
Fortschritt-
Berichte VDI

Konzept für
die semantische
Interoperabilität
zwischen
Informationsmodellen

M. Sc. Torben Miny,
Aachen

BAND
1|1

VOLUME
1|1

NR. 876

REIHE 10
INFORMATIK/
KOMMUNIKATION

ISBN 978-3-18-387610-5

BAND
1|1

VOLUME
1|1

NR. 876

REIHE 10
INFORMATIK/
KOMMUNIKATION

M
in

y
A

us
ta

us
ch

 v
on

 A
ss

et
-In

fo
rm

at
io

ne
n

RE
IH

E
10

|

 N
R.

 8
76

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Cyan Magenta Black
Preflight Lx3 am Februar 2, 2022 | 15:02:44 | 350 mm x 250 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
C

ov
er

.p
df

 ·
S

ei
te

 1

L_220106_Reihe_10_876_Cover.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Mehr Meinung. Mehr Orientierung. Mehr Wissen.
Wesentliche Informationen zu neuen Technologien und Märkten.
Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,
Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

 Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

Ingenieure wollen immer alles
ganz genau wissen. Wie wär‘s mit
einem E-Paper- oder Zeitungs-Abo?

www.vdi-nachrichten.com/abo

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 2, 2022 | 15:02:44 | 350 mm x 250 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
C

ov
er

.p
df

 ·
S

ei
te

 2

L_220106_Reihe_10_876_Cover.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Konzept für die semantische Interoperabilität zwischen

Informationsmodellen

Von der Fakultät für Georessourcen und Materialtechnik der

Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Torben Miny, M. Sc.

Berichter: Herr Univ.-Prof. Dr.-Ing. Ulrich Epple

Herr Univ.-Prof. Dr.-Ing. Christian Diedrich

Herr Univ.-Prof. Dr.-Ing. Tobias Kleinert

Tag der mündlichen Prüfung: 21.01.2022

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Konzept für
die semantische
Interoperabilität
zwischen
Informationsmodellen

M. Sc. Torben Miny,
Aachen

NR. 876

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Fortschritt-
Berichte VDI

REIHE 10
INFORMATIK/
KOMMUNIKATION

BAND
1|1

VOLUME
1|1

Black
Preflight Lx3 am Februar 2, 2022 | 14:53:32 | 148 mm x 210 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 1

L_220106_Reihe_10_876_Innentitel.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

© VDI Verlag GmbH | Düsseldorf 2022
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten. Als Manuskript gedruckt. Printed in Germany.
ISBN 978-3-18-387610-5, ISSN 0178-9627

Miny, Torben
Konzept für die semantische Interoperabilität zwischen Informationsmodellen
Fortschritt-Berichte VDI, Reihe 10, Nr. 876. Düsseldorf: VDI Verlag 2022.
196 Seiten, 46 Bilder, 6 Tabellen.
ISBN 978-3-18-387610-5, ISSN 0178-9627,
71,00 EUR/VDI-Mitgliederpreis: 63,90

Für die Dokumentation: Semantische Interoperabilität – Modelltransformation – Object Constraint Language –
Verwaltungsschale – Asset Informationsmodelle

Keywords: Semantic Interoperability – Model Transformation – Object Constraint Language – Asset
 Administration Shell – Asset Information Models

Die vorliegende Arbeit wendet sich an Ingenieur*innen und Wissenschaftler*innen im Umfeld von Industrie 4.0.
Sie befasst sich mit der semantischen Interoperabilität zwischen digitalen Asset-Repräsentationen. Hierbei liegt
der Fokus auf dem Austausch von Asset-Informationen mit Hilfe von Informationsmodellen. Derzeit werden
eine Vielzahl von Informationsmodelle von verschiedenen Organisationen entwickelt. Diese enthalten vielfach
s emantisch identische Informationen, modellieren diese ggf. aber jeweils unterschiedlich. Kern der Arbeit ist eine
neue Modelltransformationssprache zur Erstellung von Transformationsdefinitionen zwischen Informations-
modellen, um (semi-)automatisch Informationsmodelle aus anderen zu erzeugen. Die Sprache basiert auf der
Object Constraint Language, ist allgemein und vollständig spezifiziert und kann in bestehende Automatisierungs-
systemen verwendet werden.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

D82 (Diss. RWTH Aachen University, 2022)

Black
Preflight Lx3 am Februar 2, 2022 | 14:53:32 | 148 mm x 210 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 2

L_220106_Reihe_10_876_Innentitel.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am
Lehrstuhl für Prozessleittechnik an der RWTH Aachen University. An dieser Stelle möchte
ich mich bei allen bedanken, die mich in dieser Zeit fachlich und persönlich unterstützt
haben.

Mein besonderer Dank gebührt Herrn Professor Dr.-Ing. Ulrich Epple. Seine Unterstützung
für mein Promotionsvorhaben, die angenehme Arbeitsatmosphäre am Lehrstuhl und die
vielen fachlichen Diskussionen und persönlichen Gespräche haben meine Arbeitsweise maß-
geblich geprägt. Durch die vielfältigen Aufgaben am Lehrstuhl und die Teilnahme in di-
versen Gremien konnte ich mich frei entfalten und einen guten Überblick über die ver-
schiedenen Facetten der Automatisierungstechnik und deren Schnittstelle zur Informatik
erhalten.

Bei Herrn Professor Dr.-Ing. Christian Diedrich, Inhaber der Professur für Integrierte
Automation an der Otto-von-Guericke-Universität Magdeburg, bedanke ich mich für die
Übernahme der Rolle des Zweitgutachters. Die vielen fachlichen Diskussionen halfen mir
in der Durchführung dieses Promotionsvorhabens sehr.

Zusätzlich danke ich Herrn Professor Dr.-Ing. Tobias Kleinert, Lehrstuhl-Nachfolger von
Herrn Epple, für die Unterstützung in den letzten knapp 2 Jahren meiner Promotion.
Herrn Professor Dr.-Ing. Herbert Pfeifer, Leiter des Instituts für Industrieofenbau und
Wärmetechnik, danke ich für die Übernahme des Prüfungsvorsitz.

Ein besonderer Dank gilt meinen Kollegen am Lehrstuhl für die intensiven und teils kon-
troversen Diskussionen sowie den studentischen Hilfskräften und Studierenden, die bei mir
eine Abschlussarbeit geschrieben haben. Besonders bedanken möchte ich mich (in alpha-
betischer Reihenfolge) bei Julian Grothoff, Leon Möller und Michael Thies. Ein herzli-
cher Dank gilt an Frau Margarete Milescu, die mich bei den diversen organisatorischen
Tätigkeiten stets unterstützt hat.

Ein weiterer Dank gilt an die Mitglieder der verschiedenen Arbeitskreise, in denen ich mit-
arbeiten durfte (Plattform Industrie 4.0, DIN, DKE, VDI/VDE-Gesellschaft für Mess- und
Automatisierungstechnik, OPC Foundation). Die vielen Gespräche haben mir einen wert-
vollen Einblick in das Thema Industrie 4.0 und deren praktische Anwendung gegeben.

Meiner Ehefrau Luisa Miny möchte ich für die Unterstützung, Geduld und Motivation in
den vergangenen Jahren und insbesondere in der intensiven Phase bedanken. Abschließend
danke ich meinen Eltern Gabi Rohde-Deppe und Torsten Deppe, die mich immer mit Tat
und Rat unterstützt und mich auf diesen Weg geführt haben.

Aachen, im Januar 2022

III

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

Abkürzungen VIII

Kurzfassung X

Abstract XI

1 Einleitung 1
1.1 Motivation und Zielsetzung . 2
1.2 Gliederung . 5
1.3 Eigene Vorveröffentlichungen . 6

2 Modellierung 8
2.1 Sprache und Metasprache . 8
2.2 Modell und Metamodell . 8
2.3 Modellsprachen . 10
2.4 Typ und Instanz . 13
2.5 Identifikation von Objekten . 15

3 Object Constraint Language 16
3.1 Anwendung von OCL . 17
3.2 Abstrakte Syntax von BasicOCL . 19
3.3 Konkrete Syntax von BasicOCL . 22

4 Interoperabilität 25
4.1 Stufen der Interoperabilität . 26
4.2 Aktuelle Ansätze für Interoperabilität . 30

5 Modelltransformation 33
5.1 Begriffswelt der Modelltransformation . 33
5.2 Merkmale von Modelltransformationen . 35

5.2.1 Allgemeine Merkmale . 35
5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle 37
5.2.3 Merkmale der Transformationsregeln 38
5.2.4 Merkmale der Regelnutzung . 40

5.3 Modell-zu-Modell Transformationsansätze 41
5.3.1 Imperativer/Operationaler Ansatz 41
5.3.2 Relationaler/Deklarativer Ansatz 42
5.3.3 Graph-basierter Ansatz . 43
5.3.4 Hybrider Ansatz . 43

V

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

5.4 Transformationssprache und -system . 44
5.4.1 Generische und domänenspezifische Transformationssprachen 44
5.4.2 Erstellung von Transformationssprachen 45

6 Modellierung und Austausch von Asset-Informationen 48
6.1 Aktuelle Normungslandschaft für Eigenschaften 49
6.2 Digital Factory Framework - International Electrotechnical Commission . . 50

6.2.1 Ziel und Anwendungsbereich . 51
6.2.2 Informationsmodell . 51

6.3 Asset Administration Shell - Plattform Industrie 4.0 54
6.3.1 Ziel und Anwendungsbereich . 54
6.3.2 Informationsmodell . 55

