VDI

e Fortschritt-

KOMMUNIKATION

Berichte VDI
[=] M-S Torben Miny

httpsz//dol.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. @ Urheberrechttich geschltzter Inhatt. Ohne gesonderte

Ist jeds urheberrechtliche Nutzung untersagt, insbesondsrs die Nutzung des Inhalts im Zusammenhang mit, fir oder in KI-Systemen, Ki-Modsilen oder Generativen Sprachmodalisn.

https://doi.org/10.51202/9783186876102

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Konzept fiir die semantische Interoperabilitit zwischen

Informationsmodellen

Von der Fakultit fiir Georessourcen und Materialtechnik der

Rheinisch-Westfdlischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Torben Miny, M. Sc.

Berichter: Herr Univ.-Prof. Dr.-Ing. Ulrich Epple
Herr Univ.-Prof. Dr.-Ing. Christian Diedrich
Herr Univ.-Prof. Dr.-Ing. Tobias Kleinert

Tag der miindlichen Priifung: 21.01.2022

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

e FOITSCAItL-
Berichte VDI

E M. Sc. Torben Miny,
Aachen

NR. 876 Konzept fur
die semantische
Interoperabilitat
zwischen
Informationsmodellen

BAND

111
m Lehrstuhl for
VOLUME Prozessleittechnik

AACHENTER der RWTH Aachen
11 PROZESSLEITTECHNIK

https://doi.org/10.51202/9783186876102

Miny, Torben

Konzept fiir die semantische Interoperabilitat zwischen Informationsmodellen
Fortschritt-Berichte VDI, Reihe 10, Nr. 876. Dusseldorf: VDI Verlag 2022.

196 Seiten, 46 Bilder, 6 Tabellen.

ISBN 978-3-18-387610-5, ISSN 0178-9627,

71,00 EUR/VDI-Mitgliederpreis: 63,90

Fiir die Dokumentation: Semantische Interoperabilitat - Modelltransformation - Object Constraint Language -
Verwaltungsschale - Asset Informationsmodelle

Keywords: Semantic Interoperability - Model Transformation - Object Constraint Language - Asset
Administration Shell - Asset Information Models

Die vorliegende Arbeit wendet sich an Ingenieur*innen und Wissenschaftler*innen im Umfeld von Industrie 4.0.
Sie befasst sich mit der semantischen Interoperabilitat zwischen digitalen Asset-Reprasentationen. Hierbei liegt
der Fokus auf dem Austausch von Asset-Informationen mit Hilfe von Informationsmodellen. Derzeit werden

eine Vielzahl von Informationsmodelle von verschiedenen Organisationen entwickelt. Diese enthalten vielfach
semantisch identische Informationen, modellieren diese ggf. aber jeweils unterschiedlich. Kern der Arbeit ist eine
neue Modelltransformationssprache zur Erstellung von Transformationsdefinitionen zwischen Informations-
modellen, um (semi-)Jautomatisch Informationsmodelle aus anderen zu erzeugen. Die Sprache basiert auf der
Object Constraint Language, ist allgemein und vollstandig spezifiziert und kann in bestehende Automatisierungs-
systemen verwendet werden.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

D82 (Diss. RWTH Aachen University, 2022)

© VDI Verlag GmbH | Diisseldorf 2022

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten. Als Manuskript gedruckt. Printed in Germany.

ISBN 978-3-18-387610-5, ISSN 0178-9627

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Vorwort

Die vorliegende Arbeit entstand wéahrend meiner Zeit als wissenschaftlicher Mitarbeiter am
Lehrstuhl fiir Prozessleittechnik an der RWTH Aachen University. An dieser Stelle mochte
ich mich bei allen bedanken, die mich in dieser Zeit fachlich und persénlich unterstiitzt
haben.

Mein besonderer Dank gebiihrt Herrn Professor Dr.-Ing. Ulrich Epple. Seine Unterstiitzung
fiir mein Promotionsvorhaben, die angenehme Arbeitsatmosphédre am Lehrstuhl und die
vielen fachlichen Diskussionen und personlichen Gespréche haben meine Arbeitsweise maf-
geblich geprigt. Durch die vielféltigen Aufgaben am Lehrstuhl und die Teilnahme in di-
versen Gremien konnte ich mich frei entfalten und einen guten Uberblick iiber die ver-
schiedenen Facetten der Automatisierungstechnik und deren Schnittstelle zur Informatik
erhalten.

Bei Herrn Professor Dr.-Ing. Christian Diedrich, Inhaber der Professur fur Integrierte
Automation an der Otto-von-Guericke-Universitat Magdeburg, bedanke ich mich fir die
Ubernahme der Rolle des Zweitgutachters. Die vielen fachlichen Diskussionen halfen mir
in der Durchfithrung dieses Promotionsvorhabens sehr.

Zuséatzlich danke ich Herrn Professor Dr.-Ing. Tobias Kleinert, Lehrstuhl-Nachfolger von
Herrn Epple, fiir die Unterstiitzung in den letzten knapp 2 Jahren meiner Promotion.
Herrn Professor Dr.-Ing. Herbert Pfeifer, Leiter des Instituts fiir Industrieofenbau und
Wiérmetechnik, danke ich fiir die Ubernahme des Priifungsvorsitz.

Ein besonderer Dank gilt meinen Kollegen am Lehrstuhl fiir die intensiven und teils kon-
troversen Diskussionen sowie den studentischen Hilfskréften und Studierenden, die bei mir
eine Abschlussarbeit geschrieben haben. Besonders bedanken mochte ich mich (in alpha-
betischer Reihenfolge) bei Julian Grothoff, Leon Méller und Michael Thies. Ein herzli-
cher Dank gilt an Frau Margarete Milescu, die mich bei den diversen organisatorischen
Tatigkeiten stets unterstiitzt hat.

Ein weiterer Dank gilt an die Mitglieder der verschiedenen Arbeitskreise, in denen ich mit-
arbeiten durfte (Plattform Industrie 4.0, DIN, DKE, VDI/VDE-Gesellschaft fir Mess- und
Automatisierungstechnik, OPC Foundation). Die vielen Gespriche haben mir einen wert-
vollen Einblick in das Thema Industrie 4.0 und deren praktische Anwendung gegeben.

Meiner Ehefrau Luisa Miny moéchte ich fir die Unterstiitzung, Geduld und Motivation in
den vergangenen Jahren und insbesondere in der intensiven Phase bedanken. Abschlieend
danke ich meinen Eltern Gabi Rohde-Deppe und Torsten Deppe, die mich immer mit Tat
und Rat unterstiitzt und mich auf diesen Weg gefiihrt haben.

Aachen, im Januar 2022

111

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

Abkiirzungen Vil
Kurzfassung X
Abstract Xl
1 Einleitung 1
1.1 Motivation und Zielsetzung Lo 2
1.2 Gliederung 5
1.3 Eigene Vorveroffentlichungen o0 6

2 Modellierung 8
2.1 Sprache und Metasprache 8
2.2 Modell und Metamodell 8
2.3 Modellsprachen L 10
24 TypundInstanz 13
2.5 Identifikation von Objekten 15

3 Object Constraint Language 16
3.1 Anwendung von OCL 17
3.2 Abstrakte Syntax von BasicOCL 19
3.3 Konkrete Syntax von BasicOCL 22

4 Interoperabilitit 25
4.1 Stufen der Interoperabilitato 26
4.2 Aktuelle Ansétze fiir Interoperabilitdto 30

5 Modelltransformation 33
5.1 Begriffswelt der Modelltransformation 33
5.2 Merkmale von Modelltransformationen 35
5.2.1 Allgemeine Merkmale L. 35

5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle 37

5.2.3 Merkmale der Transformationsregeln 38

5.2.4 Merkmale der Regelnutzung 40

5.3 Modell-zu-Modell Transformationsansitze 41
5.3.1 Imperativer/Operationaler Ansatz 41

5.3.2 Relationaler/Deklarativer Ansatz 42

5.3.3 Graph-basierter Ansatz L 43

5.3.4 Hybrider Ansatz 43

\Y

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

5.4 Transformationssprache und -system
5.4.1 Generische und doméanenspezifische Transformationssprachen
5.4.2 Erstellung von Transformationssprachen

6 Modellierung und Austausch von Asset-Informationen
6.1 Aktuelle Normungslandschaft fir Eigenschaften
6.2 Digital Factory Framework - International Electrotechnical Commission . .
6.2.1 Ziel und Anwendungsbereicho
6.2.2 Informationsmodell
6.3 Asset Administration Shell - Plattform Industrie 4.0
6.3.1 Ziel und Anwendungsbereich00
6.3.2 Informationsmodello oL
6.4 Thing Description - Web of Things
6.4.1 Ziel und Anwendungsbereicho
6.4.2 Informationsmodello oo
6.5 Vergleich
6.5.1 Asset-Begriff.
6.5.2 Ziel, Anwendungsbereich und Informationsmodell
6.6 Schlussfolgerung oo o

7 Informationsaustausch bei Verwaltungsschalen
7.1 Erscheinungsformeno oo

711 Typl oo
T12 Typ2 o
T13 Typ3 oo

714 Vergleich
7.2 Nutzung von Verwaltungsschalen-Teilmodellen fiir semantische Interopera-
bilitdat: Offene Fragestellungen und mogliche Losungsoptionen

8 Modelltransformationen fiir die semantische Interoperabilitat zwischen ver-
schiedenen Informationsmodellen

8.1 Syntaktische und semantische Transformationen

8.2 Klassifikation der Transformationen

8.3 Anforderungen an die zu entwickelnde Transformationssprache

8.3.1 Allgemeine Anforderungen o L.

8.3.2 Benotigte Transformationssprachelemente

8.4 Evaluation bestehender Transformationssprachen

85 Fazit

9 Metamodell der Modelltransformationssprache
9.1 Benotigte Sprachelemente und deren Semantik
9.2 Syntaxregeln und konkrete Syntax
9.3 Evaluation der Sprache

10 Abbildung der Modelltransformationssprache fiir Verwaltungsschalen
10.1 Anpassungen des Informationsmodells.
10.2 Makros fiir das vollstandige Kopieren von SubmodelElement-Objekten . . .

VI

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

48
49
50
51
51
54
54
55
57
58
58
60
60
61
62

63
63
63
64
65
65

66

69
69
71
72
72
73
76
7

78
78
81
86

87
87
89

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

10.3 Makros fiir den Zugriff auf ein SubmodelElement-Objekt 90
11 Transformationssystem 93
11.1 Allgemeiner Aufbau eines Transformationssystems 93
11.2 Umsetzung in Python oo 95
12 Evaluation 98
12.1 Anwendungsfall 1: Firmenspezifische Informationsmodelle 98

12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmo-
delle 99

12.3 Anwendungsfall 3: Integration von Komponenten und zugehérigen Informa-
tionsmodellen 102
12.4 Bendtigte Zeit fiir die Erstellung einer Transformationsdefinition 104

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei
Nutzung des entwickelten Transformationssystems 104
13 Zusammenfassung 108
13.1 Ausblick oo 109
Anhang 111
A Makro-Definitionen fir Verwaltungsschalen 111
B Grammatikdefinition der Transformationssprache 117
B.1 Grammarocllarko 117
B.2 Grammarmtllark 00 124
C Python-Klassendefinition der abstrakten Syntaxklassen 126
C.1 astoclpy o 126
C.2 astamtlpyo 145
D Anwendungsfall 1: Firmenspezifische Informationsmodelle 156
D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0) . . . 156

D.2 Digital Nameplate for Galaxie® Actuator der Firma WITTENSTEIN
galaxie GmbH 157

D.3 Transformationsdefinition zwischen dem WITTENSTEIN und dem
ZVEI Teilmodell-Template 158
E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells . . . 159

E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 159

E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 160

E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 161
E4 Transformationsdefinition zwischen den Versionen 1 und 2 161

F Anwendungsfall 3: Integration von Komponenten und zugehérigen Informa-
tionsmodelleno 164
G Testergebnisse der Versuchreithen 166
Literaturverzeichnis 170
VIL

tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186876102

Abkiirzungen

ADT Abstrakter Datentyp

APl Application Programming Interface

ATL Atlas Transformation Language

DF Framework Digital Factory Framework

DSL Domain Specific Language

DSTL Domain Specific Transformation Language
EBNF Erweiterte Backus-Naur-Form

ETL Epsilon Transformation Language

ETSI European Telecommunications Standards Institute
GPL General Purpose Language

GPTL General Purpose Transformation Language
GUID Globally Unique Identifier

IEC International Electrotechnical Commission
IEC61360-CDD IEC 16360 - Common Data Dictionary
IEEE Institute of Electrical and Electronics Engineers
loT Internet of Things

IRI Internationalized Resource Identifier

ISO International Organization for Standardization
IT Informationstechnologie

MOLA Model Transformation Language

OCL Object Constraint Language

OMG Object Management Group

OPC UA OPC Unified Architecture

OWL Web Ontology Language

QVT Query View Transformation

RAMI4.0 Referenzarchitekturmodell Industrie 4.0

VIII

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flr oder In KI-

https://doi.org/10.51202/9783186876102

Abkiirzungen

RDF Resource Description Framework

RDFS Resource Description Framework Schema
SDK Software Development Kit

SQL Structured Query Language

TGG Triple Graph Grammatik

UML Unified Modeling Language

URI Uniform Resource Identifier

UUID Universally Unique Identifier

VIATRA Visual Automated Model Transformations
W3C World Wide Web Consortium

WoT Web of Things

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie

IX

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Kurzfassung

Im Rahmen des Zukunftsprojekts ,Industrie 4.0 der Hightech-Strategie der Bundesregie-
rung wird das Konzept der Verwaltungsschale entwickelt. Das Ergebnis ist eine einheitliche
Schnittstelle und ein Metamodell fiir den Zugriff auf die Informationen eines Assets. Diese
Informationen werden in Informationsmodellen zusammengefasst, die jeweils einen Aspekt
eines Assets darstellen und fiir einen konkreten Anwendungsfall verwendet werden. Durch
die steigende Anzahl an kommunizierenden Geréten im industriellen Kontext, die ver-
mehrte Nutzungen von Informationen fiir Mehrwertdienste (value-added services) und die
Integration zu komplexen, intelligenten Maschinen und Anlagen riicken Konzepte fiir die
Interoperabilitit in den Fokus. Die semantische Interoperabilitét ist ein wesentliches Ziel
beim Austausch von Asset-Informationen.

Da verschiedene Stakeholder unterschiedliche Informationsmodelle bendtigen, wird es eine
Vielzahl dieser Informationsmodelle geben. Diese Informationsmodelle konnen semantisch
die gleichen Informationen enthalten, jedoch anders modelliert oder zusammengestellt sein.
Zuséatzlich wird es verschiedene Versionen dieser Informationsmodelle geben. Dies fithrt zu
einem Problem bei der semantischen Interoperabilitit und ist durch manuelles Transfor-
mieren der Daten wegen der Vielzahl an Informationsmodellen und Assets, die digital
verwaltet werden, nur noch schwer zu bewerkstelligen.

Aufgrund dessen wird in dieser Arbeit ein Konzept fiir die semantische Interoperabilitiat
zwischen Informationsmodellen vorgestellt. Basierend auf einer Analyse existierender Me-
thoden und Ansétze zur Erreichung der semantischen Interoperabilitit wird das Konzept
der Modelltransformation zur Losung des Problems verwendet. Fiir den Asset-bezogenen
Informationsaustausch werden aktuelle standardisierte Modelle miteinander verglichen und
das Konzept der Verwaltungsschale als Anwendungsbeispiel herangezogen. Anhand die-
ses Anwendungsbeispiels wird der Unterschied zwischen syntaktischen und semantischen
Transformationen vorgestellt sowie eine Klassifikation der Transformation mit Hilfe zuvor
definierter Merkmale durchgefiihrt. Auf dieser Basis werden Anforderungen an eine Trans-
formationssprache ermittelt und existierende Sprachen hinsichtlich ihrer Verwendbarkeit
evaluiert.

Das Ergebnis der Anforderungsanalyse ist, dass bisher keine Sprache existiert, die alle An-
forderungen erfiillt. Daher wird eine neue Modelltransformationssprache hergeleitet. Diese
ist generisch beschrieben und wird fir das Konzept der Verwaltungsschale konkretisiert.
Es werden sowohl die abstrakte als auch die konkrete Syntax sowie die bendtigten Syn-
taxregeln vorgestellt. Eine prototypische Realisierung eines Transformationssystems zeigt
die Anwendung der Sprache und erméglicht die Durchfithrung von Modelltransformationen
zwischen beliebigen Informationsmodellen. Abschliefend wird die Sprache anhand von drei
ausgewahlten Anwendungsféllen evaluiert.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Abstract

As part of the future project Industry 4.0 of the High-Tech Strategy of the German Federal
Government, the concept of the asset administration shell is being developed. The result
is a uniform interface and a metamodel for accessing the information of an asset. This
information is summarized in information models, each of which represents an aspect of an
asset and is used for a specific use case. Due to the increasing number of communicating
devices in the industrial context, the increased use of information for value-added services
and the integration to complex, intelligent machines and plants, concepts for interoperabi-
lity are coming into focus. Semantic interoperability is a key goal in the exchange of asset
information.

Since different stakeholders require different information models, a variety of these infor-
mation models will exist. These information models may semantically contain the same
information, but may be modeled or compiled differently. Additionally, there will be diffe-
rent versions of these information models. This leads to a semantic interoperability problem
and is difficult to manage by manually transforming the data because of the large number
of information models and assets that are digitally managed.

For this reason a concept for semantic interoperability between information models is
presented in this thesis. Based on an analysis of existing methods and approaches to achieve
semantic interoperability, the concept of model transformation is used to solve the problem.
For asset-related information exchange, current standardized models are compared and
the concept of the asset administration shell is used as an application example. Based on
this application example, the difference between syntactic and semantic transformations is
introduced and a classification of the transformation is performed using previously defined
features. On this basis, requirements for a transformation language are determined and
existing languages are evaluated with respect to their usability.

The result of the requirements analysis is that so far no language exists that fulfills all
requirements. Therefore a new model transformation language is derived. This is described
generically and is concretized for the concept of the asset administration shell. Both the
abstract and the concrete syntax as well as the required syntax rules are presented. A
prototypical realization of a transformation system shows the application of the language
and enables the execution of model transformations between arbitrary information models.
Finally, an evaluation of the language is presented based on three selected use cases.

XI

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1 Einleitung

Die Industrie unterliegt einem standigen Wandel, welcher derzeit durch die Digitalisierung
als einem der grofiten Treiber geprégt ist. Es gab im Laufe der Zeit neue Innovationen
oder Technologien, die die Art und Weise, wie Produkte hergestellt werden, verandert
haben. Erfolgt ein sprunghafter Wandel statt, wird dies industrielle Revolution genannt
und ein neues Industriezeitalter wird begonnen. Bis heute fanden insgesamt drei industri-
elle Revolutionen statt. Die erste industrielle Revolution wurde durch die Einfithrung der
Dampfmaschine ausgelost, die die Nutzung von Wasser- und Dampfkraft fiir mechanische
Produktionsanlagen ermoglichte. Durch die Nutzung von elektrischer Energie konnte die
Massenfertigung und der Einsatz des FlieSbands realisiert werden. Dies wird aus heutiger
Sicht als zweite industrielle Revolution betrachtet. Die dritte und bisher letzte industrielle
Revolution wurde mit dem Beginn der Nutzung von elektronischen Komponenten in der
Automatisierungstechnik, die spéter auch programmierbar wurden, eingelautet. Hierdurch
konnten einzelne Arbeitsschritte, die bisher von einem Menschen erledigt wurden, durch
eine Maschine iibernommen werden.

Um die deutsche Industrie auf dem Weg zu einer vierten industriellen Revolution zu un-
terstiitzen, wurde im Rahmen der Hightech-Strategie der Bundesregierung das Zukunfts-
projekt ,Industrie 4.0¢ initiiert. Durch die Informationstechnologie (IT) getrieben sollen
bei der vierten industriellen Revolution die reale und die virtuelle Welt zusammenwachsen.
,Die industrielle Produktion [soll] mit Hilfe modernster Informations- und Kommunika-
tionstechnik auf intelligente Weise“ verzahnt und die Vereinigung von ,GroBproduktion
mit individuellen Kundenwiinschen, kostengiinstig und in hoher Qualitéit® erreicht werden

1.

Ein Ergebnis des Zukunftsprojekts ist das Konzept des Asset-bezogenen Informationszu-
griffs. Als Asset wird eine ,Entitét, die einen wahrgenommenen oder tatsichlichen Wert
fiir eine Organisation hat und der Organisation gehort oder von ihr verwaltet wird® [2]
aufgefasst. Diese Entitdten konnen sowohl physische als auch virtuelle Betrachtungsge-
genstande sein, wie z. B. Sensoren, Aktoren, Plane oder Handbticher. Bisher wurden In-
formationen in dem IT-System abgelegt, in dem diese angefallen sind, und es findet in der
Regel keine Ubertragung zwischen verschiedenen I'T-Systemen statt. Dies betraf vor allem
den Informationstibergang zwischen zwei Gewerken, wodurch die Industrie ,an fehlender
Durchgéngigkeit ihrer Anlagen- und Prozessdaten® [3] leidet. Mit Hilfe des Asset-bezogenen
Informationszugriffs soll zukunftig die Moglichkeit bestehen, Informationen iber ein As-
set iber einen definierten Zugriffspunkt aus den verschiedensten Gewerken abzurufen. Ein
Asset erhélt somit eine digitale Reprasentanz, tiber die die Informationen des gesamten
Lebenszyklus eines Assets abrufbar sind.

Da verschiedene Stakeholder auf die Asset-Informationen zugreifen sollen und jeweils un-
terschiedliche Sichtweisen auf die Modellierung und Verkniipfung dieser Informationen ha-

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1 FEinleitung

ben, besteht die Notwendigkeit einzelne Informationsmodelle fir die jeweils bendtigten
Teilaspekte zu definieren. Folglich muss die Moglichkeit bestehen, ein vollstandiges so-
wie voll umfassendes digitales Modell eines Assets durch einzelne Stakeholder-orientierte
Teilmodelle bereitzustellen. Das im Rahmen von Industrie 4.0 entwickelte Konzept der
Verwaltungsschale unterstiitzt diese Art der Modellierung [4-6]. Ahnliche Ansitze finden
sich auch in aktuellen Kommunikationsprotokollen, z. B. die Companion Specifications in
OPC Unified Architecture (OPC UA) [7].

1.1 Motivation und Zielsetzung

Fiir eine bessere Interoperabilitit ist die Entwicklung eines einheitlichen Metamodells die
Grundvoraussetzung. Derzeitig spezifizierte bzw. bereits existierende Modelle sind z. B. die
Verwaltungsschale [4-6], das Digital Factory Framework [8-10] oder die Thing Description
des World Wide Web Consortium (W3C) [11, 12]. Im néchsten Schritt sollen moglichst viele
Informationsmodelle, basierend auf dem spezifizierten Datenmodell, standardisiert werden.
Da jedoch die Stakeholder sowohl aus den unterschiedlichsten Gewerken Informationen als
auch fiir die konkreten Anwendungsfille jeweils andere Kombination bzw. Darstellung der
Informationen benétigen, werden zwangslaufig sehr viele verschiedene Informationsmodelle
entstehen. Dabei kénnen sich Informationsmodelle tiberschneiden und ggf. mehrere Infor-
mationsmodelle fiir den gleichen Use Case von unterschiedlichen Organisationen existieren.
Dabei konnen die gleichen Informationen in den jeweiligen Informationsmodellen jedoch
auch unterschiedlich modelliert sein. Beispielsweise kann im Metamodell die Moglichkeit
bestehen, einen Wertebereich entweder als eigenstéindiges Objekt oder durch zwei Objek-
te, die jeweils die Ober- und Untergrenze darstellen, zu modellieren. Beide Darstellungen
enthalten dabei semantisch die gleichen Informationen.

Ein Vergleich bestehender Informationsmodelle aus dem Bereich der Verwaltungsschale
zeigt diese Problematik in der Praxis auf. Im November 2020 wurden die ersten zwei Infor-
mationsmodelle (Teilmodell Templates) [13, 14] veroffentlicht. Dabei wurde z. B. das Merk-
mal ,ManufacturerName* auf unterschiedliche Weise modelliert. In [13] wird ein Property-
Element mit dem Datentyp ,string” und einer Referenz auf eine semantische Beschrei-
bung aus dem Vokabular unter der URI ,admin-shell.io* verwendet, wéahrend in [14] ein
MultiLanguageProperty-Element mit dem Datentyp ,langString® sowie einer Referenz auf
das Vokabular von ECLASS! verwendet wird. Beide Elemente stellen semantisch jedoch die
gleichen Informationen dar. Da bereits bei den ersten zwei veroffentlichten standardisierten
Informationsmodellen das Problem der unterschiedlichen Modellierung dquivalenter Infor-
mationen auftritt, ist davon auszugehen, dass bei weiteren Informationsmodellen - und
besonders bei firmenspezifischen Informationsmodellen - dieses Problem zunimmt.

Dem Problem kann mit einer einheitlichen und gleichen Modellierung entgegengewirkt
werden, indem z. B. gleiche Merkmale in tibergeordnete Informationsmodelle ausgelagert
werden. Aktuell erfolgt dies in der Regel durch Menschen in Harmonisierungsgruppen, z. B.
bei OPC UA fiir die Companion Specifications [7]. Fiir eine geringe Anzahl von Informa-
tionsmodellen ist dies ein guter Ansatz. Steigt jedoch die Anzahl dhnlicher Informations-

1WVV\V4CCIELSS4CU

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1.1 Motivation und Zielsetzung

modelle, nimmt die Komplexitét der Harmonisierung zu und ist wahrscheinlich nicht mehr
manuell realisierbar.

Zuséatzlich werden im Zuge von Anforderungsianderungen neue Versionen der einzelnen
Informationsmodelle entstehen. Dabei konnen einzelne Elemente gedndert, geloscht oder
hinzugefiigt werden. Spétestens hier kann der Ansatz der Harmonisierung nicht mehr ge-
nutzt werden, sondern es bedarf einer Moglichkeit Informationen automatisch aus élteren
Versionen in neuere Versionen, und umgekehrt, zu tiberfithren.

Die Integration von Komponenten in Module oder ganze Anlagen ist ein weiterer Anwen-
dungsfall, in dem automatisierte Konzepte fiir die Zusammenfithrung von Informationen
benotigt werden. Zukiinftig werden sowohl fiir die einzelnen Komponenten als auch fiir
das Modul bzw. die Anlage eigene Informationsmodelle vorliegen, wobei die Informationen
zum Teil semantisch identisch sein werden oder durch eine Aggregation erzeugt werden
kénnen [15]). Dem Autor ist kein Ansatz bekannt, der fiir einen Integrator oder Betreiber
diese Zusammenfithrung der Informationen automatisiert und generisch fiir alle Informa-
tionsmodelle ermoglicht.

Somit werden Konzepte benétigt, die diese Probleme softwaretechnisch 16sen. Es existie-
ren bereits erste Ansétze aus dem Bereich des Semantic Webs oder des maschinellen Ler-
nens, die die semantische Gleichheit von zwei oder mehr Objekten iiber Ontologien oder
sprachliche Vergleiche herausfinden sollen [16-18]. Zusatzlich besteht die Moglichkeit, Be-
rechnungsvorschriften zwischen Objekten zu modellieren, um z. B. physikalische Zusam-
menhénge abzubilden. Jedoch ist zum Zeitpunkt dieser Arbeit kein Konzept bekannt, wie
Informationsmodelle moglichst schnell und effizient auf Basis dieser Informationen oder
durch Wissen von Fachexperten erstellt werden koénnen.

Im Rahmen dieser Arbeit wird daher ein Konzept vorgestellt, das Fachexperten die
Moglichkeit bietet, semantische Regeln fiir die Erstellung von Instanzen dieser Informati-
onsmodelle auf Basis von Instanzen bestehender Informationsmodelle zu definieren. Die-
se Regeln konnen ausgefithrt werden sofern ein neues bzw. angefragtes Informationsmo-
dell benétigt wird. Hierfiir wird das Konzept der Modelltransformation genutzt. Verein-
facht ermoglicht die Modelltransformation folgendes: eine oder mehrere bestehende In-
stanzen von vorgegebenen Informationsmodellen werden eingelesen. Auf diesen werden
Regeln ausgefiihrt und als Ergebnis wird eine neue Instanz eines Informationsmodells er-
stellt. Eine Regel wird zwischen den Informationsmodellen definiert und konnte wie folgt
lauten: ,Erstelle ein neues Datenelement B im neuen Informationsmodell /M_2 mit den
Informationen aus dem Datenelement A des Informationsmodells IM_1% Damit solche
Regeln definiert werden kénnen, miissen standardisierte Informationsmodelle? vorliegen,
die fiir verschiedene Asset-Représentationen instanziiert werden. In der objektorientier-
ten Modellierung konnen diese Informationsmodelle als Typen bzw. Templates verstanden
werden. Fiir eine bessere Unterscheidung werden die konkreten Informationsmodelle als
Informationsmodell-Instanzen und die zugehorigen standardisierten Informationsmodelle
als Informationsmodell-Templates bezeichnet. Die Regeln, um aus einer oder mehreren
Informationsmodell-Instanz(en) eine andere Informationsmodell-Instanz zu erzeugen, wer-
den in sogenannten Transformations-Definitionen zusammengefasst.

2Firmenspezifische Informationsmodelle zihlen auch als standardisierte Informationsmodelle.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1 FEinleitung

Die zentrale Fragestellung dieser Arbeit ist, wie aus bestehenden Informationen in be-
reits existierenden Informationsmodell-Instanzen, die standardisierten Informationsmodell-
Templates folgen, neue benétigte bzw. angefragte Informationsmodell-Instanzen teilweise
bis vollstdndig generiert werden koénnen.

In Abbildung 1.1 ist ein moglicher Workflow zur Erstellung von Transformations-
Definitionen dargestellt. Ein Fachexperte wahlt zunédchst die Informationsmodell-
Templates aus, zwischen denen Regeln definiert werden sollen. Danach werden diese hin-
sichtlich ihrer enthaltenen Informationen analysiert und die Regeln zur Erstellung einer
neuen Informationsmodell-Instanz festgelegt. Hierfiir kénnen auch externe Systeme genutzt
werden, die bei der Erstellung der Regeln unterstiitzen, z. B. mit Hilfe von Methoden der
kiinstlichen Intelligenz oder Reasoning-Methoden fiir Ontologien. Diese werden anschlie-
Bend in einer Transformations-Definition beschrieben. Um diese von anderen Personen oder
Applikationen zu verwenden, erfolgt eine Ablage in eine Datenbank. Fiir eine bessere Suche
koénnen zusétzlich noch Meta-Informationen mit abgespeichert werden.

Erstellen von Transformations-Definitionen fiir
Informationsmodelle

1) Analyse der Regeldefinition,
7 enthaltenen 2) Erstellen um Informationen

Informationen ‘j derL. von IM-T 1 und
H IM-T 2 nach IM-T3

zu transformieren
471 3) Sichern

1 derTD

Definition
des IM-T 1

Datenbank
fur TD

IM-T: Informationsmodell-Template
TD: Transformations-Definition

Abbildung 1.1: Erstellung von Transformations-Definitionen fiir Informationsmodelle (nach

[19])

Abbildung 1.2 zeigt die Anwendung von Transformations-Definitionen. Als erstes werden
vorhandene Informationsmodell-Instanzen des Assets (griin und rot dargestellt) geladen.
Ein Nutzer oder die Applikation gibt anschliefend ein Ziel-Informationsmodell-Template
vor (in der Abbildung orange schraffiert dargestellt). In der Datenbank wird nach passen-
den Transformations-Definitionen gesucht, um diese dem Anwender oder der Applikation
vorzuschlagen. Nachfolgend wird eine dieser Transformations-Definitionen ausgewéhlt und
die (eigentliche) Modelltransformation gestartet, welche zur Erstellung der gewtinschten
Informationsmodell-Instanz (orange dargestellt) fiihrt.

Um diese Workflows zu erreichen, wird eine Sprache fiir die Definition der semantischen
Regeln innerhalb der Transformations-Definition benotigt. Im Rahmen dieser Arbeit wird
die Vorgehensweise fiir die Definition einer neuen Sprache sowie eine konkrete Sprache fir
diesen Anwendungsfall vorgestellt, mit Hilfe derer diese Regeln formuliert werden. Einige
der zu erfillenden Anforderungen sind:

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1.2 Gliederung

Anwenden von Transformations-Definitionen fiir
Informationsmodelle

2) Ziel-IM- Tvorgeben

1) Laden von IM-|
a4 | OOI 5) Vorschlag von . I

- passenden TDs
7) Durchfiihren der
Transformationen , 6)Auswahl einer TD und
Start der Transformation
3) Finden von _i7j| 4)Lladenvon
passenden TDs .. passenden TDs

IM-T: Informationsmodell-Template

IM-I: Informationsmodell-Instanz Datenbank 1
TD: Transformations-Definition fiir TDs EL
WEE M- eines IM-T N B!

Abbildung 1.2: Anwendung von Transformations-Definitionen fiir Informationsmodelle (nach

(19])

o Die Syntax der Sprache soll einfach zu verstehen sein.

o Die Anzahl der Sprachelemente soll so gering wie moglich, aber so komplex wie notig
sein.

» Die Sprache soll auf den aktuellen Konzepten bzw. Modellen der Wissenschaft basie-
ren.

e Die Sprache soll die Sprachelemente des Metamodells der Informationsmodelle nut-
zen.

Im Zuge der Standardisierung wurden verschiedene Modellierungen fiir Asset-
Informationen und deren Austausch entwickelt®. Das Konzept der Verwaltungsschale
bzw. Asset Administration Shell wird derzeit in Deutschland als einer der erfolgverspre-
chendsten Ansdtze gehandelt. Aufgrund dessen wird das Konzept fiir die Elemente des
Verwaltungsschalen-Metamodells konkretisiert und anhand diesem evaluiert.

1.2 Gliederung

In dieser Arbeit wird ein Konzept zur Loésung fehlender semantischer Interoperabi-
litat, basierend auf unterschiedlicher Modellierung von Informationen, beschrieben. Zur
Erlauterung der Grundlagen werden zunéachst die Themen ,Sprache“, ,Modell“, ,Metamo-
dell* und ,,Modellsprachen® vorgestellt (Kapitel 2). Zusétzlich wird die Beziehung zwischen
Typen und Instanzen sowie der aktuelle Stand der Identifikation von Objekten aufge-
zeigt.

3Ein Vergleich aktueller Standardisierungsvorhaben ist in Kapitel 6 gegeben.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
tersagt, mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1 FEinleitung

Nachfolgend wird die Modellierungssprache Object Constraint Language (OCL) erldutert,
die als Basis des vorgestellten Konzepts dient (Kapitel 3). Fiir die vorliegende Arbeit er-
folgt zunéchst eine Kurzeinfithrung in die relevanten Sprachelemente, bevor die abstrakte
Syntax von BasicOCL erlautert wird. Aufbauend darauf werden die Stufen der Interope-
rabilitat vorgestellt und aktuelle Ansétze diskutiert (Kapitel 4), wobei der Fokus auf der
semantischen Interoperabilitat liegt.

Einer dieser Ansétze ist die Nutzung der Modelltransformation, die fiir das Losungskonzept
dieser Arbeit die Grundlagen schafft (Kapitel 5). Zunéchst wird das Grundkonzept vorge-
stellt. Anschliefend werden Merkmale definiert, nach denen sich Modelltransformationen
klassifizieren lassen. Im Anschluss erfolgen verschiedene Umsetzungsansétze, bevor Trans-
formationssprachen und zugehorige -systeme sowie ein Vorgehen zur Entwicklung bzw.
Auswahl einer solchen Sprache beschrieben werden.

Um das Konzept anwendungsnaher zu beschreiben, werden aktuelle Modellierungsansétze
fiir Asset Information vorgestellt (Kapitel 6). Eine Eingrenzung erfolgt durch mafgeblich
diskutierte Ansétze der Standardisierung und Forschung. Aus der IEC wird das Digital
Factory Framework, von der Plattform Industrie 4.0 die Verwaltungssschale und vom W3C
die Thing Description beschrieben. Eine Gegeniiberstellung und eine Bewertung schlieSen
dieses Kapitel ab.

Als Resultat wird der Ansatz der Verwaltungsschale in dieser Arbeit weiterverfolgt (Ka-
pitel 7). Der Fokus liegt auf den verschiedenen Erscheinungsarten und der Nutzung von
Teilmodellen fiir die semantische Interoperabilitdt. Zum Abschluss werden offene Frage-
stellungen und mogliche Losungsoptionen vorgestellt. Als ausgewéahlte Losung wird die
Modelltransformation verwendet.

Im nachfolgenden Kapitel 8 folgt die Anforderungsanalyse. Es werden die verschiedenen Ar-
ten der Transformation, die fiir die semantische Interoperabilitdt notwendig sind, erldutert.
Darauf aufbauend wird eine Klassifikation mit den Merkmalen aus Kapitel 5 vorgenommen
und die Anforderungen an eine Transformationssprache beschrieben. Im Anschluss erfolgt
eine Evaluation bestehender Transformationssprachen hinsichtlich dieser Anforderungen.

Basierend auf der Anforderungsanalyse wurde ein Metamodell fiir eine neue Transformati-
onssprache entwickelt (Kapitel 9). Fiir die einfache Nutzung im Bereich von Verwaltungs-
schalen wurde eine Abbildung dieser Sprache auf das Konzept der Verwaltungsschale inkl.
der Nutzung der Sprache zur vereinfachten Erzeugung von Regeln definiert (Kapitel 10).

Eine Beschreibung der softwaretechnischen Umsetzung des Transformationssystems zeigt
die einfache Realisierung der Sprache (Kapitel 11). Anschlieffend werden anhand von drei
verschiedenen Anwendungsfillen das Konzept und die Umsetzung evaluiert und Empfeh-
lungen fiir die Nutzung gegeben (Kapitel 12). AbschlieBend erfolgt eine Zusammenfassung
sowie ein Aufzeigen der nichsten Schritte (Kapitel 13).

1.3 Eigene Vorveroffentlichungen

Wiéhrend der Forschung zu dieser Arbeit wurden verschiedene Ergebnisse bereits publiziert.
Einige der Abschnitte aus diesen Veroffentlichungen werden in dieser Arbeit eins zu eins

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

1.3 Eigene Vorveréffentlichungen

wiederverwendet und andere dienen als Grundlage. Aus diesem Grund folgt eine kurze
Vorstellung der Veroffentlichungen:

DIN SPEC 92000 als Enabler fiir Plug and Produce

In dem ATP-Beitrag [20] werden die Neuerungen der DIN SPEC 92000 vorgestellt und
deren Nutzung fiir das Konzept des Plug and Produce. Im Beitrag werden zunéchst die
Anforderungen des Konzepts Plug and Produce beschrieben. Danach folgt ein Uberblick
iber die aktuelle Normungslandschaft fiir die Eigenschaftsmodellierung, welcher in Kapitel
6 tbernommen wurde. Im Beitrag folgt danach eine Beschreibung der Inhalte der DIN
SPEC 92000. In Form von Use Cases wird die Anwendung der neuen Konzepte fiir die
Nutzung des Konzepts Plug and Produce aufgezeigt. Eine technische Realisierung zeigt
abschliefend die Umsetzbarkeit.

Konzept fiir die automatisierte Erstellung von Verwaltungsschalen-
Teilmodellen mit Hilfe doménenspezifischer Transformationssprachelemente

Der Automation-Beitrag [19] zeigt, wie das Konzept der Modelltransformation fir die auto-
matische Erstellung von Verwaltungsschalen-Teilmodellen genutzt werden kann. Zunéchst
wird allgemein das Konzept der Modelltransformation auf die Begriffswelt der Verwaltungs-
schale konkretisiert. Danach wird der Unterschied zwischen syntaktischer und semantischer
Transformation beschrieben. Dieser Abschnitt ist in Kapitel 8.1 ibernommen worden.
Anschliefend folgt im Automation-Beitrag eine Kurzvorstellung tiber doménenspezifische
Transformationssprachelemente. Der Beitrag schliet mit zwei Workflows ab: Einer fiir die
Erstellung von Transformationsdefinitionen und einer fiir die Anwendung dieser im Kontext
von Verwaltungsschalen-Teilmodellen. Eine abstraktere Beschreibung dieser Workflows fiir
allgemeine Informationsmodelle ist bereits in Abschnitt 1.1 gegeben.

Model Transformation for Asset Administration Shells

Im IECON-Beitrag [21] wird beschrieben, wie eine Transformationssprache entwickelt wird
und wie diese fiir das Konzept der Verwaltungsschale aussehen kann. Es wird zunéchst ein
Leitfaden zur Erstellung bzw. Auswahl einer Transformationssprache beschrieben. Dieser
besteht aus drei Schritten: Klassifikation der Transformation, Anforderungen an die Trans-
formationssprache und Design einer Transformationssprache. Inhalte dieser Vorgehenswei-
se werden in Abschnitt 5.4 wiederverwendet. Anschlieend wird im IECON-Beitrag diese
Vorgehensweise fiir die Entwicklung einer Transformationssprache fiir Verwaltungsschalen
angewendet. Diese Vorarbeit wird in Abschnitt 8.3 weiter detailliert. Abschliefend wird
im IECON-Beitrag ein erster Entwurf der Transformationssprache AASMTL vorgestellt.
Dieser Entwurf diente als Basis fiir die Kapitel 9 und 10.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2 Modellierung

In diesem Kapitel werden die Grundlagen der Modellierung erklért. Zunichst werden die
Grundlagen einer Sprache und der zugehorigen Metasprache vorgestellt. Danach wird der
Begriff des Modells sowie die Beziehung zur Sprache betrachtet. Es werden Analogien auf-
gezeigt und der Metamodellbegriff definiert. Danach wird der Begriff der Modellsprache
detaillierter beleuchtet und die verschiedenen Eigenschaften, nach denen sich Modellspra-
chen klassifizieren lassen, beschrieben. Den Abschluss bildet eine Unterscheidung von Ty-
pen und Instanzen sowie die Identifikation von Objekten.

2.1 Sprache und Metasprache

Um Aussagen tiber Eigenschaften und Relationen zwischen Betrachtungsgegenstanden tref-
fen zu konnen, werden Begriffe und Satze benétigt. Damit diese von verschiedenen Be-
nutzern einheitlich verstanden werden, wird eine Sprache benotigt. Eine Sprache ist ein
System von Zeichen und definiert Regeln zur Verwendung dieser [22, 23]. Wird die Sprache
selbst zum Betrachtungsgegenstand, wird von Sprache der Sprache gesprochen. Um diese
zu unterscheiden, werden die Begriffe der Objekt- und Metasprache eingefithrt [24]. Als
Objektsprache wird die zu betrachtende Sprache definiert. Die Sprache, in der die Un-
tersuchung erfolgt, wird als Metasprache bezeichnet [25]. Dieses Konstrukt kann rekursiv
angewendet werden, sodass die Metasprache wiederum zur Objektsprache wird und eine
eigene Metasprache besitzt. Dieses Vorgehen kann in einem Ebenen-Diagramm dargestellt
werden. Dieses beginnt auf der untersten Ebene mit der Objektsprache, darauf folgt die
Metasprache, darauf die Metametasprache (s. Abbildung 2.1).

2.2 Modell und Metamodell

Fiir den Begriff Modell existieren diverse Definitionen: In [27] wird Modell als ,die Abbil-
dung von Objekten, Eigenschaften oder Relationen eines bestimmten Bereichs der objekti-
ven Realitdat oder einer Wissenschaft auf einfachere, iibersichtlichere materielle Strukturen
desselben oder eines anderen Bereichs® definiert. Das [40-Glossar beschreibt ein Modell
als eine ,schliissige, ausreichend detaillierte Abstraktion von Aspekten in einem Anwen-
dungsbereich“ [2]. Polke stellt in [28] heraus, dass der Modellbegriff sehr umfassend ist,
aber charakteristische Merkmale vorliegen. Als charakteristisch definiert er, ,,dass Modelle
immer vereinfachende Bilder des Eigenschafts- und Funktionsprofils des zugrundeliegenden
realen Objekts sind und zwar unter einem bestimmten Blickwinkel®. In [29] ist zudem eine
Ubersicht iiber verschieden Definitionen aus dem Bereich der Softwaretechnik gegeben.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2.2 Modell und Metamodell

Ebenen Modelle Modellierungssprachen
in
Ebene 2 Metametamodell ———— Metametasprache
mittelbares unmittelbares
Modell von Modell von
in
Ebene 1 Metamodell > Metasprache
mittelbares unmittelbares
Modell von Modell von
in)
Ebene 0 Modell » Objektsprache
Modell von l
Reale Welt

Abbildung 2.1: Sprachbasierter Metamodellbegriff nach [26]

Bereits Stachowiak hat 1973 in seinem Werk ,Allgemeine Modelltheorie® [30] festgehalten,
dass eine allumfassende Definition nicht moglich ist. Er definiert aber drei Hauptmerkmale
des allgemeinen Modellbegriffs:

o Abbildungsmerkmal: Ein Modell ist immer ein Abbild eines Originals, welches selbst
wieder ein Modell sein kann.

o Verkiirzungsmerkmal: Ein Modell erfasst nur die fiir den jeweiligen Modellerschaffer
relevanten Attribute des Originals.

o Pragmatisches Merkmal: Ein Modell erfiillt einen Zweck und ist nur fiir diesen giiltig
(z.B. nur innerhalb bestimmter Zeitintervalle).

Da keine allgemeine Definition fiir ein Modell existiert, wird fiir diese Arbeit folgende neue
Definition eingefiihrt:

Definition 2.1 (Modell) Ein Modell ist immer eine Abbildung eines Originals fiir einen
bestimmten Zweck, in dem dieses giltig ist, und erfasst nur die fir den Modellerschaffer
relevanten Attribute des betrachteten Originals.

Um Modelle zu erstellen, wird eine Sprache benétigt. Da das Modell der Betrachtungsge-
genstand ist, ist die Sprache eine Objektsprache. Diese wird allgemein als Modellsprache
bezeichnet [31] und in Abschnitt 2.3 néher erldutert. Dabei kann die verwendete Mo-
dellsprache mit Hilfe von Beschreibungsmodellen spezifiziert werden. Diese Modelle werden
als Metamodelle bezeichnet. Ein Metamodell ist demnach ein Beschreibungsmodell fir ein
Modell und ist nach [23] wie folgt definiert werden:

Definition 2.2 (Metamodell) Ein Metamodell ist Modell eines Modells, wobei es sich
bei dem tbergeordneten Modell um ein sprachliches Beschreibungsmodell handelt, dass die
Sprache, in der das untergeordnete Modell formuliert ist, abbildet.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2 Modellierung

Wendet man das Prinzip der Ebenentheorie auf die Modellbildung an, erhélt man analog
dazu Metamodelle und Metametamodelle. Dieses Vorgehen der Konstruktion solcher Me-
tamodelle wird in der Software-Entwicklung auch als Metamodellierung bezeichnet [32].
Werden die Modellsprache und die Modelle hierarchisch strukturiert und in Relation zu-
einander gesetzt, so ergibt sich, dass zu jedem Metamodell und Metametamodell auch
eine Metasprache und eine Metametasprache existiert. Das Metamodell entspricht dabei
unmittelbar der Objektsprache und durch die Vorgabe der Sprachelemente mittelbar dem
Modell. Der Zusammenhang zwischen Modellen und Modellierungssprachen ist in Abbil-
dung 2.1 dargestellt. Da verschiedene Arten von Modellierungssprachen existieren, werden
deren Eigenschaften im néchsten Abschnitt genauer beschrieben.

2.3 Modellsprachen

Eine Modellsprache beschreibt die Darstellung der nutzbaren Elemente und die Beziehun-
gen zwischen diesen in einem Modell. Dafiir werden das Vokabular und die Grammatik,
die die Ersteller und Nutzer bei der Modellierung eines Modells benutzen miissen, festge-
legt. Dadurch wird ein einheitliches Verstandnis erzeugt und Maschinen durch die in der
Modellsprache definierte Semantik der Modellelemente in die Lage versetzt, die Modelle
weiter zu verarbeiten [33]. Ebenso wird explizit festgelegt, welche Informationen dargestellt
und welche aufgrund fehlender Konzepte in der Modellsprache nicht dargestellt werden
konnen.

Modellsprachen kénnen hinsichtlich ihrer Nutzer und ihrer Darstellungsform klassifiziert
werden. Die Hauptnutzer konnen Menschen und Maschinen sein. Dies bedeutet, dass Mo-
dellsprachen entweder fiir Maschinen oder fiir eine intuitive Nutzung durch den Menschen
entwickelt werden. Hinsichtlich der Darstellungsform kénnen grafische und Zeichen-basierte
Modellsprachen unterschieden werden [34].

Um eine Modellsprache zu entwickeln, muss zunéchst die Syntax definiert werden. Es wird
zwischen konkreter und abstrakter Syntax unterschieden [32, 35].

Die konkrete Syntax definiert die verwendbaren Symbole. Sie wird auch Notation genannt
[34]. Als Beispiele fiir die konkrete Syntax einer textuellen Sprache kénnen die Program-
miersprachen C [36] oder Python® genannt werden. Dazu werden die Zeichen definiert, die
nach bestimmten Mustern zu linearen Zeichenketten verkniipft werden kénnen (s. Beispiel
2.1).

Beispiel 2.1: Verschiedene konkrete Syntaxen einer Addition
2+ 3

(2 + 3)

(+ 2 3)

die Summe von 2 und 3

=W N =

Fiir rein grafische Sprachen werden Linien, Pfeile, Rechtecke oder andere Symbole verwen-
det. Diese bilden in der Regel einen Graphen. Ein klassischer Vertreter dieser Sprachkatego-
rie ist das Petri-Netz [37, 38] (s. Abbildung 2.2). Es gibt aber auch Mischformen, die zu den

Thttps://www.python.org/

10

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2.3 Modellsprachen

Placel

Transitionl

Place3 Place3

Abbildung 2.2: Konkrete Syntax eines Petri-Netzes

graphischen Symbolen textuelle Sprache verwenden, z. B. Rechtecke mit Text-Elementen,
wie sie in Unified Modeling Language (UML)-Klassendiagrammen [39] verwendet werden.
Die konkrete Syntax ist die Darstellung, die ein Modellierer im Modellierungswerkzeug
sieht. Die abstrakte Syntax hingegen abstrahiert die konkrete Syntax auf die Modellie-
rungskonzepte und deren Bezichungen. Sie definiert dafiir abstrakt die in der konkreten
Syntax nutzbaren Symbole [32]. Diese und das zugehorige Datenformat sind dem Modellie-
rer meistens verborgen. Fiir textuelle Sprachen werden meistens abstrakte Grammatiken
genutzt. Bei den grafischen Sprachen werden die in Abschnitt 2.2 eingefithrten Metamo-
delle verwendet. Eine Sprache hat immer genau eine abstrakte Syntax, kann aber mehr als
eine konkrete Syntax besitzen. Eine abstrakte Syntax fiir die konkreten Syntaxen aus dem
Beispiel 2.1 ist in Beispiel 2.2 dargestellt.

Beispiel 2.2: Beispiel fiir abstrakte Syntax einer Addition
1|2 plus 3

Fiir die konkrete Syntax des Petri-Netzes aus Abbildung 2.2 kénnte die abstrakte Syntax
wie in Abbildung 2.3 dargestellt aussehen.

Im zweiten Schritt wird die Semantik der Sprache definiert. Diese beschreibt die Bedeutung
der nutzbaren Syntaxsymbole und syntaktischer Konstrukte. Zusétzlich wird der Begriff
der statischen Semantik [32, 41] definiert, welche die Wohlgeformtheitskriterien der Sprache
festlegt. Diese wird in der Regel durch eine Reihe von Einschrankungen, wie z. B. des
Wertebereichs oder der Beziehungen zwischen Elementen, festgelegt [32]. Betrachtet man
den Zusammenhang aus Abbildung 2.1, beschreibt ein Metamodell die abstrakte Syntax
sowie die statische Semantik.

Die Definition der Syntax und Semantik kann durch eine informale, semi-formale oder
formale Sprache erfolgen [41]. Als formal gilt eine Sprache, die eine prézise, eindeutig fest-
gelegte, mathematisch fundierte und somit widerspruchsfreie Syntax und Semantik besitzt.

11

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2 Modellierung

PetriNet

name: string

+nodes \/ 0.* Leource +arcs \[/ 0.*

+outgoing
1 0.* Arc
name: string 1 0.* |- weight: int
+target +ingoing

Transition Place

Abbildung 2.3: Abstrakte Syntax eines Petri-Netzes nach [40]

Dies wird z. B. durch kontextfreie Grammatikdefinitionen ermoéglicht. Bei einer informa-
len Sprache ist nur die Syntax und nicht die Semantik definiert. Die Interpretation einer
Sprachanwendung obliegt dem Betrachter, womit keine Priifbarkeit moglich ist (z. B. eine
natiirliche Sprache). Als Mischform gilt die semi-formale Sprache, die nicht bewiesenerma-
Ben eindeutig und widerspruchsfrei ist, aber einen nachvollziehbaren formalen Charakter
hat, z. B. Metamodelle. Die Beschreibungsform kann auch zwischen der Syntax und der
Semantik wechseln. Beispielsweise wird die abstrakte Syntax einer Modellsprache meistens
semi-formal durch eine graphische Notation beschrieben [41]. Die zugehorige Semantik
wird jedoch fast immer durch natiirliche Sprache definiert, da versucht wird, die Anzahl
an graphischen Symbolen maoglichst gering zu halten [42].

Sprachen konnen in universelle (General Purpose Language (GPL)) und
doménenspezifische Sprachen (Domain Specific Language (DSL)) unterschieden wer-
den. Eine universelle Sprache definiert Sprachelemente, die nicht fiir eine konkrete
Domiéne zugeschnitten sind. Sie koénnen somit fiir verschiedenste Problemstellungen
genutzt werden. Klassische Vertreter sind die Programmiersprachen, wie C oder Java,
Datenaustauschmodelle, wie XML oder JSON, oder Modellierungssprachen, wie UML.
Dem entgegen werden doménenspezifische Sprachen fiir ein Anwendungsgebiet erstellt
und bilden die dort bendtigten Sprachelemente in der doménenspezifischen Begriffswelt
ab [43, 44]. Einem Experten seines Anwendungsgebiets wird dadurch erméglicht, sein
Wissen leichter und verstandlicher auszudriicken sowie zu nutzen. Klassische Vertreter
sind doménenspezifische UML-Modelle oder XML-Schemata sowie die Structured Query
Language (SQL) [45]. DSL kénnen sowohl neu definiert? als auch auf Basis einer GPL
fir eine Anwendungsdomine spezialisiert werden® [46]. Bei einer Neuerstellung muss
die komplette Werkzeugkette (z.B. Editoren, Parser, Validatoren etc.) neu entwickelt
werden. Dies ist bei der Erweiterung oder Konkretisierung einer GPL nicht notwendig, da
viele Tools der GPL wiederverwendet werden konnen. Die in dieser Arbeit betrachteten
Informationsmodelle (s. Kapitel 6) sind DSL, die auf der UML basieren.

2Nach [43] werden sie dann externe DSL genannt.
3Die GPL wird dann zur Metasprache dieser Sprache und nach [43] interne DSL genannt.

12

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2.4 Typ und Instanz

2.4 Typ und Instanz

In diesem Abschnitt werden die Begriffe Typ und Instanz fir diese Arbeit sowie die Be-
ziehungen zwischen diesen definiert. Im Bereich der Semantik und Wissensprasentation
(Informations- und Datenmodellierung) sowie der objektorientierten Modellierung werden
semantische Netze aus Knoten und Kanten erstellt. Als Knoten wird ein Objekt, wel-
ches einen Begriff oder Konzept darstellt, und als Kante eine Relation zwischen Objekten
verstanden. Ein klassischer Vertreter ist das Entity-Relationship-Modell. Objekte werden
zusétzlich weiter in Typen und Instanzen konkretisiert. In der Literatur existieren unter-
schiedliche Definitionen fiir beide Begriffe, jedoch sind die Grundaussagen dieselben. Fir
diese Arbeit werden die Definitionen aus dem Industrie 4.0 Glossar [2] genutzt (wobei
Objekt und Entitdt synonym verwendet werden*):

Definition 2.3 (Instanz) FEine Instanz ist eine konkrete Entitit [bzw. Objekt], die [bzw.
das] die Merkmale und deren Ausprigungen eines Typs erfillt.“ [2]

Definition 2.4 (Typ) FEin Typ ist eine ,beschreibende Entitit [bzw. Objekt] gekennzeich-
net durch [eine] Menge von gemeinsamen Merkmalen und deren Auspragungen.“ [2]

Fine Instanz kann dabei nicht ohne einen Typen existieren. Dies bedeutet jedoch nicht,
dass der Typ immer explizit modelliert bzw. implementiert sein muss.

Um Objekte miteinander zu verbinden, werden Beziehungen zwischen diesen definiert. In
Bezug auf Typen und Instanzen kénnen diese Beziehungen in drei Arten unterschieden
werden: Beziehungen zwischen Typen, Beziehungen zwischen Instanzen und Beziehungen
zwischen Typen und Instanzen. An dieser Stelle werden zwei fiir diese Arbeit wichtige
Beziehungen vorgestellt:

Is-Instance-Of-Beziehung: Die Is-Instance-Of-Beziehung ist eine Beziehung zwischen
einem Typ A und einer Instanz B [48]. Die Beziehung sagt aus, dass die Instanz B ein
konkretes Objekt dieses Typs A ist und alle Merkmale und deren Ausprigungen erfiillt.

Is-Subtype-Of-Beziehung: Die Is-Subtype-Of-Beziehung ist eine Beziehung zwischen
einem Typ A und einem Typ B [48]. Die Bezichung sagt aus, dass der Typ A eine Spezia-
lisierung des Typs B und somit ein Subtyp von B ist. Das bedeutet, dass der Typ A alle
Merkmale und deren Auspragungen von Typ B beibehélt und zusétzlich weitere Merkmale
und Auspragungen enthalten kann.

Die Unterscheidung dieser beiden Beziehungen ist sehr wichtig, da diese auf und zwischen
unterschiedlichen Ebenen in der Metamodellierung auftreten. Wéhrend die Is-Instance-Of-
Beziehung immer zwischen zwei Ebenen auftritt, befindet sich die Is-Subtype-Of-Beziehung
immer innerhalb einer Ebene. Ein Beispiel ist in Abbildung 2.4 dargestellt. Die Klasse Typ
auf oberster Ebene stellt einen Typ dar. Von diesem existieren insgesamt drei Instanzen:
Fahrzeug, Auto und Motorrad. Diese stehen wiederum in einer Beziehung zueinander: Das
Auto und das Motorrad sind Spezialisierungen und somit Subtypen vom Typ Fahrzeug.

