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column-vector of descriptor data
vector of mole fractions liquid phase

matrix of descriptor data

fuel property (various) various

known fuel property data (various) various

mean of column-vector of known fuel property various

data (various)

vector of fuel property data (various) various
vector of known fuel property data (various) various
confidence interval for the prediction In(ms)

pathway yield
mole fraction of the blend

vector of mole fractions of the blend

confidence level

incremental step

vector of regression coefficients (PLS)
activity coefficient

similarity threshold

Euclidean distance in the PC space

vector of Euclidean distances in the PC space
confidence interval for model parameter
normally distributed measurement error (zero mean)
absolute parameter correlation

LHYV efficiency

parameter of group contribution model
vector of model parameters

auxilliary variable

air-fuel equivalence ratio

eigenvalue

dynamic viscosity

kinematic viscosity

stoichiometric coefficient

mass fraction of the blend

liquid density

IP 216.73.216.60, am 23.01:2026, 22:11:02.

In(ms)

MJ/MJ

Pa-s

mm? /s

kg/m?

tersagt, m mit, flir oder in Ki-Syster

XIIT


https://doi.org/10.51202/9783186954039

Notation

Pm molar liquid density kmol/m?,
mol/cm?

o surface tension N/m,
mN/m

o measurement standard deviation In(ms)

o vector of measurement standard deviations In(ms)

T 1QT ignition delay ms

[} objective function in parameter estimation

© length of vector

w acentric factor

Subscripts

S5NTN five nearest training neighbors

a first-order structural group index

a2 second-order structural group index

a3 third-order structural group index

b descriptor index

boil normal boiling point

bp bubble point pressure (approximated Reid vapor

pressure)

c combustion cycle index (measurement index)

crit critical state

D distillate

ext external validation set

f enthalpy of formation

h pathway index

i index (component / compound)

i index (component / compound)

k pathway index

l index

L liquid

max maximum value

min minimum value

melt melting point

nAB number of aromatic bonds (descriptor)

nCCDB number of carbon-carbon double bonds (descriptor)

nTC number of tertiary carbon atoms (descriptor)

X1V

IP 216.73.216.60, am 23.01:2026, 22:11:02.

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186954039

Notation

nQC
P1

Reid

Superscripts

norm
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test
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Abstract

The present thesis describes model-based strategies for the identification of pure and mul-
ticomponent cellulosic biofuel candidates that exhibit tailored properties for use in high-
efficiency, low-emission internal combustion engines. Following a description of the theo-
retical foundations of fuel design, an algorithm for the targeted generation of candidate
structures is proposed that facilitates an exploration of the molecular search space by
means of a rule-based approach resembling carbon- and energy-efficient chemo-catalytic
refunctionalization of bio-derived platform chemicals. Model-based evaluation of the ob-
tained structures is based on a group contribution method that is capable of predict-
ing the derived cetane number (DCN) of oxygenated hydrocarbon species directly from
molecular structure. Furthermore, the virtual fuel screening relies on tailored quantitative
structure-property relationship (QSPR) models which can predict a range of important
physicochemical fuel properties based on molecular descriptors computable from the two-
dimensional molecular graph. The analysis of two comprehensive case studies reveals that
compact ketones, furans and esters represent knock-resistant compounds which also ex-
hibit favorable thermophysical properties deemed important for the in-cylinder mixture
formation process in spark-ignition (SI) engines. In contrast, cyclic and acyclic ethers
of moderate size readily auto-ignite and therefore represent first choice candidates for
compression-ignition (CI) engines. Moreover, the high fuel oxygen contents, the low vis-
cosities and the high volatilities of the ether compounds are expected to result in low levels
of engine-out soot emissions. Finally, an optimization-based approach for the formulation
of multicomponent biofuels by means of integrated product and pathway design is pre-
sented. Here, the objective is to maximize a process-related quantity, i.e., the energy of
fuel produced (in terms of the lower heating value), and the constraints in the problem
formulation allow to define target ranges for the blend’s physicochemical properties. To
account, for non-ideal mixture behavior with respect to two important properties of SI en-
gine fuels, i.e., the Reid vapor pressure and the distillation curve, the nonlinear program
includes the UNIFAC group contribution model. Application of the new design method-
ology to a case study underlines the significance of performing combined product and
pathway design, since only few investigated blends are found to exhibit both the desired

fuel properties and attractive process-related properties.
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Kurzfassung

Die vorliegende Arbeit beschreibt modellbasierte Strategien zur Identifikation lignocellu-
losebasierter Kraftstoffkandidaten mit vielversprechenden Eigenschaften fiir den Einsatz
in hoch-effizienten und schadstoffarmen Verbrennungsmotoren. Auf Basis theoretischer
Grundlagen zum molekularen Mafischneidern von Kraftstoffen wird dabei zunéchst ein Al-
gorithmus zur zielgerichteten Molekiilstrukturgenerierung vorgestellt, der den Suchraum
mittels eines regelbasierten Ansatzes systematisch aufspannt und dabei dem Konzept ei-
ner selektiven Refunktionalisierung biobasierter Plattformchemikalien folgt. Fiir die mo-
dellbasierte Bewertung der so erhaltenen Strukturen liefert die vorliegende Arbeit einen
essentiellen Baustein in Form einer Gruppenbeitragsmethode zur Vorhersage der abgeleite-
ten Cetanzahl (engl. Abk. DCN). Daneben fufit die virtuelle Kraftstoffsuche vor allem auf
mafBgeschneiderten quantitativen Struktur-Eigenschafts-Beziehungen (engl. Abk. QSPR),
die wesentliche Kraftstoffeigenschaften als Funktion molekularer Deskriptoren beschrei-
ben. Die Analyse umfangreicher Fallstudien zeigt, dass kompakte Ketone, Furane und
Ester sehr klopffeste Verbindungen darstellen, die zudem giinstige Eigenschaften fiir die
Gemischbildung im Ottomotor aufweisen. Fiir den Dieselmotor hingegen kommen vor al-
lem cyclische und acyclische Ether mittlerer Grofie in Frage, da diese Stoffe eine hohe
Ziindwilligkeit besitzen. Die hohen Sauerstoffgehalte, die vergleichsweise niedrigen Siede-
punkte und die geringen Viskosititen der Etherkraftstoffe lassen zudem niedrige Partikel-
emissionen bei der Verbrennung im Dieselmotor erwarten. Schliefllich wird ein optimie-
rungsbasierter Ansatz vorgestellt, der ein integriertes Produkt- und Pfadentwurfsproblem
zur Formulierung von Kraftstoffmischungen mit gewiinschten Eigenschaften 16st. Im Ziel-
funktional der Optimierung steht dabei mit der produzierten Energiemenge des Kraft-
stoffs (gemessen am Heizwert) eine prozessrelevante Grofie. Die in den Nebenbedingun-
gen des Problems auftretenden Stoffdatenmodelle erlauben die Beschrinkung physikalisch-
chemischer Kraftstoffeigenschaften und umfassen die UNIFAC-Gruppenbeitragsmethode,
um die Einfliisse von nicht-idealem Mischungsverhalten auf Dampfdruck und Destillati-
onskurve zu beschreiben. Die Anwendung der neuen Entwurfsmethode auf eine Fallstudie
verdeutlicht die Wichtigkeit einer integrierten Betrachtung von Produkt- und Pfadentwurf,
denn nur eine kleine Zahl der untersuchten Gemische weist neben den wiinschenswerten

Kraftstoffeigenschaften auch attraktive Prozesseigenschaften auf.
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1 Introduction

Fuels derived from lignocellulosic biomass represent an important technological option for
future sustainable mobile propulsion, as they are are thought to exert less negative impacts
on biodiversity, land use and food production compared with the first-generation biofuels
(Naik et al., 2010). These lignocellulosic fuels can be produced via three main routes:
gasification, pyrolysis and hydrolysis (Lange, 2007). The two thermochemical approaches
yield complex multicomponent mixtures of (oxygenated) hydrocarbon species. In con-
trast, hydrolysis and aqueous-phase processing of water-soluble sugars generally refer to a
sequence of reactions that facilitates a selective synthesis of one or few oxygenated building
blocks via chemo-catalytic and/or bio-catalytic routes (Serrano-Ruiz and Dumesic, 2012).
As indicated in Figure 1.1, such oxygenated platforms can then be refunctionalized cat-
alytically into oxygenated fuel components exhibiting tailored properties for high-efficiency
and low-emission internal combustion engines (Janssen et al., 2011). Based on this idea,
the Cluster of Excellence ”Tailor-Made Fuels from Biomass” (TMFB) at RWTH Aachen
University develops a comprehensive fuel design methodology that considers the fuel’s
molecular structure as the fundamental degree of freedom in optimizing both production

and combustion of lignocellulosic biofuels (Janssen et al., 2011; Hoppe et al., 2016b).

platform
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Figure 1.1: Two-step biomass-to-biofuel conversion strategy as pursued within TMFB (based
on Janssen et al. (2011)): Aqueous-phase processing of cellulose and hemicellulose yielding plat-
form chemicals followed by selective chemo-catalytic refunctionalization producing oxygenated

fuel components.
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Figure 1.2: The primary objectives of fuel design as pursued within TMFB are (i) the improve-
ment of engine efficiency (primarily spark-ignition engine) and (ii) the reduction of engine-out

emissions of NOx and soot (primarily compression-ignition engine).

As illustrated in Figure 1.2, the primary objective of fuel design is to enable high-
efficiency and clean combustion in both spark-ignition (SI) end compression-ignition (CI)
engines. Burning pure ethanol instead of RON95 gasoline, for instance, allows to raise the
effective compression ratio and therefore to increase the efficiency of the SI engine without
encountering the issue of engine knock (Jeuland et al., 2004; Thewes et al., 2011b; Hoppe
et al., 2016b). The efficiency increase is made possible by ethanol’s high octane rating
as well as ethanol’s high enthalpy of vaporization which provides a high charge cooling
effect. However, ethanol’s high enthalpy of vaporization and boiling point also cause cold-
start and cold-run problems, as an ethanol-rich fuel can condense on the cold cylinder wall
thereby causing excessive emissions and engine oil dilution (Jeuland et al., 2004; Larsen
et al., 2009; Thewes et al., 2011b; Hoppe et al., 2016b).

In case of the CI engine, the simultaneous reduction of engine-out soot and NOx emis-
sions is the primary objective of TMFB’s fuel design efforts (cf. Figure 1.2). To this end,
an oxygenated fuel that has a low propensity to form soot is combined with exhaust gas
recirculation to achieve low-temperature combustion (Janssen et al., 2011; Heuser et al.,
2013a). Unlike diesel fuel, the oxygenate allows to shift the soot/NOx trade-off curve
of CI engine combustion towards significantly lower values for both soot and NOx emis-
sions (Boot et al., 2008; Janssen et al., 2011; Heuser et al., 2013a; Bhardwaj et al., 2013;
Garcia et al., 2016). In order to control the start of combustion in the CI engine, the
fuel/air-mixture must auto-ignite briefly after the start of injection, whereas in the SI en-

gine the fuel must withstand auto-ignition to avoid engine knock. The assessment of fuel
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1.1 Structure of this thesis

auto-ignition propensity therefore constitutes another important aspect of fuel design. As
indicated in Figure 1.2, synergies between oxygenated species and more recent combustion
concepts, i.e., homogeneous charge compression ignition (HCCI) and reactivity controlled
compression ignition (RCCI), have also been explored in recent years (Yang et al., 2010;
Contino et al., 2011b; Yang and Dec, 2013; Heuser et al., 2016).

Although the number of promising bio-derived platform molecules available for the pro-
duction of tailor-made fuels is limited (Werpy et al., 2004; Bozell and Petersen, 2010;
Sheldon, 2014), these building blocks can still be upgraded to a tremendous variety of
molecular structures, in principle. Most of these structures have never been synthesized
before and a solely experiment-based search for fuel components would be inappropriate.
Instead, computer-aided molecular design (CAMD) (Joback, 1989; Gani, 2004a; Ng et al.,
2015b) should be used to augment experimental and theoretical work because CAMD pro-
vides a way to systematically generate molecular structures that hold the promise of having
the desired properties (Hechinger et al., 2010; Cholakov, 2011).

Originating from the research performed by the author during his time as a member of
TMEFB (from 2011 to early 2017), this thesis represents a continuation of previous research
on model-based fuel design performed at the Institute for Process Systems Engineering
at Aachener Verfahrenstechnik (Hechinger et al., 2010; Hechinger and Marquardt, 2010;
Hechinger et al., 2012a,b; Dahmen et al., 2012; Victoria Villeda et al., 2012a; Voll and
Marquardt, 2012a,b; Hechinger, 2014; Victoria Villeda et al., 2015; Victoria Villeda, 2017)
and deals with computational methods supporting both the identification of tailored bio-
fuel components and the rational formulation of mixtures of such components. To this
end, three main concepts are outlined: (i) the targeted generation of candidate struc-
tures in an attempt to systematically explore the products from refunctionalization of
bio-derived platform chemicals, (ii) a virtual fuel screening strategy based on predictive
structure-property relationship modeling of key physicochemical fuel properties, and (iii)
an optimization-driven approach to simultaneous product and pathway design of biofuel
mixtures and their corresponding production routes. These methodologies are then applied
to identify promising fuel candidates for both spark-ignition (SI) and compression-ignition

(CI) engines.

1.1 Structure of this thesis

In Chapter 2 the basic concepts of fuel design are introduced. To this end, the relation-
ships between the physicochemical properties of (oxygenated) fuels and the performance of
internal combustion engines are analyzed based on a short literature review. Furthermore,

bio-derived intermediates, i.e., platform chemicals, frequently proposed in the context of
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Figure 1.3: A generate & test realization of computer-aided molecular design (CAMD): Tar-

geted generation of candidate structures followed by virtual fuel screening.

aqueous-phase bio-renewables processing are evaluated with regard to their potential in fuel
production. The concept of carbon- and energy-efficient biofuel production is introduced
here which acts as the guiding principle for the targeted generation of candidate structures
proposed in the subsequent Chapter. Chapter 2 concludes with a brief literature review

on methodologies for computer-aided design of chemical products and fuels.

In Chapter 3, the concepts of a novel molecular structure generator are described which
links the molecular graphs of CAMD products to pre-defined platform chemicals by con-
sidering a few, simple transformation rules chosen to resemble carbon- and energy-efficient
chemo-catalytic refunctionalization. As indicated in Figure 1.3, this algorithm allows to
automatically generate a spectrum of potential products once sets of platforms and trans-
formations have been specified by the modeler. The product spectrum can then be screened

for biofuel candidates by employing computational property prediction.

Chapters 4 and 5 are entirely devoted to the mathematical modeling of the key physico-
chemical fuel properties that have been identified in Chapter 2. Due to their relatively
simple nature resulting in high computational efficiency, group contribution (GC) models
(Joback and Reid, 1987; Marrero and Gani, 2001) and quantitative structure-property
relationship (QSPR) models (Katritzky et al., 1995, 2010) are readily applicable to the
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Figure 1.4: Computational property prediction by means of quantitative structure-property

relationship (QSPR) and/or group contribution (GC) modeling.

property prediction task in the context of model-based fuel design (Hechinger et al., 2010;
Cholakov, 2011; Dahmen et al., 2012; Saldana et al., 2013; Hechinger, 2014; Dahmen and
Marquardt, 2016). GCs rely on the principle of group additivity, i.e., the assumption that
the property of a molecule results from the summation of the contributions from each of
the molecule’s atoms or structural groups (Bader and Bayles, 2000). The group additivity
principle is related to the similarity principle that constitutes the fundamental assumption
behind QSPR modeling (Leonard and Roy, 2006; Tropsha and Golbraikh, 2010). The
latter principle states that similar compounds, i.e., compounds exhibiting similar molecular
descriptor data (Todeschini and Consonni, 2008) which can be computed based on the two-
or three-dimensional molecular structure, will also exhibit similar properties (Leonard and
Roy, 2006; Tropsha and Golbraikh, 2010). Figure 1.4 shows the main aspects of both GC
and QSPR modeling covered in this thesis, i.e., data pretreatment and similarity analysis,
group decomposition, descriptor calculation, model identification, model validation and
property prediction.

As indicated in the lower half of Figure 1.4, QSPR and GC models are derived on
the basis of sufficiently large and diverse collections of known molecular structures with
known property data. Fortunately, such databases exist for many pure-component thermo-
physical properties relevant to fuel design. However, the assessment of fuel auto-ignition
quality, which is fundamental in deciding on the target engine type, is often complicated

in case of oxygenated species for two reasons. Whereas the combustion kinetics of first-
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generation biofuels, i.e., ethanol and fatty acid methyl esters, have been studied extensively
(Kohse-Hoéinghaus et al., 2010; Westbrook, 2013), mechanism development for long-chained
alcohols, methyl esters and small cyclic and acyclic ethers is subject to current research
(Herbinet et al., 2008; Tran et al., 2012; Sarathy et al., 2012; Westbrook, 2013; Sarathy
et al., 2014; Cai et al., 2014, 2015; Dryer, 2015; Tripathi et al., 2017). With regard to a
wider range of oxygenated fuels, such predictive kinetic models are expected to become
available only in the long-term future. Furthermore, ignition delays of different fuels can
only be compared in a meaningful way, if experimental boundary conditions are chosen to
be identical or at least similar, because differences in mixture formation, air temperature
and pressure in the combustion chamber also exert strong effects on the measured igni-
tion delay and thus can blur the influence of the molecular structure. To address these
challenges, Chapter 4 first describes the results from a rapid fuel screening campaign with
an Ignition Quality Tester (IQT) (Allard et al., 1996, 1997; ASTM D6890, 2011). The
1QT’s standardized constant-volume combustion chamber is operated at a single, well-
defined, engine-relevant condition that allows for a sound comparison of fuels ranging from
high-octane gasoline-like fuels to high-cetane synthetic diesel fuels. Because of its ability to
generate high-quality ignition delay data from 32 combustion cycles in less than 20 minutes
given a sample of approximately 50 mL only, the IQT truly constitutes a rapid screening
device. In contrast, determination of classical octane number (ON) and cetane number
(CN) requires engine experiments involving a much larger sample (~ 1 L) and significantly
more time (approximately a few hours) (Ghosh and Jaffe, 2006; Ghosh, 2008). Together
with IQT data taken from the literature, a database has been established that covers
161 (oxygenated) hydrocarbons, i.e., acyclic and cyclic, branched and straight, saturated
and unsaturated hydrocarbons as well as alcohols, ethers, esters, ketones, aldehydes, and
aromatic and polyfunctional species. This database is subsequently used in Chapter 4 to
derive a simple, yet predictive group contribution model for the so-called derived cetane
number (DCN), i.e., a single scalar quantity that allows for a first characterization of a

fuel’s autoignition propensity in the context of (computational) fuel design.

Chapter 5 describes a generic strategy for QSPR modeling of different physicochemical
fuel properties. For some of the properties considered in this thesis, the number of molecu-
lar descriptors available for modeling exceeds the number of training molecules with known
property data. Moreover, in case of all properties, the degree of multicollinearity in the de-
scriptor data is substantial. In order to derive predictive structure-property relationships
on the basis of such data, principal component analysis (PCA) (Jolliffe, 2002) and partial
least squares (PLS) regression (Hoskuldsson, 1988) have been applied extensively in the
literature (Cramer, 1993; Katritzky et al., 1995; Wold et al., 2001; Eriksson et al., 2006a,;
Katritzky et al., 2010). In Chapter 5, it is demonstrated that PCA and PLS can be used
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to make predictions for all physicochemical fuel properties considered in this thesis. The
predictive power of each QSPR model is confirmed by external validation, i.e., by testing
the model on molecular structures that have not participated in model training (Tropsha
et al., 2003). With regard to the virtual fuel screening (cf. Figure 1.3), an applicability
domain (AD) concept has been implemented that allows to distinguish whether the QSPR
model performs interpolation or extrapolation when it is used to predict the property of a
specific target compound (Netzeva et al., 2005; Weaver and Gleeson, 2008). The Chapter
concludes with a performance comparison between the QSPR models proposed here and
two established group contribution methods taken from the publicly available literature.
Chapter 6 is dedicated to case studies where targeted structure generation and compu-
tational property prediction are applied to systematically explore and identify novel fuel
candidates for spark-ignition and compression-ignition engines (cf. Figure 1.3). The most
promising molecular motifs resulting from the virtual fuel screening are discussed in de-
tail. While the discussion is primarily focussed on pure-component fuel candidates, some

implications for blending applications are given.

( simultaneous product & pathway design )
fuel formulated as a nonlinear program (NLP)
candidates mass balance equations as simplified pure-component property )
process model (ideal separations) models conversion
pathway data = QSPR models scheme
(selectivi'ty = DCN group contribution
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L properties (VLE & LLE) )

Figure 1.5: Optimization-driven approach for simultaneous product and pathway design of

biofuel mixtures.

Chapter 7, finally, extends the scope beyond pure-component fuels and deals with the
rational formulation of biofuel mixtures. Here, the blend design problem is stated as a
simultaneous product and pathway design problem to take into account the fact that the
additional degrees of freedom offered by a multicomponent fuel can be used to optimize
properties of the production process, e.g., the mass or energy of fuel produced for a given
quantity of biomass supplied. As can be seen from Figure 1.5, pathway selectivity and
conversion data for all potential blend components are required to formulate a pathway

model based on mass balance equations and the assumption of ideal separations, similar to
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the methodology of reaction network flux analysis (RNFA) (Voll and Marquardt, 2012b).
The pathway model is then augmented by GC and QSPR models for pure-component
and mixture property prediction, including vapor-liquid equilibria (VLE) and liquid-liquid
equilibria (LLE) models which allow to formulate constraints for the blend’s distillation
curve and to assess the blend’s miscibility. The solution to the resulting nonlinear program
(NLP) consists of a biofuel mixture with tailored properties and the corresponding optimal
conversion scheme. The Chapter concludes with a case study of a blend formulation
problem targeting a highly-boosted direct-injection spark-ignition engine.

Finally, Chapter 8 provides some conclusions on model-based design of pure and mul-
ticomponent cellulosic biofuels and is meant to give directions for further research in the
field.

1.2 Previous publications of contents and results

This thesis has emerged from the research performed by the author during his time as
a full-time researcher (Wissenschaftlicher Mitarbeiter) at the Institute for Process Sys-
tems Engineering at Aachener Verfahrenstechnik from February 2011 to January 2017.
Throughout this entire period, the author has also been a member of TMFB. Most parts
of this thesis have already been published:

e This Chapter (Introduction) is to some extent based on previous publications in
Energy € Fuels (Dahmen and Marquardt, 2015, 2016, 2017).

e Parts of Chapter 2 (Basic concepts of fuel design), most parts of Chapter 3 (Tar-
geted generation of candidate structures) and most parts of Chapter 6 (Model-based
identification of biofuel candidates) as well as the contents of Appendix A (Trans-
formation rules for molecular structure generation) have already been published in
slightly modified forms in a contribution to Energy & Fuels (Dahmen and Marquardt,
2016).

e Parts of Chapter 2 (Basic concepts of fuel design), most parts of Chapter 4 (GC-based
prediction of fuel auto-ignition quality), the contents of Appendix B (Ezperimental
ignition delay data) and the contents of Appendix C (GC model for the derived cetane
number) have already been published in slightly modified forms in a contribution to
Energy € Fuels (Dahmen and Marquardt, 2015).

e Chapter 5 (QSPR-based prediction of physicochemical fuel properties) represents a
continuation and a more detailed elaboration of the concepts published in SAE Inter-

national Journal of Fuels & Lubricants (Dahmen et al., 2012). The basic principles
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of the revised QSPR modeling approach as outlined in Chapter 5 have already been
described briefly in a publication in Energy & Fuels (Dahmen and Marquardt, 2016).
Statistical measures for the models derived in Chapter 5 have been published in two
contributions to Energy & Fuels (Dahmen and Marquardt, 2016, 2017) where the
models have been used to perform computational fuel design. Although being based
on Dahmen et al. (2012) and Dahmen and Marquardt (2016, 2017), Chapter 5 has
been almost entirely rewritten to provide a more rigorous theoretical description of
the approach. Furthermore, the QSPR models are compared to existing property

prediction methods.

Most parts of Chapter 7 (Blend formulation by simultaneous product and pathway
design) and the contents of Appendix E (Rational formulation of biofuel miztures)
have already been published in slightly modified forms in Energy & Fuels (Dahmen
and Marquardt, 2017).
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In this Chapter, the basic concepts behind fuel design, i.e., tailoring the molecular struc-
ture of a fuel to the specific needs of an internal combustion engine, shall be introduced. As
depicted in Figure 2.1, fuel design does assume an understanding of how chemical structure
determines physicochemical fuel properties, and how these properties impact engine per-
formance. While these relationships are complex and not fully understood, some general
trends can be derived from experience with fossil fuels of varying composition, but also
from experience with a range of potential renewable fuels (Sorenson, 2001; Matijosius and
Sokolovskij, 2009; Bradley, 2009; Starck et al., 2010; Kremer, 2011; Thewes et al., 2011b;
Janssen et al., 2011; Christensen et al., 2011a; Reddemann et al., 2011; Rothamer and
Donohue, 2013; Westbrook, 2013; Heuser et al., 2013a; Kalghatgi, 2014b; Baumgardner
et al., 2015; McCormick et al., 2015; Hoppe et al., 2016a,b; Leitner et al., 2017). The first
Section of this Chapter is dedicated to this discussion. Particular attention is focussed
on the importance of fuel auto-ignition quality and its early assessment in the context of
fuel design. The Section concludes with a brief review of cellulosic biofuels that have been
studied in research engines and gives some perspectives on the definition of tailor-made
fuels. Section 2.1 represents an aggregation of two contributions published separately in

slightly modified forms in Energy & Fuels (Dahmen and Marquardt, 2015, 2016).

knowledge / models

= no. of carbons = volatility =  mixture
A | * H/C-ratio = cetane number formation
o =  oxygen content |$ = density = stability
~OH = functional groups = surface = efficiency
M/ - tension = emissions
LA -
chemical structure physicochemical properties engine performance

fuel design

Figure 2.1: The inverse problem of fuel design: How do physicochemical fuel properties in-
fluence the performance of an internal combustion engine? Which molecular structures exhibit
the desired properties?
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2.1 Physicochemical fuel properties and their impact on engine performance

Section 2.2 provides an overview on the production of bio-derived platform chemicals
which constitute important intermediates in the synthesis of biochemicals and biofuels. To
this end, building blocks frequently discussed in the literature are briefly reviewed. This
forms the basis for Section 2.3 where a first evaluation of a platform’s suitability for carbon-
and energy-efficient biofuel production is presented. Sections 2.2 and 2.3 have already been
published in a slightly modified form in Energy & Fuels (Dahmen and Marquardt, 2016).

Finally, Section 2.4 is meant to lay the foundations for the model-based fuel design
concepts proposed in the later Chapters by briefly reviewing computational methods fre-
quently employed in the design of chemical products and fuels, i.e., molecular structure

generation, property modeling, and enumeration- and optimization-based design.

2.1 Physicochemical fuel properties and their impact on

engine performance

Today’s fuel standards, e.g., the European gasoline fuel standard EN 228 (2014) or the
diesel fuel standard EN 590 (2014), guarantee that all fuel sold in the market is fully
compatible with the existing car fleet. Furthermore, the standards are used to enforce
legislative goals, e.g., the regulation of harmful emissions. However, if the full poten-
tial of oxygenated biofuels shall be exploited, the existing standards, most likely, are too
restrictive. For instance, volatility, density and heating value differ significantly, if pure-
component oxygenated fuels are compared to either gasoline (EN 228, 2014) or diesel
(EN 590, 2014) fuel. There is no apparent reason why the historically established fossil
fuel standards should define an ”optimal” fuel, which is best-suited for running advanced
internal combustion engines built to minimize emissions and maximize fuel efficiency.
Any formal definition of a tailored biofuel is complicated by the inherent complexities
brought by the fuel/engine interaction. Additional complexity arises from the many degrees
of freedom associated with different advanced combustion engine concepts. Still, some
general relations between physicochemical fuel properties and engine performance can be
derived and exploited for the purpose of fuel design as demonstrated by members of the
TMFB cluster (Kremer, 2011; Klankermayer et al., 2011; Janssen et al., 2011; Thewes
et al., 2011a,b; Victoria Villeda et al., 2012c; Dahmen et al., 2012; Hechinger et al., 2012b;
Heuser et al., 2013a; Hechinger, 2014; Hoppe et al., 2016a,b; Garcia et al., 2016; Dahmen
and Marquardt, 2016; Leitner et al., 2017). Table 2.1 shows the physicochemical fuel
properties that will be used throughout this thesis to identify fuel candidates by means
of computational methods. This fuel definition has evolved from the regular exchange
between the author of this thesis and members of the TMFB Core Interaction Field ” Fuel

Design”, most notably Florian Kremer, Andreas Janssen, Benedikt Heuser, Fabian Hoppe
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and Stefan Pischinger (Institute for Combustion Engines, RWTH Aachen University). The

relevance of these properties is briefly discussed in the following.

Table 2.1: Important physicochemical properties of oxygenated fuel components and their

impact on internal combustion engine performance.

fuel property SI engine CI engine
boiling point Ty [°C] oil dilution, cold start/run soot, (oil dilution)
derived cetane number DCN [-] compression ratio — efficiency | ignition control, (soot)

enthalpy of vaporization Hygp [kJ/kg] | cold start/run, charge cooling —

oxygen content wto, [Y%-wt] (soot) soot
lower heating value LHV [MJ/kg] mileage per unit mass of fuel
melting point Ty,err [°C] liquid fuel, winter operability
liquid density pr, [kg/m?] mixture formation — emissions
kinematic viscosity v [mm?/s] mixture formation — emissions
surface tension o [mN/m] mixture formation — emissions

Liquid hydrocarbons have been the fuel of choice for transport applications over the past
century due to their high volumetric energy density and ease in transportation, storage and
handling (Kalghatgi, 2014b). And, although vehicles fueled by natural gas and liquefied
petroleum gas have gained some market share, the focus of TMFB has always been on
liquid renewable fuels. Hence, boiling and melting points are important properties in the
design of biofuel components. Oxygenated fuels, however, exhibit a somewhat lower energy
density than their fossil counterparts (Yanowitz et al., 2011). For instance, the volumetric
energy density of ethanol is about a third lower than that of gasoline. This can be important
for customer acceptance. However, from the technical point of view, this should not be
a primary concern. Assuming a fixed volumetric intake of air, stoichiometric combustion
in the SI engine requires more volume of fuel to be injected, if gasoline is substituted by
ethanol. In fact, if this increase in volume is considered, the resulting in-cylinder energy,
as measured by the mixture heating value, is slightly higher for a direct-injection spark-
ignition engine running on ethanol instead of gasoline (Thewes et al., 2011b).

A fuel’s volatility is especially critical for smooth operation of spark-ignition (SI) engines
(Larsen et al., 2009; Yanowitz et al., 2011; Thewes et al., 2011b). Thewes et al. (2011b)
report on high lube oil dilution for 1-butanol (boiling point of 118 °C) in their comparative
assessment of alcohol-fuels. Besides the high boiling point, the high enthalpy of vaporiza-
tion of the alcohol-fuels makes it difficult to perform engine cold-start, especially at low
ambient temperatures (Jeuland et al., 2004; Thewes et al., 2011b; Hoppe et al., 2016a).
However, a high latent heat of vaporization also has certain advantages: Once the warm-up

driving phase has been completed, it provides a high charge cooling effect that enhances
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filling efficiency (Jeuland et al., 2004; Milpied et al., 2009). Moreover, engine knock is less
likely to occur in a cooler running engine (Larsen et al., 2009; Rothamer and Jennings,
2012).

Compared to SI engines, compression-ignition (CI) engines can burn less volatile fuel.
Still, oil dilution can become a concern, if fuel components are too heavy. For instance,
biodiesel, i.e., a mixture of long-chain alkyl esters, is less volatile than conventional diesel
and hence wall impingement of liquid fuel becomes more likely, especially if advanced
injection strategies are implemented to achieve low-temperature combustion aiming for
reduced NOx and soot emissions (Dec, 2009; Fisher et al., 2010).

Fuel evaporation and mixing with air must occur in the short period between injection
and ignition. In CI engines, the poor availability of oxygen in the fuel-rich regions of
burning diesel jets triggers soot formation via the nucleation of intermediate hydrocarbon
species which cannot be oxidized completely (Sorenson, 2001; Westbrook et al., 2006; Tree
and Svensson, 2007; Dec, 2009; Kalghatgi, 2014b). As the liquid fuel is injected into the
cylinder, it forms a cone-shaped spray that entrains hot gases from its surrounding. Soot
formation is initiated when the fuel-rich mixture ignites and, eventually, the rich mixture
burns out at the jet’s periphery in a stoichiometric diffusion flame (Tree and Svensson, 2007;
Dec, 2009). Since the diffusion flame limits the amount of oxygen available within the jet,
non-sooting combustion requires that the air entrainment prior to the lift-off length, i.e.,
the distance between the nozzle and the beginning of the diffusion flame, is strong enough
to form a mixture, which is too lean for excessive soot production (Pickett and Siebers,
2004; Tree and Svensson, 2007).

Several authors (Lee et al., 2002, 2005; Park et al., 2009, 2010; Wang et al., 2011;
De Ojeda et al., 2011; Janssen et al., 2011; Heuser et al., 2013a,b, 2014; Wang et al., 2014,
Liu et al., 2014) have concluded that a high fuel volatility, a low surface tension and/or
a low viscosity can enhance fuel atomization and/or evaporation and thereby improve ho-
mogenization of the mixture. Others (Siebers, 1999; Tree and Svensson, 2007; Groendyk
and Rothamer, 2015) have argued that, with today’s high injection pressures, fuel atom-
ization and interphase transport of mass and energy at droplet surfaces in many situations
no longer constitute limiting factors, as diesel jets develop in a mixing-limited regime, i.e.,
a regime where fuel vaporization is predominantly controlled by the air entrainment and
by the mixing of fuel with oxygen in the cross-sectional area of the spray. In the same
line of thought, it has been hypothesized that a long ignition delay could improve mixture
homogenization and thus could decrease soot production as its lower reactivity would yield
a larger lift-off length (Boot et al., 2008; Donkerbroek et al., 2011; Janssen et al., 2011;
Garcia et al., 2016). However, further systematic investigations of fuel spray development

at conditions representative of low-temperature diesel combustion must be performed on a
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broader range of alternative (oxygenated) fuels to clarify and separate the impacts of the
different physicochemical fuel properties on the mixture formation process in CI engines
(Reddemann et al., 2010, 2011; Garcia et al., 2016). If direct-injection SI engines are oper-
ated in the fuel-efficient stratified mode, mixture homogeneity is also less pronounced than
in older SI engines using port fuel-injection systems. Similar to CI engines, it is believed
that soot is formed under locally rich conditions here (Hemdal et al., 2011; Storch et al.,
2015).

An interesting option for shifting the local carbon to oxygen ratio in the air/fuel-mixture
towards the more favorable regime is to burn a fuel with a high oxygen content (Sorenson,
2001). Oxygenated fuels have indeed been found to effectively reduce emissions of partic-
ulate matter (Tree and Svensson, 2007; Janssen et al., 2011; Liu et al., 2012; Garcia et al.,
2016). While it seemed initially that the amount of soot reduction is controlled mainly by
the fuel oxygen mass fraction (Sorenson, 2001), kinetic modeling suggests that different
functional groups containing oxygen, e.g., alcohol, ether and ester, differ in their propen-
sity to suppress the production of soot precursor species (Westbrook et al., 2006). On the
basis of experimental observations, Boot et al. (2008) have hypothesized that oxygenates
in which an oxygen atom is bonded to two carbon atoms (C—O—C) would have the highest
potential to reduce soot emissions. The underlying idea is that the fuel oxygen sequesters
the bonded carbon into partially oxidized C; or Cy species and that therefore this carbon
is no longer available for the formation of soot precursors like ethylene or acetylene (Boot
et al., 2008). If the use of an oxygenated fuel is combined with exhaust gas recirculation,
which can effectively reduce NOx emissions, the classical soot/NOx trade-off curve of CI
engine combustion can be shifted towards significantly lower values for both soot and NOx
emissions (Boot et al., 2008; Janssen et al., 2011; Heuser et al., 2013a; Bhardwaj et al.,
2013; Garcfa et al., 2016). In SI engine combustion, ethanol-blended fuels have likewise re-
vealed reduced emissions of particulate matter. However, for certain operating conditions,
ethanol-containing fuel can increase soot emissions, because ethanol’s physical properties,
e.g., its high enthalpy of vaporization and its high viscosity, can have negative effects on

the in-cylinder mixture formation process (Storch et al., 2015).

Ignition control is key for smooth and efficient engine operation. In the CI engine, the
fuel needs to auto-ignite shortly after it has been injected into the compressed hot air. Fu-
els, that readily auto-ignite under temperature and pressure attained near the end of the
compression stroke, exhibit a high cetane number (CN) (ASTM D613, 2015). In contrast,
the air-fuel mixture is ignited by a spark from a spark plug in SI engines. Here, the fuel
has to withstand auto-ignition during the compression stroke as well as in the so-called
endgas, i.e., the region that has not yet been reached by the flame. Otherwise, knock,

i.e., a steep rise in pressure not timed properly with the combustion event, can do severe
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damage to the engine (Kalghatgi, 2005, 2015). Fuel antiknock quality is most commonly
expressed by means of research octane number (RON) (ASTM D2699, 2013) and motor
octane number (MON)(ASTM D2700, 2014). It is closely related to SI engine efficiency
and power output. The trend towards downsizing and turbocharging, i.e., forcing as much
air as possible into the cylinder, makes knock more likely to occur due to the resulting
high temperature and pressure of the charge. In certain operational regimes, most modern
high-performance SI engines are knock-limited for regular fuels (Kalghatgi, 2015). The
kinetically controlled homogenous charge compression ignition (HCCI) engine is expected
to combine the advantages of the SI engine (low emissions) and of the CI engine (high
efficiency); it relies on the auto-ignition event taking place at a desired point in time for
given temperature and pressure histories of premixed air and fuel in the cylinder for a
certain varying load, intake air temperature and other operational boundary conditions
(Yao et al., 2009; Kalghatgi, 2014b). Due to control problems and load restrictions the
realization of a full HCCI engine is considered unlikely. However, (partially) premixed
compression-ignition (PCI) combustion is a promising concept for the simultaneous reduc-
tion of soot and NOx emissions (Kalghatgi, 2014b): A longer ignition delay (corresponding
to a lower CN) allows for earlier injection to provide more time for mixing fuel and oxygen

before the combustion starts. This way, high levels of soot emissions can be avoided.

2.1.1 Early-stage, rapid screening of fuel auto-ignition quality

Single-cylinder cooperative fuels research (CFR) engines are used to experimentally deter-
mine RON; MON and CN (Kalghatgi, 2014b). The early screening of novel biofuel candi-
dates, however, calls for a laboratory test method able to run on a small volume of fuel.
The Ignition Quality Tester (IQT) described in ASTM D6890 (2011) determines the igni-
tion quality of a fuel by measuring the ignition delay in a heated, temperature-controlled,
constant-volume combustion chamber (Allard et al., 1997, 1996; Kalghatgi, 2014a). Ad-
vantages of this approach include excellent reproducibility, fast execution and low fuel
demand (Ghosh and Jaffe, 2006; Ghosh, 2008). Moreover, since many pure-component
(oxygenated) hydrocarbon fuels have been studied in this apparatus, there is already a
collection of ignition delay data available in the literature. The IQT ignition delay is fre-
quently re-expressed as derived cetane number (DCN). DCN is thought to represent an
approximation of CN (Allard et al., 1997, 1996; ASTM D6890, 2011). Similarly, Perez and
Boehman (2012) have suggested IQT correlations for RON and MON.

In the IQT apparatus, the injection of liquid fuel into compressed hot air is followed by
simultaneously occurring evaporation, mixing and chemical reaction as illustrated in Figure
2.2. The buildup of radicals finally leads to the ignition event. Conditions, processes and

ignition delays are similar to those observed in CI engines. Due to the precisely controlled
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Figure 2.2: The processes occurring in the IQT and relevant fuel properties (based on Murphy
et al. (2004)). The physical contribution to the ignition delay is usually completed within
a few milliseconds (Ryan and Matheaus, 2003). The contribution of the chemical delay is
similar in case of diesel-like fuels, but is much larger for gasoline-like fuels. Physical and
chemical contribution to ignition delay overlap, since gas-phase reactions start as soon as the

fuel vaporizes.

conditions in the IQT combustion chamber, the reproducibility errors on IQT derived CN
are typically significantly lower than those of the ASTM D613 (2015) CFR engine (Allard
et al., 1996, 1997; Ghosh and Jaffe, 2006; Ghosh, 2008). It should be noted that chemically
different fuels such as tetrahydrofurans or ethers were not included in the derivation of the
DCN equation (ASTM D6890, 2011). Still, high reactivity indicated by a diesel-like IQT
ignition delay suggests further investigation of a fuel candidate towards use in CI engines.

Such evidence can be generated by CN determination according to ASTM D613 (2015).
Perez and Boehman (2012) have based their IQT correlations for RON and MON on

21 surrogate fuels for gasoline. In contrast to their diesel-like counterparts, fuels with
high ON show long delays (ranging from approximately 15 ms up to 100 ms in the IQT;
cf. Appendix B). For some anti-knock agents such as toluene or methyl tert-butyl ether
(MTBE) the ignition event is even absent, i.e., no ignition can be detected within 100 ms.
The long delay is attributed to low reactivity because Ryan and Matheaus (2003) report

evaporation and mixing in the IQT to last a few milliseconds only. Similarly, Bogin et
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Figure 2.3: Qualitative sketch of the relationship between ON and CN (adapted from Kalghatgi
(2005)). Typical ranges for ON / CN of gasoline and diesel fuels are given.

al. (Bogin Jr et al., 2011, 2013; Osecky, 2013), who have studied the mixture formation
process in the IQT combustion chamber by means of computational fluid dynamics, have
found that the fuel-air mixture in the IQT becomes pseudo-homogeneous for long ignition
delays (~ 20 ms and longer). This conclusion has been shared by Perez and Boehman
(2012). Auto-ignition in SI engines typically originates from the premixed endgas, i.e.,
the region where the air/fuel mixture has not yet been reached by the flame. Despite
notable differences in mixture preparation and boundary conditions, ON and (D)CN are
loosely negatively correlated as indicated in Figure 2.3 (Bowden et al., 1974; Ryan and
Matheaus, 2003; Kalghatgi, 2005; Haas et al., 2011; Perez and Boehman, 2012). However,
it is generally believed that ignition delay measured at a single temperature is a rather
poor discriminator among different high ON fuels (Griffiths et al., 1997; Tanaka et al., 2003;
Kalghatgi, 2005). Hence, if a long delay is measured in the IQT, the knock-resistance of
the fuel candidate should be further quantified by determination of research octane number
(RON) and motor octane number (MON) according to ASTM D2699 (2013) and ASTM
D2700 (2014), respectively.

Ideal fuels for HCCI and PCI combustion comprise a medium reactivity, i.e., these fuels
should have a moderate ON and a moderate CN (Kalghatgi, 2014b). On the IQT ignition
delay scale, such a fuel is expected to lie somewhere in between the extremes defined by
diesel-like and gasoline-like fuels. While CN determination is expected to offer further
guidance for PCI combustion, auto-ignition in HCCI engines occurs over wide ranges of

temperature and pressure. Most likely, detailed kinetic experimentation, e.g., in a shock
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Figure 2.4: Qualitative sketch of the relationship between IQT ignition delay and derived
cetane number (DCN). The axis do not scale linearly. Three segments on the IQT ignition

delay scale are related to fuel candidates for different types of internal combustion engines (SI,

PCI & HCCI, CI).

tube or in a rapid compression machine, is required to assess whether a novel compound
can be used in this challenging type of combustion engine. A new control system for
the IQT allows to study fuel auto-ignition for a wider range of pressure and temperature
(Bogin Jr et al., 2011, 2013, 2014). This paves the way for the validation of chemical
kinetic mechanisms by means of IQT measurements, if conditions and fuels are chosen to
produce long ignition delays (~ 20 ms and larger) (Haas et al., 2011; Bogin Jr et al., 2011,
2013; Osecky, 2013; Bogin Jr et al., 2014). As an empirical alternative to detailed kinetic
investigation, Kalghatgi (2005, 2014b) has proposed the so-called octane index, which can
be obtained from rearranging RON, MON and a parameter K, which is not a fuel property,

but depends on the particular type of engine.
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Figure 2.4 summarizes the interpretation of IQT data based on the aforementioned
relationships between IQT ignition delay and auto-ignition in practical engines. To this
end, three coarse segments on the IQT ignition delay scale are distinguished which refer to
fuel candidates for CI, PCI & HCCI and SI engines, respectively. Figure 2.4 also suggests
confirmatory analysis, e.g., CN determination in the CFR engine according to ASTM D613
(2015). It is expected that the classification is most reliable for extreme fuels, i.e., fuels
comprising either a high CN (short IQT delay; cf. Figure 2.4, left) or a high ON (long or
absent IQT delay; cf. Figure 2.4 right).

Although determination of CN; RON and MON can be seen as validation experiments,
these cover a restricted range of possible engine operation only, thus highlighting the lim-
itations of all conventional test procedures and empirical measures for the assessment of
auto-ignition (Bradley, 2009; Kalghatgi, 2014b). Due to the complex interactions between
fuel chemistry, thermophysical fuel properties and operational boundary conditions, the
degrees of freedom of a particular internal combustion engine will most likely require opti-
mization for a new fuel to unlock its full potential. This has been successfully demonstrated
for 2-methylfuran (Thewes et al., 2011a; Hoppe et al., 2016b; Leitner et al., 2017), i.e., a
novel pure-component biofuel (exhibiting a DCN of 9.1) for highly-boosted direct-injection

SI engines.