6.4 Thing Description - Web of Things . 57
6.4.1 Ziel und Anwendungsbereich . 58
6.4.2 Informationsmodell . 58

6.5 Vergleich . 60
6.5.1 Asset-Begriff . 60
6.5.2 Ziel, Anwendungsbereich und Informationsmodell 61

6.6 Schlussfolgerung . 62

7 Informationsaustausch bei Verwaltungsschalen 63
7.1 Erscheinungsformen . 63

7.1.1 Typ 1 . 63
7.1.2 Typ 2 . 64
7.1.3 Typ 3 . 65
7.1.4 Vergleich . 65

7.2 Nutzung von Verwaltungsschalen-Teilmodellen für semantische Interopera-
bilität: Offene Fragestellungen und mögliche Lösungsoptionen 66

8 Modelltransformationen für die semantische Interoperabilität zwischen ver-
schiedenen Informationsmodellen 69
8.1 Syntaktische und semantische Transformationen 69
8.2 Klassifikation der Transformationen . 71
8.3 Anforderungen an die zu entwickelnde Transformationssprache 72

8.3.1 Allgemeine Anforderungen . 72
8.3.2 Benötigte Transformationssprachelemente 73

8.4 Evaluation bestehender Transformationssprachen 76
8.5 Fazit . 77

9 Metamodell der Modelltransformationssprache 78
9.1 Benötigte Sprachelemente und deren Semantik 78
9.2 Syntaxregeln und konkrete Syntax . 81
9.3 Evaluation der Sprache . 86

10 Abbildung der Modelltransformationssprache für Verwaltungsschalen 87
10.1 Anpassungen des Informationsmodells . 87
10.2 Makros für das vollständige Kopieren von SubmodelElement-Objekten . . . 89

VI

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Inhaltsverzeichnis

10.3 Makros für den Zugriff auf ein SubmodelElement-Objekt 90

11 Transformationssystem 93
11.1 Allgemeiner Aufbau eines Transformationssystems 93
11.2 Umsetzung in Python . 95

12 Evaluation 98
12.1 Anwendungsfall 1: Firmenspezifische Informationsmodelle 98
12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmo-

delle . 99
12.3 Anwendungsfall 3: Integration von Komponenten und zugehörigen Informa-

tionsmodellen . 102
12.4 Benötigte Zeit für die Erstellung einer Transformationsdefinition 104
12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei

Nutzung des entwickelten Transformationssystems 104

13 Zusammenfassung 108
13.1 Ausblick . 109

Anhang 111
A Makro-Definitionen für Verwaltungsschalen 111
B Grammatikdefinition der Transformationssprache 117

B.1 Grammar ocl.lark . 117
B.2 Grammar mtl.lark . 124

C Python-Klassendefinition der abstrakten Syntaxklassen 126
C.1 ast ocl.py . 126
C.2 ast mtl.py . 145

D Anwendungsfall 1: Firmenspezifische Informationsmodelle 156
D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0) . . . 156
D.2 Digital Nameplate for Galaxie®Actuator der Firma WITTENSTEIN

galaxie GmbH . 157
D.3 Transformationsdefinition zwischen dem WITTENSTEIN und dem

ZVEI Teilmodell-Template . 158
E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells . . . 159

E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 159

E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 160

E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation 161

E.4 Transformationsdefinition zwischen den Versionen 1 und 2 161
F Anwendungsfall 3: Integration von Komponenten und zugehörigen Informa-

tionsmodellen . 164
G Testergebnisse der Versuchreihen . 166

Literaturverzeichnis 170

VII

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Abkürzungen

ADT Abstrakter Datentyp

API Application Programming Interface

ATL Atlas Transformation Language

DF Framework Digital Factory Framework

DSL Domain Specific Language

DSTL Domain Specific Transformation Language

EBNF Erweiterte Backus-Naur-Form

ETL Epsilon Transformation Language

ETSI European Telecommunications Standards Institute

GPL General Purpose Language

GPTL General Purpose Transformation Language

GUID Globally Unique Identifier

IEC International Electrotechnical Commission

IEC61360-CDD IEC 16360 - Common Data Dictionary

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IRI Internationalized Resource Identifier

ISO International Organization for Standardization

IT Informationstechnologie

MOLA Model Transformation Language

OCL Object Constraint Language

OMG Object Management Group

OPC UA OPC Unified Architecture

OWL Web Ontology Language

QVT Query View Transformation

RAMI4.0 Referenzarchitekturmodell Industrie 4.0

VIII

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Abkürzungen

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SDK Software Development Kit

SQL Structured Query Language

TGG Triple Graph Grammatik

UML Unified Modeling Language

URI Uniform Resource Identifier

UUID Universally Unique Identifier

VIATRA Visual Automated Model Transformations

W3C World Wide Web Consortium

WoT Web of Things

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie

IX

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Kurzfassung

Im Rahmen des Zukunftsprojekts ”Industrie 4.0“ der Hightech-Strategie der Bundesregie-
rung wird das Konzept der Verwaltungsschale entwickelt. Das Ergebnis ist eine einheitliche
Schnittstelle und ein Metamodell für den Zugriff auf die Informationen eines Assets. Diese
Informationen werden in Informationsmodellen zusammengefasst, die jeweils einen Aspekt
eines Assets darstellen und für einen konkreten Anwendungsfall verwendet werden. Durch
die steigende Anzahl an kommunizierenden Geräten im industriellen Kontext, die ver-
mehrte Nutzungen von Informationen für Mehrwertdienste (value-added services) und die
Integration zu komplexen, intelligenten Maschinen und Anlagen rücken Konzepte für die
Interoperabilität in den Fokus. Die semantische Interoperabilität ist ein wesentliches Ziel
beim Austausch von Asset-Informationen.

Da verschiedene Stakeholder unterschiedliche Informationsmodelle benötigen, wird es eine
Vielzahl dieser Informationsmodelle geben. Diese Informationsmodelle können semantisch
die gleichen Informationen enthalten, jedoch anders modelliert oder zusammengestellt sein.
Zusätzlich wird es verschiedene Versionen dieser Informationsmodelle geben. Dies führt zu
einem Problem bei der semantischen Interoperabilität und ist durch manuelles Transfor-
mieren der Daten wegen der Vielzahl an Informationsmodellen und Assets, die digital
verwaltet werden, nur noch schwer zu bewerkstelligen.

Aufgrund dessen wird in dieser Arbeit ein Konzept für die semantische Interoperabilität
zwischen Informationsmodellen vorgestellt. Basierend auf einer Analyse existierender Me-
thoden und Ansätze zur Erreichung der semantischen Interoperabilität wird das Konzept
der Modelltransformation zur Lösung des Problems verwendet. Für den Asset-bezogenen
Informationsaustausch werden aktuelle standardisierte Modelle miteinander verglichen und
das Konzept der Verwaltungsschale als Anwendungsbeispiel herangezogen. Anhand die-
ses Anwendungsbeispiels wird der Unterschied zwischen syntaktischen und semantischen
Transformationen vorgestellt sowie eine Klassifikation der Transformation mit Hilfe zuvor
definierter Merkmale durchgeführt. Auf dieser Basis werden Anforderungen an eine Trans-
formationssprache ermittelt und existierende Sprachen hinsichtlich ihrer Verwendbarkeit
evaluiert.

Das Ergebnis der Anforderungsanalyse ist, dass bisher keine Sprache existiert, die alle An-
forderungen erfüllt. Daher wird eine neue Modelltransformationssprache hergeleitet. Diese
ist generisch beschrieben und wird für das Konzept der Verwaltungsschale konkretisiert.
Es werden sowohl die abstrakte als auch die konkrete Syntax sowie die benötigten Syn-
taxregeln vorgestellt. Eine prototypische Realisierung eines Transformationssystems zeigt
die Anwendung der Sprache und ermöglicht die Durchführung von Modelltransformationen
zwischen beliebigen Informationsmodellen. Abschließend wird die Sprache anhand von drei
ausgewählten Anwendungsfällen evaluiert.

X

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Abstract

As part of the future project Industry 4.0 of the High-Tech Strategy of the German Federal
Government, the concept of the asset administration shell is being developed. The result
is a uniform interface and a metamodel for accessing the information of an asset. This
information is summarized in information models, each of which represents an aspect of an
asset and is used for a specific use case. Due to the increasing number of communicating
devices in the industrial context, the increased use of information for value-added services
and the integration to complex, intelligent machines and plants, concepts for interoperabi-
lity are coming into focus. Semantic interoperability is a key goal in the exchange of asset
information.

Since different stakeholders require different information models, a variety of these infor-
mation models will exist. These information models may semantically contain the same
information, but may be modeled or compiled differently. Additionally, there will be diffe-
rent versions of these information models. This leads to a semantic interoperability problem
and is difficult to manage by manually transforming the data because of the large number
of information models and assets that are digitally managed.

For this reason a concept for semantic interoperability between information models is
presented in this thesis. Based on an analysis of existing methods and approaches to achieve
semantic interoperability, the concept of model transformation is used to solve the problem.
For asset-related information exchange, current standardized models are compared and
the concept of the asset administration shell is used as an application example. Based on
this application example, the difference between syntactic and semantic transformations is
introduced and a classification of the transformation is performed using previously defined
features. On this basis, requirements for a transformation language are determined and
existing languages are evaluated with respect to their usability.

The result of the requirements analysis is that so far no language exists that fulfills all
requirements. Therefore a new model transformation language is derived. This is described
generically and is concretized for the concept of the asset administration shell. Both the
abstract and the concrete syntax as well as the required syntax rules are presented. A
prototypical realization of a transformation system shows the application of the language
and enables the execution of model transformations between arbitrary information models.
Finally, an evaluation of the language is presented based on three selected use cases.

