

conference of the Megacities initiative and a FONA forum re-affirmed (fieldnotes on FONA Forum, 09.-11.09.13, fieldnotes on Megacities conference, 14.-16.05.13).

From a SKAD perspective, I argue that the BMBF's disinterest in integrating project knowledge into policy is a strategy of maintaining authority about the policy discourse by minimizing potentials for discourse actualisation. Researchers in BMBF-funded projects are addressees of the BMBF discourse on cooperation, while in carrying out projects, at the same time they contribute to stabilizing the discourse through their practice. Enabling them to frame problems from their own perspective might endanger the BMBF's powerful position and contribute to the transformation of discourse. The BMBF therefore only superficially grants room for reflection and feedback. This adds to the pronounced tendencies of discourse stabilisation – instead of discursive change – through discourse coalitions described in chapters 6 and 7.

10.2 Projects between the influence of policy and rooms of adaptation

10.2.1 Intended effects, side effects and their representation

After looking at the means of creating policy effects, of stabilizing discourse in the process of transmitting policy to the implementation level, this section focuses on the effects as such. Policies aim to coin realities and accordingly set a frame to the projects. The funding initiatives on Megacities and on IWRM did so in different ways and therefore provide an interesting contrast. They left different scopes of agency and interpretation for the funded projects – which substantially influenced the type of output that projects designed and implemented. The funding initiatives on the policy level thus enabled the projects to have certain effects on the real world and restricted others.

Whether denominating them as outcomes, results, products, innovations or as different types of knowledge: The projects in the Megacities as well as the IWRM funding initiatives produced a large variety of outputs targeted at science as well as in society. Appendices B-3a and B-3b give an overview over the different kinds of project outputs obtained in both funding initiatives – as perceived by the projects. It is important to mention this as a caveat: The overview mirrors the way in which projects *represented* their outputs in projects briefs, in the Megacities projects' case, and in IWRM information material, in the IWRM projects' case as well as in interviews, rather than giving an objective overview of project output. Practices of social construction of reality come into play in the representation of project outputs, too: The tables reflect only those types of outcomes which the projects perceived as important enough to be included in brochures and project briefs. These mirror the BMBF's expectations from the projects' perspective and display the policy

discourse. In the overview, blank spaces such as in case of output targeting individuals/households do not necessarily signify that projects were not engaged in that area, but rather that they did not perceive it as representable enough. Furthermore, the overview based on the projects' and funding initiatives' self-descriptions does not reveal to what extends the output developed turned into real innovations – thus if they were used, continued, put into practice or scaled up. Box 10-2 gives an impression of the external conditions of innovation from the projects' perspective. I assume that most projects produced additional outputs at different scales. This includes tacit types of knowledge, which due to its nature is less depictable; tangible types of knowledge not fitting into the categories, and output beyond traceable knowledge, such as trust, for example. Last, any interventions in the real world may also have unintended or unexpected side-effects on society, economy or the environment, both negative as well as positive ones.

Next to the explicit policy expectations, thus of the policy discourse on a content level, the BMBF's *practices* of discourse production affected the projects in their practice as well – especially the lack of including partner countries and other ministries in the agenda setting of the funding initiatives (ch. 7.2, 9.4.2). As a side effect of this mode of agenda setting, the lack of coordination among ministries – and thus of parallel, but incongruent discourses within development cooperation and research cooperation policies, determined the implementation, outcomes and effect of projects to a large extend in case of the IWRM call. Although the official call for proposals stated that the predefined model regions had been selected in view of the results of previous BMBF as well as BMZ activities (BMBF 2004a), the BMBF selected and funded projects in countries that were not priority countries of German development cooperation in the water sector. This led to the paradox situation that although research projects successfully adapted technologies in pilot plants or developed IWRM schemes for their project countries, German developmental donors could neither finance nor carry out any upscaling or implementation, as they had other thematic priorities in development cooperation and were bound to these through international conventions. The resulting difficulties in finding follow up funding for pilot projects eventually was also counter-intuitive to the impact that the BMBF envisaged as a result of the projects. Additionally, interviewees stated that the fact of not having a coherent German policy approach to cooperation led to confusion and irritation – among the team members of partner countries, as well as on higher governmental level (fieldnotes LiWa, 01.08.-30.09.12, fieldnotes IWAS Brazil, 01.10.-30.11.12; interviews with EE08, EE09, EE12, EE13).