“Entitdt wird im Bereich der Datenmodellierung als Begriff benutzt (Entitit und Entitéitstyp) und Objekt
im Bereich der objektorientierten Programmierung (Objekt und Klasse) [47].

13

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2 Modellierung

Auf der untersten Ebene befinden sich die konkreten Instanzen dieser Typen. Es kénnen

nun folgende Aussagen getroffen werden:

o Das Objekt Mein Auto ist eine Instanz des Typs Auto. Es ist somit auch eine Instanz

des Typs Fahrzeug. Es ist aber keine Instanz des Typs Typ.

o Das Objekt Motorrad ist eine Instanz des Typs Typ. Es ist aber keine Instanz von

Fahrzeug, sondern ein Subtyp von diesem.

o Das Objekt Fahrzeug ist eine Instanz des Typs Typ und hat die zwei Subtypen Auto
und Motorrad sowie die beiden Instanzen Mein Auto und Mein Motorrad.

o Das Objekt Typ hat drei Instanzen Fahrzeug, Auto und Motorrad aber keine Bezie-

hung zu den Objekten Mein Auto und Mein Motorrad.

M2
Typ
1 I \
/ «lsinstanceOf»
M1 ; ; .
/ \
«lIsInstanceOf» «lsinstanceOf»
i \
i <7 = "
/ \\
/ «lIsSubtypeOf» «IsSubtypeOf»
! i
IsinstaceOf» «lIsInstanceOf» —
i i
Mo — e |
| 1 |
= -
Mein Mein
Auto Motorrad

Abbildung 2.4: Is-Instance-Of- und Is-Subtype-Of-Beziehung

Weiterhin kann die Is-Instance-Of-Beziehung hinsichtlich ihrer Ausprigung unterschieden
werden. Falls der Typ modelliert wird, kann dies sowohl sehr detailliert und formal als auch
nur durch eine informelle Begriffsheschreibung geschehen. Detailliert und formal wére z. B.
eine Klasse in der objektorientierten Programmierung. Die informelle Begriffsbeschreibung
findet z. B. in der Klassifikation und Wissensmodellierung ihre Anwendung. Folglich ist
auch die Instanziierung der Instanz eines Typs unterschiedlich. Wéhrend bei einer formalen
Beschreibung des Typs (z. B. Klasse in C++) die Instanz genau alle Attribute enthélt, die
der Typ definiert, ist dies bei einer reinen Begriffsbeschreibung nicht der Fall. Hier werden
implizit Eigenschaften beschrieben, die zwischen Typ und Instanz gleich sind, um Instanzen

zu klassifizieren.

14

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

2.5 Identifikation von Objekten

2.5 ldentifikation von Objekten

Um Objekte eindeutig zu identifizieren, werden Namensraume benotigt. Ein Namensraum
definiert einen Bereich, innerhalb dessen jeder Bezeichner nur einmal auftreten darf. Jedes
Objekt besitzt einen solchen Bezeichner und ist somit einem Namensraum zugewiesen. Bei
den Bezeichnern kénnen zwei Arten unterschieden werden: lokal eindeutiger und global
eindeutiger Bezeichner. Ein lokal eindeutiger Bezeichner ist nur innerhalb seines Namens-
raums eindeutig. Ein global eindeutiger Bezeichner ist hingegen weltweit eindeutig. Dies
wird dadurch realisiert, dass global eindeutige Namensrdaume existieren. Um global eindeu-
tige Bezeichner festzulegen, konnen verschiedene Standards angewendet werden. In dieser
Arbeit werden drei Standards genutzt: 1SO 29002-5: Industrielle Automatisierungssyste-
me und Integration - Austausch von Merkmaldaten - Teil 5: Identifikationsschema [49],
RFC 3986: Uniform Resource Identifier (URI) [50] und RFC 4122: A Universally Unique
Identifier (UUID)> [51]. Die Erstellung eines global eindeutigen Bezeichners fiir ein loka-
les Objekt kann durch die Aneinanderreihung der einzelnen Bezeichner aller Vaterobjekte
erfolgen. Das letzte Vaterobjekt muss in der Kette einen global eindeutigen Bezeichner auf-
weisen. Diese Bezeichner konnen je nach Anzahl der tiberlagerten Namensrdume sehr lang
werden, sodass man fiir die konkrete Nutzung auf lokal eindeutige Bezeichner wechselt.

5Auch bekannt als Globally Unique Identifier (GUID).

15

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Graphische Notationen fiir Modellsprachen gewinnen zunehmend an Bekanntheit, da diese
im Vergleich zu textuellen Notationen meistens versténdlicher sind. Jedoch gibt es Schwie-
rigkeiten bei der Modellierung von Bedingungen bzw. Einschrankungen (Constraints). Fur
héufig auftretende Constraints, wie z. B. Kardinalitdten von Assoziationen, wurden graphi-
sche Abktirzungen eingefiihrt [29]. Allerdings lassen sich diese nicht verallgemeinern und
sind ausschlieBlich fiir einen kleinen Satz sehr generischer Constraints moglich. Aus diesem
Grund miissen weitere Bedingungen in einer zugehorigen textuellen Sprache definiert wer-
den. Dies kann durch natiirliche Sprache erfolgen (vgl. Abschnitt 2.3). Da nattirliche Texte
meistens mehrdeutig und zudem nur schwer maschinenverarbeitbar sind, sollte moglichst
eine formale Sprache bevorzugt genutzt werden [52]. Mit OCL existiert eine Sprache, die
es ermoglicht Bedingungen bzw. Einschrankungen formal zu beschreiben.

OCL ist eine universelle, textuell semi-formale Sprache, um unter anderem Invarianten
oder Vor- und Nachbedingungen von Methoden in objektorientierten Modellen formal zu
beschreiben. Die Sprache wurde 1995 urspriinglich von IBM entwickelt und 1997 in die Mo-
dellierungssprache UML integriert [42]. Zudem wurde OCL als Standard von der Object
Management Group (OMG) verdffentlicht und liegt zum Verfassungszeitpunkt dieser Ar-
beit in der Version 2.4 [53] vor.

Zunéchst wurde die Sprache fir die Definition von Constraints in UML genutzt. Schnell
wurde das Potenzial der Sprache erkannt, wodurch OCL zu einer Hauptkomponente in
vielen modellgetriebenen Engineering-Techniken [42] wurde. OCL wird unter anderem in
domaénenspezifischen Sprachen oder fir die Code-Generierung mit Hilfe von Templates
genutzt. Aufgrund der Méglichkeit durch OCL formal komplexe Abfragen auszudriicken,
ist die Sprache mittlerweile auch in vielen Modelltransformationssprachen integriert, wie
z.B. in Query View Transformation (QVT). Der Vorteil von OCL ist, dass die Sprache
auf der Préadikatenlogik aufbaut und diese erweitert [54]. Fiir die Definition der Sprachele-
mente werden aber keine mathematischen Symbole verwendet. Vielmehr werden Elemente
einer natiirlichen Sprache genutzt, weswegen auch Nicht-Mathematiker oder -Informatiker
die Sprachelemente verstehen und nutzen konnen. Zusammengefasst kann OCL fiir eine
Vielzahl von Anwendungen und Arten von Ausdriicken verwendet werden.

Die OCL-Spezifikation [53] definiert die abstrakte Syntax sowie die Semantik der Spra-
che. Die Definitionen sind in Form eines Metamodells sowie durch natiirliche Sprache
beschrieben. Ergénzt wird die Definition durch formal definierte Regeln und Operatio-
nen'. Zusitzlich werden in der Spezifikation auch eine konkrete Syntax der Sprache sowie
mogliche Anwendungsbeispiele gezeigt. Die Sprache erméglicht die Definition von konkre-
ten Ausdriicken, die zur Laufzeit ausgewertet werden konnen. OCL definiert hierfiir ein

!Die Definitionen der Regeln und Operationen werden mit Hilfe der eigenen Sprachelemente definiert.

16

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3.1 Anwendung von OCL

eigenes Typ-System, bestehend aus einfachen Datentypen und Sammlungen?. Das Ergeb-
nis der Auswertung eines Ausdrucks ist immer konform zu einem dieser Typen. Aufgrund
dessen wird OCL als eine typisierte Sprache aufgefasst. Zusétzlich entspricht die Oberklas-
se Class den Typen des Metamodells, fur welches Ausdriicke spezifiziert werden sollen. Mit
Hilfe dieser Ausdriicke kénnen formale und komplexe Abfragen auf eigenen Modellen formu-
liert werden. Lediglich das Anlegen von Objekten eigens definierter Typen ist nicht moglich.
Des Weiteren ermoglichen die Sprachelemente die Definition von Ausdriicken dahingehend,
dass diese keine Seiteneffekte bei der Ausfithrung mit sich bringen. Das bedeutet, dass bei
der Ausfiihrung eines Ausdrucks keine Modifikationen an bestehenden Objekten erfolgen.
Fiir die einfache Erstellung von Ausdriicken sind die Sprachelemente in deklarativer Form
definiert®. Da nicht fiir alle Anwendungsfille alle Sprachelemente benotigt werden, definiert
die Sperzifikation zusétzlich noch BasicOCL, welches ein Minimalset an Sprachelementen
enthalt. Um die Sprache nutzbar zu machen, z. B. in einer konkreten Implementierung,
wird neben der abstrakten Syntax zusétzlich eine konkrete Syntax benétigt. Die Spezifi-
kation [53] definiert selbst eine konkrete Sprache in textueller Form. Eine konkrete Syntax
in graphischer Form ist in [52] vorgeschlagen.

In den néchsten Abschnitten folgt eine Einfithrung in BasicOCL, da die dort beschriebenen
Elemente fiir die vorliegende Arbeit ausreichend sind. Fiir eine vollstdndige Beschreibung
aller Elemente und Operationen wird auf den Standard [53] verwiesen?. Das Kapitel unter-
teilt sich in drei Teilabschnitte. Zunéchst werden Constraints erklart und beschrieben, wie
die Navigation auf Klasseneigenschaften und Operationen mit OCL funktioniert (Abschnitt
3.1). Danach wird in Abschnitt 3.2 die abstrakte Syntax von BasicOCL beschrieben. Diese
unterteilt sich in die Vorstellung des Typ-Systems und der OCL-Ausdriicke. Abschlieflend
wird die konkrete Syntax von OCL kurz beschrieben, wobei der Fokus auf den fiir diese
Arbeit benotigten Sprachelementen liegt (Abschnitt 3.3).

3.1 Anwendung von OCL

OCL stellt Sprachelemente zur Definition von Ausdriicken zur Verfiigung. Diese kénnen un-
terschiedlichster Art sein, z. B. Variablenausdriicke, If ThenElse-Ausdriicke oder Ausdriicke
zum Zugriff auf Attribute oder Operationen von Objekten®. Sofern eine Einschrinkung in
einem UML-Modell benétigt wird, kénnen die OCL Sprachelementen genutzt werden. Die-
se Stellen definieren zwangslaufig auch die Semantik fiir das Ergebnis des Ausdrucks. Der
Ausdruck ist wiederum durch die Stelle einem konkreten Kontext zugewiesen, innerhalb
dessen er auszuwerten ist. OCL definiert einige Standardstellen, an denen OCL-Ausdriicke
genutzt werden konnen. In Abbildung 3.1 sind zwei dieser Stellen stellvertretend gezeigt:
die Definition einer Invariante fiir eine Klasse und die Definition eines Anfangswerts von
einem Attribut.

Um die Stellen textuell zu beschreiben, fithrt OCL weitere Sprachelemente ein. Die
Definition des Kontextes einer Stelle erfolgt durch das Schliisselwort contest <classifier>

2Eine Auflistung der verschiedenen Arten von Datentypen und Sammlungen ist in 3.2 beschrieben.
3Eine genauere Beschreibung von deklarativ und dem Unterschied zu imperativ ist Abschnitt 5.2.1 gegeben.
4Eine gute Einfiihrung in die Grundkonzepte von OCL wird in [42] gegeben.

5Die méglichen Arten werden in Abschnitt 3.2 vorgestellt.

17

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Kontext Invariante Anfangswert Kontext .
Klasse OCL Ausdruck g Attribut
0.1 0..* 0.1 0.1

Abbildung 3.1: Beispiele von Standardstellen, an denen OCL-Ausdriicke genutzt werden
kénnen

und bezieht sich auf ein konkretes UML-Modellelement (Klasse, Attribut oder Methode),
2.B. context Person, context Person::age oder context Person::getAge(). Zusitzlich kann
der Kontext auch Variablendeklarationen beinhalten, die innerhalb dieses Kontextes
genutzt werden kénnen. Dies wird tiber folgende Syntax definiert:

contert <v_name_1> : <v_type_1> , ... , <v_name-n> : <v_type_n>

Damit besteht die Option, diese Variablen innerhalb des Kontextes zu nutzen, beispielswei-
se um Invarianten fiir verschiedene Typen innerhalb eines Kontextes zu definieren oder um
auf die Werte dieser Variablen zuzugreifen®. Wird nur eine Klasse oder Methode als Kon-
text angegeben, dann gelten die angegebenen Constraints fiir alle Instanzen dieser Klasse
oder Methode.

Es gibt verschiedene Arten von Constraints, die durch ihre Schliisselworter unterschieden
werden. Der Constraint an sich wird durch OCL-Ausdriicke formuliert. Beispielhaft werden
die beiden Constraints Invariante und Anfangswert kurz beschrieben?:

Invariante (Invariant)

Eine Invariante ist eine Einschrankung, die zu jeder Zeit fiir eine Instanz des UML-
Modellelements, welches durch den Kontext festgelegt wird, gelten muss. Die Auswertung
einer Invariante ergibt einen booleschen Wert, der stets wahr sein muss, damit die Ein-
schrankung erfiillt ist. Eine Invariante wird mit inv: <Boolean OCL expression> definiert.
Der Ausdruck muss fiir den kompletten Lebenszyklus des Objekts gelten, also ,,wahr er-
geben. Nachfolgend ist ein Beispiel fir das Attribut age der Klasse Person gegeben. Das
Alter der Klasse Person muss immer grofier gleich als Null sein:

context Person
inv: age >= 0

Anfangswert (Initial Value)

Mithilfe des Constraints Anfangswert kann der Wert eines Attributs festgelegt werden, der
initial vorliegen muss. Bei der Auswertung muss der Typ des Anfangswerts dem Typen des
Attributs, fir den der Constraint gilt, entsprechen. Um den Anfangswert eines Attributs
festzulegen, wird die Syntax init: <OCL expression> verwendet. Im nachfolgenden Beispiel
wird ein Constraint deklariert, der aussagt, dass das Attribut isMarried der Klasse Person
initial den Wert false haben muss.

context Person::isMarried: Boolean
init: false

%Dies wird in dem Konzept dieser Arbeit verwendet.
"Fiir die Beschreibung weiterer bereits definierter Constraints wird auf die entsprechende Spezifikation
[53] verwiesen.

18

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3.2 Abstrakte Syntax von BasicOCL

Um auf die verschiedenen Attribute und Methoden eines Objekts sowie auf die Attribute
und Methoden einer Sammlung von Objekten zuzugreifen, gibt es den Punkt- und den Pfeil-
Operator. Um Attribute oder Methoden eines einzelnen Objekts zu referenzieren, wird der
Punkt-Operator verwendet. Fiir den Zugriff auf Attribute oder Methoden einer Sammlung
von Objekten wird der Pfeil-Operator genutzt. Im nachfolgenden Beispiel werden beide
Varianten gezeigt.

Das Beispiel enthélt drei Invarianten: Das Alter soll stets grofier gleich 0 sein, der Aufruf der
Funktion getName soll dem Wert des Attributs name entsprechen und die Anzahl an Autos
der Person soll kleiner gleich 2 sein. Die Attribute age, name und car sowie die Methode
getName() werden iiber den Punktoperator referenziert, da diese zur Instanz der Klasse
Person gehoren, die ein Einzelobjekt darstellt. Die Methode size() hingegen gehort zum
Attribute car. Dieses stellt eine Menge von Objekten dar, genauer gesagt eine Menge von
Instanzen der Klasse Car. Aus diesem Grund wird der Pfeil-Operator verwendet. Definiert
der Kontext nur eine Klasse oder Methode, kann fiir die Navigation innerhalb dieser Klasse
das Schliisselwort self genutzt werden. Mit self wird die Instanz der Klasse des Kontexts
referenziert, hier eine Instanz der Klasse Person.

context Person
inv: self.age >= 0
inv: self.getName () = self.name
inv: self.car->size() <= 2

3.2 Abstrakte Syntax von BasicOCL

Die abstrakte Syntax von BasicOCL definiert ein Typ-System und die OCL-Ausdriicke.
Nachfolgend wird die in BasicOCL verwendete abstrakte Syntax fiir beide Bestandteile
vorgestellt.

Typ-System

OCL definiert ein eigenes Typ-System mit zugehorigen Operationen, die auf dem jeweili-
gen Typ ausgefithrt werden kénnen. Beispielsweise konnen fiir Objekte des Typs Integer
die Operationen +, - oder abs()® und fiir Objekte des Typs Collection die Operationen
collect()® oder forAll()!° ausgefithrt werden. In Abbildung 3.2 ist das Typ-System von
BasicOCL dargestellt. Die in weiff dargestellten Typen sind aus UML [39] entnommen.
Nachfolgend werden die einzelnen Typen kurz vorgestellt, ohne auf die zugehérigen Ope-
rationen einzugehen. Fir interessierte Leser wird auf die Spezifikation [53] verwiesen.

Alle Typen erben von der UML Klasse Type'l. Type ist eine abstrakte Klasse, die ein
typisiertes Element beschreibt. Auf der ersten Ebene werden die Klassen InwvalidType,
Void Type, DataType, AnyType, Class und TemplateParameterType definiert. Die Klasse

8Berechnung des absoluten Wertes.

9 Anwendung einer Mapping-Funktion auf alle Elemente.

0Tteration {iber alle Elemente dieser Collection.

"In BasicOCL wird nicht die Klasse Classifier als Basisklasse genutzt, sondern die Klasse Type. Folglich
muss jeder Verweis auf die Klasse Classifier als Verweis auf die Klasse Type uminterpretiert werden [53].

19

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

+elementType 1

Type
[[‘
‘ VoidType | ‘AnyType TemplateParameterType
+specification: String
InvalidType ‘ DataType | Class
* CollectionType PrimitiveType ‘ TupleType ‘
[l I |
SequenceType ‘ SetType

‘ OrderedSetType

| BagType

Abbildung 3.2: BasicOCL Typenmodell [53]

Invalid Type stellt einen Typen fir ungiiltige Werte dar, welche z. B. bei der Anwendung
einer Operation auf Typen, fir die diese Operation nicht definiert ist, entstehen. Der Typ
ist vergleichbar mit Fzceptions aus Programmiersprachen. Fiir die Darstellung eines un-
definierten Werts wird die Klasse VoidType definiert. Diese tritt immer dann auf, wenn
ein Ausdruck als undefiniert evaluiert wird, z. B. wenn auf ein Attribut oder ein Objekt
zugegriffen wird, das nicht existiert. In Programmiersprachen wird oft das Schliisselwort
null verwendet. Die Klasse AnyType stellt einen verallgemeinerten Typen dar, dem alle
anderen Typen entsprechen. Mithilfe dieser Klasse konnen Operationen definiert werden,
die fiir alle Typen gelten. Die UML-Klasse Class ist die Metaklasse einer Klasse und kann
zur Beschreibung von eigenen Klassen genutzt werden, wie es heutzutage oftmals in Klas-
sendiagrammen erfolgt. Die Klasse TemplateParameterType stellt einen parametrierbaren
Typen dar und wird beispielsweise bei wiederverwendeten Ausdriicken benotigt. Als letzte
Klasse auf der oberen Ebene wird die Klasse DataType aus UML genutzt. Diese Klas-
se beschreibt einen Typen, dessen Instanzen durch einen Wert dargestellt werden. Von
dieser Klasse werden drei verschiedene Unterklassen abgeleitet: CollectionType, Primitive-
Type und Tuple Type. Die abstrakte Klasse CollectionType beschreibt dabei eine Liste von
Elementen eines bestimmten Typs, der tiber die Assoziation elementType festgelegt wird.
Dabei gibt es keine Einschriankungen, so konnen z. B. auch verschachtelte Collections defi-
niert werden. Die abstrakte Klasse hat vier Unterklassen: OrderedSetType, SequenceType,
BagType und SetType. Die Klassen stellen dabei immer eine Sammlung von Elementen dar
und unterscheiden sich in zwei Punkten:

1. Elemente diirfen nur einmal oder mehrfach in der Sammlung vorhanden sein und

2. Elemente liegen in einer Reihenfolge vor oder sind ungeordnet.

20

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3.2 Abstrakte Syntax von BasicOCL

In Tabelle 3.1 sind die Auspriagungen den einzelnen Unterklassen zugeordnet.
Tabelle 3.1: Unterscheidung der Subklassen von CollectionType

Kriterium | OrderedSetType | SequenceType | BagType SetType
Anzahl Einmal Mehrfach Mehrfach Einmal
Reihenfolge Geordnet Geordnet Ungeordnet | Ungeordnet

Auf der zweiten Ebene wird die UML-Klasse Primitive Type wiederverwendet. Diese fasst
einfache Datentypen ohne Unterstrukturen zusammen. Insgesamt werden finf einfache
Datentypen definiert: Boolean, Integer, Real, String und UnlimitedNatural'®. Die letzte
Klasse Tuple Type beschreibt eine Menge von verschiedenen Typen. Dadurch ist es moglich,
eigene Datenstrukturen innerhalb von OCL zu erstellen. In Programmiersprachen wird dies
oft als struct bezeichnet.

OCL-Ausdriicke

Um Constraints zu definieren, werden Ausdriicke benotigt. In den vorherigen Beispielen
wurden diese dargestellt, ohne niaher auf die Art der Ausdriicke einzugehen. In Abbildung
3.3 ist eine vereinfachte Darstellung des Metamodells der OCL-Ausdriicke von BasicOCL
aus der Spezifikation [53] dargestellt. Das vollstiandige Modell sowie die Semantik sind in

der Spezifikation ausfithrlich beschrieben.
£\
[

| LiteralExp ‘ | VariableExp l l CalleExp l ’ IfExp ‘ | TypeExp l | LetExp ‘
| FeatureCallExp l LoopExp ‘
IteratorExp l | IterateExp |

Abbildung 3.3: BasicOCL Metamodell nach [21]

Auf oberster Ebene werden insgesamt sechs verschiedene Klassen definiert. Die Klasse
LiteralEzp definiert einen Ausdruck, welcher ein gegebenes Literal eines primitiven Typs

2Instanzen der Klasse UnlimitedNatural sind Werte der natiirlichen Zahlen (0,1,2,...,*). Das Zeichen *

stellt den Wert ,unendlich“ dar. Zumeist findet sich dieser Typ in der Beschreibung von Multiplizitét
einer Assoziation.

21

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

auswertet und als Ergebnis zurtickgibt, z. B. String oder Integer. Durch die Klasse Varia-
bleFEzp konnen Variablen ausgewertet und das entsprechende Ergebnis verwendet werden.
Die referenzierte Variable kann vorher explizit (z. B. mit LetExzp) oder implizit (z. B. self)
definiert sein. Die abstrakte Klasse CallExp stellt einen Ausdruck dar, welcher sich auf ein
Attribut, eine Methode oder auf einen vordefinierten Iterator fiir eine Collection bezieht.
Das Ergebnis ist der Wert des Attributs, der Methode oder der Iteration. Die Unter-
klasse FeatureCallEzp wird fir die Auswertung von Attributen und Methoden verwendet,
wahrend die Unterklasse LoopFzp fiir die Auswertung einer Iteration tiiber eine Collection
genutzt wird. Die beiden Subklassen [lteratorExp und IterateExp iterieren iiber die Ele-
mente einer Collection, werten einen vorgegebenen Ausdruck fiir jedes Element aus und
geben das Ergebnis (z.B. eine neue Collection oder einen booleschen Wert) zuriick. Die
IteratorExp ist eine Kurzform der IterateExp fiir bestimmte Methoden, z. B. forAll, select
und sortedBy. Die Klasse [fExp ist ein Ausdruck, welcher eine boolesche Bedingung aus-
wertet und je nach Ergebnis einen von zwei gegebenen Ausdriicken zuriickgibt. Um einen
Typen zu referenzieren, kann die Klasse TypeEzp genutzt werden. Abschliefend kann mit
der Klasse LetExp ein Ausdruck definiert werden, welcher eine neue Variable eines Typs
erstellt und mit einem gegebenen Wert initialisiert. Der Wert der Variable kann danach
nicht mehr gedndert werden. Um die verschiedenen Ausdriicke zu verdeutlichen, wird in
Abbildung 3.4 folgende Invariante mit Hilfe der vorgenannten OCL-Klassen dargestellt:

context machine
inv: self.nextjobs->select(j | j.prio = 1)->size() <= 1

Die Invariante sagt aus, dass zu jeder Zeit in der Liste der nachsten Auftrége einer Maschine
maximal ein Auftrag enthalten sein darf, der die Prioritét 1 hat. Der abstrakte Syntaxbaum
beginnt mit einer Vergleichsoperation auf der obersten Ebene und gliedert sich anschlieSend
unter Nutzung der OCL-Klassen weiter auf.

3.3 Konkrete Syntax von BasicOCL

In der OCL Spezifikation wird neben der abstrakten Syntax auch eine konkrete Syntax
beschrieben. Diese ist in der erweiterten Backus-Naur-Form (EBNF) formuliert. Zusétzlich
ist das Mapping zu den Elementen der abstrakten Syntax angegeben. Fiir die Unterschei-
dung zwischen der abstrakten und konkreten Syntax wird bei den Elementen der konkreten
Syntax der Term CS'? als Suffix angehéingt.

Fiir die Erstellung von neuen Syntaxelementen (Wortern bzw. Symbolfolgen) miissen Pro-
duktionsregeln formuliert werden. Diese geben an, wie Syntaxelemente mit Hilfe der Kom-
bination von anderen Syntaxelementen definiert (produziert) werden. Eine Produktions-
regel besteht aus einem linken und einem rechten Teil, die durch das Syntaxelement ::=
getrennt werden. Der linke Teil stellt dabei das zu erstellende Syntaxelement dar und der
rechte Teil die Anleitung zur Produktion dieses Syntaxelements.

Bei den Syntaxelementen wird in Terminal- und Nichterminalsymbole unterschieden. Ein
Terminalsymbol beschreibt ein Symbol, welches nicht durch andere Symbole ersetzt werden

13CS steht fiir Concrete Syntax.

22

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3.3 Konkrete Syntax von BasicOCL

OperationCallExp

IteratorExp IntegerLiteralExp
(size) (1)

IteratorExp
(select)

_— T

OperationCallExp OperationCallExp
(nextjobs) (=)

- _— \\\\

VariableExp OperationCallExp IntegerLiteralExp
(self) (prio) (1)

VariableExp
(i)

Abbildung 3.4: Darstellung der Invariante durch OCL-Klassen

kann. Ein Nichtterminalsymbol ist ein Symbol, fiir das eine Produktionsregel existiert.
Folglich kann das Symbol durch die Symbole der Produktionsregel ersetzt werden.

In OCL existieren allgemeingiiltige und vordefinierte Terminalsymbole, um komplexere
Produktionsregeln zu erstellen. Die fiir diese Arbeit relevanten Symbole werden nachfol-
gend vorgestellt: Durch die Nutzung von Klammern kénnen zusammengehorige Symbo-
le gruppiert werden. Um optionale Symbole oder Symbolgruppen zu kennzeichnen, wird
das Fragezeichen-Symbol an das Symbol oder die Symbolgruppe angehéngt. Falls Sym-
bole innerhalb einer Produktionsregel mehrfach benutzt werden, kénnen diese durch die
Verwendung einer Nummer in eckigen Klammern als Suffix unterschieden werden. Kom-
mentare konnen zeilenweise durch die doppelte Nutzung des Terminalsymbols - oder
paragraphenweise zwischen den Terminalsymbolen /* und */ hinzugefiigt werden. Zur
Veranschaulichung der Verwendung dieser Symbole wird die Produktionsregel fiir die va-
riable DeclarationListCS beschrieben. Diese erzeugt eine Liste von Variablen, die beispiels-
weise in einem Tupel bendtigt wird. Eine wvariableDeclarationListCS besteht immer aus
mindestens einem Nichtterminalsymbol variable DeclarationCS gefolgt von einer Gruppe,
bestehend aus dem in dieser Produktionsregel definierten Terminalsymbol in Form eines
Kommas und einer weiteren variableDeclarationListCS. An dieser Stelle kann rekursiv ver-
fahren werden, sodass weitere Variablen durch ein Komma getrennt angehédngt werden.
Das Fragezeichen am Ende der Gruppe definiert die Gruppe als optional. Somit kann die
Gruppe auch entfallen, was zum Ende der Rekursion fiihrt.

variableDeclarationListCS[1] ::= VariableDeclarationCS
(¢,’variableDeclarationListCS[2])7

23

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Wichtige Produktionsregeln fiir diese Arbeit

Fiir diese Arbeit sind sieben Produktionsregeln wichtig, da diese in Kapitel 9 in der kon-
kreten Syntax verwendet werden. An dieser Stelle wird nur auf die Semantik dieser Pro-
duktionsregeln eingegangen. Die formale Beschreibung der Produktionsregeln kann in der
Spezifikation [53] nachgeschlagen werden.

Die erste Produktionsregel ist die Erstellung des Syntaxelements simple NameCS, welche es
ermoglicht einen Namen als String zu formulieren. Es kénnen beliebige Zeichen verwendet
werden, wobei immer mit einem Buchstaben, einem Unterstrich oder dem $-Zeichen begon-
nen werden muss. Die nutzbaren Unicode-Zeichen sind in [53] festgelegt. Danach konnen
beliebig weitere dieser Zeichen und zusitzlich auch die Ziffern 0 bis 9 folgen.

Eine weitere wichtige Produktionsregel ist die fir das Syntaxelement OCLFEzpressionCS,
welche wiederum aus anderen Produktionsregeln besteht. Dabei ist es moglich, die zu-
gehorigen Produktionsregeln fiir die Sub-Klassen der OCLExpression aus der abstrakten
Syntax zu nutzen, z. B. CallEzpCS, VariableExpCS oder LiteralExpCS. Fiir weitere Infor-
mationen zu diesen Produktionsregeln wird auf die Spezifikation [53] verwiesen.

Fiir die Erstellung von String-Literalen ist die Produktionsregel des Syntaxelements String-
LiteralExpCS definiert. Mit dieser ist es moglich, ein String-Literal zu erzeugen, welches
durch eine Sequenz aus Zeichen oder Escape-Sequenzen beschrieben wird. Eine Escape-
Sequenz ermoglicht die Darstellung von Sonderfunktionen in Text-Zeichen, z. B. \ ¢ fiir ein
Tabulator oder \n fiir eine neue Zeile.

Mit dem Syntaxelement CollectionLiteralEzpCS konnen Sammlungen von Objekten dar-
gestellt werden. Daftir muss in der Produktionsregel zunéchst der Typ der Sammlungen
Set, Bag, Sequence, Collection oder OrderedSet angegeben werden. Danach folgen die ei-
gentlichen Elemente.

Fiir die Definition eines Typnamens in einem Ausdruck kann das Syntaxelement typeCS
verwendet werden. Fiir die Definition werden andere Produktionsregeln wiederverwendet.
Zum Beispiel primitive TypeCS fiir die Erstellung von einfachen Datentypen, wie String
oder Boolean, oder pathNameCS, welche eine Sequenz von Strings definiert, zur Beschrei-
bung eines Pfadnamens.

Die letzten zwei Produktionsregeln dienen der Definition einer Liste von Parametern pa-
ramtersCS oder einer Liste von Argumenten argumentsCS. Die erstgenannte Regel ist eine
Sequenz von Variablendeklarationen, die durch ein Komma getrennt werden. Jede dieser
Variablendeklarationen besteht aus einem Namen simpleNameCS und kann optional den
Typ typeCS sowie einen Ausdruck fiir den Initialwert OCLFEzpressionCS festlegen. Die
Produktionsregel zur Erstellung des Syntaxelements argumentsCS ist durch eine Sequenz
von OCLFEzpressionCS, getrennt durch ein Komma, definiert.

24

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4 Interoperabilitat

Damit sich zwei Entitdten untereinander verstédndigen kénnen, brauchen diese ein gemein-
sames Versténdnis iiber die ausgetauschten Daten. Als Beispiel wird folgendes Szenario
betrachtet: Zwei Menschen aus unterschiedlichen Léndern wollen miteinander interagie-
ren. Beide kommen aus unterschiedlichen kulturellen, politischen sowie ethnischen Kreisen
und sprechen jeweils eine andere Sprache, die zusitzlich auf unterschiedlichen Alphabeten
basieren. Diese Personen konnen sich zunéchst nicht mittels einer gesprochenen Sprache
unterhalten. Aus diesem Grund muss entweder einer von beiden Personen die jeweils ande-
re Sprache lernen oder beide lernen eine gemeinsame ggf. einfachere oder weit verbreitetere
Sprache!. Angenommen beide Personen haben eine gemeinsame Sprache in ihren Grund-
formen gelernt. Das Erlernen ist jedoch unterschiedlich erfolgt, sodass die beiden Perso-
nen ein unterschiedliches Vokabular in der Sprache besitzen, wobei das Haupt-Vokabular
gleich ist. Ab diesem Zeitpunkt ist es den Personen maoglich, sich mit Hilfe der gemeinsa~
men Sprache iiber Dinge, die im Haupt-Vokabular enthalten sind, auszutauschen. Nutzt
jedoch eine Person ein Wort aus dem Vokabular, das die andere Person nicht versteht, ist
zunichst wiederum keine 100%ige Kommunikation moglich. Der Kommunikationspartner
kann jedoch ggf. die Bedeutung des fehlenden Wortes durch die anderen Worter im Satz
vermuten. Dabei tritt ein weiteres Problem auf: die Semantik der Woérter. Worter konnen
in verschiedenen Kontexten unterschiedliche Bedeutungen haben. Der Kommunikator muss
anhand des Gesprachskontextes ermitteln, welche Bedeutung den Begriffen gerade zuge-
ordnet werden. Nur wenn dies korrekt erfolgt, konnen sich zwei Personen verstehen. Ein
weiteres Problem tritt auf, wenn die Grammatik nicht korrekt ist. Menschen kénnen dies
durch Versténdnis des Kontextes herausfiltern und die Informationen dennoch verstehen.

Bei der Ubertragung dieses Szenarios auf die Kommunikation zwischen Maschinen bzw.
Software-Applikationen treten dieselben Probleme auf. Damit Applikationen interagieren
kénnen, bedarf es zunichst einer gemeinsamen Sprache?. Dies ist in der Regel ein Da-
tenformat. In einem néchsten Schritt mussen die im Datenformat enthaltenen Daten von
beiden Seiten gleich analysiert (z. B. Einheit, Bedeutung, Datentyp) und anschliefiend kor-
rekt interpretiert werden (z.B. Messwert vom Sensor X an Anlage A ist zu hoch). Erst
wenn diese Voraussetzungen gegeben sind, kann von einer Interaktion zwischen Applika-
tionen gesprochen werden. Ein Unterschied ist jedoch, dass eine Maschine zunéchst kein
Kontext-Wissen besitzt und dementsprechend mit fehlerbehafteten Datenformaten oder
Informationen nicht umgehen kann. Es existieren bereits Ansétze, die sich mit dieser The-
matik beschéftigen, auf die nachfolgend verwiesen wird.

Um die verschiedenen Arten der Kommunikationsfidhigkeit zwischen Systemen, Applikatio-
nen oder auch Organisationen zu klassifizieren, existiert der Begriff Interoperabilitit. Dabei

'Heutzutage ist dies oftmals Englisch.
2Genau genommen einer gemeinsamen Syntax.

25

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4 Interoperabilitat

liegen verschiedene Definitionen von Interoperabilitét vor. Einige Zusammenfassungen sind
in [54, 55] gegeben. Nachfolgend sind einige Definitionen aufgelistet.

o Duden: Fahigkeit unterschiedlicher Systeme, moglichst nahtlos zusammenzuarbeiten

o Plattform 14.0 Glossar: Fahigkeit zur aktiven, zweckgebundenen Zusammenarbeit
von verschiedenen Komponenten, Systemen, Techniken oder Organisationen

o Ozford Dictionary: The ability of computer systems or programs to exchange infor-
mation

o Cambridge Dictionary: The degree to which two products, programs, etc. can be used
together, or the quality of being able to be used together

o ISO/IEC[56]: The ability of two or more systems or applications to exchange infor-
mation and to mutually use the information that has been exchanged

o [EEE[57]: The ability of two or more systems or components to exchange information
and to use the information that has been exchanged

Diese Arbeit handelt von der Interaktion zwischen Software-Applikationen. Dafiir wird eine
Moglichkeit zur Zusammenarbeit von verschiedenen Software-Applikationen von verschie-
densten Herstellern vorgestellt. Interoperabilitét wird in dieser Arbeit wie folgt definiert:

Definition 4.1 (Interoperabilitit) Fdhigkeit von Systemen und Applikationen, Infor-
mationen untereinander auszutauschen und diese fiir eine aktive und zweckgebundene Zu-
sammenarbeit zu nutzen.

Interoperabilitat lasst sich in verschiedene Stufen einteilen. Welche Stufen existieren und
wie diese aufeinander aufbauen, wird im Abschnitt 4.1 dargestellt. In dem darauffolgenden
Abschnitt 4.2 werden die derzeitigen Probleme, die in den einzelnen Stufen auftreten,
detaillierter beschrieben und aktuelle Anséitze zur Losung dieser Probleme dargestellt.

4.1 Stufen der Interoperabilitat

Es existieren mehrere Modelle, die Interoperabilitéit in verschiedene Stufen einteilen. Nach-
folgend werden einige von diesen vorgestellt und im Anschluss in Bezug zu dieser Arbeit
gesetzt.

In Abbildung 4.1 ist die vierstufige Einteilung nach [58] dargestellt. Diese beginnt auf
der untersten Stufe mit der technischen Interoperabilitit, die die Ubertragung von Daten
sicherstellt. Aufbauend darauf befindet sich die syntaktische Interoperabilitit, die aussagt,
dass zwei Systeme das gleiche Verstandnis von Zeichen und Formaten haben. Auf der
dritten Stufe (semantischen Interoperabilitit) wird festgelegt, ,aus welchen inhaltlichen
Feldern ein Datensatz in welcher Reihenfolge besteht und mit welchen Codes die Daten in
den einzelnen Feldern erzeugt werden® [58]. Wie die Daten weiterverarbeitet werden, z. B.
durch abgestimmte Workflows, legt die hochste Stufe, die organisatorische Interoperabilitdt,
fest.

26

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4.1 Stufen der Interoperabilitit

Syntaktische Interoperabilitét
z.B. HTML, CSV, XML, Govemikus "
Transportebene

Technische Interoperabilitét
(z.B. IP, https)

Abbildung 4.1: Interoperabilitatsstufen nach Kubicek [58]

In [59] werden sechs Stufen eingefiihrt: no connection (keine Interoperabilitit zwi-
schen Systemen), technical (Basis- und Netzwerk-Konnektivitit), syntactical (Datenaus-
tausch ist gegeben), semantic (Verstiandnis der ausgetauschten Daten), pragmatic/dy-
namic (Anwendbarkeit der Daten in einem Kontext) und conceptual (geteiltes Wissen
doméneniibergreifend). Pantsar Syvaniemie et al. definieren in [60] eine &dhnliche Klassifi-
kation mit folgenden sechs Stufen: connection, communication, semantic, dynamic, beha-
vioural und conceptual.

Im militdrischen Umfeld hat die NATO mit der System-Interoperabilitits-Richtlinie (NA-
TO C3 System Interoperability Directive: NIC) eine fiinf-stufige Klassifikation entwickelt
[61]. In Stufe 0 muss der Anwender die Systeminteroperabilitét herstellen (Isolated Inter-
operability). In Stufe 1 konnen Systeme bereits Daten untereinander austauschen (Connec-
ted Interoperability). Die Weiterverarbeitung der ausgetauschten Daten zu sinnvollen Infor-
mationen erfolgt in Stufe 2, z. B. durch definierte Schemata in JSON oder XML (Functional
Interoperability). In der nachfolgenden Stufe 3 konnen die Informationen durch die jeweili-
gen Systeme automatisiert interpretiert werden, ohne dass vorherige Absprachen zwischen
den Systemen notwendig sind (Domain Interoperability). Die Informationen gehéren dabei
einer bestimmten Doméne an. Werden die Informationen iiber Doménengrenzen hinweg
verstanden, ist die 4. Stufe der Interoperabilitéit erreicht (Enterprise Interoperability).

Noura, Atiquzzaman und Gaedke beschreiben in [62], dass die Klassifikation im Bereich
von Internet of Things (IoT) nicht in Stufen, sondern aus verschiedenen Perspektiven
betrachtet werden sollte. In Abbildung 4.2 sind die fiinf verschiedenen Perspektiven dar-
gestellt: Device Interoperability, Network Interoperability, Syntactical Interoperability, Se-
mantic Interoperability und Platform Interoperability. Unter Device Interoperability wird
eine Féhigkeit verstanden, mit der heterogene Geréte Informationen austauschen kénnen.
Es kénnen verschiedene Arten von Geréten von Low-End bis High-End und zudem mit un-
terschiedlichen Kommunikationsprotokollen vorliegen. Aufierdem soll die Integration von
neuen Geréten in eine loT-Plattform méglich sein. Bei Network Interoperability geht es dar-
um, dass Gerite aus unterschiedlichen Netzwerken miteinander interagieren kénnen und

27

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4 Interoperabilitat

dass der Informationsaustausch zwischen den Netzwerken moglich ist. Das Datenformat
und die Datenstruktur der ausgetauschten Informationen werden in der Syntactial Inter-
operability festgelegt. Der Fokus liegt auf den Kodierungs- und Dekodierungsregeln der sich
verstindigenden Systeme. In Semantic Interoperability wird die Semantik der iibertragenen
Daten betrachtet. Dazu muss das Wissen tiber die Informationen ausgetauscht werden, z. B.
iiber definierte Informationsmodelle. AbschlieBend wird die Platform Interoperability be-
trachtet, bei der die Plattform-Abhéngigkeit von Systemen und deren Schnittstellen im
Fokus steht. Verschiedenste Plattformen haben unterschiedliche Anforderungen oder eige-
ne Programmiersprachen, sodass Systeme nicht zwingend auf jeder Plattform ausfiihrbar
sind.

Capability Data Model
Device Semantic Information Model
Communication Protocol Ontology

Interoperability in loT Operating System

Data Structure
Programming Language
Application Development

Wireless Networking Wired

Abbildung 4.2: Perspektiven der Interoperabilitit nach [62]

Data Format
Schema
Interface

Platform

Syntactic

In den ISO/IEC 21823-1 und ISO/IEC 19941 Standards [56, 63] werden finf Facetten
von Interoperabilitét beschrieben (siche Abbildung 4.3): Transport, Syntactic, Semantic,
Behavioural und Policy. Die Transport Interoperability umfasst die Kommunikationsin-
frastruktur, die beno6tigt wird, um Daten zwischen zwei Entitdten auszutauschen. Hierzu
gehoren das physische Medium und die Transportmechanismen (die ersten 4 Layer im
ISO/OSI Schichtenmodell [64]). Die detaillierte Beschreibung ist in Teil 2 des ISO/IEC
21823-Standards [65] gegeben. Die Syntactic Interoperability beschreibt die Fahigkeit, mit
der Systeme oder Gerite Informationen basierend auf ihrer Syntax austauschen kénnen.
Beispiele sind: Web Ontology Language (OWL), XML, Resource Description Framework
Schema (RDFS) oder JSON. Bei der Semantic Interoperabilty steht die Bedeutung des
Datenmodells innerhalb eines Kontextes im Fokus, z. B. wie die Daten fiir eine konkrete
Doméne zu interpretieren sind. In Teil 3 des ISO/IEC 21823-Standards [66] ist beschrie-
ben, dass dies durch die Nutzung von Ontologien erfolgen soll. Die Behavioural Inter-
operability befasst sich mit der Nutzung der ausgetauschten Informationen. Verschiedene
Entitdten sind fiir verschiedene Zwecke konzipiert und verfolgen mit den ausgetauschten
Informationen unterschiedliche Absichten. Dies beeintréchtigt die anderen Facetten der
Interoperabilitiat nicht. Vielmehr ist die Behavioural Interoperability in den Schnittstel-
lenbeschreibungen definiert. Das bedeutet, es wird gepriift, ob die erwartenden Ergebnis-
se beim Aufruf einer Operation mit den tatsichlichen Ergebnissen tibereinstimmen. Ab-
schlielend beschreibt die Policy Interoperability die Fahigkeit von Entitaten, innerhalb von
rechtlichen, organisatorischen und politischen Rahmenbedingungen zusammenarbeiten zu
konnen.

Die Modelle sind sich im Grunde &dhnlich, unterscheiden sich aber in der Anzahl und
Interpretation der Stufen. Drei Stufen jedes Modells kénnen dabei als identisch interpretiert

28

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4.1 Stufen der Interoperabilitit

@ Interoperability e
@

Abbildung 4.3: Facetten der Interoperabilitat nach [56]

werden. Die Zuordnung der Stufenbegriffe ist nur bei der Richtlinie der NATO [61] nicht
eindeutig, wird aber grob wie folgt angenommen und entspricht den Stufen eins bis drei in
Tabelle 4.1:

e Die erste Stufe befasst sich mit dem Transport der Daten und definiert, dass die
Komponenten iiber eine Verbindung zum Austausch von Daten verfiigen.

o In der zweiten Stufe wird der syntaktische Austausch mit Hilfe vorgegebener Daten-
strukturen gefordert.

o Die dritte Stufe beschreibt die semantische Interpretation der Daten, sodass ein ge-
meinsames Verstédndnis iiber die ausgetauschten Daten vorliegt.

Wihrend die Stufe eins in [58] und [59] technische Interoperabilitit heifit, wird in [60] der
Begriff connection, in [61] der Begriff Connected, in [62] der Begriff Network und in [56,
63] der Begriff Transportinteroperabilitit verwendet. In Stufe zwei wird hauptséchlich der
Begriff syntaktisch genutzt. Lediglich in [60] wird stattdessen der Begriff Communication
und in [61] der Begriff Functional verwendet. Bei Stufe drei ist der Hauptbegriff Semantisch.
Nur in der Richtlinie der NATO [61] wird stattdessen der Begriff Domain genutzt.

Aufbauend auf diesen drei Stufen gibt es meistens Stufen, die sich mit dem Verhalten
beschiftigt, z. B. Behavioural Interoperability in [56, 60, 63], oder die organisatorischen,
rechtlichen und politischen Interoperabilitatskriterien beschreiben sowie Aussagen zu den
verwendeten Gerdten bzw. Plattformen machen. Im Rahmen dieser Arbeit soll der Fokus
auf der semantischen Interoperabilitéit liegen, weshalb die vorgestellte Einordnung ausrei-
chend ist.

29

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4 Interoperabilitat

Tabelle 4.1: Vergleich der verschiedenen Stufensysteme

Stufe [58] [59] [60] [61] [62] [56, 63]
0 No Isolated Device
connection
1 Technisch | Technical Connection Connected| Network | Transport
2 Syntaktisch | Syntactical | Communication| Functional| Syntactical] Syntactic
3 Semantisch | Semantic Semantic Domain | Semantic | Semantic
4 Organi- Pragmatic Dynamic Enterprise | Platform | Behavioural
satorisch | / Dynamic
5 — Conceptual | Behavioural — — Policy
6 — — Conceptual — — —

4.2 Aktuelle Ansatze fiir Interoperabilitat

In [67] wurden 15 der aktuellen Horizon2020-Projekte analysiert und aufgezeigt, fiir wel-
che Stufen der Interoperabilitat diese jeweils Losungen bereitstellen. Ein detaillierter
Vergleich ist in [62] gegeben, indem 30 verschiedene Losungen fiir verschiedene Stufen
der Interoperabilitit miteinander verglichen wurden. Die meisten Ansétze beschranken
sich auf die Transport- und die syntaktische Interoperabilitit. Lediglich sieben der 30
Losungsvorschlage betrachten zudem die semantische Interoperabilitiat. Das lasst sich da-
durch erklaren, dass zunédchst Losungen fiir die unteren Schichten entwickelt werden sollten,
bevor Losungen fiir die oberen Schichten erforscht werden. Die semantische Interoperabi-
litat wird aktuell in vielen Forschungsaktivitdten betrachtet und es entstehen zunehmend
Losungsansétze. In [62, 67-72] werden verschiedenste Ansétze und Forschungsaktivitéten
diskutiert.

Fiir die Transport-Interoperabilitét existieren Ansétze basierend auf Adaptern bzw. Gate-
ways oder virtuellen Netzwerken bzw. Overlay-basierten Losungen und in Form von uni-
versalen Netzwerk-Technologien. Im Bereich der syntaktischen Interoperabilitit werden
ebenfalls Adapter bzw. Gateways genutzt. Zusétzlich werden OpenAPI-Beschreibungen,
Metamodell-getriebene Ansitze und Middleware-Konzepte verwendet. Auch aktuelle Pro-
jekte und Initiativen in Deutschland versuchen die syntaktische Interoperabilitit zu ver-
bessern. Beispielsweise die Plattform Industrie 4.0 mit dem Konzept der Verwaltungsschale
oder das BaSys4.0- bzw. BaSys4.2-Projekt mit der Entwicklung eines neuen Middleware-
Konzepts.

Zunéchst konnen die Ansitze fiir die semantische Interoperabilitit hinsichtlich ihrer Her-
kunft unterschieden werden. Wihrend sich [62, 67-70] vorwiegend auf Ansitze im Bereich
des ToT konzentrieren, werden in [71, 72] zusitzlich Losungskonzepte aus dem Bereich
von Industrie 4.0 bzw. aus der Automation-Community betrachtet. Aus dem IoT-Kontext
ist héufig das Semantic Web [73] mit seinen Ontologien vertreten, wihrend im Bereich
von Industrie 4.0 vorwiegend standardisierte Informationsmodelle (wie z. B. Teilmodelle in
Verwaltungsschalen) diskutiert werden.

So verschieden die Anséitze auf den einzelnen Schichten sind, so gleich sind diese in ihren
iibergeordneten Konzepten. Zwei grundlegende Ansatzkonzepte, die haufig genutzt werden,

30

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4.2 Aktuelle Ansétze ftiir Interoperabilitdt

sind die Standardisierung und das Mapping.

Der offensichtlichste Schritt zur 100%igen Interoperabilitét ist die vollstéindige Standar-
disierung. Dies bedeutet, es existiert fiir jede Schicht genau eine Losung, die von allen
Systemen umgesetzt werden muss. Am Beispiel der semantischen Interoperabilitiat bedeu-
tet dies, dass ein definiertes Modell vorliegt, mit dem alle Informationen Doménen- und
Branchen-iibergreifend abgebildet werden kénnen. Dies ist aktuell nicht gegeben und liegt
unter anderem daran, dass durch die freie Marktwirtschaft in den letzten Jahren Umsatz
durch unterschiedliche und nicht zusammen nutzbare Modelle der einzelnen Firmen erwirt-
schaftet wurde. Zudem wurden aufgrund unterschiedlicher Ziele und Interessen individuelle
Losungen fir einzelne Doménen oder Firmen entwickelt [74]. Das Ergebnis ist ein hetero-
genes Feld an Losungen, wobei jeder Entwickler seine Losung am zielfiihrendsten halt. Das
nur eine iibergreifende Losung existiert, ist aus Sicht des Verfassers utopisch. Aus diesem
Grund werden nachfolgend alternative Losungen diskutiert.

Eine Moglichkeit, die aktuell am starksten vorangetrieben wird, sind standardisierte Infor-
mationsmodelle fir einzelne Doménen bzw. Branchen durch Standardisierungsorganisatio-
nen. Unter einem Informationsmodell wird ,,im mathematisch-algebraischem Sinne (...) ein
zusammengesetzter Abstrakter Datentyp (ADT) mit mehreren Grundmengen (Sorten),
Variablen und Axiomen, Regeln und Funktionen zwischen den Sorten (verstanden)(...).
Die Anleitungen zur Erstellung von Informationsmodellen sind vielfiltig und reichen von
Glossaren und Thesauri tiber objektorientierte Klassifikationen (z.B. AutomationML) bis
hin zu Modellen auf formaler Logik (z.B. Ontologien)“ [72]. Ein ADT kann in Form von
Datenmodellen mit semantischer Bedeutung oder in Form von Netzen in Ontologien dar-
gestellt werden. Unter Datenmodell mit semantischer Bedeutung werden konkrete Infor-
mationsmodelle fiir einen Anwendungsfall verstanden, bei dem die Semantik der einzelnen
Elemente spezifiziert wird. In sogenannten Templates oder Spezifikationen werden diese
festgehalten, zur Laufzeit instanziiert und mit aktuellen Daten befiillt. Beispiele sind die
OPC UA Companion Specifications, die anwendungsfallspezifisch die Eigenschaften zu-
sammengehorig mit den Elementtypen des OPC UA Metamodells modellieren, um diese
in konkreten OPC UA Server Instanzen zu nutzen und mit Werten zu fiillen. Des Weiteren
entwickeln PROFINET, CAN, IOLINK und EthernetIP entsprechende Geréteprofile und
die Home Gateway Initiative (HGI) veroffentlichte das Smart Device Template (SDT) fiir
die Gerédtemodellierung. Die im Zuge der Industrie 4.0-Initiative entwickelte Verwaltungs-
schale definiert ebenfalls Teilmodelle fiir diesen Zweck. Im Bereich der Ontologien entste-
hen ebenfalls standardisierte Modelle, wie z. B. oneM2M, ETSI SAREF, W3C SSN, IBM
Watson, SenML, NGSI-LD, die auf den Semantic Web Technologien, wie z. B. Resource
Description Framework (RDF), OWL und SPARQL aufbauen.

Durch die Entwicklung dieser Informationsmodelle durch verschiedene Doménen- und Fa-
chexperten konnen gleiche Informationen in verschiedenen Informationsmodellen enthal-
ten sein. Die Informationen miissen dabei nicht zwangsweise gleich modelliert sein. Um
die Informationsmodelle gemeinsam zu nutzen, wird vielfach ein Mapping genutzt. Beim
Mapping werden einzelne Elemente eines Informationsmodells mit Elementen eines ande-
ren Informationsmodells in Relation gesetzt. Auf syntaktischer Ebene werden in der Regel
die Datenmodelle ineinander transformiert. Dies kann durch den Anwender von Hand ge-
schehen, mit Hilfe von Modelltransformation (semi-) automatisch oder mit Methoden der

31

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

4 Interoperabilitat

kiinstlichen Intelligenz. Ein Beispiel sind die Arbeiten von Christiansen [75, 76], in de-
nen verschiedene Teil-Topologie-Modelle in ein tibergeordnetes grofieres Topologie-Modell
zusammengefiihrt und anschliefiend je nach Anwendungsfall wieder in Teilmodelle zerlegt
werden. In [77] wird das Konzept der semantischen Transformation fir Geodaten darge-
stellt. Im Bereich der kiinstlichen Intelligenz gibt es ebenfalls erste Ansétze, wie z. B. mit
Hilfe von natiirlicher Sprachverarbeitung (Natural Language Processing (NLP)) [16, 17].
Bei Ontologien wird das Mapping durch Festlegung von OWL Relationen realisiert. So
konnen z. B. Elemente als gleich oder ist SubType von bezeichnet werden, sodass die ein-
zelnen Netze zusammengefiithrt werden kénnen. Dies kann bei grofien Netzwerken jedoch
sehr komplex werden. Ein Konzept zur Erstellung von neuen Informationsmodellen basie-
rend auf existierenden Informationsmodellen wird nur sehr selten betrachtet.

Aufgrund dessen wird in dieser Arbeit eine Losung fiir die semantische Interoperabilitét
aufgezeigt, die zum Ziel hat, angeforderte Informationsmodelle aus existierenden Informa-
tionsmodellen zu erstellen. Fiir ein besseres Verstandnis wird das Konzept der Verwaltungs-
schale als Anwendungsbeispiel genutzt. Die Verwaltungsschale verwendet zur Darstellung
der Semantik sog. Teilmodelle (vgl. Abschnitt 6.3.2), die Informationsmodelle basierend
auf einem festgelegten Metamodell darstellen. Diese werden in sogenannten Teilmodell-
Templates spezifiziert. Fiir das Metamodell existieren Serialisierungsformate, sodass eine
syntaktische Interoperabilitidt hergestellt werden kann. Bei der semantischen Interoperabi-
litdt muss neben dem syntaktischen Mapping® auch ein semantisches Mapping? erfolgen.
Um das syntaktische Mapping moglichst automatisiert durchzufithren, wurde das Konzept
der Modelltransformation eingefithrt. In TEC 21823-4 [78] wird ebenfalls die Modelltrans-
formation als Ansatz fiir die Herstellung der syntaktischen Interoperabilitit verwendet.
Dadurch kénnen die Ansétze auch fiir die Losung der Probleme bei der semantischen In-
teroperabilitat forderlich sein. Daher wird das Konzept der Modelltransformation fiir die
Herstellung der semantischen Interoperabilitat zwischen verschiedenen Informationsmodel-
len im Zuge dieser Arbeit vorgestellt. Im nachsten Kapitel wird zunéchst das Konzept der
Modelltransformation niher beschrieben.

3Regeln fiir die Transformation von Elementen des einen Datenformats in Elemente des anderen Daten-
formats.
4Welches Element entspricht semantisch welchem anderen Element.

32

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Aufgrund von unterschiedlichen Anforderungen werden immer mehr Modelle spezifiziert.
Diese enthalten vielfach die gleichen semantischen Informationen, sind jedoch fiir den jewei-
ligen Anwendungsfall unterschiedlich modelliert. Ein Ziel ist, neue Instanzen dieser Modelle
zum Teil oder vollsténdig aus anderen Modell-Instanzen zu erstellen, um z. B. Fehler bei
der Dateneingabe zu verhindern.

Teilweise kénnen Modelle nicht losgeldst voneinander betrachtet werden, da gegebenenfalls
Anderungen an einem Modell zu Anpassungen an anderen Modellen fithren. Somit ist ein
automatisiertes Anderungsmanagement sinnvoll [79].

Die beiden vorgestellten Anwendungsfélle im Bereich der Nutzung von Modellen kénnen
mit Hilfe der Modelltransformation gelost werden. Gerade im Bereich der modellgetriebe-
nen Softwareentwicklung sind Modelltransformationen ein wichtiger Bestandteil [46, 80].