XI

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1 Einleitung

Die Industrie unterliegt einem ständigen Wandel, welcher derzeit durch die Digitalisierung
als einem der größten Treiber geprägt ist. Es gab im Laufe der Zeit neue Innovationen
oder Technologien, die die Art und Weise, wie Produkte hergestellt werden, verändert
haben. Erfolgt ein sprunghafter Wandel statt, wird dies industrielle Revolution genannt
und ein neues Industriezeitalter wird begonnen. Bis heute fanden insgesamt drei industri-
elle Revolutionen statt. Die erste industrielle Revolution wurde durch die Einführung der
Dampfmaschine ausgelöst, die die Nutzung von Wasser- und Dampfkraft für mechanische
Produktionsanlagen ermöglichte. Durch die Nutzung von elektrischer Energie konnte die
Massenfertigung und der Einsatz des Fließbands realisiert werden. Dies wird aus heutiger
Sicht als zweite industrielle Revolution betrachtet. Die dritte und bisher letzte industrielle
Revolution wurde mit dem Beginn der Nutzung von elektronischen Komponenten in der
Automatisierungstechnik, die später auch programmierbar wurden, eingeläutet. Hierdurch
konnten einzelne Arbeitsschritte, die bisher von einem Menschen erledigt wurden, durch
eine Maschine übernommen werden.

Um die deutsche Industrie auf dem Weg zu einer vierten industriellen Revolution zu un-
terstützen, wurde im Rahmen der Hightech-Strategie der Bundesregierung das Zukunfts-
projekt ”Industrie 4.0“ initiiert. Durch die Informationstechnologie (IT) getrieben sollen
bei der vierten industriellen Revolution die reale und die virtuelle Welt zusammenwachsen.

”Die industrielle Produktion [soll] mit Hilfe modernster Informations- und Kommunika-
tionstechnik auf intelligente Weise“ verzahnt und die Vereinigung von ”Großproduktion
mit individuellen Kundenwünschen, kostengünstig und in hoher Qualität“ erreicht werden
[1].

Ein Ergebnis des Zukunftsprojekts ist das Konzept des Asset-bezogenen Informationszu-
griffs. Als Asset wird eine ”Entität, die einen wahrgenommenen oder tatsächlichen Wert
für eine Organisation hat und der Organisation gehört oder von ihr verwaltet wird“ [2]
aufgefasst. Diese Entitäten können sowohl physische als auch virtuelle Betrachtungsge-
genstände sein, wie z. B. Sensoren, Aktoren, Pläne oder Handbücher. Bisher wurden In-
formationen in dem IT-System abgelegt, in dem diese angefallen sind, und es findet in der
Regel keine Übertragung zwischen verschiedenen IT-Systemen statt. Dies betraf vor allem
den Informationsübergang zwischen zwei Gewerken, wodurch die Industrie ”an fehlender
Durchgängigkeit ihrer Anlagen- und Prozessdaten“ [3] leidet. Mit Hilfe des Asset-bezogenen
Informationszugriffs soll zukünftig die Möglichkeit bestehen, Informationen über ein As-
set über einen definierten Zugriffspunkt aus den verschiedensten Gewerken abzurufen. Ein
Asset erhält somit eine digitale Repräsentanz, über die die Informationen des gesamten
Lebenszyklus eines Assets abrufbar sind.

Da verschiedene Stakeholder auf die Asset-Informationen zugreifen sollen und jeweils un-
terschiedliche Sichtweisen auf die Modellierung und Verknüpfung dieser Informationen ha-

1

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1 Einleitung

ben, besteht die Notwendigkeit einzelne Informationsmodelle für die jeweils benötigten
Teilaspekte zu definieren. Folglich muss die Möglichkeit bestehen, ein vollständiges so-
wie voll umfassendes digitales Modell eines Assets durch einzelne Stakeholder-orientierte
Teilmodelle bereitzustellen. Das im Rahmen von Industrie 4.0 entwickelte Konzept der
Verwaltungsschale unterstützt diese Art der Modellierung [4–6]. Ähnliche Ansätze finden
sich auch in aktuellen Kommunikationsprotokollen, z. B. die Companion Specifications in
OPC Unified Architecture (OPC UA) [7].

1.1 Motivation und Zielsetzung

Für eine bessere Interoperabilität ist die Entwicklung eines einheitlichen Metamodells die
Grundvoraussetzung. Derzeitig spezifizierte bzw. bereits existierende Modelle sind z. B. die
Verwaltungsschale [4–6], das Digital Factory Framework [8–10] oder die Thing Description
des World Wide Web Consortium (W3C) [11, 12]. Im nächsten Schritt sollen möglichst viele
Informationsmodelle, basierend auf dem spezifizierten Datenmodell, standardisiert werden.
Da jedoch die Stakeholder sowohl aus den unterschiedlichsten Gewerken Informationen als
auch für die konkreten Anwendungsfälle jeweils andere Kombination bzw. Darstellung der
Informationen benötigen, werden zwangsläufig sehr viele verschiedene Informationsmodelle
entstehen. Dabei können sich Informationsmodelle überschneiden und ggf. mehrere Infor-
mationsmodelle für den gleichen Use Case von unterschiedlichen Organisationen existieren.
Dabei können die gleichen Informationen in den jeweiligen Informationsmodellen jedoch
auch unterschiedlich modelliert sein. Beispielsweise kann im Metamodell die Möglichkeit
bestehen, einen Wertebereich entweder als eigenständiges Objekt oder durch zwei Objek-
te, die jeweils die Ober- und Untergrenze darstellen, zu modellieren. Beide Darstellungen
enthalten dabei semantisch die gleichen Informationen.

Ein Vergleich bestehender Informationsmodelle aus dem Bereich der Verwaltungsschale
zeigt diese Problematik in der Praxis auf. Im November 2020 wurden die ersten zwei Infor-
mationsmodelle (Teilmodell Templates) [13, 14] veröffentlicht. Dabei wurde z. B. das Merk-
mal ”ManufacturerName“ auf unterschiedliche Weise modelliert. In [13] wird ein Property-
Element mit dem Datentyp ”string“ und einer Referenz auf eine semantische Beschrei-
bung aus dem Vokabular unter der URI ”admin-shell.io“ verwendet, während in [14] ein
MultiLanguageProperty-Element mit dem Datentyp ”langString“ sowie einer Referenz auf
das Vokabular von ECLASS1 verwendet wird. Beide Elemente stellen semantisch jedoch die
gleichen Informationen dar. Da bereits bei den ersten zwei veröffentlichten standardisierten
Informationsmodellen das Problem der unterschiedlichen Modellierung äquivalenter Infor-
mationen auftritt, ist davon auszugehen, dass bei weiteren Informationsmodellen - und
besonders bei firmenspezifischen Informationsmodellen - dieses Problem zunimmt.

Dem Problem kann mit einer einheitlichen und gleichen Modellierung entgegengewirkt
werden, indem z. B. gleiche Merkmale in übergeordnete Informationsmodelle ausgelagert
werden. Aktuell erfolgt dies in der Regel durch Menschen in Harmonisierungsgruppen, z. B.
bei OPC UA für die Companion Specifications [7]. Für eine geringe Anzahl von Informa-
tionsmodellen ist dies ein guter Ansatz. Steigt jedoch die Anzahl ähnlicher Informations-
1www.eclass.eu

2

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1.1 Motivation und Zielsetzung

modelle, nimmt die Komplexität der Harmonisierung zu und ist wahrscheinlich nicht mehr
manuell realisierbar.

Zusätzlich werden im Zuge von Anforderungsänderungen neue Versionen der einzelnen
Informationsmodelle entstehen. Dabei können einzelne Elemente geändert, gelöscht oder
hinzugefügt werden. Spätestens hier kann der Ansatz der Harmonisierung nicht mehr ge-
nutzt werden, sondern es bedarf einer Möglichkeit Informationen automatisch aus älteren
Versionen in neuere Versionen, und umgekehrt, zu überführen.

Die Integration von Komponenten in Module oder ganze Anlagen ist ein weiterer Anwen-
dungsfall, in dem automatisierte Konzepte für die Zusammenführung von Informationen
benötigt werden. Zukünftig werden sowohl für die einzelnen Komponenten als auch für
das Modul bzw. die Anlage eigene Informationsmodelle vorliegen, wobei die Informationen
zum Teil semantisch identisch sein werden oder durch eine Aggregation erzeugt werden
können [15]. Dem Autor ist kein Ansatz bekannt, der für einen Integrator oder Betreiber
diese Zusammenführung der Informationen automatisiert und generisch für alle Informa-
tionsmodelle ermöglicht.

Somit werden Konzepte benötigt, die diese Probleme softwaretechnisch lösen. Es existie-
ren bereits erste Ansätze aus dem Bereich des Semantic Webs oder des maschinellen Ler-
nens, die die semantische Gleichheit von zwei oder mehr Objekten über Ontologien oder
sprachliche Vergleiche herausfinden sollen [16–18]. Zusätzlich besteht die Möglichkeit, Be-
rechnungsvorschriften zwischen Objekten zu modellieren, um z. B. physikalische Zusam-
menhänge abzubilden. Jedoch ist zum Zeitpunkt dieser Arbeit kein Konzept bekannt, wie
Informationsmodelle möglichst schnell und effizient auf Basis dieser Informationen oder
durch Wissen von Fachexperten erstellt werden können.