2.1.2 Cellulosic biofuels studied in research engines

Based on the aforementioned relationships between physicochemical fuel properties and
engine performance, a range of well known cellulosic biofuels has been identified and is
briefly reviewed in Table 2.2. Besides the alcohols, the list includes furan derivatives, ethers
and esters. Not all compounds exhibit ideal properties. ~-Valerolactone (Horvath et al.,
2008) and ethyl levulinate (Christensen et al., 2011a), for instance, exhibit high RONSs;
however, poor volatilities strongly limit blending into gasoline (Yanowitz et al., 2011). The
low DCN of ethyl levulinate does not allow it to replace a significant portion of fossil diesel
fuel, either (Christensen et al., 2011a). The use of the alcohols is impaired by low volatilities
and high enthalpies of vaporization (Thewes et al., 2011b). 2-Methyltetrahydrofuran (2-
MTHF) can be synthesized efficiently from levulinic acid (Geilen et al., 2010). However,
if 2-MTHF is blended into gasoline or ethanol, its poor RON (Christensen et al., 2011b)
negatively affects the knock-resistance of the mixture. Likewise, the low DCN sets a limit
for blending 2-MTHF into diesel fuel (Janssen et al., 2011).
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Table 2.2: Cellulosic biofuels that have been studied in research engines.

compound

engine

main findings

v-valerolactone

SI

pros: high knock-resistance (RON 100), higher energy
density than ethanol (Yanowitz et al., 2011); cons: very
poor volatility (boiling point 218 °C) (Yanowitz et al.,
2011); = blend component only

o

v

2-methylfuran

SI

pros: high knock-resistance (RON 100.7), higher en-
ergy density than ethanol, improved cold start/run due
to gasoline-like enthalpy of vaporization and low boiling
point (64 °C) (Thewes et al., 2011a); cons: less knock-
resistant than ethanol (Thewes et al., 2011a); note:
the structurally similar 2,5-dimethylfuran has also been
studied (Christensen et al., 2011b; Yanowitz et al., 2011;
Rothamer and Jennings, 2012; Qian et al., 2015)

ethanol

SI

pros: very high knock-resistance (RON 108.6) (Thewes
et al., 2011a,b), charge cooling due to high enthalpy of
vaporization (Jeuland et al., 2004); cons: low energy
density, problematic cold start /run due to high enthalpy
of vaporization and boiling point (78 °C) (Larsen et al.,
2009; Thewes et al., 2011a,b)

0K

1-butanol

SI

pros: higher energy density than ethanol, less corrosive
than ethanol (Jin et al., 2011; Yanowitz et al., 2011);
cons: knock-resistance similar to RON95 but signifi-
cantly worse than ethanol (Thewes et al., 2011b); prob-
lematic cold start/run and high oil dilution due to high
boiling point (118 °C) (Thewes et al., 2011b; Yanowitz
et al., 2011); note: butanol and pentanol isomers have
also been studied (Yanowitz et al., 2011)

~ol

ethyl-tert-butyl ether

SI

pros: extreme knock-resistance (RON 118), higher en-
ergy density than ethanol, gasoline-like enthalpy of va-
porization, low boiling point (72 °C) (Lakdé et al., 2008)

(o)

o

2-methyltetrahydrofuran

SI/CI

pros: higher energy density than ethanol, high volatil-
ity (Yanowitz et al., 2011); cons: poor knock-resistance
(RON 86) (Christensen et al., 2011b); poor derived
cetane number (DCN 21.3; cf. Appendix B); = blend

component only
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Table 2.2: Cellulosic biofuels that have been studied in research engines (continued).

compound engine | main findings

pros: high knock-resistance (Christensen et al., 2011a);

o o cons: very poor volatility (boiling point 209 °C), very
M low derived cetane number (DCN <5) (Yanowitz et al.,
A\ SI/CI | 2011; Christensen et al., 2011a); = blend component

ethyl levulinate only; note: the structurally similar butyl levulinate has

also been studied (Yanowitz et al., 2011; Christensen
et al., 2011a,b)

pros: high energy density, nearly soot-free combustion

(Heuser et al., 2013a); cons: high hydrocarbon and high
NN 0n

CI engine noise emissions due to long ignition delay (Heuser
1-octanol et al., 2013a) (DCN 33.9; cf. Appendix B); high viscos-
ity (7.3 mPa-s at 25 °C) (Heuser et al., 2013a)
pros: high energy density, high volatility (boiling point
e NN o 141 °C), nearly soot-free combustion (Heuser et al.,
dibutylether 2013a); note: extremely prone to auto-ignition (Heuser

et al., 2013a) (DCN ~115; cf. Appendix B)

Three cellulosic biofuels from Table 2.2, namely ethyl-tert-butyl ether (ETBE), 2-
methylfuran and di-butylether, can be considered pure-component biofuels with tailored
properties. ETBE is derived from ethanol and isobutylene (Laké et al., 2008). Large-scale
fermentative production of isobutylene has been estimated to be feasible at reasonable cost
(van Leeuwen et al., 2012) and the French company Global Bioenergies has announced
the production of fully renewable ETBE in early 2017 (Global Bioenergies, 2017). 2-
Methylfuran is more resistant to engine knock than RONO95 gasoline. This allows it to
increase engine efficiency by up to 18% (Hoppe et al., 2016b). Moreover, 2-methylfuran
exhibits better properties in cold start/run than ethanol due to a more gasoline-like en-
thalpy of vaporization (Thewes et al., 2011a; Hoppe et al., 2016a,b). Di-butylether, finally,
is an excellent fuel for the CI engine, since it burns nearly soot-free, even if exhaust gas
recirculation is applied to reduce combustion temperatures below the threshold for NOx
formation (Heuser et al., 2013a; Hoppe et al., 2016b).

2.1.3 Perspectives on the definition of tailor-made fuels

Due to the fact that the physicochemical properties mentioned in Table 2.1 can be pre-

dicted solely on the basis of the two-dimensional molecular graph, a vast amount of
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molecular structures can be screened computationally, thus guiding experimental inves-
tigation towards the most promising fuel candidates. It shall be stressed, however, that
the fuel/engine interaction is far too complex to be described entirely by the properties
listed in Table 2.1. However, as will be shown in Chapter 6, these properties already allow

to limit the range of potential fuel candidates to a few, distinct molecular motifs.

Within TMFB, efforts are taken to provide predictive models for two important addi-
tional fuel properties, i.e., the wear scar diameter as a measure for fuel lubricity (Masuch
et al., 2011; Weinebeck and Murrenhoff, 2013) and the threshold sooting index (TSI) as
an indicator for a fuel’s intrinsic propensity to produce soot (Graziano et al., 2016). Yang
et al. (2007) have reported that the TSI seems to correlate well with soot emissions from
jet turbine combustion. Shortly thereafter, Pepiot-Desjardins et al. (2008) and then later
Barrientos et al. (2013) have proposed first structure-property relations for TSI prediction
based on the principle of group additivity. Dooley et al. (2012a) have successfully employed
TSI in the rational formulation of surrogate fuels designed to emulate the combustion be-
havior of Jet-A fuel. However, Pitz and Mueller (2011) have noted that it is not yet clear
whether fuel-induced changes in TSI quantitatively reflect fuel-induced changes in engine-
out soot emissions encountered in practical automotive diesel engines. Recently, Graziano
et al. (2016) have proposed to tackle modeling of raw soot emissions from diesel engines
by a combination of three characteristic fuel numbers: the intrinsic tendency to produce
soot, the ignition delay and few thermophysical properties that influence soot oxidation

via their impact on the in-cylinder mixture formation process.

Perspectively, zero- or quasi-dimensional engine models (Verhelst and Sheppard, 2009;
Kumar et al., 2013) could play a role in fuel design as they allow to assess the performance
of alternative fuels in more detail, if the fuel-specific influences of gas temperature, pressure
and composition on the ignition delay and/or flame speed can be represented by empirical
or semi-empirical submodels. For instance, submodels for the laminar burning velocity
of small alcohol-fuels have been proposed by Hechinger (Hechinger and Marquardt, 2010;
Hechinger, 2014) and Verhelst and co-workers (Vancoillie et al., 2011). The latter model
has been implemented in a quasi-dimensional engine simulation together with an algebraic
knock model (Vancoillie et al., 2014). Similarly, Vandersickel et al. (2012) have developed a
three-stage Arrhenius approach describing the ignition delay as a function of temperature,
pressure, equivalence ratio and exhaust gas recirculation. However, due to the large amount
of experimental data that is required for parametrization and validation of such submodels
for the variety of molecular structures, engine simulation most likely will have to be reserved

to the few, most promising fuel classes.

Beyond the properties mentioned above, there is a multitude of fuel properties like

toxicity or storage stability which, although being important, are not considered in this
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thesis because model-based evaluation of these properties is yet impossible for the variety of
molecular structure considered here. Harnisch et al. (2013) have compiled a comprehensive
list of laboratory-based test methods suitable for the investigation of fundamental prop-
erties, combustion engine related properties and health related properties of prospective
liquid biofuel compounds. Within TMFB, research has been directed towards the toxi-
cological and ecotoxicological potencies of selected biofuel componds, e.g., 2-methylfuran,
2-methyltetrahydrofuran and ethyl levulinate (Bluhm et al., 2012, 2016).

2.2 Exploitation of the structure of lignocellulosic biomass

Non-edible biomass consists of three major fractions: cellulose, hemicellulose and lignin
(Huber et al., 2006; Lange, 2007). Lignin accounts for approximately 15-20 wt-% (Wyman
et al., 2005) and is a highly branched large polyaromatic compound (Huber et al., 2006).
Efficient selective catalytic extraction of lignin monomer units is difficult due to the variety
of different interunit linkages (Azadi et al., 2013). Consequently, aqueous-phase catalytic
processing of lignocellulosic biomass primarily targets the easier accessible carbohydrates
found in cellulose and hemicellulose (Huber et al., 2006; Alonso et al., 2010). In this
context, however, the lignin stream can be burned to provide process heat or electricity
(Huber et al., 2006; Lange, 2007; Alonso et al., 2010; Serrano-Ruiz and Dumesic, 2011;
Azadi et al., 2013). The production of renewable hydrogen for upgrading the carbohydrate
streams constitutes another possible utilization of lignin (Azadi et al., 2013).

Cellulose is a linear polymer of glucose monomers and represents approximately 40-50
wt-% of dry biomass (Wyman et al., 2005; Lange, 2007; Serrano-Ruiz and Dumesic, 2012).
In contrast, hemicellulose is an amorphous polymer of five different C5 and Cg sugars
(25-35 wt-% of lignocellulose) (Wyman et al., 2005; Alonso et al., 2010; Serrano-Ruiz and
Dumesic, 2012). Chemical and/or mechanical pretreatment is needed to break the lignin
protection before the polysaccharides can be deconstructed into monosaccharides such as
glucose (CgH206) and xylose (C5H19O5) by enzymatic or acid hydrolysis (Serrano-Ruiz
and Dumesic, 2011, 2012). After depolymerization, the sugars have to be deoxygenated
and/or joined in order to obtain a liquid biofuel (Serrano-Ruiz and Dumesic, 2011, 2012).
The production of cellulosic biofuel as a two-step process, i.e., chemo- or bio-catalytic con-
version of (hemi-)cellulose into high-volume intermediates and subsequent chemo-catalytic
upgrading to fuels, is sketched in Figure 2.5. Full deoxygenation of biomass is possible,
however neither necessary nor meaningful, since a small amount of oxygen can be utilized
to tailor fuel properties (Lange, 2007).

Chemical conversion of sugars into valuable products mainly proceeds via the forma-

tion of furfural and hydroxymethylfurfural (HMF) (Alonso et al., 2010; Serrano-Ruiz and
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Figure 2.5: Production of cellulosic biofuel as a two-step process, i.e., chemo- or bio-catalytic
conversion of (hemi-)cellulose into high-volume intermediates and subsequent chemo-catalytic

upgrading to fuels.
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Dumesic, 2011; Gallezot, 2012). Production of furfural based on Cs sugars has been in-
dustrialized (Mamman et al., 2008). In contrast, HMF synthesis is more complicated. It is
performed best with fructose, requiring an extra isomerization step for the more abundant
glucose (Chheda et al., 2007; Serrano-Ruiz and Dumesic, 2012). Unwanted side reactions
constitute another problem encountered in chemical synthesis of furanic platform chemi-
cals. Biphasic reactor concepts have shown promising results. Here, HMF is continuously
extracted by an organic solvent in order to avoid consecutive reactions in the aqueous
phase (Romén-Leshkov et al., 2006; Alonso et al., 2010; Serrano-Ruiz and Dumesic, 2012).
Both furfural and HMF can be upgraded to yield levulinic acid or v-valerolactone, two
chemicals which are sometimes considered platform chemicals on their own (Wright and
Palkovits, 2012; Alonso et al., 2013).

Bio-catalytic conversion of carbohydrates into platform chemicals represents an inter-
esting alternative due to the high selectivity, mild conditions and low exergy losses (Jager
and Biichs, 2012). Synthetic biology and metabolic engineering are employed in the opti-
mization of bacteria and yeast with respect to high yield production of advanced biofuels
(Wackett, 2011; McEwen and Atsumi, 2012; Rabinovitch-Deere et al., 2013). Unfortu-
nately, microbial cells tend to be less productive, if mixtures of hydrolyzed monosaccha-
rides are used instead of pure glucose (Straathof, 2014). Furthermore, since glucose is
the preferred sugar, the pentoses often accumulate in the fermentation media until the
preferred sugar is completely consumed (Kim et al., 2010). However, some (genetically
modified) strains are capable of co-fermenting both hexoses and pentoses such that se-

quential, separate fermentation steps are not required (Jager and Biichs, 2012).

A variety of platform chemicals derived from lignocellulosic biomass has been proposed
in recent years (Werpy et al., 2004; Bozell and Petersen, 2010; Straathof, 2014; Sheldon,
2014). Table 2.3 includes oxygenated products from fermentation of glucose as well as
derivatives of furfural and HMF. Data provided in this table have been sourced mainly
from two review papers published by Jang et al. (2012) and Straathof (2014). Glycerol
is a large-volume by-product of biodiesel production and its valorisation to commodity
chemicals is therefore attracting interest (Serrano-Ruiz and Dumesic, 2012; Sheldon, 2014).
However, the triglyceride feedstock belongs to the edible, non-abundant biomass. Hence,
glycerol is not included in Table 2.3. For the sake of simplicity, all compounds in Table
2.3 are grouped by two main types of substrates, namely hexoses and pentoses. Note
that fermentation products constitute the vast majority of intermediates, as organisms are
well-skilled to produce a variety of acids, diols and polyfunctional compounds. These need
to be upgraded in order to obtain fuel candidates, thus calling for the two-step process

outlined in Figure 2.5.
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2.3 Carbon- and energy-efficient biofuel production

The theoretical maximum yield for any intermediate or product CyH,O, of glucose can
be calculated from the general reaction stoichiometry (Cherubini and Stromman, 2010;
Straathof, 2014)

C6H1206 + vo, - Oy — Uproduct * CXHyOZ + veoz - COg + VH,0 * H,O (2.1)

involving stoichiometric coefficients vo,, Vproduct, Voo, and v,o.

This yield is pathway-independent and solely determined by the elemental composition
of reactants and products. It can be considered a benchmark for any real technology,
since it allows to estimate how close the performance of a practical process approaches the
ideal case (Cherubini and Stromman, 2010). In economically feasible biofuel production,
raw material cost is considered to dominate all other costs (Vickers et al., 2012; Klein-
Marcuschamer and Blanch, 2013). An ideal process would achieve the theoretical maximum
yield and would not exhibit any cost related to the transformation of biomass into liquid
fuel such as energy input, catalyst, labor, waste treatment etc. Since the material costs
are inescapable, the minimum production cost can be estimated based on this assumption
(Klein-Marcuschamer and Blanch, 2013). Note that vco, for the computation of the
theoretical maximum yield in Eqn. (2.1) can be negative, if the microorganisms can utilize
CO, as additional substrate (Straathof, 2014).

Next to the theoretical and practical yields, the lower heating value efficiency is an
important criterion for the selection of intermediates in biofuel production. One kilogram
(kg) of glucose has an energy content of 14.1 MJ, based on the lower heating value (LHV)
which is computed as the heat of combustion minus the enthalpy of vaporization of water
formed during combustion at standard state (Lide, 2003). Given the stoichiometry of
ethanol production (1 mol glucose is converted into 2 mol ethanol and 2 mol CO,), 1 kg
of glucose can be converted into 0.51 kg of ethanol, if it is assumed that the maximum
theoretical yield is achieved (Straathof, 2014). The energy content of these 0.51 kg of
ethanol is about 13.7 MJ (Lide, 2003). Thus, if the LHV energy efficiency is defined as

mass of fuel produced [kg] - LHV of fuel [MJ/kg]
mass of glucose spent [kg] - LHV of glucose [MJ/kg] ’
(2.2)

LHYV efficiency [%] = 100 [%] -

it becomes clear that in ethanol production the energy provided by the glucose is almost
entirely conserved in the resulting liquid fuel. Petrus and Noordermeer (2006) have argued

that conversion of sugars to biofuels generally proceeds at highest LHV efficiencies, if
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the necessary deoxygenation is carried out by removal of CO, and/or water. The latter
compounds are combustion products and therefore, by definition, have a heating value of
zero. The rationale behind the LHV efficiency is that biomass is cumbersomely grown,
harvested and transported. A low sugar-to-fuel LHV efficiency can only be offset, if more
biomass is produced or if external hydrogen is supplied. Moreover, Lange (2007) observed
that, irrespectively of the technology chosen, LHV energy efficiency seems to inversely
correlate with the capital cost of a biomass conversion plant.

The LHV efficiency not only depends on the mass yield, but also on the changes to the
atomic composition. The significance of the choice of the ”"right” platform chemical for
biofuel production can be illustrated with the help of the simple LHV model developed by
Hechinger et al. (2010):

_73.147 + 795.727 - nC' — 187.697 - SCBO

LHV [MJ/kg] = o g/l (2.3)

Model equation (2.3) is applicable to CyH,O, compounds with a wide range of carbon
atoms and has been derived and cross-validated using the DIPPR database of organic
compounds (AIChE, 2012). M denotes the molar mass and nC' is the number of carbon
atoms. SCBO is the abbreviation for the sum of conventional bond orders of all bonds
not involving hydrogen, i.e., 1, 2, 1.5 for single, double and aromatic bonds respectively
(Todeschini and Consonni, 2008). For instance, nC=6 and SCBO=12 result in a LHV of
14.4 MJ /kg for glucose (literature value (Lide, 2003) 14.1 MJ/kg, 2.1% prediction error).
The prediction for ethanol is 28 MJ/kg (literature value (Lide, 2003) 26.8 MJ/kg, 4.5%
prediction error). Hence, the predicted theoretical limit for LHV efficiency of ethanol
(C5HgO1) production becomes 99% based on the stoichiometry vo,=0, Vproduct=2, Vco,=2
and vp,0=0 in Eqn. (2.1).

In contrast, 3-methyltetrahydrofuran has been proposed as a biofuel candidate derived
from itaconic acid (Geilen et al., 2010). However, the predicted LHV energy efficiency
for the step glucose to itaconic acid is only 76%. In the aerobic fermentation of itaconic
acid, oxygen is not only removed as COs and water, but also introduced to the molecular
structure. Looking at the stoichiometry, this can be interpreted as a partial oxidation. In
consequence, itaconic acid does not carry all the energy contained in the substrate glucose
anymore. Subsequent steps to eliminate water and/or COy with or without hydrogena-
tion cannot return this energy, as can be seen from Figure 2.6. If hydrogen is used in
the upgrading of carbohydrate streams, its LHV (120 MJ/kg) should be included in the
calculation, since the hydrogen has to be provided either externally or via production from
residual biomass (cf. Figure 2.5).

Predicted LHV efficiencies for other platform chemicals are shown in Table 2.4. The

calculations are based on both maximum theoretical yield and practical yield. Note that
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Figure 2.6: Itaconic acid as intermediate in biofuel production and predicted LHV efficiencies

(glucose/hydrogen to end product).

values slightly larger than one are obtained for some compounds due to model inaccuracy.
Similar to itaconic acid, citric acid and 2,3-butanediol are associated with inescapable
losses due to the unfavorable changes to the atomic composition.

As can be seen from Tables 2.3 and 2.4, there are significant gaps between theoretical
mass yields and reported practical mass yields for the majority of intermediates. Thus, real
LHYV efficiencies fall short of 100%. Likewise, practical chemical conversion into furfural
and HMF does not proceed at the theoretical maximum yield. For economically feasible
production of advanced biofuels, a multitude of problems has to be solved. In fermentation
processes, yields, but also productivity and titer have to be improved (Klein-Marcuschamer
and Blanch, 2013; Van Dien, 2013). It has been estimated that microbial fermentation pro-
cesses with productivities below 2 g/(L-h) cannot be commercialized due to high capital
cost for the fermenters (Van Dien, 2013). With respect to downstream separation cost, a
minimum titer of 50 g/L is desired for the production of basic and intermediate chemicals
(Van Dien, 2013). If engineering of enzymes and strains has yielded sufficiently fast produc-
tion pathways, strategies like cell immobilization, retention or recycling and in-situ product
recovery can be employed to optimize a bio-catalytic production system (Straathof, 2014).
In chemo-catalytic conversion, heterogeneous non-precious metal catalysis is expected to
significantly reduce processing costs (Carlini et al., 2004; Fan et al., 2011; Yang et al., 2011,
Wright and Palkovits, 2012).

The bio-derived platform chemicals still comprise a high oxygen to carbon ratio. The

elimination of CO; is one possibility to yield liquid fuel. However, higher mass-specific
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Table 2.4: Potential platform molecules and predicted sugar to chemical LHV efficiencies.

pred. pred. LHV pred. LHV
compound sum LHV efficiency at efficiency at
formula MJ theor. yield real yield
/kg] [x100%)] [x100%)]
hexoses
ethanol CoHgOq 28.0 0.99 0.97
lactic acid C3HgO3 14.8 1.03 (1.00) 1.00
acetone C3HgO 294 0.99 0.23%
1-butanol C4H1001 33.8 0.97 0.85
itaconic acid Cs5HgO4 15.3 0.77% 0.66
citric acid CeHsOr 10.6 0.78" 0.64
succinic acid C4HgOy4 13.3 1.04 (1.00) 0.98
isobutanol C4H1001 33.8 0.97 0.83
2,3-butanediol C4H100, 25.7 0.89° 0.85
acetic acid CoH4O9 15.2 1.06 (1.00) 0.80
butyric acid C4HgOo 24.2 0.99 0.78
1,3-propanediol C3HgO2 22.5 0.99 0.80
3-hydroxypropionic acid C3HgO3 14.8 1.03 (1.00) 0.53
fumaric acid C4H404 11.9 1.06 (1.00) 0.66
malic acid C4HgOs5 10.3 1.06 (1.00) 0.63
hydroxymethylfurfural CgHgO3 19.8 0.96 0.86
levulinic acid C5HgOg3 20.3 0.91¢ 0.72¢
~-valerolactone C5HgOo 25.5 0.98 0.71
pentoses
furfural C5H402 21.7 0.96 0.77
levulinic acid C5HgOg3 20.3 0.98¢ 0.71¢
~-valerolactone C5HgOo 25.5 0.96¢ 0.62¢
¢ LHV of co-products ethanol and 1-butanol not considered

b aerobic fermentation

¢ LHV of sideproduct formic acid not considered
¢ LHV of hydrogen (120 MJ/kg) as additional substrate considered
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energy densities are obtained, if hydrogen is used for deoxygenation and for saturation (cf.
Eqn. (2.3)). Depending on the process and its environment, different levels of hydrogena-
tion can be attractive (cf. Figure 2.5). The supply of hydrogen by steam reforming of
fossil energy carriers, although being the cheapest choice nowadays (Abbasi and Abbasi,
2011), obviously contradicts the vision of carbon-neutral biofuel production and utiliza-
tion. Supply via gasification of residual biomass is linked to high cost (Holladay et al.,
2009). Pyrolysis (Baumlin et al., 2006), aqueous phase reforming (Cortright et al., 2002)
and biological hydrogen (Kapdan and Kargi, 2006) present alternative options (Holladay
et al., 2009; Abbasi and Abbasi, 2011). Finally, hydrogen for biofuel synthesis can be
produced from water electrolysis using (intermittent) renewable electricity (Shinnar and
Citro, 2006; Agrawal et al., 2007; Muradov and Veziroglu, 2008).

2.4 Computer-aided design of chemical products and fuels

Computational methods and tools supporting the rational design of single-molecule chem-
ical products are commonly summarized under the term computer-aided molecular design
(CAMD) (Achenie et al., 2003; Gani and Ng, 2015). CAMD aims at solving the in-
verse problem of property prediction, thus the purpose of CAMD is to identify molecular
structures that meet certain pre-defined target properties. Typical examples of CAMD
products include industrial solvents, refrigerants, ionic liquids and pharmaceutical agents
(Ng et al., 2015b). In recent years, CAMD techniques have been applied to the design
of pure-component biofuels as well (Hechinger et al., 2010; Victoria Villeda et al., 2012a;
Hechinger et al., 2012b; Dahmen et al., 2012; Hechinger, 2014; Victoria Villeda et al., 2015;
Hoppe et al., 2016b; Dahmen and Marquardt, 2016).

Various CAMD approaches have been developed over the years and it is common practice
to classify CAMD techniques into different categories, e.g., generate & test and mathemat-
ical programming (Achenie et al., 2003; Ng et al., 2015b). The generate & test approach
(Gani et al., 1991; Constantinou et al., 1996; Achenie et al., 2003) describes a two-step pro-
cess. Fist, candidate structures are generated algorithmically, e.g., by joining pre-defined
functional groups into all chemically feasible molecules. Typically, an enumeration-based
strategy is pursued here. Then, in the second step, the generated structures are tested, i.e.,
their physicochemical properties are predicted and compared against the target values.

In contrast, the mathematical programming approach (Duvedi and Achenie, 1996; Churi
and Achenie, 1996; Samudra and Sahinidis, 2013; Zhang et al., 2015a) aims at solving the
inverse problem directly by combining structure generation and property evaluation in one
optimization problem. Again, the basic principle here is that the molecular structure of

the product can be assembled from a given set of structural groups. However, this time
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numerical optimization is used to form feasible molecules on the basis of formalized bonding
requirements. Along with property constraints based on the group additivity principle, the
entire design problem can thus be written as a single mathematical optimization problem,
i.e., a mixed-integer nonlinear program (Duvedi and Achenie, 1996; Achenie et al., 2003).
The numerical solution to this problem corresponds to a feasible molecular structure that
is predicted to exhibit the desired physicochemical properties.

There are additional CAMD categories, e.g., evolutionary strategies, and often algo-
rithms from different categories are combined in a hybrid approach where a hierarchy of
sub-problems is solved due to the fact that the original problem can be decomposed (Gani,
2004a,b). Excellent overviews of CAMD approaches and applications have been published
by Achenie et al. (2003) and Ng et al. (2015b). The applicability of CAMD depends on the
availability of mathematical models describing the target properties as functions of molec-
ular structure. Besides structure generation, property modeling is therefore an essential
part of every model-based molecular design. In principle, a variety of property models
ranging from simple empirical models to physically motivated models, e.g., a combination
of quantum-mechanics with equations of state, can be employed as part of CAMD. Molec-
ular detail, properties and corresponding models can be organized in a hierarchical fashion
to improve computational efficiency (Harper et al., 1999; Harper and Gani, 2000; Gani,
2004a). A comprehensive review of the different modeling approaches available in the
context of computer-aided fuel design has been compiled by Hechinger (2014). In prac-
tice, however, group contribution methods (GCMs) and quantitative structure-property
relationships (QSPRs) are most commonly used due to their relatively simple algebraic
nature allowing for the rapid evaluation of large numbers of molecular structures. The
fundamentals of GCM and QSPR are briefly introduced in the following two subsections,
since all the property modeling efforts described in the present thesis are based on GCM
and QSPR.

2.4.1 Group contribution (GC) modeling

Group contribution methods (GCMs) explicitly relate information about the molecular
structure of a compound to the macroscopic property of interest by means of one (or few)
algebraic equation(s). The fundamental assumption in group contribution modeling is
that a property y; of a molecule ¢ can be explained by additive contributions from different
molecular groups (Constantinou and Gani, 1994; Bader and Bayles, 2000).

Most often, the model structure

Yi=Y_ 9aiGa+ P, (2.4)
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Ix TQ:(ring)

3x ~CH2- (nonring)

1x >CH- (ring) i.....}

3x —CH2- (ring)

Figure 2.7: Group decomposition scheme of Joback's method (Joback and Reid, 1987) applied
to butyl-tetrahydrofuran.

which is linear in the parameters G, and P, is pragmatically selected as a starting point
because of its simplicity. The parameter G, represents the contribution of the structural
group a with integer occurrence g, ;. Parameter P represents a contribution that is common
to all molecules. G, and P need to be determined by means of regression analysis performed
on y, i.e., the vector of known (experimental) property data.

Instead of Equn. (2.4), nonlinear functions can be applied. For instance, Joback and Reid

(1987) have suggested to calculate the critical temperature T,,.;; of molecule ¢ based on

-1

2
Teviti = Tooiti | Provies + Proics (Z ga,iGa,TCm> - (Z ga,iGa,Tcnt> . (25)

a a

Note that an estimate of the normal boiling point T}, ; is used alongside the group contri-

butions g,; in this model. Similar to Eqn. (2.4), Pr, ,,, and Pr,,, are constants. Gar,,,,

rit,1 rit,2
are the group contributions.

Due to a modest number of groups, the application of Joback’s GCM is straightforward,
as can be seen from the example of butyl-tetrahydrofuran shown in Figure 2.7. In Joback’s
scheme, however, certain isomers may yield an identical group decomposition, and hence
cannot be distinguished. With the aim of improving the accuracy of GCM, in particular
with regard to the description of isomers and polyfunctional compounds, Gani and co-
workers have pioneered multi-level GCMs which rely on a larger number of (more complex)
structural groups that are organized in a hierarchical manner (Constantinou and Gani,
1994; Marrero and Gani, 2001; Hukkerikar et al., 2012). To this end, the linear model from

Eqn. (2.4) has been slightly modified to distinguish first-, second- and third-order groups:

Y = § ga,iGa +Xa2 : § ga2,iGa2 +Xa3 : § ga3,iGa3 +P (26)
a a2 a3
first-order groups second-order groups third-order groups

Based on a comprehensive database of thermophysical properties, Marrero and Gani

(2001) have performed a three-step regression procedure on Eqn. (2.6): In the first level

35

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

2 Basic concepts of fuel design

of estimation, the constants y,2 and x,.3 were set to zero. Similar to Joback’s GCM, the
182 first-order groups have been chosen to describe the entire molecule, i.e., each fragment
of a given molecule shall be covered by exactly one first-order group. In contrast, the
122 second-order groups have been allowed to overlap each other. Furthermore, simple
compounds do not require any second-order groups at all. The second level of regression
has been carried out by setting X, to unity and x,3 to zero and by fixating the contri-
butions G, obtained in the first run. This way, the second-order groups are thought to
act as corrections for the first-level property estimation. Finally, the same principle has
been applied to 66 third-order groups, which had been chosen to describe large molecular
fragments in polycyclic compounds.

A significant fraction of the parameters in the Marrero and Gani (2001) model, including
certain parameters for first-order group contributions, could not be determined by regres-
sion due to missing property data. To overcome this limitation, Gani et al. (2005) have
proposed the so-called group contribution plus (GC™) methodology, i.e., a combination of
group contribution and atom connectivity index modeling. Here, the connectivity index
model is used to predict the missing group contributions from the Marrero and Gani model
(Villalba, 2009; Hukkerikar et al., 2012; Hukkerikar, 2013). Gonzalez et al. (2007) have
transferred this concept to the prediction of missing group interaction parameters in the
UNIFAC method (Fredenslund et al., 1975), i.e., a GCM frequently used for the prediction
of liquid-phase activity coefficients. However, the general applicability of the approach for
prediction of missing group interaction parameters in UNIFAC is heavily debated (Mohs
et al., 2009; Gani and Gonzélez, 2009; Villalba, 2009; Mustaffa et al., 2011).

2.4.2 Quantitative structure-property relationship (QSPR) modeling

The aim of quantitative structure-property relationship (QSPR) or quantitative structure-
activity relationship (QSAR) modeling is to identify a mathematical relationship between
the property (or the activity) of interest and a set of so-called molecular descriptors, i.e.,
scalar quantities that can be derived from the two- or three-dimensional structure of a given
molecule (Katritzky et al., 1995; Todeschini and Consonni, 2008). Commercially available
software packages like CODESSA PRO (Katritzky et al., 2005) and DragonX (Todeschini
et al., 2009) support the calculation of hundreds or even thousands of such descriptors
belonging to various classes, e.g., the classes of constitutional, topological or quantum-
chemical descriptors (Katritzky et al., 1995; Todeschini and Consonni, 2008). Examples
for constitutional descriptors include the molecular weight of a compound, the number
of atoms of a certain type and the number of bonds of a certain type. The branching
of a molecule is described by topological descriptors, i.e., descriptors related to molecular

connectivity. The determination of quantum-chemical descriptors is more computationally
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demanding, because the full spatial molecular arrangement needs to be known. Although
the required geometry optimization can be performed by means of simplified molecular me-
chanics or semi-empirical methods, precise three-dimensional coordinates are obtained only
from ab initio quantum-chemical methods (Hechinger et al., 2012c). Note that functional
group counts can constitute molecular descriptors as well.

Most QSPR models rely on the assumption that the property of interest y depends
linearly on few, selected molecular descriptors (Katritzky et al., 1995, 2010). Hence, the

general model equation for a compound i reads

yi=P+di;Dy+dy; Do+ ... +dn, i Dy, (2.7)

where P, Dy, Dy, ...Dy, are the model parameters and di;,ds;, ..., dn,,; are the numerical
values obtained for the N, descriptors used in the particular model. Based on experimen-
tal property data y, the Ny 'significant’ descriptors are chosen by some form of (heuristic)
stepwise multi-parameter regression analysis (Katritzky et al., 1995, 2010; Yousefinejad
and Hemmateenejad, 2015). Many algorithms have been proposed for this variable se-
lection task, however, there is no general consensus on a ’best” way of choosing a mul-
tivariate model (Olden and Jackson, 2000; Whittingham et al., 2006; Sauerbrei et al.,
2007; Murtaugh, 2009). Instead of multiple linear regression (MLR), projection methods
like principal component analysis (PCA) (Wold et al., 1987; Jolliffe, 2002) or partial least
squares (PLS) (Hoskuldsson, 1988; Wold et al., 2001) are often preferred, if the descriptor
data suffer from a high degree of collinearity, or if the ratio of the number of training
molecules to the number of variables, i.e., the descriptors, is small (Katritzky et al., 1995,
2010). Methods based on artificial intelligence (Al), e.g., genetic algorithms (Rogers and
Hopfinger, 1994), artificial neural networks (Wikel and Dow, 1993) or simulated annealing
(Sutter et al., 1995), have been applied to the variable selection problem as well. Some of
the AT methods, e.g., artificial neural networks (Oinuma et al., 1990), can also be utilized
for model construction and are, in principle, able to reveal nonlinear relationships between
the molecular descriptors and the property of interest. Recently, Yousefinejad and Hem-
mateenejad (2015) have provided an excellent review of the different strategies for variable
selection and model construction in the context of QSPR/QSAR modeling.

Overfitting and chance correlation are two major pitfalls in QSPR/QSAR modeling
(Dearden et al., 2009; Cherkasov et al., 2014). Overfitted models include more terms,
i.e., descriptors, than are necessary to describe the property y. The irrelevant descriptors
can have a negative impact on the predictive capability of the model, because they add
noise to the predictions (Hawkins, 2004). If variable selection strategies are employed, the
descriptors are typically chosen such that the resulting model equation is highly signifi-

cant by some standard statistical criteria (Katritzky et al., 2010). Since standard criteria
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do not take into account the number of descriptors actually screened for inclusion, they
can be highly misleading (Topliss and Costello, 1972; Topliss and Edwards, 1979). As a
consequence, there is a substantial risk that the identified correlation has occurred purely
by chance. The possibility of obtaining chance correlations is particularly high, if the
number of compounds is small compared to the number of potential descriptors (Topliss
and Costello, 1972). For MLR studies, five compounds per available descriptor constitutes
a frequently recommended minimum ratio (Dearden et al., 2009; Cherkasov et al., 2014;

Yousefinejad and Hemmateenejad, 2015).

The problems of overfitting and chance correlation can be mitigated to some extent by
choosing appropriate algorithms for model construction, e.g., by considering PLS if the
descriptors are numerous and collinear (Clark and Cramer, 1993; Eriksson et al., 2003;
Katritzky et al., 2010). Validation strategies are key in revealing both overfitting and
chance correlation phenomena. Careful model validation is absolutely essential as it is a
much more reliable way of estimating the predictive power of a QSPR/QSAR model than
is the examination of the goodness-of-fit with respect to the training data (Tropsha et al.,
2003; Eriksson et al., 2003; Hawkins, 2004; Gramatica, 2007; Roy, 2007). In recent years, it
has become common to distinguish between internal and external validation (Gramatica,
2007). In internal validation, the entire data set is used both to fit the model and to
estimate the prediction error. Cross-validation (CV) is most frequently applied for this
task (Hawkins et al., 2003). In contrast, external validation refers to the use of an entirely
independent data set to test the predictive power of the derived model (Eriksson et al.,
2003; Tropsha et al., 2003). To facilitate an external validation, the modeling data set is
split into a training set and a test set before modeling is initiated. Alternatively, external
validation data can be acquired after modeling has been completed, e.g., by performing a
new round of experiments. The successive application of internal and external validation
is now widely recognized as the gold standard in QSPR/QSAR modeling (Tropsha et al.,
2003; Roy, 2007; Dearden et al., 2009; Tropsha, 2010; Gramatica, 2014).

Most training data sets are created by retrieving property data from databases of known
physicochemical properties. Since these data sets do not result from optimal experimental
design, they are more or less structurally limited, i.e., the compounds cover only certain
parts of the chemical space (Jaworska et al., 2005). The model applicability domain (AD)
concept relies on the assumption that, in general, interpolation is more reliable than ex-
trapolation. In the context of QSPR/QSAR modeling this implies that predictions are
considered to be most accurate, if the target compounds are ’similar’ to the training com-
pounds (Netzeva et al., 2005). In order to quantify similarity, the descriptor space is exam-
ined. The strengths and limitations of different similarity measures for use in QSPR/QSAR

studies have been compared multiple times (Netzeva et al., 2005; Jaworska et al., 2005;
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Weaver and Gleeson, 2008), however, there is no AD definition that is considered 'best’ in
all cases. It is therefore up to the modeler to select an AD concept that is suitable for the
training data and the prediction task at hand (Sahigara et al., 2012).

It shall be noted that several authors have formulated best practices for QSPR/QSAR
modeling (Golbraikh and Tropsha, 2002a; Tropsha et al., 2003; Eriksson et al., 2003; Walker
et al., 2003; Gramatica, 2007; Tropsha, 2010; Cherkasov et al., 2014) and that lists of
typical errors and pitfalls in QSPR/QSAR studies have been compiled by Cronin and
Schultz (2003), Dearden et al. (2009) and Scior et al. (2009).
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structures

In earlier work on biofuel CAMD (Hechinger et al., 2012a,b; Dahmen et al., 2012; Victo-
ria Villeda et al., 2012b,c; Hechinger, 2014; Weinebeck et al., 2014; Hoppe et al., 2016b),
the molecular structure generator Molgen (Gugisch et al., 2015) had been used to generate
candidate structures in a systematic fashion. Molgen enables the deterministic genera-
tion of all mathematically feasible CyH,O, structures solely based on the valence rules. A
bad-list of unwanted (sub-)structures can be supplied to remove certain structures from
the output, e.g., peroxides (—O—0O—) or structures with patterns considered chemically
infeasible (Hechinger, 2014; Gugisch et al., 2015). The strength of the Molgen generator,
i.e., its ability to explore the ”full” molecular search space, however, comes at the price of
high combinatorial explosion even for molecules of relatively small sizes. Little structural
variations, e.g., an additional methyl group or a slightly different position of a carbon-
carbon double bond, result in a large number of structurally similar compounds exhibiting
similar properties. In the context of fuel design, the number of molecules predicted to
satisfy all imposed property constraints easily becomes huge and a further ranking of fuel
candidates solely on the basis of property values gets difficult (Dahmen et al., 2012). Most
importantly, there is no ”connection” between the promising molecules and any potential
substrates. Consequently, the experienced chemist will have to work through a huge list
of molecules to find potential targets for synthesis.

Similarly, in the case of optimization-based CAMD, it is difficult to formulate a compre-
hensive set of mathematical constraints that link CAMD products to multiple pre-defined
substrates such that this link can be interpreted as a potential synthetic pathway from
substrates to products. As pointed out by Ng et al. (2015b), molecular design that consid-
ers the reactions involved to actually synthesize a product remains a relatively unexplored
research area. Addressing this challenge, Chemmangattuvalappil and Eden (2013) have re-
cently proposed a new algorithm that solves molecular design problems in reactive systems
by tracking changes in molecular signature descriptors, which can be related to different
types of chemical reactions. This way, modifications in the chemical structure can be

correlated to changes in the property, because the molecular signatures also serve as a
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basis for property estimation by means of inverse quantitative structure-property/activity

relationship modeling (Visco et al., 2002).

With the aim of focussing CAMD efforts on products resulting from carbon- and energy-
efficient upgrading of bio-derived platforms, a rule-based generator of molecular structures
is introduced in this Chapter. In contrast to Molgen, the targeted algorithm starts on a
user-defined list of bio-derived intermediates, i.e., the platform molecules, and iteratively
expands the product spectrum by applying a few, simple transformation rules reflecting

changes that could occur, in principle, due to chemo-catalytic refunctionalization.

The structure generator has been inspired by rule-based generation of reaction mecha-
nisms in chemical (Corey and Wipke, 1969; Broadbelt et al., 1994; Buxton et al., 1997,
Song, 2004; Rangarajan et al., 2010; Victoria Villeda, 2017) and metabolic engineering
(Hatzimanikatis et al., 2005; Yim et al., 2011) and had originally been developed as a com-
plement to ReNeGen (Victoria Villeda, 2017), i.e., a reaction network generator for use in
biofuel pathway exploration and analysis developed at the Institute for Process Systems
Engineering at Aachener Verfahrenstechnik. The refunctionalization rules for the structure
generator (cf. Appendix A), which were chosen to preserve the full carbon skeleton of the
platform chemicals in order to focus entirely on functional group transformations (Buxton
et al., 1997), have been compiled in collaboration by the author of this thesis and Juan José
Victoria Villeda, the author of ReNeGen, during their time at the Institute for Process
Systems Engineering. Chemical feasibilities of specific refunctionalizations have also been
discussed with Stefanie Mersmann (Institute of Organic Chemistry, RWTH Aachen Uni-
versity) and Jirgen Klankermayer (Institut fiir Technische und Makromolekulare Chemie,
RWTH Aachen University). The structure generator has been implemented in Matlab
(The MathWorks Inc., 2016). Juan José Victoria Villeda has proposed to preserve the car-
bon skeleton and has contributed implementations of Morgan’s algorithm (Morgan, 1965;
Figueras, 1993) as well as routines for structure import/export from/to SMILES code
(Weininger, 1988; Weininger et al., 1989) based on an interface to the OpenBabel software
package (O’Boyle et al., 2011).

Early versions of the structure generator have been presented at conferences (Dahmen
et al., 2013a,b; Klankermayer et al., 2013; Marquardt et al., 2013) and large parts of
this Chapter have already been published in Energy & Fuels in a slightly modified form
(Dahmen and Marquardt, 2016). CAMD approaches relying on similar ways of targeted
structure generation, starting from bio-derived platforms and following pre-specified trans-
formations, have been reported by Bergez-Lacoste et al. (2014), Moity et al. (2014, 2016)

and Gerbaud et al. (2017) with respect to the computational identification of bio-solvents.
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3.1 Main principles in structure generation

In order to resemble carbon- and energy-efficient processing, functional transformations
should adhere to the three main principles depicted in Table 3.1, thus following the line of
thought presented in Section 2.3, i.e., the energy density of a fuel is tied to the number of
carbon atoms and the amount of bonded hydrogen.

The first principle ensures that each feasible combination of precursor molecule(s) and
product molecule satisfies the reaction stoichiometry, where hydrogen and water are the
only additional reactants. Moreover, waste is restricted to CO, and water, because their
enthalpy of combustion is zero. The first principle therefore resembles both the concept of
atom-efficiency, i.e., one of the fundamental cornerstones of green chemistry (Trost, 1991;
Constable et al., 2002; Li and Trost, 2008; Anastas and Eghbali, 2010), and the concept

of energy-efficiency (Petrus and Noordermeer, 2006).

Table 3.1: Three main principles for the generation of molecular graphs from pre-defined

intermediates as part of model-based fuel design.

. L. . example: itaconic acid — 3-MTHF
main principle rationale .
(Geilen et al., 2010)
stoichiometry should only | general feasi-
1.| cover substrate, product, Ha, | bility, LHV & | CsHgO4 + 5 Hy — CsH100; + 3 HoO
CO9 and HyO atom efficiency
. . selectivity = H00 0 o o
preservation of carbon-carbon [2) 03)
2. LHV & atom o o
bonds (no rearrangement) . o (2
efficiency 07 ~OH [
. . selectivity = HO_-O °
refunctionalization instead of (A] o
3. . . . LHV & atom o
arbitrary oxygen functionality . (=)
efficiency 07 0H

The second principle rules out isomerization. Similar to Buxton et al. (1997), the carbon
skeleton of the intermediates shall be preserved in the course of molecule generation, as the
focus lies on functional group transformations. It is assumed here that, in the majority of
cases, the preservation of the existing carbon-carbon bonds will improve the chances that a
refunctionalization can be carried out with high selectivity, i.e., a fundamental prerequisite
for atom- and carbon-efficient fuel production.

The third principle refers to the location of oxygen in the fuel molecule. It ensures that
oxygen functionality, e.g., an alcohol group, cannot be attached at an arbitrary position
of the carbon skeleton, but must result from a feasible functional transformation applied

to a precursor molecule, e.g., a carboxylic acid. In this manner, oxygen atoms can only
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3.2 Relations to rule-based reaction network generation

occur at distinct positions, which are ultimately given by the starting materials, i.e., the

bio-derived platform chemicals.

3.2 Relations to rule-based reaction network generation

Compared to rule-based generators of reaction networks like ReNeGen (Victoria Villeda,
2017), the algorithm of the structure generator presented here is quite simple. This is
due to the fact that there is no network structure to be processed or stored. As indi-
cated in Figure 3.1, only the involved platforms are memorized along with each product
to be generated by the algorithm. The needed information can be retrieved easily from
the immediate predecessor molecule(s). This simple strategy allows for the computation-
ally efficient generation of large numbers of molecular structures over many iterations by

avoiding the complexities associated with the consideration of reaction pathways.

| platform A —>| product 1 I product 5 I product 8

A A . A&(@A/B)
| platform B Q product 2 >|| product 6

A/B A/B

‘| product 3
B >Z| product 7 I product 9
platform C |—%|
Ist iteration 2nd iteration 3nd iteration

Figure 3.1: Basic function of the molecular structure generator: Instead of processing a network
structure (corresponding to the arrows in the graph), only the information on involved platforms
(i.e., the information in the dashed rectangles) is stored for each product to be generated by

the algorithm.

As a part of a systematic methodology for computer-aided product design in biore-
fineries, Chemmangattuvalappil and Ng (2013) have proposed the concept of a chemical
reaction pathway map (CRPM) by (i) categorizing organic chemicals based on ten func-
tional groups, and (i) by connecting the categories via 27 potential reaction pathways.
In terms of the idea of exploring feasible transformations in bioprocessing by focussing

attention on specific functional groups, the CRPM approach has some similarities to the
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structure generator described here. In fact, structure generation in CAMD and reaction
mechanism generation can be regarded as complementary tools in model-based fuel design.
A mechanism generator, e.g., the software-package RING developed by Daoutidis and co-
workers (Rangarajan et al., 2010, 2012; Daoutidis et al., 2013; Rangarajan et al., 2014a,c)
or ReNeGen (Victoria Villeda, 2017) can be employed to explore the synthetic feasibility

of substrate/product combinations more rigorously, i.e., by considering specific reaction
pathways and conditions. Many schemes for heterogeneous catalytic reactions relevant to
bio-renewable processing have been formalized for RING, making it particularly useful in
this context. It allows for on-the-fly estimation of thermochemistries, activation barriers
and even kinetic rates (Marvin et al., 2013; Rangarajan et al., 2014b). Recently, variants of
reaction network flux analysis (RNFA) (Voll and Marquardt, 2012b) have been combined
with both RING and ReNeGen to automatically generate and evaluate synthesis routes
for the production of biofuels (Marvin et al., 2013; Victoria Villeda, 2017).