Aufgrund dessen erfolgt in diesem Kapitel zundchst eine kurze Einfithrung in die Begriffs-
welt der Modelltransformation (Abschnitt 5.1). AnschlieBend werden in Abschnitt 5.2 die
Eigenschaften einer Modelltransformation betrachtet, bevor in Abschnitt 5.3 verschiede-
nen Modell-zu-Modell Transformationsansitze diskutiert werden. Abschlieend werden in
Abschnitt 5.4 verschiedene Arten von Transformationssprachen sowie die Erstellung einer
solchen erldutert.

5.1 Begriffswelt der Modelltransformation

Eine Transformation ist die Wandlung von Form, Struktur oder Gestalt von einem
Ausgangs- in einen Zielzustand, die mittels Regeln in einem Regelwerk festgelegt wird

81].

Definition 5.1 Eine Transformation T ist eine Menge von Regeln (Regelwerk), die fir
beliebige © aus einer Menge X, die Quelle oder Definitionsbereich genannt wird, ein oder
mehrere y aus einer Menge Y, die Ziel oder Wertebereich genannt wird, zuordnet.

Bei der Modelltransformation werden die Mengen X und Y konkretisiert. Sie bestehen aus
Modellelementen. Bei der Ausfithrung einer Modelltransformation wird eine Instanz eines
Quellmodells in eine Instanz eines Zielmodells tiberfiithrt. Als Quellmodell wird das Modell
bezeichnet, aus dem die Daten gewonnen werden. Ein Zielmodell ist das Modell, welches
erstellt oder in dem Anderungen vorgenommen werden. Als Grundvoraussetzung bleibt
die Semantik bei einer Transformation zwischen dem Quell- und dem Zielmodell erhalten,
sofern dies durch die Sprache des Zielmodells ermdéglicht wird [81].

33

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Definition 5.2 FEine Modelltransformation Ty ist eine Menge von Regeln (Regelwerk), die
fiir beliebige x aus einer Menge von Modellelementen X, die Quellmodelle genannt werden,
ein oder mehrere y aus einer Menge von Modellelementen Y, die Zielmodelle genannt
werden, unter Beibehaltung der Semantik zuordnet, sofern dies die Sprache des Zielmodells
zuldsst.

Die Uberfiihrung erfolgt durch die Ausfithrung der definierten Transformationsregeln. Eine
Transformationsregel beschreibt dabei, wie Elemente des Quellmodells in Elemente des
Zielmodells transformiert werden sollen.

Definition 5.3 Eine Transformationsregel definiert, wie ein oder mehrere Elemente des
Quellmodells in ein oder mehrere Elemente des Zielmodells transformiert werden.

Zusitzlich werden die nutzbaren Sprachelemente in einer Transformationssprache (vgl. 5.4)
definiert.

Definition 5.4 Eine Transformationssprache definiert die nutzbaren Sprachelemente zur
Beschreibung von Transformationsregeln.

Transformationsregeln werden in einer Transformationsdefinition zusammengefasst, die an-
schlieBend von einem Transformationssystem ausgefiihrt werden [81].

Definition 5.5 Eine Transformationsdefinition ist eine Menge von Transformationsre-
geln, die beschreiben, wie ein Quellmodell in ein Zielmodell transformiert wird.

Fir die Ausfithrung der Transformationsdefinition wird ein Kontrollalgorithmus benétigt.
Dieser Algorithmus fithrt die Auswahl und die Anwendung geeigneter Regeln innerhalb der
Transformationsdefinition aus. Ein Transformationssystem iibernimmt diese Aufgaben. Es
liest die benotigten Quellmodelle ein, wendet die Regeln innerhalb der Transformations-
definition an und erstellt die Zielmodelle.

Definition 5.6 Ein Transformationssystem ist eine Applikation, die ein oder mehrere
Quellmodelle einliest, die Transformationsdefinition ausfihrt und damit die Zielmodelle
erstellt.

Die Beziehungen zwischen Transformationsdefinition, Transformationssystem, Modell, Me-
tamodell und Sprache sind in Abbildung 5.1 dargestellt.

34

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

Transformations-
sprache

konform zu

bezieht sich | Transformations- | bezieht sich

definition

definiert abstrakte
Syntax

definiert abstrakte
Syntax

Quellmetamodell Zielmetamodell

Quellsprache Zielsprache

konform zu fihrt aus konform zu

Transformations-
system

schreibt

beschrieben mit beschrieben mit

Quellmodell Zielmodell

Abbildung 5.1: Beziehungen zwischen Transformation, Modell, Metamodell und Sprache nach
[82, 83]

5.2 Merkmale von Modelltransformationen

Fiir einen Vergleich von Modelltransformationen werden Unterscheidungsmerkmale
benotigt. In [84-86] wurden diverse Modelltransformationen hinsichtlich potenzieller Un-
terscheidungsmerkmale untersucht. Das Ergebnis ist eine heterogene Menge an Unterschei-
dungsmerkmalen. Diese wurden im Rahmen der Vorveréffentlichung [21] in ihrer Gesamt-
heit analysiert, geordnet und schliefflich in vier Kategorien zusammengefasst: ,Allgemeine
Merkmale®, Quell- und Ziel(meta)modelle®, Transformationsregeln“ und ,Regelnutzung®.
Diese vier Kategorien inklusive ihrer Merkmale sind in Abbildung 5.2 dargestellt. Die fol-
genden Abschnitte beschreiben jede der vier Kategorien und ihre Merkmale im Detail.

5.2.1 Aligemeine Merkmale

Allgemein kann bei einer Modelltransformation unterschieden werden, welcher Beschrei-
bungsmechanismus innerhalb einer Transformationsdefinition genutzt, welche Transforma-
tionsrichtung unterstiitzt wird und welche Inkrementalitéit vorliegt. Diese Merkmale werden
in der ersten Kategorie zusammengefasst.

Beschreibungsmechanismus

Modelltransformationen kénnen hinsichtlich ihres verwendeten Mechanismus in deklarative
und operationale/imperative Ansitze unterschieden werden.

Bei einem deklarativen Ansatz wird beschrieben, wie der Start- und wie der Endzustand
auszusehen haben. Es wird dabei nicht vorgeschrieben, wie der Endzustand erreicht wird.
Die Vorteile sind, dass die Navigation innerhalb des Modells, das Anlegen von neuen Model-
lelementen und die Reihenfolge der Regelausfithrung nicht durch den Regelersteller erfolgt.
Daher sind die Regeln schneller zu formulieren und einfacher zu verstehen. Mit geringem
Aufwand kann zusétzlich durch ein Transformationssystem auch eine bidirektionale Trans-
formation durchgefithrt werden. Typische deklarative Sprachen sind LISP, ML, Haskell
oder PROLOG.

Bei einem operationalen/imperativen Ansatz wird beschrieben, wie das Endergebnis zu
erreichen ist. Es werden die einzelnen, durchzufithrenden Aktionen formuliert. Der Vorteil

35

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Modelltransformation

Quell- und

Ziel(meta)modelle Transformationsregeln Regelnutzung

Allgemeine Merkmale

Beschreibungs- Art der Quell- und Steuerung der
mechanismus Zielmodelle Genutzte Konstrukte Regelanwendung
Transformations- Anzahl der Quell- und . - .
richtung Zielmodelle Syntaktische Separation| Regelorganisation

o Abstraktionsebene der - .
— Inkrementalitit ™ Quell- und Zielmodelle | [Ausflihrungsbedingung

| | Beziehungzwischen || | Parametrierun
Quell- und Zielmodell e

— Art der Metamodelle

Abbildung 5.2: Merkmale der Modelltransformation

ist eine verbesserte Lesbarkeit, wenn z. B. Variablen zur Laufzeit verdndert oder Schleifen
verwendet werden sollen. Die Nachteile sind, dass diese Ansétze in der Regel im Vergleich zu
deklarativen Ansétzen langer und nicht reversibel sind, da das Quellmodell nicht aus dem
Zielmodell generierbar ist. Typische imperative Sprachen sind C, JAVA oder Python.

Zusétzlich existieren auch hybride Ansétze, die deklarative Sprachelemente fir das Erstel-
len, Setzen, Loschen und Lesen von Modellelementen nutzen und imperative Sprachele-
mente fiir die Ablaufsteuerung, wie z. B. Vergleiche, Schleifen oder Variablen.

Transformationsrichtung

Modelltransformationen konnen unidirektional oder bidirektional erfolgen. Bei einer uni-
direktionalen Transformation erfolgt die Transformation in eine Richtung, meistens vom
Quell- zum Zielmodell. Eine Ausfiihrung in die andere Richtung ist nicht moglich. Bei
bidirektionalen Transformationen kénnen die Transformationen in beide Richtungen erfol-
gen. Dies kann entweder erreicht werden, indem nur bidirektionale Transformationsregeln
verwendet werden (z. B. durch den Einsatz eines deklarativen Beschreibungsmechanismus)

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

oder indem Regelpaare definiert werden, die einmal eine Transformation vom Quell- zum
Zielmodell und einmal vom Ziel- zum Quellmodell beschreiben.

Inkrementalitit

Die Inkrementalitét beschreibt, wie Anderungen in bestehenden Zielmodellen vorgenom-
men werden diirfen. Sie definiert was wann und wie gedndert werden darf. Es werden drei
Arten unterschieden:

o Ziel-Inkrementalitédt: Bei der ersten Erstellung wird alles neu angelegt. Danach folgt
die Speicherung. Bei Anderungen in den Quellmodellen werden die entsprechenden
Regeln ausgefiihrt. Nicht betroffene Elemente im Zielmodell bleiben erhalten.

o Quell-Inkrementalitéit: Das Transformationssystem analysiert, welche Regeln von ei-
ner Anderung im Quellmodell betroffen sind und fithrt diese aus. Dies ist vor allem
bei groBen Quellmodellen interessant.

o Erhaltung von Benutzer-Editierungen im Zielmodell: Bei einem Update des Zielm-
odells bleiben Anderungen, die zuvor durch einen Benutzer erfolgten, unberiihrt.

5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle

Des Weiteren konnen Transformationen hinsichtlich der Quell- und Zielmodelle und deren
Metamodellen unterschieden werden. Zu dieser Kategorie zéhlen Art, Anzahl, die Abstrak-
tionsebene der Modelle und in welcher Beziehung die Modelle zueinanderstehen.

Art der Quell- und Zielmodelle

Bei einer Modelltransformation kénnen zwei Arten von Zielmodellen erzeugt werden:
Textartefakte oder Modellartefakte. Die Generierung von Text wird als Modell-zu-Text
Transformation und die Generierung von Modellen als Modell-zu-Modell Transformation
bezeichnet [87]. Bei den Modellen kann zusétzlich nach der internen Struktur unterschieden
werden, z. B. ob diese baumartig ist oder eine Graphstruktur aufweist. Fiir beide Trans-
formationen sind verschiedene Ansitze entwickelt worden. Eine detaillierte Beschreibung
der Modell-zu-Modell Transformationsansétzen erfolgt in Abschnitt 5.3.

Anzahl der Quell- und Zielmodelle

Neben der Art des Zielmodells kann nach der Anzahl der Quell- und Zielmodelle unter-
schieden werden. Insgesamt existieren vier Kombinationen:

1:1 Modelltransformation: Ein Quellmodell wird in genau ein Zielmodell transformiert.
Beispiel: Ein Modell nach dem ACPLT/KS-Metamodell wird in ein Modell nach dem
OPC UA Metamodell umgewandelt.

1:M Modelltransformation: Ein Quellmodell wird in mehrere Zielmodelle transformiert.
Beispiel: Ein Plattform-unabhéngiges Modell wird in verschiedene Plattform-abhéngige
Modelle transformiert.

37

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

M:1 Modelltransformation: Mehrere Quellmodelle werden in ein Zielmodell transformiert.
Beispiel: Mehrere Quellmodelle, die unterschiedlich entwickelt wurden, werden in einem
Zielmodell kombiniert oder zusammengefiihrt.

M:N Modelltransformation: Mehrere Quellmodelle werden in mehrere Zielmodelle trans-
formiert. Beispiel: Mehrere Modelle werden untereinander synchronisiert.

Abstraktionsebene der Quell- und Zielmodelle

Die Quell- und Zielmodelle kénnen in verschiedenen Abstraktionsebenen der Originale lie-
gen. Aus diesem Grund kann in eine Transformation zwischen Modellen, die auf einer
Abstraktionsebene liegen, und in eine Transformation zwischen Modellen, die auf unter-
schiedlichen Abstraktionsebenen liegen, unterschieden werden. Die erste wird als horizon-
tale Transformation und die zweite als vertikale Transformation bezeichnet. Beispiele fir
eine horizontale Transformation sind die Restrukturierung und die Migration. Die Code-
Generierung ist ein Beispiel einer vertikalen Transformation.

Beziehung zwischen Quell- und Zielmodell

Einige Ansétze befassen sich mit der Erstellung von neuen Zielmodellen ohne dabei die
Quellmodelle zu verdndern. Andere Ansétze dndern als Ergebnis die Quellmodelle. ITm
zweitgenannten Fall, wenn das Zielmodell dem Quellmodell entspricht, wird dies als eine
In-Place-Transformation bezeichnet. Dabei kann weiterhin unterschieden werden, ob ein
reines Ersetzen oder auch ein Update vorliegt. Bei einem Update muss festgelegt werden,
welche Modellelemente geupdatet werden diirfen, z. B. nur neue Modellelemente oder nur
bestimmte Klassen von Modellelementen.

Art der Metamodelle

Neben den Quell- und Zielmodellen kann auch die Art der Metamodelle, nach denen diese
formuliert sind, betrachtet werden. Es wird in endogene und exogene Transformationen
unterschieden. Bei einer endogenen Transformation sind die Metamodelle der Quell- und
Zielmodelle gleich. Sind die Metamodelle verschiedenen, liegt eine exogene Transforma-
tion vor. In [88] wird eine endogene Transformation zusitzlich als Rephrasing und eine
exogene Transformation als Translation bezeichnet. Typische Beispiele fir eine endogene
Transformation sind die Optimierung, die Restrukturierung, die Vereinfachung oder die
Normalisierung des Quellmodells. Die Synthese, das Reverse Engineering oder die Migra-
tion sind hingegen klassische Beispiele einer exogenen Transformation.

5.2.3 Merkmale der Transformationsregeln

Viele der vorher genannten Merkmale fiir Modelltransformationen gelten auch explizit fur
Transformationsregeln, wie z. B. die Art der Metamodelle, der Beschreibungsmechanismus
oder die Transformationsrichtung. Zusétzlich existieren weitere Merkmale, die speziell fiir
Transformationsregeln gelten. Die Merkmale dieser Kategorie werden in diesem Abschnitt
vorgestellt.

38

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

Genutzte Konstrukte

Transformationsregeln koénnen hinsichtlich der genutzten Konstrukte - Variablen, Muster
und Logik - unterschieden werden.

Eine Moglichkeit ist die Nutzung von Variablen, um Werte von Elementen zu speichern
und wiederzuverwenden. Dies bedingt einen imperativen Beschreibungsmechanismus. Die
Variablen werden in der Regel als Metavariablen bezeichnet, um sie von den Element-
Variablen bzw. Element-Attributen, die Teile der zu transformierenden Modelle sind, zu
unterscheiden.

Zuséatzlich konnen Muster verwendet werden. Muster sind Modellfragmente und bestehen
aus beliebig vielen Variablen. Zudem koénnen auch Ausdriicke und Aussagen der Metaspra-
che verwendet werden. Dies konnen sowohl als eine Zeichenkette, als ein Begriff oder als
ein Graph dargestellt werden.

Mit Hilfe von Logik kénnen Berechnungen oder Beschrankungen ausgedriickt werden. Diese
koénnen verschiedenen Paradigmen folgen und in verschiedenen Beschreibungsmechanismen
genutzt werden. Zusétzlich kann die Logik ausfithrbar, z. B. mit Hilfe von OCL-Abfragen,
oder nicht ausfithrbar sein, z. B. durch die Festlegung von Einschrénkungen.

Die Konstrukte kénnen ferner in untypisiert, syntaktisch typisiert und semantisch typi-
siert unterschieden werden. Untypisierte Konstrukte sind z. B. textuelle Templates. Varia-
blen, die einem Metamodell-Element zugeordnet werden und Elemente dieser Metamodell-
Element-Klasse verwalten konnen, werden syntaktisch typisiert genannt. Semantisch typi-
sierte Konstrukte erlauben stirkere Eigenschaften, wie z. B. die Wohlgeformtheit (statische
Semantik) oder die Definition des Verhaltens (dynamische Semantik).

Syntaktische Separation

Eine syntaktische Separation liegt vor, wenn eine Trennung der Transformationsregeln
beziiglich der Modelle existiert. Zugehorige Ansétze erméglichen die Definition von Regeln,
die nur auf dem Quell-Modell oder nur auf dem Ziel-Modell anzuwenden sind. Klassische
Vertreter sind z. B. die Left-Hand-Side (LHS-) und die Right-Hand-Side (RHS-)Regeln. Die
LHS-Regeln werden nur auf die Quell-Modelle und die RHS-Regeln nur auf die Ziel-Modelle
angewendet.

Ausfiithrungsbedingung

Einige Regeln konnen Ausfithrungsbedingungen enthalten. Erst wenn diese erfiillt sind,
werden die Regeln ausgefithrt. Je nach Art der Ausfithrungsbedingungen kann das Sche-
duling der Regelanwendung unterschiedlich ausfallen (siche Abschnitt 5.2.4). Ein Beispiel
sind when-Bedingungen.

Parametrierung

Transformationsregeln konnen parametrierbar sein. Dies bedeutet, dass generische Regeln
definiert werden konnen, die mit Hilfe von Parametern konkretisiert werden. Beispielsweise
konnten innerhalb einer Regel mehrere Alternativen implementiert sein und mit Hilfe eines
Parameters ausgewahlt werden. Andere Optionen zur Spezialisierung einer Regel sind z. B.
die Ubergabe von Datentypen oder Modelltypen.

39

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

5.2.4 Merkmale der Regelnutzung

Abschlieen wird die Kategorie Regelnutzung betrachtet. Darunter werden die Merkmale
Steuerung der Regelanwendung und Regelorganisation zusammengefasst. Die Steuerung der
Regelanwendung beantwortet die Fragen beziiglich des Zeitpunkts und auf welche Bereiche
die Regeln ausgefithrt werden sollen. Die Regelorganisation beschreibt, wie die Regeln
geordnet abgelegt werden kénnen.

Steuerung der Regelanwendung

Die Steuerung der Regelanwendung wird in Standortbestimmung und Scheduling unter-
gliedert. Die Standortbestimmung beschreibt auf welche Bereiche im Quell- und Zielmodell
die Regeln angewendet werden sollen. Dies ist vor allem interessant, wenn eine Regel auf
mehrere Bereiche bzw. Elemente anwendbar ist. Wird diese Regel auf alle ausgefithrt oder
nur auf einzelne und wenn ja, auf welches Element, z. B. das erste gefundene oder das
am tiefsten gefundene. Je nachdem wie die Standortbestimmung festgelegt wird, kann das
Verhalten in deterministisch, nicht deterministisch und interaktiv unterschieden werden.

Das Scheduling definiert zu welchem Zeitpunkt die Regeln ausgefiihrt werden sollen und
kann in vier Untermerkmale unterschieden werden:

o Erstellung von Steuerung der Regelanwendung: Der Ersteller der Transformations-
definition kann entweder den Planungsalgorithmus, also die Reihenfolge der Regel-
ausfithrung, selbst definieren (explizites Scheduling) oder diesen aktiv beeinflussen,
z. B. durch die Vorgabe das Regeln der Ausléser fir andere Regeln sein kénnen (inter-
nes explizites Scheduling). Alternativ wird der Algorithmus vom Transformationstool
vorgegeben (internes Scheduling).

o Regelauswahl: Die Regelauswahl kann entweder durch explizite Bedingungen, durch
eine nicht deterministische Auswahl, durch einen Konfliktlosungsalgorithmus oder
interaktiv durch den Benutzer erfolgen. Bedingungen (sog. Application Constraints)
konnen sowohl negativ einschriankend, Negative Application Constraint (NAC), als
auch positiv einschrinkend, Positive Application Constraint (PAC), formuliert sein.
Bei NACs werden Elemente festgelegt, die nicht in der gesuchten Quellmodellstruktur
vorkommen diirfen. Ist dies der Fall, wird die Regel ausgefithrt. Die PACs hingegen
beschreiben Elemente, die zwingend in der gesuchten Quellmodellstruktur vorkom-
men miissen, damit die Regel ausgefiihrt wird. Zusétzlich existieren auch einfachere
Bedingungen, wie z. B. Prioritaten.

o Regelwiederholung: In einigen Anwendungsféllen sollen die Regeln oder der gesamte
Regelsatz mehrfach ausgefithrt werden. Dadurch ergeben sich ggf. neue Eingangsbe-
dingungen (vor allem bei In-Place-Transformationen (vgl. Abschnitt 5.2.2)). Daftr
konnen Schleifen, Rekursionen oder Fixpunktiterationen genutzt werden.

o Unterstiitzung von Phasen: Dieses Unterscheidungsmerkmal liegt vor, wenn eine
Transformation in verschiedene Phasen unterteilt wird. In jeder Phase konnen aus-
gewihlte Regeln ausgefithrt werden. Beispielsweise konnte eine Phase zum Erstellen
und eine Phase zum Setzen von Werten definiert werden.

40

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.3 Modell-zu-Modell Transformationsansatze

Regelorganisation

Die Regelorganisation beschreibt, wie Regeln geordnet abgelegt werden, um diese wieder-
zuverwenden. Eine Ubersicht der Wiederverwendungsmechanismen wird in [89] aufgefiihrt.
Die Regelorganisation wird in drei Arten unterschieden:

o Modularisierung: Regeln konnen in Modulen zusammengefasst werden. Einzelne Mo-
dule konnen wiederverwendet werden. Sowohl in der aktuellen als auch in andere
Transformationsdefinitionen wird dies ermoglicht, indem die Module importiert wer-
den.

o Wiederverwendung: Regeln konnen mit Hilfe zuvor definierter Regeln erstellt werden.
Dies kann z. B. durch das Zusammensetzen bestehender Regeln erfolgen oder durch
Prinzipien der Vererbung, wie die Erweiterung oder die Spezialisierung.

o Strukturierung: Regeln konnen in die Elemente des Quellmodells, des Zielmodells
oder frei organisiert sein. Das bedeutet, dass Regeln z. B. bestimmten Metaklassen
zugeordnet werden. Dies ist beim Quellmodell schwierig, sofern mehrere Metaklassen
vorhanden sind.

5.3 Modell-zu-Modell Transformationsansatze

In Abschnitt 5.2.2 wurde eine Unterscheidung in Modell-zu-Text und Modell-zu-Modell
Transformationen eingefithrt. Diese Unterscheidung basiert auf der Forschung von Czar-
necki und Helsen [84], die verschiedene Transformationssysteme untersucht und die ver-
wendeten Ansétze kategorisiert haben. In [87] wurde bestatigt, dass diese Kategorisierung
derzeit noch relevant ist.

Fir die Modell-zu-Text Transformation existieren zwei Ansétze: Besucher- und Vorlagen-
Ansatz. Fir die Modell-zu-Modell Transformation existieren verschiedene Ansétze, wobei
folgende vier Ansitze in der Regel verwendet werden: der imperative/operationale, der
relationale/deklarative, der Graph-basierte und der hybride Ansatz. Da in dieser Arbeit
eine Modell-zu-Modell Transformation durchgefithrt werden soll, werden in diesem Ab-
schnitt die Ansatze fiir die Modell-zu-Modell Transformation detailliert vorgestellt und
diskutiert.

5.3.1 Imperativer/Operationaler Ansatz

Der imperative/operationale Ansatz basiert auf einer imperativen Sprache und adressiert,
wie und wann eine Transformation ausgefiithrt werden soll. Dazu erstellt der Anwender eine
Liste von Anweisungen bzw. Regeln, die anschlieend auf die Modelle angewendet werden.
Die imperativen Sprachkonstrukte sind mit den Programmiersprachen vergleichbar, erwei-
tern diese aber um spezielle Funktionalititen, die fiir Modelltransformationen benotigt
werden, wie z.B. die Riickverfolgung. Ein Beispiel ist die Kombination einer Abfrage-
Sprache, wie z.B. OCL, mit imperativen Konstrukten einer Programmiersprache. Dabei

41

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

koénnen die Extra-Funktionen iiber Bibliotheken zur Verfiigung gestellt werden. Des Weite-
ren hat die OMG einen solchen Ansatz in Form des QVT Operational Mappings entwickelt
und veréffentlicht. Ein guter Einblick ist in [90] gegeben. 16 weitere Umsetzungen, wie z. B.
der von Kermeta [91], sind in [87] aufgelistet.

Ein Sonderfall des operationalen Ansatzes stellt der Direkte-Manipulations-Ansatz dar. Bei
diesem Ansatz liegt eine interne Modellreprasentation vor, auf die mittels eines impera-
tiven Application Programming Interface (API) zugegriffen werden kann. Mit Hilfe die-
ser Schnittstelle kann das Modell schrittweise verandert werden. Das Framework, welches
diese API anbietet, ist in der Regel objektorientiert implementiert. Typische imperative
Sprachen, die verwendet werden, sind JAVA, C++ oder Python. Der Nutzer formuliert
die Regeln in Form von Anweisungen (Aufrufen von API-Operationen), um das Modell
zu verandern. Er ist aber auch zusétzlich fir die richtige Reihenfolge und die korrekte
Ausfithrung der Regeln/Aufrufe verantwortlich.

Vorteile des imperativen/operationalen Ansatzes sind die sehr gute Performance zur
Laufzeit, die Programmiersprachen mitbringen, sowie die komplette Kontrolle iiber die
Durchfithrung der Transformationsschritte. Dies ermoglicht unter anderem die einfache
Integration von User-spezifischen Erweiterungen, wie z. B. ein spezielles Logging oder ei-
ne spezielle Rickverfolgungsstechnik. Fiir die einen ist es ein Vorteil, fiir die anderen ein
Nachteil. So gehort die Kenntnis der Sprachelemente und der Aufwand zur Kontrolle fiir
einen Software-Entwickler zum Arbeitsalltag, fiir einen Doménenexperten als reinen An-
wender von Modellen, meistens nicht. Ein Doménenexperte mochte auf der Semantikebene
moglichst schnell einfach zu verstehende Regeln formulieren.

5.3.2 Relationaler/Deklarativer Ansatz

Im Gegensatz zum imperativen Ansatz wird beim relationalen/deklarativen Ansatz nicht
festgelegt, wie ein Objekt transformiert wird, sondern nur wie Quell- und Zielobjekt aus-
sehen. Eine Definition, wie das System diese Transformation umsetzt, erfolgt nicht. Das
Hauptkonzept dieses Ansatzes sind mathematische Relationen. Die Grundidee basiert auf
der Definition von Relationen zwischen Elementen im Quell- und Zielmodell mit Hilfe
von Constraints in Form von deklarativen Regeln (z.B. [92]). Eine Regel definiert, wel-
ches Element bzw. Muster im Quellmodell gefunden werden muss und wie dieses danach
im Zielmodell auszusehen hat. Zusétzlich legt die Regel fest, wann sie ausgefithrt werden
soll.

Vorteile dieses Ansatzes sind die einfache Definition von Regeln, die Vermeidung von Sei-
teneffekten bei der Ausfiihrung und direkte Erstellung der Zielelemente. Aufgrund der de-
klarativen Beschreibungen sind die Regeln zunachst nicht ohne weiteres ausfithrbar. Dazu
sind logische Programmiersprachen oder operationale Anséitze notwendig.

Es existieren bereits etablierte Umsetzungen wie die QVT Relations der OMG [93]. Eine
groBere Auflistung befindet sich unter anderem in [84, 87].

42

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.3 Modell-zu-Modell Transformationsansatze

5.3.3 Graph-basierter Ansatz

Viele Meta-Modelle werden typischerweise in UML-Notation erstellt und kénnen damit
als Graphen angesehen werden. Aus diesem Grund verwenden einige Ansitze fiir die
Modelltransformation eine Graph-Grammatik. Dabei werden die Modelle als typisierte
Graphen betrachtet. Transformationsregeln bestehen bei diesem Ansatz aus einer linken
(LHS) und einer rechten Seite (RHS). Die LHS beschreibt, welche Quellmodellelemente
ersetzt, und die RHS, durch welche Elemente diese Quellmodellelemente ersetzt werden
sollen. Bei der Ausfiihrung einer Regel wird der Ausgangsgraph (Quellmodell) nach einer
Ubelembtlmmung der LHS durchsucht. Wird eine Uberembtunmung gefunden, wird der
Graph durch die RHS ersetzt. Dies erfolgt so lange, bis keine Ubereinstimmungen mehr
gefunden werden.

Vorteile sind, dass der Ansatz auf einer theoretischen Grundlage aufbaut, eine In-Place-
Transformation ermoglicht und die Transformationen meistens unidirektional sind. Der
Ansatz ist nicht deterministisch und wird daher in der Praxis selten angewendet.

Um M:N Transformationen, anstelle von In-Place-Transformationen, zu ermoglichen, wur-
de von Schiirr die Triple Graph Grammatik (TGG) [94] entwickelt. Er fiihrte einen drit-
ten simultan erzeugten Korrespondenzgraph ein und verwendet kontextsensitive Graph-
Grammatiken. Ein Uberblick iiber die Entwicklungen der TGGs wird in [95] gegeben.

Es gibt bereits mehrere Umsetzungen dieses Ansatzes, z. B. AGG [96] oder UMLX [97].
Diese Umsetzungen waren einer der ersten Realisierungen und werden bis heute genutzt.
Des Weiteren existieren in der Automatisierungstechnik erste Ansitze [79, 98]. Weitere
Umsetzungen sind in [84, 87| untersucht worden.

5.3.4 Hybrider Ansatz

Die zuvor vorgestellten Ansédtze haben Vor- und Nachteile. Vielfach sind diese komple-
mentér. So ermoglichen imperative Ansitze eine sehr effiziente Implementierung fiir kom-
plexe Transformationen, die jedoch mit grofieren Transformationsdefinitionen einhergehen.
Dies kann fiir einen Ersteller und Nutzer zu Problemen bei der Lesbarkeit und Wartbar-
keit fiihren. Relationale Ansétze sind préaziser und einfacher zu verstehen, da die Definition
der Transformation auf einer hoheren Ebene mit weniger Implementierungsdetail erfolgt.
Allerdings kénnen Einschrankungen beziiglich der expliziten Definition des Kontrollfius-
ses, vor allem bei komplexeren Transformationen, vorliegen. Der Graph-basierte Ansatz
basiert zwar auf einer theoretischen Grundlage, ist aber nicht deterministisch. Aus diesen
Griinden werden hybride Ansétze entwickelt, die die Vorteile der verschiedenen Ansétze
kombinieren. Diese kénnen in zwei Kategorien unterschieden werden:

o Systeme, die mehrere Ansiatze unterstiitzen, aber diese auf Regelebene trennen

o Systeme, die mehrere Ansitze unterstiitzen und diese innerhalb von Regeln
ermoglichen

43

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
tersagt, mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Zur ersten Kategorie gehort z. B. QVT. QVT unterstiitzt drei verschiedenen Ansétze: Rela-
tions, Operational mappings und Core. Die drei verschiedenen Ansitze kénnen nicht inner-
halb einer Regel genutzt werden. Eine Kombination von Regeln, die jeweils einen anderen
der drei Ansatze nutzen, ist moglich. Atlas Transformation Language (ATL), Model Trans-
formation Language (MOLA) und Visual Automated Model Transformations (VIATRA)
sind Beispiele der zweiten Kategorie. Bei ATL wird eine Kombination des relationalen und
des imperativen Ansatzes [99], bei MOLA die Kombination des Graph-basierten und des
imperativen Ansatzes [100] und bei VIATRA die Kombination aus relationalem, impera-
tivem und Graph-basiertem Ansatz verwendet [101].

5.4 Transformationssprache und -system

Zur Definition der Transformationsregeln und der Regelsteuerung, wird eine Sprache, die
Transformationssprache, benétigt. Um die Transformationssprache interpretieren und da-
mit Modelltransformationen auszufithren zu koénnen, wird ein passendes Transformations-
system vorausgesetzt. Die Transformationssprache und das Transformationssystem bedin-
gen einander und miissen somit immer gemeinsam entwickelt werden.

Fir die Entwicklung von Transformationssprachen wurden zunéchst universelle Program-
miersprachen, wie C++, Java oder Python genutzt. Diese haben den Nachteil, dass sie
nicht explizit fiir diesen Anwendungsfall entworfen wurden. Das hat zur Folge, dass re-
gelméBig auftretenden Aufgaben nur umstandlich umgesetzt werden konnen [46], da ein
tiefes Verstandnis der Programmiersprache notwendig ist [83]. Aus diesem Grund wer-
den konkrete Sprachen fiir Modelltransformationen entwickelt. Je nach verwendetem An-
satz unterstiitzen diese deklarative oder imperative Sprachelemente. Zusitzlich konnen die
Sprachen hinsichtlich ihrer Verwendung in generische und doménenspezifische Transfor-
mationssprachen unterschieden werden.

5.4.1 Generische und domanenspezifische Transformationssprachen

Analog zu Modellsprachen werden auch Transformationssprachen in generische und
doménenspezifische Sprachen unterschieden. Generische Transformationssprachen, haufig
auch General Purpose Transformation Language (GPTL) genannt, erméglichen die Erstel-
lung von Transformationsregeln zwischen beliebigen Quell- und Ziel-Metamodellen und fiir
beliebige Anwendungsfille. Sie sind dadurch vielfiltig anwendbar. Um dies zu erreichen,
sind die Sprachelemente allgemein gehalten, wenig typisiert und enthalten somit nur in ei-
nem geringen Mafle eine Semantik. Das hat zur Folge, dass die Erstellung von Regeln nur
durch ein tiefes Verstandnis der Sprache erméglicht wird und meistens von entsprechendem
Fachpersonal erfolgt. Typische Beispiele sind QVT [90, 93], ATL [99], Epsilon Transfor-
mation Language (ETL) [102] oder VIATRA [101]. Sollen hingegen Doménenexperten
Transformationsregeln erstellen, ist diese Art der Sprachen nur begrenzt nutzbar.

Um diesem Problem zu entgegnen, wurden doménenspezifische Transformationssprachen
(Domain Specific Transformation Language (DSTL)) entwickelt [103-105]. Diese enthalten

44

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.4 Transformationssprache und -system

Sprachelemente, die an die konkrete Syntax der jeweiligen doménenspezifischen Modellie-
rungssprache (Metamodell) angepasst werden [106]. Dadurch miissen Doménenexperten
nur die Syntax der zusétzlichen Transformationssprachelemente erlernen und kénnen diese
somit schneller nutzen. Im Gegenzug konnen diese Sprachen dafiir ausschliefllich fir die
Modellsprache genutzt werden, fiir die sie entwickelt wurden.

Zuséatzlich besteht die Option, die Transformationssprache an den jeweiligen Anwendungs-
fall anzupassen, sodass die Sprache deutlich spezifischer definiert werden kann. Dies fiihrt
dazu, dass die Sprache durch den Wegfall von nicht-bendtigten Funktionen vereinfacht
wird. In den letzten Jahren wurden vermehrt doménenspezifische Transformationsspra-
chen entwickelt [107]. Immer mehr Arbeiten zeigen die Notwendigkeit auf [108, 109]. Tools
zur Erstellung von doménenspezifischen Transformationssprachen [106, 110, 111] wurden
entwickelt. Eine ausfiihrliche Analyse der Literatur wird in [112] gegeben.

Wenn beliebige Metamodelle transformiert werden und eine generische Sprache fiir
den vorliegenden Anwendungsfall anwendbar ist, sollte eine generische Sprache ge-
nutzt werden. Erfolgen die Transformationen innerhalb einer Modellierungssprache, sollen
Doménenexperten in die Lage versetzt werden, die Regeln zu erstellen, und ist die Anwen-
dung in der Doméne hoch, sollte hingegen eine doméanenspezifische Transformationssprache
genutzt werden.

Aktuelle Forschungen definieren Meta-Transformationssprachen inkl. passenden generi-
schen Transformationssysteme. Diese kénnen mit doménenspezifischen Sprachelementen
erweitert werden, sodass sie als doménenspezifische Transformationssprachen gelten und
dasselbe generische Transformationssystem nutzen. Dadurch kann die Entwicklung auf die
doménenspezifischen Sprachelemente reduziert werden.

5.4.2 Erstellung von Transformationssprachen

Fir die Erstellung von Transformationssprachen existieren verschiedene Ansétze: Nutzung
oder Anpassung einer bestehenden, Generierung einer neuen oder vollstandige Neuentwick-
lung einer Transformationssprache. In der Vorveroffentlichung [21] wurde ein Leitfaden fir
die Erstellung einer Transformationssprache entwickelt. Dieser Leitfaden besteht aus drei
Schritten:

o Klassifikation der durchzufithrenden Modelltransformation und der Quell/Ziel-
Metamodelle

o Allgemeine Anforderungen an die Modelltransformationssprache und Festlegung der
notwendigen abstrakten Sprachelemente

o Entwurf der Modelltransformationssprache

Klassifikation der durchzufiihrenden Modelltransformation und der Quell/Ziel-
Metamodelle

Zunéchst werden die Eigenschaften der Modelltransformation beschrieben, um eine pas-
sende Transformationssprache auszuwéhlen oder zu entwickeln. Nach Vorgabe des Leit-
fadens ist zundchst eine Klassifikation hinsichtlich der allgemeinen Merkmale sowie der
Merkmale zu den Quell- und Ziel(meta)modellen, die in Abschnitt 5.2 definiert wurden,

45

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5 Modelltransformation

durchzufithren. Dies wird darin begriindet, dass diese Merkmale bereits durch den gegebe-
nen Anwendungsfall klassifizierbar sind. Die Merkmale fiir die Transformationsregeln und
fiir die Regelnutzung formulieren Anforderungen an die Funktionalitédten der Sprache und
werden daher im zweiten Schritt spezifiziert. Zusitzlich soll das Meta-Meta-Modell der
Quell- und Zielmodelle analysiert werden, da die Transformationssprache die Typen der
Modellelemente unterstiitzen muss.

Allgemeine Anforderungen an die Modelltransformationssprache und Festle-
gung der notwendigen abstrakten Sprachelemente

In diesem Schritt werden Anforderungen an die Sprache spezifiziert, z. B. wie die Regeln
formuliert werden sollen. Die in diesem Schritt ermittelten Anforderungen miissen von der
Syntax der Transformationssprache erfiillt werden. Die Merkmale aus Abschnitt 5.2 hin-
sichtlich der Transformationsregeln und der Regelnutzung gehoren in diesen Schritt. Hierzu
ziahlen die zu unterstiitzenden Konstrukte, ob eine syntaktische Separation erfolgen soll,
wie die Regeln ausgefiihrt werden sollen sowie ob und wie die Regeln wiederverwendet wer-
den sollen. Zusatzlich werden in diesem Schritt die abstrakten Sprachelemente festgelegt,
die eine Sprache unterstiitzen muss.

Entwurf der Modelltransformationssprache

Beim Entwurf der Modelltransformationssprache wird zunéchst gepriift, ob bereits eine
existierende Modelltransformationssprache verwendet werden kann, die die zuvor defi-
nierten Klassifikationen und Anforderungen erfiillt. Dies kann sowohl eine bestehende
doménenspezifische als auch eine generische Transformationssprache sein. Ist dies nicht
der Fall, wird gepriift, ob bei einem bestehenden Modelltransformations-Framework die
Sprache und die Tools so angepasst werden konnen, sodass dieses den Anforderungen
gentigt. Dabei kann z. B. eine generische Transformationssprache genutzt und durch kleine
Anderungen in der Syntax (z.B. durch Einfiihrung von weiteren Sprachelementen oder
durch Restriktion auf einen kleineren Umfang der Sprachelemente) fir die geforderte
Doméne angepasst werden. In [113] wird eine Anpassung einer generischen Transformati-
onssprache gezeigt. Dies ist nur bei minimalen Anpassungen sinnvoll.

Kann weder eine existierende Sprache direkt genutzt noch angepasst werden, muss eine
neue Sprache entwickelt werden. Es sollten existierende Tools fiir die (semi-)automatische
Erstellung von Modelltransformationssprachen hinsichtlich ihrer Nutzbarkeit analysiert
werden, um den Aufwand der Neuentwicklung zu reduzieren. Fiir einige Transformations-
probleme wurden bereits solche Frameworks erstellt. Meistens stellen diese Frameworks
Anforderungen an die Metamodelle, wie z. B. dass diese in einer formalen Sprache defi-
niert sein miissen, oder die zu erfiillenden Aufgaben miissen in einer formalen Darstellung
definiert werden.

Existiert kein nutzbares Generierungs-Framework, muss eine komplette Neuentwicklung
erfolgen. In [114] und [115] sind Beispielprozeduren fiir die vollstdndige Erstellung von
neuen Transformationssprachen gegeben. Es ergeben sich drei Schritte fiir die Erstellung:

« Erstellung einer abstrakten Syntax und Definition der statischen Semantik?,

'Die Bedeutung der Elemente fiir die Transformation sowie die Definition von Invarianten, vor allem fiir
Typen.

46

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

5.4 Transformationssprache und -system

o Entwurf einer zugehoérigen konkreten Syntax und

o Implementierung eines Parsers, Checkers und Interpreters (auch Transformationssy-
stem genannt).

Bei der Definition der abstrakten und konkreten Syntax sollte betrachtet werden, ob
Sprachkonstrukte von anderen Sprachen, wie z. B. Transformations-, Programmier- oder
Expression-Sprachen, wiederverwendet werden konnen. Vor allem bei der abstrakten Syn-
tax sollte auf eine umfassende Spezifikation von Expressions geachtet werden, um nicht
betrachtete Randfélle spéter abbilden zu koénnen. In [111] ist eine Ubersicht iiber typische
Elemente einer Modelltransformationssprache gegeben. Fiir den Schritt der Implementie-
rung existieren bereits Generatoren, die die entsprechenden Werkzeuge mit einer gegebenen
Sprache automatisiert erzeugen. Diese stellen dhnlich den Generierungs-Frameworks An-
forderungen an die Sprache, fiir die Werkzeuge erstellt werden konnen. In [108] wird ein
Generator beschrieben, der automatisiert Code-Templates aus einer formalen Modelltrans-
formationssprache erstellt.

47

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von
Asset-Informationen

Die Modellierung und der Austausch von Asset-Informationen haben in den letzten Jah-
ren eine hohe Bedeutung im Bereich der Forschung an Hochschulen und in der Industrie
erlangt. Dies liegt vor allem an der Einfithrung der Begriffe Digitaler Zwilling und Ver-
waltungsschale. In diesem Kontext existieren heutzutage zusitzliche Begriffe, wie Digitaler
Schatten oder Digitaler Engel [116]. Im Rahmen dieser Arbeit wird keine weitere Unter-
scheidung zwischen den Begriffen getroffen und der Fokus liegt auf der Modellierung sowie
dem Austausch von Asset-Informationen.

Erstmals wurde der Begriff des Digitalen Zwillings 2003 von Grieves [117] eingeftihrt. 2010
verwendete die NASA den Begriff des Digitalen Zwillings zur Bezeichnung eines Simula-
tionsmodells eines physischen Raumfahrzeugs [118]. Anschliefend entstanden unterschied-
liche Definitionen, die alle eines gemeinsam haben: Sie beschreiben den Digitalen Zwil-
ling als ein informationstechnisches Abbild einer physischen Entitdt. In [119] wurde eine
ausfiihrliche Literaturrecherche durchgefiihrt, die aufzeigt, dass vier Forschungsgebiete im
Bereich des Digitalen Zwillings existieren: Die Modellierung von Digitalen Zwillingen (In-
formationsmodell), der Umgang mit Daten (Datenfusion), die Interaktion und Kollaborati-
on zwischen Digitalen Zwillingen sowie die Modellierung, das Auffinden und die Integration
von Diensten Digitaler Zwillinge. Die Bedeutung des Digitalen Zwillings zeigt sich durch
die Technologietrends, die jedes Jahr von Gartner veroffentlicht werden [120-122]. So war
laut Gartner der Digitale Zwilling von 2017 bis 2019 einer der fiinf wichtigsten Technolo-
gietrends. In Deutschland wurde zeitgleich der Begriff der Verwaltungsschale [123] geprégt.
Dieser erweitert den Anwendungsbereich des Begriffs des Digitalen Zwillings dahingehend,
dass nicht nur physische, sondern auch virtuelle Entitdten beriicksichtigt werden. Diese
physischen und virtuellen Entitédten werden Assets genannt.

In [119] wird aufgezeigt, dass zwar verschiedene Ansitze fir die Datenmodellierung existie-
ren, jedoch ein Konsens zwischen diesen zu diesem Zeitpunkt nicht gegeben ist. Sie fordern
generische Modellierungsmethoden fiir die einzelnen Forschungsgebiete. Bestehende inter-
nationale Normen wurden soweit erkennbar nicht betrachtet. Aus diesem Grund erfolgt
zunichst ein Auszug aus der Vorverdffentlichung [20], in der die aktuelle Normungsland-
schaft im Bereich der Eigenschaftsmodellierung aufgezeigt wird. Dem interessierten Leser
wird zusétzlich [124] empfohlen, in dem ebenfalls aktuelle Modellierungen, auch industri-
elle, fir Digitale Zwillinge vorgestellt und verglichen werden.

Nach dem Kurziiberblick werden drei vielversprechende, standardisierte Anséitze fiir die
Modellierung und den Austausch von Asset-Informationen detaillierter vorgestellt. Das ge-
meinsame Ziel dieser Ansétze ist der Weg von der System-/Gewerke-orientierten zu einer

48

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.1 Aktuelle Normungslandschaft fiir Eigenschaften

Asset-orientierten Ablage der Informationen. Dieser Wandel ist vor allem in der Prozess-
industrie noch nicht erfolgt [3]. Dadurch soll der Zugriff auf Asset-Informationen deutlich
vereinfacht werden. Am Ende dieses Kapitels erfolgt ein Vergleich der Ansétze sowie eine
Schlussfolgerung, wie die Vorteile der einzelnen Ansétze kombiniert werden kénnen.

6.1 Aktuelle Normungslandschaft fiir Eigenschaften

Der folgende Abschnitt wurde in Kapitel 2 der Vorveroffentlichung [20] abgedruckt und
stellt die aktuelle Normungslandschaft im Bereich der Eigenschaftenmodellierung vor.
Dabei wird herausgestellt, dass bereits nationale und internationale Normen existieren,
die einen Beitrag leisten.

»Die Normen kénnen in vier Bereiche eingeteilt werden (siehe Abbildung 6.1):
1. Normen, die sich mit der Modellierung von Eigenschaftsbeschreibungen befassen,

2. Normen, die Regeln und Anleitungen fir die Erstellung von Eigenschaftsbeschreibun-
gen, Klassifikationen und Lexika bereitstellen,

3. Normen, die Referenzmodelle (Klassifikationen und Eigenschaftsbeschreibungen) de-
finieren und

4. Normen, die Informationsmodelle fir den Datenaustausch von Informationen tber
FEigenschaften spezifizieren.

Normungslandschaft
fur Eigenschaften
_—— / —
Regeln und Anleitungen fiir die
MOQelherung von Erstellung von Referenz_modelle 8 fir den D:
Eigenschafts- F (Klassifikationen und . y
, schaft g Eigenschaftsbeschreibungen) von Informationen tber Eigenschaften
Ki und Lexika
Eigenes IEC 61360 / BT Beirieb_sphasev
Metamodell 18013584 v%n g (F
far Meta-Modell Geratebeschreibung)
Eigenschaften T
lodel
IEC 61360 / 1ISO 13584 ISO/IEC Guide 77 EN 1614 I1SO 12006 |EC 62714 IEC 61987 IEC 61804 IEC 61987
1SO 2336 1SO 2162 1SO 13399 |IEC 62453 IEC 62569
DIN 1301 DIN 4000 180 11238 1SO 13584 IEC 62769 IEC 62832
DIN 1313 DIN 4002 DIN EN 14968 1SO 15926 -
1SO 8601 ISO/EC 11179 1SO 15787 1SO 23584 DIN SPEC 92000 ,Datenaustausch auf der Basis von
ISO/IEC 80000 DIN 32705 DINEN 16104 | | 1SO 25297 (BVEXIE
IEC 61360-6 1SO 16484 |IEC 61360
ISO/IEC 81346 I1SO 17425 |IEC 62683
1SO 19131
|EC 62264

Abbildung 6.1: Normungslandschaft fir Eigenschaften nach [20]

Um FEigenschaften einheitlich zu beschreiben, wird ein weltweit einheitliches Modell
bendtigt. Beide internationale Normungsorganisationen, IEC und ISO, entwickelten je ein

solches Modell (ISO 13584-42[125] und IEC 61360-1[126]) und fihrten aufgrund der ho-
hen Ahnlichkeit und der Interoperabilitat diese zu einem gemeinsamen Informationsmodell

49

216.73.216.60, am 24.01.2026, 01:53:05.
m

. © Inhal.
mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

in der EXPRESS-Sprache [127] zusammen (ISO 13584-42 und IEC 61360-2 [128]), de-
ren zugehorigen Erweiterungen ebenfalls synchronisiert werden. Um auch bei der Definiti-
on der Einheiten und des Datentyps einer Figenschaftsbeschreibung interoperabel zu blei-
ben, werden die entsprechenden Normen hierfir verwendet (z. B. ISO 8601 oder ISO/IEC
80000).

Aufbauend auf dem Modell fir Eigenschaftsbeschreibungen miissen Regeln und Anleitungen
fir die Erstellung von konkreten Eigenschaftsbeschreibungen, deren Klassifikationen und
Lezika erstellt werden!. Basierend auf diesen wurden Modelle fiir Eigenschaftsbeschrei-
bungen definiert und in domdnenspezifischen Klassifikationen (z. B. 1SO 13399 oder IEC
62683) zusammengefiihrt. In einigen Domdnen existieren bereils eigene Modelle fiir Figen-
schaftsbeschreibungen (z. B. ISO 11238 oder IEC 62264). Diese miissen beim Informati-
onsaustausch in das oben definierte Modell transformiert werden.

Zum Austausch von Informationen tber Eigenschaften miissen die einzelnen Eigenschaf-
ten eindeutig definiert und in standardisierten Figenschafts-Lexika hinterlegt sein. Bei-
spiele fir existierende Eigenschafts-Lexika sind das IEC 16360 - Common Data Dictiona-
ry (IEC61360-CDD)? oder ECLASS®.

Die auszutauschenden Informationen treten in allen Phasen des Produkt-Lebenszyklus
auf. Dies beginnt mit der Auswahl, der Bestellung und dem FEinkauf von Produk-
ten (Procurement) mit Hilfe von Informationen tiber den Produkt-Typen. Diese werden
in der Engineering-Phase weiterverwendet und in der Auslieferungsphase um Instanz-
FEigenschaften erweitert. Wihrend des Betriebes stehen vor allem Parametrierungen sowie
Ist-Werte der Instanzen im Fokus und in der Instandhaltung werden ebenfalls Informa-
tionen tber den Typen und die jeweilige Instanz bendtigt. Aus diesem Grund haben sich
verschiedene Informationsmodelle fir die unterschiedlichen Lebensphasen entwickelt. So
wird fir den Austausch von Planungsdaten von Anlagen das Informationsmodell Auto-
mationML (IEC 6271/ [129]) genutzt, wihrend fir Gerdtedaten die Merkmalslisten aus
der IEC 61987 [130] verwendet werden. In der Gerdteintegration wird die Beschreibungs-
sprache EDDL# (IEC 61804 [131]), die Schnittstelle FDT® (IEC 62453 [132]) oder das
Konzept FDI° (IEC 62769 [133]) genutzt. Fiir die Verwaltung von Asset-Informationen
wird das Informationsmodell der IEC 62832 [134] oder zukinftig die Verwaltungsschale
verwendet.*”

6.2 Digital Factory Framework - International
Electrotechnical Commission

Das Digital Factory Framework (DF Framework) ist ein internationaler Standard der IEC
fiir die Modellierung von Produktionssystemen und wurde 2016 als technische Spezifikati-

'Die zugehorigen Normen sind in Bild 6.1 aufgelistet.
*https://cdd.iec.ch/

Shttps://www.eclass.eu/

4Electronic Device Description Language

®Field Device Tool

SField Device Integration

"Kapitel 2 der Vorverdffentlichung [20].

50

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.2 Digital Factory Framework - International Electrotechnical Commission

on und 2019 als offizieller Standard veroffentlicht. Der Standard besteht aktuell aus drei
Teilen. Der erste Teil [8] stellt eine allgemeine Einfiihrung sowic einen Uberblick ither die
Modelle und Konzepte bereit. Im zweiten Teil [9] erfolgt die detaillierte Vorstellung der
einzelnen Modellelemente und in Teil 3 [10] werden die Regeln zur Nutzung dieser Ele-
mente formuliert. Zusétzlich werden in den Anhédngen der Teile Mappings zu Technologien
gegeben. In dem nachfolgenden Abschnitt werden das Ziel und der Anwendungsbereich
dieses Standards vorgestellt. AnschlieBend wird das Informationsmodell beschrieben.

6.2.1 Ziel und Anwendungsbereich

Ziel des Standards ist die Modellierung von Produktionssystemen. Hierfiir wird ein Infor-
mationsmodell definiert, um Assets im Bereich von Produktionssystemen, die Beziehungen
zwischen verschiedenen Assets und den Informationsfluss zwischen den Assets zu modellie-
ren. Als Asset wird ein ,physisches oder logisches Objekt, das sich im Besitz einer Organi-
sation befindet oder unter dem Gewahrsam einer Organisation steht, und entweder einen
wahrgenommenen oder tatséchlichen Wert fir die Organisation hat“ verstanden [8]. Eine
Rolle wird explizit als Asset ausgeschlossen. Der Standard legt zusitzlich Regeln fir die
Nutzung der einzelnen Modellelemente fest (z. B. fiir die Erstellung von Bibliotheken). Das
vorgestellte Modell gilt fir alle Produktionsarten (kontinuierlich, diskret und Batch), fir
alle Branchen des industriellen Sektors sowie fiir alle Phasen im Lebenszyklus von Produk-
tionssystemen. Es soll die Moglichkeit gegeben werden, zu jeder Zeit Informationen iiber
ein Produktionssystem hinzuzufiigen, zu 16schen, zu dndern oder zu erhalten. Da bereits
viele Vorarbeiten im Bereich der Modellierung durch Standardisierungsgremien (z. B. ISO
oder TEC), Klassifikationskonsortien (z. B. ECLASS) und Datenlieferanten entwickelt wur-
den, zeigt der Standard einen Weg zur Integration und Nutzung dieser Arbeiten auf und
nennt diese drei Gruppen explizit als Stakeholder. Als Hauptstakeholder wird ein Unter-
nehmen angesehen, welches Produktionssysteme besitzt. Dem Unternehmen soll mit Hilfe
des Standards die Moglichkeit gegeben werden, die eigenen Produktionssysteme in der
Informationswelt abzubilden (siche Abbildung 6.2).

Explizit ausgeschlossene Anwendungsbereiche sind Gebaudekonstruktionen sowie jegliche
Arten von Produkten, die auf dem Produktionssystem verarbeitet werden (z. B. Eingangs-
material, Verbrauchsmaterial oder Endprodukte). Ebenfalls nicht im Standard enthalten
sind Anforderungen oder eine Spezifikation einer softwaretechnischen Umsetzung. Vielmehr
ist das Ziel, das Informationsmodell in bestehende Austauschformate oder Kommunikati-
onsstandards zu integrieren, wie z. B. in AutomationML (IEC 62714[129]) oder OPC UA
(IEC 62541[135]). Entsprechende Mappings sind im Anhang von [10] enthalten.

6.2.2 Informationsmodell

Das Informationsmodell basiert auf der objektorientierten Modellierung. Folglich existieren
Modellelemente, um sowohl Instanzen als auch Typen zu modellieren (vgl. Abschnitt 2.4).
Zudem wurden Elemente, um ein Begriffsworterbuch zu erstellen, definiert.

51

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

 Standardization bodies

Standard body x IEC
1 ——
Standardized dictionary x Dictionary in IEC CDD
| Enterprise
Classification consortia |
Consortium y eCl@ss ECCMA o dict 1
it ionary
1 1 . Digital Factory
Consartium dictionary y eCl@ss dictionary leQTD - DS asset class definitions
- data element typss
- collection of data element
Integrate or reference | definitons
| | - DF assets
I
Data suppliers 2 EE
Supplier A Supplier B Supplier C
Supplier dictionary A Supplier dictionary B
i DF library
1 - DS asset classes
= | = e
- data elements

library A library B library C " eolloctions of data &
(izanet 0 - DF asset classes relationships
L e i) oy WL - composite OF asset clagses : M

- view element q"u.::"%

. """‘m.h W*MMW J

Abbildung 6.2: Uberblick iiber das Digital Factory Framework [§]

Um konkrete Produktionssysteme und deren Teile zu modellieren, existieren insge-
samt fiinf Modellelemente (DigitalFactory, DFasset, DataElement, CollectionOfDataEle-
ments (CDEL) und DFassetLink). Abbildung 6.3 zeigt, wie ein Produktionssystem aus
der realen Welt in der Informationswelt durch ein DigitalFactory-Objekt und ein PSasset
durch ein DFasset-Objekt modelliert wird. Sowohl ein DigitalFactory-Objekt als auch ein
DFasset-Objekt konnen wiederum aus mehreren DFasset-Objekten bestehen. Beide Ob-
jekttypen bestehen aus einem Header und einem Body. Im Header werden administrative
Informationen, wie z.B. der Zweck des Produktionssystems oder die Informationen zur
Identifikation, beschrieben. Im Body werden Informationen tiber die Eigenschaften, den
Aufbau und die internen Beziehungen des Produktionssystems bzw. des DFasset model-
liert. Dies erfolgt mit Hilfe der drei anderen Modellelemente: DataElement, CDEL und
DFassetLink. Mit DataElement-Objekten konnen Informationen iiber einzelne Eigenschaf-
ten inkl. deren Werte modelliert werden, wie z. B. die Beschreibung, der Name oder der
Identifier. Diese konnen in Listen zusammengefasst und als CDEL modelliert werden. Das
letzte Element ist der DFassetLink. Mit diesem koénnen Beziehungen zwischen zwei oder
mehreren PSassets modelliert werden.