Im Rahmen dieser Arbeit wird daher ein Konzept vorgestellt, das Fachexperten die
Möglichkeit bietet, semantische Regeln für die Erstellung von Instanzen dieser Informati-
onsmodelle auf Basis von Instanzen bestehender Informationsmodelle zu definieren. Die-
se Regeln können ausgeführt werden sofern ein neues bzw. angefragtes Informationsmo-
dell benötigt wird. Hierfür wird das Konzept der Modelltransformation genutzt. Verein-
facht ermöglicht die Modelltransformation folgendes: eine oder mehrere bestehende In-
stanzen von vorgegebenen Informationsmodellen werden eingelesen. Auf diesen werden
Regeln ausgeführt und als Ergebnis wird eine neue Instanz eines Informationsmodells er-
stellt. Eine Regel wird zwischen den Informationsmodellen definiert und könnte wie folgt
lauten: ”Erstelle ein neues Datenelement B im neuen Informationsmodell IM 2 mit den
Informationen aus dem Datenelement A des Informationsmodells IM 1“. Damit solche
Regeln definiert werden können, müssen standardisierte Informationsmodelle2 vorliegen,
die für verschiedene Asset-Repräsentationen instanziiert werden. In der objektorientier-
ten Modellierung können diese Informationsmodelle als Typen bzw. Templates verstanden
werden. Für eine bessere Unterscheidung werden die konkreten Informationsmodelle als
Informationsmodell-Instanzen und die zugehörigen standardisierten Informationsmodelle
als Informationsmodell-Templates bezeichnet. Die Regeln, um aus einer oder mehreren
Informationsmodell-Instanz(en) eine andere Informationsmodell-Instanz zu erzeugen, wer-
den in sogenannten Transformations-Definitionen zusammengefasst.

2Firmenspezifische Informationsmodelle zählen auch als standardisierte Informationsmodelle.

3

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1 Einleitung

Die zentrale Fragestellung dieser Arbeit ist, wie aus bestehenden Informationen in be-
reits existierenden Informationsmodell-Instanzen, die standardisierten Informationsmodell-
Templates folgen, neue benötigte bzw. angefragte Informationsmodell-Instanzen teilweise
bis vollständig generiert werden können.

In Abbildung 1.1 ist ein möglicher Workflow zur Erstellung von Transformations-
Definitionen dargestellt. Ein Fachexperte wählt zunächst die Informationsmodell-
Templates aus, zwischen denen Regeln definiert werden sollen. Danach werden diese hin-
sichtlich ihrer enthaltenen Informationen analysiert und die Regeln zur Erstellung einer
neuen Informationsmodell-Instanz festgelegt. Hierfür können auch externe Systeme genutzt
werden, die bei der Erstellung der Regeln unterstützen, z. B. mit Hilfe von Methoden der
künstlichen Intelligenz oder Reasoning-Methoden für Ontologien. Diese werden anschlie-
ßend in einer Transformations-Definition beschrieben. Um diese von anderen Personen oder
Applikationen zu verwenden, erfolgt eine Ablage in eine Datenbank. Für eine bessere Suche
können zusätzlich noch Meta-Informationen mit abgespeichert werden.

Abbildung 1.1: Erstellung von Transformations-Definitionen für Informationsmodelle (nach
[19])

Abbildung 1.2 zeigt die Anwendung von Transformations-Definitionen. Als erstes werden
vorhandene Informationsmodell-Instanzen des Assets (grün und rot dargestellt) geladen.
Ein Nutzer oder die Applikation gibt anschließend ein Ziel-Informationsmodell-Template
vor (in der Abbildung orange schraffiert dargestellt). In der Datenbank wird nach passen-
den Transformations-Definitionen gesucht, um diese dem Anwender oder der Applikation
vorzuschlagen. Nachfolgend wird eine dieser Transformations-Definitionen ausgewählt und
die (eigentliche) Modelltransformation gestartet, welche zur Erstellung der gewünschten
Informationsmodell-Instanz (orange dargestellt) führt.

Um diese Workflows zu erreichen, wird eine Sprache für die Definition der semantischen
Regeln innerhalb der Transformations-Definition benötigt. Im Rahmen dieser Arbeit wird
die Vorgehensweise für die Definition einer neuen Sprache sowie eine konkrete Sprache für
diesen Anwendungsfall vorgestellt, mit Hilfe derer diese Regeln formuliert werden. Einige
der zu erfüllenden Anforderungen sind:

4

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1.2 Gliederung

Abbildung 1.2: Anwendung von Transformations-Definitionen für Informationsmodelle (nach
[19])

• Die Syntax der Sprache soll einfach zu verstehen sein.

• Die Anzahl der Sprachelemente soll so gering wie möglich, aber so komplex wie nötig
sein.

• Die Sprache soll auf den aktuellen Konzepten bzw. Modellen der Wissenschaft basie-
ren.

• Die Sprache soll die Sprachelemente des Metamodells der Informationsmodelle nut-
zen.

Im Zuge der Standardisierung wurden verschiedene Modellierungen für Asset-
Informationen und deren Austausch entwickelt3. Das Konzept der Verwaltungsschale
bzw. Asset Administration Shell wird derzeit in Deutschland als einer der erfolgverspre-
chendsten Ansätze gehandelt. Aufgrund dessen wird das Konzept für die Elemente des
Verwaltungsschalen-Metamodells konkretisiert und anhand diesem evaluiert.

1.2 Gliederung

In dieser Arbeit wird ein Konzept zur Lösung fehlender semantischer Interoperabi-
lität, basierend auf unterschiedlicher Modellierung von Informationen, beschrieben. Zur
Erläuterung der Grundlagen werden zunächst die Themen ”Sprache“, ”Modell“, ”Metamo-
dell“ und ”Modellsprachen“ vorgestellt (Kapitel 2). Zusätzlich wird die Beziehung zwischen
Typen und Instanzen sowie der aktuelle Stand der Identifikation von Objekten aufge-
zeigt.
3Ein Vergleich aktueller Standardisierungsvorhaben ist in Kapitel 6 gegeben.

5

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1 Einleitung

Nachfolgend wird die Modellierungssprache Object Constraint Language (OCL) erläutert,
die als Basis des vorgestellten Konzepts dient (Kapitel 3). Für die vorliegende Arbeit er-
folgt zunächst eine Kurzeinführung in die relevanten Sprachelemente, bevor die abstrakte
Syntax von BasicOCL erläutert wird. Aufbauend darauf werden die Stufen der Interope-
rabilität vorgestellt und aktuelle Ansätze diskutiert (Kapitel 4), wobei der Fokus auf der
semantischen Interoperabilität liegt.

Einer dieser Ansätze ist die Nutzung der Modelltransformation, die für das Lösungskonzept
dieser Arbeit die Grundlagen schafft (Kapitel 5). Zunächst wird das Grundkonzept vorge-
stellt. Anschließend werden Merkmale definiert, nach denen sich Modelltransformationen
klassifizieren lassen. Im Anschluss erfolgen verschiedene Umsetzungsansätze, bevor Trans-
formationssprachen und zugehörige -systeme sowie ein Vorgehen zur Entwicklung bzw.
Auswahl einer solchen Sprache beschrieben werden.

Um das Konzept anwendungsnäher zu beschreiben, werden aktuelle Modellierungsansätze
für Asset Information vorgestellt (Kapitel 6). Eine Eingrenzung erfolgt durch maßgeblich
diskutierte Ansätze der Standardisierung und Forschung. Aus der IEC wird das Digital
Factory Framework, von der Plattform Industrie 4.0 die Verwaltungssschale und vom W3C
die Thing Description beschrieben. Eine Gegenüberstellung und eine Bewertung schließen
dieses Kapitel ab.

Als Resultat wird der Ansatz der Verwaltungsschale in dieser Arbeit weiterverfolgt (Ka-
pitel 7). Der Fokus liegt auf den verschiedenen Erscheinungsarten und der Nutzung von
Teilmodellen für die semantische Interoperabilität. Zum Abschluss werden offene Frage-
stellungen und mögliche Lösungsoptionen vorgestellt. Als ausgewählte Lösung wird die
Modelltransformation verwendet.

Im nachfolgenden Kapitel 8 folgt die Anforderungsanalyse. Es werden die verschiedenen Ar-
ten der Transformation, die für die semantische Interoperabilität notwendig sind, erläutert.
Darauf aufbauend wird eine Klassifikation mit den Merkmalen aus Kapitel 5 vorgenommen
und die Anforderungen an eine Transformationssprache beschrieben. Im Anschluss erfolgt
eine Evaluation bestehender Transformationssprachen hinsichtlich dieser Anforderungen.

Basierend auf der Anforderungsanalyse wurde ein Metamodell für eine neue Transformati-
onssprache entwickelt (Kapitel 9). Für die einfache Nutzung im Bereich von Verwaltungs-
schalen wurde eine Abbildung dieser Sprache auf das Konzept der Verwaltungsschale inkl.
der Nutzung der Sprache zur vereinfachten Erzeugung von Regeln definiert (Kapitel 10).

Eine Beschreibung der softwaretechnischen Umsetzung des Transformationssystems zeigt
die einfache Realisierung der Sprache (Kapitel 11). Anschließend werden anhand von drei
verschiedenen Anwendungsfällen das Konzept und die Umsetzung evaluiert und Empfeh-
lungen für die Nutzung gegeben (Kapitel 12). Abschließend erfolgt eine Zusammenfassung
sowie ein Aufzeigen der nächsten Schritte (Kapitel 13).