3.3 Pool-based scheme and implementation

The implementation of the structure generator is based on a simple representation of molec-
ular graphs allowing for an efficient manipulation, thus strongly reducing algorithmic com-
plexity and computational effort. The three principles from Table 3.1, in particular the fact
that no rearrangement of existing carbon-carbon bonds shall occur, allow to encode molec-
ular graphs by the intuitive scheme shown in Table 3.2. Here, the hydrocarbon skeleton is
decomposed into straight carbon chains which superimpose at branching positions. Note
that most bio-derived platform chemicals are straight-chain molecules, because neither glu-
cose nor xylose are branched. The carbon atoms in each chain are numbered consecutively
and functionality is attached at distinct positions. If one (multiple) carbon chain(s) is
(are) connected via an oxygen atom with itself (each other), this carbon-oxygen-carbon
motif is referred to as C-O-C' coupling. C/C identities are used to describe the intersec-
tion of straight carbon chains. Exemplary encodings of molecular graphs can be found in
Table 3.3. Delocalization of electrons in aromatic rings, e.g., in a furan, is not specified
separately, but is recognized internally. An ester is composed of an =O group next to a
C-O-C coupling.

The general flowsheet of the molecular structure generator is depicted in Figure 3.2. It
reflects the idea of a pool of molecules that undergo refunctionalization. Starting with
a user-defined set of intermediates, transformation operators address either refunctional-
ization, i.e., the change of one or multiple functional group(s) including ring closure or
cleavage, or aggregation, i.e., two molecules are joined into a larger one, without rearrang-

ing existing carbon-carbon bonds. The sequence of transformations is aligned with the
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3.3 Pool-based scheme and implementation

Table 3.2: Encoding scheme for a molecular graph.

Any molecular structure is encoded by three elements:
1. Nj straight carbon chains
2. Ny C—0O—-C couplings used to connect carbon chains

3. Ng C/C identities used to connect carbon chains

chains
1 nC number of carbon atoms
P-on position vector of alcohol groups
P-o position vector of ketone/aldehyde groups
Pcoon position vector of acid groups
Po=C position vector of carbon-carbon double-bonds
2
Nr
C-0-C
couplings
carbons x¢ and x4 of chains x7 and x2 are linked via
1 (xxd)—(x2x)
oxygen
Ny
c/C
identities
b carbon x{ of chain x; is identical to carbon X}z) of
1 (Oanxd)—(xa:xz) .
chain o
Nk

aim of reducing the generation of duplicate molecules while ensuring that each possible
combination of transformations and intermediates is covered. Removal of duplicates is
still needed at distinct steps in the process and is performed with the help of Morgan’s
algorithm (Morgan, 1965; Figueras, 1993). The hydrogen demand as well as the number
of water and carbon dioxide molecules produced are tracked throughout the generation

process for each substrate/product combination individually.

An exemplary refunctionalization rule is given in Table 3.4. This rule can be applied
to any molecular graph comprising two or more alcohol groups. The purpose is to form a
ring involving oxygen, i.e., a cyclic ether. A set of auxiliary routines has been implemented

for tasks like counting the number of attached hydrogens, returning ring sizes, performing
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Table 3.3: Furfural and itaconic acid encoded by the scheme depicted in Table 3.2.

C-O-C coupling at positions 1 and 4

e

O / ——=0 group at position 5

\ C=C groups
at positions 1 and 3

furfural

C=C group

> C/C identity:
at position 1

chain 1, pos. 3

O 0 = chain 2, pos. 2
ol on
HO
0\

COOH groups
at positions 1 and 4

itaconic acid

(one straight carbon chain @) to @ ) ( two straight carbon chains €)to €) and @ to @)
chains chains
1 nC 5 1 nC 4
P-oH [] P-OH []
P=0 [5 P=0 []
PCcooH (] PCOOH [1,4]
Pc=c [1,3] Pc=c []
2 nC 2
P-0H []
P-0 []
PcooH []
Pc=C [1]
C-0O-C couplings C-0O-C couplings
1 (1,1)—(1,4) 0
C/C identities C/C identities
0 1 (1,3)—(2,2)

subpath detection etc. Note that the rule is formulated to directly act on the encoding

scheme shown in Table 3.2.

Corma et al. (2007), Alonso et al. (2010), Serrano-Ruiz et al. (2011), Serrano-Ruiz and
Dumesic (2011), Lange et al. (2010, 2012) and Climent et al. (2014) have reviewed catalytic
strategies to produce biofuels from carbohydrates. On the basis of these collections, rules
for structural modification that comply with the three main principles from Table 3.1 have
been formalized. These rules can be found in Appendix A. In an attempt to broaden
the product spectrum beyond Cg derivatives, adjustments to the molecular weight can be
made by aldol condensation (Julis and Leitner, 2012; Luska et al., 2014) (C—C coupling)

or by etherification/esterification (C—O—C coupling). Structurally, these reactions are

aggregations of two carbon skeletons without isomerization or carbon loss.
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3.3 Pool-based scheme and implementation

refunctionalization
adjustment of C/O- and H/C-ratio
-OH reduction to alkane,
dehydrogenation to
aldehyde/ketone,
self-etherification
=0 hydrogenation of ketones/
aldehydesto alcohols |
Cc=C hydrogenation of carbon- raggregation |
carbon double bonds | placement |
-COOH reduction to aldehyde, | of C-O-C :
intramolecular refunctionalization | couplings |
condensation adjustment | -OH and/or-COOH |
to cyclic anhydride of C/O- and H/C-ratio | |
OH+COOH  self-esterification <:>' etherification I
C-0-C ring opening of cyclic ring formation | (can berestrictedto |
ether/ester/anhydride involving the newly | certain patterns) |
furan ring opening, created C-O-C | :
hydrogenation coupling | esterification I
0

product
spectrum

forward
molecules to

feed forward /all generated
intermediates molecules to molecules are

intermediates

into pool 1 pool 2 pool 3 T,
U oeorceation | refunctionalization
aggregation i
: placement adjustment

of C/O- and H/C-ratio

=0 hydrogenationof
ketones/aldehydes to
alcohols

-OH reductionto alkane

| of C-C couplings
|

I aldol condensation
| (all, only chain-lengthening)

ring formation involving the
newly created C-C bond

Figure 3.2: Pool-based approach followed in molecular structure generation.

Refunctionalization and aggregation rules, however, give rise to a combinatorial growth.
An automatic pruning of the product spectrum is achieved through a priori estimation of
boiling and melting points by means of Joback’s group contribution method (Joback and
Reid, 1987). For instance, if two alcohols A and B can undergo etherification, the a priori

estimate of the normal boiling point Tye; (in °C) of the product C is

Tvoit,c = Thoit,a + Tooir, — 2 - 92.88 +22.42 . (3.1)

Since both normal boiling point and the melting point are linear combinations of group
weights, the aggregated molecule will be composed of all the groups contained in both

A and B, except for the two alcohol groups (—OH group weight of 92.88), which are
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Table 3.4: Exemplary illustration of a refunctionalization rule. The complete list of rules can

be found in Appendix A.

cyclodehydration of diols to cyclic ether
(self-etherification)

1. C! and C? are carbons in the same molecule, that

ffOH ?\/> a. both carry an —OH group

e

HO -H,0 b. are not identical (C'#C?)

c. have at least k carbons/oxygens inbetween (no rings
example: smaller than k+3)

14-butanediol is d. have a maximum of [ carbons/oxygens inbetween (no rings

refunctionalized yielding larger then {+3)

tetrahydrofuran e. have only one existing path between each other (not part

of an existing ring) OR have two existing paths between each
other, but one path is a subset of the other path (allows for
the formation of two rings attached to each other)

2. remove the —OH groups from C! and C?

3. make a C-O-C coupling between C! and C2, i.e., C'—0O—C?
[-H20]

replaced by a single non-ring ether group (—O— group weight of 22.42) (Joback and Reid,
1987). Similarly, the effect of any refunctionalization on boiling and melting point can
be assessed. Additional pruning is achieved by considering structural constraints, e.g., a
maximum number of carbon atoms or a maximum ring size. A complete scenario definition
for the molecular structure generator contains a list of bio-derived intermediates together

with a list of active transformation rules and constraints.

Figure 3.3 shows exemplary products generated by the rule-based approach starting from
only two intermediates, namely furfural and acetone. According to the workflow depicted
in Figure 3.2, the products are generated in three consecutive steps: (i) refunctionalization,
(il) aggregation by carbon-carbon coupling and refunctionalization, and (iii) aggregation by
carbon-oxygen-carbon coupling and refunctionalization. Adhering to the main principles
from Table 3.1, the algorithm generates acyclic and cyclic ethers, ketones, aldehydes,

alcohols, furans and polyfunctional compounds.

It shall be stressed that, in general, it cannot be expected that the number of transfor-
mation steps proposed by the structure generator is similar to the number of reaction steps.
This shall be exemplified by the reaction pathway for 2-methyltetrahydrofuran (2-MTHF)

production starting from levulinic acid as proposed by Geilen et al. (2010). This pathway
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-~ on o
o

inter- some products some products some products
mediates from refunctionalization from C-C coupling from C-O-C coupling

Figure 3.3: Exemplary products automatically generated based on two bio-derived intermedi-

ates, namely furfural and acetone.

describes a sequence of seven elementary reactions involving six intermediates, one of which
is a protonated species. While the five nonprotonated intermediates are also considered
potential products of levulinic acid by the structure generator, only three steps are required
in the scheme presented here to transform levulinic acid into 2-MTHF. Furthermore, the
catalytic system designed by Geilen et al. (2010) facilitates a one-pot synthesis (Hayashi,
2016), i.e., with a proper combination of ligand, additive, solvent and reaction temperature
the entire sequence of reactions can be performed in one reaction device. Because such cat-
alytic systems eliminate the need for purification and recycling of intermediates, they can
drastically simplify the process flowsheet, ultimately leading to lower operating cost, waste
production, as well as a lower consumption of auxiliary chemicals and energy (Bruggink
et al., 2003). Since sophisticated reaction engineering is required to develop these catalytic
systems, experienced chemists will still have to select the most attractive targets from
the list of CAMD fuel candidates manually. However, compared to the valence-rule based
structure generation, the targeted approach provides a much smaller list of alternatives
to choose from. Furthermore, the transformation rules can be re-configured or extended
easily. Hence, the human expert can utilize the computational tool to systematically ex-
plore and refine scenarios for the production of tailored biofuel components. Subsequent
use of complementary tools like RING or ReNeGen to generate, explore and optimize the
reaction pathways associated with certain substrate-product-combinations is conceivable,

however, beyond the scope of this thesis.
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4 GC-based prediction of fuel

auto-ignition quality

The early assessment of fuel auto-ignition quality is of paramount importance for any fuel
design methodology (cf. discussions in Chapter 1 and in Subsection 2.1.1). Although
multiple models for the prediction of pure-component octane number (ON) and cetane
number (CN) from molecular structure have been proposed over the course of the last 30
years (DeFries et al., 1987; Meusinger and Moros, 1999; Yang et al., 2001; Albahri, 2003;
Santana et al., 2006; Smolenskii et al., 2008; Lapidus et al., 2008; Katritzky et al., 2010;
Creton et al., 2010; Abdul Jameel et al., 2016), their applicability ranges are largely limited
to non-oxygenated hydrocarbon species, i.e., the constituents of fossil fuels. Specifically,
the validity of the earlier CN models is restricted to n-alkanes, iso-alkanes and singly
substituted alkylbenzenes (DeFries et al., 1987), to alkanes and cycloalkanes (Lapidus
et al., 2008; Smolenskii et al., 2008), or even to iso-alkanes only (Yang et al., 2001). The
model of Smolenskii et al. (2008) also returns some strange CN values, e.g., -146.12 for 3-
methyl-3-ethylhexane. More recently, Creton et al. (2010) have proposed separate QSPR
models for four classes of molecules, i.e., alkanes, cycloalkanes, alkenes and aromatics,
and Abdul Jameel et al. (2016) have trained a multiple linear regression model on CN
and derived cetane number (DCN) data of 71 hydrocarbons and 54 hydrocarbon blends.
The few attempts to extend the range of validity of ON and CN models to oxygenates
have generally suffered from a lack of ignition data of adequate quality for the variety of
molecular structures. Taylor et al. (2004), Saldana et al. (2011), Dahmen et al. (2012)
and Sennott et al. (2013a,b) have built QSPR models by gathering data mainly from the
experimental CN compendium released by Murphy et al. (2004), which contains some data
on oxygenates. However, only a small set of CN from this compendium had been measured
in an ASTM D613 (2015) cooperative fuels research (CFR) engine, whereas a much larger
set of correlated CN had been derived from cetene numbers, from ignition delay data
acquired in combustion bomb experiments and from mixture data (Murphy et al., 2004).

The limitations of existing models for fuel auto-ignition quality, i.e., ON, CN or DCN,
thus can largely be attributed to the lack of a high-quality training database holding

ignition delay data from a single well-defined experimental set-up for the variety of (oxy-
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4.1 Materials and methods for the rapid screening

genated) hydrocarbon species relevant to biofuel design. With the aim of assembling such
a database, DCN data from the literature have been augmented with data from a rapid
fuel screening campaign performed with an Ignition Quality Tester (IQT). The specific ad-
vantages of IQT-derived ignition delay and DCN in the context of fuel design have already
been discussed in Chapter 1 and Subsection 2.1.1. The results from the screening campaign
are briefly summarized at the beginning of this Chapter. The established database is then
used to develop a model for IQT ignition delay and DCN prediction based on the principle
of group additivity. To ease the use of the model, all inputs can be calculated (manually)
solely on the basis of the two-dimensional molecular structure. Likewise computation of
the DCN is facilitated by means of a few simple equations. As such, the model can be
easily incorporated into almost any manual or computational procedure evaluating the

potential of a molecular entity as a novel biofuel component.

This Chapter is structured as follows: Materials and methods for the experimental
screening are briefly summarized in Section 4.1. Thereafter, key assumptions and deci-
sions in the course of modeling are described in detail in Section 4.2. The initial model
formulation suffers from high parametric uncertainty and correlation, thus necessitating a
stepwise model reduction. The final model is validated by means of cross-validation and
external validation. Application of the model is demonstrated in Section 4.3 by means of
three examples. Finally, some conclusions are provided. This Chapter has already been

published in a slightly modified form in Energy & Fuels (Dahmen and Marquardt, 2015).

4.1 Materials and methods for the rapid screening

The fuel screening campaign has been executed with an IQT according to ASTM D6890
(2011) by ASG Analytik-Service GmbH (abbreviated below as ASG) in Neuséss, Germany.
ASTM D6890 (2011) requires that the charge air pressure in the IQT combustion chamber
must equal 2.1 MPa. Moreover, the charge air temperature as recorded by a thermocouple
shall be 818 £+ 30 K. Then, liquid fuel is injected into the chamber and the ignition delay
is defined as the time between the start of fuel injection, i.e., the rise of the needle, and
the start of significant heat release indicated by an increase in pressure beyond the pre-
injection level. The IQT device is calibrated by adjusting the set-point of the chamber
outer surface temperature controller until two reference substances, namely n-heptane and
methylcyclohexane, yield pre-defined ignition delays (ASTM D6890, 2011; Alnajjar et al.,
2010). According to ASTM D6890 (2011), the average over 32 combustion cycles is taken
as the final ignition delay 7 of a certain fuel. The so-called derived cetane number (DCN)

can then be calculated as
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Table 4.1: IQT ignition delay data and DCN data collected for the purpose of modeling.

no. of no. of
compounds compounds
found in screened by
literature ASG
n-alkanes 6 2
iso-alkanes 14 2
cyclo-alkanes 8 2
alkenes 9 2
cyclo-alkenes 1 6
alcohols 9 8
aldehydes 0 6
ketones 2 9
esters 12 6
acyclic ethers 3 10
furans 3 2
tetrahydrofurans 2 3
other cyclic ethers 3 3
lactones 0 4
benzene compounds 2 6
more than one oxygen functionality 6 10
total 80 81
DCN = 4.460 + 186.6/7 , (4.1)

if 3.1 ms < 7 < 6.5 ms. Ignition delays outside this range are transformed into DCN

according to

DCN = 83.99(7 — 1.512)706%8 1 3,547 (4.2)

instead (ASTM D6890, 2011). Combustion gases are released after each cycle.

It shall be noted that ASTM D7170 (2011) describes the so-called Fuel Ignition Tester
(FIT), which is another constant-volume combustion chamber set-up for the determination
of DCN. However, as a result of different boundary conditions, FIT-DCN values can differ
significantly from IQT-DCN values (Hui et al., 2012). Therefore, whenever it is referred to
DCN throughout this thesis, the intended reference is to IQT-DCN (ASTM D6890, 2011).

Fuel samples that had been bought and sent to ASG had a minimum purity of 96%.

Some samples contained small concentrations of oxidation inhibitors for stabilization. Ta-
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Table 4.2: Variation in ignition delay and DCN in case of 3-pentanone and y-undecanolactone
with respect to peroxide number measured according to I1SO 3960 (2010). All measurements
have been conducted by ASG.

mmeq O/kg* delay 7 [ms] DCN

3-pentanone® 22 8.51 26.9
3-pentanone’ <1 14.04 19.5
~y-undecanolactone® 23 3.57  56.7
v-undecanolactone® <1 3.88 52.6

* milliequivalent oxygen per kg fuel (mmeq O/kg)
@ as supplied by the manufacturer (cf. Appendix B)

b after column chromatography

ble 4.1 summarizes ignition delay data provided by ASG and DCN data collected from
the literature, in particular, from the two National Renewable Energy Laboratory CN
compendia (Murphy et al., 2004; Yanowitz et al., 2014). In total, data on 161 fuels have
been collected for the purpose of modeling. The whole data set, including supplier, purity
and stabilizer information, is provided in Appendix B. Due to strong effects of mixture
formation, gas temperature and pressure on the ignition delay, CN data deduced from ig-
nition delays obtained in other than IQT combustion experiments have been deliberately

neglected.

The main criteria for selection of compounds for IQT testing were commercial availabil-
ity, a reasonable price, sufficient quantity and purity. Furthermore, diversity with respect
to chemical structure was a main goal. Here, diversity has been assessed by grouping
compounds into functional classes, which were defined to represent typical (oxygenated)
products from lignocellulosic biomass (cf. Table 4.1). The author of this thesis has also
received suggestions for the selection of test compounds from Jakob Mottweiler (Institute
of Organic Chemistry, RWTH Aachen University).

Although the impact of peroxides forming in many fuel samples is rarely addressed in
the literature on combustion kinetic experiments, their ignition-enhancing effect is well-
known, for instance, from studies on biodiesel combustion (Graboski and McCormick,
1998). Yanowitz et al. (2014) also hypothesize that peroxides might have compromised
some of the data collected in their CN compendium. It is impossible to reliably estimate
the amount of peroxides in a fuel sample or the influence on the measured ignition delay
just from similarity of molecular structures. While certain molecular structures might favor
peroxide formation, the fuel history, i.e., its preparation, its purification and its storage,
is typically unknown. A dedicated exemplary study was performed for 3-pentanone and

~v-undecanolactone. As can be seen from Table 4.2, this investigation suggests a notable
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distortion of IQT ignition delay and DCN, if the peroxide level is very high. As a conse-
quence, the amount of peroxides has been measured by ASG for all fuel samples according
to ISO 3960 (2010), once the author of this thesis had become aware of this issue during the
experimental campaign (cf. Appendix B). ISO 3960 (2010) describes the iodometric de-
termination of the peroxide concentration in vegetable and animal fats and oils as follows:
The fuel sample is dissolved in isooctane and acetic acid first. Subsequently, potassium
iodine is added. Oxygen, chemically bonded as peroxide, liberates iodine from potassium
iodine; this iodine can be detected visually by titration with sodium thiosulfate. Mueller
et al. (2012) and Yanowitz et al. (2014) have reported on the use of silica gel columns
to remove ignition-accelerating species from hydrocarbons and/or non-polar oxygenates.
The silica gel adsorbs polar contaminants like water or oxygenates. Aluminium oxide (alu-
mina) constitutes another adsorbent frequently used in column chromatography. Prior to
the IQT testing, alumina column chromatography had been performed by ASG to obtain
accurate results, if the peroxide number according to ISO 3960 (2010) was found to be
moderate or high (cf. Appendix B). The findings from Table 4.2 strongly suggest that
peroxide testing should be performed routinely prior to combustion experiments, at least,

if unsaturated and/or oxygenated species are investigated.

4.2 Modeling strategy

The modeling procedure is divided into four consecutive stages which are depicted in
Table 4.3. In stage 1, the general model structure is introduced based on the theory of
group contribution modeling. Since parameter estimates of the initial model suffer from
high uncertainty and correlation, focus is then directed towards the rational reduction
of the number of model inputs and parameters in stage 2. In stage 3, three hypotheses
are introduced allowing for the formulation of the final IQT ignition delay model. This
model is validated in stage 4. The methods denoted in Table 4.3 are briefly introduced
in the following subsections to illustrate decision making in the course of modeling. The
interested reader is referred to the cited literature for background information.

As can be seen from Figure 4.1 (top), experimental ignition delays 7 are neither uniformly
nor normally distributed in the range zero to 100 ms. It is generally recommended to
transform such data prior to modeling (Eriksson et al., 2006b). A frequently employed
transformation is the so-called log-transformation (Eriksson et al., 2006b): The logarithmic
delays In7 shown in Figure 4.1 (center) represent a better approximation of the normal
distribution. Note that it was decided not to model the DCN directly. The rationale is
that 7 represents the raw property measured in the IQT experiment, while DCN is merely

a correlated quantity proposed to represent an estimate of CN in the CFR engine.
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4.2 Modeling strategy

Table 4.3: Modeling procedure for the IQT ignition delay.

stage | task(s) method(s)
1 generate ideas on the general group contribution modeling,
model structure residual analysis

generate ideas on how to reduce confidence interval analysis,

2 parameter uncertainty and eigenvalue analysis, correlation
correlation analysis

3 introduce three hypotheses to residual analysis, correlation
enhance model performance analysis, information theory

4 validate final model cross-validation, external validation

Typically, DCN is published instead of 7. Consequently, DCNs found in literature have
been converted into logarithmic ignition delays using Equs. (4.1) and (4.2) (cf. Appendix
B). The relationship between In7 and DCN as defined in ASTM D6890 (2011) is depicted
in Figure 4.1 (bottom): Eqns. (4.1) and (4.2) yield similar DCNs for In7 > 1.1, i.e., DCN
< 70. However, if In7 < 1.1, i.e., DCN > 70, Eqn. (4.2) will give a higher DCN than Eqn.
(4.1).

4.2.1 Selection of the general model structure

The first application of the group additivity principle to CN prediction of n-alkanes, iso-
alkanes and singly substituted alkylbenzenes was reported by DeFries et al. (1987). Since
then, different spectroscopic methods such as nuclear magnetic resonance (NMR) spec-
troscopy have been utilized in the correlation of fuel composition, e.g., the fraction of
carbon atoms in distinct functional group categories, to CN of petroleum-derived products
(DeFries et al., 1987; Gulder and Glavincevski, 1986; Cookson and Smith, 1990; Cookson
et al., 1993; Yang et al., 2002; Ghosh and Jaffe, 2006; Ghosh, 2008; Dryer, 2015). More
recently, Mueller et al. (2012) have applied NMR analysis to compare and to match a sur-
rogate fuel’s compositional characteristics to those of reference diesel fuels produced from
real-world refinery streams by considering eleven characteristic carbon-types, e.g., primary
carbon (—CH3), secondary carbon (—CH2—) or quaternary carbon (aliphatic carbon).
The same carbon-type classification has been used in the formulation of gasoline surrogate
fuels by Ahmed et al. (2015). Dooley et al. (2010, 2012a,b), Won et al. (2014) and Dryer
et al. (2014) have observed nearly identical distributions of methylene (—CH2—), methyl
(—CH3) and benzyl functional groups in jet fuels and corresponding surrogate fuels. The
surrogates had been formulated to match four combustion property targets for jet fuel, i.e.,
the DCN, the H/C molar ratio, the threshold sooting index (TSI), and the average molec-
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Figure 4.1: Histograms for non-scaled experimental ignition delay data 7 (top) and for loga-
rithmic ignition delay data In7 (center). Relationship between logarithmic ignition delay In7
and DCN based on the two correlations described in ASTM D6890 (2011) (cf. Eqns. (4.1)
and (4.2)) (bottom).

56

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

4.2 Modeling strategy

Table 4.4: Nineteen structural groups from Joback's GCM (Joback and Reid, 1987) used for
modeling of the IQT ignition delay.

hydrocarbon (non-ring)
—CH3, —CH2—, >CH—, >C<, =CH2, =CH—, =C<
hydrocarbon (ring)
—CH2—, >CH—, >C<, =CH—, =C<
oxygen (non-ring)
—OH, —O0—, >C=0, O=CH—, —COO—

oxygen (ring)
—-0—, >C=0

ular weight (Dooley et al., 2012b). Based on these encouraging findings, it is believed that
surrogate fuels of relatively low complexity (in terms of actual molecular composition) can
be formulated by emulating the real fuel’s distribution of key distinct functional groups
(Dryer et al., 2014; Dryer, 2015).

Still, significant uncertainty remains over the most suitable choice of functional groups or
molecular fragments to be considered for the purpose of modeling of a certain target prop-
erty, especially if a wide variety of (oxygenated) molecular structures shall be covered. Not
surprisingly then, many different sets of groups have been used to model pure-component
thermophysical and combustion-related phenomena (e.g., Benson and Buss (1958); Fre-
denslund et al. (1975); Klincewicz and Reid (1984); Joback and Reid (1987); DeFries et al.
(1987); Constantinou and Gani (1994); Meusinger and Moros (1999); Marrero and Gani
(2001); Yang et al. (2001); Albahri (2003); Pepiot-Desjardins et al. (2008)). In the present
contribution, the experimental ignition delay data have been collected to cover all struc-
tural groups defined in Joback’s GCM, except for the acid group (COOH), the alkyne
groups (#CH and #C—) and the consecutive double bonds group (=C=). If exclusively
CxH,O, compounds are considered, only nineteen of the original forty-one Joback groups
remain relevant. These are listed in Table 4.4. In contrast to Joback’s GCM, no distinction
between alcohols and phenols is made.

Except for a few small molecules like hydrogen or methane, the molecular graph of any
feasible C4H,;O, compound can be decomposed into Joback’s groups, where each atom is
covered by exactly one group. It shall be noted that the eleven carbon-types considered by
Mueller et al. (2012) and Ahmed et al. (2015) in the characterization of diesel and gasoline
fuels can be linked to the Joback groups from Table 4.4.

For certain molecular graphs, different software implementations of Joback’s method
arrive at different group decompositions. For instance, the software package ICAS-ProPred

(CAPEC, 2012) decomposes lactones into cyclic ether and cyclic ketone groups, while the
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Dortmund Database web-interface reports ester groups instead (Dortmund Data Bank
Software & Separation Technology GmbH, 2014b). Differences can also be noted in the
treatment of carbonates and anhydrides (Dortmund Data Bank Software & Separation
Technology GmbH, 2014a,c; CAPEC, 2012). In this thesis, the decomposition is consistent
with that of ICAS-ProPred (CAPEC, 2012). Consequently, lactones are decomposed into
cyclic ether and cyclic ketone groups, carbonates into ester and ether groups and anhydrides
into ether and ketone groups (cf. Appendix C.1).

The basic formulation of a group contribution model (cf. Eqn. (2.4)) can be extended
to allow for model inputs other than the group occurrences g,;. For instance, a major
drawback of Joback’s GCM is its inability to recognize aromatic bonds. To overcome
this limitation, the descriptor d,ap,, i.e., the number of aromatic bonds in molecule i

(Todeschini et al., 2009), may be introduced into Eqn. (2.4) to result in

Yy = Z ga,iGa + dn,AB,iDnAB +P 5 (43)

where the parameter D, 4p represents the contribution of the descriptor to the explanation
of y;. A generalized formulation of the linear model allowing for multiple descriptors dj;

reads as

Y=Y gaiGat+ > diiDy+ P (4.4)
a b

In the following, different mathematical models y! (G!, DY, P!, g;, d;) describing the log-
arithmic ignition delay y! = In; are distinguished by means of the model candidate index
t. The vector G* holds the parameters related to the structural groups. D! denotes the
vector of parameters related to the descriptors and P! refers to the additional model pa-
rameter. All parameters of model ¢ can be concatenated in @ = [GtT, DT, P‘] ! € RVm,
where N}, denotes the total number of model parameters. The input vectors g; and d;
are summarized as u; = [giT, diT]T, where g; describes the integer group occurrences in
compound ¢ and vector d; holds the values of the descriptors for compound i, respectively.

In addition to the linear model structure, i.c.,

v (©w) = guiGlL+ Y dyDy+ P (4.5)
a b

the nonlinear model structure is considered

i (@', u;) = exp Z 9aiG" + Z dpi D} + P (4.6)
a b

which can be rearranged to yield
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Figure 4.2: DCN vs. In7; and In(ln7;) for 7; varied between 1.5 ms and 100 ms. DCN is
computed via Eqn. (4.1) over the entire range 1.5 < 7; < 100.

Iny; (0, w) anzG +Zdb1Dt+Pt (4.7)

to clarify its motivation: If 7; is varied between zero and 100 ms, both InT = ¢! (@, u;) = ...
(Eqn. (4.5)) and In(In7) = Iny! (©%,w;) = ... (Eqn. (4.7)) can be plotted against DCN as
shown in Figure 4.2. It turns out, there is a nearly linear relationship between In(ln7) and
DCN for DCN larger than 20. The nonlinear structure proposed in Eqn. (4.6) to model
In 7 is motivated by the assumption of an approximately linear relationship between DCN
and u, i.e., the structural group occurrences g,; and the descriptor values dy ;.
Numerical optimization is commonly employed to determine the values of the parameters
©! (Joback and Reid, 1987; Constantinou and Gani, 1994; Marrero and Gani, 2001). Here,

the parameter estimation problem is formulated as the minimization

190(5') 1 )
s L Lt )

min ¢ = 2 ; P vt (@ wi) — 5], (4.8)
where ¢(y) measures the number of elements in the vector of experimental logarithmic

ignition delay data ¥. Optimal parameter estimates are denoted ®*" in the following.
The weights 1/5,> in the objective function ¢ (cf. Eqn. (4.8)) can be used to emphasize
certain experiments in contrast to others using the standard deviation &; as a measure of
the reliability of the experimental data. Since the IQT performs 32 combustion cycles for

each compound 4, the standard deviation
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Figure 4.3: Weights 1/[71-2 (inverse variances in the minimization objective) for the compounds
measured at ASG computed from Eqn. (4.9). The black lines indicate the median values for
the four intervals [0.0,..,1.5], (1.5,..,2.5], (2.5,..,3.5] and (3.5,..,5.0].

can be computed based on g, i.e., the logarithmic delay for the individual cycle ¢. On
average, measurement uncertainty is correlated to the ignition delay, i.e., the standard
deviation &; is small for short delays and then increases as the delay becomes larger.
This can be seen from Figure 4.3, where the circles represent the weights 1/6? computed
from Eqn. (4.9). For the literature data, however, according information on measurement
uncertainty is missing. To compensate for this deficiency, the logarithmic ignition delay
scale has been divided into four intervals and the median of the weights 1/6? obtained from
the experiments performed at ASG has been calculated for each interval. These median
weights are indicated by the black lines in Figure 4.3 and have been pragmatically assigned
to the compounds retrieved from literature.

Based on the measurement data ¥ and &, a weighted root-mean-square error (RMSE)

can be computed via

i=1 &

) &1t (0 ) — g

RMSE" = = (4.10)
e(¥)
to evaluate the quality of fit offered by model candidate y!.
In a first step, residual analysis is applied to discriminate between the linear and non-

linear model structures (cf. Eqns. (4.5) and (4.6)). To this end, identical input variables

are supplied, i.e., the occurrences g,; of all groups listed in Table 4.4 and the number
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model residual
o

O training (amount of peroxides unknown)
® training (no significant amount of peroxides)
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measured logarithmic delay In t [In(ms)]

model residual
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measured logarithmic delay In t [In(ms)]

Figure 4.4: Residual plots (§; — y!) for the linear model (Eqn. (4.5)) (top) and the nonlinear
model (Eqn. (4.6)) (bottom). Identical model inputs (occurrences g,; of all groups listed in
Table 4.4 and the descriptor d,, 45, i.e., the number of aromatic bonds).
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of aromatic bonds d,ap;. Both models comprise an identical number of parameters, but
the nonlinear structure exhibits a RMSE which is 17.3% lower than that for the linear
structure. The residuals (§; — y!) are compared graphically for both models in Figure 4.4.
For the nonlinear model, residuals become larger as ignition delay and measurement un-
certainty increase (cf. Figure 4.4, bottom). This is a desired consequence of the weighted
least squares formulation depicted in Eqn. (4.8). In contrast, longer ignition delays are
consistently underpredicted by the linear model, while for small-to-medium delays a trend
towards overprediction can be noted (cf. Figure 4.4, top). Apparently, the exponential
term in Eqn. (4.6) is able to resolve this issue, without introducing additional model
parameters. As can be seen from Figure 4.4, the peroxide status (low peroxide level vs.
unknown peroxide level) cannot be used to discriminate between the two model structures.
Possibly, the current share of data with a known peroxide status is simply too small (~
23%) and/or model accuracy is insufficient to graphically reveal a noticeable correlation

between peroxide status and model residuals.

4.2.2 Systematic model reduction

If the number of measured properties, i.e., ¢(¥), is small, the estimated model parameters
O are often uncertain and/or correlated due to a lack of appropriate experimental data.
Confidence intervals for parameter estimates can be derived from the Fisher information
matrix (FIM)

»(y) * *
x Ayl (O, u;) 1 9y, w,)
t i _ i e 7 ) U
Fp‘q(@ 711) = Z 6@;* 572 a@é* s (4.11)

i=1

which approximates the Hessian of the objective function ¢' by excluding the second-
order derivatives of y! (Walter and Pronzato, 1997). The FIM F* links the sensitivities of
the model with respect to its parameters with information on measurement uncertainty
(Petersen et al., 2001; McLean and McAuley, 2012). It can be used to construct a linear
approximation of the covariance matrix (Donaldson and Schnabel, 1987; Marsili-Libelli
et al., 2003)

20 L (yH(@F w;) — ;)
th(@)t*,u)—< Lol (?f"( ) ~ %) >~F*(et*,u)1 (4.12)

allowing for the definition of a confidence interval A@t; for the estimate of the individual
parameter p (Donaldson and Schnabel, 1987; Marsili-Libelli et al., 2003):

ABL (O u) =t 0, Vi (O, ) (4.13)
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Figure 4.5: Nonlinear model (cf. Eqn. (4.6)) including all structural groups from Table
4.4 and the descriptor d,ap,, i.e., the number of aromatic bonds. Parameter estimates and
95% confidence intervals (top) and distribution of absolute off-diagonal parameter correlation

coefficients (bottom).

N 1—(a/2)
Here, t_ 5y w:,

and ¢(y) — N! degrees of freedom. If experimental screening and parameter estimation
m

denotes the two-tails Student’s t-distribution for a given confidence level «

are repeated many times, the 95% confidence intervals will enclose the true parameter
values with 95% probability (Bard, 1974). The size of the confidence interval is therefore
an indicator for parametric uncertainty in the estimated model.

In case of the nonlinear model proposed in stage 1, large confidence intervals indicate
high parametric uncertainty, as can be seen from Figure 4.5 (top). Moreover, parameter
estimates are correlated, i.e., changes in one parameter estimate can be counteracted by
changes in others. The absolute correlation C‘i’.q between two parameters p # ¢ has been

computed based on the covariance matrix via (Franceschini and Macchietto, 2008)

VF;,Q (Gt*v u)
\/VFIQ_VP(@f*ﬁ u) \/VFq,_q (O, u)

(4.14)

zt),q(et*7 11)
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Table 4.5: Rational model simplification aiming at reduced parameter uncertainty and corre-

lation.
mean max.
t model inputs Ni RMSE! Amin (F?) /
corr. coeff.
all d, i (basi
9 all groups, d,ap,; (basic 91 8.75 692 0.35/ 0.98

nonlinear model)

added dnccpB,i, removed
3 all groups containing C=C 17 9.07 6407 0.20/ 0.86
double bonds (reduction 1)
>CH- (ring), >CH—
(non-ring), >C< (ring)

4 . 13 9.57 14571 0.18/ 0.81
and >C< (non-ring)
removed (reduction 2)
—CH2— (ring) removed

5 (reduction 8) (reduced 12 10.15 22053 0.15/ 0.73

model)

The histogram of C;yq is depicted in Figure 4.5 (bottom). Some parameter correlations
approach the theoretical maximum value of one indicating severe problems with the model.
Model simplification is applied to reduce parametric uncertainty and correlation. As
a simple scalar measure for parametric uncertainty, the smallest eigenvalue of the FIM,
i.e., Amin(FY), is considered here. This choice is motivated by the eigenvalue-approach
described by Quaiser and Monnigmann (2009): A% and v denote the j-th eigenvalue
and eigenvector of the FIM, respectively. All eigenvalues are sorted such that A, (F!) =
ML < A2 < < ABVRoand all eigenvectors are normalized, ie., vt vt = 1. Then, a
movement in the parameter space along direction v/ originating at ®'" given some real
a > 0 can be expressed as (Quaiser and Monnigmann, 2009):
PO + avh) = ¢! (@) + %(XZVt‘jTFtvf"j = ¢(O") + %az)\t‘j (4.15)
Thus, the smaller \,;,(F?), the smaller is the change in the objective function ¢' obtained
for a given a. A larger i, (F?) therefore indicates less parametric uncertainty.

The first model simplification applies to the five structural groups describing C=C double
bonds (cf. Table 4.4). These five groups are substituted by the the total number of C=C
double bonds in a molecule (d,ccpp,;). Thus, the constitution of a C=C double-bond
(e.g., chain end or branching) is no longer accounted for in the model (reduction 1). This
results in a modest 3.7% increase in the RMSE, however, A\, (F?) is improved by one

order of magnitude, as can be seen from Table 4.5 (model t=3).
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From Eqn. (4.15) it becomes obvious, that the smallest change in ¢’ is obtained, if
the parameter values are modified in the direction of v¥!, i.e., the eigenvector belonging
to the smallest eigenvalue Ay (FY) = AbL. After substitution of the C=C double bond
groups, vi! does not point explicitly into the direction of a single parameter, e.g., v =
0,..,0,1,0,.., O]T, but contains non-zero elements of different magnitude at all positions.

Quaiser and Monnigmann (2009) suggest to use

"U;J' = IHE}X (lvi’l‘a |U;1 FR) |v;\f/n ) (416)

in order to select the parameter [ associated with the highest uncertainty. Here, this
parameter [ refers to the >C< (non-ring) group. The three highest correlations to other
parameters reported for this group are: 0.83 to —CH3, 0.74 to >CH— (non-ring) and 0.68
to >CH— (ring). For obvious reasons, there must be a strong relationship between the
number of —CH3 groups and the number of branchings in a hydrocarbon skeleton. Hence,
the four branching groups, i.e., >C< (non-ring), >C< (ring), >CH— (non-ring), >CH—
(ring), are dropped in an attempt to further simplify the model, where only the —CH3
group is retained to indirectly account for branching (reduction 2). This yields another
modest 5.5% increase in the RMSE, however, \,,;,,(F*) more than doubles, as can be seen
from Table 4.5 (model t=4).

The methyl (—CH3) and methylene (—CH2—) groups play a central role in low temper-
ature auto-ignition chemistry (Dooley et al., 2012a; Won et al., 2014; Dryer, 2015). The
number of —CH2— groups influences the rate of alkylperoxy radical isomerization, which
controls radical production in this oxidation regime (Westbrook, 2000; Oehlschlaeger et al.,
2009; Dooley et al., 2012a). The number of —CH3 groups is directly related to the degree
of branching (Dooley et al., 2012a) and it is well known that a larger number of methyl
groups will decrease CN (O’Connor et al., 1992; Heck et al., 1998; Santana et al., 2006).
For highly branched fuel molecules, rates and number of possible alkylperoxy radical iso-
merization reactions decrease as fewer low-energy transition state rings can be formed
(Westbrook, 2000). Thus, the relative proportion of —CH3 and —CH2— groups is thought
to determine the composition of the radical pool produced and has been proposed as an
indicator for the gas phase kinetic reactivity at low temperatures (Dooley et al., 2012a;
Won et al., 2014; Dryer, 2015).

The final model reduction step is achieved by exclusion of the —CH2— (ring) group
due to high correlations with the —CH2— (non-ring) (0.69) and the —CH3 (0.54) groups
(reduction 3). After this third model simplification, the only parameter correlations
exceeding a value of 0.5 are those involving parameter P?. In total, the three simplifications
have proven successful for significantly decreasing parametric uncertainty as indicated by

the steep rise in the smallest eigenvalue A, (F*) given in Table 4.5. Along with the model
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Table 4.6: Estimator for the vapor pressure p° in bar at 298 K. Estimates for the normal
boiling point T}, in K, the critical temperature T,,;; in K and the critical pressure p.,.;; in bar
are retrieved from Joback's GCM (Joback and Reid, 1987).

Frys = 7= = 791511073 42,6726 - 102 - Log1o(Thou) — 0.8625- 10~ Ty

Frov = 7= = T.9151-107 4 2.6726 - 10 - Logao(Lerie) — 08625 107° - Ty

Y1 = 11.52608845 — In (M) Iy

Derit ITyois = Teriy
X2 ITyoit = Terin

p®=expx1 + xz2 - 1.7962 - 1073 — 13.81551056] - 10

inputs, the number of parameters has been reduced from 21 to just 12, thereby increasing
the RMSE by 16% in total. Based on this reduced, less correlated model, three additional

hypotheses are introduced in the following stage to yield the final IQT ignition delay model.

4.2.3 Proposition of the final model

Assuming the existence of a correlation between the vapor pressure p° and the physical
contribution to the IQT ignition delay (as a part of 7, cf. Figure 2.2), the descriptor p®
(in bar at 298 K) is added to the reduced model (hypothesis 1). Experimental data on
p%, however, may not always be available. To overcome this limitation, an estimator for
p?¥ based on the Hoffmann-Florin equation (Hoffmann and Florin, 1943; Gmehling et al.,
2012) is given in Table 4.6. The same estimator has been employed for the determination
of p* for all training compounds (cf. Appendix C.1) in order to provide consistency with
the future use of the IQT ignition delay model. Since p® may span multiple orders of
magnitude, the natural logarithm of the vapor pressure, i.e., In (di‘ps), is added to the
reduced model.

If the CNs of paraffins and olefins are plotted over the number of carbon atoms, an
asymptotic trend can be noted (Fehér et al., 2014): The CN monotonically increases,
however, the increase per additional carbon becomes smaller as the molecule gets larger. To
reflect this behavior, a logarithmic term for the —CH2— (non-ring) group input is proposed
(hypothesis 2), i.e., In (9_c2-(non—ring)i + 1) is used instead of g_c 12— (non—ring) in Eqn.
(4.6). Here, the nearly linear relationship between In (In7) and DCN for DCN larger than
20 is exploited (cf. Figure 4.2).

Isocetane (2,2,4,4,6,8,8-heptamethylnonane), a reference compound for the determina-
tion of CN, is a large, saturated hydrocarbon (CigHss). Due to its branched structure,
isocetane has a high fraction of difficult-to-abstract primary C-H-bonds. Moreover, isoc-
etane has few secondary C-H sites fostering alkylperoxy radical isomerization reactions

leading to degenerate chain branching (Heck et al., 1998; Westbrook, 2000; Oehlschlaeger
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Figure 4.6: Residuals of the reduced model (g; — ) with respect to the number of tertiary

or quaternary carbon atoms.

et al., 2009; Westbrook et al., 2011). As a consequence, isocetane’s DCN is as low as 14.2
(cf. Appendix B). For a similar reason, isooctane (2,2,4-trimethylpentane, C;Hig) has
a DCN of 17.0 (cf. Appendix B). In the reduced model, both molecules are described
entirely by the number of —CH2— (non-ring) groups (3 vs. 1) and the number of —CH3
groups (9 vs. 5). However, ignition delays for such highly branched molecules are underes-
timated by the reduced model. Dooley et al. (2012a), who have highlighted the importance
of the methyl (—CH2—) and methylene (—CH3) groups in their group additivity analysis
of surrogate fuels, have not considered tertiary and quaternary carbon atoms. Indeed, as
can be seen from Figure 4.6 (left), residuals of the reduced model scatter around zero,
mostly independent of the number of tertiary carbon atoms. However, there seems to be
a correlation between model residuals and the number of quaternary carbon atoms (cf.
Figure 4.6, right). These carbon atoms are attached to four other carbon atoms via single
bonds.

In a recent investigation performed by Mueller et al. (2012), aliphatic quaternary carbon
atoms have not been detected by NMR analysis in two practical diesel fuels. However,
surrogate fuels formulated based on the methodology proposed by Mueller et al. (2012)
contained up to 29 mol-% of isocetane, a molecule with three quaternary carbon atoms. A
priori, isocetane had been chosen together with eight other hydrocarbon palette compounds
to emulate the behavior of the two fossil diesel fuels. On a carbon-type basis, there
are considerable differences between surrogate and reference fuels considered by Mueller
et al. (2012), not only with regard to aliphatic quaternary carbon. Moreover, it is unclear
whether a mismatch in aliphatic quaternary carbon can be compensated by discrepancies
in other carbon-types. Thus, the work of Mueller et al. (2012) does not constitute clear

evidence against using the number of quaternary carbon atoms to improve the performance
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Table 4.7: Reduced model (t=5) together with model candidates based on hypotheses 1 to 3.

mean/ max.

t  description NI, RMSE'! AICc  Apin(FY)
corr. coeff.

cf. Table 4.5 (reduced

5 12 10.15 14218 22053 0.15/ 0.73
model)

6 added d,s; (hypothesis 1) 13 9.45 12242 15109 0.22/ 0.63
logarithmic —CH2— (non-

7 13 8.93 10877 16622 0.20/ 0.62
ring) (hypotheses 1 € 2)
dded dngci (hypotheses 1t

g oddeddngoy (hypotheses 1o, 851 9811 16530 0.18/ 0.60

3) (final model)

of the group contribution model. In fact, non-zero contributions from quaternary carbon
atoms have been included in earlier CN models (DeFries et al., 1987; Yang et al., 2001)
and ON models (Meusinger and Moros, 1999; Albahri, 2003) derived for iso-alkanes. Based
on the IQT data (cf. Figure 4.6), the number of quaternary carbon atoms d,qc; is added
to the model in order to obtain a more aggressive DCN reduction due to heavy branching
(hypothesis 3). Both non-ring and ring quaternary carbons are counted for in dnoc;;-

Since the inclusion of an additional model parameter typically improves the RMSE,
Akaike’s information criterion (AIC) (Walter and Pronzato, 1997; Burnham and Ander-
son, 2002; Michalik et al., 2009) is used to estimate whether this improvement does also
reduce the information loss against the "true” relationship between molecular structure
and ignition delay. The AIC represents a trade-off between the likelihood function L
i.e., a measure for the quality of fit, and the number of model parameters N!,. If the
sample size is small (generally in case of ¢(y)/N: < 40), a correction term is introduced
to the original AIC formulation (Burnham and Anderson, 2002): Assuming independent,
normally distributed residuals with zero mean and variances ¢;, the Akaike information
criterion corrected for a small sample size (AICc) is calculated as (Hurvich and Tsai, 1989;
Walter and Pronzato, 1997; Burnham and Anderson, 2002; Michalik et al., 2009)

AIC =—2-In[LY(©®",6,5,u)] + 2N}, (#) (4.17)

m

=2 |In (\/ﬁ> e(y) + %z(y:)hl (@)

e(¥) dHO W) — i 2 (v
+23° <(!/f(9 é;,_é) i) >+2an (790(&) f(“jyv)t 71> . (4.18)

m

As a rule of thumb, a difference of more than 10 indicates that the model comprising the
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higher AICc has essentially no empirical support (Burnham and Anderson, 2002). It can
be seen from Table 4.7, that all three hypotheses result in large improvements in the AICc.
Moreover, the benign correlation structure obtained from the previous model reduction is

not negatively affected.
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Figure 4.7: 1QT ignition delay model: Parameter estimates and 95% confidence intervals
(top). Distribution of parameter correlation coefficients (bottom).