Box 10-2: External conditions of innovation

Most projects of both funding initiatives developed one or more types of knowledge embedded in products, plans, solutions etc. on the level of administration or policy making. Next to the researchers' agency and the policy frame setting the conditions right, external factors play a decisive role in turning outputs into innovations.

Especially in view of outputs aimed at the governance level, the production of knowledge (or other types of results) relevant for the corresponding stakeholders in administration was emphasized. Otherwise, plans, strategies and software would merely fill bookshelves and desk drawers – instead of achieving further-reaching effects. Project participants perceived the inclusion of participants from the specific institutions as a first step towards the latter usage of the products, thus endorsed trans-disciplinary project set-ups as a suitable mode of cooperation for solution-oriented research.

However, despite the involvement of administrative and policy stakeholders in the projects, the process of transferring results to practice was often a tenacious process. The stakeholders' institutions often lacked the capacities to process the jointly generated knowledge, to further follow up and accompany the implementation of plans, strategies or decision-making tools. In Peru, for example, frequent changes among personnel within the municipal administration, policy making, but also among stakeholders such as the water provider company were a barrier for institutional learning and continuity. With each new employee, decisions were revised, and information was lost, as knowledge was not adequately transferred and anchored on the institutional level. Therefore, project partners feared that effects of the projects would vanish after the project ended. Similar observations were shared by participants in other projects of the Megacities as well as IWRM funding initiatives (interviews with PP03, PP25). Coming up with results relevant for decision making thus did not necessarily mean that these were followed by implementation, even if the targeted administrative level had participated in the projects. The persons directly involved in the projects often were – or had already been – sensitive to topics of sustainable management, had acquired a holistic perspective on problems. On the institutional level, in contrast, sustainability had not yet turned into an encompassing discourse, a technical view persisted, which in turn led to decisions favouring less sustainable but cheaper, less complex, simpler solutions. Next to the commitment of individuals to the project goals, embedding the objective on the institutional level were pictured as essential for different institutional contexts across the partner countries (interviews with PP12, PP03, PP40, PP23). This, however, would require shifts in mind-sets, political stability as well as capacity development on the institutional level, including processes and governance – tasks of a scope too big for individual research projects to tackle.

Being aware of the general sensitivity of the projects in view of perceived evaluation, I underline that in describing the outputs obtained and the effects intended by projects, I do not attach any valuation to projects based on their results. By enlisting different project results and by establishing categories, I rather wish to point at the *types* of outputs and effects emerging from the projects and not at their quality. I consider the types of outputs as *effects of the policy discourse* on the one hand, and the *room for agency* left to the projects on the other. My focus is thus *not* on appraising projects, but on exhibiting the enabling or restricting characteristics of the policy discourse; thus on the influence of the policy level on the projects and the room of manoeuvre of the project participants.

10.2.2 Effects on the real world as outcome of both funding initiatives

The Megacities funding initiative

As analyzed in chapter 9, the Megacities funding initiative enabled the research projects to research and find solutions on different scales and entry points. No type of solutions was prescribed. As stated in the call for proposals, project participants affirmed that the Megacities initiative left spaces for different solutions and levels of implementation: "I had the impression we were quite free in project design. [...] The BMBF just specified the requirements in the document in the beginning, which detailed that we had to do research for megacities, not about megacities. And all projects stuck to that." (PP05) This impression was seconded by other participants in other projects of the Megacities funding initiative, who felt that there was room to creatively use and extend the initiative's frame (PP38).

Due to the initial openness of the Megacities funding initiative in view of solutions, the policy frame thus allowed a large degree of agency of the project participants to orient their research to their interests and to the needs of the Megacities in focus. Moreover, the openness empowered the projects to start with a systemic analysis of the problem and to scrutinize all possible solutions adequate to the local situation and the problem at stake. The overview about the *types of outputs* stemming from Megacities research projects (Appendix B-3b) mirrors the high diversity of knowledge, topics, approaches and solutions developed in the context of sustainability in and for megacities, both within the individual projects as well as among them.