1.3 Eigene Vorveröffentlichungen

Während der Forschung zu dieser Arbeit wurden verschiedene Ergebnisse bereits publiziert.
Einige der Abschnitte aus diesen Veröffentlichungen werden in dieser Arbeit eins zu eins

6

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

1.3 Eigene Vorveröffentlichungen

wiederverwendet und andere dienen als Grundlage. Aus diesem Grund folgt eine kurze
Vorstellung der Veröffentlichungen:

DIN SPEC 92000 als Enabler für Plug and Produce

In dem ATP-Beitrag [20] werden die Neuerungen der DIN SPEC 92000 vorgestellt und
deren Nutzung für das Konzept des Plug and Produce. Im Beitrag werden zunächst die
Anforderungen des Konzepts Plug and Produce beschrieben. Danach folgt ein Überblick
über die aktuelle Normungslandschaft für die Eigenschaftsmodellierung, welcher in Kapitel
6 übernommen wurde. Im Beitrag folgt danach eine Beschreibung der Inhalte der DIN
SPEC 92000. In Form von Use Cases wird die Anwendung der neuen Konzepte für die
Nutzung des Konzepts Plug and Produce aufgezeigt. Eine technische Realisierung zeigt
abschließend die Umsetzbarkeit.

Konzept für die automatisierte Erstellung von Verwaltungsschalen-
Teilmodellen mit Hilfe domänenspezifischer Transformationssprachelemente

Der Automation-Beitrag [19] zeigt, wie das Konzept der Modelltransformation für die auto-
matische Erstellung von Verwaltungsschalen-Teilmodellen genutzt werden kann. Zunächst
wird allgemein das Konzept der Modelltransformation auf die Begriffswelt der Verwaltungs-
schale konkretisiert. Danach wird der Unterschied zwischen syntaktischer und semantischer
Transformation beschrieben. Dieser Abschnitt ist in Kapitel 8.1 übernommen worden.
Anschließend folgt im Automation-Beitrag eine Kurzvorstellung über domänenspezifische
Transformationssprachelemente. Der Beitrag schließt mit zwei Workflows ab: Einer für die
Erstellung von Transformationsdefinitionen und einer für die Anwendung dieser im Kontext
von Verwaltungsschalen-Teilmodellen. Eine abstraktere Beschreibung dieser Workflows für
allgemeine Informationsmodelle ist bereits in Abschnitt 1.1 gegeben.

Model Transformation for Asset Administration Shells

Im IECON-Beitrag [21] wird beschrieben, wie eine Transformationssprache entwickelt wird
und wie diese für das Konzept der Verwaltungsschale aussehen kann. Es wird zunächst ein
Leitfaden zur Erstellung bzw. Auswahl einer Transformationssprache beschrieben. Dieser
besteht aus drei Schritten: Klassifikation der Transformation, Anforderungen an die Trans-
formationssprache und Design einer Transformationssprache. Inhalte dieser Vorgehenswei-
se werden in Abschnitt 5.4 wiederverwendet. Anschließend wird im IECON-Beitrag diese
Vorgehensweise für die Entwicklung einer Transformationssprache für Verwaltungsschalen
angewendet. Diese Vorarbeit wird in Abschnitt 8.3 weiter detailliert. Abschließend wird
im IECON-Beitrag ein erster Entwurf der Transformationssprache AASMTL vorgestellt.
Dieser Entwurf diente als Basis für die Kapitel 9 und 10.

7

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2 Modellierung

In diesem Kapitel werden die Grundlagen der Modellierung erklärt. Zunächst werden die
Grundlagen einer Sprache und der zugehörigen Metasprache vorgestellt. Danach wird der
Begriff des Modells sowie die Beziehung zur Sprache betrachtet. Es werden Analogien auf-
gezeigt und der Metamodellbegriff definiert. Danach wird der Begriff der Modellsprache
detaillierter beleuchtet und die verschiedenen Eigenschaften, nach denen sich Modellspra-
chen klassifizieren lassen, beschrieben. Den Abschluss bildet eine Unterscheidung von Ty-
pen und Instanzen sowie die Identifikation von Objekten.

2.1 Sprache und Metasprache

Um Aussagen über Eigenschaften und Relationen zwischen Betrachtungsgegenständen tref-
fen zu können, werden Begriffe und Sätze benötigt. Damit diese von verschiedenen Be-
nutzern einheitlich verstanden werden, wird eine Sprache benötigt. Eine Sprache ist ein
System von Zeichen und definiert Regeln zur Verwendung dieser [22, 23]. Wird die Sprache
selbst zum Betrachtungsgegenstand, wird von Sprache der Sprache gesprochen. Um diese
zu unterscheiden, werden die Begriffe der Objekt- und Metasprache eingeführt [24]. Als
Objektsprache wird die zu betrachtende Sprache definiert. Die Sprache, in der die Un-
tersuchung erfolgt, wird als Metasprache bezeichnet [25]. Dieses Konstrukt kann rekursiv
angewendet werden, sodass die Metasprache wiederum zur Objektsprache wird und eine
eigene Metasprache besitzt. Dieses Vorgehen kann in einem Ebenen-Diagramm dargestellt
werden. Dieses beginnt auf der untersten Ebene mit der Objektsprache, darauf folgt die
Metasprache, darauf die Metametasprache (s. Abbildung 2.1).

2.2 Modell und Metamodell

Für den Begriff Modell existieren diverse Definitionen: In [27] wird Modell als ”die Abbil-
dung von Objekten, Eigenschaften oder Relationen eines bestimmten Bereichs der objekti-
ven Realität oder einer Wissenschaft auf einfachere, übersichtlichere materielle Strukturen
desselben oder eines anderen Bereichs“ definiert. Das I40-Glossar beschreibt ein Modell
als eine ”schlüssige, ausreichend detaillierte Abstraktion von Aspekten in einem Anwen-
dungsbereich“ [2]. Polke stellt in [28] heraus, dass der Modellbegriff sehr umfassend ist,
aber charakteristische Merkmale vorliegen. Als charakteristisch definiert er, ”dass Modelle
immer vereinfachende Bilder des Eigenschafts- und Funktionsprofils des zugrundeliegenden
realen Objekts sind und zwar unter einem bestimmten Blickwinkel“. In [29] ist zudem eine
Übersicht über verschieden Definitionen aus dem Bereich der Softwaretechnik gegeben.

8

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2.2 Modell und Metamodell

Abbildung 2.1: Sprachbasierter Metamodellbegriff nach [26]

Bereits Stachowiak hat 1973 in seinem Werk ”Allgemeine Modelltheorie“ [30] festgehalten,
dass eine allumfassende Definition nicht möglich ist. Er definiert aber drei Hauptmerkmale
des allgemeinen Modellbegriffs:

• Abbildungsmerkmal: Ein Modell ist immer ein Abbild eines Originals, welches selbst
wieder ein Modell sein kann.

• Verkürzungsmerkmal: Ein Modell erfasst nur die für den jeweiligen Modellerschaffer
relevanten Attribute des Originals.

• Pragmatisches Merkmal: Ein Modell erfüllt einen Zweck und ist nur für diesen gültig
(z. B. nur innerhalb bestimmter Zeitintervalle).

Da keine allgemeine Definition für ein Modell existiert, wird für diese Arbeit folgende neue
Definition eingeführt:

Definition 2.1 (Modell) Ein Modell ist immer eine Abbildung eines Originals für einen
bestimmten Zweck, in dem dieses gültig ist, und erfasst nur die für den Modellerschaffer
relevanten Attribute des betrachteten Originals.

Um Modelle zu erstellen, wird eine Sprache benötigt. Da das Modell der Betrachtungsge-
genstand ist, ist die Sprache eine Objektsprache. Diese wird allgemein als Modellsprache
bezeichnet [31] und in Abschnitt 2.3 näher erläutert. Dabei kann die verwendete Mo-
dellsprache mit Hilfe von Beschreibungsmodellen spezifiziert werden. Diese Modelle werden
als Metamodelle bezeichnet. Ein Metamodell ist demnach ein Beschreibungsmodell für ein
Modell und ist nach [23] wie folgt definiert werden:

Definition 2.2 (Metamodell) Ein Metamodell ist Modell eines Modells, wobei es sich
bei dem übergeordneten Modell um ein sprachliches Beschreibungsmodell handelt, dass die
Sprache, in der das untergeordnete Modell formuliert ist, abbildet.

9

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2 Modellierung

Wendet man das Prinzip der Ebenentheorie auf die Modellbildung an, erhält man analog
dazu Metamodelle und Metametamodelle. Dieses Vorgehen der Konstruktion solcher Me-
tamodelle wird in der Software-Entwicklung auch als Metamodellierung bezeichnet [32].
Werden die Modellsprache und die Modelle hierarchisch strukturiert und in Relation zu-
einander gesetzt, so ergibt sich, dass zu jedem Metamodell und Metametamodell auch
eine Metasprache und eine Metametasprache existiert. Das Metamodell entspricht dabei
unmittelbar der Objektsprache und durch die Vorgabe der Sprachelemente mittelbar dem
Modell. Der Zusammenhang zwischen Modellen und Modellierungssprachen ist in Abbil-
dung 2.1 dargestellt. Da verschiedene Arten von Modellierungssprachen existieren, werden
deren Eigenschaften im nächsten Abschnitt genauer beschrieben.

2.3 Modellsprachen

Eine Modellsprache beschreibt die Darstellung der nutzbaren Elemente und die Beziehun-
gen zwischen diesen in einem Modell. Dafür werden das Vokabular und die Grammatik,
die die Ersteller und Nutzer bei der Modellierung eines Modells benutzen müssen, festge-
legt. Dadurch wird ein einheitliches Verständnis erzeugt und Maschinen durch die in der
Modellsprache definierte Semantik der Modellelemente in die Lage versetzt, die Modelle
weiter zu verarbeiten [33]. Ebenso wird explizit festgelegt, welche Informationen dargestellt
und welche aufgrund fehlender Konzepte in der Modellsprache nicht dargestellt werden
können.