Da die objektorientierte Modellierung angewendet wird, miissen Modellelemente definiert
werden, um Typen zu modellieren. Die Modellelemente DFassetClass und DFassetClas-
sAssociation erfiillen diese Anforderung und dienen als Typen fiir DFasset und DFas-

52

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.2 Digital Factory Framework - International Electrotechnical Commission

Elementidentifier

DigitalFactory

PSassetldentifier
ReferenceToDFassetClass

DFasset-
Header

DataElement Id 1
DataElement Id 2
DataElement Id 3

CDEL1d 1
" DataElement Id 4 <value>

DFasset 1 (variable frequency drive)
" DFasset 1 description

DFassetBody

DFassetLink 1 (Link between DF asset 1and _..)
Virtual

L DFassetLink 1 description
world

represents represents

PS Asset
part of (hardware or a
software)

IEC

Real
world

Production system [

Abbildung 6.3: Modellelemente fiir die Darstellung von Produktionssystemen [10]

setLink. Die Verbindung zwischen dem jeweiligen Typ und der Instanz wird durch eine
Referenz dargestellt. Die Typen kénnen in Bibliotheken mit Hilfe der Library-Objekten zu-
sammengefasst werden. Zusétzlich wurde das Modellelement ViewElement eingefithrt, um
die Méglichkeit von Filterung innerhalb eines Library-Objekts oder eines DigitalFactory-
Objekts zu realisieren.

Um den Objektinstanzen eine semantische Bedeutung zuzuschreiben, werden Elemente
fiir die Definition von Begriffsworterbiichern festgelegt. Dies erfolgt analog zu den bereits
standardisierten Merkmalsbibliotheken (IEC 61360). Ein Begriffsworterbuch wird in die-
sem Standard durch ein ConceptDictionary-Objekt dargestellt. Wie in Abbildung 6.2 dar-
gestellt, existieren fiir verschiedene Stakeholder verschiedene Begriffsworterbiicher. Dies
wurde in der Modellierung durch abgeleitete ConceptDictionary-Objekte beriicksichtigt.
Innerhalb eines Begriffsworterbuchs kann anhand der Modellelemente DFassetClassDefi-
nition, DataFlementType und CDELdefinition die begriffliche Festlegung dieser Konzepte
getétigt werden. Somit konnen z. B. konkrete Asset-Beschreibungen erfolgen. Die vorher
beschriebenen Objekte (z.B. DFassetClass oder DataElement) konnen jeweils eine Refe-
renz auf einen dieser Begriffe angeben, um damit die Semantik des jeweiligen Objekts
maschinenverarbeitbar festzulegen.

Zusammengefasst wird sowohl die objektorientierte Modellierung verwendet als auch die
semantische Referenzierung im Modell angewendet. Es wurden Elemente fiir die Modellie-
rung von Produktionssystemen und deren Teilen sowie die Moglichkeit der Klassifikation
und Begriffsfestlegung definiert.

53

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

6.3 Asset Administration Shell - Plattform Industrie 4.0

Die Verwaltungsschale bzw. Asset Administration Shell (AAS) ist ein Konzept fir die
digitale Darstellung von Informationen und den herstellertibergreifenden Informationsaus-
tausch [136] und wurde 2015 erstmals in [137] eingefithrt. Das Konzept und dessen Struk-
tur wurden in der DIN SPEC 91345 [138] 2016 als deutscher Standard verdffentlicht und
international eingebracht. Eine erste funktionsfihige Modellierung sowie eine zugehorige
quelloffene Referenzimplementierung wurde 2017 vom Zentralverband Elektrotechnik- und
Elektronikindustrie (ZVEI) entwickelt [139]. Die Plattform Industrie 4.0 verdffentlichte
2018 ein Technologie-neutrales Informationsmodell der Verwaltungsschale in UML inklu-
sive verschiedener Serialisierungsformate in [140]. Aktuell liegt die Version 3.0RCO1 [4]
vor. Weitere Arbeiten beschéftigen sich mit der Definition von Schnittstellen [5] sowie
Infrastruktur-Elementen [6]. Im November 2019 wurde zusitzlich eine internationale Wor-
king Group initiiert, die eine internationale Standardisierungsreihe dieser Arbeiten als Ziel
hat. Der erste Teil dieser Reihe IEC 63278-1 [141] wurde im November 2020 verdffentlicht.

6.3.1 Ziel und Anwendungsbereich

Ziel des Konzepts sind Modellierung, Zugriff und Austausch von Informationen und Funk-
tionalitaten fiir ein beliebiges Asset [123]. Als Asset wird analog zum DF Framework ein
»bhysisches oder logisches Objekt, das sich im Besitz einer Organisation befindet oder un-
ter dem Gewahrsam einer Organisation steht, und entweder einen wahrgenommenen oder
tatséchlichen Wert fiir die Organisation hat“ verstanden [4]. Zusatzlich wird auch eine Rolle
als Asset betrachtet. Fir die in [123] genannten Ziele wurde das Konzept der Verwaltungs-
schale eingefiihrt, welches die digitale Reprisentation eines Assets in der Informationswelt
fiir eine Organisationseinheit darstellt. Die Verwaltungsschale bietet als Hauptfunktiona-
litat einen einheitlichen Zugriff auf die Informationen und Funktionalititen des Assets
in allen Phasen des Lebenszyklus [136]. Das Konzept und die Modelle sind dennoch so
generisch gehalten bzw. technologieunabhéngig definiert, dass ein Asset aus einer beliebi-
gen Branche oder Doméne stammen kann. Damit das Konzept auch fir die Interaktion
zwischen Maschinen angewendet werden kann, liegt der Hauptfokus auf der semantischen
Annotation der Modellelemente. Es wird auf bestehenden Standards und Bibliotheken auf-
gebaut sowie die Moglichkeit der Erstellung von eigenen Begriffsdefinitionen gegeben. Die
Verwaltungsschale ist nicht nur ein Informationsmodell. Stattdessen umfasst das Konzept
auch eine vollstdndige Architektur, bestehend aus einem Informationsmodell, Interaktions-
modellen sowie Infrastrukturkomponenten. Fir die Umsetzung wurden konkrete Serialisie-
rungsformate in JSON (IETF RFC 8259 [142]), XML (W3C XML [143]), AutomationML
(IEC 62714[129]), OPC UA (IEC 62541[135]) und RDF (W3C RDF [144]) sowie Schnitt-
stellendefinitionen veréffentlicht. Aktuell sind das Informationsmodell und die Serialisie-
rungsformate in [4] sowie eine generische Schnittstellendefinition in [5] standardisiert. Die
anderen Konzeptteile bzw. Modelle werden aktuell in verschiedenen Standardisierungsgre-
mien diskutiert.

54

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.3 Asset Administration Shell - Plattform Industrie 4.0

6.3.2 Informationsmodell

Das Informationsmodell der Verwaltungsschale wird von einer Arbeitsgruppe der Plattform
Industrie 4.0 entwickelt und liegt aktuell in der Version 3.0RCO1 [4] vor. Es beschreibt die
moglichen Objekttypen sowie die Beziehungen zwischen diesen. In Abbildung 6.4 ist ein
Uberblick iiber die Modellelemente gegeben.

Identifiable
AssetAdministrationShell

+ derivedFrom: AssetAdministrationShell* [0..1]
+ seourity: Security [0..1]

‘ HasDataSpecification|

0.*
Assetinformation Referable
Y = HasSemantics|
+ a_ssetKlnd. _AsselKlnd HasDataSpecification|
+ billOfMaterial: Submodel* [0..] View
+ defaultThumbnail: File [0..1]
+ globalAssetld: Reference [0..1] + containedElement: Referable* [0..1]
+

specificAssetld: IdentifierKeyValuePair [0..*]

0.*
Identifiable
HasKind|
HasSemantics|
Qualiiable
HasDataSpecification|
Submodel
0.*
Referable|
HasKind
Qualifiable|
HasDataSpecification|
«abstract»
SubmodelElement

Abbildung 6.4: Uberblick iiber das Metamodell der Verwaltungsschale nach [4]

Das AssetAdministrationShell-Objekt ist das Hauptobjekt und dient als Darstellung der
Verwaltungssschale. Es stellt die digitale Repréasentation genau eines Assets dar und ver-
waltet digitale Modelle zu verschiedenen Aspekten des Assets (Teilmodelle). Aus die-
sem Grund besitzt jedes AssetAdminstrationShell-Objekt ein AssetInformation-Objekt,
welches zur Darstellung der Meta-Informationen eines Assets genutzt wird, z. B. ob ein
Asset-Typ oder eine Asset-Instanz vorliegt (siehe Abschnitt 2.4). Zusatzlich besitzt das
AssetAdminstrationShell-Objekt Referenzen zu Submodel-Objekten, die zur Darstellung
eines digitalen Modells des Assets dienen. Diese Objekte spiegeln jeweils einen Aspekt
des Assets wider und bieten zusammenhéngende Informationen innerhalb eines Modell-
verstandnisses an, um alle benétigten Informationen fiir einen Anwendungsfall maschinen-
verarbeitbar zu machen. Ein Submodel-Objekt besteht aus SubmodelElement-Objekten.
Diese lassen sich in verschiedene Untertypen unterscheiden und sind innerhalb des jeweili-
gen Submodels eindeutig identifizierbar (siche Abbildung 6.5).

55

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

HasDataSpecifcation
HasKind
HasSemantics
Identifiable:
Qualffable:

Submodel

HasDataSpecification
Haskind
HasSemantios
Qualifiable
Referable
<< abstract >>
SubmodelElement

N

i i i

RelationshipEIement

AN AR

i |

! |
|

|

|

|

|

)

|

|

<< abstract >> o |

Capabili

DataEIement “p—lty/ l
7 |
Range :
: OperationVariable
Property ReferenceElement \‘ -
<< abstract >>

SubmodelElementCollection

Mul(lLanguageProperty

[\
BasicEvent

Abbildung 6.5: Modellelemente eines Submodel-Objekts (nach [4])

RelationshipElement: Ein Objekt, welches eine Beziehung zwischen zwei anderen Ob-
jekten definiert.

AnnotatedRelationshipElement: Ein Objekt, welches eine Beziehung zwischen zwei
anderen Objekten definiert und zusétzliche Informationen mit Hilfe von Datenele-
menten ermdglicht.

Property: Ein Datenelement, welches einen Einzelwert besitzt.

MultiLanguage Property: Ein Datenelement, welches eine Menge von Zeichenketten in
verschiedenen Sprachen besitzt.

Range: Ein Datenelement, welches einen Wertebereich mit Hilfe eines Minimal- und
eines Maximalwerts beschreibt.

Blob: Ein Datenelement, welches ein Blob®-Objekt speichern kann.

File: Ein Datenelement, welches eine Adresse zu einer Datei mit Hilfe des Pfads und
des Dateinamens inkl. der Dateiendung besitzt.

ReferenceElement: Ein Datenelement, welches eine logische Referenz zu einem ande-
ren referenzierbaren Objekt besitzt.

Capability: Ein Objekt, welches eine Referenz auf eine Fahigkeitsbeschreibung be-
sitzt.

SubmodelElementCollection: Ein Objekt, welches eine beliebige Anzahl an
SubmodelElement-Objekten besitzt.

SHier

56

ist Blob als Datentyp aus der Informationstechnik gemeint.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
tersagt, mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.4 Thing Description - Web of Things

o Operation: Ein Objekt, welches Ein- und Ausgabevariablen (Argumente) besitzt und
damit eine Funktion beschreibt.

o BasicEvent: Ein Objekt, welches eine Referenz zu einem beobachteten Objekt hélt.

o Entity: Ein Objekt, welches eine Entitat beschreibt und Aussagen zu dieser speichert.
Eine Entitat kann als CoManaged oder SelfManaged spezifiziert werden. CoMana-
ged bedeutet, dass kein Asset im Sinne der Verwaltungsschale vorliegt, z. B. eine
Schraube. SelfManaged hingegen bedeutet, dass ein Asset existiert und folglich eine
Referenz zu diesem angegeben werden muss.

Sowohl Submodel- als auch SubmodelElement-Objekte sind vom Typ HasSemantics. Somit
konnen diese Objekte eine Referenz auf eine semantische Beschreibung besitzen. Diese Be-
schreibungen sind fiir eine Kommunikation zwischen Maschinen unabdingbar. Das Konzept
zur Verwendung dieser semantischen Beschreibungen ist im Bereich der Produktbeschrei-
bung bereits Stand der Technik. Die IEC 61360 [126] definiert ein Informationsmodell fiir
die Erstellung dieser Konzeptbeschreibungen. Es wurden bereits mehrere Begriffsbibliothe-
ken erstellt, wie z. B. IEC61360-CDD? oder ECLASS! (vgl. auch Abschnitt 6.1).

Fiir Submodell-Objekte sind diese Konzeptbeschreibungen nicht geeignet, da sie fir ein-
fache Datenelemente entwickelt wurden. Dafiir sollen Submodel-Templates erstellt wer-
den, die anschlieBend zur Laufzeit instantiiert werden. Die Unterscheidung zwischen einer
Submodel-Instanz und einem Submodel-Template wird iiber das Attribute modellingKind
angegeben. Auflerdem besitzt die Verwaltungsschale View-Objekte. Diese ermdéglichen ver-
schiedene Sichten durch Referenzen auf SubmodelElement-Objekte. Die Objekte der Klas-
sen Asset AdministrationShell und Submodel konnen eigene Lebenszyklen haben. Aufgrund
dessen ist die Beziehung zwischen ihnen mittels Aggregation modelliert. Fiir die Referen-
zierung besitzen diese einen weltweit eindeutigen Identifizierer.

Zusammengefasst beschreibt [4] ein Informationsmodell mit allen relevanten Objekten und
deren Beziehungen zur Erstellung und Nutzung von Verwaltungsschalen. Das Konzept
nutzt bestehende internationale Normen, wie Konzeptbeschreibungen nach der IEC 61360.
Zusétzlich wird Wert auf die semantischen Annotationen sowie die Méglichkeit der Tren-
nung von Informationen fiir verschiedene Anwendungsfille durch Teilmodelle gelegt. Auch
wird das Thema Standardisierung bei Teilmodellen durch die Erstellung von Templates
berticksichtigt.

6.4 Thing Description - Web of Things

Die Thing Description ist ein Modell zur Beschreibung von Metadaten und Schnittstel-
len einer Entitdt. Das Modell wurde vom W3C 2017 zunédchst als Working Draft [11]
veroffentlicht bevor 2020 die Recommendation des Standards in [12] folgte. Das Modell
ist in eine Gesamtarchitektur eingebunden, die ebenfalls 2020 als Recommendation [145]

9https://cdd.iec.ch/
Ohttps://www.eclass.eu/

57

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

veroffentlicht wurde. Das Modell beschreibt ein Set von Interaktionen fiir die Integrati-
on von verschiedenen Gerédten im Web of Things (WoT) und erméglicht verschiedenen
Applikationen, miteinander zu interagieren.

6.4.1 Ziel und Anwendungsbereich

Ziel des Standards ist, mit einem moglichst einfachen Vokabular den Zugriff auf die In-
formationen eines Dings zu beschreiben. Als Ding (Thing) wird eine ,Abstraktion einer
physischen oder virtuellen Entitit, dessen Metadaten und Schnittstellen mit Hilfe einer
WoT Thing Description beschrieben wird“ [145], verstanden. Eine virtuelle Entitdt stellt
dabei eine Komposition aus einem oder mehreren Dingen dar und ist somit immer noch eine
physische Entitat. Eine weitere Einschrankung hinsichtlich der Dinge, z. B. beziiglich der
Domine, liegt nicht vor. Die Thing Description soll der zentrale Baustein in der Gesamt-
architektur des WoT' sein und den Zugriffspunkt zu einem beliebigen Ding darstellen.

Das Modell ermoglicht die Definition von Metadaten sowie die Beschreibung von Zu-
griffsmoglichkeiten auf Eigenschaften, Funktionen und Events des Dings. Dabei liegen die
Werte der Eigenschaften, die konkreten Funktionen oder Events nicht im Modell vor, son-
dern das Modell erméglicht die Modellierung von Schnittstellen zu diesen. Diese Schnitt-
stellen beinhalten konkrete Technologie-Endpunkte, deren mogliche Interaktions-Pattern
sowie semantische Annotationen. Die Nutzung von bestehenden URI Schemata, z. B. bei
der Definition von Protokoll Bindings'* oder Mediatypen [? | wird fokussiert, um die Kon-
formitét zu bestehenden Web-Standards zu wahren. Als Serialisierungsformat wird JSON
(IETF RFC 8259 [142] genutzt. Ziel ist es, die Beschreibung der Verortung der Daten des
Dings sowie deren Zugriffsmoglichkeiten getrennt von der Datenhaltung zu modellieren.

6.4.2 Informationsmodell

Die aktuelle Version des Informationsmodells der Thing Description wurde 2020 in [12]
als Recommendation des W3C veréffentlicht. Das Informationsmodell ist in Abbildung 6.6
vereinfacht dargestellt.

Ein Thing-Objekt dient in dem Modell als das Beschreibungsobjekt eines Dings. Es enthélt
Metadaten wie den Identifizierer, den Namen, eine Beschreibung, die Version oder Infor-
mationen iiber den Ersteller und das Erstelldatum. Zusétzlich besteht das Thing-Objekt
aus bis zu sechs ausgezeichneten Objekten. Das Security Schema (SecurityScheme-Objekt)
muss angegeben werden. Es beschreibt, welcher Security-Mechanismus beim Zugriff auf
die Daten, Funktionen oder Events verwendet wird, z.B. ohne Security, Basic (unver-
schliisselter Benutzername und Passwort) oder OAuth2 [146]. Mit Hilfe des Link-Objekts
konnen Verbindungen zu anderen Thing-Beschreibung erstellt werden. Die Objekte Proper-
tyAffordance, ActionAffordance und EventAffordance dienen zur Beschreibung der Inter-
aktion mit einer Eigenschaft, einer Funktion oder einem Event. Fiir eine Eigenschaft wird
beschrieben, wie auf den Wert zugegriffen werden darf. Als Auswahl steht lesend und schrei-
bend zur Verfiigung sowie die Moglichkeit diesen Wert zu beobachten und bei Anderungen

"https://wuw.iana.org/assignments/uri-schemes/uri-schemes.xhtml

58

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.4 Thing Description - Web of Things

Thing
B o. s . . o
SecurityScheme Link PropertyAffordance || ActionAffordance || EventAffordance Form
¢ 1.4 1.5 1*

Abbildung 6.6: Informationsmodell der Thing Description

informiert zu werden. Bei den Funktionen kénnen die Input- und Output-Schemata be-
schrieben und angezeigt werden. Zusétzlich kann hinterlegt werden, ob die Funktion sicher
(d. h. keine Zustandsanderungen durch Aufruf) und somit idempotent ist. Fiir Events kann
beschrieben werden, wie eine Subscription angelegt und geloscht werden kann und welche
Daten das Event bei Auslosung tibermittelt. Die konkreten Zugriffsadressen und Interakti-
onspattern werden im Form-Objekt festgelegt. Dieses Objekt wird auch Protokoll-Binding
genannt. Es beinhaltet die Arten der semantischen Interaktion (z.B. readproperty, wri-
teproperty oder invokeaction), einen Ziel-Internationalized Resource Identifier (IRI), den
ContentType des Medientypes (z. B. text/plain oder image/jpeg) und optional das Enco-
ding des Inhalts, das SubProtokol, den Security-Mechanismus und den Antworttyp, falls
dieser abweichend vom Anfragetyp ist. Wird ein Form-Objekt im Thing-Objekt verwendet,
gilt dies fiir alle untergeordneten Objekte, solange kein eigenes Form-Objekt dort vorliegt.
Liegt eines vor, ist dieses verbindlich und das héhergelegene Form-Objekt ist nicht mehr
giiltig.

Neben dem vorgestellten Kernmodell besteht zusétzlich noch die Méoglichkeit semanti-
sche Annotationen an die Elemente anzuhdngen. Dies erfolgt tiber das ContextExtension-
Objekt. Damit konnen andere Datenschemas, Ontologie-Eintrige oder Konzeptbeschrei-
bungen referenziert werden. Auch das Konzept der Templates wird unterstiitzt, sodass
fiir bestimmte Ding-Typen Thing-Templates erstellt werden kénnen, die anschlieBend zur
Laufzeit fiir ein konkretes Ding eines Ding-Typs instanziiert und mit konkreten Werten
befiillt werden.

Es wurde ein Informationsmodell mit geringem Vokabular entwickelt, welches die
Moglichkeit bietet, die Interaktion mit den Eigenschaften, Funktionen und Events eines
Dings zu beschreiben. Es baut auf bestehenden Standards auf und nutzt diese in den
verschiedensten Attributen mittels Referenzen. Zusatzlich besteht die Moglichkeit der se-
mantischen Annotationen sowie die Template-Erstellung.

59

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

6.5 Vergleich

In diesem Abschnitt werden die drei vorgestellten Standards fiir die Modellierung von
Asset-Informationen miteinander verglichen. Der Fokus liegt zunéchst auf der Modellie-
rung von Assets. Aus diesem Grund wird im nachfolgenden Abschnitt allgemein die Be-
deutung des Assets und die konkreten Definitionen innerhalb der einzelnen Spezifikationen
betrachtet. Danach werden die drei Spezifikationen bzgl. Ziel, Anwendungsbereich und In-
formationsmodell verglichen.

6.5.1 Asset-Begriff

Fiir den Begriff des Assets existieren in der Literatur unterschiedliche Definitionen. Diese
variieren innerhalb der Branchen sowie in den jeweiligen Doménen. Aus diesem Grund
wird nachfolgend ein Vergleich der Definitionen im Kontext von Industrie 4.0 und der
vorgestellten Spezifikationen durchgefiihrt.

Im Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) [123] wird ein Asset als ein ,Ge-
genstand, der einen Wert fiir eine Organisation hat®, definiert. Diese Definition wird im
Industrie 4.0 Glossar!? erweitert, sodass ein Asset als eine ,Entitét, die einen wahrge-
nommenen oder tatsichlichen Wert fir eine Organisation hat und der Organisation gehort
oder von ihr individuell verwaltet wird* verstanden wird. Im Englischen wird Entitdt durch
physisches oder logisches Objekt* ersetzt. Die beiden vorgestellten Spezifikationen, IEC
62832 DF Framework (DF) [8] und Details of the Asset Administration Shell (DotAAS)
[140], nutzen jeweils diese Definition (vgl. Abschnitt 6.2 und 6.3). Die Spezifikationen un-
terscheiden sich jedoch in der Interpretation dieser Entitét, da in DF die ,Rolle” als Asset
in der Begriffsdefinition zunéchst explizit ausgeschlossen ist. Allerdings werden zusétzlich
die Begriffe ,,ProductionSystemAsset“ und ,,DigitalFactory Asset* eingefiihrt, in denen auch
die Rolle mit einbezogen wird. In DF wird jedoch immer der Bezug zu einem Produkti-
onssystem gefordert. Dies ist in DotAAS nicht der Fall, da alle Doménen und Branchen
berticksichtigt werden.

In der dritten Spezifikation Thing Description (TD) [11] wird der Begriff Asset nicht ex-
plizit verwendet. Jedoch wird ,eine physische oder virtuelle Entitét, deren Metadaten und
Schnittstellen durch eine WoT Thing Description beschrieben werden, wobei eine virtuelle
Entitét die Zusammensetzung eines oder mehrerer Things ist“, angenommen. Dies kann
im Sinne der Modellierung und der anderen Spezifikationen als Asset aufgefasst werden.

Wie zu erkennen ist, existieren verschiedene explizite und implizite Definitionen von Assets.
Diese sind im Kern gleich, unterscheiden sich aber in ihrem Betrachtungsrahmen zum Teil
stark. Wiahrend TD lediglich physische Entitdten betrachtet'®, wird die Definition in DF
auf logische Objekte erweitert, jedoch mit Bezug zu dem Bereich Produktionssysteme. Als
logische Objekte sind vor allem die Typen von physischen Entitéiten zu nennen. Der grofite
Betrachtungsraum ist in DotAAS gegeben, da ein Versuch zur Betrachtung aller Doménen
und Entity-Arten unternommen wird.

https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/Glossar/glossar.html
3Virtuelle Entitdten sind lediglich zusammengesetzte physische Entitéiten.

60

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6.5 Vergleich

6.5.2 Ziel, Anwendungsbereich und Informationsmodell

Hinsichtlich Ziel und Anwendungsbereich unterscheiden sich die drei vorgestellten Stan-
dards auf den ersten Blick wenig. Alle drei ermoglichen die Beschreibung der Informatio-
nen einer Entitdt bzw. Asset. Sie unterscheiden sich aber in der Art der Entitat. Wahrend
TD ein rein physisches Objekt ohne weitere Einschrinkungen betrachtet, erweitert DF
dieses um virtuelle Entitdten mit der Einschrankung, dass diese Entitdten einen Bezug
zu einem Produktionssystem haben miissen. Dies beinhaltet auch die Beschreibung von
Asset-Typen, wihrend mit dem ersten Standard lediglich Asset-Instanzen modelliert wer-
den konnen. DotAAS erlaubt als offenster Standard alle Arten von Entitaten, solange diese
einen Wert fiir ein Unternehmen haben'*.

In allen drei Spezifikationen wird Wert auf die Wiederverwendung bestehender Standards
gesetzt. Wahrend sich DotAAS und DF eher auf die internationalen Normungsgremien
TIEC und ISO beziehen, bezieht sich TD eher auf die RFC Dokumente der IETE. Dies ist
dem Ursprung der Standards geschuldet. Die ersten beiden stammen aus dem Ingenieurs-
wesen und haben daher einen Bezug zu technischen Fragestellungen, wohingegen der dritte
Standard aus der Informationstechnik stammt und daher aus dieser Sicht versucht, Frage-
stellungen zu beantworten. Dies spiegelt sich auch in den Informationsmodellen wider.

Die Zielvorstellungen der drei Standards unterscheidet sich beziiglich der semantischen
Annotationen. Diese werden von allen drei Standards unterstiitzt. In DotAAS und DF ist
dies als ein Hauptkonzept fest im Ziel verankert und soll als Erweiterung und Abgren-
zung zu anderen bestehenden Standards dienen. In TD werden semantische Annotationen
ausschliefllich als Erweiterung betrachtet und daher nicht im Ziel direkt beriicksichtigt.

Alle Standards definieren neben dem Informationsmodell auch zugehorige Serialisierungs-
formate. Wéhrend TD eine JSON-Serialisierung festlegt, werden in DF zwei Mappings zu
AutomationML und OPC UA gegeben, die beide aus der Automatisierungstechnik stam-
men. In DotAAS werden die meisten Serialisierungsformate angeboten: JSON, XML, Au-
tomationML, OPC UA und RDF.

Um die Konzepte der Standards sinnvoll nutzen zu kénnen, wird eine zugehorige Architek-
tur benotigt. Diese wird sowohl in DotAAS als auch in TD beschrieben und standardisiert.
DF trifft hierzu keine Aussagen.

In Bezug auf die Informationsmodelle sind die Spezifikationen DF und DotAAS &hnlich.
Beide definieren Objekte, mit denen die Eigenschaften eines Assets inklusive deren Werte
modelliert werden konnen. DotAAS erweitert dieses Modell um die Méglichkeit, auch Funk-
tionen und Events zu beschreiben. Zuséatzlich werden die Datenelemente in konkrete Ele-
menttypen, wie Property- oder Range-Objekte, untergliedert. Beide Modelle unterstiitzen
in den Objekten die Vorhaltung der Daten. Uber die Datenhaltung wird keine weitere Aus-
sage getétigt. Die Daten konnten beispielsweise durch einen Client von einer Datenquelle
bereitgestellt werden. Fiir eine reine Beschreibung zur Abrufbarkeit der Daten, z. B. durch
die Definition eines speziellen proprietdren Protokolls, miissen die zur Verfiigung stehenden
Objekten genutzt werden. Hierzu existieren derzeit keine Beispiele oder Modellierungsemp-
fehlungen. Das ist der Hauptunterschied zu TD. Das in TD beschriebene Informationsmo-
dell definiert, im Gegensatz zu den anderen beiden Informationsmodellen, keine konkreten

4Eine detailliertere Betrachtung ist in Abschnitt 6.5.1 gegeben.

61

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

Werte der Eigenschaften, Funktionen oder Events, sondern bietet die Méglichkeit, den Zu-
griff auf diese zu beschreiben (mit den Form-Objekten). Somit kann eine Applikation diese
Informationen iiber die Thing Description abrufen und anschlieend den konkreten Wert
iiber das angegebenen Web-Protokoll eigenstéindig abrufen. Beide Modellierungen haben
ihre Vor- und Nachteile. Wie diese ggf. sinnvoll zusammen genutzt werden koénnen, ist in
Abschnitt 6.6 beschrieben.

6.6 Schlussfolgerung

Aus Modellierungssicht sind zunéchst alle drei Anséitze sinnvoll. Bei einer detaillierten
Betrachtung ist zu erkennen, dass DF und DotAAS &dhnlich sind. Dies liegt an der zeitli-
chen Historie. DF entstand zunéchst, worauf DotAAS anschliefend aufbaute und viele der
Konzepte iibernommen hat. Zukiinftig sollte versucht werden, eine Harmonisierung oder
Zusammenfiihrung der beiden Standards zu erreichen. Da DotAAS umfanglicher ist, wird
in dieser Arbeit ausschlielich diese Veroffentlichung weiter betrachtet.

Im Vergleich zu TD weisen die beiden anderen Spezifikationen &hnliche Konzepte auf, un-
terscheiden sich jedoch in der Zielsetzung. Ein Versuch kénnte sein, die Spezifikationen
fiir verschiedene Anwendungsfille zu nutzen und somit zu kombinieren. Moglich wére z. B.
die Verwaltungsschale fir die Modellierung von Asset-Typen zu nutzen, da die Verwal-
tungsschale urspriinglich fiir diesen Zweck entwickelt wurde!'®. Dieser Bereich ist in ak-
tuellen Forschungsprojekten und Anwendungsszenarien evaluiert und funktionsfihig. Das
Informationsmodell bietet fir die Ablage der Typ-Informationen die Méglichkeit, statische
Werte direkt abzulegen und abrufbar zu machen. Fiir die Modellierung von Asset-Instanzen
ergeben sich besondere Anforderungen in Bezug auf den Zugriff der Ist-Daten. Es miissen
eigene Zugriffsmoglichkeiten tiber verschiedene proprietire Protokolle moglich sein. Dies
ist aktuell in DotAAS noch nicht modelliert. So fehlt die Moglichkeit anzugeben, wo die
Daten liegen und wie auf diese zugegriffen werden kann. Dass die Verwaltungsschale diesen
Zugriff immer besitzt, ist eher unwahrscheinlich, da die Security betrachtet werden muss.
Darf die Verwaltungsschale auf die Anlagen zugreifen und die aktuellen Ist-Werte abru-
fen und vor allem auch manipulieren? Genau das wiederum koénnte iiber TD ermdoglicht
werden, da das verwendete Konzept die Beschreibung der Funktionen und Ist-Daten lo-
gisch vom physischen Zugriff trennt. Ein Vorschlag ist daher, diese beiden Modellierungen
zusammenzubringen und fiir Asset-Typen die Verwaltungsschale und fiir Asset-Instanzen
eine Mischung aus Verwaltungsschale und Thing-Description zu verwenden. Dazu muss
die Thing-Description bei den Protokoll-Bindings dahingehend erweitert werden, dass ne-
ben Web-Protokollen auch andere im industriellen Umfeld auftretende Protokolle, wie z. B.
OPC UA, modelliert werden kénnen.

Fir diese Arbeit ist die Datenablage im Hintergrund zunéchst nicht relevant, da die se-
mantische Interaktion und der Zugriff auf die Informationen im Vordergrund stehen. Da
der aktuelle Fokus in der Automatisierungs-Community auf der Verwaltungsschale liegt,
wird diese als Anwendungsbeispiel fiir die Vorstellung des Konzepts genutzt. Aus diesem
Grund wird der Informationsaustausch zwischen Verwaltungsschalen im néchsten Kapitel
genauer betrachtet.

15Es sollen Verwaltungsinformationen zu einem Asset dargestellt werden.

62

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei
Verwaltungsschalen

Im vorherigen Kapitel wurden die Ziele und Anwendungsbereiche sowie die Informations-
modelle von drei Standards fiir die Modellierung und den Austausch von Asset Informa-
tionen vorgestellt und anschliefend miteinander verglichen. Als Ergebnis wird die Ver-
waltungsschale als Anwendungsbeispiel fiir das vorgestellte Konzept dienen. Aus diesem
Grund wird in diesem Kapitel der Informationsaustausch bei Verwaltungsschalen genauer
betrachtet. Zunéchst werden die Erscheinungsformen von Verwaltungsschalen beschrie-
ben. Anschlieend wird die Nutzung von Verwaltungsschalen-Teilmodellen beim Informa-
tionsaustausch vorgestellt, aktuelle Probleme bzw. offene Fragestellungen analysiert sowie
mogliche Losungsoptionen aufgezeigt.

7.1 Erscheinungsformen

In [147] werden erstmals verschiedene Erscheinungsformen von Verwaltungsschalen be-
schrieben. Insgesamt werden drei Arten beschrieben, die in Abbildung 7.1 dargestellt sind.
In der Literatur werden fiir die einzelnen Erscheinungsformen verschiedene Namen ein-
gefithrt. In [147] sind folgende drei Begriffen definiert: Passive Verwaltungsschale im Da-
teiformat, Passive Verwaltungsschale mit IP/API-basiertem Zugang und Aktive Verwal-
tungsschale. Die Begriffe ,passiv und ,aktiv® beziehen sich nicht auf die Kommunikati-
onsfihigkeit, sondern auf die Rolle, die die jeweilige Verwaltungsschalen-Erscheinungsform
in der Wertschopfungskette spielt. Aus diesem Grund wurden die Begriffe weiterentwickelt
und sind heute in der neueren Version [148] wie folgt festgelegt: Passive Verwaltungsscha-
le, Reaktive Verwaltungsschale und Proaktive Verwaltungsschale. Aufgrund der derzeitigen
Diskussionen zur Benennung der Typen in diversen Gremien, werden fiir diese Arbeit die
Begriffe Typ 1, Typ 2 und Typ 3 verwendet. Ein Einblick in diese drei Typen erfolgt in
den folgenden Unterkapiteln.

711 Typ 1

Die ,Verwaltungsschale Typ 1%, als erste Erscheinungsform, bietet die Moglichkeit die
Verwaltungsschale in Form einer Datei darzustellen. In [4] wurden verschiedene Seria-
lisierungen (z. B. XML oder JSON) sowie ein eigenes Datei-Format AASX spezifiziert.
Das AASX-Format bietet die Moglichkeiten, alle zu einem Asset gehérenden Informatio-
nen in einer standardisierten Form von einem Wertschopfungspartner an einen anderen
Wertschopfungspartner zu iibertragen. Dies kann auf verschiedene Weisen funktionieren,

63

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

Verwaltungsschale als Datei Verwaltungsschale mit API Interaktion zwischen Verwaltungsschalen
Zum Austausch zwischen auf das Informationsmodell fur unter Nutzung der
Wertschopfungspartnern eine Anwendung eines 14.0 Sprache

Wertschopfungspartners

]

q b
@ 14.0 Sprache

e =

Abbildung 7.1: Erscheinungsformen von Verwaltungsschalen nach [147]

z.B. mittels eines File-Downloads, dem Versand per Mail oder dem Ablegen auf dem kon-
kreten physischen Asset. Die zu tibertragenen Informationen konnen zuvor angepasst wer-
den, sodass ausschlieflich freigegebene Daten in der entsprechenden Datei enthalten sind.
[147, 148] prognostizieren, dass ,dieses Konzept [...] eine neue Qualitit dar [stellt], da damit
lebensphaseniibergreifender, standardisierter Informationsaustausch moglich wird®. Diese
Art des Informationsaustauschs setzt voraus, dass eine Software existiert, welche die Datei
erstellt, versendet und bei einem anderen Wertschopfungspartner einliest und weiterverar-
beitet, z. B. der AASX-Package-Explorer! oder ein Software Development Kit?.

7.1.2 Typ 2

Die ,Verwaltungsschale Typ 2“, als zweite Erscheinungsform, ermoglicht den Zugriff auf
die gleichen Informationsinhalte des ersten Typs, jedoch tiber eine standardisierte Schnitt-
stelle. Die technologie-unabhéngige Schnittstellendefinition ist in [5] spezifiziert. Zusétzlich
wird in einer nichsten Version dieser Veroffentlichung ein konkretes Technologie-Mapping
nach HTTP definiert. Die Vorteile dieser Erscheinungsform sind der individuelle Zugriff
auf einzelne Verwaltungsschalenelemente sowie die Moglichkeit des individuellen Zugriffs-
schutzes fiir verschiedene Anfragende. Auflerdem wird die Méglichkeit geboten, Teile der
Verwaltungsschale separat bereitzustellen, da fiir mehrere Modellelemente jeweils Schnitt-
stellen entwickelt wurden. Dies ist z. B. fiir Verwaltungsschalen und Verwaltungsschalen-
Teilmodelle der Fall. Aus Sicht des Informationsaustauschs dienen die Schnittstellen zum
Auslesen, Andern und Erstellen von Informationen. Die Form und der Ort zur Ablage der

thttps://github.com/admin-shell /aasx-package-explorer
2Zum Beispiel: Python-SDK: https://git.rwth-aachen.de/acplt/pyid0aas C#-, Java-SDK: htt-
ps://www.eclipse.org/basyx/

64

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7.1 Erscheinungsformen

Informationen im Hintergrund wird nicht spezifiziert und ist ein Implementierungsdetail.
Moéglichkeiten sind:

o das Ablegen in AASX-Dateien (also Verwaltungsschale Typ 1), die bei jedem Aufruf
ausgelesen und wieder beschrieben wird,

o die Speicherung der Informationen in einer Datenbank basierend auf dem Informati-
onsmodell der Verwaltungsschale (vgl. Kapitel 6.3.2), oder

o die Speicherung der Informationen in einem anderen Datenformat, die bei einem
Aufruf in das Informationsmodell der Verwaltungsschale transformiert werden.

713 Typ 3

Die ,Verwaltungssschale Typ 3“, als dritte Erscheinungsform, unterscheidet sich stark von
Typ 1 und Typ 2. Sie bietet zusétzlich zum reinen Datenzugriff Entscheidungs- und Op-
timierungsalgorithmen an. Damit wird das Konzept des Asset-bezogenen Informationszu-
griffs mit dem Konzept von Agenten verkntipft. Mit Hilfe dieser Algorithmen besteht die
Moglichkeit, dass Verwaltungsschalen gegenseitig proaktiv in Interaktion treten. Dadurch
wird ein erster Schritt in Richtung Autonomie getétigt. Dieser Bereich der Forschung wird
zunehmend grofer, da viele Ansétze aus der Agententheorie Wiederverwendung finden.
In [149] und [150] wurden entsprechende Konzepte vorgestellt, die jeweils zwei Ebenen
einfithren. Die erste Ebene enthéilt dabei die Daten in Form von Verwaltungsschalen-
Teilmodellen (Typ 1 oder Typ 2). Die zweite Ebenen verwaltet die Algorithmen und Au-
tomaten fiir die Entscheidungen und Optimierungen.

In [147] wird festgelegt, dass die Interaktion mit Hilfe der I4.0-Sprache erfolgen soll, die
in der VDI/VDE 2193-Richtlinie [151, 152] beschrieben ist. Diese Sprache definiert das
Vokabular, mit dem eine Protokoll-basierte Interaktion erméglicht wird. In [153] wird
ein auf dem Vokabular basierendes Protokoll fiir ein Ausschreibungsverfahren beschrie-
ben. Fiir die Informationsmodellierung der Daten werden auch in diesen Protokollen die
Verwaltungsschalen-Teilmodelle verwendet.

7.1.4 Vergleich

Bei einem Vergleich der drei Erscheinungsformen ist zu erkennen, dass die ersten beiden
auf die Darstellung bzw. den reinen Zugriff von Asset-Informationen beschrinkt sind. Es
wird die Moglichkeit gegeben, das Informationsmodell der Verwaltungsschale in Form einer
Datei oder einer Schnittstelle zur Verfiigung zu stellen. Die Semantik des Informationsaus-
tausches steckt in den eigentlichen Daten, hier den Verwaltungsschalen-Teilmodellen. Die
dritte Erscheinungsform ermoglicht zusatzlich die Festlegung von eigenen Interaktionspro-
tokollen. Dadurch verlagert sich die Semantik zunehmend in die Protokolle, die vorgeben,
in welcher Reihenfolge welche Nachrichten auszutauschen sind. Mit Hilfe dieser Protokolle
wird ein erster Schritt in Richtung der Behavioural Interoperability gegangen. Anschlie-
Bend werden die Inhalte der Nachrichten wiederum mit den Daten aus den ersten beiden
Typen in Form von Verwaltungsschalen-Teilmodellen angereichert.

65

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

Aus Kommunikationssicht kann der Austausch in vertikale und horizontale Interaktionen
unterteilt werden. Vertikale Interaktion bedeutet, dass eine Hierarchie vorliegt. Das heifit,
dass ein Interaktionspartner als Server (Slave) und ein weiterer als Client (Master) fungie-
ren [149]. Der Client ruft die Informationen beim Server ab, sodass die Interaktion immer
vom Client initiiert wird. Dies ist z.B. bei der zweiten Erscheinungsform der Fall, bei
der die Daten mittels eines Servers bereitgestellt werden. Bei der horizontalen Interakti-
on sind beide Interaktionspartner gleich berechtigt und werden auch als Peers bezeichnet.
Jeder Peer kann Anfragen starten und gleichzeitig auf Anfragen reagieren. Der Unter-
schied zur Client-Server-Interaktion ist, dass ein eigener Entscheidungsalgorithmus sowie
entsprechende Automaten entscheiden, wie mit eingehenden Anfragen umgegangen wird.
Die Peers unterliegen dabei immer einem selbst verfolgten Ziel. Eine Verwaltungsschale
Typ 3 unterstiitzt daher sowohl vertikale als auch horizontale Interaktion.

7.2 Nutzung von Verwaltungsschalen-Teilmodellen fiir
semantische Interoperabilitdt: Offene Fragestellungen
und mogliche Losungsoptionen

Unabhéngig von der Erscheinungsform werden die Asset-Informationen mit Hilfe von
Verwaltungsschalen-Teilmodellen fiir andere Kommunikationspartner zur Verfigung ge-
stellt.

In diesem Abschnitt wird beschrieben, wie Verwaltungsschalen-Teilmodelle fiir die se-
mantische Interoperabilitit zu nutzen sind. Wie bereits in Abschnitt 4.2 aufgezeigt, ge-
hen damit einige Probleme einher. Mit Hilfe von Verwaltungsschalen-Teilmodellen werden
doménenspezifische Aspekte eines Assets dargestellt. In Kapitel 6.3.2 sind die Modellele-
mente fiir die Darstellung eines Verwaltungsschalen-Teilmodells bereits vorgestellt. Da-
durch ist die syntaktische Interoperabilitit gewéhrleistet. Im Nachfolgenden wird niher
auf die Semantik und die Bedeutung fiir den Informationsaustausch eingegangen.

Ein Verwaltungsschalen-Teilmodell ist die Darstellung genau eines Asset-Aspekts und
wird fiir einen konkreten Anwendungsfall entwickelt. Folgendes Beispiel soll dies illu-
strieren: Als Asset soll ein Roboter dienen. Je nach Nutzer des Roboters werden andere
Informationen des Roboters bendtigt. Fiir die Raumplanung werden z. B. die geometri-
schen MafBle benotigt. Ein Elektriker benétigt jedoch die Informationen fiir den elektri-
schen Anschluss (z.B. Anschlussleistung, benotigte Spannung). Ein Software-Entwickler
hingegen benotigt die Informationen tber die Steuerung, die Protokolle oder die Byte-
Belegung. Um fiir jeden Nutzer die passenden Informationen bereitzustellen, kénnte ein
Verwaltungsschalen-Teilmodell mit einer flachen Liste aller Eigenschaften erstellt werden.
Dies ist aber nicht zielfithrend, da viele nicht benétigte Informationen fiir einen Nutzer vor-
liegen. Das Ziel ist daher, die Informationen Anwendungsfall-orientiert in unterschiedliche
Verwaltungsschalen-Teilmodelle zu strukturieren. Durch die Definition von unabhéngigen
Verwaltungsschalen-Teilmodellen kann weitere Semantik zu den Informationen hinzugefiigt
werden, beispielsweise wie sich Hohe und Ausdehnung des Roboters zueinander verhélt.
Viele dieser Informationen gelten auch fiir andere Roboter, sodass das Ziel sein sollte,

66

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7.2 Nutzung von Verwaltungsschalen-Teilmodellen fiir semantische Interoperabilitét:
Offene Fragestellungen und mdégliche Losungsoptionen

moglichst viele Verwaltungsschalen-Teilmodelle zu standardisieren. Da verschiedene Sta-
keholder jedoch ggf. andere Informationen bei ihrem Informationsaustausch bendtigen,
koénnen die Verwaltungsschalen-Teilmodelle lediglich in Grundziigen standardisiert werden
[147, 148]. AnschlieBend werden einzelnen Interaktionspartner weitere Elemente spezifizie-
ren, die diese zusitzlich fiir den konkreten Anwendungsfall austauschen.

Applikationen, die Informationen tiber so einen Aspekt des Assets erhalten, miissen das
entsprechende Verwaltungsschalen-Teilmodell verstehen. Hierfir werden semantische Ver-
weise in Form der SemanticID zur Verfiigung gestellt, die auf Konzept-Beschreibungen
zeigen. Applikation kénnen in einer Art Type-Checking priifen, ob das Element der se-
mantischen Beschreibung folgt, die die Applikation an dieser Stelle erwartet oder benotigt.
Jedoch ist dies vielfach nicht ausreichend, da das Element in seinem Kontext verstan-
den werden muss. Das Verwaltungsschalen-Teilmodell kann diesen Kontext definieren und
gibt dem Element eine entsprechende Bedeutung innerhalb dessen. Dieser Kontext ist fir
die Applikation lediglich ermittelbar, wenn die Verwaltungsschalen-Teilmodelle bekannt
sind.

Aus diesem Grund wird versucht, die Verwaltungsschalen-Teilmodell-Templates zu stan-
dardisieren. Da jedoch fiir verschiedene Aspekte unterschiedliche Verwaltungsschalen-
Teilmodell-Templates entstehen werden, tritt das Problem der semantischen Interoperabi-
litat auf. Die Frage lautet, wie bei Verwaltungsschalen auf Verwaltungsschalen-Teilmodell-
Ebene eine semantische Interoperabilitiat erreicht wird.

Eine Losung ist, dass ein gemeinsames und standardisiertes Verwaltungsschalen-
Teilmodell-Template pro Aspekt existiert. Die Verwaltungsschalen-Teilmodell-Templates
zu verschiedenen Aspekten sollten dabei moglichst disjunkt sein, damit nicht zu dhnliche
Verwaltungsschalen-Teilmodell-Templates entstehen und verschiedene Applikationen ver-
schiedene Verwaltungsschalen-Teilmodell-Templates nutzen. Die Moglichkeit von firmen-
internen Verwaltungsschalen-Teilmodell-Templates oder firmeninternen Erweiterungen ist
nicht mehr gegeben. Was passiert jedoch, wenn eine neue Version veroffentlicht wird? Wer-
den die alten Versionen nicht mehr nutzbar, damit nicht zu dhnliche Verwaltungsschalen-
Teilmodell-Templates existieren? Nach Ansicht des Autors ist dies keine zukunftsorientierte
Losung.

Eine andere Losung ist, dass jeder Stakeholder beliebige Verwaltungsschalen-Teilmodell-
Templates erstellen, diese zentral verwaltet werden und jede Applikation diese kennt und
nutzt. Dies ist bei einer geringen Anzahl moglich, skaliert aber leider nicht. Gerade vor dem
Hintergrund, dass die Verwaltungsschale Doménen- und Branchen-iibergreifend ist, werden
viele Verwaltungsschalen-Teilmodell-Templates entstehen. Die Vergangenheit hat gezeigt,
dass der Markt dies alleine nicht regeln kann. Wie in Abschnitt 4.2 aufgezeigt, werden sich
verschiedene Interessengruppen bilden, die unabhéngig voneinander Verwaltungsschalen-
Teilmodell-Templates erstellen.

Eine weitere und vielversprechende Losung ist die automatische Abbildung der
Verwaltungsschalen-Teilmodell-Templates untereinander. Das bedeutet, dass ein Mapping
der Elemente mehrerer Verwaltungsschalen-Teilmodell-Templates durchgefiihrt wird. Da-
durch wird ein Nutzer bei der Erstellung bzw. Befiillung von neuen Verwaltungsschalen-
Teilmodellen unterstiitzt, sodass dies automatisiert erfolgt. Hierfiir kann das in Kapi-
tel 5 vorgestellte Konzept der Modelltransformation genutzt werden. In dieser Arbeit

67

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

wird die Modelltransformation als eine mogliche Losung vorgestellt, um formal ange-
forderte Verwaltungsschalen-Teilmodell-Instanzen aus basierenden Verwaltungsschalen-
Teilmodell-Instanzen zu erstellen. Welche Arten der Modelltransformation zwischen
Verwaltungsschalen-Teilmodellen (Informationsmodellen) auftreten und welche Anforde-
rungen an eine entsprechende Modelltransformationssprache vorliegen, wird im néchsten
Kapitel ndher beleuchtet.

68

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8 Modelltransformationen fiir die
semantische Interoperabilitat
zwischen verschiedenen
Informationsmodellen

Um die semantische Interoperabilitit zwischen Informationsmodellen zu ermoglichen, wird
das Konzept der Modelltransformation (vgl. Kapitel 5) genutzt. Die Modelltransformation
kann in zwei Arten unterteilt werden: syntaktische und semantische Transformation. Worin
der Unterschied liegt und wann welche Transformation auftritt, wird in Abschnitt 8.1
anhand der Informationsmodelle der Verwaltungsschale (Verwaltungsschalen-Teilmodell)
genauer beschrieben.

Da in dieser Arbeit eine Modelltransformationssprache entwickelt wird, werden in den
darauffolgenden Abschnitten die einzelnen Schritte des Leitfadens zur Erstellung einer
Transformationssprache aus Abschnitt 5.4.2 durchgefithrt: Klassifikation der Modelltrans-
formation zwischen Informationsmodellen in Abschnitt 8.2, Anforderungsdefinition und
benoétigte Sprachelemente in Abschnitt 8.3 und Evaluation bestehender Transformations-
sprachen in Abschnitt 8.4. Fiir ein besseres Verstédndnis werden an entsprechenden Stellen
Beispiele aus dem Kontext der Verwaltungsschale vorgestellt.

8.1 Syntaktische und semantische Transformationen

In Abschnitt 3.1 der Vorverdffentlichung [19] wird die Unterscheidung in syntaktische und
semantische Transformationen [154] bei Verwaltungsschalen-Teilmodellen beschrieben und
anhand von konkreten Beispielen erlautert. Nachfolgend ist dieser vorverdffentlichte Ab-
schnitt abgedruckt:

wDie Modell-zu-Modell-Transformationen kénnen in syntaktische und semantische Trans-
formationen unterschieden werden. Bei einer syntaktischen Transformation wird lediglich
die abstrakte Syntaz der Modelle umgewandelt, d. h. die modellierten Informationen blei-
ben gleich, werden jedoch durch andere Modellelemente dargestellt. Bei einer semantischen
Transformation werden die Informationen der Modellelemente hingegen genutzt, um dar-
aus neue Strukturen im Zielmodell zu erzeugen und somit explizit neve Semantik hinzu-
zufigen.

69

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8 Modelltransformationen fiir die semantische Interoperabilitit zwischen verschiedenen
Informationsmodellen

Teilmodell-Template A: Teilmodell-Template B:
- Identification: IRI=acplt.org/TempSensor - Identification: IRI=example.com/TempSensor
idShort: TempSensor - idShort: TempSensor

Property 1: Property 5:

- Semanticld: 0173-1#02-BAA015#10 N - Semanticld: 0173-1#02-BAA015#10
—— - IdShort: MinProcessTemperatur sYntaktlSChe_ IdShort: MinProcessTemperatur

- ValueType: double Transformation - ValueType: double

- Value: - Value:

Property 2: Property 6:

- Semanticld: 0173-1#02-BAA036#10
—— - IdShort: MaxProcessTemperatur

- Semanticld: 0112/2///61360_4#AAF277

Syntaktische - IdShort: MaxTemperatur

ValueType: double Transformation - ValueType: int
- Value: - Value:
Property 3:
- Semanticld: 0173-1#02-BAA015#10
—— - IdShort: MinProcessTemperatur_2
- ValueType: double Range 7:
- Value: - Semanticld: 0112/2///61360_4#AAE685
Syntaktische - ldShort: MinMaxProcessTemperature
Property 4: Transformation - ValueType: double
- Semanticld: 0173-1#02-BAAO36#10 - m‘a’;

L—— - IdShort: MaxProcessTemperatur_2
- ValueType: double
- Value:

Abbildung 8.1: Syntaktische Transformationen bei Teilmodellen [19]

In Abbildung 8.1 sind drei mégliche syntaktische Transformationen gezeigt, d.h. solche,
bei denen sich ausschlieflich die syntaktische Reprisentation (z. B. Modellelementtyp, Da-
tentyp, Semanticld) wandelt, nicht die Werte. Die erste Transformation zeigt eine reine
Wertiibertragung von zwei gleich modellierten FEigenschaften. Da Teilmodelle von unter-
schiedlichen Organisationen und Firmen erstellt werden, konnen dieselben Figenschaften
in verschiedenen Teilmodell-Templates jedoch auch unterschiedlich modelliert sein, wie
dies bei den Properties 2 bis 4 bzw. 6 und 7 der Fall ist. Im zweiten Fall wurde fir die
Eigenschaft ,Mazximale Prozesstemperatur® zwei verschiedene Eigenschaftsbibliotheken ge-
nutzt (ECLASS und IEC61360-CDD). Dementsprechend sind die Attribute der Properties
(Property 2 und Property 6) unterschiedlich, die Semantik bleibt jedoch gleich. Als letztes
Beispiel wurden fir die Eigenschaften ,Maximale Prozesstemperatur® und ,Minimale Pro-
zesstemperatur® auf der linken Seile zwei einzelnen Property-FElemente verwendet. Auf der
rechten Seite wurden diese hingegen gemeinsam in einem Range-Element modelliert. Bei
der Transformation missen daher die Werte (Values) aus den Property-Elementen 3 und
4 extrahiert und in die entsprechenden ,Min“- und ,Maz“-Attribute des Range-Elements
tbertragen werden.

In Abbildung 8.2 sind demgegeniber semantische Transformationen dargestellt. Hierbei
werden die Werte (Values) aus den Property-Elementen 8 und 9 benutzt, um auf Basis
threr Semantik mit Hilfe eines physikalischen Zusammenhangs einen neuen Wert zu be-
rechnen. Dieser wird in Property-Element 11 gespeichert. Bei der unteren Transformation
wird basierend auf der Anzahl der digitalen Finginge (Value von Property 10) eine ent-
sprechende Anzahl von Reprdisentationen digitaler Einginge (SubmodelElementCollection
13) angelegt.“!

! Abschnitt 3.1 der Vorverdffentlichung [19].

70

https://doi.org/10.51202/9783186876102

8.2 Klassifikation der Transformationen

Teilmodell-Template A: Teilmodell-Template B:
- Identification: IRI=acplt.org/TempSensor - Identification: IRI=example.com/TempSensor
- idShort: TempSensor - idShort: TempSensor

Property 8:

- Semanticld: acplt.org/MaxStromstérke
- IdShort: MaxStromstérke
t—{ - ValueType: double

Property 11:

- Value: - - .
Semantische: Semanticld: acp.lt.org/MaxLelstung
) I - IdShort: MaxLeistung
Property 9: Transformation - ValueType: double

- Value:

- Semanticld: acplt.org/MaxSpannung
— - IdShort: MaxSpannung

- ValueType: double

- Value:

Property 10:

- Semanticld: acplt.ort/DigInChannel
(. IdShort: DiginChannel

- ValueType: int

- Value:

SubmodelElementCollection 12:
— - Semanticld: acplt.org/Collections/Digin
- ldShort: DigInCol

Semantische
Transformation

\L* SubmodelElementCollection 13:
~t - Semanticld: acplt.org/Digln
- IdShort: Digin_1

Property 14:

- Semanticld: acplt.org/Digln/Value
- IdShort: ActualValue

- ValueType: double

- Value:

Abbildung 8.2: Semantische Transformationen bei Teilmodellen [19]
8.2 Kilassifikation der Transformationen

Tm ersten Schritt wird eine Klassifikation zur Auswahl einer Transformationssprache durch-
gefiihrt. Dafiir werden die Merkmale aus Abschnitt 5.2 genutzt und deren Ausprigungen
festgelegt.

Bei der vorliegenden Modelltransformation sollen (semi)-automatisch — neue
Informationsmodell-Instanzen — erstellt und mit Werten aus bereits existieren-
den Informationsmodell-Instanzen befiillt werden. Die bereits existierenden
Informationsmodell-Instanzen sollen dabei nicht verdndert werden. Eine Riickkopplung
ist somit ausgeschlossen und die Transformation erfolgt rickwirkungsfrei. Die Trans-
formationsrichtung ist somit unidirektional. Im Rahmen dieser Arbeit werden die
Transformationen als nicht-inkrementell angesehen, da das Aktualisieren von bestehenden
Informationsmodell-Instanzen zunachst nicht weiter betrachtet wird. Als Ergebnis der
Transformation wird ein Modellartefakt und explizit kein Textartefakt erzeugt. Aus
diesem Grund liegt eine Modell-zu-Modell-Transformation vor. Da genau eine neue
Informationsmodell-Instanz erzeugt wird, aber Informationen aus beliebig vielen existie-
renden Informationsmodell-Instanzen genutzt werden, liegt eine M:1 Transformation vor.
Die Transformation wird als horizontal bezeichnet, da die Quellmodelle und das Zielmodell
auf gleicher Abstraktionsebene liegen. Zudem sind die Quell- und Zielmodelle unter-
schiedlich, sodass eine Out-Place Transformation gegeben ist. In dieser Arbeit werden die
Informationsmodell-Templates nicht als eigene Metamodelle aufgefasst, sondern als eine
konkrete Ausgestaltung der Modellelemente des zugehorigen Metamodells. Da die beiden

71

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8 Modelltransformationen fiir die semantische Interoperabilitit zwischen verschiedenen
Informationsmodellen

Metamodelle von Quell- und Zielmodell gleich sind, liegt eine endogene Transformation
vor.

Zusammengefasst kann die Transformation zwischen Informationsmodellen zur Assetbe-
schreibung geméafl Kapitel 6 wie folgt klassifiziert werden: unidirektional, nicht inkremen-
tell, Modell-zu-Modell, M:1, horizontal, out-place und endogen.