For example, LiWa, a project focused at sustainable water management in Lima, Peru, assessed the problem of water scarcity in in Lima from different angles. Research included integrative scenario development, climate and water balance modelling, macro modelling and simulation, inclusive governance processes, training and capacity development as well as water pricing. At a later stage, urban planning was included as an additional work package (LiWa 2012). Project partners on the German side were mainly scientists, while the Peruvian

side consisted of a broad range of stakeholders, including the water provider company, municipal institutions, NGOs, and only a few research institutions. After the initial systemic analysis, solutions were developed in the last stages of LiWa. LiWa research showed that waste water plants and other technologies already existed. However, they didn't work properly due to lacking capacities and high maintenance costs (field notes LiWa, 01.08-30.09.12). Thus, solutions were developed on the level of *management* rather than at a level of water supply or treatment technologies. They included new governance schemes, a modelling tool for decision support, as well as plans for water sensitive urban design including exemplary green areas as pilot studies. In participatory processes, promising measures for reducing water consumption and awareness raising on different levels were defined.

The Megacities project in Addis Ababa illustrates a different focus and approach. The project combined solutions to solid waste management with pro-poor innovations to empower local waste collectors, while also developing waste management planning tools for the municipal administrative authorities and implementing pilot projects on waste recycling. Yet another focus was chosen in the project in Hefei, which focused on transportation and traffic and targeted the administrative level. The project developed management concepts, traffic monitoring technologies as well as finance strategies and developed proposals for pedestrian-friendly city development.

Appendix B-3b also demonstrates that the innovations of the different Megacities projects targeted different levels, ranging from individual or household levels to innovations in governance and to the larger public. On all levels, a variety of technological as well as non-technological innovations were developed. Projects also included the adaptation and development of high-tech options, such as in case of the Hefei project's traffic management system, based on floating car data, video detection and digital audio broadcasting; or the multiple modelling, monitoring and simulation tools for decision support which projects developed for Lima, Hyderabad, Casablanca, or Urumqi.

Non-technical innovations ranged from designing strategies and concepts, which indeed were products of most projects, to institutional innovations, such as in case of the energy office, which the Megacities project established in Gauteng/Johannesburg, or in case of the inclusive and participatory processes for water management implemented in Lima. In contrast to the openness of earlier stages, after about five years of the initiative, the ministry, via the project management agency, began to push for an implementation of visible results and granted additional funds for implementing pilot projects (field notes LiWa, 01.08-30.09.12). In case of some projects, who had focused on *non-visible results*, this led to an adaptation of the projects. In LiWa, new German partners joined the consortium in order to add a planning focus to the original project scope. A concept for an

ecological park was developed and the park was to be promptly implemented. In contrast to the project management agency's or the BMBF's focus on visible, presentable results, however, within the project team the shift was rather felt to be an add-on, which the consortium agreed to in order to fulfil the demands, rather than a *necessary* innovation for the city's context – or for the project's main focus. In view of many project participants, the primary, more substantial impacts of the project were the less visible and less representable innovations of a participatory governance platform for water management, as well as in the decision support tool. They felt that the BMBF or the project management agency did not appreciate these as much as physical results, however (field notes LiWa, 01.08-30.09.12).

Participants in other Megacities projects similarly felt that towards the end of the funding initiative, the project management agency began to push for presentable results. Diverse project participants perceived the implementation of the accompanying project at a very late stage of the funding initiative in the context of the sudden focus on visibility, which they sensed to be a marketing activity to highlight the programme's success – and not as an instance of reflection about crosscutting programme results.

IWAS: A special case of a project framed as IWRM

The IWAS initiative was counted as an IWRM project in the scope of FONA, although it originated from a thematically open initiative on excellence in research and innovation in the new federal states (*Spitzenforschung und Innovation in den Neuen Ländern*) funded through a different ministerial department (ch. 5). The IWAS sub-projects were not thematically adjusted when shifting into the responsibilities of the Sustainability Subdepartment. In contrast to the projects emerging directly from the IWRM call, the researchers in IWAS had a sort of *carte blanche* to design their project according to their conceptions. No specific expectations in view of the project direction were added (interviews with PT03, PP22, PP30, PA02, fieldnotes IWAS status colloquium, 06.12.2012).