Modellsprachen können hinsichtlich ihrer Nutzer und ihrer Darstellungsform klassifiziert
werden. Die Hauptnutzer können Menschen und Maschinen sein. Dies bedeutet, dass Mo-
dellsprachen entweder für Maschinen oder für eine intuitive Nutzung durch den Menschen
entwickelt werden. Hinsichtlich der Darstellungsform können grafische und Zeichen-basierte
Modellsprachen unterschieden werden [34].

Um eine Modellsprache zu entwickeln, muss zunächst die Syntax definiert werden. Es wird
zwischen konkreter und abstrakter Syntax unterschieden [32, 35].

Die konkrete Syntax definiert die verwendbaren Symbole. Sie wird auch Notation genannt
[34]. Als Beispiele für die konkrete Syntax einer textuellen Sprache können die Program-
miersprachen C [36] oder Python1 genannt werden. Dazu werden die Zeichen definiert, die
nach bestimmten Mustern zu linearen Zeichenketten verknüpft werden können (s. Beispiel
2.1).

Beispiel 2.1: Verschiedene konkrete Syntaxen einer Addition
1 2 + 3
2 (2 + 3)
3 (+ 2 3)
4 d i e Summe von 2 und 3

Für rein grafische Sprachen werden Linien, Pfeile, Rechtecke oder andere Symbole verwen-
det. Diese bilden in der Regel einen Graphen. Ein klassischer Vertreter dieser Sprachkatego-
rie ist das Petri-Netz [37, 38] (s. Abbildung 2.2). Es gibt aber auch Mischformen, die zu den
1https://www.python.org/

10

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2.3 Modellsprachen

Abbildung 2.2: Konkrete Syntax eines Petri-Netzes

graphischen Symbolen textuelle Sprache verwenden, z. B. Rechtecke mit Text-Elementen,
wie sie in Unified Modeling Language (UML)-Klassendiagrammen [39] verwendet werden.
Die konkrete Syntax ist die Darstellung, die ein Modellierer im Modellierungswerkzeug
sieht. Die abstrakte Syntax hingegen abstrahiert die konkrete Syntax auf die Modellie-
rungskonzepte und deren Beziehungen. Sie definiert dafür abstrakt die in der konkreten
Syntax nutzbaren Symbole [32]. Diese und das zugehörige Datenformat sind dem Modellie-
rer meistens verborgen. Für textuelle Sprachen werden meistens abstrakte Grammatiken
genutzt. Bei den grafischen Sprachen werden die in Abschnitt 2.2 eingeführten Metamo-
delle verwendet. Eine Sprache hat immer genau eine abstrakte Syntax, kann aber mehr als
eine konkrete Syntax besitzen. Eine abstrakte Syntax für die konkreten Syntaxen aus dem
Beispiel 2.1 ist in Beispiel 2.2 dargestellt.

Beispiel 2.2: Beispiel für abstrakte Syntax einer Addition
1 2 p lus 3

Für die konkrete Syntax des Petri-Netzes aus Abbildung 2.2 könnte die abstrakte Syntax
wie in Abbildung 2.3 dargestellt aussehen.

Im zweiten Schritt wird die Semantik der Sprache definiert. Diese beschreibt die Bedeutung
der nutzbaren Syntaxsymbole und syntaktischer Konstrukte. Zusätzlich wird der Begriff
der statischen Semantik [32, 41] definiert, welche die Wohlgeformtheitskriterien der Sprache
festlegt. Diese wird in der Regel durch eine Reihe von Einschränkungen, wie z. B. des
Wertebereichs oder der Beziehungen zwischen Elementen, festgelegt [32]. Betrachtet man
den Zusammenhang aus Abbildung 2.1, beschreibt ein Metamodell die abstrakte Syntax
sowie die statische Semantik.

Die Definition der Syntax und Semantik kann durch eine informale, semi-formale oder
formale Sprache erfolgen [41]. Als formal gilt eine Sprache, die eine präzise, eindeutig fest-
gelegte, mathematisch fundierte und somit widerspruchsfreie Syntax und Semantik besitzt.

11

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2 Modellierung

Abbildung 2.3: Abstrakte Syntax eines Petri-Netzes nach [40]

Dies wird z. B. durch kontextfreie Grammatikdefinitionen ermöglicht. Bei einer informa-
len Sprache ist nur die Syntax und nicht die Semantik definiert. Die Interpretation einer
Sprachanwendung obliegt dem Betrachter, womit keine Prüfbarkeit möglich ist (z. B. eine
natürliche Sprache). Als Mischform gilt die semi-formale Sprache, die nicht bewiesenerma-
ßen eindeutig und widerspruchsfrei ist, aber einen nachvollziehbaren formalen Charakter
hat, z. B. Metamodelle. Die Beschreibungsform kann auch zwischen der Syntax und der
Semantik wechseln. Beispielsweise wird die abstrakte Syntax einer Modellsprache meistens
semi-formal durch eine graphische Notation beschrieben [41]. Die zugehörige Semantik
wird jedoch fast immer durch natürliche Sprache definiert, da versucht wird, die Anzahl
an graphischen Symbolen möglichst gering zu halten [42].

Sprachen können in universelle (General Purpose Language (GPL)) und
domänenspezifische Sprachen (Domain Specific Language (DSL)) unterschieden wer-
den. Eine universelle Sprache definiert Sprachelemente, die nicht für eine konkrete
Domäne zugeschnitten sind. Sie können somit für verschiedenste Problemstellungen
genutzt werden. Klassische Vertreter sind die Programmiersprachen, wie C oder Java,
Datenaustauschmodelle, wie XML oder JSON, oder Modellierungssprachen, wie UML.
Dem entgegen werden domänenspezifische Sprachen für ein Anwendungsgebiet erstellt
und bilden die dort benötigten Sprachelemente in der domänenspezifischen Begriffswelt
ab [43, 44]. Einem Experten seines Anwendungsgebiets wird dadurch ermöglicht, sein
Wissen leichter und verständlicher auszudrücken sowie zu nutzen. Klassische Vertreter
sind domänenspezifische UML-Modelle oder XML-Schemata sowie die Structured Query
Language (SQL) [45]. DSL können sowohl neu definiert2 als auch auf Basis einer GPL
für eine Anwendungsdomäne spezialisiert werden3 [46]. Bei einer Neuerstellung muss
die komplette Werkzeugkette (z.B. Editoren, Parser, Validatoren etc.) neu entwickelt
werden. Dies ist bei der Erweiterung oder Konkretisierung einer GPL nicht notwendig, da
viele Tools der GPL wiederverwendet werden können. Die in dieser Arbeit betrachteten
Informationsmodelle (s. Kapitel 6) sind DSL, die auf der UML basieren.

2Nach [43] werden sie dann externe DSL genannt.
3Die GPL wird dann zur Metasprache dieser Sprache und nach [43] interne DSL genannt.

12

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2.4 Typ und Instanz

2.4 Typ und Instanz

In diesem Abschnitt werden die Begriffe Typ und Instanz für diese Arbeit sowie die Be-
ziehungen zwischen diesen definiert. Im Bereich der Semantik und Wissenspräsentation
(Informations- und Datenmodellierung) sowie der objektorientierten Modellierung werden
semantische Netze aus Knoten und Kanten erstellt. Als Knoten wird ein Objekt, wel-
ches einen Begriff oder Konzept darstellt, und als Kante eine Relation zwischen Objekten
verstanden. Ein klassischer Vertreter ist das Entity-Relationship-Modell. Objekte werden
zusätzlich weiter in Typen und Instanzen konkretisiert. In der Literatur existieren unter-
schiedliche Definitionen für beide Begriffe, jedoch sind die Grundaussagen dieselben. Für
diese Arbeit werden die Definitionen aus dem Industrie 4.0 Glossar [2] genutzt (wobei
Objekt und Entität synonym verwendet werden4):

Definition 2.3 (Instanz) Eine Instanz ist eine ”konkrete Entität [bzw. Objekt], die [bzw.
das] die Merkmale und deren Ausprägungen eines Typs erfüllt.“ [2]

Definition 2.4 (Typ) Ein Typ ist eine ”beschreibende Entität [bzw. Objekt] gekennzeich-
net durch [eine] Menge von gemeinsamen Merkmalen und deren Ausprägungen.“ [2]

Eine Instanz kann dabei nicht ohne einen Typen existieren. Dies bedeutet jedoch nicht,
dass der Typ immer explizit modelliert bzw. implementiert sein muss.

Um Objekte miteinander zu verbinden, werden Beziehungen zwischen diesen definiert. In
Bezug auf Typen und Instanzen können diese Beziehungen in drei Arten unterschieden
werden: Beziehungen zwischen Typen, Beziehungen zwischen Instanzen und Beziehungen
zwischen Typen und Instanzen. An dieser Stelle werden zwei für diese Arbeit wichtige
Beziehungen vorgestellt:

Is-Instance-Of-Beziehung: Die Is-Instance-Of-Beziehung ist eine Beziehung zwischen
einem Typ A und einer Instanz B [48]. Die Beziehung sagt aus, dass die Instanz B ein
konkretes Objekt dieses Typs A ist und alle Merkmale und deren Ausprägungen erfüllt.

Is-Subtype-Of-Beziehung: Die Is-Subtype-Of-Beziehung ist eine Beziehung zwischen
einem Typ A und einem Typ B [48]. Die Beziehung sagt aus, dass der Typ A eine Spezia-
lisierung des Typs B und somit ein Subtyp von B ist. Das bedeutet, dass der Typ A alle
Merkmale und deren Ausprägungen von Typ B beibehält und zusätzlich weitere Merkmale
und Ausprägungen enthalten kann.