Model number 8 constitutes the final IQT ignition delay model. In contrast to the
original nonlinear model, small confidence intervals indicate low parametric uncertainty,
as can be seen from Figure 4.7 (top). The histogram of parameter correlations is depicted
in Figure 4.7 (bottom). Here, the maximum correlation coefficient is smaller than 0.6.
This suggests that different physicochemical effects are well-separated in the regressors.
Parity plots for predictions vs. measurements are depicted in Figure 4.8. As a general
trend, model residuals increase as ignition delay and measurement uncertainty become
larger. Due to the scaling induced by Eqn. (4.1), scattering in the DCN space is more
uniform. Eqn. (4.1) has been used for error calculations and parity plot illustrations even
beyond the range provided in ASTM D6890 (2011). Since the disagreement between the
two DCN equations is substantial only for DCN larger than 70 (cf. Figure 4.1) and few
fuels ignite that fast, the general plausibility of both Eqns. (4.1) and (4.2) in this regime is
questionable. The strong nonlinearity of Eqn. (4.2), however, gives rise to huge deviations
in the DCN space resulting from relatively small deviations in the logarithmic ignition

delay.
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Figure 4.8: IQT ignition delay model: Parity plot for ignition delays (top). Error bars indicate
the measurement standard deviation (+5). Parity plot for DCNs (bottom). Note: InT has
been converted to DCN exclusively based on Eqn. (4.1).
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4.2 Modeling strategy

Table 4.8: IQT ignition delay model: Main assumptions.

The IQT ignition delay 7 of medium-sized liquid (oxygenated) hydrocarbons can
1 be estimated from additive structural group and molecular descriptor effects

according to the general model structure of

InT = exp [, (group effects) + >, (descriptor effects) + P,

where P is a constant parameter.

The non-oxygenated hydrocarbon part of the molecule is described by the no. of
—CH3 and —CH2— (non-ring) group(s), the no. of C=C double bonds, the no. of
quaternary carbon atoms, the no. of aromatic bonds and the estimated vapor

pressure.

The oxygenated part is described by —OH, —O— (non-ring), >C=0 (non-ring),
3  O=CH-, —COO— (non-ring), —O— (ring) and >C=O0 (ring) groups and the

estimated vapor pressure.

All group occurrences and descriptors enter »_ (...) or 3_,(...) linearly, except for

the —CH2— (non-ring) group and the vapor pressure.

The main assumptions behind the proposed model are briefly summarized in Table 4.8.
A detailed description of the model is given in Table 4.9. The equations needed to facilitate
the computation of the IQT ignition delay 7 for a given CH;O, structure can be found
here. These equations can be rearranged to yield the general structure introduced in Eqn.
(4.6). Furthermore, Table 4.9 summarizes the model inputs, i.e., the group occurrences

and descriptors. An example is given for each model input.

4.2.4 Model validation

Model validation is performed by a combination of cross-validation and external validation.
Leave-one-out cross-validation (LOO-CV) is an estimator of the expected prediction error
which has a low bias. However, this estimator can have a high variance (Hastie et al.,
2009), i.e., the actual prediction error for an independent test sample can be quite different.
Leave-multiple-out cross-validation (LMO-CV), in contrast, has a low variance, but can
be biased upwards, i.e., LMO-CV can overestimate the true prediction error (Hastie et al.,
2009). In case of the IQT ignition delay model, a variant of LMO-CV, i.e., the repeated
leave-multiple-out cross-validation, is applied. Here, the compounds in the training data
set are randomly assigned to sets 1 and 2 in each iteration such that set 1 contains 80%
of the training compounds, while the remaining 20% are located in set 2. Data set 1 is
used for parameter estimation yielding ©®7 and data set 2 is used for prediction, i.e., model
predictions y;(©7F,uy;) are compared to experimental data g»;. In total, ten thousand

iterations were performed to obtain an estimate on the expected prediction error. Table
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4 GC-based prediction of fuel auto-ignition quality

Table 4.9: IQT ignition delay model: Model equations and inputs for the computation of the
IQT ignition delay 7;.

model equations:
In(7;) = y (g, d;) = exp [Carbon; + Oxygen; + Oxygen(ring), + Descriptors; + 0.8341]
Carbon; = 0.0449 - g_cp3; — 0.2389 - In (9_c o (non—ring)i + 1)
Oxygen; = 0.7286 - g—om,; — 0.0401 - go=cH—i — 0.2123 - §_0_(non—ring).i
+0.3649 - 9> c=0(non—ring)i T 0-5260 - g_cOO—(non—ring).i
Oxygen(ring); = 0.0426 - g_0—(ring),i + 0-4241 - g5.c—0O(ring).i
Descriptors; = 0.0639 - d, 4B, + 0.1404 - dpcepp,i +0.1923 - dpge,i + 0.0492 - In (dps,i)

model inputs g;, d; for a molecule i as follows: examples:

9—-CH3,i no. of —CH3 groups g—cm3=2 for n-heptane
9-CH2—(non—ring),; 10o. of —CH2— (non-ring) groups 9-CH2—(non—ring)=5 for n-heptane
9—-OH,i no. of —OH groups g—om=1 for ethanol

JO=CH—i no. of O=CH— groups go=cH—=1 for hexanal
9—0—(non—ring),i no. of —O— (non-ring) groups 9-0—(non—ring)=1 for dibutylether
9>C=0O(non—ring),i ~ 0o. of >C=0 (non-ring) groups 9>C=0(non—ring)=1 for 2-butanone

_ _(non—ringy=1 for methyl
9-COO—(non—ring),i 100. of —=COO— (non-ring) groups 9-000~(non—ring) Y

hexanoate
9-0—(ring),i no. of —O— (ring) groups 9-0—(ring)=1 for tetrahydrofuran
9>C=0(ring).i no. of >C=0 (ring) groups 9>0=0(ring)=1 for cyclopentanone
dnaB,i no. of aromatic bonds dnAp=06 for benzene
dncepBii no. of carbon-carbon double bonds  d,ccpp=2 for furan
dngc.i no. of quaternary carbon atoms* dngc=1 for 2,2-dimethylbutane
dys ; vapor pressure (cf. Table 4.6) d,s=0.0024 for hexyl acetate
Ti IQT ignition delay in ms
dps ; vapor pressure in bar at 298 K

*quaternary carbon atoms are carbon atoms that are attached to four other carbon atoms via

single bonds; both non-ring and ring quaternary carbons are counted for in d,gc;;
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4.2 Modeling strategy

Table 4.10: IQT ignition delay model: Statistical performance measures.

. LMO cross- external

training
validation validation

data set
data set data set
root-mean-square error (RMSE) 8.51 10.54 10.40
mean absolute error in DCN space 5.8 6.6 5.8
maximum absolute error in DCN space 23.4 33.4 174

Note: DCN error calculations are based exclusively on Eqn. (4.1).

4.10 summarizes statistical performance measures for the training and the cross-validation
data sets.

It is generally recommended to have measurement data y.,; for an additional set of com-
pounds, the so-called external validation set, which has not been involved in the derivation
of the model. Such an external validation set had been separated prior to modeling (cf.
Appendix B). From each class of compounds depicted in Table 4.1, one randomly cho-
sen molecule had been placed in the external validation set. Two molecules were chosen
randomly from the heterogeneous class of compounds comprising more than one type of
oxygen functionality. Selection from functional classes has been motivated by the concepts
of molecular diversity and similarity between training and test set compounds (Golbraikh
et al., 2003; Leonard and Roy, 2006).

As shown in Table 4.10, a mean absolute DCN prediction error of 5.8 is obtained for
the external validation set. With the exception of hexanal and diethoxymethane, the error
does not exceed the value of 10, as can be seen from Figure 4.9. Compared to the training
data set, the RMSE is 22% higher for the external validation set and 24% higher in case of
LMO-CV (cf. Table 4.10). These numbers agree with the expectation of a too optimistic
RMSE for the training data set. Similar values for LMO-CV and external validation
suggest that the model has good predictive power (Golbraikh and Tropsha, 2002a).

A second independent data set can be used to test the model: No ignition within 100
ms was detected for few compounds, e.g., for gasoline anti-knock agents methyl tert-butyl
ether (MTBE) and toluene. This absence of auto-ignition is expressed as DCN<7. Gen-
erally, the model performs well in the prediction of these extreme compounds as indicated
in Figure 4.10. However, a rather weak estimate is obtained for MTBE. A comparison
between MTBE and the structurally similar 2,2-dimethylbutane is presented in Figure
4.11. MTBE’s DCN is much lower suggesting that the —O— group inhibits auto-ignition.
However, this finding contradicts the role of the ether group that has been found in other
compounds, which is to promote auto-ignition (e.g., in dibutylether; further examples can

be found in Appendix B). Attempts to improve the prediction of MTBE by adding a
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Figure 4.9: IQT ignition delay model: Predicted and measured DCNs for the compounds in

the external validation set together with the 95% confidence intervals for the predictions. Note:

In7 has been converted to DCN exclusively based on Eqn. (4.1).
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Figure 4.10: IQT ignition delay model: Predicted DCN for the compounds that did not ignite in
the IQT (DCN<7). Data for 1,3,5-triisopropylbenzene, ethyl levulinate and glycerol triacetate

have been

taken from the compendium of Yanowitz et al. (2014). The other compounds have

been screened by ASG. Note that DCN is computed from Eqn. (4.1).
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4.2 Modeling strategy

<7 23.5 8.6 measurement
X A~
o— OH
methyl tert-butyl ether 3-methoxy-3-methyl-1-butanol

2,2-dimethylbutane

27.5 17.5 21.4 model
18.5 17.5 14.1 model (-O— group ignored)

Figure 4.11: Measured DCN (top) vs. predicted DCN (bottom) for ethers comprising an
—O— group next to a tertiary carbon atom (according to Eqn. (4.1)). 2,2-Dimethylbutane is
a hydrocarbon structurally similar to methyl tert-butyl ether.

descriptor dyrcy, i.e., the number of tertiary carbon atoms, were not successful. This sug-
gests an interaction effect between neighboring groups, however, more experimental data
is needed to support or reject this hypothesis. For the time being, simply neglecting the
contribution of the —O— group next to a tertiary carbon atom improves the prediction for
MTBE. The same applies for 3-methoxy-3-methyl-1-butanol, i.e., the only other molecule
in the database comprising an —O— group next to a tertiary carbon atom (cf. Figure
411).

The residual plots in Figure 4.12 reveal no apparent systematic trend in residuals (; —y;)
with respect to different characteristics of hydrocarbons, e.g., molecular weight, number of
tertiary carbon atoms or number of —CH3 groups. Measured and predicted data for the
individual compounds can be found in Appendix C.2.

It shall be noted, that model validation techniques assume, that data sets have been
drawn in a representative manner from the overall set of molecular structures of poten-
tial interest. In other words, the error estimate cannot be transferred to highly dissimilar
compounds. To the author’s knowledge, no reliable applicability domain concept or simi-
larity threshold for use in GCM has been proposed so far. Still, Table 4.11 provides some
guidance on the applicability range of the proposed model. It summarizes few important
characteristics of those molecules that were used to derive the model. Properties of a novel
molecule can be compared against those reported in Table 4.11, before the model is applied
for prediction.

The user should also inspect a novel molecule for functional groups more complex than
those defined in Table 4.9. For instance, a DCN of 25.7 is predicted for diethyl carbonate,
a fuel that did not ignite in the IQT (DCN<T7). However, carbonate esters were not
included in the training set. As a result, the model does not recognize the carbonate

ester (—OC(=0)O—) group as a functional group of its own. Instead, it decomposes this
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4.3 Model application and uncertainty

Table 4.11: IQT ignition delay model: Properties of training molecules.

no. of —CH3 groups 0to9

no. of —CH2— (non-ring) groups 0 to 15

no. of —CH2— (ring) groups 0to8

no. of —OH, —O— (ring), >C=0 (non-ring), >C=0 (ring), O=CH—, 0to 1
—COO— (non-ring) groups

no. of —O— (non-ring) groups 0to3

no. of aromatic bonds 0 to 12

no. of C=C double bonds 0to6
vapor pressure [In(bar)] (Hoffmann-Florin equation, cf. Table 4.6) -17.8 to -0.3
molecular weight [g/mol] 68.1 to 294.5
ring size (heavy atoms) 4to8

no. of benzene motifs 0to 2
normal boiling point [K] (Joback and Reid, 1987) 307 to 705

complex group into two smaller groups, i.e., one ester (—COO—) group and one ether
(—O—) group. Hence, if the model shall be applied to a carbonate ester, one must assume
that the superposition of the effects from —O— and —COO— groups adequately describes

the effect of the more complex carbonate ester (—OC(=0)O—) functional group.

4.3 Model application and uncertainty

Three examples shall illustrate the prediction of the IQT ignition delay 7 and the DCN.
Model equations and inputs are taken from Table 4.9. The group decomposition for hexyl
acetate (HA) is derived from the molecular structure depicted in Figure 4.13 (left): 5 x
—CH2—, 2 x —CH3, 1 x —COO-. Following the explanations given in Table 4.6, the
vapor pressure p° is computed based on critical properties (T, = 613 K, periy = 25.5 bar)
and the normal boiling point (Th.; = 441 K): In(p¥) = -6.0518 In(bar).

nCCDB =3
1% —COO— Zxoens nAB =6 1x 0=C< 3x —CH2-
(ring) (non-ring)
0. __0O 0
Y 1x -CH3 O
5x —CH2— (non-ring)  1x-0- OQ— 1x -0~ 1x —CH3
(non-ring) (ring)
hexyl acetate (HA) anisole (A) e-decalactone (EDL)

Figure 4.13: Group decomposition illustrated for hexyl acetate, anisole and e-decalactone.
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The contributions from the hydrocarbon groups, from the oxygen groups and from the

descriptors can be assembled with Table 4.9 as follows:

Carbong 4 =0.0449 - g_c s pa — 0.2389 - In (9_c Ho—(non—ring),Ha + 1)

—0.0449 - 2 + (—0.2389) - In(5 + 1) (4.19)
Oxygen s =0.5260 - 900 (non—ring) 14 = 0.5260 - 1 (4.20)
Descriptorsy 4 =0.0492 - In(d,s p4) = 0.0492 - (—6.0518) (4.21)

These contributions allow for the computation of the ignition delay 7i4 (cf. Table 4.9):

yra = exp[Carbony 4 + Oxygeny 4 + Descriptorsy 4 + 0.8341]
=exp[2-0.0449 +In(5+ 1) - (—0.2389)
+1-0.5260 — 6.0518 - 0.0492 + 0.8341] = 2.06 (4.22)

=InTHa =yYyna = THa = 7.87 ms (4.23)

Applying Eqn. (4.2) defined in ASTM D6890 (2011) yields a DCN of 28.4. The measured
DCN for hexyl acetate is 32.2.

It is possible to compute a confidence interval for the model prediction In7; = y; based
on the FIM. This procedure has been proposed and successfully applied in the context of
group contribution modeling just recently (Hukkerikar et al., 2012). While ¢; (u;) describes
the "true” IQT ignition delay for given model inputs u;, i.e., the set of group occurrences
and descriptor values for compound , the measured delay §; is assumed to be compromised

by normally distributed errors with zero mean ¢; (u;), i.e.,

7 (W) = ¢; (W) + & (w;) . (4.24)
The model y; (u;) from Table 4.9 represents an approximation of ¢; (u;), such that
|gi(u;) — yi(u;)| > 0. The accuracy of this approximation can be quantified with a confi-
dence interval Ay; computed as (Seber and Wild, 2003; Rasmussen, 2003)
1/2

Ay, = (a2 (si'(u;, ©%) - Vg (0%, 1) - 5;(u;, ©%))

P(y)-14

(4.25)

where Vg (©* u) denotes the covariance matrix constructed from the training data y, &

and u (cf. Eqn. (4.14)). In addition, the sensitivity

ayi(ui, 9*) ayl(ull 6*)
19/ H S

is needed. The equations for s} (u;, ) and the numerical values for the covariance matrix

s (u;,©%) = (4.26)

can be found in Appendix C.3.
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Figure 4.14: 1QT ignition delay model: Size of 95% confidence interval vs. DCN prediction
error for ten thousand runs of leave-multiple-out cross-validation (LMO-CV). The median size
of the confidence intervals is 7.9. The maximum DCN prediction error is 33.4. Note that the

x-axis has been cut.

The role of the confidence interval can be illustrated by subtracting the model y;(u;)
from both sides of Eqn. (4.24):

gi (0;) — yi(u;) = [gi (w;) — yi(u;)] +éi (w) (4.27)
—_— —_—
residual quantified by the confidence interval

The confidence interval does not account for the error term ¢; (u;) acting on a mea-
surement ¢; (u;) (Carney et al., 1999; Rasmussen, 2003). Furthermore, the zero mean
assumption for the errors € might be violated due to impurities, especially peroxides. Ten
thousand runs of LMO-CV were performed to check, whether the size of the confidence
interval is related to the DCN prediction error, despite these limitations. As can be seen
from Figure 4.14, the median size of the confidence intervals is 7.9, i.e., 50% of the inter-
vals are smaller than 7.9. The left part of Figure 4.14 suggests, that for these intervals
there is a relationship between interval size and DCN prediction error. For intervals larger
than the median, however, no apparent relationship can be found in Figure 4.14. The
actual probability of a measurement §;(u;) falling into the computed 95% confidence inter-
val y;(u;) & Ay;(u;) is approximately 40% in LMO-CV. If these intervals are extended by
+5 in the DCN space, the hit ratio becomes about three out of four. If the intervals are
extended by 10, less than one out of ten measured DCNs is found outside the provided

range.

79

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

4 GC-based prediction of fuel auto-ignition quality

Returning to the example of hexyl acetate (HA), the 95% confidence interval can be

computed based on the sensitivity equations s} and the covariance matrix Vg (©*, u):

Sta =[yra,0,0,10(dys ;4) - yma,0,9-cHs A - yua,
In(9_cH2—(non—ring),HA + 1) - ym4,0,0,0,0,0,0,
9-COO—(non—ring),HA " YHA]

=[2.06, 0,0, —6.0518 - 2.06,0, 2 - 2.06,
In(5 + 1) - 2.06,0,0,0,0,0,0,1 - 2.06]

=[2.06,0,0,—-12.48,0,4.13,3.70,0,0,0,0,0,0, 2.06] (4.28)

Aypa =117 (shaVe (© ) spa) (4.29)
for a=0.05 one obtains t};ffﬁ) =1.9784

& Ayga = 19784 (sh, Ve (0%, u)sya)"/* = 0.12 (4.30)

= ypa+ Ayga = 2.06 +0.12 (4.31)

= 7.00 < 774 [ms] < 8.84 (4.32)

= 26.2 < DON < 30.9 (4.33)

As a second example, e-decalactone (EDL) shall illustrate the computation for a cyclic
species. The following information is derived from the molecular structure depicted in
Figure 4.13 (center): 3 x —CH2— (non-ring), 1 x —CH3, 1 x >C=0 (ring), 1 x —O—
(ring), Topir = 767 K, persy = 27.1 bar, Tyoy = 547 K, In(p®) = -10.5823 In(bar). Note that
the four —CH2— (ring) groups in e-decalactone (EDL) are of no relevance since this group
is not a model input. The computation of 7 based on the equations given in Table 4.9

yields

yppr =exp[l - 0.0449 + In(3 + 1) - (=0.2389) (4.34)
+1-0.4241 + 1-0.0426 — 10.5823 - 0.0492 + 0.8341]

= yppr =1.64 =InTppr, = TEpr = 5.15 ms. (4.35)

Applying Eqn. (4.1) defined in ASTM D6890 (2011) returns a DCN of 40.7. Utilizing the
sensitivity equations and the covariance matrix from Appendix C.3, the 95% confidence

interval for the DCN prediction is computed as

yEDLiAyEDL =1.64+£0.17 (436)
= 4.33 < rppy, [ms] < 6.12 (4.37)
= 35.0< DCON <47.5 . (4.38)
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4.4 Conclusions and outlook

The measured DCN for e-decalactone (EDL) is 40.7.

Finally, anisole (A) shall serve as an example for an aromatic species. The following
information on anisole (A) can be retrieved from Figure 4.13 (right): 1 x —CH3, 1 x
—O— (non-ring), nAB = 6, nCCDB = 3, T,,;+ = 620 K, peit = 40.3 bar, Ty, = 409 K,
In(p®) = -4.4172 In(bar). The computation of the IQT ignition delay yields

ya =exp[l-0.0449 + 1 - (—0.2123) + 3 - 0.1404 (4.39)
—4.4172-0.0492 4+ 6 - 0.0639 + 0.8341]

= ya =3.50 =In74 = 74 = 33.26 ms. (4.40)

Applying Eqn. (4.2) defined in ASTM D6890 (2011) returns a DCN of 12.2. The 95%

confidence intervals are

ya =+ Aya = 3.50 £ 0.69 (4.41)
=16.71 < 74 [ms| < 66.18 (4.42)
=9.0< DCN <176 . (4.43)

The measured DCN for anisole is <7 (no ignition).

4.4 Conclusions and outlook

To overcome the significant limitations of existing ON, CN and DCN databases and models,
a high-quality collection of ignition delay data from a single, well-defined experimental set-
up has been put together. Half of this collection consists of pure-component DCN data
taken from the literature. The other half has resulted from a rapid fuel screening campaign
that has been organized by the author of this thesis and that has been executed by ASG.
The compounds were chosen to resemble the structural features of potential products from
lignocellulosic biomass, specifically focussing on oxygenated species.

On the basis of this data set, a simple, yet predictive group contribution model has
been derived to estimate the IQT ignition delay and DCN. This is the first auto-ignition
model in the publicly available literature that can be applied to a wide range of bio-derived
compounds such as acyclic and cyclic, branched and straight, saturated and unsaturated
hydrocarbons as well as alcohols, ethers, esters, ketones, aldehydes, and aromatic and
polyfunctional compounds. The calculation procedure does neither require involved com-
putational tools nor any information that could not be derived from the two-dimensional
molecular graph. The model prediction yields a first estimate of the auto-ignition propen-

sity of a fuel candidate, if a sufficiently large and pure sample is not yet available.
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4 GC-based prediction of fuel auto-ignition quality

In the view of the complexity of low-temperature combustion chemistry and the overlap-
ping mixture formation process, the accuracy of prediction provided by the simple model
is quite remarkable. Still, the study suggests, that the amount of available measurement
data constrains model complexity, since the inclusion of additional structural groups results
in significant parametric uncertainty. Large functional groups, stereochemistry or group
interaction effects might alter the ignition delay, but had to be neglected in the present
model. Thus, it will be important to increase the size of the database in the future. Ideally,
DCN data with unknown fuel sample peroxide status should be replaced with remeasured
data.
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5 QSPR-based prediction of

physicochemical fuel properties

This Chapter deals with the development of predictive quantitative structure-property re-
lationship (QSPR) models for the physicochemical fuel properties listed in Table 2.1. It
represents a continuation and a more detailed elaboration of a QSPR modeling strategy
that has been published in SAE International Journal of Fuels & Lubricants (Dahmen
et al.,, 2012). The original concept as outlined by Dahmen et al. (2012) has also been
explained by Hechinger (2014). Later, modifications and improvements to the QSPR
modeling concept have been made by the author of this thesis with respect to data prepa-
ration, outlier removal, data set split, validation and the applicability domain concept.
The revised approach is outlined in this Chapter. Its basic principles have already been
briefly described in a publication in Energy & Fuels (Dahmen and Marquardt, 2016). Sta-
tistical measures for the critical data QSPR models have also been published previously
in Energy & Fuels (Dahmen and Marquardt, 2017). Although being based on the papers
of Dahmen et al. (2012) and Dahmen and Marquardt (2016, 2017), the present Chapter
has been almost entirely rewritten to provide a more rigorous theoretical description of
the QSPR modeling approach. Furthermore, the QSPR models are compared to well-
established group contribution models taken from the publicly available literature (Joback
and Reid, 1987; Hukkerikar et al., 2012; Hukkerikar, 2013). The processes of extracting
property data from the DIPPR database (AIChE, 2012) and of computing molecular de-
scriptors by means of DragonX (Todeschini et al., 2009) have evolved from the ideas of

Manuel Hechinger (Hechinger et al., 2010; Hechinger, 2014).

5.1 Modeling strategy

The general workflow followed throughout this Section is depicted in Figure 5.1. Two
projection techniques, i.e., principal component analysis (PCA) (Jolliffe, 2002) and partial
least squares (PLS) regression (Hoskuldsson, 1988), constitute the cornerstones of the

approach. The modeling strategy presented here has been inspired by the works of Eriksson

and co-workers on the role of PCA /PLS in the derivation of statistically sound quantitative
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5 QSPR-based prediction of physicochemical fuel properties
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Figure 5.1: Workflow for the development and use of QSPR models followed in this Chapter.

structure-activity relationship (QSAR) models (Wikstrom et al., 1998; Wold et al., 2001;
Eriksson et al., 2003, 2006a,b) and by the works of Golbraikh, Tropsha and co-workers on
best practices for the derivation of truly predictive QSARs (Tropsha et al., 2003; Tropsha
and Golbraikh, 2007, 2010; Tropsha, 2010; Cherkasov et al., 2014).

Thermophysical property data for model development have been collected from the De-
sign Institute for Physical Properties (DIPPR) 801 database (AIChE, 2012), i.e., a widely
used collection of pure-component property data for a large number of chemical structures.
Queried data have been restricted to compounds containing carbon, oxygen and hydrogen
atoms only. Since molecular graphs with less than three carbon atoms are not expected
to represent novel fuel candidates, such small compounds have been excluded from the
data sets. The DIPPR database is an evaluated database, making it particularly useful for
the development of GCMs and QSPRs (Constantinou and Gani, 1994; Knotts et al., 2001;
Ericksen et al., 2002; Hechinger et al., 2010; Hechinger, 2014). As a result of the evalua-
tion process, DIPPR assigns the attribute ”accepted” to property data which is considered
reliable. Moreover, an accuracy level, i.e., an upper bound on the expected relative error,
is provided for each accepted value.

Table 5.1 shows the number of structures retrieved from the DIPPR database in case of
each thermophysical fuel property mentioned in Table 2.1. Critical properties Te it, Perit
and V.. have also been included. Note that structure and corresponding property data
have been extracted from the DIPPR database and imported into Matlab (The MathWorks
Inc., 2016) by means of a software tool developed by Manuel Hechinger and Luisa Schulze
Langenhorst (Hechinger and Schulze Langenhorst, 2012). For the purpose of modeling,
only ”accepted” data with an uncertainty of <10% have been considered. In the following,
y € RMe denotes the vector of known property data for a given property, where N, refers
to the number of compounds which is identical to the number of property values.

The distribution of the property data y has been examined manually in case of each
property. For instance, the histogram of the viscosity data y(u) in Figure 5.2 reveals four
compounds with exceptionally high viscosities. Note that the log-transformation (Eriksson

et al., 2006b) has been applied to obtain a distribution, which is closer to normality, as
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5.1 Modeling strategy

Table 5.1: Number of C,.,H,O, structures retrieved from the DIPPR 801 database (AIChE,

2012) with <10% relative measurement error in the property data; "accepted” data only.

thermophysical property unit no. of compounds reference state
boiling point Tpe;; K 977 1 atm
melting point Tjp,en K 954 1 atm
lower heating value LHV J/kmol 971 298 K
liquid molar density py, kmol/ m3 707 2908 K
enthalpy of vaporization Hyqp J/kmol 487 298 K
surface tension o N/m 574 298 K
dynamic viscosity Pa-s 473 298 K
critical temperature T,.; K 1007 —
critical pressure peri Pa 963 -
critical volume Vi, m?/kmol 387 —

the unscaled viscosity data spans multiple orders of magnitude. The four high viscous
compounds have been removed from the p data set, as they can hardly comply with
the basic assumption behind QSPR modeling, i.e., the existence of similar compounds
having similar properties (Leonard and Roy, 2006; Tropsha and Golbraikh, 2010). Manual
inspection of the other y has prompted the exclusion of four compounds with isolated
property values from the LHV data set, one compound from the T, data set, three
compounds from the H,,, data set and seven compounds from the p..; data set. The list

of excluded species can be found in Appendix D.

30

n
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four high viscous compounds
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-4 -3 -2
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Figure 5.2: The histogram of the natural logarithm of the dynamic viscosity property data

¥(u) reveals four property outliers.

5.1.1 Descriptor calculation, data pretreatment and outlier removal

Nine-hundred zero- to two-dimensional molecular descriptors have been computed for each
molecular structure with the commercial descriptor calculation software DragonX (blocks

1 to 10, 17 and 18 in DragonX version 1.4.4; cf. Todeschini et al. (2009)) and pretreatment
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5 QSPR-based prediction of physicochemical fuel properties

Table 5.2: Number of compounds N., number of descriptors N, ratio of compounds to
descriptors N,/N; and numerical rank of pretreated descriptor matrix X € RNe*Ne. The
numerical rank has been computed with Matlab’s (The MathWorks Inc., 2016) rank function

which is based on the singular value decomposition.

N, Ny N./Ny rank of X
Thoit 977 657 1.49 568
Tnelt 953 657 1.45 567
LHV 967 658 1.47 570
Pm 707 655 1.08 555
Hyqp 484 649 0.75 472
o 573 654 0.88 550
m 469 647 0.72 458
Terit 1007 658 1.53 571
Perit 963 658 1.46 568
Verit 387 647 0.60 381

of the resulting descriptor matrix X € RY-*%0 has been performed as follows: First, X
has been pruned by removing columns with non-varying descriptor data. Subsequently,
the reduced matrix has been inspected for missing values, as certain molecular descriptors
cannot be evaluated for arbitrary compounds. If the calculation of descriptor ! had failed
in one or multiple instances, the entire column x; has been removed from X. Since the
results of PCA and PLS analysis depend on the scaling of the descriptor data (Wold et al.,
2001), X has been autoscaled column-wise to unit-variance and zero mean according to
(van den Berg et al., 2006; Tropsha and Golbraikh, 2010)

1 &
T = N ;lzz ) (5.1)
1 & :
std(x;) = <N(; — ; (@ — l’z)2> , (5.2)
X — I
, 5.3
X < Std(Xl) s ( )

where the 7+ denotes that the scaling is performed on x; € R™e | i.e., the column-vector
of descriptor data for descriptor [. To this end, the mean T; and the standard deviation
std(x;) of the unscaled vector x; are calculated first. Autoscaling renders all descriptors
equally important since a priori there is a lack of knowledge on the relative importance of
the different descriptors (Wold et al., 2001).

Table 5.2 shows the characteristics of X € R¥*Na i e. the pretreated descriptor matrix,
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5.1 Modeling strategy

where N, is the number of compounds and Ny is the number of descriptors. The ratio
N./Nq is highly unfavorable for variable selection strategies (cf. discussion in Section
2.4.2). Moreover, the low numerical rank is an indicator for the high degree of collinearity
in X. To deal with both the unfavorable N./Ny ratio and the interrelated nature of the
descriptor data, PCA and PLS regression have been employed for further analysis and
model construction. PCA can be viewed as a dimension reduction technique as it projects
X down onto few orthogonal latent variables, i.e., the so-called principal components, which
are chosen to retain most of the variation present in the original data (Jolliffe, 2002). The

central concept behind PCA is the decomposition of X into a product of two matrices, i.e.,

X =TP7", (5.4)

where T is the so-called N, x Ny score matrix and PT denotes the so-called Ny x Ny
loading matrix (Wold et al., 1987; Eriksson et al., 2006a). The columns of the score matrix
T = [t1, to, ..., tn,] are the principal components (PCs), which are orthogonal to each other.
P = [p1, P2, -, Pn,] is an orthogonal matrix, i.e., PTP = PPT =T and PT = P~!. In this
thesis, the PCs have been computed with Matlab’s (The MathWorks Inc., 2016) princomp

function which is based on the singular value decomposition of X, i.e.,

X =TPT=USVT (5.5)

where U and V denote the matrices of the left and right singular vectors and S is a diagonal
matrix holding the singular values (Wold et al., 1987; Abdi, 2010; Bro and Smilde, 2014).

To achieve the dimension reduction, one typically considers only NN,. principal compo-
nents, i.e., the matrices T and P are truncated such that T = [t1, s, ..., ty,. ] € RV*Nre
and P = [p1,p2,....PN,.] € RNaxNpe approximate the descriptor matrix X. This can be

written as

X=TP"+E, (5.6)

where E denotes the residual matrix (Wold et al., 1987; Eriksson et al., 2006a). In the
context of QSPR/QSAR modeling, the first few principal components of the descriptor
data set X are sometimes called principal properties, because it is assumed that they sum-
marize the major structural and chemical properties of the compounds under consideration
(Eriksson et al., 2000, 2006a). A graphical analysis of the first two or three PCs there-
fore reveals relationships among the compounds with regard to the presence of clusters or
strong outliers, i.e., compounds with a special character (Wold et al., 1987; Eriksson et al.,
2006a; Bro and Smilde, 2014).
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5 QSPR-based prediction of physicochemical fuel properties

It is common practice to report the cumulative variation var®™(N,.) in the original

data X, which can be explained by the first IV, principal components (Jolliffe, 2002):

Npe Ng
var®™ (Npe) = 100 (Z(Std(tl))2> / (Z(std(mf) (%] (57)
=1 =1

In Eqn. (5.7), std(t;)? denotes the variance, i.e., the square of the standard deviation
(cf. Eqn. (5.2)), of the I-th principal component. For similarity analysis by means of
principal properties, in the present thesis, IV, has been chosen as the minimum number
of PCs required to explain at least 60% of the variation in X as defined in Eqn. (5.7).
This follows earlier QSAR studies (Eriksson et al., 2000; Wold et al., 2001; Eriksson et al.,
2006a,b), where threshold values between 50% and 70% had been employed to detect

clusters and outliers, typically resulting in a two- or three-dimensional analysis.
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Figure 5.3: Histograms of the first three principal components (PCs) computed for the au-
toscaled heating value descriptor matrix X(LHV'). The variation in X(LHV') that is explained
by each PC is given in parentheses (var®™(3) = 60.8%).

As can be seen from Figure 5.3, three PCs are indeed sufficient to explain 60.8% of
the variation in the autoscaled heating value descriptor data set X(LHV'). Moreover, the
PCs are approximately normally distributed, except for the third PC which discriminates
the oxygenated and the non-oxygenated hydrocarbons. With approximately normally dis-
tributed data, Hotelling’s 72 diagnostic can be applied to detect strong outliers based on
their distance to the center of the PC data (Eriksson et al., 2006a,b; Bro and Smilde,
2014). To this end, T? for compound i is calculated based on the scores [ty, to, ..., t Ny as
(Eriksson et al., 2006b)

Npe 2
tl,i

=2 std(t)? (5:8)

=1
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5.1 Modeling strategy

Table 5.3: Modeling data sets X obtained after pretreatment and outlier removal.
Data for LHV', pm, Thoit, Tineit, Hyap, @ and pi have already been published in Energy & Fuels
(Dahmen and Marquardt, 2016).

| L8V | o

Tbm',l ‘ Tmelt ‘ Hvap

o ‘ H H Terit ‘ Perit ‘ Verit

no. of compounds
.. retrieved from
DIPPR database
.. w/o property

971 | 707 | 977 954 487 | 573 | 473 || 1007 | 963 | 387

967 | 707 | 977 953 484 | 573 | 469 || 1007 | 956 | 387

outliers
.. w/o PCA
) 932 | 676 | 942 914 480 | 558 | 459 967 | 928 | 380
outliers
no. of PCs needed
to describe 60% of 3 3 3 3 3 3 3 3 3 3

variation in X

share of training
compounds above
95% Hotelling’s T2 64| 4.6 6.2 6.0
threshold in PCA
model [%)

ot
[}

4.7 | 6.1 6.3 5.9

ot
t

Compound i is considered to lie outside the confidence region of the PCA model, if T?

exceeds a certain threshold value

NPC(NL'Z — 1)

T2 h’l‘€ = T hr AT N
i N,(N,— N,.)

’ Fa(Npu N, — Npc) ) (5-9)
where F'*(Np., N. — N,.) denotes the F-distribution with N,. and N, — N, degrees of
freedom and confidence level o (Wikstrom et al., 1998; Chiang et al., 2000). In a two-
dimensional PC space, the confidence region is an ellipse with the origin in the center of
the data (Eriksson et al., 2006b).

In this thesis, the T2 diagnostic constitutes the central part of an iterative algorithm for
automatic outlier detection and removal depicted in Figure 5.4. Following data pretreat-
ment, a first PCA model is created and analyzed by means of Hotelling’s T2 statistic. If one
or multiple compounds are located outside the 99.9% confidence region, the compound i
exhibiting the highest T? value is removed and a new PCA model is built. This procedure
is applied repeatedly until all outliers by this definition are excluded, thus yielding the
final modeling data sets X / §. As can be seen from Table 5.3, only reasonable shares of

compounds are located outside the 95% confidence regions after outlier exclusion has been
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5 QSPR-based prediction of physicochemical fuel properties
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Figure 5.4: Workflow for data collection, data pretreatment and outlier removal yielding ther-
mophysical property data y and corresponding descriptor matrices X for subsequent QSPR
modeling.
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5.1 Modeling strategy

performed. As a consequence of outlier removal, carbon, hydrogen and oxygen ranges have
been significantly reduced, e.g., from C3_35Hs_7,0¢_g down to Cs_96Hs 450g_7 in case of
the normal boiling point data set. The list of excluded compounds contains exclusively very
large species (cf. Appendix D). Since fuel candidates are expected to exhibit much lower
molecular weights, it is considered unlikely that outlier exclusion reduces the fuel-relevant

applicability range of a QSPR model to be derived from data sets X / y.

20 o8
®° 20
2 0 g 2 2 0
o % o e
e » 15}
o -20 . % -20
-40 -40
-50 0 50 -20 0 20 -50 0 50
1st PC 2nd PC 1st PC
(a) 1st PC vs. 2nd PC (b) 2nd PC vs. 3rd PC (c) 1st PC vs. 3rd PC

Figure 5.5: Score plots for the first three principal components (PCs) of X(LHV)
(vare™(3) = 60.7%) after outlier exclusion.

As can be seen from the score plots in Figure 5.5, the chemical compounds in the LHV
data set are well distributed in the PC space after outlier exclusion has been performed, and
there are no isolated compounds far away from the center of the data. Similar conclusions
can be drawn for the other thermophysical properties. This suggests that X and y resulting
from the workflow depicted in Figure 5.4 constitute a sound foundation for the derivation
of QSPR models by means of PLS.

5.1.2 Model derivation, validation and application

Unlike (bio-)chemical activities, which are thought to be primarily determined by the
presence of a specific fragment in the molecular structure, physical properties of molecules
are believed to be global properties, i.e., the idea is that every atom in a molecule somehow
contributes to the measured property (Netzeva et al., 2005). Following this line of thought,
the principal properties, i.e., the first few principal components, have been utilized for data
partitioning into training and test sets. To this end, about 15% of the rows from X / y
have been moved into new test data sets X't / y'st. The test sets have been set aside in
order to perform external validation (Roy, 2007; Tropsha, 2010) at a later stage.
Golbraikh and Tropsha (2002b), Tropsha et al. (2003), Golbraikh et al. (2003) and
Leonard and Roy (2006) have suggested that a rational selection of training and test sets
should be based on the proximity of the test set compounds to the training set compounds

(and vice versa) in the space of original descriptors or principal components. Furthermore,
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5 QSPR-based prediction of physicochemical fuel properties
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Figure 5.6: Workflow of the modified SCA algorithm used to relocate 15% of the rows from
X / y into test sets X't / ytest (Nfest compounds).
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5.1 Modeling strategy

the training data should be distributed within the entire PC space to ensure that the
validity range of the QSPR model is maximized (Golbraikh and Tropsha, 2002b).

In this thesis, a variant of stochastic cluster analysis (SCA) (Reynolds et al., 1998;
Tropsha and Golbraikh, 2010) has been applied to the selection of test set compounds 7
and j such that the Euclidean distance d; ; between ¢ and j in the PC space is larger than

a certain similarity threshold 0, i.e.,

Npe

> (=) 3. (5.10)

=1

The workflow of the modified SCA algorithm is depicted in Figure 5.6. The inner core
has been taken from Tropsha and Golbraikh (2010), whereas the similarity threshold ¢ is
controlled slightly different with the help of a bisection approach (cf. Appendix D). This
way, ¢ is iteratively adjusted such that 15% of the modeling data become a diverse test set.
In the final step of the algorithm, the preliminary test set (comprising about 30% of the
modeling data) is sorted by the property values and every second compound is relocated
to the training set. This step resembles the concept of activity rank-based selection in
QSAR (Golbraikh and Tropsha, 2002b; Leonard and Roy, 2006) and aims at avoiding that
the property range of the test set extends considerably beyond the property range of the
training set. As indicated in Figure 5.7, the modified SCA algorithm returns descriptor
data sets X (subsequently used for QSPR model building) and X (subsequently used
to assess the predictive power of the QSPR model by means of external validation) which

occupy roughly the same molecular domain, i.e., the same three-dimensional volume in the

PC space.
. 30 © training data
S * testdata o
§ % . o
E 10 * o % 0%090@&. e ©
S o £,
=3 eofe %
g-10- R
Q20 -
'E .
™ .30 S
40 9 o— _——"70 2
0 20 g ——— oy -0 0O
40 60  -30 -20
1st principal component 2nd principal component

Figure 5.7: Exemplary distribution of training data and test data in the PC space of X as
generated by the modified SCA algorithm (cf. Figure 5.6).

93

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

5 QSPR-based prediction of physicochemical fuel properties

The structure-property relationships, i.e., the actual QSPR models, have been deter-
mined by PLS regression following the concepts presented by Eriksson et al. (2006a,b). In
contrast to multiple linear regression (MLR), but similar to PCA, the projection technique
PLS yields robust results, even if the ratio of the number of training compounds to the
number of descriptors, i.e., N./Ng, is small and/or descriptor data X suffer from a high
degree of collinearity (Cramer, 1993; Clark and Cramer, 1993; Wold et al., 2001). Like
PCA, PLS regression is sensitive to scaling (Wold et al., 2001; Eriksson et al., 2006b).
Thus, auto-scaling (cf. Eqns. (5.1)-(5.3)) is applied to all column-vectors x; in X, i.e.,

X; — I
— s 5.11
T std(x) (5:11)
and to the vector of property data y, i.e.,
S ]
— 5.12
V< G (5.12)

yielding the N, x N, matrix of scaled descriptor data X and the column-vector of scaled
property data y of length N.. Then, PLS regression proceeds by extracting few, orthogonal
latent variables from X such that these are predictors of y, but also model X. This can
be written as follows (Wold et al., 2001):

X =TPT+E (5.13)
T =XW (5.14)
y=Tc"+r=XB+r (5.15)
B =wc" (5.16)

Eqn. (5.13) shows the decomposition of the descriptor data matrix into a score matrix
T € RN*Nits e, the matrix of Ny, orthogonal latent variables, and a loading matrix
PT € RNes*Na which is unlike in PCA non-orthogonal. E denotes the matrix of residuals.
As can be seen from Eqn. (5.14), the score matrix T is the product of the original descriptor
data and a weight matrix W € RNe*Npts. This means that the latent variables are linear
combinations of all Ny original descriptors. Equ. (5.15) refers to the relationship between

T ¢ RN is a column-vector of weights and

the property data vector and T, where c
r denotes the vector of residuals. Finally, the column-vector of regression coefficients
B € RN in Eqn. (5.15) is calculated as the product of the weight matrix and the weight
vector (cf. Eqn. (5.16)). In this thesis, Matlab’s (The MathWorks Inc., 2016) pisregress
function which is based on the SIMPLS algorithm (de Jong, 1993) has been used to perform

the PLS regression step.
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5.1 Modeling strategy

The optimal number of PLS components Ny, has been selected based on 7-fold cross-
validation (Cramer et al., 1988; Clark and Cramer, 1993; Wold et al., 2001; Eriksson
et al., 2006b). To this end, the root-mean-square error (RMSE) for the model fit has been
compared to the cross-validation RMSE as shown for the normal boiling point QSPR in
Figure 5.8. Here, both fit RMSE and cross-validation RMSE decrease similarly in case of
the first few PLS components. However, the addition of more than about seven components
does not reduce the cross-validation RMSE any further, whereas the fit to the training data
continues to improve. This is a clear sign of the onset of over-fitting (Geladi and Kowalski,
1986; Eriksson et al., 2006b). Hence, the optimal number of PLS components for the

Thoi-QSPR has been set to seven.

0.5 T T T T T

—4— RMSE (7-fold CV)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
no. of PLS components chosen for modeling

Figure 5.8: Selection of the optimal number of PLS components for the T},;-QSPR model is
based on a comparison of model fit RMSE and 7-fold cross-validation (CV) RMSE.

Obviously, descriptor data of new compounds need to be scaled in the same way the
training data set X had been autoscaled. This shall be exemplified by considering the
test set descriptor matrix X', To this end, each column x}** of X'** needs to be scaled

according to

test 7
test X —

— 5.17
e std(x;) (517)

where the mean 7; and the standard deviation std(x;) refer to the unscaled variant of X,
i.e., the descriptor matrix for the training set. Then, the vector of predicted property

test

values y'*" of the test set compounds can be calculated from (cf. Eqn. (5.15))

Y= std(9) - (XB) +7, (5.18)

where the mean § and the standard deviation std(y) refer to the unscaled variant of g, i.e.,

the property vector for the training set. The test sets are used to confirm the predictive
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5 QSPR-based prediction of physicochemical fuel properties

power of the models. An exemplary parity plot of y** (predicted data) vs. y' (data
taken from DIPPR database) is shown for the Tp.;-QSPR model in Figure 5.9. Average
relative errors (AREs) and maximum relative errors (MREs) for the individual models will
be given in the subsequent Section.
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Figure 5.9: Parity plot for the T},;~-QSPR model (802 training compounds, 140 test com-
pounds, 2.5% average relative prediction error, 12.3 K average absolute prediction error).