Nevertheless, in view of the BMBF's expectations, IWAS tried to fulfil both the criteria of producing excellence in research as well as meeting the criteria of the IWRM funding initiative – which some project participants experienced as an internal conflict (interviews with PP22, PP29). In its first phase, IWAS focused on five model regions in Brazil, Ukraine, Mongolia, Vietnam, Oman/Saudi Arabia, in the second phase reduced to three regions (Brazil, Ukraine, Oman/Saudi Arabia). Instead of developing complete IWRM schemes for each region, IWAS focused on specific aspects of IWRM or water related problems and chose the model regions accordingly. The projects within the model regions chose different were thus planned to be complementary rather than comparative. While in some subprojects, research focused on water quality and analysis, others developed water or land use

models, looked at governance issues or emphasized capacity development, while others developed technologies. IWAS thereby targeted to come up with *building blocks* as contributions to IWRM concepts for regions of different climate and water profiles. Results of each regional subproject were to be fed into a crosscutting scenario and system analysis of hydrological cycles and linked natural and social systems (IWAS-Initiative 2012; Krebs and Borchardt 2012; Deppe 2013). As a result of not stemming from the IWRM call, IWAS as a whole was bigger in scope than a single IWRM project out of the original IWRM funding initiative, financially as well as thematically. However, each regional IWAS subproject was smaller and less holistic than a single IWRM project from the IWRM call (interview with PP30). As crosscutting issues, capacity development, scenario and system analysis, implementation, and governance were addressed in crosscutting working groups across different subprojects (fieldnotes IWAS status colloquium, 06.12.2012)

IWAS Brazil focused on different environmental influences on water availability, such as regional climate models, land use change, hydrology, water quality. Further work streams aimed at the development of pilot technologies for water treatment. On both the German and the Brazilian side, partners from research were strongly represented, while only the Brazilian water provider as well as the drainage provider were involved as stakeholders. IWAS Brazil did not include any social scientists and accordingly did not address questions of water governance, institutions, finance, participation⁴ (field notes IWAS Brazil, 01.10-30.11.12).

While the implementation of the pilot plant for water treatment was the objective of the respective working group, including the water provider company, within the other working groups, no strategy of implementing results existed. Many researchers in IWAS Brazil were mainly interested in producing scientific outcomes and the implementation of results was not seen as a priority. This focus on scientific results is not a point of critique – the IWAS initiative did not have a prescribed applied focus, in contrast to the IWRM projects. Not concentrating on implementation therefore points to the researchers' interest in more basic types of science and the lack of a policy framing that encouraged application.

In the original project plan, a work package focused on integrating the results of the different work packages in a decision support system for IWRM. However, knowledge integration between the different work packages was not pushed for according to many project participants, and therefore the integration of the different results did not seem plausible anymore towards the project's end. With different institutions of water governance, such as the regional water agency, miss-

⁴ Most project participants did not perceive the missing social sciences as a loss: "A project in a foreign country requires social competences of all people involved. You don't need social scientists. It's no use if one partner is a social scientist but the others behave like a bull in a china shop." (PP28)

ing in the consortium, it is questionable, however, if a decision support system would have been implemented by the stakeholders anyway (field notes IWAS Brazil, 01.10-30.11.12, interviews with PP07, PP17, PP19, PP21, EE26 and others).

In view of the interaction with the other regional projects of IWAS, a project participant stated:

“I didn't have the impression to work within a larger IWAS frame. In the beginning I was confused... We met with the other IWAS teams and were told that we have to do excellent research and should integrate the results. Integration was central, with an IWAS tool box etc. At the large IWAS meetings, the original IWRM approach was present and people lived it. And then there was the harsh reality in Brazil as a complete contrast.” (PP07)

Other interviewees from IWAS Brazil similarly stated that the overall approach of IWAS, to develop IWRM as an integrative concept, contradicted the focus of IWAS Brazil on basic sciences. Despite the contradiction between the overall application aims of IWAS, and the multidisciplinary focus of IWAS Brazil as a subproject, the Brazilian partners stressed that IWAS Brazil in the end had positive effects. Next to technologies tested, manifold scientific results were produced, and capacities developed in form of master students and doctoral candidates completing their degrees on project topics. In addition, the interaction among the Brazilian institutions involved in the project improved among different academic disciplines of water-related research, between the university and the research institutions involved, as well as with the water provider (interviews with PP17, PP19, PP21, PP43, PP48, PP49, PP50, and others).

In view of the transmission of discourse from policy to the implementation level, IWAS Brazil shows that the combination of a focus on excellent, non-applied research, as stated in the original call for proposals of PROSIN, with the focus on applied IWRM research may lead to contradictory tensions within the projects and may also lead to frustration and unfulfilled expectation among some project partners. On a different note, giving researchers a carte blanche in view of implementation, which was not target of the original call for proposals, grants spaces for *not* focusing on the application of research results. Thus, those researchers who joined the project with an underlying motivation of scientific excellence used their room of agency to focus purely on scientific output.