Die Unterscheidung dieser beiden Beziehungen ist sehr wichtig, da diese auf und zwischen
unterschiedlichen Ebenen in der Metamodellierung auftreten. Während die Is-Instance-Of-
Beziehung immer zwischen zwei Ebenen auftritt, befindet sich die Is-Subtype-Of-Beziehung
immer innerhalb einer Ebene. Ein Beispiel ist in Abbildung 2.4 dargestellt. Die Klasse Typ
auf oberster Ebene stellt einen Typ dar. Von diesem existieren insgesamt drei Instanzen:
Fahrzeug, Auto und Motorrad. Diese stehen wiederum in einer Beziehung zueinander: Das
Auto und das Motorrad sind Spezialisierungen und somit Subtypen vom Typ Fahrzeug.
4Entität wird im Bereich der Datenmodellierung als Begriff benutzt (Entität und Entitätstyp) und Objekt
im Bereich der objektorientierten Programmierung (Objekt und Klasse) [47].

13

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2 Modellierung

Auf der untersten Ebene befinden sich die konkreten Instanzen dieser Typen. Es können
nun folgende Aussagen getroffen werden:

• Das Objekt Mein Auto ist eine Instanz des Typs Auto. Es ist somit auch eine Instanz
des Typs Fahrzeug. Es ist aber keine Instanz des Typs Typ.

• Das Objekt Motorrad ist eine Instanz des Typs Typ. Es ist aber keine Instanz von
Fahrzeug, sondern ein Subtyp von diesem.

• Das Objekt Fahrzeug ist eine Instanz des Typs Typ und hat die zwei Subtypen Auto
und Motorrad sowie die beiden Instanzen Mein Auto und Mein Motorrad.

• Das Objekt Typ hat drei Instanzen Fahrzeug, Auto und Motorrad aber keine Bezie-
hung zu den Objekten Mein Auto und Mein Motorrad.

Abbildung 2.4: Is-Instance-Of- und Is-Subtype-Of-Beziehung

Weiterhin kann die Is-Instance-Of-Beziehung hinsichtlich ihrer Ausprägung unterschieden
werden. Falls der Typ modelliert wird, kann dies sowohl sehr detailliert und formal als auch
nur durch eine informelle Begriffsbeschreibung geschehen. Detailliert und formal wäre z. B.
eine Klasse in der objektorientierten Programmierung. Die informelle Begriffsbeschreibung
findet z. B. in der Klassifikation und Wissensmodellierung ihre Anwendung. Folglich ist
auch die Instanziierung der Instanz eines Typs unterschiedlich. Während bei einer formalen
Beschreibung des Typs (z. B. Klasse in C++) die Instanz genau alle Attribute enthält, die
der Typ definiert, ist dies bei einer reinen Begriffsbeschreibung nicht der Fall. Hier werden
implizit Eigenschaften beschrieben, die zwischen Typ und Instanz gleich sind, um Instanzen
zu klassifizieren.

14

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

2.5 Identifikation von Objekten

2.5 Identifikation von Objekten

Um Objekte eindeutig zu identifizieren, werden Namensräume benötigt. Ein Namensraum
definiert einen Bereich, innerhalb dessen jeder Bezeichner nur einmal auftreten darf. Jedes
Objekt besitzt einen solchen Bezeichner und ist somit einem Namensraum zugewiesen. Bei
den Bezeichnern können zwei Arten unterschieden werden: lokal eindeutiger und global
eindeutiger Bezeichner. Ein lokal eindeutiger Bezeichner ist nur innerhalb seines Namens-
raums eindeutig. Ein global eindeutiger Bezeichner ist hingegen weltweit eindeutig. Dies
wird dadurch realisiert, dass global eindeutige Namensräume existieren. Um global eindeu-
tige Bezeichner festzulegen, können verschiedene Standards angewendet werden. In dieser
Arbeit werden drei Standards genutzt: ISO 29002-5: Industrielle Automatisierungssyste-
me und Integration - Austausch von Merkmaldaten - Teil 5: Identifikationsschema [49],
RFC 3986: Uniform Resource Identifier (URI) [50] und RFC 4122: A Universally Unique
Identifier (UUID)5 [51]. Die Erstellung eines global eindeutigen Bezeichners für ein loka-
les Objekt kann durch die Aneinanderreihung der einzelnen Bezeichner aller Vaterobjekte
erfolgen. Das letzte Vaterobjekt muss in der Kette einen global eindeutigen Bezeichner auf-
weisen. Diese Bezeichner können je nach Anzahl der überlagerten Namensräume sehr lang
werden, sodass man für die konkrete Nutzung auf lokal eindeutige Bezeichner wechselt.

5Auch bekannt als Globally Unique Identifier (GUID).

15

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Graphische Notationen für Modellsprachen gewinnen zunehmend an Bekanntheit, da diese
im Vergleich zu textuellen Notationen meistens verständlicher sind. Jedoch gibt es Schwie-
rigkeiten bei der Modellierung von Bedingungen bzw. Einschränkungen (Constraints). Für
häufig auftretende Constraints, wie z. B. Kardinalitäten von Assoziationen, wurden graphi-
sche Abkürzungen eingeführt [29]. Allerdings lassen sich diese nicht verallgemeinern und
sind ausschließlich für einen kleinen Satz sehr generischer Constraints möglich. Aus diesem
Grund müssen weitere Bedingungen in einer zugehörigen textuellen Sprache definiert wer-
den. Dies kann durch natürliche Sprache erfolgen (vgl. Abschnitt 2.3). Da natürliche Texte
meistens mehrdeutig und zudem nur schwer maschinenverarbeitbar sind, sollte möglichst
eine formale Sprache bevorzugt genutzt werden [52]. Mit OCL existiert eine Sprache, die
es ermöglicht Bedingungen bzw. Einschränkungen formal zu beschreiben.

OCL ist eine universelle, textuell semi-formale Sprache, um unter anderem Invarianten
oder Vor- und Nachbedingungen von Methoden in objektorientierten Modellen formal zu
beschreiben. Die Sprache wurde 1995 ursprünglich von IBM entwickelt und 1997 in die Mo-
dellierungssprache UML integriert [42]. Zudem wurde OCL als Standard von der Object
Management Group (OMG) veröffentlicht und liegt zum Verfassungszeitpunkt dieser Ar-
beit in der Version 2.4 [53] vor.

Zunächst wurde die Sprache für die Definition von Constraints in UML genutzt. Schnell
wurde das Potenzial der Sprache erkannt, wodurch OCL zu einer Hauptkomponente in
vielen modellgetriebenen Engineering-Techniken [42] wurde. OCL wird unter anderem in
domänenspezifischen Sprachen oder für die Code-Generierung mit Hilfe von Templates
genutzt. Aufgrund der Möglichkeit durch OCL formal komplexe Abfragen auszudrücken,
ist die Sprache mittlerweile auch in vielen Modelltransformationssprachen integriert, wie
z. B. in Query View Transformation (QVT). Der Vorteil von OCL ist, dass die Sprache
auf der Prädikatenlogik aufbaut und diese erweitert [54]. Für die Definition der Sprachele-
mente werden aber keine mathematischen Symbole verwendet. Vielmehr werden Elemente
einer natürlichen Sprache genutzt, weswegen auch Nicht-Mathematiker oder -Informatiker
die Sprachelemente verstehen und nutzen können. Zusammengefasst kann OCL für eine
Vielzahl von Anwendungen und Arten von Ausdrücken verwendet werden.

Die OCL-Spezifikation [53] definiert die abstrakte Syntax sowie die Semantik der Spra-
che. Die Definitionen sind in Form eines Metamodells sowie durch natürliche Sprache
beschrieben. Ergänzt wird die Definition durch formal definierte Regeln und Operatio-
nen1. Zusätzlich werden in der Spezifikation auch eine konkrete Syntax der Sprache sowie
mögliche Anwendungsbeispiele gezeigt. Die Sprache ermöglicht die Definition von konkre-
ten Ausdrücken, die zur Laufzeit ausgewertet werden können. OCL definiert hierfür ein
1Die Definitionen der Regeln und Operationen werden mit Hilfe der eigenen Sprachelemente definiert.

16

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3.1 Anwendung von OCL

eigenes Typ-System, bestehend aus einfachen Datentypen und Sammlungen2. Das Ergeb-
nis der Auswertung eines Ausdrucks ist immer konform zu einem dieser Typen. Aufgrund
dessen wird OCL als eine typisierte Sprache aufgefasst. Zusätzlich entspricht die Oberklas-
se Class den Typen des Metamodells, für welches Ausdrücke spezifiziert werden sollen. Mit
Hilfe dieser Ausdrücke können formale und komplexe Abfragen auf eigenen Modellen formu-
liert werden. Lediglich das Anlegen von Objekten eigens definierter Typen ist nicht möglich.
Des Weiteren ermöglichen die Sprachelemente die Definition von Ausdrücken dahingehend,
dass diese keine Seiteneffekte bei der Ausführung mit sich bringen. Das bedeutet, dass bei
der Ausführung eines Ausdrucks keine Modifikationen an bestehenden Objekten erfolgen.
Für die einfache Erstellung von Ausdrücken sind die Sprachelemente in deklarativer Form
definiert3. Da nicht für alle Anwendungsfälle alle Sprachelemente benötigt werden, definiert
die Spezifikation zusätzlich noch BasicOCL, welches ein Minimalset an Sprachelementen
enthält. Um die Sprache nutzbar zu machen, z. B. in einer konkreten Implementierung,
wird neben der abstrakten Syntax zusätzlich eine konkrete Syntax benötigt. Die Spezifi-
kation [53] definiert selbst eine konkrete Sprache in textueller Form. Eine konkrete Syntax
in graphischer Form ist in [52] vorgeschlagen.