Finally, for applicability domain (AD) evaluation, X! needs to be projected into the
PC space of the training data X. This can be written as follows (Wold et al., 1987):

X=TPT+E (5.19)
thst _ XtcstP (520)

In Eqn. (5.19), the column-vectors of T € RNe*Nee denote the scores of X, where Ny is
the minimum number of PCs required to explain 60% of the variation in X. The loading
matrix P then transforms X't into the PC space of the training data by means of Eqn.
(5.20), thus yielding Tt € RNe™*Nee j e, the score matrix of the test data. With the
help of T and T it is possible to compute, for any compound 4 in either training or
test set, the distance to the five nearest training neighbors dsyry; in the Ny-dimensional

PC space. More specifically, d5n7n, refers to the average of the Euclidean distances to
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the closest five compounds from the training set (Weaver and Gleeson, 2008). The d5n7n
values of the training compounds themselves are stored in a vector d;y,y, and the 95%
percentile of these values has been suggested to act as a normalization factor ofg iy for
AD evaluation (Weaver and Gleeson, 2008). Hence, any novel compound ¢ is considered
to be located inside the AD of a QSPR model built on the training data sets X / y, if
Osntn,i /Oty < 1. As can be seen from both Figure 5.10 and Table 5.4, some test set
compounds are located outside the AD. This is a result of the modified SCA algorithm,
which maximizes the diversity of both training and test sets. The chosen AD criterion is

therefore rather restrictive.

Table 5.4: Characteristics of the training and test sets. d;n7n; denotes the average distance
of compound i to its five nearest training neighbors in the PC space. The normalization factor
ougiT, for AD calculation is the 95% percentile of &5y, i.€., the vector of d5npn; values
of all training compounds. Data for LHV', pm, Thoit, Tineit: Hyap, 0 and p have already been
published in Energy & Fuels (Dahmen and Marquardt, 2016).

size of . O5NTN,i of O5NTN,i of L.
e size of test L. normalization
training training set test set .
set (NZIest) factor dTR 7
set (INg) compounds compounds o
mean max. mean max.
LHV | 792 140 2.6 16.2 4.4 14.0 6.2
Pm 575 101 4.1 21.8 6.3 21.8 9.3
Thoit 802 140 2.5 11.0 4.2 19.3 5.9
Tnewr | 778 136 2.7 14.7 4.2 12.1 6.5
Hyap | 409 71 3.5 18.1 5.5 12.6 9.1
o 474 84 3.2 19.2 5.2 15.6 7.8
Iz 390 69 3.7 14.1 4.9 13.2 9.0
Terit | 822 145 2.6 17.3 3.9 15.8 6.2
Perit 789 139 2.6 18.9 4.7 14.1 6.4
Verit | 324 56 3.8 18.1 4.8 10.6 8.6
30
? 220 | 95% percentile of JSNTN(LHV) (training data) |
qé_ 3 10k / training data | |
28 test data
=50 Dl o e e 0 e o ] - i

o 2 4 6 8
65NTN,i(

10 12 14 16 18
LHV)

Figure 5.10: Histogram of 057w, (LHV), i.e., the average distance of compound i to its five
nearest training neighbors in the PC space T(LHV') / T**(LHV) (cf. Eqns. (5.19)-(5.20)).
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5 QSPR-based prediction of physicochemical fuel properties

5.2 Comparison with GC-based prediction of

thermophysical properties

The book of Poling et al. (2001) provides an excellent review of the most important group
contribution methods (GCMs) for the estimation of thermophysical properties. Based on
an extensive comparison of the different methods, Poling et al. (2001) argue that, with
regard to pure-component constants, i.e., critical properties, normal boiling point and
melting point, the newer models developed by Joback and Reid (1987) and Constantinou
and Gani (1994) should be preferred, since the older models, e.g., the one proposed by
Fedors (1982), do not appear to be as accurate. The model of Constantinou and Gani
(1994) has since then been extended by Gani and co-workers (Marrero and Gani, 2001;
Hukkerikar et al., 2012; Hukkerikar, 2013). In its most recent version (Hukkerikar et al.,
2012; Hukkerikar, 2013), Gani’s group contribution plus (GC*) model represents the most
comprehensive suite of group additivity based pure-component thermophysical property
prediction in the publicly available scientific literature.

As can be seen from Table 5.5, Joback’s method enables the direct prediction of only two
fuel properties considered in this thesis (cf. Table 2.1), i.e., the normal boiling point Ty
and the melting point T},e;. Further properties, however, can be calculated if additional
functional relationships are utilized. For instance, the lower heating value LHV [MJ/kg]
of a CcH,O, species can be calculated based on the estimate for the enthalpy of formation
at standard state H} [kJ/mol] as

HHV =39351 -z + 142.915 -y + HY (5.21)
M =12.0107 - x + 1.00794 - y + 15.9994 - z, (5.22)

1 1
LHV =— (HHV — = .y - 43. 5.2
1% ]\1( Vv 5 Y 399)7 (5.23)

where HHV [kJ/mol] denotes the higher heating value, M is the molar mass [g/mol], =
is the number of carbon atoms, y refers to the number of hydrogen atoms and z denotes
the number of oxygen atoms (Lide, 2003). The following relationships for the enthalpy of
vaporization H,p, liquid density py,, kinematic viscosity v and surface tension ¢ have been
chosen based on the recommendations made by Poling et al. (2001) and Gmehling et al.
(2012).

The modified Rackett equation (Yamada and Gunn, 1973) correlates the liquid density

pr, [kg/m?] with critical property data via

8.314 - T,,; _ : -1
— |22 E Terit (0.29056 — 0.08775 - w)1+(1 28/Teri)®™ 1000 . 01 7 (5.24)

PL 5
10° - Derit
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5.2 Comparison with GC-based prediction of thermophysical properties

Table 5.5: Prediction of the thermophysical fuel properties listed in Table 2.1 by means of
two established GC models, i.e., Joback’s method (Joback and Reid, 1987) and Gani's method
(Hukkerikar et al., 2012; Hukkerikar, 2013), in combination with other empirical models (see
text for details). A checkmark indicates that a GC model has been trained for the respective
property. The molar mass computed from the sum formula (cf. Eqn. (5.22)) is used to convert

between molar and mass bases (not explicitly shown).

Gani’s method
Joback’s method .
. (Hukkerikar
(Joback and Reid,
et al, 2012
1987) )
Hukkerikar, 2013)
key fuel properties (cf. Table 2.1):
boiling point Th; at 1 atm [°C| v/ v
enthalpy of vaporization Hyqp at 25°C [kJ/kg] | Hyap(Terit, w) v
lower heating value LHV at 25°C [MJ/kg] LHV (HY) LHV (HY)
melting point Ty at 1 atm [°C] v/ v
liquid density py, at 25°C [kg/m’] P1(Torits Perits ) v
kinematic viscosity v at 25°C [mm?/s] v(p, pr) v(u, pr)
surface tension o at 25°C [mN/m] 0 (Thoit, Terits Derit) v
required for indirect prediction:
critical temperature Tp;¢ [K] v 4
critical pressure perit [bar] v v
acentric factor w H W(Tbuib TCT’ihpCT’it) 4
dynamic viscosity p [Pa-s] v v
std. enthalpy of formation H? [kJ/mol] v v

where T..;; denotes the critical temperature [K], pe.+ the critical pressure [bar], w the
acentric factor [-] and M the molar mass [kg/kmol| (Poling et al., 2001). While T,,; and
Perit are readily available from Joback’s method (cf. Table 5.5), the most accurate estimate

for w is typically obtained from

 In (i) + [-5.97616x + 129874\ — 0.60304x*® — L.OGS41Y"] /ot

—5.03365x + 111505y 10 — 5.41217y25 — 7.46628x7] / Lt
Terit

W= (5.25)
where x =1 — (Typoi/Terir) (Poling et al., 2001).

The density estimate py, then allows to convert the dynamic viscosity p as calculated by
Joback’s method into the kinematic viscosity v which is considered for the purpose of fuel
screening (cf. Tables 2.1 and 5.5).

With the help of w and T, the enthalpy of vaporization H,,, [kJ/kg] at 298 K can be
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estimated as (Poling et al., 2001)

1 208\ 0554 208\ 0-456
Hyop = i |:7.08 <1 — ) +10.95 - w (1 — ) 8.314 - Tppiy - (5.26)

Tcrit crit

Finally, in order to compute the surface tension o [mN/m] at 298 K, the Brock-Bird-
Miller equation (Brock and Bird, 1955; Miller and Thodos, 1963; Gmehling et al., 2012)

can be utilized:

crit crit

2/3  l/3
o=np. 5T -10.1196
< 1-— (Tboil/TcTit) crit

Tooit ) Terit) - In (TRenit- 2 e
1+( boit/ Lerit) I1(1.01325)} 0279) . (1, 98)

(5.27)

Gani’s multi-level GCT models (Hukkerikar et al., 2012; Hukkerikar, 2013) have been
trained on the CAPEC database, i.e., a property database established and extended by
Gani and co-workers since 1998 (Nielsen et al., 2001). Gani and co-workers have argued
that it is possible to improve the predictive capability and applicability range of their GC*
models by taking all available data to train the models (Hukkerikar et al., 2012; Hukkerikar,
2013). Consequently, they have decided against setting aside a fraction of the available
property data for the purpose of external validation. In general, however, the fitting error
is an overly optimistic estimate for the true predictive power of a model (Hastie et al.,
2009).

Table 5.6 summarizes the statistical measures for the QSPR models that have resulted
from the workflow described above and compares these measures to those of GC-based pre-
diction. In order to facilitate the comparison, Joback’s model (Joback and Reid, 1987) and
the additional functional relationships given in Equs. (5.21)-(5.27) have been implemented
in Matlab (The MathWorks Inc., 2016). In case of Gani's model (Hukkerikar et al., 2012;
Hukkerikar, 2013), ICAS-ProPred (CAPEC, 2012) has been used to make the predictions.
The lower heating value has been computed in Matlab from the ICAS-ProPred estimate for
the enthalpy of formation H? (cf. Eqns. (5.21)-(5.23)). For any given property, identical
test sets have been used to enable a fair comparison of the different models.

In case of the QSPR models, the average relative error (ARE) is below 10% for all
properties and prediction accuracies are best for LHV, Ty, Terir and py,. Similar AREs
for the training and test sets suggest that all QSPR models have high predictive power
(Golbraikh and Tropsha, 2002a). As can be seen from Table 5.6, the QSPR models perform
similar to or better than Joback’s and Gani's GCMs. In case of LHV', Hyqp, perit and Ve,
differences between the three methods are generally marginal. The AREs for the T},; and

T estimates from Joback’s method are roughly two times larger than the corresponding
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5 QSPR-based prediction of physicochemical fuel properties

AREs obtained with the QSPR and GC* methods. For T},¢;, o and p, the QSPR models
seem to provide somewhat better estimates than the GC methods. Moreover, insertion of
critical property data estimates from Joback’s method into the modified Rackett equation
(cf. Eqn. (5.24)) to predict liquid density yields remarkably inaccurate results, while AREs
for the corresponding QSPR and GC* models are small.

In a strict sense the conclusions drawn here apply to the specific test sets only and it
is unclear to what extent compounds from the test sets have been used to train Joback’s
and/or Gani’'s GCMs. However, it is safe to say that the QSPRs have demonstrated
high predictive power and their training and test sets comprise CyH,O, structures that
are similar to those that are generated by the targeted procedure outlined in Chapter 3.
Furthermore, the QSPR applicability domain concept allows to quantify this similarity. For
these reasons, the QSPR models will be employed for computational property prediction
as part of the virtual fuel screening in the subsequent Chapters.

Finally, it shall be mentioned that numerous QSPR models for the prediction of ther-
mophysical properties can also be found in the literature. Katritzky and Fara (2005) and
Katritzky et al. (2010) provide excellent reviews of such models. However, despite the
existence of many guidelines on best practices for QSPR modeling (cf. Section 2.4.2), it is
often difficult to judge the quality of a particular QSPR model based on the published data
as technical details are often missing. An even greater problem is the fact that the infor-
mation required to compute new descriptor data and to make new predictions is frequently
incomplete. This has led to the paradox that although re-usability by others should be
one of the prime uses of any published QSPR, poor transferability is considered rather the
rule than the exception (Dearden et al., 2009; Cherkasov et al., 2014).

5.3 QSPR-based prediction of fuel auto-ignition quality

The QSPR modeling procedure has also been applied to the IQT ignition delay 7. Note that
7 and the derived cetane number (DCN) represent physicochemical properties because, in
addition to the mixture formation process, gas-phase chemical reactions strongly account
for the time delay between fuel injection and start of combustion (cf. Figure 2.2). Total
available data have been split into training and validation sets in the same way as described
in Chapter 4 to enable a direct comparison between QSPR and GC models. PCA and PLS
are particularly useful to deal with the highly unfavorable descriptors-to-observations ratio
of 628 to 144. As can be seen from Table 5.7, applying Hotelling’s T? statistic to the PCA
model of the training data does not reveal any structural outliers.

An important difference between the GC model from Chapter 4 and the QSPR model

results from the inability of the PLS algorithm to exploit the information provided by the
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5.3 QSPR-based prediction of fuel auto-ignition quality

Table 5.7: QSPR model for the IQT ignition delay 7 and the DCN.

no. of training compounds 144
no. of molecular descriptors after pretreatment 628
no. of PCs needed to describe 60% of variation in X(7) 3
percentage of compounds ...
.. above 95.0% Hotelling’s T2 threshold in the PCA model of X(7) 5.6%
.. above 99.0% Hotelling’s T2 threshold in the PCA model of X(7) 1.4%
.. above 99.9% Hotelling’s T2 threshold in the PCA model of X(7) 0.0%
no. of PLS components used to model y(In(In7)) (determined by 7-fold CV) 8
statistical performance measures
training data set
average absolute error (AAE) in DCN space 4.1
maximum absolute error (MAE) in DCN space 17.4
repeated 5-fold cross-validation (LMO-CV) data sets (10,000 runs)
average absolute error (AAE) in DCN space 6.8
maximum absolute error (MAE) in DCN space 68.0
test data set (i.e., the external validation data set)
average absolute error (AAE) in DCN space 6.6
maximum absolute error (MAE) in DCN space 14.1
103
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5 QSPR-based prediction of physicochemical fuel properties

measurement uncertainty. However, similar to the GC model, the best PLS fit is obtained,
if In(In7) instead of In 7 is modeled by a linear combination of descriptors (see discussion
in Subsection 4.2.1). As can be seen from the parity plot in Figure 5.11, this yields a

distribution of residuals that is approximately independent of the DCN.
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Figure 5.11: QSPR model for the IQT ignition delay 7 and the derived cetane number (DCN).
Note: In T has been converted to DCN exclusively based on Eqn. (4.1).

As depicted in Figure 5.12, the GC model and the QSPR model perform similarly well on
the external validation sets. This is also reflected in the statistical performance measures
shown in Table 5.7 (compare to those of the GC model presented in Table 4.10). Two
possible interpretations shall be given here: (i) The fact that the PLS algorithm is unable to
extract a correlation between In(In7) and 628 molecular descriptors, which is significantly
more accurate than the one described by the group contribution method, suggests that the
GC model indeed captures important relationships between molecular structure and the
IQT ignition delay. (ii) The fact that the GC model does not appear to be considerably
more accurate than the QSPR model is another piece of evidence supporting the claim
that the GC model has not been substantially overfitted. Interestingly, both models fail to
predict the low DCN of methyl tert-butyl ether (MTBE), whereas the predictions for all
other compounds with experimental DCN<7, can be considered fairly accurate (cf. Figure
5.12, bottom). This observation underlines the special character of the ether group sitting
next to a tertiary carbon atom (see discussion in Subsection 4.2.4).

The GC model, not the QSPR model, is used to predict DCN as part of the virtual fuel
screening in the subsequent Chapters, because (i) the GC estimate can be considered more
transparent because the rationale behind the GC model has been presented in detail in
Section 4.2, (ii) the GC model does not seem to be inferior to the QSPR model in terms
of predictive power, and (iii) the GC model takes into account the marked differences in

measurement uncertainty of IQT-derived ignition delay and DCN.
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5.3 QSPR-based prediction of fuel auto-ignition quality
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Figure 5.12: GC model vs. QSPR model: Predictions for the external validation set (top).
Predictions for the compounds with experimental DCN<7 (cf. Figure 4.10) (bottom).
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5 QSPR-based prediction of physicochemical fuel properties

5.4 Conclusions and outlook

A generic workflow for QSPR modeling of physicochemical fuel properties based on PCA
and PLS regression has been successfully applied to a range of thermophysical proper-
ties and the IQT ignition delay. The property models have been tailored for CH,O,
structures relevant to computational fuel screening by considering high-quality property
data extracted from the DIPPR database of organic compounds. The models have been
thoroughly validated by means of cross-validation and external validation. Moreover, an
applicability domain concept has been implemented to quantify similarity between training
compounds and target compounds. With regard to the thermophysical fuel properties from
Table 2.1, the QSPR models perform similar to or somewhat better than established group
contribution methods on the basis of the test sets investigated here. Similar prediction
accuracies have been observed for QSPR-based and GC-based prediction of IQT ignition
delay and DCN. These encouraging results suggest to apply this particular strategy for
QSPR modeling to additional physicochemical properties relevant to fuel design. Given a
sufficient amount of training data, application of the modeling workflow is straight-forward

and does not require a substantial amount of time.
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6 Model-based identification of biofuel
candidates

In this Chapter, the generate-and-test variant of biofuel CAMD as depicted in Figure 1.3
is applied to two case studies. The aim of these case studies is to identify oxygenated fuel
candidates for high-efficiency and low-emission spark-ignition and compression-ignition
engines like those studied within TMFB (Janssen et al., 2011; Thewes et al., 2011a,b;
Heuser et al., 2013b, 2014; Hoppe et al., 2016a). These fuels shall result from carbon- and
energy-efficient chemo-catalytic refunctionalization of bio-derived platform molecules. In
contrast to earlier biofuel CAMD studies (Hechinger et al., 2012b; Dahmen et al., 2012;
Hechinger, 2014), the targeted approach for structure generation (cf. Chapter 3) and
the improved model for fuel auto-ignition quality (cf. Chapter 4) allow to narrow down
the range of potential fuel candidates to a smaller number of distinct molecular motifs.
Fuel prototyping, i.e., the synthesis of a sufficiently pure, small sample for experimental
investigation, constitutes a subsequent step which needs to be performed on manually
selected compounds, but is not addressed explicitly in this thesis. The interested reader is
referred to a recent publication (Hoppe et al., 2016b) where experimental results for both
SI and CI one-cylinder research engines are presented for a range of TMFB fuels. The
present Chapter has already been published in a slightly modified form in Energy & Fuels
(Dahmen and Marquardt, 2016).

6.1 Candidates for spark-ignition (SI) engines

The first case study deals with the identification of fuel candidates for the spark-ignition
(SI) engine. In order to achieve a high overall LHV efficiency (sugar/Hs to fuel), those
intermediates from Table 2.4 are selected as starting points for fuel synthesis that com-
prise at least 75% LHV efficiency from sugar to intermediate at highest-reported real yield.
To compute the overall LHV efficiency, it is assumed that the chemical upgrading of in-
termediates to fuels occurs at (or close to) the maximum theoretical yield. The eleven
intermediates selected for fuel production are given in Table 6.1.

The product spectrum shall be limited to molecules containing up to eight carbon atoms.
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6 Model-based identification of biofuel candidates

Table 6.1: Scenario definition for the generation of biofuel candidates for the SI engine.

ethanol, lactic acid, 1-butanol, succinic acid, isobutanol, 2,3-
intermediates butanediol, acetic acid, 1,3-propanediol, hydroxymethylfurfural,

furfural, butyric acid

max. of eight carbon atoms; five- and six-membered rings only;
up to one aggregation by C-C coupling (aldol condensation) and
structural constraints up to one aggregation by C-O-C coupling (etherification or ester-
ification); max. Joback Tyoi (Tmert) of 500 °C (of 200 °C) for all

molecules (intermediates and products) to be generated

fuel specifications oxygen content wto, > 10 wt-%
boiling point Thi > 60 °C and < 120 °C
melting point Tiper <-20°C
surface tension o < 30 mN/m
viscosity v < 2.0 mm?/s
enthalpy of vaporization Hyap < 60 kJ/kg(air) at A=1
derived cetane number DCN <20

Since five- and six-membered rings are the most stable cyclic arrangements of heavy-atoms,
other rings sizes are not considered here. Finally, the aggregations shall be limited to one
C-C coupling and one C-O-C coupling.

For the purpose of fuel identification, the set of property constraints given in Table 6.1
is used. These constraints have evolved from definitions for tailor-made fuels established
within TMFB (Kremer, 2011; Klankermayer et al., 2011; Thewes et al., 2011b; Victo-
ria Villeda et al., 2012¢; Hoppe et al., 2016a,b) and from the regular exchange between
the author of this thesis and members of the TMFB Core Interaction Field ”Fuel Design”,
most notably Florian Kremer, Benedikt Heuser, Fabian Hoppe and Stefan Pischinger (In-
stitute for Combustion Engines, RWTH Aachen University) and Manuel Hechinger and
Juan José Victoria Villeda (Institute for Process Systems Engineering at Aachener Ver-
fahrenstechnik, RWTH Aachen University). With the aim of reducing soot emissions in
direct-injection ST engines, fuel candidates containing at least 10 wt-% of oxygen are fa-
vored. The DCN shall be smaller than 20, which roughly corresponds to a RON of 85
and higher. The relationship between DCN and RON is based on a correlation between
IQT ignition delay 7 and RON derived by Perez and Boehman (2012), which is illustrated
in Figure 6.1. The DCN for iso-octane is approximately 17 (Dooley et al., 2012b) and
from Figure 6.1 it can be seen that the correlated RON is close to the true RON of 100.
Likewise, the experimental DCN for methyl tert-butyl ether (MTBE) is <7 (cf. Appendix
B), which is in good agreement with MTBE’s RON of 116-118 (Rosell et al., 2006).
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6.1 Candidates for spark-ignition (SI) engines
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Figure 6.1: Relationship between IQT ignition delay 7, derived cetane number (DCN) and
research octane number (RON) (correlations taken from ASTM D6890 (2011) and Perez and
Boehman (2012)).

Similar to previous studies (Klankermayer et al., 2011; Hechinger et al., 2012b;
Hechinger, 2014; Hoppe et al., 2016a,b), problems related to cold start/run and oil di-
lution shall be mitigated by limiting the boiling point to 120 °C and the enthalpy of
vaporization to 60 kJ/kg(air). The enthalpy of vaporization in kJ/kg is related to 1 kg of
air for a stoichiometric mixture in order to account for the fact that the mass of fuel to
be injected depends on the fuel’s atomic composition. Besides boiling point and enthalpy
of vaporization, surface tension and kinematic viscosity are constrained, because droplet
combustion and insufficient mixing of vaporized ethanol containing fuel and air have been
linked to soot formation in direct-injection ST engines (Storch et al., 2015). Finally, to se-
lect only those fuels, which are liquids under typical ambient conditions, an upper bound
is placed on the melting point and a lower bound is introduced for the boiling point (cf.
Table 6.1).

Based on the scenario definition depicted in Table 6.1, the molecular structure generator
suggests 3,215 potential products. Characteristics of these products are visualized in Figure
6.2 (a). Here, the diameter of the nodes denotes the number of molecules in the product
spectrum containing one or multiple instances of a certain structural pattern. The exact
number of molecules is given in parentheses. Moreover, the thickness of a line drawn

between two nodes indicates the number of molecules containing both structural patterns.

The product spectrum covers many different functionalities. The most frequently oc-
curring oxygen motifs are alcohol, aldehyde, ketone and ether. The tertiary carbon atom

originates from iso-butanol or results from C-C coupling. Polyfunctional molecules consti-
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6 Model-based identification of biofuel candidates
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cyclic anhydride (2) aldehyde (1450) cyclic anhydride (O)x * aldehyde (0)
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(a) 3,215 molecules in total (b) 8 molecules in total

Figure 6.2: Pure-component fuel candidates for the SI engine: Product spectrum
after structure generation (a) and after virtual fuel screening (b). The diameter of the nodes
denotes the number of molecules containing a certain structural pattern (the exact number is
given in parentheses). The thickness of a line indicates the number of molecules containing

both structural patterns.

tute the vast majority. As can be seen from Figure 6.2 (b), only eight of 3,215 molecules
are predicted to exhibit the desired properties. These oxygenates are monofunctional com-
pounds. Figure 6.3 shows the detailed results from the virtual fuel screening. For each
property filter the number of molecules satisfying the imposed constraint, the number of
molecules not meeting the constraint and the number of molecules located outside of the
applicability domain of the respective QSPR model are given. Interestingly, only 89 com-
pounds cannot be evaluated due to limited model applicability. Obviously, the molecules
generated by the targeted approach have sufficient similarity to the training molecules used
in the derivation of the QSPRs in Chapter 5. The normal boiling point constraint (-98.1%)
and the DCN constraint (-85.7%) act as the two main filters.

Table 6.2 summarizes key properties of the eight biofuel candidates. The structural
relations between fuel candidates and intermediates are tracked by the molecular structure
generator and can be found in the third last column of Table 6.2. The eight candidates
can be grouped into furans, ketones and esters and will be discussed in the following.

2-Methylfuran and 2,5-dimethylfuran can be viewed as validation compounds demon-
strating that the outlined computational approach is indeed capable of identifying fuel
candidates. As discussed in Chapter 2, the favorable properties of these furanic fuels are
well-known. Moreover, based on an optimized production set-up for furfural and hydrox-
ymethylfurfural, quite high overall LHV efficiencies can be realized. The volumetric energy

densities of 2-methylfuran and 2,5-dimethylfuran (29.0—29.3 MJ/1) are approximately 28%

110

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

6.1 Candidates for spark-ignition (SI) engines
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Figure 6.3: SI engine: Virtual fuel screening performed by means of QSPR and group

contribution based property prediction (AD denotes applicability domain of respective QSPR

model).
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6 Model-based identification of biofuel candidates

higher than that of ethanol, however about 9% lower than that of gasoline. Compared to
RON95, engine efficiency can be increased with 2-methylfuran as a result of the higher
octane number (Hoppe et al., 2016a,b). Thus, it is reasonable to assume that the two

compact furans can provide a mileage close to that of gasoline given a fixed volume of fuel.

2-Butanone had been discovered by Hechinger (2014) in a previous round of computer-
aided fuel design and since then the fuel has been studied in a highly-boosted direct-
injection SI research engine (Hoppe et al., 2016a,b). Efficiency gains up to 20% at full load
operation compared to RON95 gasoline can be achieved due to a higher effective com-
pression ratio enabled by the extreme knock resistance of 2-butanone (RON 117, MON
107) (Hoppe et al., 2016b). Moreover, butanone’s low boiling point, low viscosity and
gasoline-like enthalpy of vaporization improve the mixture formation process compared to
ethanol fuel, especially at low engine loads and cold boundary conditions (Hoppe et al.,
2016a,b). As proposed by the molecular structure generator, 2-butanone can be produced
from 2,3-butanediol (T6rck et al., 1996; Zhang et al., 2012). Direct fermentation of bu-
tanone has also been suggested, however, current yields are extremely low (Yoneda et al.,
2014). Methyl isobutyl ketone (cf. Table 6.2) is another compact ketonic biofuel candi-
date for the SI engine. Its experimental DCN is 12.6 (cf. Appendix B). Presumably,
it exhibits anti-knock properties similar to those of butanone, however, methyl isobutyl
ketone has a higher boiling point, which is comparable to that of 1-butanol. However, in
contrast to the alcohol-fuel, methyl isobutyl ketone comprises a more gasoline-like enthalpy

of vaporization.

Small esters make the third group of pure-component biofuel candidates for the SI engine.
Compared to the furanic or ketonic biofuels, their mass- and volume-related energy density
is lower due to the higher oxygen-to-carbon ratio. Similar to ketones and furans, small
esters exhibit enthalpies of vaporization similar to that of gasoline fuel. The experimental
boiling points are somewhat lower than those predicted by the QSPR model, e.g., the
true boiling point for ethyl acetate is 77 °C (Jenkins et al., 2013). In addition to these
favorable mixture formation properties, small esters are also extremely knock-resistant
(Dabbagh et al., 2013). For instance, a RON of 116 has been reported for ethyl acetate
(Stickney et al., 2005). Ternary mixtures of small esters have been studied in HCCI engines
(Contino et al., 2011a,b). Saturated esters have been found to be far more stable than
the polyunsaturated esters in vegetable oils and biodiesel (Jenkins et al., 2013). Thus,

oxidative instability should not be a major concern.

Given the fact that lots of research activity has centered around furanic biofuels in recent
years (e.g., Zhong et al. (2010); Lange et al. (2010); Thewes et al. (2011a); Lange et al.
(2012); Wang et al. (2013); Sudholt et al. (2015)), compact ketones and esters constitute

interesting, possibly even superior alternatives. In contrast to the furans, the ketones and
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Figure 6.4: SI engine: Candidates for blending: Virtual fuel screening performed by
means of QSPR and group contribution based property prediction.

esters can be produced from fermentation products with high overall LHV efficiencies. For
instance, Jenkins et al. (2013) have recently esterified a variety of large-volume fermenta-
tion products (including acetic acid and lactic acid) with ethanol to yield potential fuel
compounds.

The question arises, whether a broader range of components can be obtained for blending
applications, if the property constraints are somewhat relaxed. For instance, raising the
maximum tolerable boiling point from 120 °C to 150 °C yields additional molecules, which
do not constitute pure-component fuel candidates. However, these species might be part
of a blend in which lighter fractions support the in-cylinder mixture formation process.
Similarly, one-at-a-time variation of all property constraints shown in Figure 6.3 can reveal
how the number of molecules and the prevalent structural motifs depend on the chosen
constraint values. Although the flexibility of the computational approach allows to perform
such an analysis with very little effort, the interpretation of a sensitivity study goes beyond
the scope of this case study. Therefore, the attention shall be restricted here to one
particular scenario with relaxed property constraints, which is shown in Figure 6.4. In this
scenario, the requirements on boiling point, melting point, viscosity, surface tension and
DCN have been weakened. This yields a list of 55 candidates for blending applications
that includes the eight pure-component fuel candidates discussed above. The full list of
structures can be found in the Supporting Information of Dahmen and Marquardt (2016).
Seven representative structures are depicted in Table 6.3. Structurally similar compounds

from the list are given in the last column.
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A range of tetrahydrofurans is proposed as a result of a slightly relaxed DCN constraint.
The experimental DCN for 2-methyltetrahydrofuran (2-MTHF) is 21.3 (cf. Appendix B).
The correlated RON is in good agreement with the reported RON of 86 (Yanowitz et al.,
2011). Since the hydrogenation of furans significantly lowers their anti-knock quality, it

does not seem reasonable to perform this synthesis step.

2-Butylfuran can be produced via aldol condensation of furfural and acetone as recently
reported by Julis and Leitner (2012). If the side-chain length of a furanic structure is
increased, the DCN increases as well (Sudholt et al., 2015). As a consequence, 2-butylfuran
(experimental DCN of 13.1; cf. Sudholt et al. (2015)) is expected to be less knock-resistant
than 2-methylfuran. Similar to the hydrogenation of the furan ring, extending the length of
the side-chain will increase the lower heating value. However, since a high knock-resistance
is typically more important, aldol condensation as a tool in furanic SI fuel synthesis does

not seem plausible.

Isomers of butanol and pentanol as well as additional ketones are among the 55 can-
didates for blending applications (cf. Table 6.3). While the larger alcohols satisfy the
constraint on the enthalpy of vaporization, the boiling point as well as the DCN increase
compared to ethanol. Moreover, the viscosity of the larger alcohols is roughly six times
higher than the viscosity of gasoline fuel. Thewes et al. (2011b) have suggested that the
high viscosity of the alcohol-fuels further deteriorates the quality of mixture formation due

to the larger droplet size.

With regard to furans, ketones and esters, the relaxation of property constraints gives rise
to more variants. However, there is evidence that the small molecules, i.e., those satisfying
the stricter constraints for pure-component fuels, should be favored: An increase in the
molecular weight, as a general trend, will decrease fuel volatility and knock resistance.

Furthermore, the synthesis of larger compounds is expected to require more steps.

Finally, the list of 55 candidates for blending applications includes polyfunctional com-
pounds of two sorts: An ether group is combined either with a ketone group or with an
alcohol group. The ether group allows to integrate another oxygen atom without strongly
increasing the boiling point (Joback and Reid, 1987). Both ketone and alcohol groups
raise the RON (cf. Chapter 4 and Figure 6.1). However, the effect of the ether group
on fuel auto-ignition is difficult to predict (cf. discussion in Subsection 4.2.4). Given the
similarity to diisopropylether, i.e., a widely used anti-knock agent for gasoline (Heese et al.,
1999), the additional ketone group in 3-(propan-2-yloxy)butan-2-one (cf. Table 6.2) is not
expected to change things for the worse. The RON for 2-ethoxy-1-propanol on the other

hand, is difficult to predict, since a structurally similar compound is missing.

In summary, the case study has yielded compact furans, ketones and esters as candidates

of first choice for the SI engine, if a pure-component biofuel is envisaged. The larger
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alcohols, however, might constitute favorable components for blending applications. The
anti-knock quality of the tetrahydrofurans and larger furans is lower than that of RON95
gasoline. Still, it is conceivable that these compounds might play a role as they can be used
to raise the heating value of a biofuel blend, if another major component of the mixture is

able to provide an acceptable overall RON.

In contrast to the targeted approach to molecular structure generation used here,
Hechinger (2014) had performed an exhaustive search for pure-component fuel candidates
for the SI engine. To this end, Hechinger (2014) combined the molecular structure
generator Molgen (Gugisch et al., 2015) with QSPR models as described by Dahmen
et al. (2012). The target properties and their ranges were somewhat different compared to
the current study. Most importantly, the auto-ignition propensity had not been modeled
by Hechinger (2014). His screening yielded 279 structures that were categorized into
acyclic and cyclic ethers, furans, acetals, aldehydes, ketones and alcohols (Hechinger,
2014; Hoppe et al., 2016b). Based on the DCN group contribution model (c¢f. Chapter
4), neither the linear ethers/acetals nor the aldehydes do constitute fuels for the SI
engine. Furans, ketones and alcohols have also been identified by the targeted approach
used here. Since Hechinger (2014) had screened only for compounds with a lower
heating value of 30 MJ/kg and higher, small esters could not be identified in his study.
Highly-branched ethers like methyl-tert-butyl ether (MTBE) or ethyl-tert-butyl ether
(ETBE) represent excellent fuels for turbocharged SI engines (cf. discussion in Section
2.1). Such species, however, do not result from the current set of platform molecules
and/or transformation rules implemented in the structure generator. The same holds for
non-furan aromatic species exhibiting low DCNs, e.g., toluene or anisole (cf. Figure 4.10).
Although pyrolysis produces aromatics (Haveren et al., 2008; Marshall and Alaimo, 2010),
it is the lack of selectivity of the reaction towards a desired molecule that makes these
pathways unsuitable with regard to the outlined approach of selective refunctionalization
of bio-based platform chemicals. Moreover, low volatility generally constrains the use of
aromatics in SI engine combustion. While toluene (Tp.; of 110.6 °C; cf. Przyjazny and
Kokosa (2002)) satisfies the pure-component fuel volatility requirement (cf. Table 6.1),
even slightly larger aromatic species, e.g., ethylbenzene (Tp.; of 136.2 °C; cf. Przyjazny
and Kokosa (2002)), xylenes (Tpo of 138.3—144.0 °C; cf. Przyjazny and Kokosa (2002))
or anisole (Tyo of 153.8 °C; cf. Dreisbach and Martin (1949)), most likely, will require the
addition of lighter components, which support the in-cylinder mixture formation process.
Finally, fuel aromatic content is closely linked to sooting propensity, since it is believed
that the formation of the first benzene ring is the rate-controlling step in the production
of particulate matter (Boot et al., 2008).
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6.2 Candidates for compression-ignition (Cl) engines

The second case study targets pure-component biofuels for the compression-ignition (CI)
engine. Based on the refunctionalization rules given in Figure 3.2 and Appendix A, the
number of generated molecular structures increases rapidly with the number of carbon
atoms. While the proposed algorithm is capable of processing tens (or even hundreds)
of thousands of molecules, this case study shall exemplify, that a large number of fuel
candidates for the CI engine can be obtained, even if the number of intermediates chosen
for fuel synthesis is as small as six and the maximum number of carbon atoms is set to ten.
Furthermore, carbon-carbon coupling is restricted to chain-lengthening aldol condensation,
i.e., aldol condensation extending a straight carbon chain without forming a tertiary carbon
atom. The purpose is to keep the interpretation of the results reasonable, as inclusion of
branched molecules will give many additional variants of the structures discussed below
without changing the general conclusions. Moreover, branching is typically associated with
decreasing CN (Heck et al., 1998; Santana et al., 2006).

Table 6.4: Scenario definition: Biofuel candidates for the CI engine based on six bio-derived

intermediates.

3 . ethanol, 1,3-propanediol, 2,3-butanediol, lactic acid, succinic acid,
intermediates .
furfural

max. of ten carbon atoms; five- and six-membered rings only;
up to one aggregation by C-C coupling (chain-lengthening aldol
condensation only) and up to one aggregation by C-O-C coupling
(etherification/esterification); max. Joback Thoi (Tinert) of 500 °C

(of 200 °C) for all molecules (intermediates and products) to be

structural constraints

generated
fuel specifications oxygen content wto, > 10 wt-%
boiling point Ty > 60 °C and < 250 °C
melting point T},e¢ <-20°C
lower heating value LHV > 30 MJ/kg
liquid density pr, > 700 kg/m3
surface tension o < 30 mN/m
kinematic viscosity v < 4.5 mm?/s

derived cetane number DCN > 40

As can be seen from the scenario definition in Table 6.4, the intermediates ethanol,
propanediol, butanediol, lactic acid and succinic acid have been chosen for fuel production,
since these fermentation products comprise high LHV efficiencies at real yields. Moreover,

compared to the other fermentation products mentioned in Table 2.3, high productivity
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and high titer suggest that a large-volume production is feasible given state-of-the-art

technology. In addition, furfural has been selected as a derivative of the Cj sugar fraction.

Similar to the previous case study, the property constraints given in Table 6.4 have
evolved from fuel definitions established within TMFB (Kremer, 2011; Janssen et al., 2011;
Victoria Villeda et al., 2012c; Heuser et al., 2013a,b, 2014) and from the regular exchange
between the author of this thesis and members of the TMFB Core Interaction Field ”Fuel
Design”, most notably Florian Kremer, Andreas Janssen, Benedikt Heuser and Stefan
Pischinger (Institute for Combustion Engines, RWTH Aachen University) and Manuel
Hechinger and Juan José Victoria Villeda (Institute for Process Systems Engineering at
Aachener Verfahrenstechnik, RWTH Aachen University).

Since CI engines can burn less volatile fuel, boiling points of up to 250 °C shall be
tolerated here. This moderate upper bound, compared with the boiling range of fossil
diesel fuel (180—350 °C), is thought to enhance mixture homogenization and to minimize
the likelihood of wall impingement in low-temperature diesel combustion, where the fuel is
injected early into relatively cool in-cylinder gases (Cheng et al., 2010; Fisher et al., 2010).
Typical injection pressures in CI engines are higher than those used in direct-injection SI
engines. Consequently, compared with the previous case study, the upper limit for the
kinematic viscosity is raised to 4.5 mm?2 /s, which is also the maximum allowed viscosity in
the European diesel fuel standard EN 590 (2014). At least 10 wt-% of oxygen in the fuel
molecule is desired to achieve low levels of engine-out soot emissions. Fuel and air shall
auto-ignite under conditions typically attained in the cylinder of a diesel engine. Thus, the
lower bound for the DCN is set to 40. The need for a long injection duration can cause
higher NOx production and intensified formation of soot precursors in fuel rich cores,
especially at high engine loads and speeds (Arcoumanis et al., 2008; Yao et al., 2010; Jung
et al., 2011). To mitigate this problem, lower bounds on the heating value (30 MJ/kg) and
the liquid density (700 kg/m?®) are introduced, since the injection duration correlates with

the amount of fuel delivered.

Based on the scenario definition depicted in Table 6.4, 5,345 molecular structures are
generated. Figure 6.5 (a) illustrates the nature of the product spectrum. The distribution
of functionalities is similar to the one obtained in the previous case study, although a
smaller set of intermediates has been used. If the physicochemical properties of these
molecules are predicted by means of QSPR and GCM, 247 fuel candidates for the CI
engine are obtained, which all fulfill the fuel specifications in Table 6.4. As can be seen
from Figure 6.5 (b), these structures can be classified into acyclic and cyclic ethers, ketones,
aldehydes and polyfunctional compounds. The polyfunctionality, however, is limited to the
case, where an acyclic ether group is combined with either a cyclic ether group, a ketone

group or an aldehyde group.
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(a) 5,345 molecules in total (b) 247 molecules in total

Figure 6.5: Pure-component fuels for the CI engine: Product spectrum after structure

generation (a) and after virtual fuel screening (b).

Figure 6.6 shows the detailed results from the virtual fuel screening. Except for the liquid
density, all property constraints cause rejection of certain compounds and thus effectively
reduce the number of molecules for further consideration. Compared with the previous
case study, a larger fraction (~18% instead of ~3%) of the generated structures are located
outside the applicability domain (AD) of the normal boiling point QSPR model (compare
Figures 6.3 and 6.6). This can be explained by the fact that 95% of the structural outliers
found here have either nine or ten carbon atoms, whereas in the generation step of the
previous case study the maximum number of carbon atoms had been restricted to eight. If
the final set of 247 fuel candidates for the CI engine is analyzed, seven types of molecules
can be distinguished. These types are depicted in Table 6.5 and will be discussed in the
following. The full list of molecular structures can be found in the Supporting Information
of Dahmen and Marquardt (2016).

Type I structures are acyclic, straight chain ethers containing at least six carbon atoms.
It is well-known that linear ethers like di-butylether exhibit very high auto-ignition propen-
sities (Beatrice et al., 1996). At the same time, the boiling point of di-butylether (141 °C)
is well below the boiling range of fossil diesel fuel (Heuser et al., 2014; Graziano et al.,
2015). In addition, the low surface tension (22 mN/m) and the low viscosity (0.72 mPa-s)
of di-butylether promote the break up of the spray during mixture formation (Heuser et al.,
2013b, 2014). Although the air/fuel mixing time for di-butylether is very short (due to
the high CN of ~100), nearly soot-free combustion with very low NOx levels have been
reported (Heuser et al., 2013b,a; Garcia et al., 2016). Based on these findings, linear
ethers (Cg and larger) are considered prototype liquid biofuels for CI engines. They can

be obtained from etherification of primary alcohols like propanol, butanol and pentanol.
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Figure 6.6: CI engine: Virtual fuel screening performed by means of QSPR and group
contribution based property prediction (AD denotes applicability domain of respective QSPR

model).
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Table 6.5: Seven types of fuel candidates for the CI engine.

type motif and exemplary candidates
O
| NN

ethers (Cg and larger)

AN X0
NN

I NN

aldehydes (Cy4 and larger)

\j\/\/\/ o
/\/\j\/\/\/”\/\/\/

large ketones (Cy and larger)

Oron S o
\/\O/\@ O\O/\/ /\O/CO

saturated cyclic ether plus ether side chain

O RSN
e

saturated cyclic ether plus alkane side chain

111

v

(0]
VI /\/”\/0\/

ether group plus ketone group

VII )\o/\/\/\)

ether group plus aldehyde group

Note: The entire set of 247 fuel candidates can be found in the Supporting Information of
Dahmen and Marquardt (2016).
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Aldehydes with four or more carbon atoms satisfy the imposed property constraints.
They are denoted type IT molecules (cf. Table 6.5). Compared to their alkane counterparts,
aldehydes are more prone to auto-ignition. For instance, the experimental DCN of butanal
is 41.4 (cf. Appendix B). Similar to the linear ethers, the aldehydes have favorable mixture
formation properties. However, unburnt fuel can result in massive engine-out aldehyde
emissions. Since the formation of aldehydes during the incomplete combustion of other
oxygenated fuel components is already a major concern (Magnusson and Nilsson, 2011),
it is questionable whether aldehydes can represent potential biofuels, even if options for

catalytic after-treatment are considered.

Although the ketone group retards auto-ignition (cf. Chapter 4), ketonic biofuels are
considered a viable option for the CI engine, if the straight alkane backbone of the molecule
is large enough (Cg and larger) such that the DCN exceeds the threshold value of 40 (cf.
type IIT structures in Table 6.5). Hence, bacterial methyl ketone synthesis targeting the
C11 to Cy5 range has been proposed, recently (Goh et al., 2012). Chemo-catalytic synthesis
starting from Cy-Cg intermediates requires the formation of carbon-carbon bonds, e.g., via
aldol condensation. However, large ketones have not been investigated in research engines
yet. Ketonic CI biofuels would comprise high energy densities due to their low oxygen-to-

carbon ratios. Boiling points in the lower range of fossil diesel fuel are expected.

If the furan motif, i.e., a structure relatively resistant to auto-ignition, is augmented with
a linear ether side-chain of sufficient size (Cg and larger), the predicted DCN exceeds the
value of 40. However, such large furans are not included in Table 6.5, because they do not
pass all of the AD filters. As the small furanic fuels, e.g., methylfuran and di-methylfuran,
have been shown to posses a great tendency to form soot precursors (Sirignano et al.,
2015), high levels of engine-out soot emissions might prohibit burning furanic fuels in the

CI engine.

Type IV molecules from Table 6.5 describe saturated cyclic ethers with an additional
ether side-chain of sufficient length (C;3 and larger). These compounds readily auto-ignite.
For instance, Avantium (Gruter and De Jong, 2009), a spin-off of Royal Dutch Shell,
reported a CN of 81-90 for ethyltetrahydrofurfuryl ether (De Jong, 2011; Lange et al.,
2012). Moreover, the high oxygen content (> 20 wt-%) and the eliminated aromaticity
are expected to result in less engine-out soot emissions. Predicted boiling points for these

molecules range from 150 °C to 220 °C.

As can be seen from Figure 6.7, production of type IV molecules is considered to be
based on etherification of alcohols. Primary alcohols are either fermentation products or
can be derived from such. Furfural is converted into tetrahydrofurfuryl alcohol or tetrahy-
dropyranol. In a production setting, some primary alcohols might also react to linear

ethers (type I molecules). Similarly, some tetrahydrofurfurylalcohol might be converted to
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Figure 6.7: Potential pathways from acids, diols and furfural to fuel candidates for the Cl engine
(predicted properties for the candidates in brackets are slightly outside the desired range).

the compound depicted in the upper right of Figure 6.7. However, based on the predic-
tions of the pure-component properties, it is likely that most practical mixtures of the fuel
candidates depicted in Figure 6.7 would constitute feasible biofuels.