8.3 Anforderungen an die zu entwickelnde
Transformationssprache

Neben der allgemeinen Klassifikation der Modelltransformation in Abschnitt 8.2 werden
Anforderungen an die Gestaltung der Sprachsyntax formuliert. Hierzu zahlen Anforderun-
gen an die Art und Weise, wie die Sprache nachher in der Praxis verwendet werden soll.
Zusitzlich existieren zur Definition von Regeln Anforderungen beziiglich der benétigten
Sprachelemente.

8.3.1 Allgemeine Anforderungen

In [19] wird bereits der allgemeine Anwendungsfall der Transformationssprache be-
schrieben. Es soll eine (semi-)automatische Generierung von neuen Informationsmodell-
Instanzen basierend auf Informationen aus anderen bereits existierenden bzw. vorliegen-
den Informationsmodell-Instanzen erfolgen. Die Transformationsdefinitionen sollen in er-
ster Linie von Doménenexperten, z. B. Datenmodellierern in Unternehmen, erstellt wer-
den, die bereits das Konzept und die Grundelemente des iibergeordneten Konzepts (hier
Verwaltungsschale) kennen. Aufgrund dessen soll die Syntax der Transformationssprache
fiir Doménenexperten einfach zu verstehen sein und die individuellen Arbeitsablaufe un-
terstiitzen. Um dies zu erreichen, soll die Syntax moglichst nahe am Metamodell der In-
formationsmodelle (hier Metamodell der Verwaltungsschale) sein und ausschlieBlich mit
notwendigen Sprachelementen erweitert werden. Dies ermdglicht anschliefend eine einfa-
chere und breitere Verwendung.

Anforderung 8.1 Die Syntax der Sprache soll einfach zu verstehen und nahe am Meta-
modell der Informationsmodelle sein.

Bei klassischen Transformationsproblemen werden Regeln fiir bestimmte Objekttypen de-
finiert, die dann auf jedes Objekt im Quellmodell angewendet werden. In diesem Fall
soll jedoch die Hauptstruktur der zu erzeugenden Informationsmodell-Instanz in der
Transformationsdefinition konform zum gewiinschten Informationsmodell-Template de-
finiert werden?. Das Ziel einer Transformationsdefinition soll sein, eine einzige wohl-
geformte Informationsmodell-Instanz aus den gesammelten Informationen bestehender
Informationsmodell-Instanzen zu erzeugen.

?ForEach-Strukturen, die iiber die Objekte der Quellmodelle iterieren, werden nur vereinzelt auftreten.

72

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8.3 Anforderungen an die zu entwickelnde Transformationssprache

Anforderung 8.2 Die Sprache soll genau eine wohlgeformte Informationsmodell-Instanz
erzeugen.

Um dem Nutzer die Erstellung einer Informationsmodell-Instanz zu vereinfachen, soll die
Struktur des Zielmodells moglichst in einem verstéindlichen, vorzugsweise deklarativen
Template-ahnlichen Stil [155] formulierbar sein. Dies bedeutet auch, dass eine explizite
Definition von einzelnen Regeln nicht existieren muss. In der Terminologie von Modell-
transformation bedeutet das: Jede Transformation besteht aus genau einer einzigen Regel,
die ein vollstéindiges Zielmodell erzeugt. Durch diese Forderung werden keine Sprachele-
mente fiir die Definition von expliziten Ausfiihrungsbedingungen, Steuerung von Regelan-
wendungen, Regelauswahl, Regelwiederholung und Unterstiitzung von Phasen erforderlich.
Zudem ist eine syntaktische Separation nicht notwendig.

Anforderung 8.3 Die Sprache soll die Definition der Struktur des Zielmodells in einem
deklarativen Template-ahnlichen Stil unterstiitzen.

Die vorgestellten Metamodelle fiir die Asset-Information sind bereits spezifiziert. Daher
liegen in der IT und Automatisierungstechnik viele verschiedene Implementierungen vor,
die in unterschiedlichen Programmiersprachen entwickelt wurden. Damit die Sprache eine
moglichst breite Verbreitung und Umsetzung in bestehenden Systemen erreicht, sollen so
wenig Sprachelementen wie moglich definiert werden. Dies erleichtert die Implementierung
in den erforderlichen Software-Tools. Gleichzeitig soll die Sprache auf Konzepten bzw.
Modellen aus dem aktuellen Stand der Wissenschaft basieren.

Anforderung 8.4 Die Sprache soll einfach implementierbar sein und auf bestehenden
Konzepten und Modellen aus dem Stand der Wissenschaft und Industrie basieren.

Zwingend erforderlich ist eine leistungsfihige Ausdruckssyntax, mit deren Hilfe das Er-
stellen, Manipulieren und die Kombination von Informationen aus den Quellmodellen
ermoglicht wird. Um dem Nutzer die Wiederverwendung von sich wiederholenden Aus-
driicken zu vereinfachen, sollen Sprachmittel fiir die Modularisierung und Wiederverwen-
dung mit Parametrisierung existieren. Die konkreten benétigten Sprachelemente werden
in Abschnitt 8.3.2 genauer behandelt.

8.3.2 Bendétigte Transformationssprachelemente

Um sowohl die syntaktischen als auch semantischen Transformationen (vgl. Abschnitt 8.1)
zwischen Informationsmodellen zu erméglichen, werden entsprechende Transformations-
sprachelemente benétigt. Diese sollen den allgemeinen Anforderungen aus Abschnitt 8.3.1
entsprechen. Eine Transformationssprache muss daher nachfolgende Sprachelemente an-
bieten:

3

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8 Modelltransformationen fiir die semantische Interoperabilitit zwischen verschiedenen
Informationsmodellen

Das Ziel der Transformation ist die Erstellung einer neuen Informationsmodell-Instanz.
Dafiir sollen die einzelnen Informationsmodellelemente mit Hilfe von entsprechenden Spra-
chelementen angelegt werden. Eine Sprache muss also die Erstellung von allen Informa-
tionsmodellelementtypen des zugehorigen Metamodells (hier die des Verwaltungsschalen-
Metamodells nach [4]) unterstiitzen. Dabei ist zu beachten, dass die Objekte inklusive ihrer
Attribute angelegt werden, auch wenn diese zunéchst nicht initialisiert werden.

Anforderung 8.5 Die Sprache muss Sprachelemente fir die Erstellung von Informati-
onsmodellelementen nach dem zugehorigen Metamodell bereitstellen.

Das Erstellen allein ermoglicht jedoch nicht das Setzen der Attributwerte dieser Infor-
mationsmodellelemente. Die Sprachelemente sind so zu gestalten, dass diese die Datenty-
pen der einzelnen Attribute unterstiitzen. Zudem sollen je nach Datentyp unterschiedli-
che Ausdriicke (Expressions) ermoglicht werden. Fiir eine Zeichenkette soll beispielsweise
ermoglicht werden, zwei einzelne Zeichenketten anzugeben, die dann konkateniert wer-
den (z.B. Zeichenkettel + Zeichenkette2). Aus diesem Grund werden Sprachelemente zur
Definition von Ausdriicken und zum Setzen von Attributen benotigt.

Anforderung 8.6 Die Sprache muss Sprachelemente fir das Definieren von Ausdriicken
und das Setzen von Attributen in den Informationsmodellelementen beinhalten.

Sowohl bei der syntaktischen als auch bei der semantischen Transformation wer-
den Quell-Informationsmodellelemente in Ziel-Informationsmodellelemente transformiert.
Dafiir miissen zunéchst die bendtigten Quell-Informationsmodellelemente in den Quell-
Informationsmodell-Instanzen gefunden werden. Es miissen Sprachelemente definiert wer-
den, die das Finden von Informationsmodellelemente im Quellmodell anhand ihrer Attri-
butwerte ermdglichen. Bei Verwaltungsschalen kann z. B. eine Suche iiber die idShort® bzw.
eine Liste von idShorts oder tiber die semanticID erfolgen.

Anforderung 8.7 Die Sprache muss Sprachelemente fiir das Finden von Informations-
modellelementen in den Quell-Informationsmodellen basierend auf Attributwerten vorse-
hen.

Nach dem Finden des Informationsmodellelements in der zugehorigen Quell-
Informationsmodell-Instanz miissen die Werte der einzelnen Attribute ausgelesen werden
konnen. Der Zugriff auf die Attribute soll fiir den Nutzer der Sprache einfach und intuitiv
sein.

Anforderung 8.8 Die Sprache muss Sprachelemente fir das Auslesen von Attributwerten
aus Objekten in den Quell-Informationsmodell-Instanzen bereitstellen.

30bjekt-Identifier, die in ihrem Namensraum eindeutig sind, wie z. B. Verwaltungsschalen-Teilmodell oder
SubmodelElementCollection.

4

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8.3 Anforderungen an die zu entwickelnde Transformationssprache

In einigen Fillen konnen bedingte Fallunterscheidungen (z.B. If-Then-Else) notwendig
sein. Gerade bei optionalen Informationsmodellelementen kann mit Hilfe einer bedingten
Fallunterscheidung entschieden werden, ob im Zielmodell ein Informationsmodellelement
angelegt werden muss oder nicht. Zusétzlich kann basierend auf Attributwerten in einem
Informationsmodellelement der Quell-Informationsmodell-Instanz entschieden werden, ob
oder wie weitere Informationsmodellelemente in der Ziel-Informationsmodell-Instanz ange-
legt oder deren Attribute gesetzt werden sollen. Aus diesem Grund werden Sprachelemente
benotigt, die die Definition von bedingten Fallunterscheidungen erméglichen.

Anforderung 8.9 Die Sprache muss Sprachelemente zur Unterstitzung bedingter Fallun-
terscheidungen definieren.

Bei einigen Transformationen miissen mehrere gleiche Modellelemente in der Ziel-
Informationsmodell-Instanz angelegt werden, deren Bezeichner sich unterscheiden. Um das
Anlegen einer abhdngigen Anzahl zu vereinfachen, sollen Sprachelemente bereitgestellt wer-
den, die die Erstellung und Nutzung von Schleifen ermdglichen.

Anforderung 8.10 Die Sprache muss Sprachelemente zur Unterstitzung von Schleifen
beinhalten.

Die Zwischenspeicherung und der spétere Zugriff auf Werte in Variablen kann notwendig
sein. Dies kann ein unnétiges wiederholtes Einlesen von Attributwerten eines Informations-
modellelements in den Quell-Informationsmodell-Instanzen einsparen oder die Moglichkeit
der Speicherung von Zwischenwerten bei Formeln oder sonstigen Operationen erméglichen.
Zuséatzlich konnen Variablen bei Schleifen fir das Zahlen der Schleifendurchgénge genutzt
werden. Aus diesem Grund sollen Sprachelemente zur Speicherung und zum Auslesen von
Variablen wéahrend der Auswertung der Transformationsdefinition existieren.

Anforderung 8.11 Die Sprache muss Sprachelemente zur Speicherung und zum Lesen
von Variablen bereitstellen.

Es kann davon ausgegangen werden, dass eine Vielzahl von Transformationsdefinitionen
existieren und dass Ausdriicke* dhnlich oder in gleicher Form in verschiedenen Transforma-
tionsdefinitionen vorkommen werden. Um eine effiziente Nutzung und die schnelle Erstel-
lung von Transformationsdefinitionen zu ermdglichen, sollten einmal erstellte Ausdriicke
wiederverwendet werden konnen. Diese konnen auch zunéchst abstrakter und ohne kon-
krete Werte bzw. mit Variablen spezifiziert und dann bei der Nutzung mit entsprechenden
Werten belegt werden. Dies wird in Programmiersprachen haufig als Makro bezeichnet. Zur
Ermoglichung werden Sprachelemente fiir die Erstellung, die Speicherung und die Nutzung
dieser Makros benotigt.

Anforderung 8.12 Die Sprache muss Sprachelemente zur Erstellung, Speicherung und
Nutzung von Makros definieren.

“Hier liegt der Fokus auf komplexen Ausdriicken.

5

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8 Modelltransformationen fiir die semantische Interoperabilitit zwischen verschiedenen
Informationsmodellen

8.4 Evaluation bestehender Transformationssprachen

Basierend auf der Klassifikation und der Anforderungsdefinition wurden im dritten Schritt,
analog zur Vorgehensweise in Abschnitt 5.4.2, bestehende Transformationssprachen hin-
sichtlich ihrer Eignung evaluiert. Das Ziel ist, diese direkt zu verwenden oder anzupassen
(vgl. Vorveroffentlichung [21]).

Zunéchst wurden typische generische Transformationssprachen, wie QVT [156], ATL [99],
ETL [102] oder VIATRA [101] betrachtet. Andere Ansétze nutzen bestehende GPTL und
erweitern diese um doménenspezifische Sprachelemente. Zum Beispiel wird in [113] ei-
ne abgeleitete Transformationssprache fiir Modelle von Benutzerschnittstellen entwickelt.
Es kann gezeigt werden, dass die Syntax nicht neu entwickelt werden muss, sondern auf
bestehende Konstrukte aufsetzen kann. Jedoch muss aufgrund der Erweiterung auch ein
neues Transformationssystem entwickelt werden, welches sowohl die doménenspezifischen
als auch alle Funktionalitaten der GPTL unterstiitzt. Dies ist sinnvoll, wenn die GPTL
um Funktionalitiat erweitert werden soll. Bezogen auf die Anforderungen aus Abschnitt
8.3.1 konnte dieses Verfahren oder die direkte Nutzung jedoch nicht verwendet werden,
da die generischen Transformationssprachen zu viele nicht benétigte Funktionen und Ein-
schriankungen, wie die Definition von Regeln oder keine einfache Unterstiitzung von Schlei-
fen (ATL), besitzen. Wenn nur wenige Funktionen benotigt werden, sollte eine neue Sprache
entwicklet werden, da die Dokumentation dieser kiirzer wird und Entwicklern somit die
Erstellung einer Implementierung vereinfacht wird.

Aus diesem Grund wurden im néchsten Schritt Frameworks zur Generierung von
doménenspezifischen Transformationssprachen hinsichtlich ihrer Nutzbarkeit analysiert.
Baar und Whittle entwickelten in [103] ein Verfahren zur Generierung der abstrakten Syn-
tax einer doménenspezifischen Transformationssprache in Form eines Metamodells. Dazu
wird das Metamodell der doménenspezifischen Modellierungssprache verwendet. Es wird
konzeptionell beschrieben, wie die Syntax automatisiert erstellt werden kann. Eine Be-
schreibung fiir die Ausfiihrung der Regeln und wie eine mégliche Implementierung ausse-
hen konnte wird nicht bereitgestellt. Auch existiert keine vollstdndige Implementierung.
Bei weiteren Recherchen konnten keine anderen Arbeiten bzw. Veroffentlichungen zu die-
sem Framework gefunden werden. Daher wird von einer Nutzung dieses Frameworks in
dieser Arbeit abgesehen.

In [108] wurde das Generator-Framework Marius entwickelt, welches Modelle, die mit der
EBNF Syntax entwickelt wurden, transformieren kann. Auch in [106] wurde ein &hnliches
Verfahren entwickelt, wie aus einer doméanenspezifischen, textuellen Modellierungsspra-
che die Transformationssprache sowie das Transformationssystem automatisiert generiert
werden kann. Allerdings wird gefordert, dass die Sprachen mit dem MontiCore Frame-
work [157] unter Nutzung der MontiCore-Grammatik (dhnlich zu Erweiterte Backus-Naur-
Form (EBNF)) entwickelt werden. Holldobler hat in ihrer Arbeit [110] eine Erweiterung ent-
wickelt, welche die n-zu-m Transformation ermoglicht. Allerdings miissen die Modellspra-
chen immer noch in der MontiCore-Grammatik beschrieben sein.

Die drei genannten Verfahren schréinken die Nutzbarkeit dahingehend ein, dass diese ledig-
lich bestimmte Sprachen unterstiitzen. Die Sprachen missen formal textuell beschrieben
sein und entweder der MontiCore-Grammatik oder der EBNF Syntax folgen. Zusétzlich

76

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

8.5 Fazit

wird die konkrete Syntax bereits von dem Framework vorgegeben, sodass die Definition
von eigenen Syntaxelementen aufwéandiger und nur bedingt moglich ist. Aus diesem Grund
wird die Nutzung dieses Frameworks in dieser Arbeit nicht weiter betrachtet.

In [112] wurde ein Metamodell fir die Entwicklung von DSTL entwickelt, welches alle
notwendigen Klassen, die bei einer Transformation benétigt werden, beschreibt. Basierend
auf diesem Modell wurde ein Verfahren entwickelt, wie automatisiert die abstrakte und
konkrete Syntax sowie das Transformationssystem erstellt werden. Der Nutzer muss seine
Transformationsregeln mit diesem Metamodell beschreiben und kann dann alles weitere
generieren lassen. Dies vereinfacht die Erstellung der Syntax sowie des Transformations-
systems. Jedoch ist der Nutzer an diesen Workflow und das erstellte Tool gebunden. Zu-
dem muss der Nutzer alle moglichen Regeln formulieren und diese konsistent halten. Der
benotigte Overhead und die Bindung an das erstellte Tool schranken die Verbreitung und
Nutzung in den Doménen signifikant ein.

Zusammenfassend lasst sich sagen, dass alle Frameworks zur Generierung benutzerdefi-
nierter DSTLs nicht verwendbar sind. Entweder sind die Frameworks nicht vollstandig
entwickelt, decken nur wenige Schritte ab, treffen Annahmen, die nicht zum gegebenen
Anwendungsfall passen - z.B. die Notwendigkeit einer konkreten Syntax der Modellie-
rungssprache - oder es werden Anforderungen an die vorhandenen Werkzeuge in der Sy-
stemlandschaft gestellt. Zudem sind vielfach die Sprachelemente der generierten Sprachen
nicht so leicht zu verstehen, da sie generisch formuliert sind, um verschiedene Anwen-
dungsfille abzudecken. Dies reduziert die Verbreitung in hohem Mafe, da die Nutzung fiir
Doménenexperten erschwert wird.

8.5 Fazit

In Abschnitt 8.4 wurde aufgezeigt, dass die geforderten Anforderungen aus Abschnitt 8.3
nicht mit einer am Markt verfiigharen Transformationssprache gelost werden kann und
auch kein Framework zur Generierung einer passenden Sprache genutzt werden kann. Aus
diesem Grund muss eine neue Transformationssprache entwickelt werden. Dies bedeutet
nach Abschnitt 5.4.2, dass zunéchst eine abstrakte Syntax und die Definition der statischen
Semantik (Metamodell der Sprache) erfolgen muss. Dabei soll sich an bestehenden Trans-
formationssprachen orientiert und nutzbare Konzepte wiederverwendet werden. Aufbauend
muss mindestens eine zugehorige konkrete Syntax entworfen werden. Den Abschluss bil-
det die Implementierung eines vollstandigen Tool-Sets bestehend aus Parser, Checker und
Interpreter, auch Transformationssystem genannt. In den néchsten Kapiteln wird das Me-
tamodell der neu entwickelten Modelltransformationssprache vorgestellt, eine Abbildung
fiir Verwaltungsschalen gegeben und eine Implementierung eines zugehorigen Transforma-
tionssystems als Proof-of-Concept beschrieben.

T

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9 Metamodell der
Modelltransformationssprache

Im vorherigen Kapitel wurden die Anforderungen an eine Modelltransformationssprache
beschrieben und aufgezeigt, dass derzeit keine passende Sprache existiert. Aufgrund des-
sen wird in diesem Kapitel das Metamodell einer neuen Modelltransformationssprache defi-
niert, welche allen Anforderungen gerecht wird. Fiir die Definition des Metamodells werden
die benotigten Sprachelemente und deren Semantik beschrieben, welches in Abschnitt 9.1
erfolgt. Zusatzlich sind fir die Sprachelemente zugehorige Syntaxregeln notwendig. Au-
Berdem wird eine konkrete Syntax fiir eine Anwendung der Sprache benétigt. Die Regeln
und die Syntaxdarstellungen werden in Abschnitt 9.2 vorgestellt. Abschlieflend wird in Ab-
schnitt 9.3 gezeigt, dass die Sprache den Anforderungen aus Abschnitt 8.3 gerecht wird.

9.1 Benotigte Sprachelemente und deren Semantik

Viele der notwendigen Sprachelemente aus Abschnitt 8.3 erfordern die Moglichkeit, Aus-
driicke (Expressions) zu formulieren. Zum Beispiel miissen Definitionen von Literalen (z. B.
String oder Boolean), Fallunterscheidungen, Typiiberpriifungen, Schleifen sowie die Ver-
wendung von Variablen ermoglicht werden. Die Ausdruckssprache OCL ist ein Bestandteil
der etablierten UML (vgl. Kapitel 3) und unterstiitzt bereits viele dieser Sprachelemente.
Die Sprache baut dabei auf der Pradikatenlogik auf und erweitert diese. Die Beschreibung
der Sprachelemente erfolgt durch nattrliche Sprache, wodurch auch Nicht-Mathematiker
oder Nicht-Informatiker die Sprachelemente verstehen und anwenden kénnen. Zudem ist
OCL eine deklarative Sprache. Da heutige Metamodelle meistens in UML spezifiziert wer-
den (hier z. B. das Metamodell der Verwaltungsschale), OCL eine anerkannte Sprache sowie
die Basis fiir viele Transformationssprachen ist und bereits viele der benétigten Sprach-
elemente unterstiitzt, wird diese als Grundlage fiir die neue Modelltransformationssprache
verwendet.

BasicOCL erfiillt bereits fast alle Anforderungen aus Abschnitt 8.3. Lediglich das Anlegen
von neuen Objekten sowie die Definition von Makros ist mit OCL nicht méglich (Anfor-
derung 8.5). Aufgrund dessen werden neue Sprachelemente fiir diese Aufgaben benétigt.
Zudem wird ein Sprachelement fiir die Definition der Elemente einer Transformationsdefi-
nition gebraucht.

In Abbildung 9.1 ist das Metamodell der neuen Modelltransformationssprache dargestellt,
welches auf dem verdffentlichten Metamodell in [21] basiert und weiterentwickelt wurde.
Alle Ausdriicke von BasicOCL werden fir die neue Modelltransformationssprache wieder-
verwendet. Diese sind in der Abbildung weifl dargestellt. Zusatzlich wurden die Klassen

78

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9.1 Bendtigte Sprachelemente und deren Semantik

Package, TransformationDefiniton, Macro, MacroCallExp, ObjectLiteralEzp und Attribu-
teBinding hinzugefiigt (in der Abbildung grau dargestellt).

lMacro(‘:aIIExp‘ lVarial;IeExPH Call"Exp ‘ l IfE‘xp ‘ l Let‘Exp H Typ;Exp ‘ ’Liter;IExp‘

ObjectLiteraIExp}“(AttributeBinding ‘

lFeatureCaIIExp‘ { LoopExp ‘
A\

TransformationDefinition
IterateExp

Abbildung 9.1: Metamodell der Modelltransformationssprache nach [21]

Eine Semantikbeschreibung der OCL-Ausdriicke findet sich in Kapitel 3. Um die Seman-
tik der neuen Klassen zu verdeutlichen, ist eine detaillierte Sicht auf die hinzugefiigten
Elemente und deren Assoziationen in Abbildung 9.2 dargestellt.

+expressionOwner TypedElement .
Macro P +body 1 DZ’ €11 sinitExpression
name: string +parameterValue *
0. 1 LiteralExp
+macro +referredMacro
+parameterOwner sinitializedAttribute

MacroCallExp ObjectliteralExp | +attributeOwner

AttributeBinding

+objectType

sreferringExp

1 sobjectTypeOwner +attribute

+value

+referringBinding
1

+parameter|0..* {type=Informationmodel}

TypeExp
+referredProperty
Variable
+maroOwner +valueOwner Property
‘ Package +transfort Definition i initi ‘

‘ ~ name: string

ionDefinitionOwner

0.1|- name: string
ourceTemplate: i Template [0..*]
targetTemplate: Informationmodel-Template

Abbildung 9.2: Detaillierte Ansicht des Metamodells der Modelltransformationssprache nach
[21] inkl. der Assoziationen

Das Element TransformationDefinition stellt den Eingangspunkt fiir jede Transformations-
definition dar. Um festzulegen, fiir welche Informationsmodell-Templates die Transformati-
onsdefinition gilt, miissen sowohl die Templates der benétigten Quell-Informationsmodelle
als auch das des Ziel-Informationsmodells angegeben werden. Dies erfolgt in den Attributen
source Template und targetTemplate. Uber das Attribut value wird die eigentliche Trans-
formation durch eine ObjectLiteralExp formuliert. Diese wird ausgewertet und erstellt als
Rickgabewert das zu erzeugende Informationsmodell.

79

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

Um Elemente innerhalb der Informationsmodell-Instanz zu erstellen, reichen die OCLEx-
pressions, im Besonderen die LiteralExp, nicht aus. Mit diesen konnen lediglich Literale von
einfachen Datentypen, wie Strings oder Booleans, erstellt werden. Aufgrund dessen wird
die Klasse ObjectLiteralEzp definiert. Diese ermoglicht die Erstellung von neuen Instanzen
einer konkreten Modellklasse des Informationsmodell-Metamodells. Die ObjectLiteralExp
ist eine Unterklasse der LiteralExp und besteht aus einer TypeExp tiber die object Type-
Assoziation und einer beliebigen Anzahl von AttributeBindings. Mit der TypeExp wird
die Definition der Modellklasse des zu erstellenden Objekts vorgenommen. Die Klasse At-
tributeBinding ermoglicht das Setzen von Attributen der neu erstellten Instanz. Jeder
ObjectLiteralExp konnen beliebig viele AttributeBinding-Elemente hinzugefiigt werden,
die jeweils die Definition eines Attributwerts ermoglichen. Die AttributeBinding-Elemente
entsprechen dabei den Attributen der Objekt-Klasse. Bei der Ausfiihrung einer ObjectLi-
teralExp wird genau eine neue Objektinstanz erstellt und zuriickgegeben. An jeder Stelle,
an der ein mit einer Objekt-Klasse typisierter Ausdruck erwartet wird, konnen Objekte
der neu eingefiihrten Klasse verwendet werden.

Jedes AttributeBinding-Element ist Teil einer ObjectLiteralExp und erlaubt die Definition
eines Attributs des zu instanziierenden Objekts. Es enthélt einen Verweis auf die Klasse-
neigenschaft, die das Attribut spezifiziert. Zusatzlich muss ein Ausdruck als init Expression
angegeben werden, um den Wert des Attributs zu initialisieren. Der Typ der initExpression
muss mit dem Typ der Klasseneigenschaft iibereinstimmen.

Um die Wiederverwendung von komplexen Ausdriicken zu erméglichen und diese durch
die Ubergabe von Parameterwerten zu parametrisieren, wird die Klasse Macro eingeftigt.
Viele Modelltransformationssprachen nutzen dhnliche Konzepte, z. B. Helpers in ATL [99)].
Beispiele fiir Makros sind das vollstandige Kopieren eines Objekts oder das vereinfachte
Setzen eines Attributs'. Die Klasse Macro formuliert eine beliebige OCLExpression als body
und kann beliebig viele Variablen als Parameter definieren, die im Ausdruck Verwendung
finden koénnen. Das Macro-Element kann entweder zusammen mit der Transformations-
definition in einem Paket oder ohne eine solche (z. B. zur allgemeinen Verwendung in
einer Bibliothek) enthalten sein. Die Klasse fiir die Bibliothek ist in Abbildung 9.2 nicht
dargestellt.

Um Makros aufzurufen, wird die Klasse MacroCallEzp eingefithrt. Diese ist eine Unterklas-
se der OCLExpression, die sich bei einem Aufruf zum Body-Ausdruck des referenzierten
Makros auflost. Sie kann mehrere OCLExpressions als parameterValue enthalten, die bei
Auswertung den Parametervariablen des referenzierten Makros zugewiesen werden. Hier-
mit kann die Auswertung des Ausdrucks parametrisiert werden.

Fir eine effiziente Sicherung der Transformationsdefinitionen und Makros wird zusétzlich
die Klasse Package eingefiihrt. Jedes Objekt dieser Klasse besteht aus maximal einer Trans-
formationsdefinition und kann beliebig viele Makros enthalten. Es ist auch moglich, dass
ausschlieBlich Makros enthalten sind.

In Kapitel 10 sind einige Makros fiir das Metamodell der Verwaltungsschale beschrieben.

80

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

9.2 Syntaxregeln und konkrete Syntax

Fir eine vollstindige Sprachspezifikation der Modelltransformationssprache miissen
zusitzlich Regeln fir die Wohlgeformtheit der in Abschnitt 9.1 beschriebenen Sprach-
elemente spezifiziert werden. Dadurch wird eine Uberpriifung der Giiltigkeit und Typkon-
sistenz von Transformationsdefinitionen ermoglicht. Diese kénnen durch Invarianten mit
OCL-Sprachelementen formuliert werden. Um die Sprache zu nutzen, wird eine konkrete
Syntax benétigt. Dies erfolgt in Form von Produktionsregeln.

Fir die wiederverwendeten Sprachelemente aus OCL werden die Syntaxregeln und die
Produktionsregeln der konkreten Syntax aus der OCL-Spezifikation [53] genutzt. Fir die
zusétzlichen Elemente werden folgende Invarianten und Produktionsregeln definiert:

Informationmodel: Da die Sprache unabhéngig eines konkreten Metamodells (generisch)
spezifiziert ist, muss die Klasse Informationsmodel bei der Anwendung der Sprache auf ein
Metamodell konkretisiert werden. Beim Verwaltungsschalen-Metamodell ist dies beispiels-
weise die Klasse Submodel.

Macro: Ein Makro ermoglicht, wiederholt auftretende komplexe OCL-Ausdriicke wieder-
zuverwenden. Es enthélt genau einen OCL-Ausdruck im Attribut body. Dieser Ausdruck
kann weitere OCL-Ausdriicke beinhalten. Ein Makro ist typisiert und der Typ entspricht
dem Typen des OCL-Ausdrucks im Attribut body. Dabei stellt ein Makro einen Namens-
raum zur Verfiigung und ermoglicht die Definition von Parametern (Variablendeklaratio-
nen), die innerhalb des OCL-Ausdrucks verwendet werden. Ein Makro kann beliebig viele
Parameter haben, jedoch miissen die Namen der Parameter eindeutig sein. Um diese bei ei-
nem Aufruf durch eine MacroCallExp mit Werten zu fiillen, muss die Reihenfolge festgelegt
sein, da auch Default-Werte unterstiitzt werden sollen. Der Name eines Makros muss wie-
derum in dem Namensraum, in dem dieser definiert wird, eindeutig sein. Fiir eine formale
Uberpriifung werden diese Syntaxregeln in Form von Invarianten festgelegt:

context Macro
inv: self.name.type.oclIsKindQOf (PrimitiveType)
inv: self.name.type.name = ‘String’
inv: self.parameter.type.oclIsKindOf (Sequencelype)
inv: self.parameter->forAll (oclIsKindOf (Variable))
inv: self.parameter->isUnique (name)
inv: self.type = self.body.type
inv: self.body.type.oclIsKind0Of (OCLEzpression)

Fiur die konkrete Syntax wird die Produktionsregel eines Makros wie folgt definiert: Die
Produktionsregel besteht aus dem Terminalsymbol Macro gefolgt von einem frei definier-
baren Namen, der durch das in OCL definierte Nichtterminalsymbol simpleNameCS [53]
formuliert wird. Danach folgen in Klammern die Parameterdefinitionen. Diese bestehen je-
weils aus dem Namen und dem Typen des Parameters (siche Definition von parametersCS
in [53]). Da Makros typisiert sind, kann durch einen Doppelpunkt getrennt, der Typ? des

2Als Typ wird der Riickgabewert verstanden, der bei der Auflésung der enthaltenen Expression erzeugt
wird.

81

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

Makros durch das OCL Nichtterminalsymbol typeCS explizit angegeben werden. Zuletzt
wird der komplexe OCL-Ausdruck innerhalb geschweifter Klammern festgelegt.

MacroDeclarationCS ::= ‘Macro’ simpleNameCS
¢(’ parametersCS? €)’ (‘:’ typeCS)?
‘{> OCLExpressionCS ‘}’

MacroCallExp: Fir das Aufrufen eines Makros wird die Klasse MacroCallExp eingefiihrt.
Diese referenziert im Attribut referredMacro ein vorher definiertes Makro und wertet dieses
aus. Der Ausdruck MacroCallEzp kann, sofern das referenzierte Makro Parameter spezi-
fiziert, eine Liste von Parameterausdriicken enthalten. Diese werden im Attribut parame-
terValue als eine Sequenz gespeichert. In diesem Fall miissen die Anzahl und die Typen
der Parameterausdriicke mit denen der Parameter des Makros iibereinstimmen. Die Ma-
croCallExp ist eine Unterklasse der OCLFEzpression und kann folglich an einer beliebigen
Stelle genutzt werden, an der ein OCL-Ausdruck benotigt wird, der dem Typen des refe-
renzierten Makros entspricht. Bei der Auswertung wird das referenzierte Makro mit den
iibergebenen Parametern ausgewertet.

context MacroCallExp
inv: self.type = self.referredMacro.type
inv: self.parameterValue.type.oclIsKindOf (SequenceType)
inv: self.parameterValue->forAll(
0clIsKind0f (OCLExzpression))
-- Anzahl der ParameterValue und der Parameter des
referenzierten Makros missen gleich sein
inv: self.parameterValue->size() =
self.referredMacro.parameter ->size ()
-- Typen der ParameterValue und der Parameter des
referenzierten Makros missen gleich sein
inv: self.paramterValue->forAll(p | p.type.conformsTo
(self.referredMacro.parameter ->at
(self .parameterValue->index0f (p)).type))

Die Produktionsregel fiir die Nutzung einer MacroCallExp besteht aus dem Namen des
Makros sowie dem zugehorigen Paket, sofern das Makro nicht im gleichen Paket wie die
Transformationsdefinition spezifiziert wurde. Die Zuordnung zum Paket geschieht optio-
nal durch das OCL Nichtterminalsymbol simpleNameCS gefolgt von zwei Doppelpunkten.
Anschlieend wird der Name des Makros ebenfalls durch das OCL Nichtterminalsymbol
simpleNameCS formuliert. Fur diesen Fall existiert in OCL bereits das Nichtterminalsym-
bol PathNameCS. Im Anschluss folgen die Variablen in Klammern, die den Parametern
des Makros zugewiesen werden. Diese werden durch das OCL Nichtterminalsymbol argu-
mentsCS beschrieben und entsprechen der Syntax des Aufrufs einer Operation innerhalb
eines Kontexts, wie in [53] spezifiziert.

MacroCallExpCS ::= PathNameCS ¢(’ argumentsCS? ‘)’
TransformationDefinition: Jedes Objekt der Klasse TransformationDefinition hat

einen Namen, der frei gewéhlt wird. Das Attribut sourceTemplate ist ein Set von
Informationsmodell-Template-Definitionen, bestehend aus einem Variablennamen zur

82

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

weiteren Nutzung und einem moglichen Attribut-Wert zur Findung der zugehorigen
Quellmodell-Instanzen. Jeder Variablenname sowie mogliche Attribut-Werte diirfen aus-
schlieBlich einmal verwendet werden, um Mehrfachzuweisungen zu verhindern. Das Attri-
but target Template legt fest, fiir welches Informationsmodell-Template eine Instanz erstellt
wird. Dafiir wird ebenfalls eine Informationsmodell-Template-Definition angegeben. Als Er-
gebnis wird eine neue Instanz eines Informationsmodells erstellt, welche im Attribut value
iiber eine ObjectLiteralExp formuliert wird. Diese Instanz muss dem Typ des Informa-
tionmodel entsprechen und die geforderten Constraints des Informationsmodell-Templates
erfiillen, welches als target Template angegeben wurde.

context TransformationDefinition
inv: self.name.type.oclIsKindQf (PrimitiveType)
inv: self.name.type.name = ¢ String’
inv: self.value.type.oclIsKindOf (Informationmodel)
inv: self.sourceTemplate.type.oclIsKindOf (Set)
inv: self.sourceTemplate->forAll(
0clIsKindOf (InformationmodelTemplate))

Fir die Definition einer Transformationsdefinition wird die Produktionsregel wie folgt de-
finiert: Sie wird durch das Terminalsymbol TransformationDefinition eingeleitet und be-
sitzt einen eindeutigen Namen, der tiber das OCL Nichtterminalsymbol simpleNameCS
angegeben wird. Danach folgen optional die Definitionen der Quell-Informationsmodell-
Templates. Diese werden durch das Terminalsymbol source Template, gefolgt von einem
Doppelpunkt sowie dem Nichtterminalsymbol InformationmodelTemplateListCS formu-
liert. Zwingend anzugeben ist das Ziel-Informationsmodell-Template, welches durch das
Terminalsymbol targetTemplate, gefolgt von einem Doppelpunkt und der Nutzung des
Nichtterminalsymbols InformationmodelTemplateCS erfolgt. Weiterhin ist die Angabe des
Terminalsymbols value gefolgt von einem Doppelpunkt und einer ObjectLiteralExp durch
die zugehorige Produktionsregel ObjectLiteralEzpCS verpflichtend.

TransformationDefinitionCS ::=
‘TransformationDefinition’ simpleNameCS
‘sourceTemplates’ ‘:’ InformationmodelTemplateListCS?
‘targetTemplate’ ‘:’ InformationmodelTemplateCS
‘value’ ‘:’ ObjectLiteralExp

InformationmodelTemplate: Die Definition eines Informationsmodell-Templates dient
der Ermittlung der zugehorigen Quellmodelle fiir die weitere Nutzung in der Trans-
formationsdefinition. Die Definition besitzt eine Variable, tiber die auf Instanzen die-
ses Templates in der Transformationsdefinition zugegriffen wird. Der Name muss inner-
halb der Transformationsdefinition eindeutig sein. Zusétzlich muss der Typ der Quellm-
odelle angegeben werden. Dieser Typ kann entweder der konkrete Informationsmodell-
Template-Typ oder eine Sammlung eines Informationsmodell-Template-Typs sein, sofern
mehrere Informationsmodell-Instanzen des gleichen Typs verwendet werden. Der Initial-
wert darf nicht gesetzt werden, da er nicht benotigt wird. Danach kann in der Produk-
tionsregel das Terminalsymbol -> gefolgt von einer LiteralExpression genutzt werden.
Diese LiteralExpression stellt den Verweis auf ein Informationsmodell-Template dar, so-

83

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

fern die Informationsmodell-Templates alle vom gleichen Typ sind®. In diesem Fall ist
das Ergebnis der Literal Expression der Attribut-Wert, der fiir die Unterscheidung der
Informationsmodell-Templates im spezifischen Metamodell spezifiziert ist. Fiir die Defini-
tion einer Liste von Informationsmodell-Templates wird eine zusétzliche Produktionsregel
definiert:

InformationmodelTemplateCS ::=
VariableDeclarationCS (‘->’ LiteralExpCS)?

InformationmodelTemplateListCS[1] ::=
InformationmodelTemplateCS
(“,” InformationmodelTemplateListCS[2])7

ObjectLiteralExp: Die Object Literal Expression dient dem Erstellen eines neuen Ob-
jekts aus dem Metamodell. Der Typ dieses Objekts ist der referenzierte Typ der OCL-
Expression im objectType. Dieser muss folglich ein Subtyp der Klasse Class sein. Die
Klasse Class ist der Obertyp aller Klassen des zugehorigen UML Metamodells. Zusétzlich
kann eine ObjectLiteralExp eine beliebige Anzahl von AttributBinding-Objekten enthal-
ten. Jedes dieser AttributeBinding-Objekte referenziert dabei genau ein Attribut des zu
erstellenden Objekttyps. Zwei AttributeBinding-Objekte diirfen nicht das gleiche Attribut
referenzieren.

context ObjectLiteralExp

inv: self.objectType.referredType.oclIsKind0Of (Class)

inv: self.type = self.objectType.referredType

-- AttributBindings miissen genau ein Attribut des
referenzierten Objekttypes referenzieren

inv: self.attribute->forAll(a |

self.objectType.property->exists(
a.referredProperty))

-—- AttributBindings dirfen nicht das gleiche Attribut des
referenzierten Objekttypes referenzieren

inv: self.attribute->isUnique(referredProperty)

Die Definition einer Object Literal Expression beginnt mit dem OCL Nichtterminalsymbol
typeCS, welches den Typen des zu erstellenden Objekts spezifiziert, gefolgt von optionalen
AttributeBinding-Objekten in geschweiften Klammern. Dabei konnen kein, ein oder mehre-
re AttributeBinding-Objekte durch das zugehorige Syntaxelement Attribute BindingListC'S
formuliert werden.

ObjectLiteralExpCS ::=

typeCS ‘{’ AttributeBindingListCS? ‘}°
Da die Object Literal Expression eine Spezialisierung der OCL LiteralExp ist, muss diese
der Produktionsregel fiir LiteralExp hinzugefiigt werden:

[F] LiteralExpCS ::= ObjectLiteralExpCS

3Dies ist z. B. bei den Submodel-Templates im Metamodell der Verwaltungsschale der Fall, die alle vom
Typ Submodel sind. Hier wird die Unterscheidung tiber das Attribut Semanticld getétigt.

84

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

AttributeBinding: Jedes AttributeBinding-Objekt ist genau einer Object Literal Ex-
pression zugewiesen und bezieht sich auf ein Attribut des zu erstellenden Objekttyps. Auf
dieses Attribut verweist das AttributeBinding-Objekt tiber die Assoziation referred Proper-
ty. Zusétzlich wird tiber die Assoziation initExpression der Wert, des Attributs festgelegt.
Der Typ der initEzpression muss dem Typen des referenzierten Attributs entsprechen.

context AttributeBinding
inv: self.initExpression.type = self.referredProperty.type

Die Produktion eines AttributeBinding-Elements beginnt mit der Namensdefinition des re-
ferenzierten Attributs durch das OCL Nichtterminalsymbol simple NameCS. Danach folgt,
durch einen Doppelpunkt getrennt, die Initialisierung des Wertes. Dafiir kann ein beliebi-
ger OCL Ausdruck genutzt werden. Die vollstiandige Produktionsregel ist daher wie folgt
definiert:

AttributeBindingCS ::= simpleNameCS ‘:’ 0OCLExpressionCS

Um AttributeBinding-Elemente in einer Liste zusammenzufassen, wird eine weitere Pro-
duktionsregel benotigt. Diese besteht aus der Nutzung des AttributeBindingCS fir die De-
finition eines AttributeBinding-Elements, gefolgt von einer optionalen Gruppe bestehend
aus einem Komma und dem rekursiven Aufruf dieser Produktionsregel. Damit kénnen
beliebig viele AttributeBindingCS durch ein Komma getrennt angehéngt werden.

AttributeBindingListCS[1] ::=
AttributeBindingCS (‘,’ AttributeBindingListCS[2])7

Package: Ein Package dient der Strukturierung von maximal einer Transformationsdefi-
nition und beliebig vielen Makros. Jedes Package hat einen Namen, der bei der Nutzung
von mehreren Packages eindeutig sein muss. Ein Package kann maximal ein Objekt der
Klasse TransformationDefinition beinhalten sowie eine beliebige Anzahl von Objekten der
Klasse Macro. Die Namen der enthaltenen Makros miissen dabei unterschiedlich sein.

context Package

inv: self.name.type.oclIsKindOf (Primitivelype)

inv: self.name.type.name = ‘String’

inv: self.transformationDefiniton->size() <= 1

inv: self.transformationDefinition.type.oclIsKindOf (
TransformationDefinition)

inv: self .macro->forAll (oclIsKindOf (Macro))

inv: self.macro->isUnique (name)

Die Definition eines Packages beginnt durch das Terminalsymbol package gefolgt von einem
eindeutigen Namen, der iiber das Nichtterminalsymbol simpleNameCS formuliert wird. Da-
nach folgt optional eine Transformationsdefinition mittels des Nichtterminalsymbols Trans-
formationDefinitionCS sowie eine Liste des Nichtterminalsymbols MacroDeclarationCS fir
die Definition der enthaltenen Makros.

PackageCS ::=
‘package’ simpleNameCS
TransformationDefinitionCS?
MacroDeclarationCSx*

85

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

9.3 Evaluation der Sprache

Mit Hilfe der neu definierten Sprache kann die Transformation zwischen mehreren
Eingangs-Informationsmodellen hin zu einem Ziel-Informationsmodell formuliert werden.
Als Basis wird BasicOCL verwendet und um zwingend notwendige Sprachelemente erwei-
tert, die zum Teil bereits in anderen Transformationssprachen integriert sind. Dazu wur-
den Konzepte anderer Transformationssprachen analysiert und fiir diesen Anwendungsfall
sinnvoll angepasst und iibernommen, wie z. B. Makros. Die neue Sprache basiert somit
auf dem aktuellen Stand der Wissenschaft und Industrie, und ist durch die Definition von
lediglich notwendigen Sprachelementen leicht zu implementieren (Anforderung 8.4). Mit
Hilfe der OCL-Ausdriicke kénnen Elemente in den Quell-Informationsmodellen gefunden
(Anforderung 8.7) und deren Attribute ausgelesen werden (Anforderung 8.8). Zusétzlich
definiert OCL bereits Ausdriicke, mit denen Fallunterscheidungen definiert (Anforderung
8.9), Schleifen bzw. Iterationen durchgefithrt (Anforderung 8.10) sowie Variablen angelegt
werden konnen (Anforderung 8.11). Ziel der neuen Sprache ist, ein wohlgeformtes Infor-
mationsmodell zu erzeugen, welches gegen konkrete Invarianten von Informationsmodell-
Templates geprift werden kann. Die Sprachelemente von OCL erméglichen keine Objekt-
Erstellung. Aufgrund dessen wurden die beiden Klassen ObjectLiteralExp und Attribute-
Binding eingefiihrt, die die Erstellung von Informationsmodellelemente des Metamodells
ermoglichen (Anforderung 8.5). Bei der Erstellung wird die Sprachsyntax des Metamo-
dells genutzt, sodass der Anwender die Transformationsdefinitionen leichter erstellen kann.
Durch die Klasse AttributeBinding wird sichergestellt, dass alle Attribute eines Objekts
setzbar sind. Dies ist mit den Sprachelementen von OCL allein nicht méglich (Anforde-
rung 8.6). Fir die vereinfachte Wertdefinition beim Setzen kénnen wiederum die in OCL
definierten Operationen (z. B. String-Konkatenation, Addition von Zahlenwerten) genutzt
werden. Abschlieflend ermoglichen die neu eingefithrten Klassen Macro und MacroCallExp
das Erstellen von Makros sowie deren Nutzung (Anforderung 8.12). Es wurden bewusst
wenige Sprachelemente spezifiziert, sodass die Sprache einfach zu verstehen ist und dadurch
eine bessere Verbreitung findet (Anforderung 8.1). Zudem wurde, im Gegensatz zu vielen
bestehenden Transformationssprachen, nicht das Mapping zwischen Objekttypen betrach-
tet, sondern die Erstellung genau eines Ziel-Informationsmodells fokussiert (Anforderung
8.2). Alle Sprachelemente sind so formuliert, dass das neue Ziel-Informationsmodell de-
klarativ beschrieben wird (Anforderung 8.3). Die neu definierte Sprache erfiillt somit alle
geforderten Anforderungen aus Kapitel 8.

86

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10 Abbildung der
Modelltransformationssprache fiir
Verwaltungsschalen

Die in Kapitel 9 vorgestellte Modelltransformationssprache wird fiir die Nutzung von Ver-
waltungsschalen angepasst. Dafiir werden das Informationsmodell und die Referenzierung
zu Informationsmodell-Templates festgelegt sowie Makros fiir die einfachere Nutzbarkeit
definiert.

10.1 Anpassungen des Informationsmodells

Im Metamodell der Verwaltungsschale werden Informationsmodelle durch die Klasse Sub-
model beschrieben. Das angepasste Metamodell der Sprache ist in Abbildung 10.1 darge-
stellt.

i TypedElement
Macro sexpressionOwner n:f €111 sinitexpression

e +parameterValue *
. i '
- LiteralExp
+macro +referredMacro
+parameterOwner

MacroCallExp ObjectLiteralExp | +attributeOwner

sreferringExp

* +attribute

+initializedAttribute
AttributeBinding

+referringBinding

TYPEEXP | ohjectType
1 +objectTypeOwner

+value

-

1
+parameter|0.* {type=Submodel}

1| +referredProperty
Variable
§ +maroOwner +valueOwner Property
Package +transformationDefinition TransformationDefinition
jonDefinitionOwner

- sourceTemplate: Submodel-Template [0..*]

" name: string 0.1|- name: string.
- targetTemplate: Submodel-Template

Abbildung 10.1: Detaillierte Ansicht des Metamodells der Modelltransformationssprache inkl.
der Assoziationen nach [21] angepasst fiir Verwaltungsschalen

Die Referenzierung einer Submodel-Instanz auf das zugehorige Submodel-Template erfolgt
iiber das Attribut semanticId. Die Klasse Referenz (Reference) besteht aus einer geordneten
Liste von Instanzen der Klasse Key, die drei Attribute besitzt:

o type: Typ der referenzierten Entitat, z. B. globale Referenz oder Referenz auf eine
Instanz einer Metamodell-Klasse

87

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache fiir Verwaltungsschalen

o wvalue: Wert der Referenz, z. B. eine IRDI

o idType: Weitere Unterscheidung zwischen IRI, IRDI, Custom, IdShort oder Frage-
mentld

Eine Referenz auf ein Submodel-Template beginnt mit der Definition des Variablennamens,
gefolgt vom Typ Submodel oder Set(Submodel). Anschliefend wird das Submodel-Template
durch eine ObjectLiteralExp vom Typ Reference referenziert:

a: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRTI,
value: "http://acplt.org/ExampleSMT",
type: KeyElements::GlobalReferencel}}}

Ein Beispiel fiir eine einfache Transformationsdefinition mit den definierten Sprachelemen-
ten sieht wie folgt aus:

transformationDefinition tdl
sourceTemplate:
a: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "http://acplt.org/ExampleSMT",
type: KeyElements::GlobalReferencel}l}},

b: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "http://acplt.org/ExampleSMT_2",
type: KeyElements::GlobalReferencel}}}
targetTemplate:
c: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "http://acplt.org/ExampleSMT_3",
type: KeyElements::GlobalReferencel}}}
value: Submodel {
identification: Identifier{
id: "https://acplt.org/Test_Submodel",
idType: IdentifierType::IRI},
submodelElement: copySubmodelElementSet (
a.submodelElement) ->union (
copySubmodelElementSet (b.submodelElement)),
semanticId: Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "http://acplt.org/ExampleSMT_3",
type: KeyElements::GlobalReferencel}}}

}

Die Transformationsdefinition hat den Namen td1. Sie formuliert die Transformation zwei-
er existierender Teilmodell-Instanzen in eine neue Teilmodell-Instanz. Die Quell-Templates
sind vom Typ Submodel und werden durch die Reference-Deklarationen ¢ und b, die nach

88

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10.2 Makros fiir das vollstindige Kopieren von SubmodelElement-Objekten

dem Terminalsymbol source Template folgen, festgelegt. Analog erfolgt der Verweis auf das
Ziel-Template. Die eigentliche Transformationsregel wird nach dem Terminalsymbol value
spezifiziert. Durch eine ObjectLiteralExp wird eine neue Teilmodell-Instanz vom Typ Sub-
model erstellt und die entsprechenden Attribute gesetzt. Die neue Teilmodell-Instanz erhalt
die Kind-Elemente von beiden Quell-Teilmodell-Instanzen (Attribut submodelElement) so-
wie eine Referenz auf das zugehorige Teilmodell-Template aus der Variable ¢ (Attribut
semanticld). Fir die Zuweisung des Attributs submodelElement werden MacroCallEzp ge-
nutzt.

Im Kontext von Verwaltungsschalen werden einige Funktionalitédten hdufiger benotigt. Die-
se konnen in Makros gekapselt und dem Anwender zur Verfiigung gestellt werden. Aus
diesem Grund werden Makros fiir folgende Funktionalitaten definiert:

1. Das vollstandige Kopieren von einzelnen SubmodelElement-Objekten

. Das vollstandige Kopieren eines Sets aus SubmodelElement-Objekten

2

3. Der Zugriff auf ein SubmodelElement-Objekt basierend auf dem Attribut IdShort

4. Der Zugriff auf ein SubmodelElement-Objekt basierend auf einem Pfad aus IdShorts
5

. Der Zugriff auf ein oder mehrere SubmodelElement-Objekte basierend auf dem At-
tribut Semanticld

6. Das vollstédndige Kopieren von SubmodelElement-Objekten basierend auf dem Attri-
but IdShort, welches eine Kombination des zweiten und dritten Makros ist

7. Das vollstandige Kopieren von SubmodelElement-Objekten basierend auf einem Pfad
aus [dShorts, welches eine Kombination des zweiten und vierten Makros ist

8. Das vollstédndige Kopieren von SubmodelElement-Objekten basierend auf dem Attri-
but Semanticld, welches eine Kombination des zweiten und fiinften Makros ist

Die Makros werden mit den Sprachelementen der Transformationssprache aus Kapitel 9 for-
muliert, sodass keine weitere Auswertelogik von Seiten des Transformations-Tools benétigt
wird. Die vollstdndige Auflistung der definierten Makros ist in Anhang A gegeben. In
den beiden folgenden Unterkapiteln werden die wesentlichen Inhalte der Makros fiir das
vollstandige Kopieren und dem Zugriff auf SubmodelElement-Objekte vorgestellt.

10.2 Makros fiir das vollstandige Kopieren von
SubmodelElement-Objekten

Sofern die Informationen und die Modellierung der Elemente im Quell- und Ziel-Teilmodell-
Template identisch sind, kénnen Objekte vollstéindig kopiert werden. Aus diesem Grund
wird fiir jede SubmodelElement-Klasse ein entsprechendes Makro spezifiziert. Der Aufbau
dieser Makros ist immer identisch. Als Ubergabeparameter wird das zu kopierende Objekt
iibergeben und in der Variable element gespeichert. Innerhalb des Makros wird eine Object-
LiteralEzp formuliert, die ein neues Objekt der entsprechenden Klasse erstellt. Innerhalb
der ObjectLiteralExp werden mit Hilfe von Attribute Binding-Elementen die Attribute des

89

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache fiir Verwaltungsschalen

neuen Objekts mit den Attribut-Werten des tibergebenen Objekts gesetzt. Nachfolgend ist
das Makro fiir das Kopieren eines Property-Objekts als Beispiel dargestellt:

macro copyProperty(element: Property) : Property{
Property {

idShort: element.idShort,
valueType: element.valueType,
value: element.value,
valueld: element.valueld,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,
kind: element.kind

Falls die Modellklasse nicht bekannt ist, kann das Makro copySubmodelElement genutzt
werden, welches die Klasse des iibergebenen Objekts analysiert und das entsprechende
Makro fiir die jeweilige Klasse aufruft.

Einen Sonderfall stellen die SubmodelElement-Klassen SubmodelElementCollection, An-
notatedRelationshipElement und FEntity dar, da in ihren Attributen value, annotation
oder statement weitere SubmodelElement-Objekte als Set enthalten sein kénnen. Aus
diesem Grund wird das Makro copySubmodelEllementSet definiert, welches ein Set von
SubmodelElement-Objekten als Ubergabeparameter erhélt. Uber dieses wird iteriert, fiir
jedes enthaltene Objekt das Makro copySubmodelElement aufgerufen, ein neues Set mit
diesen Elementen erstellt und dieses Set zurtickgegeben.

In den Anwendungsfillen hat sich gezeigt, dass SubmodelElementCollection-Objekte haufig
nicht vollstandig kopiert werden sollen, sondern die enthaltenen SubmodelElement-Objekte
im Attribut value variieren kénnen, und z. B. lediglich eine gewisse Auswahl der Elemente

With Value eingefithrt, welches ein SubmodelElementCollection-Objekt sowie ein Set von
SubmodelElement-Objekten tibergeben bekommt. Im Makro wird ein neues SubmodelEle-
mentCollection-Objekt erzeugt, welches alle Attributwerte aus dem tibergebenen Submo-
delElementCollection-Objekt kopiert, jedoch dem Wert des Attributs value eine Kopie des
iibergebenen Sets zuweist.

10.3 Makros fiir den Zugriff auf ein
SubmodelElement-Objekt

Fiir den Zugriff auf Objekte des Quell-Teilmodells kénnen drei Arten unterschieden wer-
den: Zugriff mittels des Attributs IdShort, eines Pfads aus idShorts und des Attributs
Semanticld.

