs-
daten eine größere Komplexität auf. Dies ist vor allem hinsicht-
lich der Tiefe und Breite des Netzwerks, das für die Analyse von 
3D-CAD-Modellen verwendet wird, wesentlich, sodass das 
 folgende Konzept sich auf das netzwerkbasierte DTL fokussiert. 
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4 Konzeption von Deep Transfer Learning 
  für die Arbeitsplanung

Das Konzept definiert die Anwendung von netzwerkbasiertem 
DTL für die Arbeitsplanung anhand des Beispiels der Fertigungs-
vorgangsermittlung. Für die Anwendung des netzwerkbasierten 
DTL lassen sich allgemein verschiedene Schritte definieren. Zu-
erst erfolgt eine Merkmals- und Wissensextraktion aus der Quell-
domäne durch Training eines Netzwerks auf einem großen und 
diversifizierten Datensatz. Durch die Verwendung bereits trai-
nierter Merkmale kann das Modell der Zieldomäne mit einer 
 höheren Abstraktionsebene beginnen, wodurch die für das Trai-
ning benötigte Datenmenge reduziert und die Leistung verbessert 
werden kann. Nach der Merkmals- und Wissensextraktion aus 
der Quelldomäne erfolgt eine Domänenanpassung. Weisen die 
Datenverteilungen der Domänen große Unterschiede auf, müssen 
die Quell- und Zieldomäne aneinander angepasst werden. 

Anschließend erfolgt die Feinabstimmung des Netzwerks mit 
der Zieldomäne. Dazu wird das Modell mithilfe des Datensatzes 
der Zieldomäne trainiert. Dabei werden zuerst die Gewichte der 
neuen Schichten optimiert, während die Gewichte der vortrai-
nierten Schichten zuerst unverändert bleiben. Nach Optimierung 
der Gewichte der neuen Schichten, wird ein Training mit einer 
kleinen Lernrate auf dem Zieldatensatz durchgeführt, bei dem 
 alle Gewichte des ANN optimiert werden. Zum Schluss erfolgt 
die Bewertung des Modells. Modelle des Deep Transfer Learning 
sollten grundsätzlich anhand der Leistung bei der Zielaufgabe 
 bewertet werden. Die Leistung sollte mit anderen Ansätzen 
 verglichen werden, vor allem mit dem Training eines Modells, 
welches von Grund auf für die Zielaufgabe optimiert wurde. Für 
die endgültige Auswahl des besten Ansatzes können gegebenen-
falls auch Zielgrößen wie die Höhe der Rechenressourcen berück-
sichtigt werden. 

Um diese vier Schritte für das netzwerkbasierte DTL anwen-
den zu können, müssen im Vorfeld eine geeignete Beschreibung 
für die Kategorisierung von Lernmethoden des Maschinellen 
 Lernens und eine Definition der Quell- und Zieldomäne vorge-
nommen werden. 

Die Zielaufgabe ist die Ermittlung von Fertigungsvorgängen, 
die in die Kategorie des überwachten Lernens zugeordnet wird. 
Konkret werden beim überwachten Lernen Ein- und Ausgangs-
größen gegenübergestellt. Dadurch lernen die maschinellen Algo-
rithmen durch Minimierung einer definierten Zielfunktion die 
Zusammenhänge zwischen Ein- und Ausgangsgrößen innerhalb 
verschiedener Trainingsepochen und können diese nach dem 
Training zur Vorhersage auf unbekannten Eingangsgrößen 
 verwenden. Bei der Ermittlung der Fertigungsvorgänge müssen 
dementsprechend CAD-Daten als Eingangsgröße und die benö-
tigten Fertigungsvorgänge als Ausgangsgröße vorliegen. Die Zu-
ordnung eines Bauteils zu unterschiedlichen Fertigungsvorgängen 
kann  innerhalb des überwachten Lernens als Klassifikationsaufga-
be  definiert werden. Die Klassifikationsaufgabe kann entweder als 
Multi-Label-Klassifikation oder als mehrfache binäre Klassifikati-
on ausgestaltet werden. Die beiden Ansätze unterscheiden sich in 
der verwendeten Anzahl an ANN. Bei der Multi-Label-Klassifika-
tion wird ein einzelnes ANN zur Vorhersage aller benötigten 
Fertigungsvorgänge eingesetzt, wohingegen bei einer mehrfachen 
binären Klassifikation jeweils ein ANN für die Vorhersage eines 
Fertigungsvorgangs eingesetzt wird.

Nach der Definition der Zieldomäne durch Kategorisierung 
der Ermittlung von Fertigungsvorgängen als Klassifikationsaufga-
be innerhalb des überwachten Lernens, wird im nächsten Schritt 
eine Quelldomäne bestimmt. Als Quelldomänen können ähnliche 
Aufgaben des Maschinellen Lernens angesehen werden, die 
 bestenfalls ähnliche Eingangsdaten nutzen. Aufgrund der inzwi-
schen großen Vielfalt an frei verfügbaren industriellen 3D-CAD-
Datensätzen, wie etwa ABC [16], DMU-Net [17] oder Mechani-
cal Components Benchmark (MCB) [18], bilden diese eine Basis 
zur Definition von Quelldomänen für das Transfer Learning. Der 
MCB-Datensatz soll hier als Quelldomäne dienen, da dieser eine 
ähnliche Klassifikationsaufgabe, wie die Bestimmung von Ferti-
gungsvorgängen, abbildet. Bei diesem Datensatz stehen industrie-
nahe 3D-CAD-Modelle als Eingangsgröße und verschiedene Bau-
teilklassen, wie beispielsweise Federn, Dämpfer oder Schrauben 
als Klassifikationsgrößen zur Verfügung. 