Type V molecules from Table 6.5 are cyclic saturated ethers with an alkane side-chain.
Compared to their type IV counterparts, the DCN is somewhat lower due to the missing
ether group in the side-chain. Butyltetrahydrofuran has been proposed as a lignocellulosic
biofuel due to its favorable experimental DCN of 45.5 (Sudholt et al., 2015). Having
a relatively low oxygen-to-carbon ratio, this compound has a high energy density (37.0
MJ/kg). Increasing the length of the side-chain is expected to raise both DCN and energy
density even further. Butyltetrahydrofuran can be synthesized from furfural and acetone
via aldol condensation (Julis and Leitner, 2012).

Molecular structures of type VI and VII are obtained, if the acyclic ether group appears
together with either a ketone or an aldehyde group (cf. Table 6.5). Such polyfunctional
compounds might pave the way to a variety of new fuel candidates and corresponding
synthetic pathways. However, experimental data for structurally similar fuels are missing.
Thus, the predicted properties, in particular the auto-ignition quality, must be experimen-

tally validated in a first step.
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Table 6.6 summarizes key properties of five exemplary fuel candidates belonging to the
four most promising types, i.e., types I, III, IV and V. Compared to the SI engine, the range
of potential biofuel molecules for the CI engine is significantly larger. This is primarily due
to the less restrictive volatility constraint. The acyclic and cyclic ethers are probably the
most interesting candidates, because (i) they do not require C—C coupling, (ii) a variety
of them can be made from existing platform molecules, and (iii) the high oxygen content
and the ether functional group should effectively reduce engine-out soot emissions.

Pragmatically, the size of the case study had been constrained by looking exclusively
at straight-chain molecules with up to ten carbon atoms. It shall be noted, however,
that branching can be used to achieve lower melting points since, as a general rule, the
degree of molecular symmetry is positively correlated with the melting point of a pure
compound (Brown and Brown, 2000). Similarly, branched esters are known to have lower
cloud and pour points than their straight-chain counterparts (Lee et al., 1995; Knothe,
2005). There is no compelling reason against fuel candidates having more than ten carbon
atoms. However, it is conceivable that the selective synthesis of a specific long-chained
fuel molecule becomes more challenging as the number of coupling steps to be performed
increases.

Interestingly, the case study suggests, that the production of CI fuels strictly requires
coupling of intermediates, if existing carbon-carbon bonds in the chosen platform molecules
shall not be altered. The coupling is essential for meeting auto-ignition requirements and
can be achieved by the formation of carbon-carbon bonds or ether links. This observation
even holds true for the production of renewable di-methylether, i.e., the smallest fuel
molecule exhibiting a diesel-like CN. Obviously, the availability of linear ether or long-
chained platform molecules would eliminate the coupling step. Such novel building blocks

would therefore be of great interest for the synthesis of CI fuels.

6.3 Conclusions and outlook

In this Chapter, two case studies have illustrated the capabilities of the generate-and-test
approach for computer-aided molecular design (CAMD) of tailor-made fuel components as
outlined in this thesis (cf. Figure 1.3). To this end, desired ranges of key engine-related fuel
properties, a set of bio-based platform chemicals and a set of carbon-skeleton preserving
refunctionalization rules had to be specified for both spark-ignition (SI) and compression-
ignition (CI) engines. The algorithm for targeted structure generation (cf. Chapter 3) has
then been used to explore a spectrum of potential products, which has subsequently been
narrowed down to a set of fuel candidates by means of a virtual fuel screening.

Compact furans, ketones and esters have emerged as first choice candidates for the SI
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engine, since these molecules exhibit high volatilities, gasoline-like enthalpies of vaporiza-
tion and high RONs. While the small ketonic biofuels are extremely knock-resistant, large
ketones can achieve diesel-like CNs thanks to long, straight carbon backbones. Acyclic
and cyclic ethers constitute viable options for volatile CI fuels, which can have very high
DCNs and can be derived from a range of bio-derived intermediates, in principle. Based
on the investigation of dibutylether, there is reasonable hope that such oxygenated fu-
els will enable nearly NOx- and soot-free combustion without the need for full mixture
homogenization.

The large-scale, cost-effective and energy-efficient production of biofuel components re-
quires further optimization of fermentation and chemo-catalytic pathways. Each collection
of today’s most promising platforms will continuously evolve as new molecules and path-
ways are proposed. With regard to the use of the fuel, a better understanding of the
fundamental relationships between physicochemical fuel properties and the performance of
a particular internal combustion engine (cf. discussion in Subsection 2.1.3) will allow to
iteratively refine the definition of a tailored biofuel component. A particular strength of
the outlined computational approach is its flexibility which allows to incorporate further
physicochemical fuel properties, bio-derived platform chemicals and refunctionalization

patterns.
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7 Blend formulation by simultaneous
product and pathway design

In an attempt to optimize both production and quality of the fuel, an integrated product
and pathway design problem is posed on the molecular level in this Chapter. The complex-
ity of this design problem is driven (i) by the rich variety of oxygenated fuel components
that can be obtained from refunctionalization of bio-derived sugars in principle (cf. Chap-
ters 3 and 6), (ii) by the numerous conversion pathways that connect these molecules with
the biomass feedstock, and (iii) by the interactions between physicochemical fuel properties
and the performance of an internal combustion engine (cf. Section 2.1). Hechinger et al.
(2010) have suggested to tackle this problem by combining CAMD for de novo genera-
tion of biogenic fuel candidates exhibiting tailored properties with reaction network flux
analysis (RNFA) (Voll and Marquardt, 2012b), i.e., an optimization-based methodology
to identify the most promising routes for fuel production based on a network of competing
reaction pathways. To this end, CAMD and RNFA have been applied consecutively or
iteratively, however, have been mostly confined to the identification of pure-component fu-
els (Hechinger et al., 2010; Voll and Marquardt, 2012a,b; Hechinger et al., 2012b; Dahmen
et al., 2012; Voll, 2014; Hechinger, 2014; Ulonska et al., 2016b; Dahmen and Marquardt,
2016). A first attempt at bringing the two approaches together to solve a simultaneous
product and pathway design problem has been made by Zalfen (2014) in a student project
supervised by the author of this thesis. Here, a linear optimization problem involving max-
imization of the production yield of a multicomponent fuel has been formulated by adding
linear mixing rules for certain fuel properties to a simplified variant of the original RNFA
model. The pure-component properties had been estimated with the models from Dahmen
et al. (2012). Once the solution to the linear problem had been determined, the boiling
curve of the mixture has been analyzed with the help of the UNIFAC group contribution
model (Fredenslund et al., 1975; Hansen et al., 1991). Furthermore, similar to Yunus et al.
(2014), the phase stability algorithm presented by Conte et al. (2011) has been applied
to assess the miscibility of the multicomponent mixture by analyzing the miscibility of all
binary pairs. The approach followed by Zalfen (2014), however, has multiple shortcomings.

First, Zalfen (2014) did not calculate a batch distillation curve, which is typically used to
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rate the volatility of a multicomponent fuel (ASTM D86, 1999), but instead considered
the simpler case of an isobaric boiling process in a closed system based on repeated phase
equilibria calculations. Second, as a consequence of the sequential analysis, constraints
with regard to the fuel’s boiling characteristics and phase stability could not be considered
in the optimization problem, i.e., the actual design step. The integration of these aspects
into the design problem has been touched upon only as part of the outlook on further work.
And third, the original RNFA yield formulation is problematic in the context of mixture
design because it does not take selectivity limitation of pathways into account. This issue
will be discussed in detail below. It shall be noted that the addition of linear mixing rules
to the original RNFA formulation has also been practiced by Victoria Villeda (2017) in
the context of automatic reaction network generation and analysis. Here, the motivation
has been to integrate streams otherwise considered waste into the product stream, thereby
generating a biofuel mixture instead of a pure-component fuel. Again, the pure-component
properties had been predicted with the help of the QSPR models published by Dahmen
et al. (2012).

In the present Chapter, a new, more sophisticated attempt is made to formulate and solve
a simultaneous product and pathway design problem. The resulting nonlinear program
includes a local, necessary phase stability criterion, linear and nonlinear mixing rules,
as well as constraints for a fuel’s distillation curve. Furthermore, an improved pathway
model takes both conversion and selectivity of each production pathway into account and
the miscibility of the resulting multicomponent mixture is analyzed by means of global
minimization of the so-called tangent plane distance function (McDonald and Floudas,
1995; Wasylkiewicz et al., 1996).

This Chapter has already been published in a slightly modified form in Energy & Fuels
(Dahmen and Marquardt, 2017). The Chapter is structured as follows: Existing method-
ologies for mixture CAMD in the publicly available literature are briefly reviewed before
the blend design framework for TMFB fuels is proposed. Three important aspects of the
methodology are then described in detail. First, the concept of conversion pathway maps is
introduced which is based on RNFA. Second, models for the prediction of mixture proper-
ties based on QSPR and GC estimates will be discussed. Third, the mathematical problem
formulation is derived and the solution strategy is explained. The blend design framework
is then applied to a case study in order to demonstrate the feasibility of the approach.
The case study is dedicated to the identification of a 100%-renewable fuel mixture for the
spark-ignition (SI) engine and respective production routes. In this scenario, the energy
of fuel produced for a given amount of biomass shall be maximized. In order to meet this
objective, renewable hydrogen from carbon-free energy sources such as wind or solar shall

be provided. Finally, some conclusions and discussions are provided.
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7 Blend formulation by simultaneous product and pathway design

7.1 Existing methodologies for computer-aided mixture
design

A comprehensive methodology for computer-aided mixture design and formulation of
blended products has been proposed by Gani and co-workers (Karunanithi et al., 2005;
Conte et al., 2011; Yunus et al., 2014). In their framework, a mixture design prob-
lem is formulated as a mixed-integer nonlinear program which is solved by means of a
decomposition-based approach, i.e., the solution to the original problem is sought by con-
sidering a series of solvable subproblems and therefore by performing a sequential reduction
of the number of blend candidates. This approach has been applied to a variety of case
studies including the formulation of gasoline- and diesel-like fuels where the design objec-
tive has been to find optimal blend components for a so-called main ingredient, i.e., a fossil
gasoline/diesel pseudo-compound that must constitute the main part of all mixtures under
consideration (Yunus et al., 2011, 2012; Ariffin Kashinath et al., 2012; Yunus et al., 2014;
Yunus, 2014; Phoon et al., 2015). In the aforementioned works, fixed cost factors ($/L)
assigned to the individual blend components have been the only process-related criteria
explicitly included in the optimization problem. Recently, Ng et al. (2015a) have developed
a systematic methodology for mixture design in the context of integrated biorefineries that
includes the identification of optimal conversion pathways via superstructure optimization
once an optimal mixture has been determined based on CAMD techniques. Instead of
such a two-step approach, Daoutidis and co-workers (Marvin et al., 2013; Daoutidis et al.,
2013) have proposed a strategy that simultaneously identifies gasoline blends with desired
properties and the corresponding chemistries by combining an automatic rule-based gener-
ator of reaction networks with an RNFA-like approach. The design problem is formulated
as a mixed-integer linear problem typically having a large number of alternative solutions.

Similar to the works of Gani, Ng, Daoutidis and respective co-workers, the blend design
problem is formulated as a nonlinear program (NLP) in this Chapter. In addition to
the physicochemical fuel properties listed in Table 2.1, the Reid vapor pressure and the
distillation profile of a fuel mixture are taken into account because these two properties
constitute important fuel performance indicators for engine cold-start, vapor lock and oil
dilution in spark-ignition (SI) engines (Kalghatgi, 2014a; ASTM D4814, 2016).

7.2 Blend design framework for tailor-made fuels

The blend design framework for TMFB fuels is depicted in Figure 7.1 and comprises four
stages. In stage 1, a set of so-called palette compounds has to be selected. The term palette

compound refers to any compound that could be part of a rationally formulated blend, in
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7.2 Blend design framework for tailor-made fuels

principle. The set of palette compounds therefore defines the search space for the blend
design. Palette compounds can either be assembled manually or generated automatically
by the approach described in Chapter 3. Criteria for deciding whether a molecule should
be included in the set of palette compounds include pure-component properties, yield data

as well as additional process-related data if available.

stage-1: stage-2: stage-3: stage-4:
define set of generate generate analyze
palette conversion optimal resulting
compounds pathway mixtures blends
map (CPM)
( \/ N\

. . AY4 )
automatic CPM choose mixture
automatic generation generation by models rigorous miscibility
of palette compounds structure generator analysis
by structure generator .
2 and/or choose design
andfsor manually insert known objective, inspection of blend
manual inclusion of chemistries, i.e., e.g., maximize yield or composition,
candidates known selgctwnty and maximize energy of properties and material
conversion data fuel produced flows
selection criteria:
yields, pure- evaluate pure- formulate & solve multi-objective
component properties, component properties NLP based on optimization & Pareto
process-related data by QSPR and/or group pathway analysis
\ PAS additivity models JU and property models U )
< refine scenario by making changes to palette compounds, pathways and/or property constraints <

Figure 7.1: The blend design framework: Simultaneous product and pathway design.

Based on the set of palette compounds, a conversion pathway map (CPM) is created in
stage 2. The CPM holds all conversion pathways to be considered in fuel production. Its
basic structure could also be generated algorithmically since the generator of molecular
structures described in Chapter 3 keeps track of substrate/product-relationships. This
includes the case where a single product can be derived from multiple bio-derived platform
chemicals as well as the case where multiple platform molecules have to be refunctionalized
and joined into a single target molecule. Known performance measures of catalytic systems,
i.e., selectivity and conversion data, have to be assigned manually to each pathway included
in the CPM. QSPR and GC models from Chapters 4 and 5 are utilized to predict pure-
component property data for palette compounds where experimental data are not available.

Stage 3 deals with setting up and solving the actual mixture design problem which is a
nonlinear program (NLP). Different process-related objective functions, e.g., maximization
of production yield or maximization of the energy of fuel produced for a fixed feed of

biomass, can be considered here. Mathematical constraints include the pathway model,
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7 Blend formulation by simultaneous product and pathway design

i.e., mass-balances of all species together with selectivity data and conversion limits, as
well as the property models to predict the blend’s fuel properties. Due to nonlinearity in
the property models, a sequential solution strategy is pursued.

Stage 4 is dedicated to a detailed analysis of the resulting mixtures. This includes
the inspection of blend compositions, fuel properties and material flow diagrams. While
a local, necessary phase stability criterion is included in the NLP formulation, a more
rigorous stability analysis is performed a posteriori in stage 4 to check both necessary and
sufficient conditions for miscibility. Multi-objective optimization and Pareto analysis can
examine the trade-off between competing objectives, e.g., between maximization of yield
and maximization of the fuel’s knock resistance. After analyzing the proposed product and
pathway designs, the modeler may choose to refine the scenario definition, for instance, by
making changes to the set of palette compounds and/or fuel specifications or by including
additional conversion pathways. In the following Sections, key elements of the blend design
framework depicted in Figure 7.1 will be explained in more detail, starting with the concept

of conversion pathway maps.

7.3 Pathway model

Figure 7.2 shows the graphical illustration of an exemplary conversion pathway map
(CPM). The nodes of the CPM include biomass, hexoses, pentoses, platform molecules
(shaded in gray) and palette compounds (encircled by dashed lines). By-products and in-
termediates are not considered here since the focus lies strictly on fuel production. Water,

CO3 and hydrogen are omitted in the graphical representation for the sake of simplicity.

7.3.1 Extension of reaction network flux analysis

The mathematical representation of the CPM is based on the methodology of reaction
network flux analysis (RNFA) proposed by Voll and Marquardt (2012b). Analogous to
RNFA, the stationary mole balances of a CPM comprising Ny nodes and Np pathways

can be formulated as

Af=b. (7.1)

Here, A € RN¥*NP ig the matrix of stoichiometric coefficients Vi n, where the rows
correspond to the i € {1,..., Ny} nodes, i.e., reactants, and the columns correspond to
the h € {1,..., Np} pathways, i.e., reactions. The vector f holds the molar fluxes over all

pathways, whereas the vector b describes the molar product flows (Voll, 2014).
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7.3 Pathway model
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Figure 7.2: Graphical illustration of an exemplary conversion pathway map (CPM). A platform
molecule (shaded in gray) can also be a palette compound (encircled by dashed lines), like in
the case of ethanol. Note that other molecules, i.e., intermediates, by-products, water, COy

and hydrogen, are omitted in the graphical representation for the sake of simplicity.

In the original RNFA (Voll and Marquardt, 2012b), yield constraints are formulated
to account for the fact that ideal reaction performance as described by Equ. (7.1) is
rarely achieved. These yield constraints act as conversion limits, i.e., selectivities S, are
assumed to be one and yields Y}, are effectively identical to conversions Cj, because of
Y, = Cj, - Sp. However, in practice, yields are more often constrained by low selectivity
rather than by low conversion. In such cases, the yield constraints can lead to unrealistic
results, especially in the context of mixture design where a single reactant can often be
converted into a multitude of fuel components via independent pathways. To overcome
this issue, both conversion C}, and selectivity S, of each pathway h can be included in the
model formulation. By introducing an artificial mismatch into the stoichiometric balance
of a pathway h, selectivities S;, smaller than one can be accounted for. For instance, the

pseudo-reaction for pathway P6 (cf. Figure 7.2)

C4HgO4 (succinic acid) + 2 Hy — Spg - ( C4HgO4 (7-butyrolactone) + 2 H,O ) (7.2)

recognizes the fact that unspecified by-products are created if Spg < 1. Thus, in the model,
the selectivity information is encoded in the matrix A.
Regarding the formulation of pseudo-reactions it is therefore necessary to distinguish

between co-products that constitute fuel components and unspecified byproducts and/or
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waste. The fuel component co-product is considered a palette compound. For instance,
pathway P11 in Figure 7.2 has one main product (cyclopentanone) and two co-products
(cyclopentanol and 2-methyltetrahydorfuran). All three species constitute palette com-
pounds and are balanced accordingly. Byproducts, most notably chemical products, and
waste, however, are neglected in the pseudo-reactions for two reasons. First, the focus
here lies strictly on fuel production and, as such, the analysis of an integrated bio-refinery
that produces both fuel and chemicals is considered beyond the scope of this contribution,
but offers an obvious extension of the suggested methodology. Second, whereas selectiv-
ity and conversion data for the main products of a conversion pathway can be extracted
from the available literature in the great majority of cases, comprehensive (quantitative)
information about the spectrum of byproducts is mostly lacking.

If the case of limited conversion shall be modeled, the following general form of a con-

version constraint for a limiting reactant i in pathway h is used:

Vih = Jh
> v h o (7.3)
Zk#h Uik fr
A B C
succinic acid ¥- butyrolactone letrahydrofuran

(o]
T; e OOH P6 (UO\_’(Q’

Yo08) T (¥e06)

fr3 fre fr7
1 kmol/h 0.8 kmol/h 0.2667 kmol/h
— (0.2kmol/h = 0.5333 kmol/h =——> 0.2667 kmol/h
by by be

Figure 7.3: Original RNFA formulation with yield constraints (Voll and Marquardt, 2012b):
Two-step conversion of succinic acid (species A) into y-butyrolactone (species B) and tetrahy-

drofuran (species C).

The extension of RNFA from yield to selectivity and conversion limitation is best il-
lustrated using a simple example, i.e., the two-step conversion of succinic acid (species
A) into y-butyolactone (species B) and tetrahydrofuran (species C) as depicted in Figure
7.3. A mole flow fpz of 1 kmol/h succinic acid is supplied to this sample network. Note
that both ~-butyrolactone and tetrahydrofuran are considered palette compounds. The
pathway yields Ypg and Ypr shall be 0.8 and 0.6, respectively. The stoichiometric matrix

A for this example reads
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A=1{0 1 -1 (7.4)
and the RNFA yield constraints (Voll, 2014) for pathways P6 and P7 are formulated as

Voo > _VBP6 fre 1-fps _ fre
P6 > = _ JPs
DkepeVAk e 1 frs+0-fpr fps
verr- frr 1 fpr ~ frr

Ypr > = =<1
Dokzpr Vs S 0 fea+1-frs  fr

Considering the simple objective of maximizing the mole flow of a blend composed of B

= frs < Yps - fpr3, (7.5)

= fpr <Ypr- fps . (7.6)

and C, the linear program can then be written as

[max (bp + be) (7.7)
st. A-f=b (7.8)
fra=1 (79)

frs —Yps - frs <0 (7.10)
frr—=Ypr- fre <0 . (7.11)

The solution to this problem, i.e., vectors f and b yielding the maximum product flow of
0.8 kmol/h (composed of 0.5333 kmol/h of y-butyolactone and 0.2667 kmol/h of tetrahy-
drofuran), is shown in Figure 7.3. Thus, the result is a binary blend composed of 7-
butyolactone and tetrahydrofuran with the molar ratio of 2:1. Note that there is also
unconverted succinic acid leaving the network (0.2 kmol/h).

Separately accounting for selectivity Sj, and conversion C} allows to investigate the
scenario where yield is actually limited due to selectivity and not due to conversion, i.e.,
Spe=0.8, Spr=0.6, Cpg=1.0 and Cp;=1.0. Then the stoichiometric matrix A needs to be
modified to

1 -1 0
A=1{0 08 -1 (7.12)
0 0 06

and the optimization problem is rewritten as

(nax - (bs + be) (7.13)
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A B C
succinic acid y-butyrolactone tetrahydrofuran
20 AN 0N
— 1o o —s (PN — ()
P3 5 pe N 7 p1 N\
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(Cre=1.0) (Crr=1.0)
fp3 fre fp7
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= - kmol/h = 0.8 kmolh =——> -kmolh
by by b¢

Figure 7.4: Modified RNFA formulation with selectivity constraints: Two-step conversion

of succinic acid (species A) into y-butyrolactone (species B) and tetrahydrofuran (species C).

st. A-f=b (7.14)

frs=1 . (7.15)

The solution to this scenario is shown in Figure 7.4. Instead of a binary mixture, pure
~-butyolactone is produced here. Moreover, there is no succinic acid left.

Finally, it shall be assumed that there is also a conversion limitation for pathway P6,

i.e., Cpg = 0.9. Adapting the general form of a conversion constraint (cf. Eqn. (7.3)) to
this example yields

0> —VA,P6 * fP6 — Cpg = fP6 c

> “——Cps = fre < Cps- fr3 - (7.16)
Zk#PG VA Sfk I3
A B C
succinic acid y-butyrolactone tetrahydrofuran
i/\( (OO (‘ N
-_ 0 OH — — —
P3 o P6 \\Q,/ P7 \<\—’7/I
(Sp=0.8) (Spr=0.6)
(Cps=0.9) (Cpr=1.0)
fr3 fre fr7
1 kmol/h 0.9 kmol/h - kmol/h
= 0.1 kmol/h =——> 0.72kmol/h =—> -kmolh
by by b¢

Figure 7.5: Modified RNFA formulation with selectivity and conversion constraints: Two-
step conversion of succinic acid (species A) into y-butyrolactone (species B) and tetrahydrofuran
(species C).

Note that Eqn. (7.16) gives a constraint that is identical to the one stated in Eqn. (7.5),
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thus demonstrating that the original RNFA yield constraints act as conversion constraints.

The optimization problem is reformulated as

[max (bp + bc) (7.17)
st. A-f=b (7.18)
fre —Cps - frs <0 (7.19)

fra=1 . (7.20)

Figure 7.5 shows the solution to this problem. As expected, unconverted succinic acid
(0.1 kmol/h) leaves the network. In combination with the selectivity constraints for path-
ways P6 and P7, the conversion limitation leads to a product flow of only 0.72 kmol/h

(pure ~-butyrolactone).

7.3.2 Biomass supply

It is assumed that a constant flow of biomass is supplied to the CPM via a pathway S1
to be included in the stoichiometric matrix A. Although being omitted in the graphical
illustration of the CPM (cf. Figure 7.2), a hydrogen supply pathway is added to matrix
A, thus allowing to balance the hydrogen demand associated with the production of a
specific fuel blend. Analogously, a CO, mole balance is included to assess the amount of
COg generated from the biomass.

The supplied biomass is fractionated and depolymerized into hexoses and pentoses in
the first conversion step (cf. Figure 7.2, pathway P1). A variety of processing concepts,
e.g., Organosolv (Zhao et al., 2009), OrganoCat (Grande et al., 2015) or mechanocatalytic
strategies (Kaldstrom et al., 2014), have been proposed for this purpose. Although hemi-
cellulose is a polymer of different sugars, its most abundant building block is xylan, i.e.,
a polymer of xylose (Huber et al., 2006). Therefore, hemicellulose is often pragmatically

treated as a polymer of the monomer unit C5HgOy, as can be seen from Table 7.1.

Table 7.1: Fractions of lignocellulosic biomass and corresponding monomer units (Petrus and
Noordermeer, 2006).

biomass fraction monomer unit monomer molar weight [g/mol]
cellulose CgH1005 162.14
hemicellulose CsHgOy 132.12
lignin C10H1203 180.20

For a fixed, hypothetical biomass composition of 50 wt-% cellulose (polymer of glucose),

30 wt-% hemicellulose (polymer of xylose) and 20 wt-% lignin, 1 kmol of biomass monomers
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(~ 154.71 kg of biomass) can theoretically yield 0.477 kmol of hexoses (CsH1206) and 0.351
kmol of pentoses (C5Hy9Os) after hydrolysis. Therefore, one can formulate the pseudo-

reaction

biomass — Spy ¢, - 0.477 hexoses (CgH1206) + Sp1 ¢, - 0.351 pentoses (C5H19O5) ,
(7.21)

which, in case of Spi, ¢, = Spi,c; = 1, would represent a perfect recovery of hexoses and
pentoses. Note that the composition of beechwood is similar to the 50/30/20 composition
used here (Couhert et al., 2009). The selectivity constants Sp; ¢, and Spic; can be used
to adjust the yields of hexoses and pentoses depending on the performance of a practical
fractionation and depolymerization process. Pragmatically, it is assumed that Spi ¢, =
Spi.c; = 0.9 based on a recent overview of different depolymerization approaches published
by Luterbacher et al. (2014). Obviously, instead of a single conversion pathway P1, multiple
fractionation and depolymerization pathways could be included in one CPM to account
for the fact that different processing concepts might yield different shares of C5 and Cg

sugars.

7.3.3 Calculation of process performance measures

In order to compute process-related performance indicators, e.g., hydrogen demand, mass
of fuel produced or lower heating value (LHV) energy efficiency, the entries of the solution
vector b referring to the amounts of palette compounds produced need to be investigated.

The total molar flow of fuel produced is defined as

Tofut = 3 bi (7.22)

i€PC

where PC € {1, ...,nc} denotes the set of palette compounds included in the CPM. Simi-

larly, the total mass flow of fuel produced can be derived from

Mt = Y b= M; (7.23)
i€ePC

where M; denotes the molar weight of palette compound 7. Then, mole (z;) and mass (&;)

fractions of all blend components can be calculated from:

Vi € PC (7.24)
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&=

. Vie PC (7.25)
M fuel

The total energy flow of fuel produced is defined as

By =Y bi- M;- LHV; (7.26)
iePC
where LHV; is the lower heating value of blend component .

The stoichiometric hydrogen demand for fuel production is computed based on fso, i.e.,
the molar flow of hydrogen supplied to the network. To this end, the constraint by, = 0 is
added making sure that there is no residual hydrogen leaving the network. It is convenient
to normalize the mass-based hydrogen demand by division with the mass of fuel produced,

ie.,

m [kg Hz] _ fs2 - My,
H [kg fuel] T fuel

(7.27)

where My, denotes the molecular weight of hydrogen (2.02 kg/kmol). Similarly, the mole-

based hydrogen consumption can be stated as

[mol HQ] _ fgg
TLH2 [

— = . 7.28
mol fuel]  Apye ( )
The amount of CO4 generated from the carbohydrate fraction of the biomass is related

to the energy of fuel produced, i.e.,

[g COQ] bC02 . ]\/[COQ
) = ; -1 , 2
Mco, AT fuel] Fron 000, (7.29)

where bco, is the molar product flow of CO, leaving the network and Mco, denotes the

molecular weight of carbon dioxide (44.01 kg/kmol).
Given a fixed, hypothetical supply of biomass of 1 kmol/h (~ 154.71 kg/h), the LHV

efficiency (npgv) can be computed from

E fuel
154.71 - LHViiomass + fs2 - My, - LHVy, ’
where LHVy, denotes the lower heating value of hydrogen (120 MJ/kg). Based on the

(7.30)

NLHV =

dry biomass composition of 50 wt-% cellulose (monomer CgH;005), 30 wt-% hemicellulose
(monomer CsHgO4) and 20 wt-% lignin (monomer C;oH;203), the lower heating value
LHVyiomass in Eqn. (7.30) is estimated as 18.6 MJ/kg with the help of a regression model
proposed by Demirbas et al. (1997). Typical lower heating values for wood reported in
the literature range from 18.6 to 18.9 MJ/kg depending on type and source (Huber et al.,
2006; Ptasinski et al., 2007).
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7.4 Fuel property models

Predictive models are required to evaluate pure-component and mixture properties relevant
to fuel design. The QSPR and GC models from Chapters 4 and 5 are used to predict the
primary properties, i.e., those pure-component properties which are predicted solely based
on the molecular structure. In contrast, secondary properties are derived on the basis of
primary properties (and/or secondary properties) and additional relationships. It shall be
noted that the outlined approach has been designed to be fully predictive. This means
that the required component-specific input data can be estimated solely on the basis of
the two-dimensional molecular graph with the given set of methods. This way, the blend
design approach can also cope with novel compounds which have not been characterized
experimentally yet.

Activity coefficients are required to describe the non-ideal behavior of mixtures with
regard to Reid vapor pressure and distillation profile, two important measures for fuel
volatility (Kalghatgi, 2014a; ASTM D4814, 2016). For the present contribution, the modi-
fied UNIFAC (Dortmund) model (Weidlich and Gmehling, 1987) has been implemented in
Matlab (The MathWorks Inc., 2016). UNIFAC has been chosen because it is a widely-used
group contribution method that is fully predictive and applicable to the variety of molec-
ular structures considered here. Moreover, it is of limited computational complexity to be
used in an optimization-based approach. Different variants of the UNIFAC approach have
been used extensively in the context of CAMD and mixture design before (Gani and Brig-
nole, 1983; Naser and Fournier, 1991; Van Dyk and Nieuwoudt, 2000; Conte et al., 2011,
Yunus et al., 2014; Benavides et al., 2015). Only recently, first CAMD and mixture design
approaches based on SAFT (Pereira et al., 2011; Lampe et al., 2015; Burger et al., 2015)
and COSMO-RS (Scheffezyk et al., 2017; Austin et al., 2017) have been presented. In con-
trast to the original UNIFAC model developed by Fredenslund et al. (1975), the modified
UNIFAC (Dortmund) model proposed by Gmehling and co-workers features temperature-
dependent group interaction parameters and an empirically modified combinatorial part
that is thought to offer a better description of asymmetric systems (Lohmann et al., 2001;
Gmehling et al., 2012). In quantitative comparisons with the original UNIFAC formulation,
modified UNIFAC (Dortmund) has demonstrated significantly improved results in different
areas, including the prediction of vapor-liquid equilibria (VLE) and liquid-liquid equilibria
(LLE) mole fractions (Lohmann et al., 2001; Gmehling et al., 2012). It is therefore used
throughout this Chapter.

Linear blending rules are the simplest mixing rules and they are often used to describe
fuel properties due to the lack of better alternatives (Mueller et al., 2012; Yunus et al.,
2014). The error caused by the assumption of linear blending depends on the property

and mixture under investigation. For instance, the error in case of the specific volume is
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typically less than 3.5%, whereas for the liquid viscosity of a mixture the linear rule can
only be expected to yield the correct order of magnitude (Gmehling et al., 2012). The
following linear and nonlinear mixing rules for the liquid density py,, the surface tension o
and the kinematic viscosity v have been compiled based on the compendium of property
modeling published by Gmehling et al. (2012). The chosen models are considered to be
among the best in class under the premise that they are fully predictive and applicable to
the diversity of molecular structures considered here.

In order to approximate the liquid density py, [kg/m?] of a mixture, a linear mixing rule
is applied to the specific volume vy, [m?/kg] where the contribution of the excess volume

is neglected (Gmehling et al., 2012):

-1
vy, = Z é—i/ULyi = pPL = (Z & ) (731)

-
iePC iepc PLi

According to Gmehling et al. (2012), this simplified density calculation typically leads to
small errors and Eqn. (7.31) should be preferred over a linear mixing rule for the density
(P = Yiepc &iPLi)-

The surface tension ¢ of a blend is computed with the help of a Parachor-based mixing
rule (Gmehling et al., 2012), i.e.,

174

N1l )0 4
o= (Pm Z Z %% ()" 03+ (Pms)”"0; > [mN/m] , (7.32)

2
iePC jePC

where p,, [mol/cm?] is the molar density of the blend.
The blend’s kinematic viscosity v is calculated by assuming linear mixing for the dynamic

viscosity p (Gmehling et al., 2012), i.e.,

1
=— Zifl; - (7.33)

V=
PL iepo
Some authors (Balabin et al., 2007; Kar et al., 2009) have proposed to employ the

Clausius-Clapeyron equation to derive an estimate for the latent heat of vaporization H,,,

of fuel mixtures. Assuming the ideal gas law for the vapor phase and further assuming

the gas volume to be much larger than the liquid volume, i.e., vy >> v, the Clausius-

Clapeyron equation is written as (Gmehling et al., 2012)

RT? dpS
Hygp = — 34
P TS T (7:34)

143

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

7 Blend formulation by simultaneous product and pathway design

where the vapor pressure of the mixture p®, i.e., the bubble point pressure, at a given

temperature T can be calculated from (Stichlmair and Fair, 1998)

PIT) =Y 2 (T,2) - p(T) . (7.35)
iePC

In Eqn. (7.35), p¥ and ; denote the vapor pressure and activity coefficient of component

i, respectively. Eqn. (7.35) can be differentiated to compute dd’J—[s in Eqn. (7.34). However,
strictly speaking, the Clausius-Clapeyron equation is valid for the phase transition of a
pure compound at a constant temperature only. Chupka et al. (2015) have recently shown
that the application of the Clausius-Clapeyron equation to ethanol-hydrocarbon mixtures
will significantly underestimate the true heat of vaporization. This can be explained by the
fact that the vapor pressure is predominantly influenced by the most volatile component,
whereas the entire mixture is often wide-boiling (Chupka et al., 2015). As an alternative

approach, Chupka et al. (2015) have suggested to employ the linear mixing rule

Hvap = Z 51 . Hvap,i 5 (736)

iePC
which is based on the enthalpies of vaporization H,qp,; of the individual constituents of the
blend. Such estimates were found to compare favorably with experimentally determined
heats of vaporization, although the enthalpy of mixing is not accounted for by this approach
(Chen and Stone, 2011; Chupka et al., 2015). Based on these findings, Eqn. (7.36) will
be used to obtain an estimate for the heat of vaporization of a mixture in this Chapter,
whereas the enthalpy of vaporization of a pure compound, i.e., Hyqp, is computed from
the Clausius-Clapyron equation (cf. Eqn. (7.34)). To this end, the vapor pressure p;
of a pure compound ¢ at temperature T is calculated by means of the extended Antoine
equation (Stichlmair and Fair, 1998; Gmehling et al., 2012), i.e.,

Can \i ¥
In (pLS(T)) = Cant,1i + W:it?” + Canti - T+ Cantsi - I(T) + Canto,i - TContmi

(7.37)

if parameter values Con 1,5, Cant,2,is Cant,3,i Canta,is Cant5i5 Cant,6, and Cope 7, arve available.
Alternatively, the vapor pressure is considered a secondary property and the Hoffmann-
Florin (HF) equation (Hoffmann and Florin, 1943; Gmehling et al., 2012) is applied as
part of a fully predictive approach (cf. Appendix E):

P2 (T) = fuur(Torit iy Deritis Thoitir T) [kPa] (7.38)
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The material specific inputs to Equn. (7.38), i.e., the critical temperature T,.;z;, the
critical pressure p.,it; and the normal boiling point T} ;, are primary properties that are
predicted by means of the QSPRs from Chapter 5.

The lower heating value LHV and the derived cetane number DCN of the blend are

calculated based on the assumption of linear mixing as well, i.e.,

LHV = Z &-LHV; | (7.39)
i€ePC

DCN =Y z-DCN; . (7.40)
i€ePC

Note that in Eqn. (7.40), the dimensionless DC'N is weighted by mole fractions due to
the fact that the mixture octane number (ON) of a gasoline surrogate model composed
of n-heptane/iso-octane/toluene (Knop et al., 2014) as well as the DCN of mixtures of
furanic species and n-heptane (Sudholt et al., 2015) have been observed to follow linear-
by-mole blending rules. Nonlinear synergistic/antagonistic blending effects, however, have
been reported for ON in case of ethanol and toluene (Foong et al., 2014; Dryer et al.,
2014). Although cetane number of diesel fuel is generally believed to closely follow a linear
blending rule (Kalghatgi, 2005), in principle, nonlinear effects are plausible from a kinetics

point of view, especially if fuels with different chemistries are investigated.

7.4.1 Distillation curve model

Fuel volatility is important for in-cylinder mixture formation. In both spark-ignition (SI)
and compression-ignition (CI) engines, too heavy components can cause engine oil dilution
(Fisher et al., 2010; Thewes et al., 2011b; ASTM D4814, 2016). Especially in SI engines,
high fuel volatility is critical in obtaining a well-mixed, ignitable fuel/air mixture. Engine
cold-start and low ambient temperatures place particular demands on the fuel in this
respect (Yanowitz et al., 2011; Thewes et al., 2011b; Hoppe et al., 2016a). Although the CI
engine is generally capable of burning less volatile fuel (Dec, 2009), high volatilities seen in
some biofuels and certain diesel blends have been linked to better mixture homogenization
in low-temperature combustion concepts (Park et al., 2009; De Ojeda et al., 2011; Heuser
et al., 2013a,b; Wang et al., 2014; Liu et al., 2014; Hoppe et al., 2016a). It shall be noted
that the flash point is a critical volatility-related parameter of diesel fuel for safety reasons,
as only at temperatures above the flash point (typically at least 55 °C) an ignitable mixture
of gaseous fuel and air is formed (Kalghatgi, 2014a; EN 590, 2014; ASTM D975, 2016). In
case of gasoline, the vapor above the liquid fuel is typically too rich to be flammable as a

result of gasoline’s high volatility (Kalghatgi, 2014a).
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The standard way of measuring fuel volatility is to perform a batch distillation according
to ASTM D86 (1999). This yields a so-called distillation curve, i.e., a (graphical) relation-
ship between the temperature of the fuel vapor and the volume fraction distilled. Although
ASTM D86 (1999) is the de facto standard for the determination of distillation curves of
real fuels, the testing method suffers from design drawbacks which make it impossible to
interpret the reported temperature as a true thermodynamic state point (Bruno, 2006;
Mueller et al., 2012). In the 2000s, this has motivated Bruno and co-workers (Bruno,
2006; Smith and Bruno, 2007) to develop an improved experimental setup which they have
called Advanced Distillation Curve (ADC) method. Subsequently, Huber et al. (2008) as
well as Backhaus and Rothamer (2012) have demonstrated that results generated from
simple open distillation (batch distillation) models (Stichlmair and Fair, 1998), which are
combined with either equations of state or UNIFAC, closely follow experimental ADC data

for binary mixtures of n-decane and n-tetradecane.

thermometer

4

condenser

distillation
flask

n, XL VL

"

distillate
collector

burner

Figure 7.6: Conceptual model of an idealized batch distillation process.

For the purpose of blend design, such a model is integrated into the optimization-based
approach. The idea is that the modeler can impose constraints on the volatility charac-
teristics of the blended products to be formulated. Figure 7.6 represents a sketch of the

considered idealized batch distillation process. The model equations are
d .
"L N (7.41)

dat
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dnp .
=N 42

dt ' (7.42)
iy :
(le" — —Naj, Vi=1,..nc—1, (7.43)
dnp; - .

Zf" = N, Vi=1,..ng—1, (7.44)
Vo N (7.45)

e Pm(Tvaz.i) '
o P viToxy) - pP(Tr)

], = Vi=1,..,nc, (7.46)
: »

o, = okt Vi=1,..nc, (7.47)
.

P % Vi=1,..nc, (7.48)
np = ZnD,i ) (7~49)
nL=Y npi, (7.50)

p= ZCL‘L Ty, xy) - pP(TL) (7.51)
p=>_ 7, %(Tp.xp) pi(Th) . (7.52)

i

Eqns. (7.41) and (7.42) represent the total mole balances for the liquid (L) in the
distillation flask and for the distillate (D) in the distillate receiver, whereas Eqns. (7.43)
and (7.44) are the component mole balances for the liquid and the distillate, respectively
(Stichlmair and Fair, 1998). At each point in time, the liquid is assumed to be at its bubble
point (Huber et al., 2008). Mathematically, the vapor-liquid equilibrium can be written
as Eqn. (7.46), where 27 ; denote the mole fractions of the vapor which is assumed to be
in equilibrium with the liquid (Stichlmair and Fair, 1998). In Eqn. (7.46), the notation
Xp, = 21,25, - 27 |7 is used to indicate that the mole fractions of all species are
needed to calculate the activity coefficient 7; of species i.

It is further assumed that the vapor stream N is immediately transferred to and totally
condensed in the distillate receiver (Huber et al., 2008). The change in the distillate volume
Vp is computed based on the liquid molar density of the condensate at the bubble point
temperature Tp of the distillate in the distillate receiver (Huber et al., 2008). This allows
to derive a differential equation for the volume of the distillate (cf. Eqn. (7.45)). The
molar fractions of the liquid and the distillate are defined by Eqns. (7.47) and (7.48),
whereas Eqns. (7.49) and (7.50) represent the closure conditions for the liquid and the
distillate, respectively. The bubble point temperatures 77, and Tp have to be calculated
by iteratively solving Eqns. (7.51) and (7.52) (Stichlmair and Fair, 1998). Beginning at
t = 0 and setting N = 1, the entire liquid is distilled at ¢ = 1. The distillation is assumed

147

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

7 Blend formulation by simultaneous product and pathway design

to take place at sea level atmospheric pressure (p = 1.01325 bar).

Again, the vapor pressure pf of a pure compound i at temperature T (cf. Eqns.
(7.46),(7.51)-(7.52)) is calculated by means of the extended Antoine equation (cf. Eqn.
(7.37)). Alternatively, the Hoffmann-Florin (HF) equation (cf. Eqn. (7.38)) is applied as
part of a fully predictive approach, if Antoine parameter values are not available.

The liquid molar density p,, in Eqn. (7.45) is described as

-1
Pm T7 IH i) — 2 s 7.53
( L, ) <z1: pm,i(T)> ( )

where the liquid molar density p,,; of species i is computed from the DIPPR 105 equation
(AIChE, 2012)

Clip,1i

14(1=T/Caip,3,1) “div-tsi
dip,2,i

pm.i(T) = ) (7'54)
if parameter values Cuip1:, Caip2is Caipsi and Cgipa,; are available. Alternatively, the
COSTALD method (Hankinson and Thomson, 1979; Gmehling et al., 2012) is applied as
part of a fully predictive approach (cf. Appendix E):

Pmi (T) = fcosTALD (Tcrif,,'i,a Vm:t,i,, Derit,is Tooil i, T) [k11101/1113] (7-55)

The four material-specific inputs to Eqn. (7.55), i.e., critical temperature T,.;;, criti-
cal volume V., ;, critical pressure p,; and the normal boiling point T ; are primary
properties that are predicted by means of the QSPRs from Chapter 5.

Once the solution to Eqn. (7.45) is available, the evolution of the volume fraction
distilled V7 is calculated based on the final volume of distillate Vp(t = 1), i.e.,

Vp(t)

(7.56)

Having built a similar model, Huber et al. (2008) have observed a horizontal offset
between experimental and computed data when plotting the temperature T over the
volume fraction V. This offset is thought to correspond to the fluid transit delay, i.e.,
the time it takes for the vapor formed above the liquid in the kettle to travel upwards, to
condense in the condenser and to be eventually collected in the distillate receiver. Huber
et al. (2008) have proposed to correct for this delay by shifting the computed distillation

profile leftwards by a constant volume increment Vg to be found by manual adjustment.
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Figure 7.7: Distillation curve model applied to a diesel fuel surrogate proposed by Mueller
et al. (2012) and compared with experimental data generated by the Advanced Distillation
Curve (ADC) method. Experimental data are also taken from Mueller et al. (2012). Activity
coefficients have been calculated by modified UNIFAC (Dortmund) (Gmehling et al., 1993,
1998; Constantinescu and Gmehling, 2016). Note: A volume shift Viy;s, of -0.05 has been
applied to compensate for the fluid transit delay (Huber et al., 2008) .

Figure 7.7 compares computed and measured ADC data for a diesel fuel surrogate
proposed by Mueller et al. (2012). The surrogate is composed of n-hexadecane, n-
octadecane, iso-cetane, n-butylcyclohexane, trans-decalin, 1,2,4-trimethylbenzene, tetralin
and 1-methylnaphthalene. If the volume increment Vs is set to -0.05, the simulated

distillation curve shows a nice agreement with the measured ADC data (cf. Figure 7.7).

7.4.2 Reid vapor pressure model

The Reid vapor pressure (RVP) as defined in ASTM D323 (1999) is another important
measure for the volatility of gasoline fuels. RVP is highly relevant for the ability of per-
forming engine start when the engine is cold relative to its design operating temperature
(ASTM D4814, 2016). It is also important to prevent vapor-lock, i.e., the formation of
fuel vapor bubbles in the fuel delivery system which leads to abnormal fuel flow to the
combustion chamber (ASTM D4814, 2016). Conceptually, the Reid vapor pressure is the
pressure pfmd in a closed system in which the biphasic fuel is stored at a constant temper-
ature of 37.8°C with a constant vapor-to-liquid volume ratio Vi, /V7, of four (ASTM D323,
1999). Hatzioannidis et al. (1998) have shown that UNIFAC is generally capable of pre-
dicting the RVP of simulated gasoline blended with a variety of oxygenated additives and

fuel extenders. More recently, Backhaus and Rothamer (2012) have employed UNIFAC for
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RVP prediction as part of a design approach for drop-in gasoline fuels satisfying certain
volatility constraints.

The Reid vapor pressure test can be modeled by the flash equations (Stichlmair and
Fair, 1998):

n=nr+ny (7.57)
nz; = npx; + nya) (7.58)
x] = K} (7.59)

In Eqn. (7.57), n is the total moles, whereas n;, and ny are the moles of the liquid
and the vapor phase, respectively. The overall mole fractions z; are determined from Eqn.
(7.58) based on the mole fractions for the liquid phase z} and for the vapor phase z. The
vapor-liquid equilibrium is described by the equilibrium ratio K; in Eqn. (7.59). Inserting
Eqns. (7.57) and (7.59) into Eqn. (7.58) and performing rearrangement gives (Stichlmair
and Fair, 1998)

#h =z [1 4 (Ki — 1)ny/n] . (7.60)

The volume of the gas phase is determined from the ideal gas law, i.e., Vir = ny RT/p3 .4
and the volume of the liquid phase is given by Vi, = nr/p.,, where the molar density of
the liquid p,, is again calculated from Eqn. (7.53). The vapor-to-liquid volume ratio of

four then leads to the following ratio between ny and n:

W RTpy, 4p%
gt Vo _WEPm g WV PRed (7.61)
Vi (n=nv)pheq n RTpm+4pg.q

Inserting Eqn. (7.61) into Eqn. (7.60), rewriting the K-factor K; = /2] = v(x) -

D7 /Pheiq (Gmehling et al., 2012), and adding the closure condition, one obtains the system

of nonlinear equations

Phiei %) v} ,
o) (14 gt (ML)} vigne, )
) RTp"l + 4p%eid p%eid

1= af, (7.63)

which can be solved for z and p3,,;, given a temperature of 37.8°C and the overall blend
composition z. Note that due to the fact that the ratio ny/n is always small (cf. Eqn.