90

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10.3 Makros fiir den Zugriff auf ein SubmodelElement-Objekt

Durch das Verwaltungsschalen-Metamodell ist vorgegeben, dass die eindeutige Identifi-
kation tiber das Attribut IdShort erfolgt, da die IdShort eines Objekts im Namensraum
des Vater-Objekts eindeutig sein muss. Daher wird das Makro getSubmodelElementByldS-
hort spezifiziert. Dieses erhilt als Ubergabeparameter das Vater-Objekt sowie die IdShort
des gesuchten Kind-Objekts, welche vom Typ String ist. Das Metamodell definiert kei-
ne Funktion zur Auflésung einer IdShort. Aus diesem Grund wird zundchst die Klasse
des Vater-Objekts analysiert und je nach Klasse wird anschliefend auf das entsprechende
Klassen-Attribut zugegriffen, in dem weitere Elemente enthalten sein kénnen, z. B. anno-
tation oder statement. Auf dieses Attribut wird dann die OCL-Operation select angewen-
det, die tiber die enthaltenen Objekte iteriert und jedes Element zurtickgibt, welches die
iibergebene IdShort besitzt. Als Ergebnis wird eine OCL-Collection erzeugt, die in diesem
Fall kein oder ein Element enthalten kann. Uber die Funktion first wird das erste Element
dieser Collection zuriickgegeben. Konnte kein Element mit dieser IdShort gefunden werden
— enthélt die Liste also kein Element — wird das OCL-Objekt Invalid zurtickgegeben. Ein
Ausschnitt des Makros ist nachfolgend abgebildet:

macro getSubmodelElementByIdShort (
parent: SubmodelElement,
idShortVar: String) : SubmodelElement{
if parent.oclIsKindOf (Submodel)
then parent.submodelElement ->select(x |
x.1dShort = idShortVar)->first ()
else

endif

Da Kind-Objekte wiederum Kind-Objekte enthalten kénnen, wird durch die IdShorts eine
Baumstruktur aufgebaut. Mit Hilfe des Makros getSubmodelElementByldShortPath kann
auf ein beliebiges Objekt in dieser Struktur zugegriffen werden. Dafiir wird das Vater-
Objekt, bei dem gestartet werden soll und der Pfad zum Kind-Objekt mittels einer Auf-
listung von IdShorts an das Makro iibergeben. Dabei muss die Reihenfolge der IdShorts
korrekt sein, weswegen der OCL-Datentyp Sequence genutzt wird. Das Makro iteriert an-
schlieffend mit der OCL-Funktion iterate iiber die IdShort-Auflistung und sucht fiir die
aktuelle IdShort im aktuellen Vater-Objekt das zugehorige Kind-Objekt. Danach wird das
Vater-Objekt mit dem Kind-Objekt {iberschrieben, sodass das Kind-Objekt zum neuen
Vater-Objekt wird, innerhalb dessen wieder das neue Kind-Objekt gesucht wird. Dies wird
so lange wiederholt, bis die Auflistung vollstandig abgearbeitet wurde. Schlielich wird das
letzte Kind-Objekt zurtickgegeben. Nachfolgend ist die Definition des Makros abgebildet:

macro getSubmodelElementByIdShortPath (
parent: SubmodelElement,
idShortPath: Sequence(String)) : SubmodelElement{
idShortPath->iterate (
x: String; sme: SubmodelElement = parent |
getSubmodelElementByIdShort (sme, x))

91

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache fiir Verwaltungsschalen

Die dritte Moglichkeit ist der Zugriff iiber das Attribut Semanticld mit Hilfe des Makros
getSubmodelElementsBySemanticld. Anders als bei der IdShort sind Elemente tiber die
Semanticld nicht zwingend in ihrem Vater-Objekt eindeutig. Aufgrund dessen kann nicht
genau ein Element, sondern lediglich eine Sammlung von Objekten zuriickgegeben werden.
Analog zum Makro getSubmodelElementByldShort wird zunéchst der Objekttyp des Va-
ters gepriift und anschlieBend auf dem entsprechenden Attribut die OCL-Funktion select
ausgefiihrt. Die erstellte Sammlung der select-Funktion wird anschlieend zuriickgegeben.
Entsprechend sieht das Makro wie folgt aus:

macro getSubmodelElementsBySemanticId (parent:
SubmodelElement , semanticId: Reference) : Set(
SubmodelElement){
if parent.oclIsKindOf (Submodel) then parent.

submodelElement ->select(x | x.semanticId = semanticId)
else
if parent.oclIsKindOf (Entity) then parent.statement->
select(x | x.semanticId = semanticId)
else
if parent.oclIsKindOf (SubmodelElementCollection) then
parent.value->select(x | x.semanticId = semanticId)
else
if parent.oclIsKindOf (AnnotatedRelationshipElement)
then parent.annotation->select(x | x.semanticId =

semanticId)
else invalid
endif
endif
endif
endif

}

In vielen Fillen besteht die Semanticld lediglich aus einem Key-Objekt und die Werte fur
die Attribute id Type und type sind KeyType::IRI und KeyFElements::GlobalReference. Auf-
grund dessen wird ein weiteres Makro getSubmodelElementsBySemanticldValue eingefiihrt,
welches den Wert fiir das Attribut value dieses Key-Objekts tibergeben bekommt, anstelle
eines vollstandigen Reference-Objekts. Im Makro wird zunachst das benétigte Reference-
Objekt erstellt und anschliefilend das Makro getSubmodelBySemanticld aufgerufen:

macro getSubmodelElementsBySemanticIdValue (
parent: SubmodelElement,
semanticIdValue: String) : Set(SubmodelElement){
getSubmodelElementsBySemanticId(
parent,
Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: semanticIdValue,
type: KeyElements::GlobalReferencel}}})

92

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

11 Transformationssystem

In den Kapiteln 9 und 10 wurde die Transformationssprache vorgestellt, mit der Trans-
formationsdefinitionen zwischen Quell- und Ziel-Informationsmodell-Templates formu-
liert werden konnen. Fiir die Ausfithrung einer Transformationsdefinition mit konkreten
Informationsmodell-Instanzen wird ein Transformationssystem benotigt (vgl. Abbildung
5.1 in Kapitel 5). In den folgenden Abschnitten erfolgt zunéchst eine grobe Vorstellung der
Hauptfunktionalititen des Transformationssystems und basierend darauf eine Beschrei-
bung einer konkreten Umsetzung in Python.

11.1 Allgemeiner Aufbau eines Transformationssystems

Das in dieser Arbeit benotigte Transformationssystem muss drei Funktionen zur Verfiigung
stellen:

1. Erstellung des abstrakten Syntaxbaums einer Package-Definition

2. Erstellung eines ausfithrbaren abstrakten Syntaxbaums!

3. Ausfithrung des abstrakten Syntaxbaums auf konkrete Quellmodelle

In der Regel wird fiir die Erstellung des abstrakten Syntaxbaums ein Parser ver-
wendet. Dieser erhilt als Eingabe die zu analysierenden Dateien, in denen Transforma-
tionsdefinition und Makros sowie die Grammatik-Definition der Transformationssprache
(konkrete Syntax in Form von Produktionsregeln) enthalten sind. Fir die Analyse der Da-
teien nutzt der Parser einen Lexer, der den gegebenen Text bzw. Quellcode in Token zerlegt.
Ein Token ist eine Zeichenkette, die einem der in der Grammatik definierten Terminalen
zugeordnet werden kann. Zum Beispiel kann die Zeichenfolge ,abcd® dem Terminal Sim-
pleNameCS zugewiesen werden. Mit diesem Ergebnis erstellt der Parser einen Parserbaum.
Dazu konnen verschiedene Methoden genutzt werden, wie z. B. Top Down oder Bottom
Up [158]. Beim Top-Down-Parsing startet der Parser beim Startsymbol? und versucht eine
Produktionsregel fiir die gegebene Zeichenkette zu finden. AnschlieBend wird das néchste
nicht zugeordnete Symbol betrachtet und die néachste Produktionsregel gesucht. Im Ge-
gensatz dazu startet das Bottom-Up-Parsing bei einem Token auf der untersten Ebene®
und versucht die Zusammenhénge zu den anderen Token zu ermitteln. Der Parser erstellt
aus diesen Zusammenhéngen schliefilich den Parserbaum. Der finale Parserbaum besteht
zundchst aus den Terminalnamen. Um daraus einen abstrakten Syntaxbaum zu erstellen,

!nstanziierung von ausfithrbaren Klassen-Objekten.
2Wurzelelement
3Blattelement

93

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

11 Transformationssystem

erfolgt anschlieBend eine Ubersetzung der Terminalnamen in die Klassenbezeichnungen der
abstrakten Syntax.

Fiir die Erstellung des ausfiihrbaren abstrakten Syntaxbaums erfolgt ein weite-
res Ubersetzen der abstrakten Syntaxklassenbezeichnungen zu einem ausfiihrbaren ab-
strakten Syntaxbaums. Dies kann beispielsweise durch die Instanziierung von zugehorigen
Klassenobjekten in einer konkreten Implementierung erfolgen, die eine Moglichkeit der
Ausfiihrbarkeit haben. Das bedeutet, dass eine aufzurufende Funktion zur Evaluation der
Klasseninstanz existieren muss.

Bei der Ausfiihrung des abstrakten Syntaxbaums werden die Quellmodell-Instanzen
eingelesen und der abstrakte Syntaxbaum mit diesen als Eingabedaten ausgefiihrt. Als
Ergebnis wird die Zielmodell-Instanz erstellt.

Der komplette Ablauf inkl. der benttigten Artefakte ist in Abbildung 11.1 dargestellt.

| |

> Abstrakter \
Ausflhrbarer

K1 abstrakter

Syntaxbaum

Zielmodell-
Instanz

Abbildung 11.1: Aufbau und Ablauf eines Transformationssystem

Die Trennung dieser drei Funktionalitdten bietet den Vorteil, dass die Daten nicht vor jeder
Durchfithrung einer Modelltransformation analysiert werden. Dadurch kénnen bereits im
Vorfeld die abstrakten Syntaxbaume erstellt und (zwischen-)gespeichert werden, sodass ein
Transformationssystem diese direkt ausfithren kann. Einige der Parser-Implementierungen
bieten bereits die Option, die Erstellung eines ausfiihrbaren abstrakten Syntaxbaum di-
rekt durchzufithren, sodass cin weiteres Ubersetzen nicht notwendig ist. Dies erméglicht
Performance-Vorteile, da direkt ein Baum aus Instanzen der abstrakten Syntaxklassen
erstellt wird, anstelle eines Baums aus Token, der in einem zweiten Schritt vollstdndig
eingelesen und transformiert werden muss.

94

.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

11.2 Umsetzung in Python

11.2 Umsetzung in Python

Im Rahmen dieser Arbeit wurde eine Umsetzung fiir ein Transformationssystem in der
Programmiersprache Python entwickelt. Die Realisierung wurde generisch gehalten, sodass
diese fiir verschiedene Metamodelle genutzt werden kann. Dafiir wurde eine zusitzliche
Schnittstelle bei der Ausfithrungseinheit geschaffen, tiber die die Metamodell-spezifischen
Klassen erzeugt werden.

Als Parser wurde lark* ausgewihlt, da dieser die Méglichkeit der Definition einer kontext-
freien Grammatik in Erweiterter Backus-Naur-Form erlaubt, direkt die Ubersetzung zu
den Klasseninstanzen der abstrakten Syntaxklassen ermoglicht sowie verschiedene Optio-
nen der Performance-Optimierung beinhaltet. Um den Code einfach und einzeln wartbar zu
halten, wurden fiir die einzelnen Teile des Transformationssystems jeweils Python-Skripte
erstellt.

Grammatik: Fir die Grammatikdefinition wurden zwei Dateien grammar_ocl.lark
und grammar_mtl.lark erstellt (Anhang B). Da aktuell keine Python-Umsetzung von
OCL existiert, wurden die Definitionen der Produktionsregeln von OCL Basic [53] in
grammar_ocl.lark festgelegt. In grammar mtl.lark wurden die benétigten Regeln inklu-
diert, nach Vorgabe erweitert sowie die neuen Produktionsregeln der Transformationsspra-
che (Kapitel 9.2) hinzugefiigt. Die Produktionsregeln in beiden Dateien wurden mit den
Sprachelementen von lark umgesetzt. Die Sprachelemente von lark ermoglichen die De-
finition von Terminalen sowie Nicht-Terminalen (Produktionsregeln). Zusétzlich kénnen
einzelne fir die weitere Auswertung nicht benétigte Terminale sowie optionale Terminale
herausgefiltert werden. Des Weiteren wird die Definition der Multiplizitdt von Terminalen
ermoglicht.

Klassendefinition der abstrakten Syntaxklassen: Fir die Python-
Klassendefinitionen der abstrakten Syntaxklassen wurden zwei weitere Python-Skripte
ast_ocl.py und ast_mtl.py erstellt (Anhang C). Analog zur Grammatikdefinition wur-
den in ast_ocl.py Python-Klassen fir die OCL-Klassen definiert. Jede Klassendefinition
erbt dabei von der abstrakten Klasse Token, die den Konstruktor spezifiziert. Dieser
erhéilt die Kind-Token und speichert diese in einer Variablen ab. Um einen ausfithrbaren
abstrakten Syntaxbaum zu erhalten, definiert jede Klasse eine Funktion, die bei Aufruf
die gespeicherten Token auswertet. Beispielsweise werden beim Aufruf dieser Auswerte-
funktion der Klasse SimpleName die enthaltenen Kind-Token, die jeweils einzelne Zeichen
sind, zu einem String zusammengefiigt und an die aufrufende Funktion zurtickgeben. Die
enthaltenen Kind-Token konnen wiederum Instanzen von Klassen mit Auswertefunktion
sein. Zum Beispiel wird bei der IfEzp-Klasse zunachst die Funktion des ersten Kind-Token,
welche einen booleschen Wert zurtickgibt, aufgerufen. Basierend auf dem Ergebnis wird
entweder die Auswertefunktion des zweiten oder des dritten Kind-Token ausgefiihrt.
Dadurch kann ein kompletter Baum beginnend beim Wurzel-Token ausgefithrt werden.
Um Variablen in verschiedenen Funktionen zu nutzen und die Zugriffe einzuschrénken,
wurden zwei Klassen fir eine lokale und eine globale Umgebung eingefithrt. Beide
Umgebungen dienen dem Speichern von Variablen und Typen sowie dem Zugriff auf
deren Werte. Wéhrend die Variablen und Typen der globalen Umgebung einmal festgelegt

‘https://github.com/lark-parser/lark

95

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

11 Transformationssystem

werden, konnen bei der lokalen Umgebung bei jeder Auswertung eines Klassenobjekts
weitere Variablen und Typen hinzugefiigt werden.

Fiir die Klassendefinition der Transformationssprachelemente wurden in ast_mtl.py die
benotigten Python-OCL-Klassen aus ast_ocl.py inkludiert und die benétigten Python-
Klassen fiir die Transformationssprachelemente erstellt. Zusétzlich wurde eine neue glo-
bale Umgebung abgeleitet. Diese ermdglicht die Speicherung und den Zugriff auf Ma-
kros. Um in den Auswertefunktionen Instanzen der Metamodell-spezifischen Klassen zu
erméglichen, kann in der globalen Umgebung die Ubersetzung von Python-Klassen ei-
ner Metamodell-Umsetzung auf die eigentlichen Metamodell-Bezeichner gespeichert wer-
den. Fir die Anwendungsbeispiele aus Kapitel 10 wurden z.B. die Klassendefinitionen
des Verwaltungsschalen-Python-SDK PyI40A AS® gespeichert, um Submodel-Instanzen, die
konform zur Metamodell-Definition [4] sind, in Python zu erstellen. Bei jedem Aufruf einer
Auswertefunktion muss je eine Instanz der beiden Umgebungen iibergeben werden. Dies
ermoglicht, dass in jeder Auswertefunktion sowohl auf die global definierten Variablen, Ty-
pen und Makros zugegriffen als auch neue innerhalb dieser Funktion benotigten Variablen
erstellt und auf deren Werte zugegriffen werden kann.

Fiir die Ausfithrung eines abstrakten Syntaxbaums muss mindestens eine Klasse als Wurzel-
Klasse festgelegt werden. In dieser Sprachdefinition ist das die Klasse PackageDeclaration,
die als Kind-Token maximal eine Transformationsdefinition enthélt sowie eine beliebige
Anzahl an Makrodefinitionen. Die Klasse bietet die Mdoglichkeit, die Transformationsde-
finition sowie die Liste der Makrodefinitionen zu erhalten. Zusétzlich stellt diese Klasse
eine Funktion zur Verfiigung, die eine Liste von bendtigten Paketen zurtickgibt, aus denen
Makrodefinitionen verwendet werden.

Fir die Ausfithrung einer Modelltransformation wird die Auswertefunktion der Klasse
TransformationDefinition genutzt. Beim Aufruf dieser Funktion miissen die Quellmodell-
Instanzen, ggf. der Namen bzw. der Namenspfad auf das Attribut zur eindeutigen De-
finition der zugehorigen Quellmodell-Template-Definitionen, die benotigen Klassendefini-
tionen und vorgegebenen Variablen des Metamodells sowie die benotigten Makro-Token
iibergeben werden. Die Funktion erstellt zunichst die Instanzen fiir die lokale und glo-
bale Umgebung und fiigt der globalen Umgebung die iibergebenen Klassendefinitionen
und Variablen des Metamodells sowie die Makros hinzu. Im néchsten Schritt werden die
iitbergebenen Quellmodell-Instanzen hinsichtlich der geforderten Quellmodell-Templates
iiberpriift. Entspricht eine Instanz dem Template, wird der Wert der entsprechenden Varia-
ble in der Transformationsdefinition durch dieses Objekt ersetzt. Am Ende dieses Schritts
wird tiberpriift, ob Instanzen fir alle geforderten Quellmodell-Templates vorliegen. Nach-
dem die Umgebungen vollsténdig initialisiert wurden, wird die eigentliche Transformati-
on ausgefithrt, indem die Auswertefunktion der enthaltenen ObjectLiteralExp aufgerufen
wird.

Shttps://git.ruth-aachen.de/acplt/pyi40Oaas

96

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

11.2 Umsetzung in Python

Parser, Ubersetzer und Ausfithrungseinheit: Die Funktionalititen des Parsers, des
Ubersetzers und der Ausfithrungseinheit wurden in einem Python-Skript parser.py um-
gesetzt. Dabei wurden drei einzelne Funktionen erstellt:

1. Erstellung des Parsers
2. Erstellung des ausfiihrbaren abstrakten Syntaxbaums

3. Erstellung und Ausfithrung des abstrakten Syntaxbaums

Die erste Funktion get_parser erzeugt eine Instanz des Lark-Parsers basierend auf den
Grammatikdefinitionen in grammar mtl.lark und grammar_ocl.lark. Dem Parser wird
eine Transformer-Klasse tibergeben, die das Mapping zwischen den Terminal- und Nicht-
terminalnamen und den Python-Klassendefinitionen beschreibt. Als Start-Token wird die
Package-Deklaration vordefiniert sowie als Parsing-Methode LALR (Look-Ahead-Left-To-
Right) genutzt. LALR wurde 1969 von Frank DeRemer erfunden und erméoglicht das Parsen
eines Textes gemdfl einer Menge von Produktionsregeln, die durch eine formale Gramma-
tik spezifiziert sind [159]. Die erstellte Instanz kann im Anschluss von den anderen beiden
Funktionen genutzt werden.

Das eigentliche Parsen und Ubersetzen wird in der zweiten Funktion
parse_transformation definition file durchgefithrt. Diese erhdlt als Parameter
eine Hauptdatei, weitere Dateien sowie optional einen Parser. In der Hauptdatei muss
genau eine Transformationsdefinition enthalten sein. In den weiteren Dateien werden
Makros spezifiziert. Falls kein Parser tibergeben wurde, wird in der Funktion als erstes
die Funktion get_parser aufgerufen. AnschlieBend wird das Hauptdokument mit diesem
Parser eingelesen und aus dem Package die enthaltene Transformationsdefinition, die
enthaltenen Makros sowie die benotigten Packages herausgefiltert. Im néchsten Schritt
werden (sofern weitere Packages benotigt werden) die entsprechenden Dateien ebenfalls
eingelesen und die Makros extrahiert. Die Rickgabe besteht aus dem ausfithrbaren
abstrakten Syntaxbaum der Transformationsdefinition und den benotigten Makros. Mit
diesen sowie den weiteren benétigten Informationen (siehe Auswertefunktion der Klasse
TransformationDefinition) kann die Ausfithrung der Transformation erfolgen.

Fir die Benutzerfreundlichkeit wird eine weitere Funktion
execute_transformation definition eingefithrt, die zundchst die Funktion
parse_transformation definition file aufruft und danach die Auswertefunkti-
on der entsprechenden Transformationsdefinition ausfithrt. Als Ergebnis wird das
Zielmodell erzeugt.

Es existieren verschiedene Anwendungsfille. Je nach Anwendungsfall kann es sinnvoll sein,
direkt die Funktion execute_transformation_definition aufzurufen oder die vorherge-
nannten Funktionen jeweils einzeln zu nutzen. Dies hat unterschiedliche Auswirkungen auf
die Performance. Die genauen Details dazu sind in Abschnitt 12.5 beschrieben.

97

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12 Evaluation

Die in Kapitel 9 vorgestellte und in Kapitel 10 auf Verwaltungsschalen angepasste Sprache
kann fiir unterschiedliche Anwendungsfille genutzt werden. In den nachfolgenden Abschnit-
ten werden drei mogliche Anwendungsfille beschrieben. Der erste Anwendungsfall behan-
delt die Nutzung von abgeleiteten firmenspezifischen Teilmodell-Templates. Im zweiten
Anwendungsfall wird die Verwendung von unterschiedlichen Versionen eines Teilmodell-
Templates beschrieben. Zuletzt wird gezeigt, wie mit Hilfe der vorgestellten Sprache die
Integration von Informationen aus unterlagerten Komponenten in einer zusammengesetz-
ten Anlage oder Maschine erfolgen kann. Danach folgt eine Diskussion tiber die benotigte
Zeit fiir die Erstellung einer Transformationsdefinition. Den Abschluss dieses Kapitels bil-
det eine Evaluation der Umsetzung des Transformationssystems aus Kapitel 11. Aulerdem
werden verschiedene Optimierungsempfehlungen hinsichtlich der Funktionsaufrufe des ent-
wickelten Transformationssystems zur Verbesserung der Performance in der Anwendung
vorgestellt.

12.1 Anwendungsfall 1: Firmenspezifische
Informationsmodelle

Héufig werden fir die firmeninterne Nutzung von Verwaltungsschalen weitere spezifische
Informationen benétigt, die in den standardisierten Teilmodell-Templates nicht abgebildet
sind. Um dennoch die Informationen Firmen-intern einheitlich abzulegen und zu nutzen,
werden Firmen die standardisierten Teilmodell-Templates erweitern und eigene firmenspe-
zifische Teilmodell-Templates erstellen. Dadurch erhalten diese eine eigene Semanticld. Da
externe Kommunikationspartner jedoch die standardisierten Teilmodell-Templates anfra-
gen, miussen die Informationen aus den vorgehaltenen Teilmodell-Instanzen in die Form
der standardisierten Teilmodell-Templates transformiert werden. Hierfiir kann die vorge-
stellte Sprache genutzt werden. Vor allem bei einer Reduzierung der Informationen kann
die Transformationsdefinitionen einfach formuliert oder automatisiert generiert werden.

Anhand eines abgeleiteten firmenspezifischen Teilmodell-Templates der Firma
WITTENSTEIN galaxie GmbH wird dieser Anwendungsfall beschrieben. Im Anhang
D.1 ist das UML des vom ZVEI standardisierten Teilmodell-Templates ,,ZVEI Digital
Nameplate for industrial equipment (Version 1.0)“ [14] (im Folgenden ZVEI-Template
genannt) dargestellt. Basierend darauf wurde von der Firma WITTENSTEIN galaxie
GmbH eine Erweiterung des Templates fiir ,Galaxie“-Aktuatoren! [160] erstellt, welches
dadurch eine neue Semanticld erhalten hat. Ein Ausschnitt des zugehorigen UML ist in

! Galaxie-Aktuatoren sind von der WITTENSTEIN galaxie entwickelte und produzierte radikal innovative
Getriebe und Antriebssysteme https://galaxie.wittenstein.de/de-de/produkte/galaxie/

98

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle

Anhang D.2 gegeben (im Folgenden WITTENSTEIN-Template genannt). Dabei wurden
alle verpflichtenden Elemente iibernommen, einige der optionalen Elemente entfernt sowie
neue Elemente hinzugefiigt. Die neuen Elemente sind in der SubmodelElementCollection
AssetSpecificProperties dargestellt. Sobald das standardisierte ZVEI-Template angefragt
wird, muss eine entsprechende Instanz dieses Templates erzeugt und mit den Werten des
WITTENSTEIN-Templates befiillt werden. Die zugehorige Transformationsdefinition ist
in Anhang D.3 abgedruckt.

Die Transformationsdefinition beginnt mit der Referenz auf das WITTENSTEIN-Template
als Quell-Informationsmodell-Template, gefolgt von der Referenz auf das ZVEI-Template
als Ziel-Informationsmodell-Template. Im Anschluss folgt die Definition der neu zu
erstellenden Teilmodell-Instanz. Viele der Attribute werden eins zu eins aus dem
WITTENSTEIN-Template iibernommen. Lediglich die Semanticld wird auf die des ZVEI-
Template angepasst sowie die enthaltenen SubmodelElements explizit kopiert. Da eine Re-
duktion der Informationen vorliegt, werden zunéchst alle gleichen Elemente mit dem Ma-
kro copySubmodelElementByldShort (s. Kapitel 10) tibernommen. Dies beinhaltet auch die
Kindelemente der Elemente vom Typ SubmodelElementCollection, z.B. bei Address oder
Markings. Die firmenspezifisch hinzugefigten Elemente Weight, FeedbackSystem, Moun-
tingPosition, Lubrication, CommutationOffset und TempSensorType werden jedoch nicht
kopiert. Als Ergebnis wird eine zum ZVEI-Template konforme Teilmodell-Instanz erstellt,
die dem Anfragenden zuriickgegeben wird.

12.2 Anwendungsfall 2: Verschiedene Versionen
standardisierter Informationsmodelle

In Kapitel 1.1 wurde bereits das Problem von verschiedenen Informationsmodell-Versionen
beschrieben. Im Zuge der Nutzung von Teilmodell-Templates wird immer wieder eine An-
passung der Informationen notwendig, da dies fiir eine bessere Verarbeitung oder aufgrund
einer anderen Darstellung gefordert wird. Infolgedessen werden neue Versionen dieser stan-
dardisierten Templates entstehen. Die Informationen kénnen identisch, jedoch strukturell
anders modelliert sein. Am Beispiel des unverdffentlichten Teilmodell-Templates ,,Minimum
requirements for the Handover documentation from the manufacturer to the operator ba-
sed on the VDI 2770 specification wird dies nachfolgend beschrieben. Dazu werden drei
verschiedene nicht veroffentlichte Versionen betrachtet, die bei der Entwicklung des finalen
Teilmodell-Templates entstanden sind. Diese dienen stellvertretend fiir spitere Versionen
verdffentlichter Teilmodell-Templates. Die UML-Diagramme der einzelnen Versionen sind
in den Anhédngen E.1, E.2 und E.3 abgebildet.

Anderungen von Version 1 zu Version 2

In der ersten Version wurden die Informationen durch zwei SubmodelElementCollections
Document und Document Version modelliert. Bei der zweiten Version wurden die Infor-
mationen zur Dokument-Klassifikation in eine weitere SubmodelElementCollection Do-
cumentClassification ausgelagert. Da lediglich eine strukturelle Anderung erfolgte, blei-
ben die Informationen gleich. Die enthaltenen Elemente wurden strukturell und von ihren
Attributwerten wiederverwendet. Zudem wurde ein neues optionales File-Objekt mit der

99

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12 Evaluation

IdShort PreviewFile hinzugefiigt. Eine Darstellung der Anderungen ist in Abbildung 12.1
gegeben.

Version 1 idShort semanticld Type Kardinalitat

Submodel ManufacturerDocumentation IRI]http://admin-shell.io/vdi/2770/1/0/Documentation

Documentld ell.io/vdi/2770/1/0/Documentld/id stri

MLP DocumentClassName IRI] hni://admin-shell.io/vdi/2770/1 /0/DocumentClassification/ClassName

1
Ref ReferencedObject{00] IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0.7

Version 2 idShort semanticld Type Kardinalitat

Submodel ManufacturerDocumentation IRI]http://admin-shell.io/vdi/2770/1/1/Documentation

Pmﬁﬁ Documentld IRI] hni:lladmin-sheII.iolvdiIZ77OI1IOIDowmenlIdlld shini

1
SMC DocumentClassification{00] IRI]http://admin-shell.io/vdi/2770/1/0/ DocumentClassification/ DocumentClassification 1.*

MLP DocumentClassName IRI] hni://admin-shell.iolvdi/2770/1 /0/DocumentClassification/ClassName

1
Ref ReferencedObject{00] IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0..*

File PreviewFile [IRI] https://admin-shell.io/vdi/2770/1/0/ StoredDocumentRepresentation/PreviewFile image/jpg 0.1

Abbildung 12.1: Detaillierte farbliche Auflistung der semantischen Gleichheiten zwischen Ver-
sion 1 und Version 2

Anderung von Version 2 zu Version 3

In Version 3 wurden, neben der Auslagerung von Informationen in eine neue Submodel-
ElementCollection, auch die IdShorts und Semanticlds geandert. Des Weiteren wurde
eine Aufsplittung von Werten sowie eine Anpassung der Kardinalitdten vorgenommen.
Der erste Unterschied ist die neu eingefithrte SubmodelElementCollection Documentld,
die die Informationen zur Identifikation des Dokuments enthdlt. Wéhrend in Version 2
ausschlieflich eine Id enthalten sein konnte, sind in der Version mehrere Ids moglich.
Zusétzlich wurde die Documentld genauer sperzifiziert, sodass die DocumentDomainld
explizit angegeben werden muss, die in Version 2 lediglich implizit enthalten ist. Aulerdem
wurde die IdShort IsPrimaryDocument auf IsPrimary gekiirzt. Die SubmodelElement-
Collection DocumentClassification wurde im Inhaltlichen beibehalten, jedoch wurden
die IdShorts sowie die Semanticld der Collection selbst gekiirzt. Semantisch sind die
Informationen weiterhin identisch. Die Referenz mit der IdShort ReferencedObject wurde
ebenfalls semantisch beibehalten, jedoch wurde die IdShort und die Semanticld verdndert.
Abschliefend wurden die Elemente der SubmodelElementCollection Document Version fast
vollstédndig beibehalten. Das Property-Element Role wurde entfernt sowie neue optionale
Elemente hinzugefiigt (SubTitle, RefersTo, BasedOn, TranslationOf). Die verschiedenen

100

.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle

Anderungen sind in Abbildung 12.2 farblich dargestellt.

Version 2 idShort semanticld Type Kardinalitat

Submodel ManufacturerDocumentation IRI]htt i0/vdi/2770/1/0/Documentation

Propet Documentld IRI]ht /2770/1/0/Documentld/Id stri

MLP DocumentClassName IRI htli://admln-shell,io/vd i/2770/1/0/DocumentClassification/ClassName

1
Ref ReferencedObject IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0.1

IRI]http://admin-shell.io/vdi/2770/1/0/Party/Role

Version 3 idShort semanticld Kardinalitat
Submodel ion{00} [IRI]) hell.io/vdi/2770/1/1/Documentation
Entit i IRI] http://adminshell.io/vdi/2770/1/0/EntityForDocumentation

DocumentedEntity{00} [IRI] https://admin-shell.io/vdi/2770/1/0/Document/DocumentedEntity
Documentld{00} IRI ¥ in-shell.io/vdi/2770/1/0/D

Property DocumentDomainid [IRI] https://admin-shell.io/vdi/2770/1/0/Documentld/DocumentDomainld

Property Valueld /ladmin-shell.io/vdi/2770/1/0/Documentld/Valueld

MLP ClassName IRI] http:/admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassName

IRI] https://admin-shell.io/vdi/2770/1/0/DocumentDescription/SubTitle

Ref RefersTo{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/RefersTo 0.*
Ref BasedOn{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/BasedOn 0.*
Ref TranslationOf{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/TranslationOf 0.*

Abbildung 12.2: Detaillierte farbliche Auflistung der semantischen Gleichheiten zwischen Ver-
sion 2 und Version 3

Beispielhafte Transformationsdefinition

Eine beispielhafte Transformationsdefinition fiir die Transformation eines Teilmodells der
Version 1 in ein Teilmodell der Version 2 ist in Anhang E.4 dargestellt. Zunéchst wer-
den die entsprechenden Referenzen auf die beiden Versionen des Teilmodell-Templates
als Quell- und Ziel-Informationsmodell-Template angegeben. Die Definition der neuen
Teilmodell-Instanz iibernimmt alle Attribute bis auf die Semanticld und die enthaltenen
SubmodelElemente. Die Semanticld wird auf die zu erstellende Version angepasst. Fiir
die Erstellung der enthaltenen und zu iterierenden Elemente werden alle SubmodelEle-
mentCollections mit der Semanticld [IRI]http://admin-shell.io/vdi/2770/1/0/Document
ermittelt. In jeder Iteration wird eine neue SubmodelElementCollection mit denselben At-
tributwerten, jedoch mit anderen Kindelementen, erstellt. Bei den Kindelementen werden
zunéchst die Elemente mit der IdShort Documentld und IsPrimary sowie die Elemente
mit der Semanticld [IRIJhttp://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject
kopiert. Anschlieflend folgt die Erstellung der neu eingefithrten SubmodelElementCollec-

101

.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12 Evaluation

tion DocumentClassification mit den definierten Attributen aus der Spezifikation sowie
den SubmodelElementen mit den IdShorts DocumentClassld, DocumentClassName und
DocumentClassificationSystem. Diese stammen aus der vorherigen Version der Submodel-
ElementCollection Document. Als letztes werden alle SubmodelElementCollection mit der
Semanticld [IRI[http://admin-shell.io/vdi/2770/1/0/DocumentVersion hinzugeftgt.

Fazit

Es wurde gezeigt, dass alle Informationen der Version 2 aus den Informationen der Version
1 und andersherum erzeugt werden konnen. Dasselbe trifft auf die Versionen 2 und 3 zu,
wobei die Documentld bzw. DocumentDomainld und Valueld je nach Richtung nicht di-
rekt aus den vorliegenden Informationen erstellt werden kann. Durch String-Konkatenation
oder String-Splitten ist dies dennoch mit der Sprache moglich. Dazu wird in der Trans-
formationsdefinition eine entsprechende manuelle Entscheidung tiber den neuen Wert vor-
gegeben. Somit wird mit der vorgestellten Sprache die Erstellung von Transformationsde-
finitionen ermdoglicht, die (teils-)automatisch Teilmodell-Instanzen einer anderen Version
instanziieren kénnen. Ziel soll sein, bei der Definition einer neuen Version eine entsprechen-
de Transformationsdefinition zu erstellen und zur Verfligung zu stellen, sodass weiterhin
eine semantische Interoperabilitéit zwischen Komponenten, die mit verschiedenen Versionen
arbeiten, gewdahrleistet ist.

12.3 Anwendungsfall 3: Integration von Komponenten
und zugehorigen Informationsmodellen

Bei der Integration von Komponenten in (Teil-)Anlagen kénnen vielfach Informationen
aus den einzelnen Komponenten fiir die Beschreibung der Gesamtanlage wiederverwendet
werden. Dazu miissen die Informationen in dem Informationsmodell der Anlage zusam-
mengefithrt werden. Dieser Vorgang kann mit Hilfe einer Modelltransformation und der in
dieser Arbeit vorgestellten Sprache erfolgen. Anhand von Leistungskennzahlen wird dies
nachfolgend exemplarisch gezeigt.

In Abbildung 12.3 sind beispielhaft zwei Teilmodell-Templates fir diesen Anwendungs-
fall definiert. Das erste Template représentiert die Leistungsiiberwachung einer verbauten
Komponente einer Anlage und enthélt ein Property-Element fiir die maximale Leistungs-
aufnahme, ein Property-Element fiir die Stromart (Gleichstrom/Wechselstrom), mit der
die jeweilige Komponente betrieben werden darf, sowie ein Property-Element fiir die Netz-
Nennspannung. Das zweite Teilmodell stellt die Daten der Gesamtanlage dar. Ein Property-
Element enthélt dabei die maximale Gesamtleistungsaufnahme der Anlage und ein weite-
res Property-Element die maximal benétigte Netzspannung, sofern alle Komponenten mit
maximaler Netzspannung betrieben werden. Das dritte Property-Element beschreibt alle
benotigten Kombinationen aus Netz-Nennspannung und zugehériger Stromart.

Dabei wird angenommen, dass jede verbaute elektrische Komponente der Anlage eine In-
stanz des ersten Teilmodell-Templates besitzt. Fiir einen Servomotor konnte z. B. 36 Watt
sowie 24V DC oder 1100 Watt sowie 400V AC in der Teilmodell-Instanz eingetragen sein. In

102

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12.3 Anwendungsfall 3: Integration von Komponenten und zugehérigen
Informationsmodellen

«Submodel» «Submodel»
PowerMonitoringComponent PowerMonitoringPlant
- MaxPowerConsumption: Property - MaxPowerConsumption: Property
- PowerType: Property - MaxRatedVoltage: Property
- RatedVoltage: Property - PowerTypes: Property

Abbildung 12.3: Beispiel fiir ein Teilmodell-Template zur Erfassung von Leistungskennzahlen

der Teilmodell-Instanz der Gesamtanlage konnen die Informationen der einzelnen Kompo-
nenten zusammengefithrt werden. Dafiir werden fiir die maximale Leistungsaufnahme der
Anlage die Werte der einzelnen Komponenten addiert. Die Netzspannung der Anlage kann
iiber die maximale Netzspannung alle Komponenten ermittelt werden (MAX-Funktion).
Zur Bestimmung der benétigten Netz-Nennspannung- und Stromart-Kombinationen wer-
den alle verschiedenen Kombinationen der einzelnen Komponenten als Sammlung zusam-
mengetragen. Dadurch konnen diese an einer Stelle ausgelesen werden und die bendtigten
Arten von Netzteilen bzw. AC/DC-Wandlern ermittelt werden.

Eine zugehorige Transformationsdefinition ist in Anhang F gegeben. Als Eingangsinstanzen
werden alle Teilmodelle genutzt, die eine Referenz auf das Teilmodell-Template PowerMo-
nitoringComponent besitzen. Das Ziel-Teilmodell ist eine Instanz des Teilmodell-Templates
PowerMonitoringPlant. Es werden die drei im Teilmodell-Template definierten Property-
Elemente angelegt und mit den entsprechenden Werten belegt. Fiir das Property-Element
MazPowerConsumption wird iiber alle tibergebenen Teilmodelle iteriert und jeweils der
Wert aus dem Property-Element MazPowerConsumption addiert. Das Ergebnis entspricht
der maximalen Gesamtleistungsaufnahme der Anlage. Im zweiten Property-Element Ra-
tedVoltage wird ebenfalls iiber die einzelnen Teilmodelle iteriert, jedoch wird lediglich der
Maximalwert der Property-Elemente RatedVoltage ermittelt. Fiir das Property-Element
PowerTypes wird wiederum iiber die Teilmodelle iteriert. Pro Iteration wird die Kombi-
nation aus Netz-Nennspannung und Stromart in Form eines Strings erstellt. AnschlieBend
wird in der bestehenden Liste tiberpriift, ob diese Kombination bereits enthalten ist. Ist
dies der Fall, bleibt die Liste unverindert und die néichste Iteration wird durchgefiihrt.
Andernfalls wird die neue Kombination der Liste hinzugefiigt.

In der Tabelle 12.2 ist das Ergebnis beispielhaft auf Basis der Komponentenwerte aus
Tabelle 12.1 einer solchen Transformation dargestellt. Es wird von drei Komponenten aus-
gegangen, die in einer Gesamtanlage verbaut sind.

Tabelle 12.1: Beispielwerte der Komponenten

Property ‘ Komponente 1 ‘ Komponente 2 ‘ Komponente 3
MaxPowerConsumption 36 1100 40
RatedVoltage 24 400 24
PowerType DC AC DC
103
087610 216.73.216.60, ll:"ZL(YI.ZDZG, Mtilﬁ '?" haberre n Inhalt.

https://doi.org/10.51202/9783186876102

12 Evaluation

Tabelle 12.2: Beispielwerte der Gesamtanlage

Property ‘ Gesamtanlage
MaxPowerConsumption 1176
MaxRated Voltage 400
PowerTypes {24DC, 400AC}

12.4 Bendtigte Zeit fiir die Erstellung einer
Transformationsdefinition

Eine genaue Angabe der bendtigten Zeit fir die Erstellung einer Transformationsdefinition
ist nicht moglich. Dies liegt daran, dass zu viele verschiedene Einflussfaktoren vorliegen.
Nachfolgend sind einige Faktoren beschrieben.

Ein entscheidender Faktor ist die Komplexitat der Transformation. Je umfangreicher und
komplexer die einzelnen Regeln sind, desto aufwéandiger ist die Erstellung. Dies tritt insbe-
sondere dann auf, wenn aus verschiedenen Quellmodellen Informationen zusammengefiihrt
werden und diese zusétzlich noch in einer anderen Darstellung im Zielmodell vorliegen sol-
len. Zusitzlich muss die Erfahrung des Erstellers im Umgang mit der Sprache betrachtet
werden. Hat der Ersteller bereits Erfahrung im Umgang mit OCL ist die Nutzung der Spra-
che einfacher, da nur wenige neue Sprachelemente gelernt werden miissen. Andernfalls muss
zunéchst die Sprache erlernt werden, welches zur langsameren Erstellung fithrt. Ein weite-
rer wichtiger Faktor ist die Tool-Unterstiitzung. Zum einen kann eine Tool-Unterstiitzung
helfen Syntaxfehler zu vermeiden. Dadurch kénnen Transformationsdefinitionen deutlich
schneller entwickelt werden. Zum Anderen muss der Ersteller im ersten Schritt die se-
mantische Gleichheit von verschiedenen Informationen ermitteln. Hierzu konnte ein Assi-
stenzsystem Unterstiitzung bieten, indem Vorschlége iiber mégliche Gleichheiten gegeben
werden. Erste Arbeiten in diesem Bereich existieren [16]. Alternativ bendtigt der Erstel-
ler Erfahrung im Bereich der semantischen Gleichheit. Je besser ein Doméanenexperte die
verschiedenen Informationsmodelle kennt und dadurch schneller die semantischen Zusam-
menhénge herstellen kann, desto schneller kann er auch die dazugehorigen Regeln defi-
nieren. Abschliefend kann die Nutzung von Makros eine Reduzierung der Erstellungszeit
erreichen. Hierbei ist sowohl die Anzahl und die Art der verfiigharen Makros zu betrach-
ten als auch die Kenntnis iiber diese. Je mehr Makros fiir oft benétigte Regeldefinitionen
vorliegen, desto schneller konnen Transformationsdefinitionen erstellt werden.

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus
einer Komponente bei Nutzung des entwickelten
Transformationssystems

Fir die Evaluation der Implementierung wurden verschiedene Testreihen durchgefiihrt. Je-
de Testreihe entsprach 100 Durchléufen einer vollsténdigen Transformation. Dazu wurde

104

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung
des entwickelten Transformationssystems

jeweils ein Dokument mit der durchzufithrenden Transformationsdefinition, weitere Doku-
mente mit Makro-Definitionen, sowie entsprechende Test-Instanzen vorgegeben. Es wurden
insgesamt 16 Testreihen mit acht unterschiedlichen Transformationen auf zwei Systemen
durchgefiihrt. In Tabelle 12.3 sind die Hardware-Spezifikationen der beiden verwendeten
Systeme aufgelistet.

Tabelle 12.3: Hardware-Spezifikationen der Systeme

Nr. CPU Arbeitsspeicher Betriebssystem

1 | Intel Core i5-6440HQ 8GB 1067TMHz Windows 10 Enterprise LTSC
DDR4-2133 (Version 1809)

2 | Intel Core i7-6700K 32GB 2133MHz Arch Linux (Version 5.12.2)
DDR4-2133

Die Testreihen unterscheiden sich im Umfang der Transformationsdefinition sowie in der
Anzahl der verwendeten Makros. Es wurden verschiedene Zeitdifferenzen fiir die einzelnen
Schritte der Transformation gemessen und wie folgt kategorisiert:

1. Erstellung des Parsers
2. Parsen der Datei mit der entsprechenden Transformationsdefinition

3. Ermittlung der bendtigten zusitzlichen Dateien aufgrund der Verwendung von Ma-
kros aus diesen Dateien

4. Parsen der zusétzlich benotigten Makro-Dateien

5. Anwendung des ausfiihrbaren abstrakten Syntaxbaums

Fir die Analyse wurde der in Kapitel 11 vorgestellte Parser verwendet, der beim Parsen
direkt ausfithrbare abstrakte Syntaxbédume erstellt.

Die gemessenen Daten sind in den Abbildungen G.1 bis G.10 dargestellt. In den Abbildun-
gen ist die gleiche Skalierung der Achsen gewéahlt, um die Testreihen besser vergleichen zu
konnen. Die unterschiedlichen Zeiten zwischen den Testreihen sind durch die unterschied-
lich verwendeten Transformationsdefinitionen und deren benétigte Makros zu erklaren.
Beispielsweise waren in der Testreihe Test2 die Makros bereits in dem Dokument mit der
durchzufithrenden Transformationsdefinition enthalten. Aus diesem Grund hat das Parsing
der entsprechenden Datei ldnger gedauert als bei den anderen Testreihen. Daftir musste je-
doch keine weitere Datei geparst werden, weswegen die Zeitdifferenz fiir den vierten Schritt
gleich null ist.

Aufgrund der geringen Streuung der Werte kann représentativ pro Testreihe ein Mittel-
wert berechnet und fiir die Interpretation genutzt werden. Fiir einen Vergleich zwischen
den Systemen sind die Mittelwerte der jeweiligen Zeitdifferenzen und Systeme in Tabelle
12.4 aufgelistet. Zusétzlich wurden die prozentualen Anteile der Zeitdifferenzen auf die Ge-
samtzeit der jeweiligen Testreihen berechnet. Erwartungsgeméaf konnten die Mittelwerte
der Zeitdifferenzen beim gleichen Testsetup durch eine bessere Hardware-Spezifikation ge-
senkt werden. Eine weitere Erkenntnis ist, dass eine bessere Hardware-Spezifikation keinen
Einfluss auf die prozentualen Anteile der einzelnen Zeitdifferenzen hat. Das bedeutet, dass

105

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12 Evaluation

durch Auslagerung der aufwéndigsten Schritte - sofern moglich - ein Performance-Vorteil
in den jeweiligen Applikationen erreicht werden kann.

Der grofite Teil der Gesamtzeit wird fir die Erstellung des Parsers benotigt (vgl. erste Zeit-
differenz in Tabelle 12.4). Das mehrmalige Erstellen des Parsers ist jedoch nicht notwendig,
da ein einmalig erstellter Parser in beliebig vielen Transformationen wiederverwendet wer-
den kann. Aufgrund dessen sollte dieser beim Starten einer Applikation einmal erstellt
und im Arbeitsspeicher vorgehalten werden. Die néchsten beiden grofieren Zeitanteile sind
das Parsen der Transformationsdefinitions-Datei und das Parsen der Makro-Dateien. Dabei
besteht die Option, die Standard-Makros (z. B. die Makrodefinitionen aus Kapitel 10) eben-
falls beim Starten der Applikation zu parsen und die erhaltenen ausfiihrbaren abstrakten
Syntaxbaume der Makros im Arbeitsspeicher abzulegen. Dadurch kann die vierte Zeitdif-
ferenz, sofern keine weiteren Makros benotigt werden, eliminiert werden. Fiir die zweite
Zeitdifferenz (Parsen der Transformationsdefinitions-Datei) existieren mehrere Optionen.
Eine Option wére, bereits beim Start hdufig benotigte Transformationsdefinitions-Dateien
zu parsen und die entsprechenden ausfiihrbaren abstrakten Syntaxbdume im Arbeitsspei-
cher vorzuhalten. Alternativ konnte nachdem eine Transformationsdefinitions-Datei ge-
parst wurde, der zugehorige ausfithrbare abstrakte Syntaxbaum fir eine gewisse Zeit im
Arbeitsspeicher vorgehalten werden.

Wie gezeigt existieren einige Optimierungsvarianten, die eine Reduzierung der bendtigten
Zeit fir eine Transformation um bis zu 95% ermoglichen. Welche Variante fir die
jeweilige Applikation sinnvoll ist, kann pauschal nicht beantwortet werden, da die
Anforderungen pro Applikation unterschiedlich sein koénnen. Anforderungen konnten
beispielsweise ein moglichst geringer Arbeitsspeicherverbrauch, immer die aktuelle
Transformationsdefinitions-Datei und Makro-Dateien zu nutzen, oder ein Wechsel des Par-
sers je nach auszufithrender Transformation sein.

106

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung

des entwickelten Transformations

SUNIYIYSNY 1 ZUDIOPIPIOYZ, ¢,y

UOI0YR(J-OL[RI\ UOSIRJ f ZUOTOPIPIOT 1y

UoIOYR(] 1033110U0(SUN[INWLIY ¢ ZUOIPIPIOY, ¢y
103%(J-UOI}UPOPSUOT}RULIOJSURL], UOSTR] g ZUOIOPIPIOZ .
IosIRq SUN[[EISIY] ZUSIOPIPIOT |y

JOZJUIRSOY) 10D UR [[OJUY ID[RNIUSZOL] o

JIOMPIIIN

ueSunzandqy
LT'T 0900°0 1091 8180°0 61°0 0100°0 8911 L6500 ¥6°0L 90 14 8
cl'l 6800°0 GO'LT 67€T0 [44q] 21000 L6'TL L7600 £9'69 L0960 ! 8
c0'1 ¥600°0 98°GT 8¢80°0 ¢e0 L100°0 cOvl 172L0°0 6,89 7€9€°0 14 L
66°0 1800°0 6491 ¥9€T°0 Ggeo 62¢00°0 8CT1 LLTT0 08°29 896S°0 ! L
6.0 0700°0 0L°9T 6¢80°0 ¢ro 9000°0 L0701 90%0°0 1€°¢CL €€9¢°0 14 9
080 ¢900°0 TG'ST 6€7T0 ¥1°0 1100°0 S1°0T 16.0°0 LE°0L 8975°0 T 9
Vel ¢900°0 Ge'8T ¢160°0 60°0 G000°0 GLL 98€0°0 96°¢L LT19€°0 14 g
61T 1600°0 a6t L8710 01°0 8000°0 6L €090°0 Gc'1L 12740 ! g
1L°0 9¢00°0 09°8T 1€60°0 01°0 G000°0 808 ¥0v0°0 16°CL 8¢9¢°0 14 %
0.0 €600°0 G961 6710 1T°0 6000°0 gc'8 22900 0€'TL 61750 T ¥
0<0 Gco0'0 LV'61 Gg60°0 00 <0000 LT°9 ¢c0€0°0 18°€L 619€°0 14 €
0S0 L€00°0 ¥¥°0¢ 9¢4T°0 ¥0°0 €000°0 029 9970°0 8¢l 6975°0 T €
170 6100°0 000 0000°0 60°0 ¥000°0 90°¢¢ 1€0T°0 Y LL 619€°0 14 14
170 0€00°0 000 0000°0 01°0 20000 V1'€c 0L9T°0 Ge€'9L 6875°0 T 4
910 £000°0 07’6 6170°0 G0°0 <0000 ¢c0'6 c0r0°0 LET8 929¢°0 14 !
810 ¢100°0 86 6990°0 G00 €000°0 08’8 6650°0 91’18 8¢4S0 T T

SdZ % | SAzZ MIN | ¥AZ % | vAZ MIN | €dZ % | €AZ MIN | edZ % | edZ MIN | TAZ % | TAZ MIN | WaIsAg | oqasa],

1I9Z)WESIT) JOP UE USZUDJRYIPHSZ J3P [19uy Jojeniuszosd pun auampIt|A ip°ZT dllPgqel

107

tar

mit, flr oder In KI-

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

https://doi.org/10.51202/9783186876102

13 Zusammenfassung

Zunéchst folgt eine kurze Zusammenfassung der Hauptergebnisse der Arbeit, bevor im
Anschluss mogliche Ankniipfungspunkte fiir weitere Forschungsaktivitiaten aufgefiihrt wer-
den.

In der vorliegenden Arbeit wurde eine neue Modelltransformationssprache bestehend aus
abstrakter und konkreter Syntax vorgestellt, um Modelltransformationen zwischen Infor-
mationsmodellen fiir Asset-Beschreibungen zu formulieren und maschinell auszuwerten. Die
Sprache ist ein Baustein fiir die Erreichung der semantischen Interoperabilitét zwischen Ap-
plikationen. Hauptziele bei der Sprachentwicklung waren eine einfach zu verstehende Syn-
tax, die Nutzung des aktuellen Stand der Technik sowie eine einfache Implementierbarkeit,
um die Integration in bestehenden Systemen zu férdern. Die Notwendigkeit einer neuen
Sprache wurde durch eine ausfiithrliche Evaluation bestehender Transformationssprachen
begriindet.

In dieser Arbeit wird davon ausgegangen, dass ein Mensch die semantische Gleichheit
und die Definition von Regeln zwischen Informationen manuell festlegen muss. Zusétzlich
wird angenommen, dass Software-Entwickler gegen vordefinierte Informationsmodelle im-
plementieren. Dies bedeutet, dass sie die Daten in genau diesen Informationsmodell-
Strukturen erwarten. Die Nutzung der in dieser Arbeit vorgestellten Modelltransformati-
onssprache ermoglicht die Definition dieser Transformationen unter den gegebenen Rand-
bedingungen. Sie ist damit eine Grundlage fiir die anwendungsfallbezogene Aufbereitung
der Informationen. Die entwickelte Sprache ist praxistauglich, da sie auf der weitverbrei-
teten Ausdruckssprache BasicOCL aufbaut und nur wenige notwendige Sprachelemente
definiert, dabei aber jegliche Art von Regeldefinition unterstiitzt. Zugehorige Transfor-
mationssysteme sind dadurch leicht zu implementieren und kénnen einfach in bestehende
Systeme integriert werden.

Fir die Anwendung im Kontext von Industrie 4.0 wurde die Abbildung auf Verwaltungs-
schalen inklusive einiger dabei unterstiitzender Makros beschrieben. Die Erprobung der
Sprache wurde anhand einer prototypischen Realisierung eines Transformationssystems
durchgefiihrt und anhand von drei Anwendungsfillen evaluiert. Es konnte gezeigt wer-
den, dass die gestellten Anforderungen erfiillt werden. Zusétzlich wurden Einflussfaktoren
fiir die Erstellungszeit und Optimierungsempfehlungen hinsichtlich der Funktionsaufru-
fe des entwickelten Transformationssystems auf Basis von Testreihen beschrieben. Dies
ermoglicht bei der Durchfithrung von Modelltransformationen eine Verbesserung der Per-
formance in der Anwendung.

108

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

13.1 Ausblick

13.1 Ausblick

Die Themen moglicher zukiinftiger Forschungsarbeiten werden in drei Kategorien unter-
teilt. Die erste Kategorie beschreibt weitere zu untersuchende Anwendungsmoglichkeiten
der Sprache sowie Empfehlungen fiir benotigte Systeme zur einfacheren Nutzung und Er-
stellung von Transformationsdefinitionen. Verbesserungen fiir die prototypische Realisie-
rung des Transformationssystems werden in der zweiten Kategorie aufgezeigt. Den Ab-
schluss bilden offene Fragestellung zur Verbreitung und Nutzung der Sprache sowie zur
Anwendung bei Verwaltungsschalen.

Anwendungsfille und bendétigte Systeme

In dieser Arbeit wurde die Sprache fiir Verwaltungsschalen konkretisiert und anhand von
drei Anwendungsfillen evaluiert. Eine Evaluation weiterer Modellierungs- und Kommu-
nikationsprotokolle ist nicht erfolgt. Die Erprobung an weiteren Metamodellen, wie z. B.
OPC UA oder AutomationML, wére fiir den Nachweis einer breiten Anwendung sinn-
voll. Dafiir kénnten weitere spezifische Makros fir die konkreten Metamodelle entwickelt
werden.

Um eine bessere Nutzung und Akzeptanz der Sprache zu erreichen, wére eine Un-
terstiitzung des Anwenders zielfithrend. Als Beispiel konnte ein Assistenzsystem entwickelt
werden, welches Anwender bei der Erstellung einer Transformationsdefinition unterstiitzt
und sicherstellt, dass die zu erzeugenden Informationsmodell-Instanzen den zugehorigen
Templates folgen. Dieses Assistenzsystem konnte ein geeignetes User Interface fiir die ein-
fachere Erstellung anbieten. Zudem konnten in dem Assistenzsystem Kl-basierte Anséitze
integriert werden, die Vorschldge fiir eine mogliche semantische Gleichheit zwischen Mo-
dellelementen geben. Erste Ansitze aus dem Natural Language Processing existieren be-
reits [16, 161] und konnten in einem Assistenzsystem genutzt werden. Zusétzlich konnten
Ontologien, die im Kontext des Semantic Web genutzt werden, in Verbindung mit einem
zugehorigen Reasoner Vorschliage iiber semantische Gleichheit geben oder die Abhéngigkeit
zwischen Informationen aufzuzeigen [162].

Verbesserungen der prototypischen Realisierung des Transformationssystems

Die Realisierung des Transformationssystems wurde im Rahmen der Arbeit prototypisch
entwickelt. Einige Funktionen von BasicOCL wurden aus diesem Grund zunéchst nicht im-
plementiert und sollten hinzugefiigt werden, um die volle Ausdrucksféhigkeit von BasicOCL
in Transformationsdefinitionen nutzen zu koénnen. Zusdtzlich konnte das Fehlermanage-
ment verbessert werden, sodass dem Anwender hilfreiche Hinweise iiber aufgetretene Feh-
ler und zugehérige Losungen angezeigt werden. Fiir die Uberpriifung der spezifizierten
Anforderungen und um bei der Weiterentwicklung eine weitgehend fehlerfreie Nutzung
beizubehalten, sollten automatische Software-Tests erstellt werden.

Verbreitung und Nutzung fiir Verwaltungsschalen

Die aktuelle Realisierung des Transformationssystems ist in Python implementiert und
nutzt das vom Lehrstuhl fiir Prozessleittechnik entwickelte Python-SDK Pyl40AAS zur
Erstellung von Verwaltungsschalen-Teilmodellen. Néchste Schritte wéren zum einen die
Nutzung anderer Python-SDKs und zum anderen die Umsetzung in anderen Program-
miersprachen, z.B. in C# oder Java. Durch zweitgenanntes kann die Sprache auch in

109

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

13 Zusammenfassung

anderen SDKs genutzt und das vorhandene Potential voll ausgeschopft werden. Dadurch
konnen Online-Transformationen in den jeweiligen SDKs direkt durchgefiithrt werden, ohne
dass ein Adapter fir die in dieser Arbeit entwickelte Umsetzung genutzt werden muss.