The IWRM funding initiative

As shown in chapter 9, the IWRM initiative expected a technological focus of the solutions developed in the projects. Nevertheless, the funding initiative was perceived to have left more room for non-technological innovations than the subsequent CLIENT call, which some of the IWRM projects later applied to (interview

with PP25). Project participants conceded to the technology-orientation of the policy objectives:

“With our focus on technologies we reacted to the requirements. You can set up projects in many different ways. In that case, it was a multi-technology mix. We reacted to the High-tech Strategy and supported German technology providers. The project could have looked different, we could have moved towards resources management, decision support systems. Other things would have been possible. The funding conditions set a clear strategic frame and exert influence. In our case they pushed technologies, a transdisciplinary approach and IWRM. And overarching, sustainable development.” (PP12)

Acknowledging that different, non-technology focused approaches would have been equally possible, projects followed the policy objectives in order to receive funding. This can be interpreted as a successful instance of discourse transmission from the policy level to the project level, on the one hand. On the other hand, the quote also illustrates that for the specific problem context, different solutions might have potentially more adequate. Participants from other IWRM projects similarly stated that the high-tech expectations of the BMBF were not compatible with the partner countries’ realities, even in those partner countries counted as emerging economies (interviews with PP03, PP4, PP25).

Other interviewees seconded the perception that the technology focus did not match the requirements of IWRM on the ground, as “[i]n Germany, there is a very one-sided view of IWRM as technology. But that is not all to it [...]. Concepts and plans are underrepresented in BMBF funding” (PP25).

In addition, some project participants pictured the expectations of German high-tech exports as a contradiction to the overarching goal of sustainable water management, as in case of some technological solutions, which the project had identified as suitable for adaptation, no German business partners were to be found and were thus not further followed up (interview with PP12). Other project participants in the IWRM funding initiative voiced that fulfilling multiple expectations within one funding initiative, ranging from business development to problem solving for sustainability, to excellence in science was difficult, as the objectives were sometimes contradictory – especially in view of the overall goal of sustainability (fieldnotes FONA Forum, 09.-11.09.13).

Although funded as transdisciplinary research projects – insinuating an analysis of the problem context before developing a solution – projects felt urged towards rapid implementation of results and had to contest the BMBF’s hush for setting up pilot technologies in the first project phase at the expense of problem analysis and discussions about solutions with stakeholders (interviews with PP04, PP12). The parallel expectation of transdisciplinarity and technology implementation turned into a paradox. In interviews, project participants voiced that the objec-

tive of fostering German business interests was pushed strongly and inadequately for projects of applied research. For them, this had conflictive consequences:

"The project management agency expects the scientists to support sales of German products, which sometimes leads to conflicts. Pilot plants shall be upscaled and multiplied as fast as possible, but from a scientific point of view they are still in a pilot phase. They would have to run stable for two or three years until I can give a sound scientific judgement about them. And then, I would have to consider changing conditions and how to ensure that the technology is adequate." (PP03)

Project participants thus felt pushed towards rapid decisions and up-scaled implementation of new technologies which they had not yet tested sufficiently, and which they were not able to accompany further after the projects' end. At the same time, they were not sure if the partners in the country had adequate capacities to continue testing and managing the technologies on their own (interviews with PP03, PP04).

Many projects perceived the BMBF's requirement to include business partners in the consortia from the first project phase onwards as a contradiction to an open systemic analysis: "The participation of SME nails you down to a specific technological solution pathway. You cannot really say we considered the option, but it doesn't fit – good bye. They are project partners and want to implement their technology. You have to be careful there." (PP41)

In contrast to critical assessment of some research partners in the projects who pointed at the problems linked to combining technology sales with research – and their doubts about it in terms of research ethics – other interviewees rather stressed the benefits of the model for gaining access to new markets and at minimized financial risk (interviews with PP10, EE17). Interestingly, some business partners themselves did not perceive the participation in projects at early stages as a beneficial, either. The lack of determination and commitment to a specific technology as well as the oftentimes missing expertise of the researchers about the project context meant high risks of failing revenues for them (interview with PP9). While the BMBF had not undertaken any evaluations of business success in their model of involving SME into applied research projects, interviewees in the project management agencies stated doubts about the concept's success as such (interview with PT03).