(7.61)), the bubble point pressure py, of a mixture with composition z at 37.8°C, i.e.,
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DPop = D, % i(Z) - p?, is sometimes taken as an approximation of the Reid vapor pressure
Pheia (Yunus et al., 2014). Furthermore, the liquid mole fractions 2} are similar to the total
mole fractions z;. Hence, the bubble point pressure p, and the z; are used as initial values

for p3,.q and @, respectively.

7.4.3 Phase stability criteria

The formulated fuel shall form one liquid phase under typical ambient conditions. To this
end, the Gibbs energy change of mixing Ag as a function of mixture composition z and

temperature 7' is considered here. Ag can be written as

Ag(T,z) = RT Y (z-In(z) + 2 - n(7(T, 2))) , (7.64)
iePC
where R denotes the ideal gas constant and activity coefficients ;(T,z) describe the con-
tribution of the excess Gibbs energy (Gmehling et al., 2012).

In case of a binary mixture composed of components 1 and 2,

0*Ag
022

can be considered a local, necessary phase stability criterion for a blend with compositions
2z and zp = 1 — 2z; (Bausa and Marquardt, 2000; Mitsos et al., 2009). However, if a
0;29 < 0 and the so-called
tangent line criterion must be applied to reveal the gap’s full dimension, i.e., the locally

miscibility gap does exist, it extends beyond the region where

unstable region plus the metastable region (Baker et al., 1982; Segura et al., 2000; Conte
et al., 2011).

Similarly, in the multicomponent case, the Hessian matrix H of the Gibbs energy change
of mixing with respect to the ng — 1 independent mole fractions can be analyzed to derive
a local, necessary phase stability criterion (Van Dongen et al., 1983; Wasylkiewicz et al.,
1996; Segura et al., 2000):

Ai (H(Ag(z))) >0 i=1,..,nc—1 (7.66)

In Eqn. (7.66), \; denotes the i-th eigenvalue of H € Re~Dx(me=1) " Thus, if H is
not positive definite, the mixture is unstable (Van Dongen et al., 1983). Furthermore,
the minimization of the so-called tangent plane distance function f;,q constitutes the more

rigorous, global phase stability check (Wasylkiewicz et al., 1996):

151

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

7 Blend formulation by simultaneous product and pathway design

min< Jpa(X') = Z 2 Inz} +Inv(T,x') —Inz; — ln (T, z)] (7.67)
st 1=> 4 (7.68)

Assuming that x™* is the global minimizer of Eqn. (7.67) such that the closure con-
dition (cf. Eqn. (7.68)) holds, the necessary and sufficient condition for phase stability
is fipa(x™) > 0 (McDonald and Floudas, 1995; Wasylkiewicz et al., 1996). Due to the
strong nonlinear behavior of Eqn. (7.67) and due to the existence of many local minima,
several approaches to global optimization have been applied to the tangent plane stability
problem in combination with equations of state, NRTL and UNIQUAC (McDonald and
Floudas, 1995; Wasylkiewicz et al., 1996; Yushan and Zhihong, 1999; Harding and Floudas,
2000; Mitsos and Barton, 2007). In the present contribution, the solver globalsearch from
Matlab’s Global Optimization toolbox (The MathWorks Inc., 2016) is used to solve the
problem defined by Eqns. (7.67) and (7.68). Globalsearch is an implementation of the
OQNLP algorithm (Ugray et al., 2007), i.e., a multistart heuristic algorithm combining
scatter search with local NLP solvers. Ugray et al. (2007) have reported that the OQNLP
algorithm is capable of finding global solutions to all 142 continuous-variable NLP test
problems compiled by Floudas et al. (1999). However, it should be noted that due to its
heuristic nature the algorithm cannot guarantee that the global minimum of the tangent

plane distance function fy,4 is identified.

7.5 Problem formulation and solution strategy

After pathway and property models have been defined, the blend design problem can now
be formulated as a nonlinear program (NLP). Ultimately, the purpose of fuel production
is the provision of energy for transport applications. Therefore, the objective is chosen as
the maximization of the energy of fuel produced (in terms of lower heating value) for a

given feed of biomass. Then, the problem can be stated as follows:

objective function:

. gé?gzo - Z b;M;LHV; (maximize energy of fuel produced)
jePC
7.69)
s.t. (7.70)

pathway model:
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mass balance A-f=Db
biomass supply fg1 =1
no residual Hy by, =0
definitions:
mole fractions z; = b;/ (Z b]-> Vi e PC
jePC

molar mass M = Z zj M;

jePC
mass fractions & = z;M;/M Vi € PC
 dene _ &
mass density pp =1/ Z =
jepc PLi
. PL
lar dens =P
molar density p, i

property constraints:

derived cetane number DCN™ < Z 2;DCN; < DCN ub

jepPC
lower heating value LHV™ < " &LHV; < LHV"™
jepPc
enthalpy of vaporization Hll;p < Z EiHyapj < H;f;’p
jerc
oxygen content 'u,'tlgz < Z Lwto, ; < wtg;
jepPc

liquid density pP < pp < pi®

1
; - ; 1b b
kinematic viscosity v° < — E zip; < V"

L e
—1 _1/4 1 _1/4
i) o+ J) o
surface tension o'® < <‘;§ Z Z 2iZj (ﬂm,z) . B (pm]) J
icPC jePC

approximated RVP p},l; < Z z; - 7;(37.8°C, z) -p‘;(37.8°C) < pE;’
jepPc

dist. (10 mol-% evap.) T10(m)™ < Dist.-Modelrigwm)(z) < T10(m)"™

dist. (50 mol-% evap.) T50(m)™ < Dist.-Modelrsom)(z) < T50(m)">

dist. (90 mol-% evap.) T90(m)"™ < Dist.-Modelrogm)(z) < T90(m)"
stability constraint:

local, necessary condition \; (H (Ag(298K,z))) > 0 i=1,..,nc—1
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The optimization variables are the flows f and b. Thus, the task of the optimizer is to
find a feasible combination of f and b that maximizes the energy of fuel produced (cf. Eqn.
(7.69)). The property constraints are formulated on the basis of the n¢ palette compounds.
This means that, in principle, the solution to the optimization problem could be a blend
of ng components. In practical cases, however, the solution is typically composed of few
species only, as the mole fractions of the other palette compounds become zero. Likewise,
most entries of f and b are zero at the solution.

Constraints based on the pathway model (cf. Eqns. (7.71)-(7.73)) are followed by a set of
definitions (cf. Eqns. (7.74)-(7.78)) which are given here for the sake of clarity, although, in
principle, these could also be integrated into the subsequently listed property and stability
constraints (cf. Eqns. (7.79)-(7.90)). Note that the pure-component properties, e.g., the
derived cetane number, can be calculated a priori, whereas those properties depending on
the composition, namely, activity coeflicient, Reid vapor pressure, distillation profile and
Gibbs energy of mixing, have to be recomputed in each step taken by the NLP solver.
The efforts associated with the evaluation of those properties scale with the number of
palette compounds. This means that also the total computational time for solving the
blend design problem (cf. Eqns. (7.69)-(7.90)) primarily depends on the number of palette
compounds.

Two measures have been taken to speed up the calculations. First, inside the opti-
mization problem, the Reid vapor pressure (RVP) is approximated by the bubble point
pressure py, (cf. Eqn. (7.86)). The correct RVP p3,,, is always computed from the system
of nonlinear Eqns. (7.62)-(7.63), once the solution to the optimization problem has been
obtained. From experience with the case study below, the approximated RVP (py,) is
typically between zero and ten kPa higher than the correct RVP (p3,,4). Second, within
the NLP the distillation curve is considered on a molar basis (instead of volume). This
way, the idealized batch distillation model (cf. Eqns. (7.41)-(7.52)) can be stripped down
to (Stichlmair and Fair, 1998)

d .
G= = (7.91)
dz/?,; _ 7117 <I,L B x’L,i-%(Tu;('L) -pf(TL)) VL1 r02)
1=) b, (7.93)
p= ZI’L (T, xy) 7 (i) 5 (7.94)
where the initial values are set to 27 ; = 2; (2 is the blend composition defined in Eqn.

(7.74)) and n;, = 1. The characteristic 710 temperature (cf. Eqn. (7.87)), i.e., the tem-
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7.5 Problem formulation and solution strategy

perature where 10% of the fuel have been evaporated, is then simply 7p(t = 0.1). The
solution of this smaller DAE system (cf. Eqns. (7.91)-(7.94)) is approximated with the
explicit Euler method (Ascher and Petzold, 1998) based on a fixed grid. Compared with
the error-controlled, variable step length solvers ode45 and odel5s built into Matlab (The
MathWorks Inc., 2016), the computational overhead as well as the number of activity coef-
ficient calculations are significantly reduced, thereby greatly improving performance. The
approximation error correlates with the chosen step length, i.e., the size of the mole incre-
ment (1 mol-% has been used here), and is assessed by once running the error-controlled
solver a posteriori. Although the distillation constraints are defined on a molar basis
in order to reduce the computational effort, the blend’s volumetric distillation curve is
computed with Eqns. (7.41)-(7.52) a posteriori, because the volume basis is the more fre-
quently used variant. Therefore, it will be distinguished between T'10(m)/T50(m)/T90(m)
and T'10(v)/T50(v)/T90(v) in the following, where (m) refers to mole and (v) refers to

volume.

The local, necessary criterion for phase stability is integrated into the NLP formulation
in an attempt to circumvent parts of miscibility gaps (cf. Eqn. (7.90)). The Hessian H is
approximated with finite differences (Nocedal and Wright, 2006) and the eigenvalues are
computed with Matlab’s (The MathWorks Inc., 2016) eig routine which is based on the
QR algorithm (Francis, 1961; Watkins, 2002). In order to avoid both the locally unstable
and the metastable regions, a bilevel optimization problem would have to be formulated
and solved. This is not done here for the sake of simplicity and performance. Instead,
each solution to Eqns. (7.69)-(7.90) is checked a posteriori by minimization of the tangent
plane distance function, i.e., by solving a second but smaller NLP (cf. Eqns. (7.67)-(7.68)).

This way blends which turn out to be immiscible are discarded from the set of solutions.

Note that the optimization problem defined by Eqns. (7.69)-(7.90) represents a gen-
eral formulation where each property is constrained by a lower and by an upper bound.
However, depending on the modeler’s intentions, the formulation can easily be modified
for the design task at hand. Such modification might include removal of certain bounds.
For instance, in the case study below, no upper bound is considered for the oxygen con-
tent and the lower heating value is not constrained at all. Instead of maximization of a
process-related criteria like mass or energy of fuel produced, specific blend properties can be
optimized as well. For instance, smaller values for the DCN correlate with higher research
octane numbers (RONs) (cf. Figure 6.1) and a higher RON allows to raise the effective
compression ratio and thereby the efficiency of a spark-ignition engine (cf. discussion in

Subsection 2.1.1). Thus, the objective function
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7 Blend formulation by simultaneous product and pathway design

min Z 2;DCN; (minimize blend DCN) (7.95)

£>0,b>0
jepC
may be chosen. Note that the inequality constraint
> biMy > 10 et min (7.96)
jepC
can be added simultaneously to ensure that a certain minimum mass flow of fuel 172 fyes min is
still produced. Alternatively, if no more than npg, mas [molg, /mol s« of external hydrogen

shall be used to upgrade the carbohydrates, the inequality constraint

f52 S N Hy maz (797)
(ZJEPC b]’)

may be used.

sequential solution strategy

solve blend design problem

ll\/iat}ab‘s’ " w/o phase stability constraint
( SgQ; Sgscf:'ligm) w/o distillation curve constraint

f,b ﬂ add necessary stability constraint | 2;(H(Ag)) = 0

E Matlabs F solve blend design problem E

s an;;réf)iihm) w/o distillation curve constraint
o . distillation model
f,b ﬂ add distillation curve constraint (DAE system)
Matlab‘s
fmincon P solve full blend design problem
(SQP algorithm)
final solution f,b ﬂ 7 rigorous miscibility analysis
lﬁ/I[::ztllsa:arsc h check necessary & sufficient tangent plane
8 . phase stability criteria distance (NLP
(SQP algorithm)

Figure 7.8: Sequential solution strategy and a posteriori rigorous miscibility check. The molar
flows f and b resulting from steps 1 and 2 are used as initial values for the respective subsequent

problems. The optimal blend composition z; is determined in step 3.

Although the complete problem described by Eqns. (7.69)-(7.90) could be approached
directly, it has been observed that if initial values for the full problem are derived systemat-

ically by first solving two simpler subproblems, the overall time required to find the solution
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can often be reduced. This sequential solution strategy is depicted in Figure 7.8. The first
subproblem is derived from ignoring both the distillation profile constraints (cf. Eqns.
(7.87)-(7.89)) and the phase stability constraint (cf. Eqn. (7.90)) (cf. Figure 7.8, step 1).
This nonlinear problem is small enough to be efficiently handled by Globalsearch and the
global solver is employed to decrease the risk of getting stuck at a local optimum that is not
the global optimum. Once solution vectors f and b have been obtained, these are taken as
initial guesses for the next subproblem that includes the phase stability constraint, but still
lacks the distillation model (cf. Figure 7.8, step 2). Since the computation of the Hessian
of Ag makes this subproblem significantly more computationally demanding, a local NLP
solver is used here. If the initial values do not violate the phase stability constraint, com-
pletion of step 2 is extremely fast as the solution to subproblem 2 then is identical to the
initial guesses. Finally, the results from step 2 are used to initialize the full problem (cf.
Figure 7.8, step 3). Solving the full problem is by far the most computationally demanding
step because of the distillation model, however, only if the supplied initial values violate
the distillation profile constraints. With the proposed sequential strategy (cf. Figure 7.8),
the total computational effort required to solve the blend design task therefore strongly
depends on whether the path to the solution is somehow affected by the distillation curve
constraints. As can be seen from Figure 7.8, the necessary and sufficient phase stability
criteria are always checked a posteriori. Total computational demand for solving the blend
design task and for performing the rigorous miscibility check scales with the number of
palette species under consideration. Some specific numbers on computational times will

be given for the case study below.

If the CPM contains numerous palette compounds, blends of high complexity may arise.
Here high complexity refers to a large number of components to be included in the final
fuel. Trace amounts of a component ¢ can easily be removed by adding a constraint
b; = 0 to the general problem formulation (cf. Eqn. (7.69)-(7.90)). However, typically
there is a multitude of blends with similar objective values and these blends can differ
substantially with respect to composition and utilization of production pathways. Being
able to select from a range of promising blends rather than having to rely on a single
best solution may prove particularly valuable in this context. To obtain blends with a
specified number (n¢e) of components, subproblems can be extracted from the CPM and
solved in a systematic fashion. The enumeration-based strategy proposed in Figure 7.9
can be readily applied to generate binary, ternary and quaternary mixtures, if the total
number of palette compounds to choose from (nc¢ o) is in the range of 20-30. Although
in principle the strategy can also be applied to multicomponent mixtures with ne > 4, it
quickly approaches its limits because of the combinatorial explosion encountered in step

no,tot! .
(nctot—nc)!ne! ways

A (cf. Figure 7.9). The reason is that there are generally (”Zgot) =
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7 Blend formulation by simultaneous product and pathway design

of choosing n¢ palette compounds from a CPM that comprises a total number of ne o
palette compounds. Different subproblem definition strategies have to be developed to

cope with such situations.

START C5or C6only infeasible combinations infeasible combinations
enumerate all discard combinations exclude infeasible 'e)f(clu‘?j for each feasible
combinations which do not make combinations based m ;am e combination
of n, palette use of both hexoses on pure-component b::er?i (;:?:llli?fl . perform CPM

compounds and pentoses properties rules & subpath extraction
all optimal blends rigorous miscibility perform blend
.that are miscible check based on tangent design
withn¢ components plane distance function on the reduced
and theirrelated 3 minimization C] CPMs
reduced CPMs

immiscible blends infeasible blends

Figure 7.9: Workflow for the generation of all blends consisting of nc components.

As can be seen from Figure 7.9, the workflow proposed here starts with the enumeration
of all possible combinations of palette compounds (step A). Subsequently, the CPM is
analyzed to discard those combinations that do not utilize both hexoses and pentoses
(step B.1), because conversion of a single sugar fraction strongly limits the amount of
fuel obtained. In step B.2, the feasibility of each combination is judged on the basis of
pure-component properties. For instance, if a binary blend shall have a mixture DCN
smaller than 15, at least one of the two components needs to exhibit a DCN < 15. In step
B.3, a first optimization problem is formulated based on the mixture property models.
The objective of this problem is to find a feasible point, i.e., a specific composition that
satisfies all imposed property constraints. Here it is still ignored whether this composition
can actually be achieved in a process. In order to reduce the computational burden for
the final design step, only those species and pathways are considered which eventually lead
towards the palette compounds under investigation. An example for such CPM subpath
extraction (step B.4) is depicted in Figure 7.10. Finally, the actual blend design and
the rigorous miscibility check (steps C and D) are carried out by means of the sequential

approach described before (cf. Figure 7.8).
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Figure 7.10: Example for CPM subpath extraction (step B.4 in Figure 7.9): Based on the
original CPM on the left, the smaller scenario on the right, where only 2-methyltetrahydrofuran
and cyclopentanone are considered palette compounds (indicated by dashed circles), contains

exclusively those pathways and species that eventually lead towards the species of interest.

7.6 Case study: Blends for the spark-ignition (SI) engine

A case study is dedicated to the identification of biofuels with tailored properties and their

respective optimal production pathways.

7.6.1 Scenario description

The target combustion system is a boosted direct injection spark-ignition engine, like those
studied within TMFB previously (Thewes et al., 2011a,b; Hoppe et al., 2016a). The ob-
jective is to maximize the energy of fuel produced (in terms of lower heating value) given
a fixed feed of biomass (cf. Eqn. (7.69)). This can be achieved particularly well by consid-
ering production routes that (a) have high yields and (b) are capable of integrating major
amounts of additional hydrogen. Since the amount of biomass that can be grown for the
purpose of fuel production is limited, biomass hydrogenation by means of water electrol-
ysis utilizing carbon-free energy sources such as wind or solar is seen as an opportunity
to leverage the amount and energy of liquid hydrocarbons that can be produced from the
biomass feedstock (Shinnar and Citro, 2006; Agrawal et al., 2007; Muradov and Veziroglu,
2008; Connolly et al., 2014). Therefore, in this case study, the supply of hydrogen is not
constrained, but instead hydrogenation is considered to be an enabler for directing as many
carbon as possible from the carbohydrates towards the fuel, thereby maximizing the energy
of fuel produced.

As can be seen from Figure 7.11, 12 bio-based intermediates (shaded in gray) which

can be produced from hexoses and pentoses in large volumes, e.g., ethanol, acetic acid

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

7 Blend formulation by simultaneous product and pathway design

e ———

-

~o O

Bmﬁ:;u_ Apo 4

UORY|OI[BA- -A

-
~Oéh/\

O

6d h 8d
URINJOIPATEY AW

xﬁb

ﬁ\ fo >
P o
© )

~<

7
-

f/\/\

>~

~_~——

uﬁﬁsnc gcd \ foueing-|

-

/

:._o ()
/\/\\\ ed S _
auding- |

-

[oyooe

_oqﬁcoao_o%o
6cd

o_._\
oE/ \

Led 0

u:ocﬁ:ug_o%o

\:m
@

u:ﬁ:oa\_u%u

o L
) \ _° \ sed a /ﬁotoms\s
/@(OE /“ =~ teca fousngost Y QU
///l\\ \ IO\/\\ O /v
9d ﬁﬁmaoa N fo: / vof\ ’
5zd ?2 T s
PIoE J1uIdoNs v/vmm S1d %
HO_~_OH 9ld \Eom%ﬁ
]\ orpouedord-¢¢ :M/ -
e Jo1po €1 eNo el |
4 [eanging
€d 4 vd u ad
sasojuad i
[epng [Agow AxoIpAy-¢

N o\naeoiﬁéiﬁas [5x4

- /

/ — e)

F/ o \

0ld =E&o%%q§2

o:ouom_ohb:.m -L

.I/

sueing, —

AmpmjoipAyend) T
1 waa_j ; M, b

é

\ -ost \
/

Iad -\

(0]

—-— \_M:cﬁoE.N.:E\EE?Em

-~ 12d \>

ouedoxd-u—

O

OI proe oLIAIng

61d

_O%uﬁﬁus q- m T

) -~
A/\/\

aueyng-uN _ _

—

\
\~_ O

s
~_—
auoueing-g

m //
O\/ \ EIUERT
e

[oueyjd
-~

ocd

- = /&Euoa 1439

x 8¢d \%d /\\/\JﬂO/\v

~
~

-

ejaoe [Anq

Figure 7.11: Conversion pathway map (CPM) for the case study (bio-derived platform chem-

icals in gray; palette compounds marked with dashed circles). Selectivity data and references

for all pathways can be found in Appendix E.
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7.6 Case study: Blends for the spark-ignition (SI) engine

and furfural, are considered. These platforms have been chosen because they comprise
>75% LHV energy efficiencies, i.e., LHV of the intermediate per LHV of glucose/xylose,
at highest-reported production yields (cf. Table 2.4). Because knock-resistance and fuel
volatility are key for achieving high engine efficiencies and low engine-out emission levels,
two criteria have been applied to select the palette compounds: (i) The normal boiling point
of each blend component shall be well below the final boiling point of a typical gasoline
(~225 °C). (ii) No blend component shall exhibit a diesel-like auto-ignition tendency.
Therefore, DCN of all blend components must be smaller than ~30. Selectivity data for
all pathways have been collected from the open literature. Data and references can be
found in Appendix E. For the sake of simplicity, conversion-limitation is neglected in
this case study, either because the catalytic system enables close-to-full conversion (most
cases), or because recycling of unconverted reactants is assumed. In total, 24 potential

fuel components and 38 conversion pathways are considered (cf. Figure 7.11).

A limitation of the case study is that furans could not have been included because the
UNIFAC group interaction parameters for furans are available exclusively to sponsors of
the UNIFAC consortium (Constantinescu and Gmehling, 2016; DDBST Dortmund Data
Bank Software & Separation Technology GmbH, 2017) at this time. The furan-derivative
~-valerolactone has been included in the case study because of its high knock-resistance
(cf. Table 2.2), although its use as a fuel component is viewed with some criticism due
to y-valerolactone’s potential for abuse as a drug (Yanowitz et al., 2011). With a normal
boiling point of 207-208 °C (Horvéth et al., 2008), v-valerolactone is also the least volatile

compound in the case study.

The desired fuel properties are summarized in Table 7.2. The property constraints are
based on the SI engine case study presented in Section 6.1. Again, the expectation is that
a fuel with a DCN<20 exhibits a knock-resistance sufficiently high to justify further inves-
tigation as a candidate fuel for the spark-ignition engine. This may include experimental
RON/MON determination by means of ASTM D2699 (2013) and ASTM D2700 (2014).

Reid vapor pressure (RVP), T10(m), T50(m) are constrained to mitigate problems with
vapor lock, cold-starting and during the warm-up driving phase (Kalghatgi, 2014a). More-
over, T90(m) is constrained to avoid lube oil dilution and excessive deposit formation
(Kalghatgi, 2014a). The upper and lower bounds for RVP, T10(m), T50(m) and T90(m)
were chosen such that all distillation and vapor pressure classes of US gasoline fuel as
defined in ASTM D4814 (2016) are covered. The minimum Reid vapor pressure, which is
important for engine cold-starting (Kalghatgi, 2014a), has been taken from the European
gasoline fuel standard EN 228 (2014), since the US standard does not explicitly include
such a constraint.

For this case study, pure-component property data for LHV, pr, o and p have been
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Table 7.2: Specifications for a multicomponent biofuel with tailored properties for combustion

in a boosted direct-injection spark-ignition (SI) engine.

fuel property lower bound upper bound
derived cetane number DCN [-] - 20
oxygen content wto, [wt-%)] 10 -
enthalpy of vaporization Hyap [kJ/kgairr=1] - 60
surface tension o [mN/m] - 30
kinematic viscosity v [mm?/s] 0.5 2.0
approximated Reid vapor pressure py, [kPa] 45 100
distillation profile®

temperature at 10% mole fraction evp. T10(m) [°C] 45 70

temperature at 50% mole fraction evp. T50(m) [°C] 65 125

temperature at 90% mole fraction evp. T90(m) [°C] 65 190

@ idealized open batch distillation (cf. Figure 7.6)

retrieved from the DIPPR 801 database (AIChE, 2012) by means of a software tool devel-
oped by Manuel Hechinger and Luise Schulze Langenhorst (Hechinger and Schulze Lan-
genhorst, 2012). Only data that has been classified as ”accepted” by DIPPR staff and
that is thought to have an error of <10% have been queried (cf. discussion in Section 5.1).
This covers approximately 74% of the required data for LHV | pr, o and p. The remaining
fraction has been predicted with the QSPR models from Chapter 5. The predictions can
be found in Appendix E. In case of vapor pressure and molar density, parameters for
the extended Antoine equation (Eqn. (7.37)) and the DIPPR 105 equation (Eqn. (7.54))
have been retrieved from the Aspen Physical Property System pure-component databank
(Aspen Technology, 2011) where such data were available, thus limiting the use of the
fully predictive approach, i.e., critical data QSPR plus Hoffmann-Florin equation and/or
COSTALD method, to the remaining instances (cf. Appendix E). Pure-component en-
thalpy of vaporization H,,, has been calculated from the vapor pressure curve via the
Clausius-Clapeyron equation (cf. Eqn. (7.34)). Modified UNIFAC (Dortmund) param-
eters relevant to the species in the case study have been taken from different literature
sources (Gmehling et al., 1993, 1998; Constantinescu and Gmehling, 2016). Experimental
DCNs for eleven compounds were taken from Appendix B, whereas the other 13 DCNs
had to be predicted with the help of the group contribution model from Chapter 4. The
predictions can be found in Appendix E. Pragmatically, a value of 7 has been assigned
to those compounds which do not ignite in the IQT as a consequence of the measurement
limit, i.e., DCN & 7.2 (Haas et al., 2011).
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7.6 Case study: Blends for the spark-ignition (SI) engine

7.6.2 Results

Maximization of the energy of fuel produced yields a five-components blend (referred to as
blend A in the following) which is rich in 1-butanol (44 mol-%), cyclopentane (31 mol-%)
and ethyl acetate (15 mol-%). This design features a high degree of hydrogenation (4.6
moly, per moly,e) and yields 0.75 MJ yer per MJpiomass- The corresponding material flow
diagram is depicted in Figure 7.12. The Cs sugars are converted into cyclopentane via
pathways P4, P38 and P31, whereas the majority of the Cy sugars is directed to succinic
acid fermentation. The remaining Cg sugars are fed to ethanol fermentation. Ethanol, in
this case, does not constitute a fuel component, but acts as a substrate for the production
of acetic acid. The intermediates acetic acid and ethanol are finally converted into the fuel

component ethyl acetate.

OH
e 1-propanol
. 0.02 kmol/h
succinic acid v-butyrolactone
s o P23 o P24 0 tetrahydrofuran
HO OH (jo e, P25
0.30 kmol/h O 0.50 kmol/h 0.47 kmol/h - 0.37 kmol/h
o ~kmol/h " kmol/h ’ kmol/h
- kmol/h CO, ~"0H
- kmol/h ethyl acetate [|0.35 kmol/h
ethanol P5 ! . mo
hexoses oM 0.13 kmolh 0 P36
~ . /M — 1-butanol \:)_()7 kmol/h
0.13 kmol/h - kmol/h L o
acetic acid
% P2 on 0.12 kmol/h NN
10-
P1 Pl = 0.07 kmol/h
mass 1 kmol/h 0.13 kmol/h _ kmol/h 0.13 kmol/h n-butane
- kmol/h o
P4 (27) P38 [e] P31 O
D
pentOSCS 0.32 kmol/h v 0.26 kmol/h 0.25 kmol/h
- kmol/h - kmol/h - kmol/h 0.25 kmol/h
furfural cyclopentanone cyclopentane
energy of fuel mass of fuel hydrogen LHV CO, derived
produced produced demand energy efficiency from biomass cetane number
MJ uer/ M piomass Kgtuet/ KSbiomass moly / molgyer | MIguer/ (MJbiomass™MI12) 2/ Mgl (DCN)
0.75 0.39 4.6 0.57 0.0 18.8

Figure 7.12: Material flow diagram for the design that maximizes the energy of fuel produced
under the constrains stated in Table 7.2 (blend A). The resulting five-components blend is
composed of 44 mol-% 1-butanol, 31 mol-% cyclopentane, 15 mol-% ethyl acetate, 8 mol-%
n-butane and 3 mol-% 1-propanol. For each conversion pathway, the mole flow rate of the
main reactant is given. Beneath each species or pseudo-compound, the product flow rate, i.e.,
the amount of substance leaving the fuel production plant in a given amount of time, is stated.

As can be seen from Figure 7.12, the carbon dioxide released in ethanol fermentation is

fully re-used in the succinic acid fermentation step. While the CO5 has zero enthalpy of
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Figure 7.13: Predicted distillation curves for the blends discussed in this case study. The curves
have been computed with Matlab’s (The MathWorks Inc., 2016) error-controlled, variable step-
length solver odel5s. The bars show the constraints for T10(m), T50(m) and T90(m) (cf.

Table 7.2). Note that Vs has been set to zero in an attempt to simulate an idealized batch

distillation process.
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7 Blend formulation by simultaneous product and pathway design

combustion, the re-use of carbon allows for higher degrees of hydrogenation in subsequent
steps. Thus, co-processing of ethanol and succinic acid can be seen as an elegant way
for chemical hydrogen storage in the case of SI fuels where a certain oxygen content is
mandatory. It shall be noted that an analysis of the general trade-off between hydrogen
demand [moly, /molf,q| and energy of fuel produced [MJfuer/MJpiomass) can be found in
Appendix E. The discussion there includes a blend that has been designed with the premise

of zero hydrogen demand.

In case of blend A, succinic acid is converted into a mixture of alcohols and n-butane via
pathways P23—P25 and P36 (cf. Figure 7.12). Cyclopentane and n-butane are responsible
for the blend’s excellent front-end volatility, i.e., low T10 and high Reid vapor pressure.
Table 7.3 shows the estimated blend properties and Figure 7.13 depicts the distillation
curve. Based on the pure-component DCN values, the alcohols and the ethyl acetate
are considered the most knock-resistant species in the mixture. The equations reported
by Perez and Boehman (2012) can be applied to calculate a quantitative estimate for
RON/MON from the DCN (cf. Figure 6.1). These will be referred to as correlated RON
(cRON) and correlated MON (¢cMON) in the following to distinguish them from true
RON/MON. Since the accuracy of the IQT-RON/MON correlations proposed by Perez
and Boehman (2012) has not been systematically assessed for a wider range of fuels, cRON
and cMON should be generally taken with caution. For instance, the cRON for iso-octane
is only 96.7 (based on the DCN of 17 reported by Dooley et al. (2012b)), whereas its true
RON is 100.

The ¢cRON calculated for blend A is 92 (cf. Table 7.3). While RON91 constitutes
the minimum fuel quality required for most modern passenger cars equipped with knock
sensors, future fuels will probably require higher RONs because of the strive for higher
engine efficiencies (Hoppe et al., 2016a,b). In this context, the model-based design approach
can be used to analyze the trade-off between DCN as a simplified measure for knock-
resistance and the energy of fuel produced. To this end, a sequence of design problems is
solved with decreasing upper bounds for the DCN. The resulting trade-off is visualized in
Figure 7.14.

It can be seen that the energy of fuel produced in MJ sy, per MJpiomass decreases as
DCNs get smaller. However, for DCNs above 12, the correlation is generally weak. While
there is no clear trend for mass and LHV energy efficiencies, hydrogen consumption follows
the trend seen for energy of fuel produced. The reduced opportunity for hydrogenation in
case of low DCN is accompanied by significant COq emissions, because the emitted carbon

can no longer be directed towards the fuel without violating the property constraints.

Figure 7.15 shows the material flow diagram for blend B, i.e., the blend with a DCN
of 9 (cf. Figure 7.14) which translates into a cRON of 114 and a ¢cMON of 104. The
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Figure 7.14: Trade-off between derived cetane number (DCN) and energy of fuel produced
[MJ fuet/MJbiomass]-  The blend design problem has been solved multiple times, whereby the
upper bound for the DCN has been lowered stepwise (20, 19, 18, 17 etc.). While the points
in the diagram represent properties of optimal designs, the dashed and dotted lines are for
illustration purposes only. A feasible blend can be generated for DCN<8, however, its LHV
efficiency is as low as 0.40 MJyye1/(MJpiomass+MJs,) as significant portions of the biomass

are left unconverted. DCN<7 makes the problem infeasible.

presumed high knock-resistance of this seven-components blend primarily results from the
high fractions of ethanol, cyclopentanone and 2-butanone. The latter compound has an
experimental RON/MON of 117/107 (Hoppe et al., 2016b). The production of 2-butanone,
however, necessitates the inclusion of a separate 2,3-butanediol fermentation step in the
design (cf. Figure 7.15). In contrast to the previous design, carbon dioxide released in
ethanol fermentation is mostly emitted here (compare Figures 7.12 and 7.15). The low
hydrogen consumption in the production of blend B (1.7 moly, /mols,y) is accompanied
by a lower energy of fuel produced (0.61 MJsyei/MJbiomass). However, the LHV energy
efficiency is only slightly lower compared to the previous design. The estimated blend
properties can be found in Table 7.3.

From the trade-off analysis in Figure 7.14 it appears that the blend with a DCN of 12
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Figure 7.15: Material flow diagram for the design that maximizes the energy of fuel produced
if DCN is constrained to <9 (blend B). The resulting seven-components blend is composed
of 42 mol-% ethanol, 26 mol-% cyclopentanone, 15 mol-% 2-butanone, 7 mol-% 1-butene, 6

mol-% 1-butanol, 3 mol-% cyclopentane and <1 mol-% 1-propanol.

would represent a nice compromise between knock-resistance on the one hand and energy
of fuel produced and CO; emissions on the other hand. However, it should be kept in mind
that the the inverse relationship between DCN and RON/MON holds only approximately.
Moreover, linear mixing is assumed here and pure-component DCNs of species that do not
ignite in the IQT (e.g., ethanol, cyclopentanone) are assumed to be 7. In principle, the
uncertainties of the outlined design approach could be reduced significantly if experimental
RON and MON values were available for the pure compounds. It is also possible to
derive nonlinear RON/MON mixing rules, once blending effects can be quantified based
on comprehensive experimental RON/MON mixture data for the compounds of interest
(AlRamadan et al., 2016).

The complexities of blends A and B are quite high, meaning that both blend compo-
nents and conversion pathways are numerous. The number of conversion pathways in a
design can be taken as a first rough estimate of process complexity. Moreover, it is often
assumed that the number of processing steps correlates with the capital cost of a pro-
duction plant (El-Halwagi, 2012; Ulonska et al., 2016a). With the aim of arriving at less
complex designs, all optimal binary and ternary blends, which can be formulated based

on the conversion pathway map depicted in Figure 7.11, have been generated. To this
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Figure 7.16: Number of active conversion steps and energy of fuel produced for all optimal
binary (2 circles) and ternary (149 squares) blends. For comparison, the graph also includes
the more complex blends A and B (2 stars).

end, the strategy proposed in Figure 7.9 has been employed. The DCN constraint has now
been tightened to DCN<15, which corresponds to a cRON/cMON of >102/93, in order to
place particular focus on fuels especially well-suited for highly-boosted, direct-injection SI
engines (Kalghatgi, 2005; Hoppe et al., 2016a,b). Figure 7.16 shows the number of active
conversion steps and the energy of fuel produced for all optimal binary and ternary blends.
The ideal design would be located in the lower right part of the graph. It can be noted
that there is a ternary blend (called blend C in the following) which is slightly inferior
to blend A in terms of energy of fuel produced. However, this blend is less complex. In-
deed, the material flow diagram for blend C can be seen as a simplified version of design
A (compare Figures 7.12 and 7.17). Instead of acetic acid fermentation and ethyl acetate
production, ethanol is directly used as a fuel component here. Furthermore, the conversion
of 1-butanol to n-butane has been eliminated which somewhat deteriorates the front-end
volatility, as can be seen from Figure 7.13. Still, all fuel properties are well within the
specified bounds (compare Tables 7.2 and 7.3). With a cRON of 103, blend C is expected
to offer greater knock-resistance than blend A. At the same time, blend C retains a key
property of blend A, i.e., the almost complete avoidance of carbon dioxide emissions that

is enabled by concurrent ethanol and succinic acid fermentation (cf. Figure 7.17).

If the process complexity shall be reduced even further, Figure 7.16 shows that blend D
represents a nice trade-off between the energy of fuel produced and the number of conver-

sion steps. As can be seen from the material flow diagram in Figure 7.18, the majority of
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Figure 7.17: Material flow diagram for the optimal ternary blend of 1-butanol (45 mol-%),
ethanol (29 mol-%) and cyclopentane (27 mol-%) (blend C, cf. Figure 7.16).

Cg sugars is still directed towards ethanol fermentation in this design. However, a signif-
icant fraction is also converted chemo-catalytically into 2,5-dimethyltetrahydrofuran (2,5-
DMTHF), a compound with a high heating value. Knock-resistance is provided primarily
by ethanol, and cyclopentane is required to satisfy the front-end volatility requirements.
Two additional ternary blends are located in the vicinity of blend D in Figure 7.16 and
their main components are ethanol and cyclopentane as well. This suggests that the third
component of blend D, i.e., 2,5-DMTHF, can well be exchanged for tetrahydrofuran or
ethyl acetate, if the proportions of ethanol and cyclopentane are adjusted accordingly (cf.
Figure 7.16).

In summary, the case study has demonstrated the capabilities of the model-based ap-
proach for integrated product and pathway design of novel biofuel blends. The succinic
acid pathway constitutes an elegant option for re-using CO, that is produced elsewhere in
the plant, e.g., in concurrent ethanol fermentation. This way more carbon reaches the fuel
and, together with hydrogen produced from renewable electricity, this allows to increase
the fuel energy available for combustion given a fixed input of biomass. The case study has
also revealed the promising role of cyclopentanone production from furfural in the context
of SI fuel synthesis. Cyclopentanone is considered an ideal fuel for highly-boosted direct
injection SI engines due to its extremely low auto-ignition reactivity and hence extreme
knock-resistance (Yang and Dec, 2013). Further hydrogenation of cyclopentanone yields

cyclopentane, a volatile compound which is expected to mitigate cold-start and cold-run
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Figure 7.18: Material flow diagram for the optimal ternary blend of ethanol (58 mol-%),
cyclopentane (27 mol-%) and 2,5-dimethyltetrahydrofuran (15 mol-%) (blend D, cf. Figure
7.16).

problems typically observed in oxygenated fuels. The analysis of selected ternary blends
has shown that, as a general rule, it is beneficial to generate and analyze a range of de-
signs with similar properties, as these designs can differ considerably with respect to fuel
components and production pathways employed. A subsequent, manual inspection from
the perspective of early conceptual process design can then be used to discriminate among
the alternatives. At the latest when the number of designs shrinks to a few, experimental
validation of predicted blend properties should be performed. Finally, Figure 7.16 has also
revealed the importance of performing combined product and pathway design. For though
all binary and ternary blends plotted in this graph are considered fuels with tailored prop-
erties, only few of these are attractive from a process point of view, which means that the
respective designs feature both high energy of fuel produced and limited complexity.
Based on the Matlab (The MathWorks Inc., 2016) implementation of the sequential
solution strategy and the rigorous miscibility check (cf. Figure 7.8), the following compu-
" i5-6360U CPU

during the work on the case study: Depending on the chosen fuel property constraints, the

tational times have been measured on a PC equipped with an Intel® Core”

total computational time required to solve the blend design problem ranges from approx-
imately 4 minutes, if the distillation and phase stability constraints never become active
during the optimization, to about 1 hour. Likewise, optimization of a single ternary blend
extracted from the case study’s CPM by means of the approach depicted in Figure 7.9 takes

between 10 seconds and a few minutes. Given these numbers, there is still some room to
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increase the size of the case study in the future, as the available sets of interesting fuel
components and promising conversion pathways continuously evolve. Generally, a larger
number of options is expected to increase both the number and the quality of interesting

product/pathway combinations for further investigation.

7.7 Conclusions and outlook

In this Chapter, an optimization-based approach has been presented that facilitates the
rational formulation of biofuel blends with tailored properties. The blends are designed
such that a process-related performance measure, i.e., the energy of fuel produced, is op-
timized. This has been achieved by stating and solving a nonlinear program that couples
reaction flux analysis and mixture property prediction based on QSPR and group contri-
bution modeling. Because feedstock cost is thought to dominate total biofuel production
cost, selectivity data taken from the literature were assigned to the conversion pathways
considered in this study. It was demonstrated that a multitude of product/pathway de-
signs can be generated automatically, if subproblems are defined and solved in a systematic
fashion. Such a strategy then yields a set of alternatives for further investigation by means
of process network flux analysis (PNFA) (Ulonska et al., 2016a) and conceptual process
design (CPD) (Upadhye et al., 2011; Sen et al., 2012; Han et al., 2015). PFNA and CPD
are ultimately needed to bridge the gap from the mass- and energy-based molecular level
analysis considered here to a process level analysis that deals with the economics of fuel
production by taking into account aspects like separation of byproducts and solvents and
energy recovery from waste streams.

A weakness of the computational approach is the fact that reliable liquid-liquid equilibria
prediction is generally considered to be very difficult (Gmehling et al., 2012). Luckily, ex-
perimental validation of miscibility is quite straightforward. Removal of the phase stability
criteria is conceivable, if experimental knowledge can rule out the presence of a miscibility
gap. As a general rule, measured pure-component property data should be used wherever
possible to improve the accuracy of mixture property prediction. However, experimental
data is often incomplete in the early screening phase. This underscores the value of the
fully predictive approach taken here.

The blend design methodology is based on data and models which both are subject to
uncertainty. For instance, pathway yield data often stem from lab-scale experiments and
thus may change as a consequence of scale-up and transition from batch to continuous
production. In case of RNFA, a comprehensive sensitivity study based on Monte Carlo
analysis has revealed that differentiation of fuel candidates can become difficult or even

impossible, if simultaneously occurring deviations of +15% in all model parameters are
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Figure 7.19: Iterative strategy combining computational blend design (left) with experimental
and fundamental investigations of blends, engine performance and production pathways (right).

assumed (Ulonska et al., 2016b). For a practical blend design problem, logical next steps
could be: The blend’s physicochemical properties should be measured in order to confirm
the fuel’s quality. If measured and predicted fuel properties are too far apart, accuracy
of pure-component property data should be improved (by acquiring measurement data in-
stead of using predictions). Relaxation or tightening of property constraints may be tried,
if the solution lies on a constraint and the divergence of measured and predicted data
is likely due to model inaccuracy, e.g., underestimation of DCN due to nonlinear mixing
behavior. It is also conceivable to improve property models based on the characteristics of
the specific mixture under investigation. One-at-a-time sensitivity analysis (Ulonska et al.,
2016b) with regard to the selectivities of all pathways involved in the blend’s production
can be performed to evaluate how the optimum of the objective function and the blend’s
composition will be affected. As depicted in Figure 7.19, an iterative strategy, where the
model-based design approach is combined with experimental and fundamental investiga-
tions, should be pursued aiming at gradual uncertainty reduction, model improvement
and pathway debottlenecking. This is even more important since the fuel definition itself,
i.e., the properties to be modeled and their target ranges, is continuously evolving as the

fuel/engine interaction becomes more understood.
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A potential problem that has not been addressed here is chemical reactivity among the
blend components. For instance, if it is known that two components A and B tend to
react with each other, precautions must be taken to avoid that both of them appear in the
same blend. This could be achieved by stating a mixed-integer nonlinear program which,
however, is significantly more challenging to solve. If the issue of reactivity is limited to few
components, the CPM might also be decomposed into subproblems manually. In any case,
reactivity, including the issue of long-term fuel stability, is probably difficult to judge in
advance, thus requiring specialized testing as a part of experimental fuel quality validation.
To mitigate fuel oxidation stability issues, the formulation of certain oxygenated blends
will likely require the use of stabilizers like butylated hydroxytoluene.

Throughout this thesis, lignin has been treated as a source for process power and heat.
Therefore only carbon from the Cs; and Cg sugars has been directed towards the fuel.
However, lignin could also be added as a pseudo-component to the CPM, as both lignin
combustion generating CO, and lignin gasification yielding syngas bear the potential to
improve the carbon efficiency and/or energy of fuel produced.

Perspectively, network generator tools like RING (Marvin et al., 2013) or ReNeGen
(Victoria Villeda, 2017) might be used to generate alternative pathways and associated
pathway performance data for integration into the formulation of the blend design prob-
lem. It shall also be mentioned that surrogate models for fossil fuels, i.e., gasoline and
diesel fuel, can easily be integrated into the framework outlined above. For instance, the
eight components diesel surrogate proposed by Mueller et al. (2012) has been rationally
formulated to match the DCN, the liquid density, the distillation curve and the distribu-
tion of key functional groups of a real diesel fuel. The property models used here can be
applied readily to mixtures of oxygenates and these eight hydrocarbon model compounds,

thereby giving the opportunity to design biofuels for blending applications with fossil fuels.
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Lignocellulosic biofuels are considered to play an important role in a low carbon energy
future. However, at least with regard to light duty vehicles, biofuels are now expected to
face strong competition from electricity and potentially hydrogen (Fulton et al., 2015). For
the internal combustion engine to remain a prominent drive technology in this segment of
the transport sector, engines and vehicles need to become as clean as possible and at the
same time as efficient as possible. In this context, the shift from the fossil to the renewable
carbon resource and, most importantly, the different nature of the biomass feedstock offer
the opportunity to redesign the entire value chain and therefore to tailor the fuel to the
engine and vice versa (Marquardt et al., 2010; Janssen et al., 2011; Victoria Villeda et al.,
2012a, 2015; Hoppe et al., 2016b; Leitner et al., 2017). This has also been the central
motivation behind the Cluster of Excellence ” Tailor-Made Fuels from Biomass” (TMFB) at
RWTH Aachen University since its initiation in 2007. Here, the fuel’s molecular structure
(or its molecular composition in the case of mixtures) constitutes the single most important
design degree of freedom in the optimization of fuel production and combustion.