Für die Analyse von 3D-CAD-Modellen mithilfe von ANN 
müssen diese transformiert werden. Als Transformation eignen 
sich beispielsweise Voxel, Punktwolken, Meshes oder projizierte 
Ansichten. Voxel approximieren die Gestalt eines 3D-CAD-
 Modells über kleine Quader im Raum und bilden damit als Volu-
menpixel das Pendant zu Pixel im zweidimensionalen Raum. 
Punktwolken sind vergleichbar mit dem Voxel-Ansatz, approxi-
mieren die Gestalt des Bauteils jedoch mit Punkten im drei -
dimensionalen Raum. Im Gegensatz dazu bilden Meshes die 
Oberflächen des Bauteils mit Gitternetzstrukturen bestehend aus 
Knoten und Kanten ab. Projizierte Ansichten sind Bilder eines 
Bauteils aus verschiedenen Raumrichtungen.

Zur Analyse von Voxel, Punktwolken, Meshes oder projizier-
ten Ansichten werden oftmals ANN in Form von Convolutional 
Neural Networks (CNN) eingesetzt, die als Encoder über kon-
volutionale Schichten (englisch: convolutional layers) und Aggre-
gationsschichten (englisch: pooling layers) die dreidimensionalen 
Eingangsgrößenstrukturen in kompakte Merkmalsausprägungen 
überführen. Diese kompakte Darstellung der Merkmalsausprä-
gungen wird anschließend über weitere vollständig verbundene 
Schichten in die gewünschte Ausgangsgröße der Klassifikation 
übersetzt. 

Die Encoderschichten des CNN leisten die Merkmalsextrakti-
on auf hoher Abstraktionsebene durch Training auf dem Daten-
satz der Quelldomäne, in diesem Fall des MCB-Datensatzes. 
 Danach werden die extrahierten Merkmale auf der hohen 
 Abstraktionsebene, also den ersten Schichten des ANN, für das 
Training mithilfe des Datensatzes der Zieldomäne verwendet. 
 Eine Domänenanpassung ist aufgrund der Ähnlichkeit zwischen 
Quell- und Zieldomäne nur geringfügig notwendig. Lediglich eine 
weitere Diversifizierung des Datensatzes durch weitere 3D-CAD-
Modelle aus Datenquellen wie ABC [16] oder DMU-NET [17] 
kann durchgeführt werden, um Verteilungsabweichungen zwi-
schen den Datensätzen der Quell- und Zieldomäne zu verringern. 
Für die Feinabstimmung wird das CNN für die Zieldomäne 
 gebildet, das die Encoderschichten aus dem Training der Quell-
domäne übernimmt und mit vollständig verbundenen Schichten 
ergänzt wird. 

Das Training innerhalb der Feinabstimmung ist zweigeteilt. 
Zuerst werden die Encoderschichten aus der Quelldomäne kon-
stant gehalten und ausschließlich die vollständig verbundenen 
Schichten optimiert. Im zweiten Schritt werden alle Parameter 
des CNN optimiert und das Training mit einer kleinen Lernrate 
durchgeführt. Die Bewertung erfolgt anhand typischer Zielgrößen 
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für Klassifikationsaufgaben wie beispielsweise einer Konfusions-
matrix. Das Bild illustriert das Konzept zur Anwendung von 
netzwerkbasierten DTL für die Fertigungsvorgangsermittlung. 

Zusammenfassend kann netzwerkbasiertes DTL in der 
 Arbeitsplanung eingesetzt werden, um die benötigte Menge an 
annotierten Industriedaten zu verringern, indem ML-Modelle auf 
großen und diversifizierten Datensätzen mit 3D-CAD-Modellen 
vortrainiert werden. Dadurch können die ML-Modelle bereits 
Wissen und Merkmale aus der Quelldomäne extrahieren, was an-
schließend für die Zieldomäne angewendet werden kann. Dem-
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entsprechend benötigt die Zieldomäne eine deutlich geringere 
Anzahl an Daten, was die Aufbereitung solcher Datensätze deut-
lich vereinfacht und beschleunigt. 

5 Zusammenfassung und Ausblick

In diesem Beitrag wurde ein Konzept zur Anwendung von 
DTL in der Arbeitsplanung am Beispiel der Fertigungsvorgangs-
ermittlung dargestellt. Netzwerkbasiertes DTL in der Arbeits -
planung ermöglicht demnach die benötigte Menge an annotierten 
Industriedaten zu verringern, indem ML-Modelle auf großen und 
diversifizierten Datensätzen mit 3D-CAD-Modellen vortrainiert 
werden. Dadurch können die ML-Modelle bereits Wissen und 
Merkmale aus der Quelldomäne extrahieren, was anschließend 
für die Zieldomäne angewendet werden kann. Dementsprechend 
benötigt die Zieldomäne eine deutlich geringere Anzahl an Daten, 
was die Aufbereitung solcher Datensätze deutlich vereinfacht und 
beschleunigt. 

Zukünftig wird das vorgestellte Konzept durch Training der 
ANN auf Basis von Voxel, Punktwolke, Mesh und projizierte 
 Ansichten umgesetzt und ein Vergleich der unterschiedlichen 
 Repräsentation der 3D-CAD-Modelle für die Ermittlung von 
 Fertigungsvorgängen vorgenommen. Weiterhin wird eine Erwei-
terung des Konzepts auf andere Bereiche der Arbeitsplanung 
durch eine geeignete Problemdefinition im Kontext von Maschi-
nellem  Lernen angestrebt. 

Bild 1. Konzept zur Ermittlung von Fertigungsvorgängen mittels Deep 
Transfer Learning. Grafik: RPTU Kaiserslautern
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