As in case of the last phase of the Megacities funding initiative, projects felt that the BMBF favoured visible innovations – or rather, project results – over other types of innovation. The visibility of innovations thus seemed more essential than producing long term effects, both for the BMBF and the project management agencies:

"I have the impression that we have to provide results which are nicely presentable. For the BMBF and the project management agency, it doesn't really matter if they help the partner country. What matters is public representability, something that gives the impression that something great is happening, through Germany, through the BMBF." (PP03)

An interviewee involved in two IWRM projects, of which one had a focus on large scale technologies while the other focused on modelling, stated in a similar line:

"We notice that our project is a model project, a showcase, because there is something to see [...]. The other project had a more scientific orientation, it was about modelling, without comparably visible impacts. Exchange of scientists etc took place, but you can't really present that on-site." (PP36)

The bias towards visibility and technology as results to show a policy's success (ch. 9.3) is not only characteristic of BMBF policies in the Megacities and IWRM funding. Project participants stated that the BMBF's preference of presentable technological results was matched by the partner countries' administration and policy makers as well (interviews with PP03, PP12, PP25, PP31, PP36). Often, mind-sets were coined by sectoral thinking, and questions of sustainability and systemic thinking were not common among stakeholders yet. However, the partner countries' expectations of visible, high-tech innovations also can be seen in light of the different symbolic functions. In contrast to low-tech solutions, high-tech solutions symbolize a country's developmental progress and therefore contribute to a positive self-image. Visible new technologies also prove governmental action, important in partner countries with often inefficient bureaucracies and high degrees of institutional change. In case of elections, visible results demonstrate deeds better than improved processes or management. In addition, conceptualizing water as a technical problem, not as an intersectoral management problem also depoliticizes the issue. Technological interventions do not instantly require any changes of the institutional set up, whereas looking at IWRM from a management perspective might involve inclusive decision-making processes, which take into account the needs and demands of different water users and other stakeholders, or might point at institutional misfits, and thus potentially endanger the current status quo within and among different groups of actors.

Despite the policy focus on technologies and visible results, the IWRM projects in practice delivered a variety of different results and turned them into innovations. Appendix B-3a gives an overview about the range of different types of output. The vast majority of the projects, in congruence with the BMBF's and the partner countries' expectations, developed a type of large-scale technology and implemented pilot plants, ranging from water pumping systems in Indonesia, to waste water treat-

ment technologies (e.g. Mongolia, Israel/Jordan/Palestine), drinking water treatment (e.g. Vietnam) or ground water desalination technologies (Namibia).

Next to these large-scale technology options, many projects developed innovations on a non-technical or low-tech level, such as dry toilets (Mongolia), innovations in agricultural practices, such as irrigation schemes (Uzbekistan), or small-scale rain water collection (Namibia). The overview also shows that all projects developed innovations aimed at management processes, most of them in form of models, analysis and scenario analysis for decision support and monitoring, some projects including software development for the task. For example, IWRM Olifants, South Africa, purely engaged with water management innovations. The project had detected deficient water management as a root cause for lacking water availability. Necessary treatment technologies already existed, but financing proved problematic. Instead of developing large scale pilot technologies, the project developed models for private sector participation in water management. Other projects contributed to a change of legislation, such as laws or policies, towards a more sustainable water management.

Consequently, I argue that although the IWRM call for proposals left less room for agency than the call for proposals of the Megacities funding initiative, the IWRM projects used their agency to focus on those aspects of IWRM that they deemed important next to the technology development specified by the BMBF. The projects' interest in non-technological issues of IWRM also became apparent in the crosscutting working groups, which focused on governance, capacity development, decision-making support and participation, and whose topics had been identified in a discussion project among all IWRM projects (interview with PP06).

10.3 Project practice: Subversion or compliance?

In chapter 7, I have traced the imbalances in power between research community, project management agency and the BMBF in discourse production. Imbalances in the distribution of power over decisions and resources also coined their interaction in implementing research projects in the Megacities as well as the IWRM funding initiatives, observable in the project participants' common practice of withholding any open criticism directed towards the ministry and of preventing to demonstrate any potential weak spots themselves. In this line, window-dressing was observable throughout all instances of project representation. Optimized self-representation was common in formal contexts, such as reporting to the BMBF or the project management agencies on behalf of the ministry; as well as in more informal contexts, e.g. in the survey carried out by the IWRM accompanying project on application of results (Ibisch and Borchardt 2014).