To systematically screen the molecular search space for viable fuel components, methods
from computer-aided molecular design (CAMD) had first been applied as part of a model-
based fuel design approach by Hechinger et al. (2010) at the Institute for Process Systems
Engineering (Prof. Dr.-Ing. Wolfgang Marquardt) at Aachener Verfahrenstechnik. The
present thesis represents a continuation of the earlier works performed by the Marquardt
group (Hechinger et al., 2010; Hechinger and Marquardt, 2010; Hechinger et al., 2012a,b;
Dahmen et al., 2012; Victoria Villeda et al., 2012a; Voll and Marquardt, 2012a,b; Hechinger,
2014; Victoria Villeda et al., 2015; Victoria Villeda, 2017) and has emerged from the
research performed by the author during his time as a member of both TMFB and the

Marquardt group (from 2011 to early 2017). The thesis covers four main contributions:

e Based on a comprehensive literature survey, the basic principles of model-based fuel
design have been presented in Chapter 2. Particular focus has been placed on criteria
and methods for the (model-based) assessment of the suitability of bio-derived com-
ponents as tailor-made fuels for advanced internal combustion engines. Moreover,
platform molecules derived via hydrolysis and aqueous-phase processing of carbohy-

drates of lignocellulosic biomass have been evaluated with regard to their potential

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

8 Conclusions and outlook
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in carbon- and energy-efficient biofuel production. The findings of Chapter 2 there-
fore constitute the theoretical foundation for the methodological contributions and

computational investigations described in the subsequent Chapters.

An efficient algorithm for molecular structure generation that resembles carbon- and
energy-efficient chemo-catalytic refunctionalization of bio-derived platform chemi-
cals has been outlined. This approach links CAMD products to pre-defined building
blocks and therefore allows to direct experimental investigations specifically towards
those molecular entities that are thought to exhibit both the desired properties and
structural affinities with the available substrates (cf. Chapter 3). The structure gen-
erator has subsequently been coupled with predictive quantitative structure-property
relationship (QSPR) and group contribution (GC) models to identify oxygenated bio-
fuel candidates for spark-ignition (SI) and compression-ignition (CI) engines. Com-
pared to earlier biofuel CAMD studies (Dahmen et al., 2012; Hechinger, 2014), the
targeted approach has allowed to narrow down the range of potential fuel candidates
to a much smaller number of most promising molecular motifs. Whereas compact
furans, ketones and esters have emerged as first choice candidates for the SI engine,
acyclic and cyclic ethers represent attractive options for the CI engine because they

combine high cetane numbers with high volatilities (cf. Chapter 6).

High-quality ignition delay data from a single, well-defined experimental set-up, i.e.,
the Ignition Quality Tester (IQT), have been collected for a wide range of oxygenated
hydrocarbon species and have been used to establish a predictive quantitative rela-
tionship between a fuel’s molecular structure and its auto-ignition propensity by
means of a group contribution approach (cf. Chapter 4). The model represents an
easy to use estimator of the IQT ignition delay and corresponding derived cetane
number (DCN) from the two-dimensional molecular graph. It can be applied in situ-
ations where a sufficiently large sample for experimental testing is not yet available.
Furthermore, the unique molecular diversity of the underlying database has allowed
to integrate the auto-ignition model into the CAMD approach where DCN filters
are used to decide whether a molecule is considered a candidate for spark-ignition
(DCN<20) or compression-ignition (DCN>40) engines (cf. Chapter 6).

A computational framework for simultaneous product and pathway design of biofuel
mixtures and their corresponding production routes has been presented in Chapter
7. To this end, the optimization-driven approach of reaction network flux analysis
(RNFA) has been extended and combined with mixture property modeling based
on QSPR and GC. The resulting nonlinear program (NLP) includes constraints for

fuel oxygen content, heating value, density, viscosity, surface tension, enthalpy of
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vaporization, Reid vapor pressure and derived cetane number. Furthermore, a lo-
cal, necessary phase stability criterion and a batch distillation model that allows
to formulate constraints for the blend’s distillation curve have been integrated into
the NLP. The additional degrees of freedom offered by a multicomponent fuel have
been utilized to optimize a production-related performance measure, i.e., the energy
of fuel produced for a fixed amount of biomass. The analysis of a case study has
highlighted the importance of performing combined product and pathway design,
because only few blends are predicted to exhibit both the desired fuel properties and
attractive process-related properties. High levels of hydrogenation could be achieved
by re-using CO,, which is generated in ethanol and/or 2,3-butanediol fermentation,
to produce additional fuel components via the CO5-consuming succinic acid fermen-

tation pathway.

Discussions of the limitations and perspectives of individual parts of the model-based
approach have been provided in the final Sections of the respective Chapters and shall not
be repeated in detail here. Nevertheless, four aspects will be particularly important to

advance model-based fuel design:

e Although the prediction accuracy of the DCN model proposed here is sufficient to
distinguish gasoline-like (DCN ~15) fuels from diesel-like (DCN ~50) fuels, DCN
estimates in the intermediate range (~20 to ~40) are still difficult to interpret. The
analysis in Chapter 4, however, suggests that a substantial improvement in model
accuracy can only be achieved, if the size of the database is increased. Since the
number of pure compounds that can be bought at a reasonable price is inherently
limited, the experimental investigation of specifically designed mixtures of few com-
ponents might prove useful for generating further DCN training data, if no significant
deviations from the linear mixing rule are encountered. Recently, such a strategy has
been applied successfully by Abdul Jameel et al. (2016) who have trained a multi-
ple linear regression model for the DCN of hydrocarbon species by considering both
DCN data of pure compounds and DCN data of blends with known composition.

e Perspectively, predictive models for other important fuel properties developed by col-
leagues in TMFB, e.g., for the threshold sooting index (TSI) (Graziano et al., 2016),
for the wear scar diameter (Masuch et al., 2011; Weinebeck and Murrenhoff, 2013),
or even for novel characteristic fuel numbers like the oxidation potential number
(Graziano et al., 2016), should be integrated into the generate-and-test approach,
such that the number of fuel candidates can be further narrowed down. At the same

time, the definition of a tailor-made fuel, i.e., the list of physicochemical properties
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and their desired ranges, should be continuously updated based on new insights into

the fuel/engine interaction.

o With regard to the virtual fuel screening described in Chapter 6, sensitivity stud-
ies should be performed on the most important property constraints, e.g., the DCN
threshold, in order to assess how uncertainties in property estimates and fuel defini-
tion do influence the results. Likewise sensitivity analysis can help to identify critical
pathways, properties and constraints in the context of blend design (cf. discussion
at the end of Chapter 7).

e The blend design methodology outlined in Chapter 7 relies on selectivity and con-
version as the only assessment criteria for pathway performance. By analogy with
RNFA, it is assumed that the need for separation of intermediates, (side-)products
and solvents will not significantly influence the design decision, because biofuel pro-
duction cost is thought to be dominated by the feedstock cost. However, this can
only be a first step, since feasibility and energy demand of inescapable separation
steps will certainly constitute important factors, when multiple design alternatives
with similarly high energy of fuel produced (LHV fye;/LHV iomass) need to be further
elaborated and discriminated. To bridge the gap between RNFA and conceptual
process design, Ulonska et al. (2016a) have extended RNFA to process network flux
analysis (PNFA). In the PNFA methodology, the energy demand of reactions and
separations is assessed with the help of shortcut models such that the cumulative en-
ergy demand of a biomass conversion process can be optimized. An attempt should
be made to transfer the core elements of the PNFA methodology to the blend design
problem as described in Chapter 7. This would allow to move from the molecular
level considered here towards an integrated design of biofuels and their production

processes.

The core value of model-based fuel design is to translate experimental data and (em-
pirical) knowledge into a computational tool that facilitates a systematic exploration of
the search space and that enables rational decision making on the basis of evaluated al-
ternatives. However, the results from such an approach can only be as good as its inputs,
i.e., the many assumptions made, the chosen boundary conditions and evaluation criteria,
and the experimental data used to train the models. Therefore, an iterative cycle between
the computational investigations and the experimental and fundamental research as being
performed within TMFB constitutes the most promising way forward towards a reduction

of uncertainties and towards an improvement of the overall fuel design methodology.
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A Transformation rules for molecular

structure generation

The transformation rules shown in Tables A.1 to A.4 have been implemented in the molec-
ular structure generator (cf. Chapter 3) and have been used in the case studies presented in
Chapter 6. The transformations are sorted by target functional groups and have been com-
piled in collaboration by the author of this thesis and Juan José Victoria Villeda (Institute
for Process Systems Engineering at Aachener Verfahrenstechnik, RWTH Aachen Univer-
sity) based on the reviews of catalytic strategies for the production of biofuels prepared
by Corma et al. (2007), Alonso et al. (2010), Serrano-Ruiz et al. (2011), Serrano-Ruiz and
Dumesic (2011), Lange et al. (2010, 2012) and Climent et al. (2014). The works of Julis
and Leitner (2012) and Luska et al. (2014) have motivated the inclusion of the carbon-
carbon coupling scheme based on aldol condensation (cf. Tables A.2 and A.3). The rules
shown in Tables A.1 to A.4 have already been published in Energy & Fuels (Dahmen and
Marquardt (2016); Supporting Information).
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Table A.1: Refunctionalization: Single-molecule transformations classified by target struc-

tural groups.

=0 group

? +H,
ﬁ T HO&

example:

butanone — 2-butanol

hydrogenation of ketones/aldehydes to alcohols

1. C! is a carbon carrying an =O group
2. Cl is not part of an oxygen coupling (C1—0—C?), i.e., it
is not part of an acyclic/cyclic ester or anhydride

3. replace =0 group with —OH group at C' [+Ha)]

COOH group

(0] +H, JO

,< —_—

oH o
example:

formic acid — ethanal

reduction of carboxylic acid to aldehyde

1. C! is a carbon member of a COOH group
2. transform C! to carry an =O group instead of being part

of a COOH group [+Hy, -H30]

o (o]
AL N ﬁj}
o HO
OH

example:
maleic acid — maleic

anhydride

intramolecular condensation of dicarboxylic acid to

cyclic anhydride

1. C! and C? are two carbons in the same molecule, that

a. are parts of COOH groups

b. are not identical (C'#£C?)

c. have at least k carbons/oxygens inbetween (no rings
smaller than k+3)

d. have a maximum of [ carbons/oxygens inbetween (no rings
larger then [+3)

e. have only one existing path between each other (not part
of an existing ring) OR have two existing paths between each
other, but one path is a subset of the other path (allows for
the formation of two rings attached to each other)

2. take away COOH groups from C! and C?

3. make a C-O-C coupling between C! and C?, i.e., C'—0—C?
(ring formation)

4. place =0 groups at C! and C? [-H,0]

Continued on next page
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A Transformation rules for molecular structure generation

Table A.1: Refunctionalization: Single-molecule transformations classified by target struc-

tural groups (continued).

cyclic —O— group (ester, ether, anhydride)

+H,
?\/> > </_/
—
HO

example:
tetrahydrofuran —

1-butanol

cyclic ether ring-opening yielding alcohols/diols

1. C! and C? are two carbons in the same molecule, that

a. are connected via a C-O-C coupling, i.e., C'-O-C?

b. do not have =O groups (it is not a cyclic ester or anhydride,
but a cyclic ether)

c. C'—0—C? is not a member of an aromatic ring (it is not a
furan)

2. open the ring, i.e., take away the C-O-C coupling

3. produce up to three new molecules:

a. place —OH group at C?, if no —OH group is already there [+Hby]
b. place —OH group at C', if no —OH group is already there
[+Hy]

c. place —OH group at both C' and C?, if no —OH groups are
already there [+H2O]

example:
~-valerolactone —

butyric acid

cyclic ester ring-opening yielding an acid

1. C! and C? are two carbons in the same molecule, that

a. are connected via a C-O-C coupling, i.e., C'-O-C?

b. C! carries an =0 group, but C? does not carry an =O group
(cyclic ester)

2. open the ring, i.e., take away the C-O-C coupling

3. remove the =O group from C!

4. make C! part of a COOH group [+Hp]

example:
cleavage of maleic

anhydride

cyclic anhydride ring-opening

—_

. C! and C? are two carbons in the same molecule, that
. are connected via a C-O-C coupling, i.e., C!-O-C?

. both C! and C? carry an =0 group (cyclic anhydride)
. open the ring, i.e., take away the C-O-C coupling

. remove the =0 groups from C! and C?

=W N T

. produce two new molecules:
. make C! part of a COOH group, add =0 group at C? [+Hj)]
. make C? part of a COOH group, add =0 group at C! [+Hj]

o]
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Table A.1: Refunctionalization: Single-molecule transformations classified by target struc-

tural groups (continued).

—OH group

+H,
HO‘<> >

-H,0

example:

2-butanol — butane

reduction of alcohol to alkane

1. C!is a carbon carrying an —OH group
2. remove the —OH group from C! [+Hy,-H,0]

OH
JJ» R
HO

-H,0

0
example:

1,4-butanediol —

cyclodehydration of diols to cyclic ether
(self-etherification)

1. C! and C? are two carbons in the same molecule, that

a. both carry an —OH group

b. are not identical (C'#£C?)

c. have at least k carbons/oxygens inbetween (no rings
smaller than k+3)

d. have a maximum of [ carbons/oxygens inbetween (no rings

larger then [+3)

tetrahydrofuran
e. have only one existing path between each other (not part
of an existing ring) OR have two existing paths between each
other, but one path is a subset of the other path (allows for
the formation of two rings attached to each other)
2. remove the —OH groups from C' and C?
3. make a C-O-C coupling between C!' and C?, i.e., C'—0—C?
[-H,O]
dehydrogenation of alcohols to aldehydes/ketones

. o
HO{» H 4<> 1. Clis a carbon that carries an —OH group
example: 2. C! carries at least one hydrogen atom

2-butanol — butanone

3. C! has no double bond
4. replace —OH group by =0 group [-H3]

Continued on next page
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A Transformation rules for molecular structure generation

Table A.1: Refunctionalization: Single-molecule transformations classified by target struc-

tural groups (continued).

—OH group together with COOH group
self-esterification (of carboxylic acid and alcohol

groups)

1. C! and C? are two carbons in the same molecule and
a. C! and C? are not identical (C'#£C?)
b. C! carries an —OH group

(0]
\ p c. C? is part of a COOH group
HO 0 d. C! and C? have at least k carbons/oxygens inbetween (no
OH

H,0 J
rings smaller than k+3)
example: e. C! and C? have a maximum of | carbons/oxygens inbetween
formation of a lactone (no rings larger than [+3)

f. C' and C? have only one existing path between each other
(not part of an existing ring) OR have two existing paths
between each other, but one path is a subset of the other path
(allows for formation of two rings attached to each other)

2. remove the —OH group from C! and remove the acid group
from C?

3. make a C-O-C coupling between C!' and C?, i.e., C'—0—C?

4. introduce a =0 group at C? to complete the cyclic ester

[-H0]
C=C group
+H hydrogenation of carbon-carbon double bond
Com
example: 1. C! and C? are connected by a C=C double bond (C'=C?)
2-butene — butane 2. C'=C? is not a member of an aromatic ring

3. replace this C=C double-bond by a C—C single-bond, i.e.
Cl-C? [+H,]

Continued on next page
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Table A.1: Refunctionalization: Single-molecule transformations classified by target struc-

tural groups (continued).

furan group

furan ring-opening yielding aldehydes/ketones
o, O /s L .
\Q —_— /f 1. furan ring, i.e., C'=C2—C3=C* and a C-O-C coupling of
o Cl and C*
example: 2. no —OH groups attached to C! and/or C*
cleavage of furan 3. change C'=C? to C!-C?
4. change C3=C* to C3—-C*
5. remove C-O-C coupling of C! and C*
6. place =0 groups at C! and C? [+H,O]
o@ +2H, Q hydrogenation of furan yielding tetrahydrofuran
—_— E—
example: 1. furan ring, i.e., C'=C%2—C3=C* and a C-O-C coupling of
furan — tetrahydrofuran C! and C*
2. remove double-bonds C'=C? and C3=C* [+2 H,]

Table A.2: Aggregation: C—C coupling of two molecules via aldol condensation.

Ry
0 o
H +H, o) Rs
+ )k
Rt R R3 Ry -H,0
H 2 R4 R,

—_

. Clis a carbon in molecule M1, that

. carries an =0 group

oo

. is no member of a ring
. has a single-bonded carbon neighbor C? carrying at least two hydrogen atoms

. C3 is not bonded to an oxygen atom

[\ e P e

. C? is a carbon in molecule M2

a. carrying an =0 group

b. is no member of a ring

3. remove =0 group from C?

4. make a C—C bond between C? and C? by introducing two C/C identities involving a

newly created auxiliary chain consisting of two carbons [+Hjy -H3O]
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A Transformation rules for molecular structure generation

Table A.3: Aggregation: C—C coupling of two molecules via chain-lengthening aldol

condensation.

chain-lengthening aldol condensation

o
H 0 +H2 0 R
N Ul
R -
1 N H R, H,0 R;
H

1. Clis a carbon in molecule M1, that

a. carries an =0 group

b. is no member of a ring

c. has a single-bonded carbon neighbor C? carrying three hydrogen atoms

2. C? is a carbon in molecule M2

a. carrying an aldehyde group, i.e., an =0 group at the end of the chain

b. is no member of a ring

3. remove the =0 group from C?

4. make a C—C bond between C? and C? by introducing two C/C identities involving a

newly created auxiliary chain consisting of two carbons [+Hsy -H3O]
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Table A.4: Aggregation: C—O—-C coupling of two molecules via etherifica-

tion /esterification.

etherification of alcohols

VAR —— N

Ry \»R2 H,0 RiY 0" "Ry

. Clis a carbon carrying an —OH group in molecule M1
. C?is a carbon carrying an —OH group in molecule M2

. remove —OH group from C!

N

. remove —OH group from C?
5. make a C—O—C coupling of C! and C? [-H,0]

note: the alcohols do not have to be terminal alcohols

esterification of alcohol and carboxylic acid

0o o

)L + HO — )k
g, -HO0 & P

R] OH 2 1 o Ry

. Clis a carbon carrying an —OH group in molecule M1

carbon C? is a part of a COOH group in molecule M2

. transform COOH group at C? to =0 group at C?
. make a C—O—C coupling of C! and C? [-H,0]

note: the alcohol does not have to be a terminal alcohol

1
2
3. remove —OH group from C!
4
5
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B Experimental ignition delay data

All data collected for the purpose of modeling are summarized in Table B.1. The allocation
of a measurement to the training and external validation sets is depicted in the last column.
The contents of Table B.1 have already been published in Energy & Fuels (Dahmen and

Marquardt (2015); Supporting Information).
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B Experimental ignition delay data
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C GC model for the derived cetane

number

The contents of Appendix C have already been published in Energy é Fuels (Dahmen and
Marquardt (2015); Supporting Information).

C.1 Group decomposition and descriptor data

Group decomposition and descriptor data for all compounds from the training and valida-

tion sets can be found in Table C.1.
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C.2 Comparison of measurement data with results of GC
model

Measurements and predictions for all compounds from the training and validation sets
can be found in Table C.2. The predictions have been computed with the DCN group

contribution model from Chapter 4.
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C.2 Comparison of measurement data with results of GC model

Table C.2: Measurements vs. predictions.

In7T T DCN!
meas. pred. meas. pred. meas. pred.

n-hexane 1.46 1.60 4.30 4.94 47.9 42.3
n-heptane 1.35 1.46 3.86 4.31 52.8 47.7
n-nonane 1.20 1.24 3.31 3.46 60.9 58.3
n-decane 1.13 1.15 3.10 3.16 64.7 63.6
n-dodecane 1.05 0.99 2.85 2.69 69.9 73.9
n-tetradecane 0.94 0.86 2.56 2.35 774 83.8
n-hexadecane 0.85 0.74 2.34 2.11 84.2 93.0
2-methylbutane 2.31 2.17 10.07 8.78 23.0 25.7
2-methylpentane 1.83 1.89 6.21 6.62 34.5 32.6
3-ethylpentane 1.84 1.69 6.30 5.41 34.1 38.9
2-methylheptane 1.35 1.53 3.88 4.62 52.6 44.9
3-methylheptane 1.53 1.53 4.60 4.62 45.0 44.9
2-methylhexane 1.56 1.69 4.78 5.41 43.5 38.9
2-methylheptadecane 0.90 0.71 2.45 2.04 80.5 96.1
2-methyloctadecane 0.82 0.67 2.27 1.95 86.5 100.1
2,2-dimethylbutane 2.28 2.66 9.82 14.28 23.5 17.5
2,4-dimethylpentane 2.05 2.09 7.80 8.08 28.4 27.6
2,2,3-trimethylbutane 3.39 3.15 29.61 23.39 10.8 12.4
2,2 4-trimethylpentane 2.87 2.56 17.69 12.90 15.0 18.9
2,6-dimethyloctane 1.37 1.46 3.95 4.30 51.7 47.8
2,2,4,4,6,8,8-

3.20 2.71 24.53 15.04 12.1 16.9
heptamethylnonane
2,6,10-trimethyldodecane 1.25 1.06 3.49 2.90 58.0 68.8
1-hexene 2.20 1.87 9.04 6.46 25.1 334
1-heptene 1.90 1.69 6.69 5.43 32.3 38.8
3-octene 1.78 1.67 5.92 5.30 36.0 39.7
1-nonene 1.39 1.42 4.01 4.15 51.0 49.5
1-decene 1.43 1.31 4.18 3.71 49.1 54.7
1-dodecene 1.27 1.12 3.57 3.08 56.8 65.1
1-hexadecene 1.02 0.84 2.77 2.32 71.9 85.0
1,9-decadiene 1.63 1.50 5.11 4.49 41.0 46.0
2-methyl-1,3-butadiene 3.33 3.14 27.94 23.10 11.1 12.5
2,5-dimethyl-2,4-

2.54 3.08 12.68 21.69 19.2 13.1
hexadiene
cyclohexane 2.58 2.05 13.20 7.78 18.6 28.4
cyclooctane 2.42 1.85 11.28 6.37 21.0 33.7
methylcyclopentane 2.85 2.18 17.33 8.88 15.2 25.5
1,3,5-trimethylcyclohexane 1.97 2.12 7.14 8.37 30.6 26.8
ethylcyclohexane 1.78 1.68 5.95 5.37 35.8 39.2
butylcyclohexane 1.46 1.30 4.33 3.65 47.6 55.5
decahydronaphthalene 1.86 1.70 6.43 5.45 33.5 38.7
1,2,4-trimethylcyclohexane 2.28 2.12 9.78 8.37 23.5 26.8

1=

1’,3,") 2.23 1.85 9.30 6.38 24.5 33.7
triisopropylcyclohexane
cyclohexene 2.77 2.36 15.96 10.63 16.2 22.0
1,5-cyclooctadiene 2.21 2.46 9.12 11.66 24.9 20.5

Continued on next page

205

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

C GC model for the derived cetane number

Table C.2: Measurements vs. predictions (continued).

Int T DCN!

meas. pred. meas. pred. meas. pred.
a-pinene 2.69 2.77 14.73 15.98 17.1 16.1
[-pinene 2.55 2.68 12.81 14.55 19.0 17.3
limonene 2.69 2.51 14.73 12.28 17.1 19.7
7-terpinene 2.57 2.55 13.07 12.76 18.7 19.1
1-heptanol 2.03 2.18 7.65 8.84 28.9 25.6
2-ethyl-1-hexanol 2.34 2.24 10.40 9.42 224 24.3
3-octanol 2.24 2.24 9.41 9.42 24.3 24.3
2-nonanol 1.67 2.04 5.31 7.67 39.6 28.8
1-butanol 3.53 2.95 34.29 19.20 9.9 14.2
isobutanol 4.32 3.66 75.36 38.87 6.9 9.3
1-octanol 1.85 1.99 6.36 7.31 33.8 30.0
3-methyl-1-butanol 3.35 3.14 28.50 23.21 11.0 12.5
2-methyl-2-butanol 3.47 3.67 32.14 39.31 10.3 9.2
nerolidol 2.66 2.71 14.30 14.99 17.5 16.9
cyclohexanol 2.85 3.39 17.29 29.64 15.3 10.8
cyclopentanol 3.72 3.61 41.26 36.88 9.0 9.5
geraniol 2.92 3.02 18.54 20.42 14.5 13.6
3,7-dimethyl-1-octanol 2.02 2.10 7.54 8.15 29.2 27.4
[-citronellol 2.21 2.50 9.14 12.22 24.9 19.7
linalool 3.39 3.36 29.67 28.67 10.8 11.0
octanal 0.83 1.10 2.29 3.00 85.8 66.7
butanal 1.63 1.64 5.10 5.16 41.0 40.6
isobutyraldehyde 2.51 2.24 12.30 9.35 19.6 24.4
pentanal 1.17 1.46 3.22 4.31 62.4 47.8

3-cyclohexene-1-
2.08 1.96 8.00 7.12 27.8 30.7

carboxaldehyde
3-pentanone 2.44 2.43 11.47 11.38 20.7 20.9
2-heptanone 1.99 1.95 7.30 7.04 30.0 31.0
2-octanone 1.76 1.77 5.81 5.90 36.6 36.1
3-octanone 1.78 1.77 5.92 5.90 36.0 36.1
2-nonanone 1.50 1.62 4.48 5.07 46.1 41.3
2,4-dimethyl-3-pentanone 2.88 3.16 17.81 23.60 14.9 12.4
cyclohexanone 3.49 2.72 32.79 15.16 10.2 16.8
cycloheptanone 241 2.58 11.13 13.13 21.2 18.7
3,3,5-trimethylcyclohexanone 3.51 3.36 33.45 28.92 10.0 10.9
menthone 2.55 2.64 12.81 14.06 19.0 17.7
methyl valerate 3.33 2.52 27.88 12.40 11.2 19.5
methyl hexanoate 2.23 2.27 9.30 9.67 24.5 23.7
methyl heptanoate 1.84 2.06 6.27 7.87 34.2 28.2
propyl valerate 2.54 2.06 12.69 7.87 19.2 28.2
butyl butanoate 2.79 2.06 16.33 7.87 15.9 28.2
butyl valerate 2.34 1.89 10.40 6.59 22.4 32.8
pentyl valerate 2.04 1.73 7.72 5.64 28.6 37.5
ethyl valerate 2.72 2.27 15.15 9.67 16.8 23.7
ethyl hexanoate 2.11 2.06 8.25 7.87 27.1 28.2
methyl decanoate 1.35 1.59 3.87 4.92 52.7 42.4
methyl laurate 1.12 1.36 3.07 3.90 65.3 52.3
methyl tetradecanoate 1.02 1.18 2.77 3.24 1.7 62.0

Continued on next page
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C.2 Comparison of measurement data with results of GC model

Table C.2: Measurements vs. predictions (continued).

InT T DCNT
meas. pred. meas. pred. meas. pred.
menthyl acetate 2.64 2.84 14.01 17.18 17.8 15.3
2-methyl-9-decenoate 1.71 1.82 5.51 6.18 38.3 34.7
methyl linolenate 1.75 1.53 5.73 4.60 37.0 45.0
methyl linoleate 1.55 1.28 4.73 3.60 43.9 56.2
vinyl laurate 1.01 1.43 2.75 4.19 72.4 49.0
1-methoxyhexane 0.84 1.13 2.32 3.08 84.7 65.0
dibutyl ether 0.77 1.03 2.16 2.81 90.9 70.8
diisopropyl ether 2.33 1.99 10.28 7.32 22.6 29.9
diisobutyl ether 1.22 1.40 3.38 4.03 59.7 50.7
diisoamyl ether 0.86 1.12 2.37 3.06 83.1 65.5
diethylene glycol dimethyl
0.50 0.73 1.65 2.07 117.6 94.6
ether
1,2-dimethoxyethane 0.97 1.18 2.64 3.25 75.2 61.9
2,2-dimethoxypropane 1.93 1.62 6.89 5.04 31.5 41.5
cyclopentyl methyl ether 1.47 1.69 4.35 5.40 474 39.0
acetaldehyde diethyl ac-
otal 1.32 1.12 3.74 3.08 54.3 65.1
dodecyl vinyl ether 0.83 0.74 2.29 2.09 85.8 93.8
1,4-
cyclohexanedimethanol 1.19 0.96 3.29 2.60 61.2 76.1
divinyl ether
2-methylfuran 4.10 4.03 60.34 56.46 7.6 7.8
furfural 3.23 3.30 25.28 27.10 11.8 11.3
2-ethylfuran 3.89 3.26 48.67 26.09 8.3 11.6
2,5-dimethylfuran 3.74 3.99 42.02 53.92 8.9 7.9
2-methyltetrahydrofuran 2.49 2.25 12.06 9.53 19.9 24.0
tetrahydrofuran 2.43 2.23 11.36 9.30 20.9 24.5
tetrahydrofurfuryl acetate 2.75 2.56 15.64 12.99 16.4 18.8
2-butyltetrahydrofuran 1.51 1.41 4.55 4.08 45.5 50.2
eucalyptol 2.69 1.96 14.73 7.09 17.1 30.8
rose oxide 1.99 2.25 7.30 9.49 30.0 24.1
3,4-dihydro-2H-pyran 2.31 2.44 10.07 11.45 23.0 20.8
tetrahydropyran 1.71 2.12 5.53 8.30 38.2 26.9
2,5-dihydrofuran 3.03 2.57 20.63 13.05 13.5 18.8
~-undecanolactone 1.35 1.36 3.86 3.91 52.8 52.2
whiskey lactone 2.13 1.85 8.41 6.36 26.6 33.8
d-undecalactone 1.44 1.41 4.22 4.10 48.7 49.9
n-butylbenzene 3.38 2.83 29.37 17.03 10.8 15.4
dibenzylether 443 3.83 83.93 46.27 6.7 8.5
benzaldehyde dimethyl ac-
3.73 2.55 41.68 12.80 8.9 19.0
etal
a-methyl-trans-
. 2.66 3.83 14.30 46.23 17.5 8.5
cinnamaldehyde
1,2,4-trimethylbenzene 4.21 4.45 67.14 85.87 7.2 6.6
1,234 4.21 3.62 67.14 37.31 7.2 9.5
tetrahydronaphthalene

IP 216.73.216.60, am 23.01:2026, 22:11:02.
m
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C GC model for the derived cetane number

Table C.2: Measurements vs. predictions (continued).

Int T DCN!
meas. pred. meas. pred. meas. pred.

4-methoxybenzaldehyde 2.20 2.79 9.03 16.28 25.1 15.9
1-butoxy-2-propanol 1.77 1.88 5.90 6.55 36.1 32.9
dipropylene gl 1y s 160 | 4 5.41 439 390
monomethyl ether
DGR ol oo 1ot | 264 283 | 752 703
monomethyl ether
triethylene glycol

0.97 0.93 2.65 2.54 74.9 77.8
monomethyl ether
diethylene glycol

1.71 1.52 5.53 4.59 38.2 45.2
monomethyl ether
2-methoxyethanol 3.04 2.55 20.91 12.81 13.4 19.0
3-methoxy-3-methyl-1-

3.81 2.40 45.15 10.99 8.6 21.4
butanol
1-methoxy-2-propanol 2.94 2.79 18.92 16.27 14.3 15.9
furfuryl alcohol 4.00 5.23 54.60 187.06 7.9 5.5
ethyl acetoacetate 3.27 3.40 26.31 29.98 11.6 10.7
propylene glycol
monomethyl ether ac- 2.31 2.39 10.07 10.91 23.0 21.6
etate
ethylene glycol vinyl ether 3.22 2.68 25.03 14.52 11.9 17.3
4-hydroxy-4-methyl-2-

3.54 4.30 34.47 73.94 9.9 7.0
pentanone
butyl levulinate 3.18 2.44 23.93 11.44 12.3 20.8
n-octane 1.24 1.35 3.47 3.84 58.2 53.1
2,3-dimethylpentane 2.44 2.09 11.52 8.08 20.7 27.6
1-octene 1.66 1.55 5.25 4.70 40.0 44.2
methylcyclohexane 2.28 2.08 9.82 7.97 23.5 27.9
bisabolene 1.89 1.83 6.64 6.23 32.6 34.4
2-butanol 4.32 3.66 75.36 38.87 6.9 9.3
hexanal 1.02 1.32 2.77 3.74 1.7 544
4-methyl-2-pentanone 3.41 2.68 30.27 14.58 10.6 17.3
hexyl acetate 1.89 2.06 6.62 7.87 32.6 28.2
diethoxymethane 1.26 1.05 3.53 2.86 57.4 69.8
2-butylfuran 3.36 2.51 28.73 12.25 11.0 19.7
2-ethyltetrahydrofuran 2.08 1.83 7.99 6.20 27.8 34.5
2,3-dihydrofuran 2.60 2.57 13.42 13.05 18.4 18.8
e-decalactone 1.64 1.64 5.16 5.14 40.7 40.7
1,2-dimethoxybenzene 3.95 2.64 51.94 14.07 8.1 17.7
2-isopropoxyethanol 2.09 2.39 8.08 10.92 27.5 21.6
tetrahydrofurfuryl —alco-
hol 2.78 2.96 16.17 19.21 16.0 14.2

! DCN computed as DCN = 4.46 + 186.6/7
Note: The measured In 7 is the mean of the 32 individual logarithmic delays measured for a
compound. This mean value is used to compute 7 and the DCN. In contrast, 7 given in Table

B.1 represents the mean of the 32 non-logarithmic delays.
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C.3 Sensitivity equations and covariance matrix

C.3 Sensitivity equations and covariance matrix

In order to compute the confidence interval [y; — Ay, y;+Ay;] for the predicted logarithmic

ignition delay In(7;) = y; from

(o . 1/2
Ay =117 (5] Ve (07, w)s) (€1)
the covariance matrix Vg(©*,u) (cf. Table C.3) is needed as well as the sensitivity vector

yi(0;, ©)  Jyi(w;, ©)

T 7'9* = g e
S, ©7) = | PR

(C.2)

for the model inputs u} = [g;,d;]". Given the model structure y; (cf. Table 4.9) the

entries of the vector s} can be written as:

si1 (g dy) = yi (8 di) (C.3)
sio (8i,di) = dnap,i - yi (i di) (C.4)
Si3 (8 di) = ducenn - Yi (i di) (C.5)
Sia(gi,d;i) = In(dys ;) - yi (g, ds) (C.6)
si5 (i, di) = dnqcyi - Yi (8, di) (C.7)
Si6 (8, di) = g—cH3,i " Yi (gi,di) (C.38)
si7 (g, d;) = In(9-cr2—(non—ring)i + 1) - ¥i (8, d;) (C.9)
Si,8 (gi«, dy‘) = 9-0H,i " Yi (gi: di) (C.lO)
si9 (g d;) = G—O—(non—ring),i * Yi (&, d;) (C.11)
si0 (8, di) = 9—-0—(ring),i " Yi (gi,di) (C.12)
sin (8, di) = G>C=0(non—ring),i * ¥i (8> ds) (C.13)
54,12 (gu dz‘) = 9>C=0(ring),i " Yi (gi7 di) (0-14)
sias (8 di) = go=cH—; - ¥i (8, d;) (C.15)
i1 (8i,di) = 9-CO0—(non—ring),i * Yi (&> di) (C.16)

A typical value for av is 0.05 corresponding to the 95% confidence interval. Then, Student’s
t-distribution yields 1‘}41(91(]45 2—1.9784.
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C GC model for the derived cetane number
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C.3 Sensitivity equations and covariance matrix
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D Derivation of QSPR models

Table D.1 gives an overview about the nature of the outliers that have been excluded in
the course of QSPR modeling in Chapter 5. Figure D.1 shows the bisection approach that

is used to control the similarity threshold d in the modified SCA algorithm (cf. Figure 5.6)

introduced in Chapter 5.

3
1

start 0

8,
bisection 3 e

v

(cf. Fig. 5.6) with 5,
-> gives N, compounds
in the test set

no

similarity scale
|

(cf. Fig. 5.6) with 8,007
> gives Npoan
compounds in the test set

- - 1 - - =
62 5mean < E (61 + 62) 61
run SCACORE run SCACORE run SCACORE

(cf. Fig. 5.6) with &;
- gives N; compounds
in the test set

no

if Nmnve 2 Nmian an_d Nmove =< NZ
thené, < 6pean
(search on left interval)

else

elseif Nmove 2 Nl and Nmove S Nmean
thend, < &,.qn
(search on right interval)

Does the test exit Does the test exit Does the test exit
set bisection set bisection set bisection
comprise 33, comprise 3 < Boan comprise 8«6,
2-Nove 1 2-Nyove £1 2-Nyove £1
compounds? compounds? compounds?

85, 8,05 and 5, < 35,15
((_Y1 and 1_5'2 were too tight - enlarge the interval and try again)

Figure D.1: Bisection approach used to control the similarity threshold & in the modified SCA
algorithm (cf. Figure 5.6).
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Table D.1: Compounds excluded from the modeling data sets due to unusually high/low

property values and/or Hotelling's T statistic.

data set

property outliers

excluded due to T2 statistic

liquid viscosity g

DL-a-tocopherol;
2-nonylphenol; glycerol;
3-ethylphenol

1 large alkane; 9 large (aromatic)

esters

enthalpy of vaporization
Hyap

bis(2-ethylhexyl)
phthalate;

DL-a-tocopherol;
1,2,3-butanetriol

4 large aromatic esters

surface tension o

1 large phenol; 1 large ether, 1
large alkene, 11 large (aromatic)

esters, 1 large aromatic species

melting point T},er¢

1,4-benzenedicarboxylic

acid

11 large alkanes; 4 large alkenes; 1
large phenol, 21 large (aromatic)

esters; 2 large polycyclic alkanes

liquid molar density pp,

16 large (aromatic) esters, 2 large
aromatic species; 6 large alkenes; 1
large alkane; 2 large ethers; 4 large

acids

boiling point Tpy;

13 large alkanes; 2 large polycyclic
alkanes; 1 large phenol; 19 large

(aromatic) esters

lower heating value LHV

1-tetracontene;
n-hexatriacontane;
glycerol dioleate; glycerol

trioleate

2 large polycyclic alkanes; 11 large
alkanes; 4 large alkenes; 1 large

phenol; 17 large (aromatic) esters

critical temperature Tyt

1 large phenol; 2 large polycyclic
alkanes; 6 large alkenes; 13 large
alkanes; 1 large ether; 17 large

(aromatic) esters

critical pressure perit

1,3-propylene glycol;
1,2,3-benzenetriol;
2-oxacyclobutanone;
glycerol; 1,3-benzenediol;
succinic anhydride; maleic

anhydride

6 large alkenes; 3 large alkanes; 19

large (aromatic) esters

critical volume V.

5 large alkenes; 2 large esters
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E Rational formulation of biofuel

mixtures

The contents of Appendix E have already been published in Energy & Fuels (Dahmen and
Marquardt (2017); Supporting Information).

E.1 Application of Hoffmann-Florin equation

The Hoffmann-Florin equation (Hoffmann and Florin, 1943; Gmehling et al., 2012) can be
used to compute the temperature-dependent vapor pressure p; for a pure compound i at
temperature 7 from QSPR estimates for critical temperature T, ; [K], critical pressure

Periti [bar] and the normal boiling point Ty ; (K] according to the following relations:

Frous = - 7.9151 - 1072 + 2.6726 - 1072 - log,o(Thoiri) — 0.8625 - 1075 - Ty (E.1)
boil,i
1 . f A
Pty = 77— = T9151- 1072 +2.6726 - 1072 - logy o (Terir.s) — 0.8625 - 107 - Thirs  (E.2)
crit,i
1 f ‘ .
fr. = — 79151 1073 4+ 2.6726 - 1073 - log,,(T) — 0.8625 - 1076 . T (E.3)
X1 = 115261 — In (1‘01325) Y (E.4)
’ Perit,i fTboz'u - fT(:m,,q
1.01325
X2 = In ( Perit > / (fTbm,l,1 - chrit,1) (EB)
PP (T) = exp (x1i + Xoi - fr,) - 1000 [kPa] (E.6)

E.2 Application of COSTALD method

The COSTALD method (Hankinson and Thomson, 1979; Gmehling et al., 2012) can be
used to compute the temperature-dependent liquid molar density py,; of a pure compound
i at temperature T' from QSPR estimates for critical temperature Te.;; [K], critical volume

Virit,i [em®/mol] and the acentric factor w; [-] according to the following relations:

214

IP 216.73.216.60, am 23.01:2026, 22:11:02.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186954039

E.3 Trade-off analysis: Hydrogen demand vs. energy of fuel produced

T
o E.
X Tcm't‘i ( 7)
V}(%O) = 1 + Ccost,u (1 - X)1/3 + Cuost,b (1 - X)2/3 + Ccost,c (1 - X) + Ocast.d (1 - X)4/3
(E8)

with Cpst,a=-1.52816, Ceostp=1.43907
Clost,e=-0.81446 and Coe,q=0.190454
V" = (Cooste + Coosto * X + Coostrg - (X)° + Coost - (X)) / (x = 1.00001) (E.9)
with Crost,e=-0.296123, Cost,r=0.386914
Cleost g=-0.0427458 and Cpg;5,=-0.0480645

-1
pna(T) = (Ve - V- (L= wV)) 1000 [kamol /] (E.10)

The acentric factor w; in Eqn. (E.10) is computed from Eqn. (5.25).

E.3 Trade-off analysis: Hydrogen demand vs. energy of

fuel produced

Figure E.1 shows the trade-off between the hydrogen demand [moly,/moly,e] and the
energy of fuel produced [MJ fyei/MJpiomass) for the case study from Chapter 7. The CO,
emissions increase as the hydrogen demand is lowered as a consequence of the fact that
the necessary deoxygenation can be achieved either via removal of CO5 or via removal of
water. The latter option, however, often requires hydrogenation. Note that blend A from
Chapter 7 corresponds to the design with the maximum utilization of external hydrogen.

Blend E in Figure E.1 refers to a design that does not rely on any supply of external hy-
drogen. Instead, the hydrogen that is needed to upgrade the furfural is produced internally
via concurrent butyric acid fermentation, as can be seen from Figure E.2. Consequently,
the main component of this four-components blend is butyl acetate (53 mol-%). Table E.1
shows the properties of blend E. As can be seen from Figure E.3; the distillation curve
touches the upper bounds for both T10(m) and T50(m) (cf. Table 7.2) and the heaviest
blend component, i.e., ethyl levulinate (12%), is responsible for the blend’s high final boil-
ing point (205 °C). Note that there are residual pentoses and residual furfural in case of
blend E (cf. Figure E.2). Obviously, these cannot be converted into fuel on the basis of
the property constraints stated in Table 7.2. This deteriorates the LHV energy efficiency
compared to the design with external hydrogen supply (cf. Figure E.1).
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E Rational formulation of biofuel mixtures

X+ CO2from biomass (x 10 gcoa/MJsuer)

> energy of fuel produced (MJ,e/MJpiamass)
<] LHV energy efficiency (MJ e/ (MIpiomasstMJ 1))

© mass of fuel produced (kgse/kQbiomass)

2.75

25

2.25

1.75

1.25

0.75

0.5

0.25

CO2 from biomass

energy of fuel produced
B blend A
r s A —— =B —— A
A DT
blendE/;:w—----V*'j—¥ﬂ_,;_vifﬂ
o 7
B U U

LRV energy efficiency
mass of fuel produced
1 1 1 1 1 ﬂ? S il 1

0.5 1 1.5 2 25 3 3.5 4 4.5

hydrogen demand [ mol,,, / moIfuel ]

Figure E.1: Trade-off between hydrogen demand [moly, /mol ;] and energy of fuel produced
[MJ fuet/MJbiomass]- The blend design problem (maximization of the energy of fuel produced)
has been solved multiple times, whereby the upper bound for the hydrogen demand has been
lowered stepwise (5, 4, 3, 2, 1, 0). While the points in the diagram represent properties of

optimal designs, the dashed and dotted lines are for illustration purposes only.

216

IP 216.73.216.60, am 23.01:2026, 22:11:02.

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186954039

E.3 Trade-off analysis: Hydrogen demand vs. energy of fuel produced

H,
- kmol/h
0 P20 2
0.27 kmol/h Ho? | ot
=/ amo ~ kmol/h 0.24 kmol/h
butyric acid butyl acetate
- kmol/h CO,
0.82 kmol/h 0.26 kmol/h
hexoses /
~oH
1 H
blO— P1 0.1 (;lzcmol/h - kmol/h (from but)Z/ric acid
mass 1 kmol/h ethanol production)
0
- kmol/h P4 @J P10 o
e —L o
pentoses 0.31 kmol/h L/ 0.05 kmol/h o g
<0.01 kmol/h <0.01 kmol/h 0.05 kmol/h

furfural ethyl levulinate
2 P26 0 P25
(from butyric acid \ ] ~"0H P22
production) 0.20 kmol/h 0.11 kmol/h 0.06 kmol/n _kmol/h Nﬂé kmol/h
tetrahydrofuran 1-butanol
2
(from butyric acid e
production) 0.06 kmol/h
1-butene
energy of fuel mass of fuel hydrogen LHV CO, derived
produced produced demand energy efficiency from biomass cetane number
MItue1/ MIpiomass Kgfue/ Kbiomass moly; / molfyel M uel(MJpiomasstMI12) 2/ Mlgyer (DCN)
0.48 0.30 0.0 0.48 26.09 19.8

Figure E.2: Material flow diagram for the design that does not require external supply of
hydrogen (cf. Figure E.1, blend E). Note that butyric acid fermentation is used to provide the
hydrogen needed to upgrade the furfural. The resulting four-components blend is composed of
53 mol-% butyl acetate, 23 mol-% tetrahydrofuran, 13 mol-% 1-butene and 12 mol-% ethyl

levulinate.
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E Rational formulation of biofuel mixtures

220

mole fraction
200 - — — volume fraction b

-

o]

o
T

T90(m) = 176 °C /’

temperature [°C]
S N » O
o o o o

[o}
o

60

40 - i

0 0.2 O.‘4 0.‘6 0.8 1
fraction evaporated
Figure E.3: Predicted distillation curve for blend E (cf. Figure E.1). The curve has been
computed with Matlab’s (The MathWorks Inc., 2016) error-controlled, variable step-length
solver odel5s. The bars show the constraints for T10(m), T50(m) and T90(m). Note that
Vinife has been set to zero in an attempt to simulate an idealized batch distillation process.
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E.3 Trade-off analysis: Hydrogen demand vs. energy of fuel produced

Table E.1: Predicted properties of blend E (cf. Figure E.1).

butyl acetate (53%), tetrahydrofuran (23%),

blend composition [mol-%
position | g 1-butene (13%), ethyl levulinate (12%)

energy of fuel produced [MJ ryer/ MJpiomass) 0.48
hydrogen demand [mol Hy per mol fuel] 0.0
LHV energy efficiency nrpy [MJ pyer/

0.48
(h’ll]biomass +MJp, )]

derived cetane number DCN (cRON /cMON) | 19.8 (90/82)

heating value LHV [MJ /kg] 29.5
liquid density py, [kg /m?] 866
heat of vaporization Hyqp [kJ /kgair] (A=1) 41
surface tension o [mN /m)] 25
viscosity v [mm? /s] 0.8
Reid vapor pressure p3.../ popy [kPa) 77/ 82
distillation profile T10 (v)* [°C] 82
distillation profile T50 (v)® [°C] 129
distillation profile T90 (v)* [°C] 185

@ computed with Matlab’s (The MathWorks Inc., 2016) error-controlled, variable step-length

solver odelbs
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E Rational formulation of biofuel mixtures

E.4 Data and references for the case study

The conversion pathways used in the case study in Chapter 7 are shown in Table E.2. The
resulting stoichiometric matrix can be found in Table E.3. The property data estimates

are given in Table E.4.
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E.4 Data and references for the case study
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