110

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

A Makro-Definitionen fiir Verwaltungsschalen

package aas_macros
macro copySubmodelElementSet (sme_collection: Set(
SubmodelElement)) : Set(SubmodelElement){
sme_collection->collect(sme_item | aas_macros::
copySubmodelElement (sme_item))

macro copySubmodelElement (sme: SubmodelElement)
SubmodelElement{
if sme.oclIsKindOf (AnnotatedRelationshipElement) then
aas_macros::copyAnnotatedRelationshipElement (sme)
else
if sme.oclIsKindOf (RelationshipElement) then
aas_macros::copyRelationshipElement (sme)
else
if sme.oclIsKindOf (Operation) then
aas_macros::copyOperation (sme)
else
if sme.oclIsKindOf (Property) then
aas_macros::copyProperty (sme)
else
if sme.oclIsKindOf (Capability) then
aas_macros::copyCapability (sme)
else
if sme.oclIsKindOf (BasicEvent) then
aas_macros::copyBasicEvent (sme)
else
if sme.oclIsKindOf (SubmodelElementCollection
) then
aas_macros::copySubmodelElementCollection (
sme)
else
if sme.oclIsTypeOf (MultilLanguageProperty)
then
aas_macros::copyMultilanguageProperty (
sme)

111

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

else
if sme.oclIsTypeOf (Range) then
aas_macros::copyRange (sme)
else
if sme.oclIsTypeOf (Blob) then
aas_macros::copyBlob (sme)
else
if sme.oclIsTypeOf (File) then
aas_macros::copyFile (sme)
else
if sme.oclIsTypeOf (
ReferenceElement) then
aas_macros::copyReferenceElement
(sme)
else Error
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif

}

macro copyRelationshipElement (element: RelationshipElement
) : RelationshipElement {
RelationshipElement{
idShort: element.idShort,
first: element.first,
second: element.second,
category: element.category,
description: element.description,
semanticId: element.semanticld,
kind: element.kind

}

macro copyAnnotatedRelationshipElement (element:
AnnotatedRelationshipElement)
AnnotatedRelationshipElement A
AnnotatedRelationshipElement{
idShort: element.idShort,

112

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

A Makro-Definitionen fiir Verwaltungsschalen

macro copyOperation(element: Operation) : Operation {

first:

element.first,

second: element.second,

annotation:

.annotation) ,
category: element.category,
description: element.description,
semanticId: element.semanticld,

kind:

element .kind

Operation{

idShort: element.idShort,

inputVariable: element.inputVariable,
outputVariable: element.outputVariable,
inoutputVariable: element.inoutputVariable,
category: element.category,

description: element.description,
semanticId: element.semanticId,

macro copyProperty(element: Property) : Property{

kind:

element . kind

Property {
idShort: element.idShort,
valueType: element.valueType,

+
}

macro copyCapability(element: Capability) : Capability{

value:

element .value,

valueld: element.valueld,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,

kind:

element .kind

Capability {

idShort: element.idShort,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,

kind:

element .kind

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

aas_macros::copySubmodelElementSet (element

113

https://doi.org/10.51202/9783186876102

Anhang

macro copyBasicEvent(element: BasicEvent) : BasicEvent{
BasicEvent {
idShort: element.idShort,
observed: element.observed,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,
kind: element.kind

macro copySubmodelElementCollection(element:

SubmodelElementCollection) : SubmodelElementCollection{
SubmodelElementCollection {

idShort: element.idShort,

value: aas_macros::copySubmodelElementSet (element.

value) ,

ordered: element.ordered,

allowDuplicates: element.allowDuplicates,

displayName: element.displayName,

category: element.category,

description: element.description,

semanticId: element.semanticld,

kind: element.kind

macro copyMultilLanguageProperty (element:
MultilLanguageProperty) : MultilanguageProperty{
MultilanguageProperty A{
idShort: element.idShort,
value: element.value,
valueld: element.valueld,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticld,
kind: element.kind

}

macro copyRange (element: Range) : Range{
Range {
idShort: element.idShort,
valueType: element.valueType,
min: element.min,

114

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

A Makro-Definitionen fiir Verwaltungsschalen

max: element.max,

displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,
kind: element.kind

macro copyBlob(element: Blob) : Blobf{
Blob {

idShort: element.idShort,
mimeType: element.mimeType,
value: element.value,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,
kind: element.kind

macro copyFile(element: File) : File{
File {

idShort: element.idShort,
mimeType: element.mimeType,
value: element.value,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticld,
kind: element.kind

macro copyReferenceElement (element: ReferenceElement)
ReferenceElement{
ReferenceElement {
idShort: element.idShort,
value: element.value,
displayName: element.displayName,
category: element.category,
description: element.description,
semanticId: element.semanticId,
kind: element.kind

115

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

macro getSubmodelElementByIdShort (parent: SubmodelElement,
idShortVar: String) : SubmodelElement{
if parent.oclIsKindOf (Submodel) then parent.
submodelElement ->select(x | x.idShort = idShortVar)->
first ()
else
if parent.oclIsKindOf (Entity) then parent.statement->
select(x | x.idShort = idShortVar)->first ()
else
if parent.oclIsKindOf (SubmodelElementCollection)
then parent.value->select(x | x.idShort =
idShortVar)->first ()
else Error
endif
endif
endif

+

macro getSubmodelElementByIdShortPath (parent:
SubmodelElement , idShortPath: Sequence(String))
SubmodelElement{
idShortPath->iterate(x: String; sme: SubmodelElement =
parent | aas_macros::getSubmodelElementByIdShort (sme,

x))

macro getSubmodelElementsBySemanticId(parent:
SubmodelElement , semanticIdVar: Reference)
SubmodelElement{
if parent.oclIsKindOf (Submodel) then parent.
submodelElement ->select (x | x.semanticId =
semanticIdVar)
else
if parent.oclIsKindOf (Entity) then parent.statement->
select(x | x.semanticId = semanticIdVar)
else
if parent.oclIsKindOf (SubmodelElementCollection)
then parent.value->select(x | x.semanticId =
semanticIdVar)
else Error
endif
endif
endif
¥
end_package

116

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

B Grammatikdefinition der Transformationssprache

B.1 Grammar_ocl.lark

Terminals

NAMESTART-CHAR: /[A-Z]/ | 7.7 | "$" | /[la—z]/
| /[\u00CO—-\u00D6]/ | /[\u00D8—\u00F6]/
| /[\u00F8—\uO2FF]/ | /[\u0370—\u037D]/
| /[\u037F=\ulFFF]/ | /[\u200C—\u200D]/
| /[\u2070-\u218F]/ | /[\u2C00—\u2FEF]/
| /[\u3001—\uD7FF]/ | /[\uF900—\uFDCF]/
| /[\uFDFO—\uFFFD]/

NAME.CHAR: NAMESTART.CHAR | /[0—9]/

SET: /\bSet\b/

BAG: /\bBag\b/

SEQUENCE: /\bSequence\b/

ORDEREDSET: /\bOrderedSet\b/

collection_type_identifier: SET | BAG | SEQUENCE
| ORDERED.SET

_TUPLE: /\bTuple\b/

primitive_type: BOOLEAN | INTEGER | REAL | STRING
BOOLEAN: /\bBoolean\b/

INTEGER: /\bInteger\b/

REAL: /\bReal\b/

STRING: /\bString\b/

ocl_type: OCLANY | OCLINVALID | OCL.VOID
OCLANY: /\bOclAny\b/

OCLINVALID: /\bOclInvalid\b/

OCLVOID: /\bOclVoid\b/

// Bool type
BOOL: /\btrue\b/ | /\bfalse\b/

/] self
SELF: /\bself\b/

// Tterators
predefined_iterators: ANY | CLOSURE | COLLECT

| COLLECTNESTED | EXIST | FOR-ALL
| ISCUNIQUE | ONE | REJECT | SELECT

| SORTEDBY

117

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

ANY: /\bany\b/

CLOSURE: /\bclosure\b/
COLLECT: /\bcollect\b/
COLLECTNESTED: /\bcollectNested\b/
EXIST: /\bexist\b/
FORALL: /\bforAll\b/
IS.UNIQUE: /\bisUnique\b/
ONE: /\bone\b/

REJECT: /\breject\b/
SELECT: /\bselect\b/
SORTEDBY: /\bsortedBy\b/

ITERATE: /\biterate\b/

_predefined_operations_a: NOTEQUAL | ADD | SUB | MUL | DIV
| LOWERTHAN | GREATERTHAN | OR
| XOR | AND | EQ

_predefined_operations_b .2:
LOWER.OR EQUAL THAN | GREATER OREQUALTHAN

_predefined_operation_names_a:

_predefined_operations_a | _predefined_operations_b
EQ: 7="
NOTEQUAL: 7<>”
ADD: "+47
SUB: 7—7
MUL: 7%”
DIV: 7/”

LOWERTHAN: 7<”
GREATER.THAN: 7>”
LOWER OR EQUAL THAN: 7<="
GREATER OR.EQUAL.THAN: 7>="
OR: /\bor\b/

XOR: /\bxor\b/

AND: /\band\b/

Production Rules
_predefined_operation_names_b: OCL.ASSSET | OCLISNEW
| OCL_IS_INVALID

| OCLAAS.TYPE

| OCLIS.TYPE.OF

| OCL.IS_KIND_OF

| OCLIS.IN.STATE

| OCL.TYPE.OP | OLCLOCALE
| OCLIS.UNDEFINED | ABS

118

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

| FLOOR | ROUND | MAX | MIN
| TOSTRING | DIV.OP | MOD
| SIZE | CONCAT

| SUBSTRING | TOINTEGER

| TOREAL | TO_UPPER.CASE

| TOLOWER.CASE | INDEX.OF
| EQUALSIGNORE.CASE | AT

| CHARACTERS | TOBOOLEAN

| NOT | IMPLIES | INCLUDES
| EXCLUDES | COUNT

| INCLUDES_ALL

| EXCLUDESALL | IS.EEMPTY

| NOTEMPTY | SUM | PRODUCT
| SELECT_BY_KIND

| SELECTBY.TYPE | ASSET

| AS.ORDERED_SET

| ASSEQUENCE | ASBAG

| FLATTEN | UNION

| INTERSECTION | INCLUDING
| EXCLUDING

| SYMMETRIC DIFFERENCE

| APPEND | PREPREND

| INSERT_AT

| SUB.ORDEREDSET | FIRST
| LAST | REVERSE

| SUB.SEQUENCE

predefined _operation_names: _predefined_operation_names_a

| _predefined_operation_names_b

predefined_operation_names_property_call:

_predefined_operation_names_b

OCL_ASSSET: /\boclAsSet\b/
OCLISNEW: /\boclIsNew\b/
OCL.IS.INVALID: /\boclIsInvalid\b/
OCLASTYPE: /\boclAsType\b/
OCLIS_-TYPE.OF: /\bocllsTypeOf\b/
OCL_IS_ KIND OF: /\bocllsKindOf\b/
OCLISIN_STATE: /\boclIsInState\b/
OCL.TYPE.OP: /\boclType\b/
OLCLOCALE: /\boclLocale\b/
OCL.IS_.UNDEFINED: /\bocllsUndefined\b/
ABS: /\babs\b/

FLOOR: /\bfloor\b/

ROUND: /\bround\b/

MAX: /\bmax\b/

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

119

https://doi.org/10.51202/9783186876102

Anhang

MIN: /\bmin\b/

TOSTRING: /\btoString\b/

DIV.OP: /\bdiv\b/

MOD: /\bmod\b/

SIZE: /\bsize\b/

COONCAT: /\bconcat\b/
SUB_STRING:/\ bsubstring\b/
TOINTEGER: /\btoInteger\b/
TOREAL: /\btoReal\b/
TO_UPPER.CASE: /\btoUpperCase\b/
TOLOWER.CASE: /\btoLowerCase\b/
INDEX_OF: /\bindexOf\b/
EQUALSIGNORE_CASE: /\bequalsIgnoreCase\b/
AT: /\bat\b/

CHARACTERS: /\bcharacters\b/
TOBOOLEAN: /\btoBoolean\b/

NOT: /\bnot\b/

IMPLIES: /\bimplies\b/

INCLUDES: /\bincludes\b/
EXCLUDES: /\bexcludes\b/

COUNT: /\bcount\b/

INCLUDESALL: /\bincludesAll\b/
EXCLUDESALL: /\bexcludesAll\b/
ISEMPTY: /\bisEmpty\b/
NOTEMPTY: /\bnotEmpty\b/

SUM: /\bsum\b/

PRODUCT: /\bproduct\b/
SELECT BY KIND: /\bselectByKind\b/
SELECTBY_TYPE: /\bselectByType\b/
ASSET: /\basSet\b/
AS_ORDERED.SET: /\basOrderedSet\b/
AS SEQUENCE: /\basSequence\b/
ASBAG: /\basBag\b/

FLATTEN: /\bflatten\b/

UNION: /\bunion\b/

INTERSECTION: /\bintersection\b/
INCLUDING: /\bincluding\b/
EXCLUDING: /\bexcluding\b/
SYMMETRIC DIFFERENCE: /\bsymmetricDifference\b/
APPEND: /\bappend\b/

PREPREND: /\bprepend\b/
INSERT_AT: /\binsertAt\b/
SUB.ORDERED.-SET: /\bsubOrderedSet\b/
FIRST: /\ bfirst\b/

LAST: /\blast\b/

REVERSE: /\breverse\b/
SUB_SEQUENCE: /\bsubSequence\b/

120

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

LET: /\blet\b/
JIN: /\bin\b/

JIF: /\bif\b/
_THEN: /\bthen\b/
_ELSE: /\belse\b/
_ENDIF: /\bendif\b/

NULL: /\bnull\b/
INVALID: /\binvalid\b/

Import of lark production rules

%import common.SIGNED FLOAT
Y%import common.ESCAPED_STRING

// no whitespaces
Y%import common.WS
%ignore WS

// line comments
%import common .SQL.COMMEN
%ignore SQLCOMMENT

// multiline comments
%import common .C.COMMENT
%ignore CCOMMENT

Production Rules

simple_name: (NAMESTART CHAR NAME CHARx)

path_.name: _path_name.a | _path_name_b
_path_name_a: simple_name
_path_name_b: simple_name ”::” simple_name
_ocl_expression: _call_exp | variable_exp | let_exp
| if_exp | literal_exp
| 7(” _ocl_expression)7

// VariableExp production rules

variable_exp.2: _variable_exp.a | _variable_exp_b
_variable_exp_a.2: path_name

_variable_exp_b .3: SELF

// Literal production rules

?literal_exp: collection_literal_exp | tuple_literal_exp

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

121

https://doi.org/10.51202/9783186876102

Anhang

| primitive_literal_exp | type_literal_exp

collection_literal_exp: collection_type_identifier 7{”
[_collection_literal_parts] 7}”

_collection _literal parts: _collection_literal_part (7,”
_collection_literal_parts)?

_collection_literal _part: _collection_literal_part_a
| _collection_literal_part_b

_collection_literal_part_a: collection_range
_collection_literal_part_b: _ocl_expression
collection_range: _ocl_expression 7..” _ocl_expression
?primitive_literal _exp: integer_literal_exp

| real_literal_exp

| string_literal_exp

| boolean_literal_exp

| null_literal_exp

| invalid_literal_exp

tuple_literal_exp: TUPLE ”
{” _variable_declaration_list_a ”}”

integer_literal_exp: ["4+7|”"="] (707..79")+
real_literal_exp: SIGNEDFLOAT //[7+7|”="] (((707..797)+
(770.:7‘7jE77) ‘[77+77|77f77] (”9”_4”9.”)4’) ‘ ‘ .
(.((V;Or!.‘779/7)+ ’7‘7’“((l”qh‘~’j‘97")+)‘?“" /7‘7,
(,70;2..77977)+> ((77ey/|7/E/7> [,/+7/‘777h]
(7701,..7797’)+)?))

string_literal_exp: ESCAPEDSTRING
| ESCAPED_STRING ESCAPED_STRING

boolean_literal_exp .3: BOOL
null_literal_exp: NULL
invalid_literal_exp: INVALID
type_literal _exp: type

// CallExp production rules

_call_exp: _feature_call_exp | _loop-exp
122
216.73.216.60, am 24.01.2026, 01:53:05. © Inhalt.
tersagt, m 'mit, fiir oder in KI- star

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

_loop_exp: _iterator_exp | iterate_exp

_iterator_exp: iterator_exp-a

iterator_exp_-a: _ocl_expression "—>"
predefined_iterators ”(”
[variable_declaration_b [”,
variable_declaration_b] 7|”]
[_ocl_expression] 7)”

”

iterate_exp: _ocl_expression "—>” ITERATE 7(”
[variable_declaration_b 7;”]
variable_declaration_c ”|”
_ocl_expression)7

variable_declaration_a: simple.name 7:” type
variable_declaration_b: simple_name [”:” type]
variable_declaration_c: simple.name 7:” type "="
_ocl_expression
variable_declaration_d: simple_name (”:” type)?
(=" _ocl_expression)?

type: path.name | collection_type | tuple_type
| primitive_type | ocl_type

collection_type: collection_type_identifier 7(” type ”)”
tuple_type: "Tuple” 7(” typex ”)”

_variable_declaration_list_a: variable_declaration_c
[7,7 _variable_declaration_list_a |

_operation_call_exp

_feature_call_exp: property_call_exp

_operation_call_exp: operation_call_exp_a
| operation_call_exp_b
| operation_call_exp_c
| operation_call_exp_d

operation_call_exp_a: _ocl_expression
predefined _operation_names
_ocl_expression

operation_call_exp_b: _ocl_expression "—>"
predefined_operation_names (7
[_arguments] 7)”

operation_call _exp_c: _ocl_expression
(predefined_operation_names |
simple_name) 7(” [.arguments]| 7)”

123

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

operation_call _exp_d: predefined_operation_names ”(”
[_arguments] 7)”

property_call_exp: _property_call_exp_a
_property._call_exp_a: _ocl_expression ”.” (simple_.name |
predefined operation_names_property_call)

Bl

_arguments: _ocl_expression (”7,” _arguments)?

// LetExp production rules
let _exp: _LET variable_declaration_c _let_exp_sub

_let_exp_sub: _let_exp.sub_a | _let_exp_sub_b
_let_exp_sub_a: 7,7 variable_declaration_c _let_exp_sub
_let_exp_sub_b: _IN _ocl_expression

// IfExp production rules
if_exp: _IF _ocl_expression THEN _ocl_expression _ELSE
_ocl_expression _ENDIF

Bl

_parameters: variable_declaration_d (”,” _parameters)?

B.2 Grammar_mtl.lark

Terminals
_TRANSFORMATION_DEFINITION: /\btransformationDefinition\b/
SOURCE.TEMPLATE: /\bsourceTemplate\b/
_TARGET_TEMPLATE: /\btargetTemplate\b/

_VALUE: /\bvalue\b/
MACRO: /\bmacro\b/
PACKAGE: /\ bpackage\b/
END_PACKAGE: /\bend_package\b/

Import of OCL production rules

%import .grammar_ocl (simple_name ,

_parameters , type,

_ocl_expression ,

_arguments ,

variable_declaration_a ,

literal_exp ,

string _literal _exp)

Extending of OCL production rules

Y%extend literal_exp: object_literal _exp
%extend _ocl_expression: macro_call_exp

124

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

No Whitespaces

%import common.WS
%ignore WS

———— Line and multiline Comments
%import common .SQLCOMMENT
%ignore SQL.COMMENT

Y%import common.C.COMMENT
%ignore CCOMMENT

New Production Rules

macro_decl:
MACRO simple_name 7(” (_parameters)? 7)” 7:”7 type
{7 _ocl_expression "}”

macro_call_exp:
(simple_name

9

::7)? simple_name ”(” _arguments? 7)”

object_literal _exp:
type 7{” _attribute_binding_list? 7}”

attribute_binding:

simple_name 7:”

_ocl_expression
_attribute_binding_list:
attribute_binding (”7,” _attribute_binding_list)?

_informationmodel _template:
variable_declaration_a [?—>7 literal_exp]

_informationmodel_template_list :
_informationmodel_template (”,”
_informationmodel_template_list)?

transformation_definition:
_TRANSFORMATION_DEFINITION [simple_name |
SOURCE.TEMPLATE ”:” [_informationmodel_template_list |
TARGET.TEMPLATE ”:” _informationmodel_template _VALUE
7:7 object_literal_exp

package_decl:

PACKAGE simple_name [transformation_definition]
macro_decl* ENDPACKAGE

125

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

C Python-Klassendefinition der abstrakten
Syntaxklassen

C.1 ast_ocl.py

import abc

import math

import operator

import itertools

from typing import Any, Callable, Dict, Iterable, List, Optional,
Tuple, TypeVar, Union

—+— encoding: ulf—8 —*—

class Environment (abc.ABC) :
def __init__(self):
self.variables: Dict[str, Any] = {}
self . types: Dict[str, type] = {}

def add_var(self, name: str, _type: type = None, value: Any = None
) —> None:
if name in self.variables:
raise KeyError(f”Variable_{name}_already._exist!”)
self.variables [name] = [_type, value]

def set_var_value(self, name: str, value: Any) —> None:
if name not in self.variables:
raise KeyError(f”Variable_{name}_hasn’t_been_.defined._yet!”

(self.variables [name]) [1] = value

def set_var_type(self, name: str, _type: type) —> None:
if name not in self.variables:
raise KeyError(f”Variable_{name}_hasn’t_been_defined._yet!”

)

(self.variables [name]) [0] = _type

def del_var(self, name: str) —> None:
del self.variables [name]

def get_var_type(self, name: str) —> type:
if name not in self.variables:
raise KeyError(f”Variable_{name}_hasn’t_been_defined._yet!”

)

return (self.variables|[name]) [0]

126

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

def get_var_value(self, name: str) —> Any:
if name not in self.variables:
Test if name is in self.types todo: Hack for parser
problems , when getting VariableExzp instead of TypeExp
if name not in self.types:
raise KeyError(f”Variable_{name}_hasn’t_been_defined.
yet!”)
return self.types|[name]
return (self.variables|[name]) [1]

class LocalEnvironment (Environment) :
def __init__(self):
super (). __init__()

class GlobalEnvironment (Environment) :
def __init__(self):
super (). __init__ ()

class Token(abc.ABC):
def __init__(self, xtokens):
self.tokens = None

class OclExpression (Token, abc.ABC):
@abc. abstractmethod
def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
pass

class PrimitiveType (Token) :
def __init__(self, xtokens):
super (). __init__(*tokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) — str:
return self.tokens[0]

class OclType(Token) :
def __init__(self, xtokens):
super (). __init__(*tokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) — str:
return self.tokens[0]

127

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

class Type(Token):
def __init__(self, xtokens):

super (). -_init__ (xtokens)
self . tokens: Tuple[Union[CollectionType, TupleType,
PrimitiveType, OclType], ...] = tokens

def evaluate_value(self) —> str:
return self.tokens[0]. evaluate_value ()

class Invalid:
def __init__(self):
raise Exception(”An.error_has_occurred”)

class CollectionTypeldentifier (Token):
def __init__(self, xtokens):
super (). ._init__(xtokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> str:

return self.tokens[0]

class CollectionType (Token) :
def __init__(self, xtokens):

super (). ._init__(xtokens)
self.tokens: Tuple[Union|[CollectionTypeldentifier , Type], ...]
= tokens

def evaluate_value(self) —> str:
return self.tokens[0]. evaluate_value() + 7(” + self.tokens[1].
evaluate_value () + ”)”

class TupleType(Token):
def __init__(self, xtokens):
super (). __init__(xtokens)
self.tokens: Tuple[Type, ...] = tokens

def evaluate_value(self) —> str:
tmp_type: str = "Tuple(”
first = True
for t in self.tokens:
if not first:
tmp_type += 7,”
tmp_type += t.evaluate_value ()
first = False
tmp_type += 7)”

128

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

return tmp_type

class SimpleName (Token):
def __init__(self, xtokens):
super (). __init__(*tokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> str:
return ’’.join(self.tokens)

class PathName(Token) :
def __init__(self, xtokens):
super (). __init__(xtokens)
self.tokens: Tuple[Union|[PathName, SimpleName], ...| = tokens

def evaluate_value(self) —> str:
if len(self.tokens) =— 2:
return self.tokens[0].evaluate_value() + 7::”7 4 self.
tokens [1]. evaluate_value ()
else:

return self.tokens [0].evaluate_value ()

class StringName (Token):
def __init__(self, xtokens):
super (). __init__(xtokens)
self . tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> str:
return ’’.join(self.tokens)

class VariableDeclaration (Token) :
def __init__(self, xtokens):
super (). __init__(xtokens)
self.tokens: Tuple[Union[SimpleName, Type, OclExpression],
.] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> str:
”»y
adds the wvariable to the wvariable_list and returns the

variable name
na

var_name = 77

var_type None
var_value = None
for i in self.tokens:

129

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

if isinstance (i, SimpleName):

var-name = i.evaluate_value ()
if isinstance(i, Type):

var_type = global_env.get_type(i.evaluate_value())
if isinstance(i, OclExpression):

var_value = i.evaluate_value(global_env, local_env)

local_env.add_var(var.name, var_type, var_value)
return var_name

class LiteralExp (OclExpression, abc.ABC):
def __init__(self):
super (). __init__ ()

class EnumLiteralExp (LiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[Union[SimpleName], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
try:
return local_env.get_var_value(self.tokens[0].
evaluate_value () + 7::”7 4+ self.tokens|[1].
evaluate_value ())
except KeyError:
return global_env.get_var_value(self.tokens[0].
evaluate_value () + ”7::” + self.tokens[1].
evaluate_value ())

class CollectionRange (Token) :
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[OclExpression, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> List [Union[str, int]]:

lower: Union[str, int] = self.tokens [0].evaluate_value (
global_env , local_env)
upper: Union[str, int] = self.tokens[1].evaluate_value (

global_env, local_env)
value: List [Union[str, int]] = []
if isinstance(lower, str) and isinstance(upper, str):
Todo: Only useful with StringLiteralExzp with single
letter
for i in range(ord(lower[1]), ord(upper[1]) + 1):
value .append (chr(i))

130

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

elif isinstance(lower, int) and isinstance(upper, int):
for i in range(lower, upper + 1):
value.append (i)

else:
raise KeyError(”Upper.and_lower._boundary.do.not_have_the.

same.type”)
return value

def list_to_set (tmp_list: Iterable) —> set:
tmp_set = set ()
for i in tmp_list:
if isinstance(i, list) or isinstance(i, set):
tmp_set.update(list_to_set (i))
else:
tmp_set.add (i)
return tmp_set

class CollectionLiteralExp (LiteralExp):
def __init__(self, xtokens):

super (). __init__ ()
self.tokens: Tuple[Union|[CollectionTypeldentifier, List|

CollectionRange , OclExpression]], ...] = tokens
def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:

collection_type: str = self.tokens[0].evaluate_value () # type
ignore
collection_item_list = []

for i in self.tokens:
if isinstance(i, CollectionRange):
tmp_list = i.evaluate_value(global_env, local_env)
for t in tmp_list:
collection_item_list .append(t)
if isinstance(i, OclExpression):
collection_item_list .append(i.evaluate_value(
global_env, local_env))

if collection_type = "Set”:
return list_to_set (collection_item_list)
elif collection_type = ”Bag”:
return collection_item _list
elif collection_type = ”Sequence”:
return collection_item_list
elif collection_type == ”OrderedSet”:

return list (list_to_set (collection_item_list)) # todo:
should be an ordered set

else:
raise KeyError

131

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

class TupleLiteralExp (LiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[VariableDeclaration, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> tuple:
tuple_list = []
for t in self.tokens:
try:
tuple_list .append(local_env.get_var_value (t.
evaluate_value (global_env , local_env)))
except KeyError:
tuple_list .append(global_env.get_var_value(t.
evaluate_value (global_env, local_env)))

return tuple(tuple_list)

class PrimitiveLiteralExp (LiteralExp, abc.ABC):
def __init__(self):
super (). __init__ ()

class IntegerLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> int:
return int(’’.join(self.tokens))

class RealLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). -_init__ ()
self.tokens: Tuple[float, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> float:
return float (self.tokens[0])

class StringLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). __init__ ()

self.tokens: Tuple[str, ...] = tokens
132
216.73.216.60, am 24.01.2026, 01:53:05. © Inhalt.
tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> str:
tmp._string = "’
for i in self.tokens:
if isinstance(i, str):
tmp_string 4= i.strip(’”")
return tmp_string

class BooleanLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> bool:
if self.tokens[0] = 7true”:
return True
else:
return False

class NullLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
return None

class InvalidLiteralExp (PrimitiveLiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[Invalid, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:

return self.tokens[0].evaluate_value ()

class TypeLiteralExp (LiteralExp):
def __init__(self, xtokens):
super (). __init__()
self.tokens: Tuple[Type, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> type:

133

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

return global_env.get_type(self.tokens[0].evaluate_value())

class VariableExp (OclExpression):
def __init__(self, xtokens):
super (). -_init__ ()
self.tokens: Tuple[Union[SimpleName, str], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
if isinstance(self.tokens[0], PathName):
try:
return local_env.get_var_value(self.tokens[0].
evaluate_value ())
except KeyError:
return global_env.get_var_value(self.tokens[0].
evaluate_value ())
else:
return local_env.get_var_value(”self”)

class IfExp (OclExpression):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[OclExpression, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
if self.tokens[0].evaluate_value(global_env, local_env):
return self.tokens[1].evaluate_value(global_env, local_env

)

else:
return self.tokens[2].evaluate_value(global_env, local_env

)

class LetExp(OclExpression):
def __init__(self, xtokens):
super (). -_init__ ()
self.tokens: Tuple[Union|VariableDeclaration, OclExpression],
.] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
add variables to env
var_list = []
for i in self.tokens:
if isinstance(i, VariableDeclaration):
var_list .append(i.evaluate_value(global_env, local_env

))

134

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

eval expression

result = self.tokens[len(self.tokens) — 1].evaluate_value(
global_env, local_env)

remove variables vom env

for var in var_list:
local_env.del_var(var)

return result

class PropertyCallExp (OclExpression):
def __init__(self, xtokens):

super (). __init__(xtokens)
self.tokens: Tuple[Union|[OclExpression, SimpleName,
PredefinedOperationNamesPropertyCall], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
return getattr(self.tokens[0].evaluate_value(global_env,
local_env) ,
global_env .
get_correct_attribute_name_by_sdk_type (type
(
self . tokens[0]. evaluate_value (global_env ,
local_env)),
self.tokens [1].evaluate_value())) # type:
ignore

class PredefinedIterators (Token):

def __init__(self, xtokens):

super (). __init__(xtokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> Callable [[Iterable, Optional[str],
Optional [str], OclExpression], Any]:
name_function_map: Dict[str, Callable [[Iterable, Optional[str
], Optional[str], OclExpression, GlobalEnvironment,

LocalEnvironment], Any|] = {
Tany”: _any,

7closure”: _closure ,
7collect”: _collect ,
7collectNested”: _collect_nested ,
Pexist”: _exist ,

7forAll”: _for_all |
7isUnique”: _is_unique ,
“one”: _one,

"reject”: _reject ,
7select”: _select ,

”

"sortedBy”: _sorted_by

135

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

}

return name_function.map[self.tokens [0]]

def _any(parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment ,

local_env: LocalEnvironment) —> Any:
if iterator_2

is not None:

raise ValueError(’—>any().only._supports_one_iterator._variable ,
stwoogiven!”)

for element in parent:

local_env.set_var_value (iterator_1, element)
result =

expression.evaluate_value(global_env, local_env)
if isinstance(result, Invalid):
return result
if result:
return element
return Invalid

def _closure(parent: Iterable,

iterator_1: Optional [str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> Any:
pass

def _collect (parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment ,

local_env: LocalEnvironment) —> Any:
if iterator_2

is not None:

raise ValueError(’—>collect ().only._supports._one_iterator.
variable ,.two.given!”)
res = []

for element in parent:

local_env.set_var_value (iterator_1, value=element)
if isinstance(element, (tuple, list, set)):
flatten
for nested_element in _collect (element ,
expression, global_env, local_env):
res.append (nested_element)

iterator_1 , None,

else:

res.append (expression.evaluate_value (global_env, local_env
))
return res

def _collect_nested (parent: Iterable, iterator_1: Optional[str],

iterator_2: Optional[str], expression: OclExpression, global_env:
GlobalEnvironment, local_env: LocalEnvironment) —> Any:
if iterator_2 is not None:

136

216.73.216.60, am 24.01.2026, 01:53:05. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

raise ValueError (”—>collectNested ()_only_supports_one_iterator
_variable , .two_given!”)
res = []
for element in parent:
local_env.set_var_value(iterator_1, element)

res.append (expression.evaluate_value (global_env, local_env))
return res

def _exist(parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> bool:
if iterator_2 is not None:
raise ValueError (”—>exists ().only.supports.one.iterator.
variable , two_given!”)
for element in parent:
local_env.set_var_value (iterator_1, element)
if expression.evaluate_value(global_env, local_env):
return True
return False

def _for_all(parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> bool:
if iterator_2 is not None:
raise ValueError ("—>forAll().only.supports.one.iterator.
variable , two.given!”)
for element in parent:
local_env.set_var_value(iterator_1, element)
if not expression.evaluate_value(global_env, local_env):
return False
return True

def _is_unique(parent: Iterable, iterator_1: Optional[str], iterator_2
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> Any:
if iterator_2 is not None:
raise ValueError (”—isUnique ().only._supports._one_iterator.
variable , .two.given!”)
res = []
for element in parent:
local_env.set_var_value (iterator_1, element)
result = expression.evaluate_value(global_env, local_env)
if isinstance(result, Invalid):
return result
if result is not None:
if result in res:
return False

137

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

res.append(result)
return True

def _one(parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> Any:
if iterator_2 is not None:
raise ValueError(’—>one()._only_supports_one_iterator._variable ,
stwoogiven!”)
was_true = False
for element in parent:
local_env.set_var_value(iterator_1, element)
result = expression.evaluate_value(global_env ,
if isinstance(result, Invalid):
return result
if result:
if was_true:
return False
was_true = True
return False

local_env)

def _reject (parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> List [Any]:
if iterator_2 is not None:

raise ValueError(’—>reject ().only_supports_one_iterator.
variable , .two_given!”)

(]

for element in parent:

res =
local_env.set_var_value(iterator_1, element)
if not expression.evaluate_value(global_env ,

res.append (element)
return res

local_env):

def _select (parent: Iterable, iterator_1: Optional[str], iterator_2:
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> List [Any]:
if iterator_2 is not None:

raise ValueError(”—>select ()_only_supports_one_iterator.
variable , .two_given!”)

(]

for element in parent:

res =

local_env.set_var_value(iterator_1, element)

if expression.evaluate_value(global_env ,
res.append (element)

return res

local_env):

138

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

def _sorted_by(parent: Iterable, iterator_1: Optional[str], iterator_2
Optional [str], expression: OclExpression, global_env:
GlobalEnvironment , local_env: LocalEnvironment) —> Any:
pass

class IteratorExp (OclExpression):

def

def

__init__(self, xtokens):

super (). __init__(xtokens)

self.tokens: Tuple[Union|[OclExpression, PredefinedIterators,
VariableDeclaration], ...] = tokens

evaluate_value (self , global_env: GlobalEnvironment, local_env:

LocalEnvironment) —> Any:

iterator_function: Callable [[Iterable, Optional[str]|, Optional
[str], OclExpression, GlobalEnvironment, LocalEnvironment
|, Any] = self.tokens[1].evaluate_value() # type: ignore

parent: Iterable = self.tokens[0].evaluate_value(global_env ,
local_env) # type: ignore

iterator_1: Optional[str] = None

if self.tokens[2] is not None:
iterator_1: Optional[str] = self.tokens[2].evaluate_value(

global_env, local_env) # type: ignore
iterator_2: Optional [str] = None
offset = 5 — len(self.tokens)

if offset = 0:
if self.tokens[3] is not None:
iterator_2: Optional [str] = self.tokens[3].
evaluate_value (global_env , local_env) # type:
ignore

if iterator_1 is None:
iterator_1 =7
while True:
try:

local_env.get_var_value (iterator_1)
iterator_1 += "_7
except KeyError:
local_env.add_var(”_.7)
break
res = iterator_function (parent, iterator_1, iterator_-2, self.
tokens[4 — offset], global_env, local_env) # type: ignore
local_env.del_var(iterator_1)
if iterator_2 is not None:
local_env.del_var(iterator_2)
return res

class IterateExp(OclExpression):

def

__init__(self, xtokens):

139

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

super (). __init__(xtokens)
self.tokens: Tuple[Union|[OclExpression, VariableDeclaration],
.] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any: # todo: tbd

parent = self.tokens [0].evaluate_value(global_env, local_env)
iterator_1: Optional[str] = None
if self.tokens[1] is not None:

iterator_1: Optional[str] = self.tokens[1].evaluate_value(

global_env, local_env) # type: ignore
if iterator_1 is None:
iterator_1 = 7_"
while True:
try:
local_env.get_var_value(iterator_1)

iterator_1 4= "_
except KeyError:

local_env.add_var(”_.")
break
iterator_2: Optional [str] = self.tokens[2].evaluate_value(

global_env, local_env) # type: ignore

for element in parent:
local_env.set_var_value(iterator_1, element)
local_env.set_var_value (iterator_2 , self.tokens[3].

evaluate_value (global_env, local_env))

result = local_env.get_var_value(iterator_2)

local_env.del_var(iterator_1)

local _env.del _var(iterator_2)

return result

PT = TypeVar(”PT”, bool, str, float, int)

def _flatten (c):
ret = []
for itm in c:
if not isinstance(itm, list) and not isinstance(itm, set):
ret .append (itm)
continue
for itm_ in _flatten (itm):
ret.append (itm_)
return ret

def _all_params(fn: Callable) — Callable:
def helper(self_: Any, list_: List):

if not isinstance(self_, list) and not isinstance(self_, set):
self_ = [self_]
140
216.73.216.60, am 24.01.2026, 01:53:05. © Inhalt.
tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

return fn(x{xself_, xlist_})

return h

class Predefi

elper

nedOperationNames (Token) :

def __init__(self, xtokens):
super (). __init__(*tokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> Union[Callable [[Any, Any], PT],
Callable [[Any, List[Any]], PT]]:

name

_function_map: Dict[str, Optional[Union[Callable [[Any, Any

|, PT], Tuple[Callable [[Any, List[Any]], PT], int]]]] = {
?=": operator.eq,

B

i

i

B

i

i

”

B

'<>”: operator.ne,

+7: operator.add,

'—7”: operator.sub,

* operator .mul,

/ operator. truediv ,

'<”: operator.lt

> operator.gt,

'<=": operator.le,

>=": operator.ge,

"or”: operator.or_,

"xor”: operator.xor,

’and”: operator.and_,

"oclAsSet”: None,

"oclIsNew”: None, # for pre— and postconditions
"ocllsInvalid”: (lambda x: x is Invalid, 0),
"oclAsType”: None,

"ocllsTypeOf”: (lambda x, y: type(x) is y, 1),
"oclIsKindOf”: (lambda x, y: isinstance(x, y), 1),

7oclIsInState”: None, # for state machines

B

i

?

B

B

B

i

i

B

B

B

9

B

B

i

”

"oclType”: None, # not implemented
"oclLocale”: None,

"oclIsUndefined”: None, # not implemented
"abs”: (operator.abs, 0),

"floor”: (math. floor, 0),

‘round”: (round, 0),

‘max”: _all_params (max) ,

‘min”: _all_params (min) ,

"toString”: (str, 0),

"div”: (operator.floordiv, 1),

'mod”: (operator.mod, 1),

"size”: (len, 0),

"concat”: (operator.concat, 1),
"substring”: (lambda s, start, end: s[start:end], 2),
"tolnteger”: (int, 0),

"toReal”: (float, 0),

"toUpperCase”: (lambda s: s.upper(), 0),

141

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

"toLowerCase”: (lambda s: s.lower(), 0),
7indexOf”: lambda s, n: s.find(n[0]),
7equalsIgnoreCase”: lambda s, s2: s.upper() = s2[0].upper
7at”: (lambda s, pos: s[pos]|, 1),

“characters”: (lambda s: [x for x in s|, 0),
7toBoolean”: lambda a, _: not not a,

"not”: operator.neg,

7implies”: lambda a, b: not a or a and b,

“includes”: (lambda ¢, e: e in ¢, 1),

7excludes”: (lambda c, e: e not in ¢, 1),

“count”: (lem, 0),

7includesAll”: (lambda cl, c¢2: all(e in ¢l for e in c¢2)

1)7

7excludesAll”: (lambda cl, c¢2: all(e not in cl for e in c¢2
), 1),

7isEmpty”: (lambda c¢: len(c) = 0, 0),

"notEmpty”: (lambda c: len(c) != 0, 0),

"sum”: (lambda c: sum(c), 0),
"product”: (lambda cl, c¢2: itertools.product(cl, ¢c2), 1),
"selectByKind”: (lambda ¢, k: filter (lambda e: type(e) is
k, C)v 1)~,
7selectByType”: (lambda c¢, k: filter (lambda e: isinstance(
e, k), ¢), 1),
7asSet”: (set, 0),
7asOrderedSet”: None, # ordered sets aren’t implemented
7asSequence”: (list, 0),
"asBag”: (list, 0),
"flatten”: (_flatten , 0),
union”: (lambda cl, ¢2: cl + ¢2, 1),
“intersection”: (lambda cl, ¢2: cl.intersection(c2), 1),
“including”: (lambda ¢, e: ¢ + [e] if isinstance(c, list)
else {xc, e}, 1),
7excluding”: (lambda c, 1: filter (lambda e: e is not 1, c¢)
1),
"symmetricDifference”: (lambda cl, c¢2: cl.
symmetric_difference(c2), 1),
“append”: (lambda ¢, e: ¢ + (e,), 1),
"prepend”: (lambda c, e: (e,) + ¢, 1),
7insertAt”: None, # ordered sets aren’t implemented
"subOrderedSet”: None, # ordered sets aren’'t implemented
7first”: (lambda c: c[0], 0),
“last”: (lambda c: c¢[—1], 0),
"reverse”: (lambda c: c.reverse(), 0),
7subSequence”: (lambda ¢, 1, u: c¢[l:u + 1], 2)
}
function_name = self.tokens[0]
function_maybe: Optional [Union[Callable [[Any, Any], PT], Tuple
[Callable [[Any, List[Any]], PT], int]]] =
name_function_map [function_name |

142

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

if function_maybe is None:
raise NotImplementedError (f”{function_name }().is._not.
implemented!”)
if not isinstance(function_maybe, tuple):
return name_function_map [function_name|

def fn_wrap(self_: Any, list_: List) — PT:
if len(list_) != function_maybe[1]:
raise ValueError (f”{function_name }()._expects.{
function_maybe [1]} cparameters,_ but_.{len(list_)}.
given:.”
+ str(list_))
return function_maybe [0](self_, xlist_)

return fn_wrap

class PredefinedOperationNamesPropertyCall (Token) :
def __init__(self, xtokens):
super (). __init__(*xtokens)
self.tokens: Tuple[str, ...] = tokens

def evaluate_value(self) —> str:

return self.tokens[0]

class OperationCallExpA (OclExpression):
def __init__(self, xtokens):

super (). __init__(xtokens)
self.tokens: Tuple[Union[OclExpression,
PredefinedOperationNames], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:

LocalEnvironment) —> Any:

if isinstance(self.tokens[1], PredefinedOperationNames):
operation = self.tokens[1].evaluate_value ()

else:
raise NotImplementedError ()

var_1 = self.tokens [0].evaluate_value(global_env, local_env)

type: ignore

var_2 = self.tokens[2]. evaluate_value(global_env, local_env)

type: ignore

return operation(var_1, var_2) # type: ignore

class OperationCallExpB (OclExpression):
def __init__(self, xtokens):
super (). __init__(xtokens)
self.tokens: Tuple[Union[OclExpression,

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

143

https://doi.org/10.51202/9783186876102

Anhang

PredefinedOperationNames], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:

parent = self.tokens [0].evaluate_value(global_env, local_env)
type: ignore

operation = self.tokens[1].evaluate_value() # type: ignore

var_list = []

for i in range(2, len(self.tokens)):
var_list.append(self.tokens[i].evaluate_value(global_env ,
local_env)) # type: ignore
return operation (parent, var_list)

class OperationCallExpC(OclExpression):
def __init__(self, *tokens):

super (). __init__ (xtokens)
self.tokens: Tuple[Union|[OclExpression ,
PredefinedOperationNames], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
parent = self.tokens[0]. evaluate_value(global_env, local_env)
type: ignore
if isinstance(self.tokens[1], PredefinedOperationNames):

operation = self.tokens [1].evaluate_value ()
elif isinstance(self.tokens[1], SimpleName):
operation = getattr (parent, self.tokens[1l].evaluate_value
0)
else:
raise NotImplementedError ()
var_list = []

for i in range(2, len(self.tokens)):
var_list .append(self.tokens[i].evaluate_value(global_env ,
local_env)) # type: ignore
return operation (parent, var_list)

class OperationCallExpD (OclExpression):
def __init__(self, xtokens):

super (). -_init__(xtokens)
self . tokens: Tuple[Union|[OclExpression ,
PredefinedOperationNames], ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
operation = self.tokens[0].evaluate_value () # type: ignore
var_list = []
for i in range(1l, len(self.tokens)):
var_list .append(self.tokens[i].evaluate_value(global_env ,

144

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

local_env)) # type: ignore
return operation(None, var_list)

C.2 ast_mtl.py

import time

import typing

from typing import Any, Dict, List, Optional, Tuple, Union, Set

from lark.lark import Lark

from .ast_ocl import GlobalEnvironment, LocalEnvironment, SimpleName,
Token, VariableDeclaration, Type, OclExpression, StringLiteralExp ,
LiteralExp

—+— encoding: utf—8 —#—

class GlobalEnvironmentMTL (GlobalEnvironment) :
def __init__(self):

sivar variables: Dict of global wvariable names and their type
and value. Dict[str, [type, Any]]

sivar macros: Dict of macro names and their parameters,
OclEzpression and type.

Dict[str, [List[VariableDeclaration],
OclExzpression, type]

civar types: Dict of globale type names and their type. Dict/
str, type]

super (). __init__ ()

self.variables: Dict[str, Any| = {}

self.macros: Dict[str, Any] = {}

self.types: Dict[str, type] = {}

self.create_types: Dict[str, type] = {}

self.inverted_types: Dict[type, str] = {}

self . meta_model_types_to_sdk_types: Dict[str, Union[type, Dict
[str, Union[type, Dict[str, str]]]]] = {}

self.sdk_types_to.meta_model_types: Dict[type, Union[str, Dict
[str, Union[type, Dict[str, str]]]]] = {}

add some ocl basic types and wvariables
self.add_var(”True”, bool, True)
self.add_var(”False”, bool, False)
self.add_var(”7self”)

def call_macro(self, name: str, arg_list: List[Any]) —> Any:
if name not in self.macros:
raise KeyError(f”Macro_{name}_hasn’t_been_defined_yet!”)

param_list , ocl_expression, _type = self.macros|[name]
145
216.73.216.60, am 24.01.2026, 01:53:05. © Inhalt.
tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186876102

Anhang

146

def

def

def

def

def

def

if len(arg_list) != len(param_list):
raise KeyError(f”Macro_.param.length_and_given_args.length.
is.not.equal”)

add variables to env todo: check if type of arg und param is
the same

var_list = []

local_env = LocalEnvironment ()

for i in range(len(param_list)):
var_name = param_list [i].evaluate_value(self, local_env)
local_env.set_var_value (var_name, arg_list[i])
var_list .append (var_name)

eval expression

result = ocl_expression.evaluate_value(self, local_env)

remove wvariables vom env

for var in var_list:
local_env.del_var (var)

return result

add_macro(self , name: str, param_list: List[”

VariableDeclaration”], ocl_expression: "OclExpression”, _type:

type = None) —> None:
if name in self.macros:

raise KeyError(f”Macro.{name}_already._exist!”)
self.macros|[name] = [param_list, ocl_expression, _type]

del_macro(self , name: str) —> None:
del self.macros[name]|

get_macro_type(self , name: str) —> type:
if name not in self.macros:

raise KeyError(f”Macro.{name}_hasn’t._.been.defined.yet!”)
return (self.macros|[name]) [2]

add_type(self , name: str, _type: type) —> None:
self.types|[name] = _type

del_type(self, name: str) —> None:
del self.types [name]

get_type(self, name: str) —> type:
if name.startswith (”Set”):
item_name = name[4:len(name) — 1]
if item_name not in self.types:
raise KeyError(f{”Type.{item_name}_hasn’t_been._defined.
yet!”)
return Set[self.types[item_name]]
elif name.startswith (”Bag”):
item_name = name[4:len (name) — 1]
if item_name not in self.types:

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

def

def

def

raise KeyError(f”Type_{item_name}_hasn’t_been._defined.
yet!”)
return List [self.types[item_name]]
elif name.startswith (”Sequence”):
item_name = name[9:len (name) — 1]
if item_name not in self.types:
raise KeyError(f”Type.{item_name}_hasn’t_been._defined.
yet!”)
return List [self.types[item_name]]
elif name.startswith (”OrderedSet”):
item_name = name[11:len (name) — 1]
if item_name not in self.types:
raise KeyError(f”Type.{item_name}_hasn’t_been_defined.
yet!”)
return Set[self.types[item_name]]
if name not in self.types:
raise KeyError(f”Type_{name}_hasn’t_been_defined_yet!”)
return self.types[name]

add_create_type(self, name: str, _type: type) —> None:
self.create_types|[name] = _type

del_create_type(self , name: str) —> None:
del self.create_types [name]|

get_create_type(self, name: str) —> type:
if name.startswith (”Set”):
item_name = name[4:len(name) — 1]
if item_name not in self.create_types:
raise KeyError(f”Type.{item_name}_hasn’t_been.defined.
yet!”)
return Set[self.create_types [item_name]]
elif name.startswith (”Bag”):
item_name = name[4:len(name) — 1]
if item_name not in self.create_types:
raise KeyError(f{”Type_{item_name}_hasn’t_been.defined.
yet!”)
return List [self.create_types[item_name]]
elif name.startswith (”Sequence”):
item_name = name[9:len(name) — 1]
if item_name not in self.create_types:
raise KeyError(f”Type.{item_name}_hasn’t_been.defined.
yet!”)
return List[self.create_types[item_name|]
elif name.startswith (”OrderedSet”):
item_name = name[l1l:len(name) — 1]
if item_name not in self.create_types:
raise KeyError(f”Type.{item_name}_hasn’t_been._defined.
yet!”)
return Set[self.create_types [item_name]]

147

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

if name not in self.types:
raise KeyError(f”Type_{name}_hasn’t_been._defined._yet!”)
return self.create_types [name]

def add_inverted_type(self, _type: type, name: str) —> None:
self.inverted_types|[_type] = name

def del_inverted_type(self, _type: type) —> None:
del self.inverted_types|[_type]

def get_inverted_type(self, _type: type) —> str:
if _type not in self.inverted_types:
raise KeyError(f”’Type_{_type}.hasn’t.been.defined.yet!”)
return self.inverted_types[_type]

def add_meta_model_types_to_sdk_types(self, meta_model_types: Dict
[str, Union[type, Dict[str, Dict[str, str]]]]) —> None:
self.meta_model_types_to_sdk_types = meta_model_types
for type_name in meta_model_types:
if isinstance(meta_model_types[type_name], type):
self.add_type(type-name, meta_model_types|[type_name])
type: ignore
self.add_create_type (type_name, meta_model_types |
type-name|) # type: ignore
self.add_inverted_type (meta_model_types [type_name],
type_name)
self.sdk_types_to_meta_model_types|[meta_model_types|
type-name || = type_name
else:
self.add_type(type_name, (meta_model_types[type_name])
["class”]) # type: ignore
self.add_create_type (type_name, (meta_model_types|
type-name]) ["create”]) # type: ignore
self.add.inverted_type ((meta.model_types[type_name]) [”
class”], type.name)
self.sdk_types_to_meta_model_types|[meta_model_types|

type_name][7class”|] =\
{7class”: typename, “create”: meta_model_types|
type_name | ["create”],
7attributes”: meta.model_types|[type_-name][”

attributes”]}

def get_correct_attribute_.name_by_meta_model_type_name (self ,
type_name: str, attribute_name: str) —> str:
return ((self.meta_model_types_to_sdk_types[type_name]) [”
attributes”]) [attribute_name] # type: ignore

def add_sdk_types_to.meta_model_types(self, sdk_types: Dict[type,

Union [str, Dict[str, Union[type, Dict[str, str]]]]]) —> None:
for sdk_type in sdk_types:

148

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

self.sdk_types_to_meta_model_types|[sdk_type] = sdk_types]|

sdk_type]

if isinstance(sdk_types[sdk_type], str):
self.add_inverted_type(sdk_type, sdk_types[sdk_type])

type: ignore
else:
self.add_inverted_type(sdk_type, (sdk_types[sdk_type])
[7class”]) # type: ignore

def get_correct_attribute_name_by_sdk_type(self, _type: type,
attribute_name: str) —> str:
return ((self.sdk_types_to_meta_model_types[_type])[”
attributes”]) [attribute_name] # type: ignore

class MacroDecl (Token) :
def __init__(self, xtokens):
super (). __init__(xtokens)
self.tokens: Tuple[Union[SimpleName, VariableDeclaration , Type

, OclExpression|, ...] = tokens

def evaluate_value(self, global_env: GlobalEnvironment ,
package_name: Optional[str] = None) —> str:

2

adds the macro to the macro_list and returns the macro name

2999

param_list: List[VariableDeclaration] = []

for i in self.tokens:
if isinstance(i, VariableDeclaration):

param_list .append (i)

if package_name:
global_env.add_macro(package_name + 7::”7 + self.tokens[0].
evaluate_value (), # type: ignore

param_list ,
self.tokens[len(self.tokens) — 1], #
type: ignore
global_env.get_type(
self.tokens[len(self.tokens) —
2].evaluate_value())) # type
ignore

else:
global_env.add_macro(self.tokens[0]. evaluate_value(),

#

type: ignore
param_list ,
self.tokens[len(self.tokens) — 1], #
type: ignore

global_env.get_type(
self . tokens[len(self.tokens) —

2].evaluate_value ())) # type
ignore

149

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

return self.tokens [0].evaluate_value() # type: ignore

class MacroCallExp (OclExpression):
def __init__(self, *tokens):

super (). __init__ (xtokens)
self.tokens: Tuple[Union[SimpleName, OclExpression], ...] =
tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:
arg_list = []
name_list = []
for token in self.tokens:
if isinstance(token, OclExpression):
arg_list .append(token.evaluate_value(global_env ,
local_env)) # type: ignore
if isinstance(token, SimpleName):
name_list .append (token.evaluate_value())

if len(name_list) = 2:
return global_env.call_macro(name_list [0] + 7::7 +
name_list [1], arg_list) # type: ignore
else:
return global_env.call_macro(name_list [0], arg_list) #

type: ignore

class AttributeBinding (Token):
def __init__(self, *tokens):

super (). __init__ (xtokens)
self.tokens: Tuple[Union[SimpleName, OclExpression], ...] =
tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Tuple[str, Any]:
return self.tokens[0].evaluate_value (), self.tokens[1].
evaluate_value (global_env , local_env) # type: ignore

class ObjectLiteralExp (LiteralExp):
def __init__(self, xtokens):
super (). __init__ ()
self.tokens: Tuple[Union|[Type, AttributeBinding], ...] =

tokens

def evaluate_value(self, global_env: GlobalEnvironment, local_env:
LocalEnvironment) —> Any:

type_name: str = self.tokens[0].evaluate_value() # type:
ignore
150
216.73.216.60, am 24.01.2026, 01:53:05. © Inhalt.
tersagt, m 'mit, fiir oder in KI-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

_type: type = global_env.get_create_type (type_name) # type:
ignore

attr_dict_tmp = {}
for i in range(l, len(self.tokens)):

attribute_name , attribute_value = self.tokens[i].
evaluate_value (global_env, local_env) # type: ignore
attr_dict_tmp [attribute_name] = attribute_value

attr_dict = {}
for name in attr_dict_tmp:
attr_dict [global_env.
get_correct_attribute_name_by_meta_model_type_name (
type_name, name)] = \
attr_dict_tmp [name]|

return _type (sxattr_dict)

class TransformationDefinition (Token):
def __init__(self, xtokens):

super (). __init__(*tokens)
self.tokens: Tuple[Union[SimpleName, VariableDeclaration ,
LiteralExp|, ...] = tokens

def evaluate (self ,

source_instances: List [Any],

attribute_name_path: List[str],

meta_model_types_to_sdk_types: Optional [Dict[str,
Union [type, Dict[str, Union[type, Dict[str, str
11111] = None,

sdk_types_to_meta_model_types: Optional[Dict [type,
Union [str, Dict[str, Union[type, Dict[str, str
111111 = None,

meta_model_variables: Optional [Dict [str, Any]] = None

macros: Optional[Dict [str, List [MacroDecl]|]] = None)

—> Optional [Any]:

L

Create a new object of the given information_model_type based
on the transformation definition wusing

the given source instances

:param source_instances: List of instances of the given
information model type which are mapped to the source
templates of the transformation definition
:param attribute_name_path: The name of the attribute in the
given information model type to check which given
sources instance match against the required source

151

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

templates of the transformation definition
sparam meta-model_types_to_sdk_types: List of meta model
classes and their mapping to the corresponding
classes in the underlying software including the
mapping of the class attributes
:param sdk_types_to_meta-model_-types: List of classes in the
underlying software and their mapping to the
corresponding meta model classes including the mapping
of the class attributes
Note: Only different mappings to the
meta-model_types_to_sdk_types is mneeded
:param meta-model_variables: List of variables defined by the
meta model e.g. enums
:param macros: List of macros with are used in this
transformation definition

:raise KeyError: If not enough source instances are given or
the required source instances are missing
global_env = GlobalEnvironmentMTL ()
local_env = LocalEnvironment ()
if meta_model_types_to_sdk_types is not None:
global_env.add_-meta_model_types_to_sdk_types(
meta_model_types_to_sdk_types)

if sdk_types_to_meta_model_types is not None:
global_env.add_sdk_types_to_meta_model_types(
sdk_types_to_meta_model_types)

if meta_model_variables is not None:
for var in meta_model_variables.items():
global_env.add_var(var[0], None, var|[l])

get source template list and macro list

source_templates: Dict[VariableDeclaration, Union[None, List |
str, LiteralExp|]] = {}

token_length = len(self.tokens)

object_literal_exp: ObjectLiteralExp = self.tokens]
token_length — 1] # type: ignore

add target template value to wvariables

for i in range(1l, token_length — 3):
if isinstance(self.tokens[i], VariableDeclaration):
if isinstance(self.tokens[i+1], LiteralExp):
source_templates [self.tokens[i]] = self.tokens[i +
1] # type: ignore
else:
source_templates [self.tokens[i]] = None # type:

ignore

check if source instances and source templates match and add

152

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

them to env
if len(source_templates.keys()) > len(source_instances):
raise KeyError(”Length_of_source.instance_list _must_be.
greater_or.equal_than_.the_source_template_list”)

si_found = 0
for st in source_templates:
var_name = st.evaluate_value(global_env, local_env) #

type: ignore
si_found_temp = 0
si-list = []

type-name = local_env.get_var_type (var_name)
if isinstance(source_templates|[st]|, type(None)):
if type(type.name) = typing._GenericAlias: # type:
ignore

for si in source_instances:
if isinstance(si, type.name.__args__): # type
rignore
si_found_temp += 1
si_list .append(si)
continue
else:
for si in source_instances:
if isinstance(si, type.name):
si_found_temp += 1
si_list .append(si)

break
else:
attribute_value = source_templates[st].evaluate_value (
global_env , local_env) # type: ignore
si_found_temp = 0
si_list = []
if type(type.name) = typing._GenericAlias: # type:
ignore
for si in source_instances:
if isinstance(si, type.name.__args__): # type
rignore
tmp_parent = si
for i in range(len(attribute_name_path) —
1):
tmp_parent = getattr (tmp_parent,
attribute_name_path|[i])
if getattr(tmp_parent,
attribute_name_path [len (
attribute_name_path) — 1])
= attribute_value:
si_found_temp += 1
si_list .append(si)
continue
else:
153
aE710 z’le.nm.so,-r:"um.zoza,m:saﬁ':’wm"KI ch Inhal.

https://doi.org/10.51202/9783186876102

Anhang

for si in source_instances:
if isinstance(si, type_name):
tmp_parent = si
for i in range(len(attribute_name_path) —
1):
tmp_parent = getattr (tmp_parent,
attribute_name_path[i])
if getattr(tmp_parent,
attribute_name_path [len (
attribute_name_path) — 1])
= attribute_value:
si_found_temp += 1
si_list .append(si)
break
if len(si_list) = 0:
raise KeyError(”No.Instance.for._source._template.{}.
found.in.source._instance.list”.format(var_name))
else:
if type(type_name) = typing._GenericAlias:
local_env.set_var_value (var_name, si_list)
else:
local_env.set_var_value(var_name, si_list [0])
si_found 4= 1

if si_found != len(source_templates):
raise KeyError(”Source_instance.list_.does_not_match_the.
required.source.template.list”)

add macros to env
if macros is not Nomne:
for package_name, macro_list in macros.items():
for macro in macro_list:
if isinstance(macro, MacroDecl):
macro. evaluate_value (global_env , package name)

evaluate object literal exp

information_model = None
if object_literal_exp is not None:
information_model = object_literal_exp.evaluate_value(

global_env, local_env)
return information_model

class PackageDeclaration:
def __init__(self, xtokens):
self.tokens: Tuple[Union [SimpleName, TransformationDefinition ,
MacroDecl], ...] = tokens

def get_transformation_definition (self) — Optional|
TransformationDefinition |:

154

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

C' Python-Klassendefinition der abstrakten Syntaxklassen

for token in self.tokens:
if isinstance(token, TransformationDefinition):
return token
return None

def get_macro_list(self) —> List[MacroDecl]:
macro_list: List [MacroDecl] = []
for token in self.tokens:
if isinstance(token, MacroDecl):
macro_list .append (token)
return macro_list

def get_needed_packages(self) —> List [str]:
package_list: List[str] = []
parent self.tokens[1]
macro_call_exp_list = self.get_macro_call_exp_list (parent)
for macro in macro_call_exp_list:
macro_name: List[str] = []
for token in macro.tokens:
if isinstance(token, SimpleName):
macro_name . append (token.evaluate_value())
else:
break
if len(macroname) =— 2:
if macro_name [0] not in package_list:
package_list .append (macro-name [0])
return package_list

def get_macro_call_exp_list(self, parent: Token) —> List |
MacroCallExp | :
macro_call_exp_list: List[MacroCallExp] = []
for token in parent.tokens:
if isinstance(token, MacroCallExp):
macro_call _exp_list.append(token)
if isinstance(token, Token):
macro_call_exp_list.extend (self.
get_macro_call_exp_list (token))
return macro_call_exp_list

155

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

D Anwendungsfall 1: Firmenspezifische
Informationsmodelle

D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0)

Address: submodelElementCollection Phone:
submodelElementCollection

Department: langString [0..1]
Street: langString [1]
Zipcode: langString [1]

TelephoneNumber: langString [1]
TypeOfTelephone: String [0..1]

POBox: langString [0..1]
ZipCodeOfPOBox: langString [0..1]
CityTown: langString [1]

StateCounty: langString [0..1]
NationalCode: langString [1]
VATNumber: langString [0..1]
AddressRemarks: langString [0..1]
AddressOfAdditionalLink: String [0..1]

submodelElementCollection

FaxNumber: langString [1]
TypeOfFaxNumber: String [0..1]

Email:
submodelElementCollection

ManufacturerName: langString (1] Email{00}: submodelElementCollection [0..%]
Address: SubmodelElementCollection [1]
[

ollection

SerialNumber: String [0..1]
YearOfConstruction: String [1]
Markings: SubmodelElementCollection [0..1]

EmailAddress: String [1]
Marking{00}: submodelElementCollection [1..4] PublicKey: langString [0..1]

TypeO! String [0..1]
TypeOfPublickKey: langString [0..1]

L

Nameplate: Submodel 19 Phone{00}: submodelElementCollection [0..*] 7
Fax{00}: submodelElementCollection [0..%] 0.

Marking: submodelElementCollection

AssetSpecificProperties.
SubmodelElementCollection [0..1] MarkingName: String [1]

File [1]

_l ;
0.1 MarkingAdditionalText{00}: String [0..*]
AssetSpecificProperties: J
SubmodelElementCollection GuidelineSpecificProperties:
> SubmodelElementCollection
GuidelineSpecificProperties{00}: - -
SubmodelElementCollection [1..4] L J gn:\btij‘?;rr;e)liorconformnyDecIaratlon String [1]

Abbildung D.1: ZVEI Digital Nameplate UML nach [14]

156

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

D Anwendungstfall 1: Firmenspezifische Informationsmodelle

D.2 Digital Nameplate for Galaxie®Actuator der Firma
WITTENSTEIN galaxie GmbH

NameplateForGalaxieD: Submodel

ManufacturerName: langString [1]

Address: SubmodelElementCollection [1]
g [

ly:
SerialNumber: String [0..1]
YearOfConstruction: String [1]

Markings: SubmodelElementCollection [0..1]

AssetSpecificProperties:
SubmodelElementCollection [0..1]

Address: submodelElementCollection

Department: langString [0..1]

Street: langString [1]

Zipcode: langString [1]

CityTown: langString [1]

NationalCode: langString [1]
AddressOfAdditionalLink: String [0..1]
Phone{00}: submodelElementCollection [0..¥]

AssetSpecificProperties:
SubmodelElementCollection

GuidelineSpecificProperties{00}:
SubmodelElementCollection [2]
Weight: float [1]
FeedbackSystem: string [1]
MountingPosition: string [1]
Lubrication: string [1]
CommutationOffset: float [1]
TempSensorType: string [1]

Fax{00}: submodelElementCollection [0..*]
1 | Email{00}: submodelElementCollection [0..5]
1 ollection
0}: st ollection [1..]
1.x
—>{ Marking: submodelElementCollection
MarkingName: String [1]
MarkingFile: File [1]
GuidelineSpecificProperties:
0.1 SubmodelElementCollection
_,9 GuidelineForConformityDeclaration: String [1]
1 | RatedPower: float [1]
RatedCurrent: float [1]
RatedVoltage: float [1]
RatedMotorRotationSpeed: float [1]
MaxMotorRotationSpeed: float [1]
ThermallnsulationClass: string [1]
ProtectionClass: string [1]

GuidelineSpecificProperties:
SubmodelElementCollection

GuidelineForConformityDeclaration: String [1]
RatedCurrent: float [1]

MaxRotationalSpeed: float [1]
ProtectionClass: string [1]

Phone:
submodelElementCollection

TelephoneNumber: langString [1]
TypeOfTelephone: String [0..1]

submodelElementCollection

FaxNumber: langString [1]
TypeOfFaxNumber: String [0..1]

Email:
submodelElementCollection

EmailAddress: String [1]

Abbildung D.2: Auszug aus dem abgeleiteten Submodel-Template Digital Nameplate for Ga-
laxie®Actuator der Firma WITTENSTEIN galaxie GmbH nach [160]

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

157

https://doi.org/10.51202/9783186876102

Anhang

D.3 Transformationsdefinition zwischen dem WITTENSTEIN und
dem ZVEI Teilmodell-Template

transformationDefinition tdl
sourceTemplate:
a: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "https://wgrp.biz/sm/wgx/NameplateForGalaxieD
/1/0/NameplateForGalaxieD",
type: KeyElements::Submodel}}}
targetTemplate:
b: Submodel -> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "https://admin-shell.io/zvei/nameplate/1/0/
Nameplate",
type: KeyElements::GlobalReferencel}}}
value: Submodel A
identification: a.identification,
submodelElement: Set{
aas_macros::copySubmodelElementByIdShort (a, "ManufacturerName"),
aas_macros::copySubmodelElementByIdShort (a, "
ManufacturerProductDesignation") ,
aas_macros::copySubmodelElementByIdShort (a, "
ManufacturerProductFamily"),
aas_macros::copySubmodelElementByIdShort (a, "SerialNumber"),
aas_macros::copySubmodelElementByIdShort (a, "YearOfConstruction"),
aas_macros::copySubmodelElementByIdShort (a, "Address"),
aas_macros::copySubmodelElementByIdShort (a, "Markings"),
let smec: Submodel = aas_macros::getSubmodelElementByIdShort(a, "
AssetSpecificProperties") in (
SubmodelElementCollection {
idShort: smec.idShort,
value: aas_macros::copySubmodelElementsBySemanticIdValue (smec,
"https://admin-shell.io/zvei/nameplate/1/0/Nameplate/
AssetSpecificProperties/GuidelineSpecificProperties"),
ordered: smec.ordered,
allowDuplicates: smec.allowDuplicates,
semanticId: smec.semanticIld,
kind: smec.kind

)
},
idShort: a.idShort,
description: a.description,
administration: a.administration,
semanticId: Reference{key: Sequence{Key{
idType: KeyType::IRT,
value: "https://admin-shell.io/zvei/nameplate
/1/0/Nameplate",
type: KeyElements::GlobalReferencel}}},
kind: ModelingKind::Instance

158

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

E Anwendungsfall 2: Verschiedene Versionen eines

Informationsmodells

E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation

class Documentation VDI2770

«Submodel»
Documentation

0.*

«SubmodelElementCollection»
Document

+ documentClassld: Property
+ documentClassificationSystem: Property

+ documentClassName: MultiLanguageProperty
+ documentld: Property

+ isPrimaryDocumentld: Property [0..1]

+ referencedObject{00}: ReferenceElement [0..*]

«SubmodelElementCollection»
DocumentVersion

digitalFile{00): File [1..*]
documentVersionld: Property

keyWords: MultiLanguageProperty [0..1]
language{00}: Property [1..*]
organizationName: Property

organizationOfficialName: Property
role: Property

setDate: Property [0..1]
statusValue: Property

summary: MultiLanguageProperty
title: MultiLanguageProperty

EE R S S

Abbildung E.1: Unveréffentlichte Version 1 des Teilmodell-Templates ManufacturerDocumen-

tation

216.73.216.60, am 24.01.2026, 01:53:05.
m

. © Inhal.
mit, flir oder in Ki-Syster

159

https://doi.org/10.51202/9783186876102

Anhang

E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation

basierend auf der VDI 2770 Spezifikation

class Documentation VDI2770 /

«Submodel»
Documentation

«SubmodelElementCollection»
DocumentClassification

+ documentClassld: Property

«SubmodelElementCollection»

+ documentCl System: Property
+ documentClassName: MultiLanguageProperty

«SubmodelElementCollection»
DocumentVersion

keyWords: MultiLanguageProperty [0..1]

onName: Property
organizationOfficialName: Property

summary: MultiLanguageProperty
title: MultiLanguageProperty

Document
+ documentCl ion: D 1 + digitalFile{00}: File [1.."]
+ documentld: Property + documentVersionld: Property
+ documentVersion: DocumentVersion [0..*] +
+ isPrimary: Property [0..1] + language{00}: Property [1..*]
+ referencedObject{00}: ReferenceElement [0..*] @ + i
0.+

+ previewFile: File [0..1]

+ role: Property

+ setDate: Property [0..1]

+ statusValue: Property

+

+

Abbildung E.2: Unveréffentlichte Version 2 des Teilmodell-Templates ManufacturerDocumen-

tation

160

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation

class Documentation VDI2770 /

«Submodel» «SubmodelElementCollection»
ManufacturerDocumentation Documentld{00} Documentld

+ Entity{00}: Entity [0..*] e DocumentDomainid: Property
" Valueld: Property
IsPrimary: Property [0..1]

+ 4+

+

«SubmodelElementCollection»
DocumentClassification

Document{00} DocumentClassification{00}

+

Classld: Property
ClassName: MultiLanguageProperty
ClassificationSystem: Property

=
+ o+

0.*

«SubmodelElementCollection» «SubmodelElementCollection»
DocumentVersion
Document

L Property [1..*]

D i Property

Title: MultiLanguageProperty
SubTitle: MultiLanguageProperty [0..1]
Summary: MultiLanguageProperty
KeyWords: MultiLanguageProperty
SetDate: Property [0..1]
StatusValue: Property
OrganizationName: Property
OrganizationOfficialName: Property
DigitalFile{00}): File [1..%]
PreviewFile: File [0..1]

+ DocumentedEntity{00): ReferenceElement [0..*]

[B

FE b F A A+t

Abbildung E.3: Unveroffentlichte Version 3 des Teilmodell-Templates ManufacturerDocumen-
tation

E.4 Transformationsdefinition zwischen den Versionen 1 und 2

transformationDefinition tdl
sourceTemplate:
a: Submodel — Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: ”http://admin—shell.io/vdi/2770/1/0/
Documentation”,
type: KeyElements:: GlobalReference}}}
target Template :
b: Submodel —> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: ”http://admin—shell.io/vdi/2770/1/1/
Documentation”,
type: KeyElements:: GlobalReference}}}
value: Submodel {
identification: a.identification ,
submodelElement :

161

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

let smc_document_list: Set(SubmodelElementCollection) =
aas_macros :: getSubmodelElementsBySemanticIdValue (
a,
"http://admin—shell .io/vdi/2770/1/0/Document”)
in (
smc-document_list—iterate (
smc_document: SubmodelElementCollection ;
new_set: Set(SubmodelElement) = Set{} |
new_set—>including (
aas_macros :: copySubmodelElementCollectionWithValue (
smc_document ,
Set{
aas_macros :: copySubmodelElementBylIdShort (smc_document ,
"DocumentId”) ,
aas_macros :: copySubmodelElementByldShort (sme_document ,
?IsPrimaryDocument”) ,
aas_macros :: copySubmodelElementsBySemanticIdValue (
smc_document, “http://admin—shell.io/vdi
/2770/1/0/Document /ReferencedObject”) ,
SubmodelElementCollection{
idShort: "DocumentClassification00”,
description: LangStringSet{
langString: Set{
langString {
language: "en”,
name: “This SubmodelElementCollection holds
the information for a VDI2770
DocumentClassification entity”
}
}
}
value: Set{
aas_macros :: copySubmodelElementByIdShort (
smc_document , ”DocumentClassId”) ,
aas_macros :: copySubmodelElementByldShort (
smc_document , ”"DocumentClassName”) ,
aas_macros :: copySubmodelElementByIdShort (
smc_document , "DocumentClassificationSystem ”)
s
ordered: False,
allowDuplicates: False,
semanticld: Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: 7http://admin—shell.io/vdi
/2770/1/0/DocumentClassification/
DocumentClassification”,
type: KeyElements:: GlobalReference}}},
kind: ModelingKind :: Instance
s

aas_macros :: copySubmodelElementSet (

162

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

aas_macros :: getSubmodelElementsBySemanticIdValue (
smc_document ,
"http://admin—shell .io/vdi/2770/1/0/DocumentVersion”

),
idShort: a.idShort ,
description: a.description ,
administration: a.administration ,
semanticId: Reference{key: Sequence{Key{

idType: KeyType::IRI,

value: "http://admin—shell.io/vdi/2770/1/1/

Documentation”,

type: KeyElements:: GlobalReference}}},

kind: ModelingKind :: Instance

163

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

F Anwendungsfall 3: Integration von Komponenten und
zugehorigen Informationsmodellen

transformationDefinition tdl
sourceTemplate :
a: Set(Submodel) —> Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "https://acplt.org/PowerMonitoring”,
type: KeyElements:: GlobalReference }}}
targetTemplate:
b: Submodel — Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: 7https://acplt.org/PowerMonitoring
type: KeyElements:: GlobalReference}}}
value: Submodel {
identification: Identifier{
id: "https://acplt.org/SM/TestSM”,
idType: IdentifierType::IRI},
submodelElement: Set{
Property {
idShort: ”MaxPowerConsumption”,
valueType: Integer,
value: a—>iterate (sm: Submodel; max_power: Integer = 0 |
max._power + aas_macros :: getSubmodelElementByIdShort (sm,
"MaxPowerConsumption”) . value)
B
Property {
idShort: ”"RatedVoltage”,
valueType: Integer,
value: a—>iterate (sm: Submodel; max_rated_voltage: Integer = 0
\
max_rated_voltage .max(
aas_macros :: getSubmodelElementBylIdShort (sm,
"RatedVoltage”).value))
Iz
Property {
idShort: "PowerTypes”,
valueType: String,

value:
let power_type: String = 7"
in (
a—>iterate (sm: Submodel; power_type_list: Set(String) =
Set{} |
let tmp_string: String = aas_macros::

getSubmodelElementByIdShort (sm,
"RatedVoltage”).value.toString () + aas_macros::
getSubmodelElementByldShort (sm, ”PowerType”).
value

164

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

F Anwendungsfall 3: Integration von Komponenten und zugehérigen
Informationsmodellen

in (
if power_type_list—includes(tmp_string)
then power_type_list
else power_type_list —including (tmp_string)
endif

)

)—>toString ()
)
}

idShort: ”"PowerMonitoring”,
administration: Administrativelnformation{
version: 717,
revision: 707},
semanticld: Reference{key: Sequence{Key{
idType: KeyType::IRI,
value: "https://acplt.org/PowerMonitoring”,
type: KeyElements:: GlobalReference }}},
kind: ModelingKind :: Instance

165

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

G Testergebnisse der Versuchreihen

0 10 20 30 40 50 60 70 80 90 100

@Testl @Test2 @®Test3 @Testd ®Tests ®Tests ®Test7 ©Testd

Abbildung G.1: Darstellung der Messwerte fiir die Erstellung des Parsers mit System 1

07

06

05

04

R 2R R0aaAREANR, 92222000 a2 20a 0A222000A R0 00, 0a0REn2200,%
1] 20550945088 |) L LMl Ll S]] ‘v\,lv 080000 UsC883800!

I H 52400 008
90608088058u008800s 888000886

035

03

@Testl ®Test2 ®Test3 @Testd ®TestS ®Tests ®Test? ©Tests

Abbildung G.2: Darstellung der Messwerte fiir die Erstellung des Parsers mit System 2

166

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

G Testergebnisse der Versuchreihen

025 .

005

®Testl ®Test2 ®Test3 ©Testd ®TestS ®Test6 @Test? ®Tests

Abbildung G.3: Darstellung der Messwerte fiir das Parsing der Transformationdefinition-Datei
mit System 1

04

035

03

0.25

0.2

0.15

01 |® s LI o%sees %o %o
o0 0g0e o'.nooocog s o
Ll

« sltistititiHLRNRGERhhiiTG i hin
L] 1] s 1]

]

[10 20 30 40 50 60 70 80 90 100

@Testl ®Test2 ®Test3 ©Testd ®TestS ®Tests @Test? @Tests

Abbildung G.4: Darstellung der Messwerte fiir das Parsing der Transformationdefinition-Datei
mit System 2

0.006
0.005 .

0.004 . . ® . .
o . °
0003 o oo ee® o ecoee Secee o o0 ec o 00000 S o o0 0 000 S e 00 % o 00 cocee © oo0ee cooe
. o °

.
0002 9000000 000000000000 0000 0000 00 00 000 000000 00:000000000000 000000 © © 00 0o cccccee 0o oo

0001 |@eo0ee

0 eco oceo esco e o ocoe ceo ocoeecesco eo ece
0 10 20 30 a0 50 60 70 80 %0 100

@Testl ®Test2 ®Test3 oTestd ®TestS ®Tests @Test7 @Tests

Abbildung G.5: Darstellung der Messwerte fiir die Ermittlung der bendtigten zusatzlichen
Dateien mit System 1

167

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Anhang

0.006

0.005

0.004

0.003

0.002

o o oo ®ecee® 0%00%000ee

0.001 o o .
, [§08000R0RRRR000RRNLRS0NERS0NRTSONNSONERNNNLERNLILONNLITIEALSNNILNNELINNEIELNINIEAILANIIELILINNNS
0 10 20 30 W 50 60 7 80 %0 100

®Testl ®Test2 ®Test3 oTestd ®TestS ®Test6 @Test? @®Tests

Abbildung G.6: Darstellung der Messwerte fir die Ermittlung der benétigten zusatzlichen
Dateien mit System 2

oo
®0el® oo

. °

e 8 o, 0, o0 ¢
fitettishitncknsitalitetly
TR L H 1 R H H e T

.
3 3, . ..'o= r’,‘:'l'
0.15 8 1 288 9
TH T B TR TR RTTH B R ETH

0 10 20 30 a0 50 60 70 80 90 100

®Testl ®Test2 ®Testd ®Testd @Tests ®Test6 @Test7 @Tests

Abbildung G.7: Darstellung der Messwerte fiir das Parsing der zusétzlichen Dateien mit Sy-
stem 1

°

1

005

0 10 20 30 a0 50 60 70 80 90 100

@Testl ®Test2 ®Testd oTestd @Tests ®Test6 @Test7 @Testd

Abbildung G.8: Darstellung der Messwerte fiir das Parsing der zusatzlichen Dateien mit Sy-
stem 2

168

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

G Testergebnisse der Versuchreihen

(1] .
0.005
RN .i:! 3 $3ea003edugdi byailnggettedltoneggateatsttatiitogg
o (0%083%°338000%00 300sted00edecccccccccee’ende®e® d 0000°%000°%08008%000000008%°80 00000
0 10 20 30 40 50 60 70 80 90 100

@Testl ®Test2 ®Test3 ©Testd ®TestS @Test6 @Test? ®Tests

Abbildung G.9: Darstellung der Messwerte fiir die Anwendung des ausfithrbaren abstrakten
Syntaxbaums mit System 1

ocos 88888 1311 8038 H Ssesesssgess "!. $efece .o. H
o 80 BRBRRRERERRRSCRCRRRSCRRIRNNLNRNC,I0RRRACAINLCISINIAAALAALACNLC

0 10 20 30 40 50 60 70 80 %0 100

@Test] ®Test2 ®Test3 ©Testd ®TestS @Test6 @Test? ®Tests

Abbildung G.10: Darstellung der Messwerte fiir die Anwendung des ausfiihrbaren abstrakten
Syntaxbaums mit System 2

169

216.73.216.60, am 24.01.2026, 01:53:05. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[1] B. fir Wirtschaft und Energie, “Was ist so revolutioniar an Industrie
4.0,” https://www.bmwi.de/Redaktion/DE/FAQ/Industrie-40/faq-industrie-4-0.
html?cms_artld=401710, eingesechen am xx.xx.xxxx. [Online]. Availa-
ble: https://www.bmwi.de/Redaktion/DE/FAQ/Industrie-40/faq-industrie-4-0.
html?cms_artId=401710

[2] VDI/VDE Industrie 4.0 Begriffe/Terms, VDI, Diisseldorf, Statusreport, 2019.

[3] T. Tauchnitz, “Die Verwaltungsschale - Losung fir das Datenchaos!” atp magazin,
vol. 62, no. 6-7, pp. 50-59, 2020.

[4

Plattform Industrie 4.0, Details of the Asset Administration Shell - Part 1 - The ex-
change of informationen between partners in the value chain of Industrie 4.0 (Version
3.0RC01). Bundesministerium fiir Wirtschaft und Energie, 2020.

[5] ——, Details of the Asset Administration Shell - Part 2 - Interoperability at Runtime -
Ezchanging Information via Application Programming Interfaces (Version 1.0RCO01).
Bundesministerium fiir Wirtschaft und Energie, 2020.

[6] ——, Functional View of the Asset Administration Shell in an Industrie 4.0 Systen
Environment. Bundesministerium fiir Wirtschaft und Energie, 2021.

[7] W. Mahnke, “Informationsmodellierung mit OPC Unified Architecture,” atp maga-
zin, vol. 62, no. 3, pp. 58-65, 2020.

8

1EC, IEC TS 62832-1 Ed.1.0 - Industrial-process measurement, control and automa-
tion - Digital factory framework - Part 1: General principles. Beuth Verlag, Berlin,

2020.

9] —, [EC TS 62832-2 Ed.1.0 - Industrial-process measurement, control and auto-
mation - Digital factory framework - Part 2: Model elements. Beuth Verlag, Berlin,
2020.

[10] ——, IEC TS 62832-8 Ed.1.0 - Industrial-process measurement, control and auto-

mation - Digital factory framework - Part 3: Application of Digital Factory for life
cycle management of production systems. Beuth Verlag, Berlin, 2020.

[11] S. Kaebisch, T. Kamiya, M. McCool, and V. Charpenay, “Web of Things (WoT)
thing description,” First Public Working Draft, W3C, 2017.

[12] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch, “Web of
Things (WoT) thing description,” Recommendation, W3C, 2020.

170

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

22]

(23]

(24]

[25]

Plattform Industrie 4.0, “Specification Submodel Templates of the Asset Admini-
stration Shell: Generic Frame for Technical Data for Industrial Equipment in Ma-
nufacturing (Version 1.1),” Bundesministerium fir Wirtschaft und Energie, Berlin,
Standard, 2020.

———, “Specification Submodel Templates of the Asset Administration Shell: ZVEI
Digital Nameplate for industrial equipment (Version 1.1),” Bundesministerium fiir
Wirtschaft und Energie, Berlin, Standard, 2020.

——, “Relationships between 14.0 Components — Composite Components and Smart
Production: Continuation of the Development of the Reference Model for the 14.0
SG Models and Standards ,” Bundesministerium fiir Wirtschaft und Energie, Berlin,
Standard, 2017.

M. Both and J. Miiller, “Deep Learning in Industrie 4.0 Umgebungen als Wegbereiter
fiir automatisierte Abbildung von Ontologien,” Tagungsband Automation, pp. 675—
686, 2020.

J. Nilsson, F. Sandin, and J. Delsing, “Interoperability and machine-to-machine
translation model with mappings to machine learning tasks,” in 2019 IFEE 17th
International Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019,
pp. 284-289.

J. Bakakeu, M. Brossog, J. Zeitler, J. Franke, S. Tolksdorf, H. Klos, and J. Peschke,
“Automated reasoning and knowledge inference on opc ua information models,” in
2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS).
IEEE, 2019, pp. 53-60.

T. Miny, M. Thies, U. Epple, S. Wein, and C. Diedrich, “Konzept fir die automati-
sierte Erstellung von Verwaltungsschalen-Teilmodellen mit Hilfe doménenspezifischer
Transformationssprachelemente,” Tagungsband Automation, pp. 103-104, 2020.

T. Deppe, L. Nothdurft, and U. Epple, “DIN SPEC 92000 als Enabler fur Plug-and-
Produce-Konzepte,” atp magazin, vol. 62, no. 4, pp. 78-85, 2020.

Miny, Torben and Thies, Michael and Epple, Ulrich and Diedrich, Christian, “Mo-
deltransformation for Asset Administration Shells,” in IECON 2020, 2020.

P. Janich, Sprache und Methode: eine Einfihrung in philosophische Reflexion. UTB,
2014.

S. Strahringer, “Ein sprachbasierter Metamodellbegriff und seine Verallgemeinerung
durch das Konzept des Metaisierungsprinzips,” in Modellierung, vol. 98, 1998, pp.
15-20.

M. Ulrich, Die S]}mche als Sache: Primdrsprache, Metasprache, Ubersetzung: Unter-
suchungen zum Ubersetzen und zur Ubersetzbarkeit anhand von deutschen, englischen
und vor allem romanischen Materialen. Gunter Narr Verlag, 1997, vol. 49.

J. MittelstraB3, Enzyklopddie Philosophie und Wissenschaftstheorie: Band 2: HO.
Wissenschaftliche Buchgesellschaft, 2013.

171

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

(26]

(27]

(28]
(29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]
(39]

(40]

(41]

(42]

(43]

172

S. Strahringer, Metamodellierung als Instrument des Methodenvergleichs: Fine Eva-
luierung am Beispiel objektorientierter Analysemethoden. Shaker, 1996.

G. Klaus and M. Buhr, Philosophisches Wérterbuch. Verlag Enzyklopadie Leipzig,
1964.

M. Polke, Prozefileittechnik. Oldenbourg, 1994.
B. Rumpe, Modellierung mit UML. Springer Berlin Heidelberg, 2011.
H. Stachowiak, Allgemeine Modelltheorie. Springer, 1973.

A. Fleischmann, S. Oppl, W. Schmidt, and C. Stary, Ganzheitliche Digitalisie-
rung von Prozessen: Perspektivenwechsel-Design Thinking-wertegeleitete Interaktion.
Springer, 2018.

0. Vogel, I. Arnold, A. Chughtai, E. Thler, T. Kehrer, U. Mehlig, and U. Zdun,
“Software-Architektur: Grundlagen—Konzepte,” Praxis, vol. 2, 2009.

A. Fleischmann, S. Oppl, W. Schmidt, and C. Stary, “Modellierungssprachen,” in
Ganzheitliche Digitalisierung von Prozessen. Springer, 2018, pp. 71-128.

M. Kobler, Qualitit von Prozessmodellen: Kennzahlen zur analytischen Qua-
litdtssicherung bei der Prozessmodellierung. Logos Verlag Berlin GmbH, 2010.

N. Chomsky, Aspekte der Syntaz-Theorie. Suhrkamp, 1969.

ISO/IEC, “CSA ISO/IEC 9899:2019-10-01: Information technology - Programming
languages - C (Adopted ISO/IEC 9899:2018, fourth edition, 2018-07),” Standard,
2019.

J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
1981.

D. Abel, Petri-netze fiir Ingenieure: Modellbildung und Analyse diskret gesteuerter
Systeme. Springer-Verlag, 2013.

Object Management Group, “OMG Unified Modeling Language (OMG UML), Ver-
sion 2.5.1,” Object Management Group, Standard, 2017.

A. Ferdjoukh, A .-E. Baert, A. Chateau, R. Coletta, and C. Nebut, “A CSP Approach
for Metamodel Instantiation,” in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence. 1EEE, 2013, pp. 1044-1051.

M. Scheidgen, “Metamodelle fiir Sprachen mit formaler Syntaxdefinition, am Beispiel
von SDL-2000,” Humboldt- Universitit zu Berlin, 2004.

J. Cabot and M. Gogolla, “Object Constraint Language (OCL): a Definitive Guide,”
in International School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems. Springer, 2012, pp. 58-90.

M. Fowler, Domain-Specific Languages. Pearson Education, 2010.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

(44]

(4]

[46]

(47]

(48]

(49]

[50]

[51]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

M. Strembeck and U. Zdun, “An approach for the systematic development of domain-
specific languages,” Software: Practice and Experience, vol. 39, no. 15, pp. 1253-1292,
20009.

ISO/IEC, ISO/IEC 9075-1:2016: Information technology - Database languages - SQL
- Part 1: Framework (SQL/Framework). Beuth Verlag, Berlin, 2016.

T. Stahl, S. Efftinge, A. Haase, and M. Vélter, Modellgetriebene Softwareentwicklung:
Techniken, Engineering, Management. dpunkt. verlag, 2012.

M. Broy and O. Spaniol, VDI-Lezikon Informatik und Kommunikationstechnik.
Springer-Verlag, 2013.

G. Kappel and M. Schrefl, Objektorientierte Informationssysteme: Konzepte, Dar-
stellungsmittel, Methoden. Springer-Verlag, 2013.

ISO/TS 29002-5:2009 Industrial automation systems and integration — Exchange of
characteristic data — Part 5: Identification scheme, 2009.

T. Berners-Lee, R. T. Fielding, and L. Masinter, “RFC 3986: Uniform Resource
Identifier (URI): Generic Syntax,” Proposed Standard, January, 2005.

P. Leach, M. Mealling, and R. Salz, “RFC 4122: A universally unique identifier
(UUID) URN namespace,” Proposed Standard, July, 2005.

J. Winkelmann, “Spezifikation von Visual OCL: Eine Visualisierung der Object Cons-
traint Language,” Ph.D. dissertation, Techn. Univ., Fak. IV, Elektrotechnik und In-
formatik, 2005.

Object Management Group, Object Constraint Language V2.4, 2014.

M. Schleipen, Adaptivitit und semantische Interoperabilitat von Manufacturing Fze-
cution Systemen (MES). KIT Scientific Publishing, 2013, vol. 12.

A. Zeid, S. Sundaram, M. Moghaddam, S. Kamarthi, and T. Marion, “Interopera-
bility in Smart Manufacturing: Research Challenges,” Machines, vol. 7, no. 2, p. 21,
2019.

IEC, “IEC 21823-1: Internet of Things (IoT) - Interoperability for IoT Systems - Part
1: Framework,” International Electrotechnical Commission, Geneva, CH, Standard,
2019.

1. S. C. Committee et al., “IEEE Standard Glossary of Software Engineering Termi-
nology (IEEE Std 610.12-1990),” CA: IEEE Computer Society, vol. 169, 1990.

H. Kubicek, A. Breiter, and J. Jarke, “Daten, Metadaten, Interoperabilitat,” Hand-
buch Digitalisierung in Staat und Verwaltung, pp. 1-13, 2019.

A. Tolk, “Composable Mission Spaces and M&S Repositories - Applicability of Open
Standards,” in Spring simulation interoperability workshop, Arlington (VA), 2004.

173

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[60] S. Pantsar-Syvéniemi, A. Purhonen, E. Ovaska, J. Kuusijarvi, and A. Evesti,
“Situation-based and self-adaptive applications for the smart environment,” Jour-
nal of Ambient Intelligence and Smart Environments, vol. 4, no. 6, pp. 491-516,
2012.

[61] NATO Standardization Office, “Allied Joint Doctrine for Communication and Infor-
mation Systems Edition A Version 1,” Standard, 2017.

[62] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things:
Taxonomies and Open Challenges,” Mobile Networks and Applications, vol. 24, no. 3,
pp. 796-809, 2019.

[63] ISO/IEC 19941: Information technology - Cloud computing - Interoperability and
portability, International Electrotechnical Commission, Geneva, CH, Standard, 2017.

[64] ISO/IEC 7498-1: Information technology - Open System Interconnection - Basic Re-
ference Mode: The Basic Model, International Electrotechnical Commission, Geneva,
CH, Standard, 1994.

[65] IEC 21823-2: Internet of Things (IoT) - Interoperability for IoT Systems - Part 2:
Transport Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2019.

[66] TEC 21823-3: Internet of Things (IoT) - Interoperability for IoT Systems - Part 3:
Semantic Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2019.

[67] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things
Infrastructure: Classification, Challenges, and Future Work,” in International Con-
ference on Internet of Things as a Service. Springer, 2017, pp. 11-18.

[68] ETSI, “ETSI TR 103 535: SmartM2M; Guidelines for using semantic interoperability
in the industry,” 2019.

[69] ——, “ETSI TR 103 536: SmartM2M; Strategic/technical approach on how to achieve
interoperability /interworking of existing standardized IoT Platforms,” 2019.

[70] ——, “ETSI TR 103 537: SmartM2M; PlugtestsTM preparation on Semantic Inter-
operability,” 2019.

[71] IEC, “White Paper Semantic interoperability:2019 - Semantic interoperability: chal-
lenges in the digital transformation age,” 2019.

[72] P. Wegener, “GERMAN STANDARDIZATION ROADMAP Industrie 4.0 Version
4,” DIN e, vol. 2020.

[73] T. Pellegrini and A. Blumauer, “Semantic Web,” Wege zur vernetzten Wissensgesell-
schaft. Berlin [ua] Springer, 2006.

[74] H. van der Veer and A. Wiles, “Achieving Technical Interoperability - the ETSI
Approach,” European telecommunications standards institute, 2008.

174

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[75] L. Christiansen, M. Hoernicke, and A. Fay, “Modellgestiitztes Engineering,” atp ma-
gazin, vol. 56, no. 03, pp. 18-27, 2014.

[76] M. Hoernicke, L. Christiansen, and A. Fay, “Anlagentopologien automatisch erstel-
len,” atp magazin, vol. 56, no. 04, pp. 28-40, 2014.

[77] A. Donaubauer, A. Fichtinger, T. Kutzner, and M. Schilcher, “Semantische Modell-
transformation im Kontext von INSPIRE,” Newsletter e-geo. ch, no. 22, pp. 10-13,
2009.

[78] TEC 21823-4: Internet of Things (IoT) - Interoperability for IoT Systems - Part 4:
Syntactic Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2020.

[79] T. Mersch, U. Epple, and A. Schiirr, “Regelbasierte Modelltransformation in pro-
zessleittechnischen Laufzeitumgebungen,” Fachgruppe fiir Materialwissenschaft und
Werkstofftechnik, Tech. Rep., 2017.

[80] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and Soul of
Model-Driven Software Development,” IEEE software, vol. 20, no. 5, pp. 42-45, 2003.

[81] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA Ezplained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[82] H. Kern, S. Kithne, and D. Fotsch, “Merkmale und Werkzeugunterstiitzung fiir Mo-
delltransformationen im Kontext modellgetriebener Softwareentwicklung,” Féahnrich,
K.-P.; Kiihne, S.; Speck, A, 2006.

[83] V. Gruhn, D. Pieper, and C. Rottgers, MDA®: Effektives Software-Engineering mit
UML2® und Eclipse. Springer-Verlag, 2007.

[84] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation approa-
ches,” IBM Systems Journal, vol. 45, no. 3, pp. 621-645, 2006.

[85] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic notes
in theoretical computer science, vol. 152, pp. 125-142, 2006.

[86] A. Metzger, “A Systematic Look at Model Transformations,” in Model-driven Soft-
ware Development. Springer, 2005, pp. 19-33.

[87] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and D. Varr6, “Survey and
classification of model transformation tools,” Software & Systems Modeling, vol. 18,
no. 4, pp. 2361-2397, 2019.

[88] E. Visser, “A Survey of Rewriting Strategies in Program Transformation Systems,”
Electronic Notes in Theoretical Computer Science, vol. 57, no. 2, 2001.

[89] A. Kusel, J. Schonbock, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwin-
ger, “Reuse in model-to-model transformation languages: are we there yet?” Software
& Systems Modeling, vol. 14, no. 2, pp. 537-572, 2015.

175

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

(90]

(91]

(92]

(93]

(94]

(95]

[96]

[97]

(98]

(99]

[100]

[101]

[102]

[103]

[104]

176

S. Nolte, QVT-operational mappings: Modellierung mit der Query views Transfor-
mation. Springer-Verlag, 2009.

J.-M. Jézéquel, O. Barais, and F. Fleurey, “Model Driven Language Engineering
with Kermeta,” in International Summer School on Generative and Transformational
Techniques in Software Engineering. Springer, 2009, pp. 201-221.

D. Akehurst and S. Kent, “A Relational Approach to Defining Transformations in a
Metamodel,” in International Conference on the Unified Modeling Language. Sprin-
ger, 2002, pp. 243-258.

S. Nolte, QVT-Relations Language. Springer Science & Business Media, 2009.

A. Schiurr, “Specification of Graph Translators with Triple Graph Grammars,” in In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science. Springer,
1994, pp. 151-163.

A. Schirr and F. Klar, “15 Years of Triple Graph Grammars,” in International
Conference on Graph Transformation. Springer, 2008, pp. 411-425.

C. Ermel, M. Rudolf, and G. Taentzer, “The AGG approach: Language and environ-
ment,” in Handbook Of Graph Grammars And Computing By Graph Transformation:
Volume 2: Applications, Languages and Tools. World Scientific, 1999, pp. 551-603.

E. D. Willink, “UMLX: A graphical transformation language for MDA,” in 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven Ar-
chitecture, 2003.

T. Vogel and H. Giese, Model-Driven Engineering of Adaptation Engines for Self-
Adaptive Software: Executable Runtime Megamodels. Universitiatsverlag Potsdam,
2013.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Science of computer programming, vol. 72, no. 1-2, pp. 31-39, 2008.

A. Kalnins, J. Barzdins, and E. Celms, “Model transformation language MOLA,” in
Model Driven Architecture. Springer, 2004, pp. 62-76.

D. Varré and A. Balogh, “The model transformation language of the VIATRA2
framework,” Science of Computer Programming, vol. 68, no. 3, pp. 214-234, 2007.

D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Transformation Langua-
ge,” in International Conference on Theory and Practice of Model Transformations.
Springer, 2008, pp. 46—60.

T. Baar and J. Whittle, “On the Usage of Concrete Syntax in Model Transformati-
on Rules,” in International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. Springer, 2006, pp. 84-97.

R. Grgnmo, Using Concrete Syntax in Graph-based Model Transformation, 2009.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[105]

[106]

[107)

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116)

[117)

[118]

B. Rumpe and I. Weisemoller, “A Domain Specific Transformation Language,” arXiv
preprint arXiv:1409.2309, 2014.

1. Weisemoller, Generierung domdnenspezifischer Transformationssprachen. Shaker,
2012.

T. Kiihne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer, “Explicit Transfor-
mation Modeling,” in International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 2009, pp. 240-255.

T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger, and M. Stumptner, “A
generator framework for domain-specific model transformation languages,” in ICEIS
(8), 2006, pp. 27-35.

J. Steel and R. Drogemuller, “Domain-Specific Model Transformation in Building
Quantity Take-Off,” in International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 2011, pp. 198-212.

K. Holldobler, MontiTrans: Agile, modellgetriebene Entwicklung von und mit
domdanenspezifischen, kompositionalen Transformationssprachen. Shaker, 2018.

E. Syriani, J. Gray, and H. Vangheluwe, “Modeling a Model Transformation Lan-
guage,” in Domain Engineering. Springer, 2013, pp. 211-237.

J. S. Cuadrado, E. Guerra, and J. de Lara, “Towards the Systematic Construction of
Domain-Specific Transformation Languages,” in European Conference on Modelling
Foundations and Applications. Springer, 2014, pp. 196-212.

A. Petter, “Modell-zu-Modell-Transformation von Modellen von Benutzerschnittstel-
len,” Ph.D. dissertation, TU-Prints, 2012.

J. 1. Trazébal, C. Pons, and C. Neil, “Model transformation as a mechanism for the
implementation of domain specific transformation languages,” Electronic Journal of
SADIO (EJS), vol. 9, pp. 49-66, 2010.

E. Kalnina, A. Kalnins, A. Sostaks, E. Celms, and J. Iraids, “Tree Based Domain-
Specific Mapping Languages,” in International Conference on Current Trends in
Theory and Practice of Computer Science. Springer, 2012, pp. 492-504.

C. Wagner, J. Grothoff, U. Epple, R. Drath, S. Malakuti, S. Griner, M. Hoffmeister,
and P. Zimermann, “The Role of the Industry 4.0 Asset Administration Shell and
the Digital Twin during the life cycle of a plant,” in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
2017, pp. 1-8.

M. Grieves, “Digital twin: manufacturing excellence through virtual factory replica-
tion,” White paper, vol. 1, pp. 1-7, 2014.

M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. Wang,
“Modeling, Simulation, Information Technology & Processing Roadmap,” Technology
Area, vol. 11, 2010.

177

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[119] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital Twin in Industry: State-of-the-
Art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405-2415,
2018.

[120] K. Panetta, “Gartner’s Top 10 Strategic Technology Trends for 2017,” Smarter With
Gartner, vol. 18, 2016.

[121] D. CeArley, B. Burke, S. Searle, and M. J. Walker, “Top 10 Strategic Technology
Trends for 2018,” The Top, vol. 10, 2016.

[122] G. Top, “Strategic Technology Trends for 2019,” David Cearley, Brian Burke, 10.

[123] DIN, “DIN SPEC 91345: Reference Architecture Model Industrie 4.0 (RAMI4.0),”
DIN - German Institute for Standardization, Berlin, DE, Standard, 2016.

[124] M. Jacoby and T. Uslinder, “Digital Twin and Internet of Things—Current Stan-
dards Landscape,” Applied Sciences, vol. 10, no. 18, p. 6519, 2020.

[125] ISO 13584-42: Industrial automation systems and integration - Part 42: Description
methodology: Methodology for structuring parts families, International Standardi-
zation Organisation, Geneva, CH, Standard, 2010.

[126] IEC 61360-1: Standard data elements types with associated classification scheme for
electric items - Part 1: Definitions - Principles and methods, International Electro-
technical Commission, Geneva, CH, Standard, 2017.

[127] ISO 10303-11: Industrial automation systems and integration — Product data repre-
sentation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, International Standardization Organisation, Geneva, CH, Stan-
dard, 2004.

[128] IEC 61360-2: Standard data elements types with associated classification scheme
for electric items - Part 2: EXPRESS, International Electrotechnical Commission,
Geneva, CH, Standard, 2012.

[129] IEC 62714-1: Engineering data exchange format for use in industrial automation sy-
stems engineering - Automation Markup Language - Part 1: Architecture and gene-
ral requirements, International Electrotechnical Commission, Geneva, CH, Standard,
2018.

[130] IEC 61987-10: Industrial-Process Measurement and Control - Data Structures and
Elements in Process Equipment Catalogues - Part 10: Lists of Properties (LOPs) for
Industrial-Process Measurement and Control for Electronic Data Exchange. Funda-
mentals, International Electrotechnical Commission, Geneva, CH, Standard, 2009.

[131] TEC 61804-3 (2015): Function Blocks (FB) for process control and Electronic Device
Description Language (EDDL) - Part 3: EDDL syntax and semantics, International
Electrotechnical Commission, Geneva, CH, Standard, 2015.

[132] TEC 62453-1: Field device tool (FDT) interface specification - Part 1: Overview and
guidance, International Electrotechnical Commission, Geneva, CH, Standard, 2016.

178

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[133] IEC 62769-1: Field device integration (FDI) - Part 1: Overview, International Elec-
trotechnical Commission, Geneva, CH, Standard, 2015.

[134] IEC 62832-1: Industrial-process measurement, control and automation - Digital fac-
tory framework - Part 1: General principles, International Electrotechnical Commis-
sion, Geneva, CH, Standard, 2016.

(135] IEC 62541-1: OPC Unified Architecture - Part 1: Overview and Concepts, Interna-
tional Electrotechnical Commission, Geneva, CH, Standard, 2016.

[136] B. Boss, S. Bader, A. Orzelski, M. Hoffmeister, M. ten Hompel, B. Vogel-Heuser,
and T. Bauernhansl, “Verwaltungsschale,” in Handbuch Industrie 4.0: Produktion,
Automatisierung und Logistik. Springer Berlin Heidelberg, 2019.

(137] W. Dorst, Umsetzungsstrategie Industrie 4.0: Ergebnisbericht der Plattform Industrie
4.0. Bitkom Research GmbH, 2015.

[138] D. SPEC, “91345: 2016-04 Referenzarchitekturmodell Industrie 4.0 (RAMI4. 0),”
Tech. rep., DIN Deutsches Institut fiir Normung e, Standard, 2016.

[139] F. Palm and U. Epple, “openAAS-Die offene Entwicklung der Verwaltungsschale,”
Tagungsband Automation, pp. 103-104, 2017.

[140] Plattform Industrie 4.0, Details of the Asset Administration Shell - Part 1 - The ex-
change of informationen between partners in the value chain of Industrie 4.0 (Version
1.0). Bundesministerium fiir Wirtschaft und Energie, 2018.

[141] IEC 63278-1: Asset administration shell for industrial applications - Part 1: Admi-
nistration shell structure, International Electrotechnical Commission, Geneva, CH,
Standard, 2020.

[142] T. Bray et al., “RFC 8259: The JavaScript Object Notation (JSON) Data Interchange
Format,” Proposed Standard, December, 2017.

[143] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible
Markup Language (XML) 1.0 (Fifth Edition),” Recommendation, W3C, 2008.

[144] G. Klyne, J. J. Carroll, and B. McBride, “RDF 1.1 Concepts and Abstract Syntax,”
Recommendation, W3C, 2014.

[145] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Kaji-
moto, “Web of Things (WoT) Architecture,” Recommendation, W3C, 2020.

[146] D. Hardt et al., “RFC 6749: The OAuth 2.0 Authorization Framework,” Proposed
Standard, December, 2012.

(147] Plattform Industrie 4.0, Verwaltungsschale in der Praxis - Wie definiere ich Teilm-
odelle, beispielhafte Teilmodelle und Interaktion zwischen Verwaltungsschalen (Ver-
ston 1.0), 2019.

[148] ——, Verwaltungsschale in der Prazis - Wie definiere ich Teilmodelle, beispielhafte
Teilmodelle und Interaktion zwischen Verwaltungsschalen (Version 1.1), 2020.

179

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157)

[158]

[159]

[160]

[161]

[162]

180

A. Belyaev and C. Diedrich, “Aktive Verwaltungsschale von 14.0-Komponenten,” 07
2019.

S. Wein, Y. Dassen, T. Deppe, S. Storms, and C. Brecher, “Konzept einer Autonomen
Industrie 4.0-Komponente auf Basis Agenten-basierter Ansétze,” 05 2020.

VDI/VDE 2193 Blatt 1: Sprache fiir I4.0-Komponenten, VDI, Disseldorf, Standard,
2019.

C. Diedrich, J. B. JensVialkowitsch, T. Deppe, O. Schell, A. Willner, F. Vollmar,
T. Schulz, F. Pethig, J. Neidig, T. Uslénder et al., “I4. 0-Sprache-Vokabular, Nach-
richtenstruktur und semantische Interaktionsprotokolle der 14. 0-Sprache,” Platt-
form Ij. 0, Herausgeber: Bundesministerium fir Wirtschaft und Energie (BMWi)
Offentlichkeitsarbeit, vol. 11019.

VDI/VDE 2193 Blatt 2: Sprache fiir I4.0-Komponenten. Interaktionsprotokoll fiir
Ausschreibungsverfahren, VDI, Diisseldorf, Standard, 2019.

L. Lehto et al., Real-time content transformations in a Web service based delivery
architecture for geographic information. Helsinki University of Technology, 2007.

J. S. Cuadrado, “Towards a Family of Model Transformation Languages,” in Theory
and Practice of Model Transformations. Springer, 2012, pp. 176-191.

I. Kurtev, “State of the Art of QVT: A Model Transformation Language Standard,”
in International Symposium on Applications of Graph Transformations with Indu-
strial Relevance. Springer, 2007, pp. 377-393.

H. Krahn, B. Rumpe, and S. Volkel, “MontiCore: a framework for compositional
development of domain specific languages,” International journal on software tools
for technology transfer, vol. 12, no. 5, pp. 353-372, 2010.

N. Wirth, Grundlagen und Techniken des Compilerbaus. Oldenbourg Wissenschafts-
verlag, 2012.

F. L. DeRemer, “Practical translators for LR (k) languages,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1969.

Bernd Vojanec, “Arbeiten mit Submodel Templates,” 2021. [Online]. Available:
https://www.youtube.com/watch?v=aV2dA8ZY2v0

M. Both, N. Maisch, and J. Miiller, “Semantische Interoperabilitit durch Natural
Language — Processing als Basis fiir Self-X-Fahigkeiten von Verwaltungsschalen in
semantisch heterogenen Asset-Netzwerken,” Tagungsband Automation, pp. 571-584,
2021.

P. Haase and J. Vélker, “Ontology learning and reasoning—dealing with uncertainty
and inconsistency,” in Uncertainty reasoning for the semantic web 1. Springer, 2006,
pp. 366-384.

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Alle 23 Reihen der ,Fortschritt-Berichte VDI”
in der Ubersicht - bequem recherchieren unter:
elibrary.vdi-verlag.de

Und direkt bestellen unter:
www.vdi-nachrichten.com/shop

Reihe 01

Reihe 02
Reihe 03
Reihe 04
Reihe 05
Reihe 06
Reihe 07
Reihe 08
Reihe 09
Reihe 10
Reihe 11
Reihe 12
Reihe 13
Reihe 14
Reihe 15
Reihe 16
Reihe 17
Reihe 18
Reihe 19
Reihe 20
Reihe 21
Reihe 22
Reihe 23

Konstruktionstechnik/
Maschinenelemente
Fertigungstechnik
Verfahrenstechnik
Bauingenieurwesen

Grund- und Werkstoffe/Kunststoffe
Energietechnik

Stromungstechnik

Mess-, Steuerungs- und Regelungstechnik
Elektronik/Mikro- und Nanotechnik
Informatik/Kommunikation
Schwingungstechnik
Verkehrstechnik/Fahrzeugtechnik
Fordertechnik/Logistik
Landtechnik/Lebensmitteltechnik
Umwelttechnik

Technik und Wirtschaft
Biotechnik/Medizintechnik
Mechanik/Bruchmechanik
Warmetechnik/Kaltetechnik
Rechnergestuitzte Verfahren
Elektrotechnik
Mensch-Maschine-Systeme
Technische Gebaudeausrustung

216.73.216.60, am 24.01.2026, 01:53:05. © Inhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

216.73.216.60, am 24.01.2026, 01:53:05. ©
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

Ingenieure wollen immer alles
ganz genau wissen. Wie war's mit
einem E-Paper- oder Zeitungs-Abo?

vpil nachrichtlen

TECHNIK WIRTSCHAFT GESELLSCHAFT

to-X

aller Sektoren.

Schliis:

ENERGIEWENDE: Deutsc

AR S———
Nﬂ_“-_«- VON STEPHAN W. EDER, PETER ol
KELLEROFF UND BETTINA ReckTeR DEEVSCTS I fehlt die Benennung von
ie meisten Power-to-X-Anwen- o ‘Lﬂ"cn und kf"llkw:]c" Zielen
dungen, bei denen regenerative F: dieseatipeschendsn Tt
Energie in Wasserstoff, Basis- e mil ileni Konstantini m =
chemikalien, Warme oder Kraft- i Energietechnik. Die Anrei-
stoff umgewandelt wird, haben fert sein, dass sie

fiir den Aufbau einer nen-

einen entscheidenden Haken: Sie stecken 1 net
n Indusrie in die-

immer noch im Forschungsstadium. Dabei
sind mit Blick auf die angestrebte CO,-Neu-
tralitit groRe Erwartungen an diese Schiiis-
seltechnologien verkniipft.

ttbewerbsfihige Industrien
Wir miissen heute die Weichen dafiir stel- Eine Vorrelf en zu kénnen.

len, dass Deutschland Deutscher Ef

bei Wasserstofftechno- to-Gas-Tech

o y Potenzial. Er gl als einzig-

Mehr Meinung. Mehr Orientierung. Mehr Wissen.

Wesentliche Informationen zu neuen Technologien und Markten.

Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,
Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

100

JAHRE | vDI nachrichten

TECHNIK IN
www.vdi-nachrichten.com/abo SZENE GESETZT.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186876102

VDI

REIHE 10
INFORMATIK/
KOMMUNIKATION

httpsz//dol.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. @ Urheberrechttich geschltzter Inhatt. Ohne gesonderte

https://doi.org/10.51202/9783186876102

	Cover
	1 Einleitung
	1.1 Motivation und Zielsetzung
	1.2 Gliederung
	1.3 Eigene Vorveröffentlichungen

	2 Modellierung
	2.1 Sprache und Metasprache
	2.2 Modell und Metamodell
	2.3 Modellsprachen
	2.4 Typ und Instanz
	2.5 Identifikation von Objekten

	3 Object Constraint Language
	3.1 Anwendung von OCL
	3.2 Abstrakte Syntax von BasicOCL
	3.3 Konkrete Syntax von BasicOCL

	4 Interoperabilität
	4.1 Stufen der Interoperabilität
	4.2 Aktuelle Ansätze für Interoperabilität

	5 Modelltransformation
	5.1 Begriffswelt der Modelltransformation
	5.2 Merkmale von Modelltransformationen
	5.2.1 Allgemeine Merkmale
	5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle
	5.2.3 Merkmale der Transformationsregeln
	5.2.4 Merkmale der Regelnutzung

	5.3 Modell-zu-Modell Transformationsansätze
	5.3.1 Imperativer/Operationaler Ansatz
	5.3.2 Relationaler/Deklarativer Ansatz
	5.3.3 Graph-basierter Ansatz
	5.3.4 Hybrider Ansatz

	5.4 Transformationssprache und -system
	5.4.1 Generische und domänenspezifische Transformationssprachen
	5.4.2 Erstellung von Transformationssprachen

	6 Modellierung und Austausch von Asset-Informationen
	6.1 Aktuelle Normungslandschaft für Eigenschaften
	6.2 Digital Factory Framework - International Electrotechnical Commission
	6.2.1 Ziel und Anwendungsbereich
	6.2.2 Informationsmodell

	6.3 Asset Administration Shell - Plattform Industrie 4.0
	6.3.1 Ziel und Anwendungsbereich
	6.3.2 Informationsmodell

	6.4 Thing Description - Web of Things
	6.4.1 Ziel und Anwendungsbereich
	6.4.2 Informationsmodell

	6.5 Vergleich
	6.5.1 Asset-Begriff
	6.5.2 Ziel, Anwendungsbereich und Informationsmodell

	6.6 Schlussfolgerung

	7 Informationsaustausch bei Verwaltungsschalen
	7.1 Erscheinungsformen
	7.1.1 Typ 1
	7.1.2 Typ 2
	7.1.3 Typ 3
	7.1.4 Vergleich

	7.2 Nutzung von Verwaltungsschalen-Teilmodellen für semantische Interoperabilit ät: Offene Fragestellungen und mögliche Lösungsoptionen

	8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen Informationsmodellen
	8.1 Syntaktische und semantische Transformationen
	8.2 Klassifikation der Transformationen
	8.3 Anforderungen an die zu entwickelnde Transformationssprache
	8.3.1 Allgemeine Anforderungen
	8.3.2 Benötigte Transformationssprachelemente

	8.4 Evaluation bestehender Transformationssprachen
	8.5 Fazit

	9 Metamodell der Modelltransformationssprache
	9.1 Benötigte Sprachelemente und deren Semantik
	9.2 Syntaxregeln und konkrete Syntax
	9.3 Evaluation der Sprache

	10 Abbildung der Modelltransformationssprache für Verwaltungsschalen
	10.1 Anpassungen des Informationsmodells
	10.2 Makros für das vollständige Kopieren von SubmodelElement-Objekten
	10.3 Makros für den Zugriff auf ein SubmodelElement-Objekt

	11 Transformationssystem
	11.1 Allgemeiner Aufbau eines Transformationssystems
	11.2 Umsetzung in Python

	12 Evaluation
	12.1 Anwendungsfall 1: Firmenspezifische Informationsmodelle
	12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle
	12.3 Anwendungsfall 3: Integration von Komponenten und zugehörigen Informationsmodellen
	12.4 Benötigte Zeit für die Erstellung einer Transformationsdefinition
	12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung des entwickelten Transformationssystems

	13 Zusammenfassung
	13.1 Ausblick
	A Makro-Definitionen für Verwaltungsschalen
	B Grammatikdefinition der Transformationssprache
	B.1 Grammar ocl.lark
	B.2 Grammar mtl.lark

	C Python-Klassendefinition der abstrakten Syntaxklassen
	C.1 ast ocl.py
	C.2 ast mtl.py

	D Anwendungsfall 1: Firmenspezifische Informationsmodelle
	D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0)
	D.2 Digital Nameplate for Galaxie®Actuator der Firma WITTENSTEIN galaxie GmbH
	D.3 Transformationsdefinition zwischen dem WITTENSTEIN und dem ZVEI Teilmodell-Template

	E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells
	E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.4 Transformationsdefinition zwischen den Versionen 1 und 2

	F Anwendungsfall 3: Integration von Komponenten und zugehörigen Informationsmodellen
	G Testergebnisse der Versuchreihen

	Literaturverzeichnis