In den nächsten Abschnitten folgt eine Einführung in BasicOCL, da die dort beschriebenen
Elemente für die vorliegende Arbeit ausreichend sind. Für eine vollständige Beschreibung
aller Elemente und Operationen wird auf den Standard [53] verwiesen4. Das Kapitel unter-
teilt sich in drei Teilabschnitte. Zunächst werden Constraints erklärt und beschrieben, wie
die Navigation auf Klasseneigenschaften und Operationen mit OCL funktioniert (Abschnitt
3.1). Danach wird in Abschnitt 3.2 die abstrakte Syntax von BasicOCL beschrieben. Diese
unterteilt sich in die Vorstellung des Typ-Systems und der OCL-Ausdrücke. Abschließend
wird die konkrete Syntax von OCL kurz beschrieben, wobei der Fokus auf den für diese
Arbeit benötigten Sprachelementen liegt (Abschnitt 3.3).

3.1 Anwendung von OCL

OCL stellt Sprachelemente zur Definition von Ausdrücken zur Verfügung. Diese können un-
terschiedlichster Art sein, z. B. Variablenausdrücke, IfThenElse-Ausdrücke oder Ausdrücke
zum Zugriff auf Attribute oder Operationen von Objekten5. Sofern eine Einschränkung in
einem UML-Modell benötigt wird, können die OCL Sprachelementen genutzt werden. Die-
se Stellen definieren zwangsläufig auch die Semantik für das Ergebnis des Ausdrucks. Der
Ausdruck ist wiederum durch die Stelle einem konkreten Kontext zugewiesen, innerhalb
dessen er auszuwerten ist. OCL definiert einige Standardstellen, an denen OCL-Ausdrücke
genutzt werden können. In Abbildung 3.1 sind zwei dieser Stellen stellvertretend gezeigt:
die Definition einer Invariante für eine Klasse und die Definition eines Anfangswerts von
einem Attribut.

Um die Stellen textuell zu beschreiben, führt OCL weitere Sprachelemente ein. Die
Definition des Kontextes einer Stelle erfolgt durch das Schlüsselwort context <classifier>
2Eine Auflistung der verschiedenen Arten von Datentypen und Sammlungen ist in 3.2 beschrieben.
3Eine genauere Beschreibung von deklarativ und dem Unterschied zu imperativ ist Abschnitt 5.2.1 gegeben.
4Eine gute Einführung in die Grundkonzepte von OCL wird in [42] gegeben.
5Die möglichen Arten werden in Abschnitt 3.2 vorgestellt.

17

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Abbildung 3.1: Beispiele von Standardstellen, an denen OCL-Ausdrücke genutzt werden
können

und bezieht sich auf ein konkretes UML-Modellelement (Klasse, Attribut oder Methode),
z.B. context Person, context Person::age oder context Person::getAge(). Zusätzlich kann
der Kontext auch Variablendeklarationen beinhalten, die innerhalb dieses Kontextes
genutzt werden können. Dies wird über folgende Syntax definiert:

context <v name 1> : <v type 1> , ... , <v name n> : <v type n>

Damit besteht die Option, diese Variablen innerhalb des Kontextes zu nutzen, beispielswei-
se um Invarianten für verschiedene Typen innerhalb eines Kontextes zu definieren oder um
auf die Werte dieser Variablen zuzugreifen6. Wird nur eine Klasse oder Methode als Kon-
text angegeben, dann gelten die angegebenen Constraints für alle Instanzen dieser Klasse
oder Methode.

Es gibt verschiedene Arten von Constraints, die durch ihre Schlüsselwörter unterschieden
werden. Der Constraint an sich wird durch OCL-Ausdrücke formuliert. Beispielhaft werden
die beiden Constraints Invariante und Anfangswert kurz beschrieben7:

Invariante (Invariant)

Eine Invariante ist eine Einschränkung, die zu jeder Zeit für eine Instanz des UML-
Modellelements, welches durch den Kontext festgelegt wird, gelten muss. Die Auswertung
einer Invariante ergibt einen booleschen Wert, der stets wahr sein muss, damit die Ein-
schränkung erfüllt ist. Eine Invariante wird mit inv: <Boolean OCL expression> definiert.
Der Ausdruck muss für den kompletten Lebenszyklus des Objekts gelten, also ”wahr“ er-
geben. Nachfolgend ist ein Beispiel für das Attribut age der Klasse Person gegeben. Das
Alter der Klasse Person muss immer größer gleich als Null sein:
context Person

inv: age >= 0

Anfangswert (Initial Value)

Mithilfe des Constraints Anfangswert kann der Wert eines Attributs festgelegt werden, der
initial vorliegen muss. Bei der Auswertung muss der Typ des Anfangswerts dem Typen des
Attributs, für den der Constraint gilt, entsprechen. Um den Anfangswert eines Attributs
festzulegen, wird die Syntax init: <OCL expression> verwendet. Im nachfolgenden Beispiel
wird ein Constraint deklariert, der aussagt, dass das Attribut isMarried der Klasse Person
initial den Wert false haben muss.
context Person :: isMarried : Boo lean

init: false

6Dies wird in dem Konzept dieser Arbeit verwendet.
7Für die Beschreibung weiterer bereits definierter Constraints wird auf die entsprechende Spezifikation
[53] verwiesen.

18

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3.2 Abstrakte Syntax von BasicOCL

Um auf die verschiedenen Attribute und Methoden eines Objekts sowie auf die Attribute
und Methoden einer Sammlung von Objekten zuzugreifen, gibt es den Punkt- und den Pfeil-
Operator. Um Attribute oder Methoden eines einzelnen Objekts zu referenzieren, wird der
Punkt-Operator verwendet. Für den Zugriff auf Attribute oder Methoden einer Sammlung
von Objekten wird der Pfeil-Operator genutzt. Im nachfolgenden Beispiel werden beide
Varianten gezeigt.

Das Beispiel enthält drei Invarianten: Das Alter soll stets größer gleich 0 sein, der Aufruf der
Funktion getName soll dem Wert des Attributs name entsprechen und die Anzahl an Autos
der Person soll kleiner gleich 2 sein. Die Attribute age, name und car sowie die Methode
getName() werden über den Punktoperator referenziert, da diese zur Instanz der Klasse
Person gehören, die ein Einzelobjekt darstellt. Die Methode size() hingegen gehört zum
Attribute car. Dieses stellt eine Menge von Objekten dar, genauer gesagt eine Menge von
Instanzen der Klasse Car. Aus diesem Grund wird der Pfeil-Operator verwendet. Definiert
der Kontext nur eine Klasse oder Methode, kann für die Navigation innerhalb dieser Klasse
das Schlüsselwort self genutzt werden. Mit self wird die Instanz der Klasse des Kontexts
referenziert, hier eine Instanz der Klasse Person.
context Person

inv: self.age >= 0
inv: self. getName () = self.name
inv: self.car ->size () <= 2

3.2 Abstrakte Syntax von BasicOCL

Die abstrakte Syntax von BasicOCL definiert ein Typ-System und die OCL-Ausdrücke.
Nachfolgend wird die in BasicOCL verwendete abstrakte Syntax für beide Bestandteile
vorgestellt.

Typ-System

OCL definiert ein eigenes Typ-System mit zugehörigen Operationen, die auf dem jeweili-
gen Typ ausgeführt werden können. Beispielsweise können für Objekte des Typs Integer
die Operationen +, - oder abs()8 und für Objekte des Typs Collection die Operationen
collect()9 oder forAll()10 ausgeführt werden. In Abbildung 3.2 ist das Typ-System von
BasicOCL dargestellt. Die in weiß dargestellten Typen sind aus UML [39] entnommen.
Nachfolgend werden die einzelnen Typen kurz vorgestellt, ohne auf die zugehörigen Ope-
rationen einzugehen. Für interessierte Leser wird auf die Spezifikation [53] verwiesen.

Alle Typen erben von der UML Klasse Type11. Type ist eine abstrakte Klasse, die ein
typisiertes Element beschreibt. Auf der ersten Ebene werden die Klassen InvalidType,
VoidType, DataType, AnyType, Class und TemplateParameterType definiert. Die Klasse
8Berechnung des absoluten Wertes.
9Anwendung einer Mapping-Funktion auf alle Elemente.
10Iteration über alle Elemente dieser Collection.
11In BasicOCL wird nicht die Klasse Classifier als Basisklasse genutzt, sondern die Klasse Type. Folglich

muss jeder Verweis auf die Klasse Classifier als Verweis auf die Klasse Type uminterpretiert werden [53].

19

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Abbildung 3.2: BasicOCL Typenmodell [53]

InvalidType stellt einen Typen für ungültige Werte dar, welche z. B. bei der Anwendung
einer Operation auf Typen, für die diese Operation nicht definiert ist, entstehen. Der Typ
ist vergleichbar mit Exceptions aus Programmiersprachen. Für die Darstellung eines un-
definierten Werts wird die Klasse VoidType definiert. Diese tritt immer dann auf, wenn
ein Ausdruck als undefiniert evaluiert wird, z. B. wenn auf ein Attribut oder ein Objekt
zugegriffen wird, das nicht existiert. In Programmiersprachen wird oft das Schlüsselwort
null verwendet. Die Klasse AnyType stellt einen verallgemeinerten Typen dar, dem alle
anderen Typen entsprechen. Mithilfe dieser Klasse können Operationen definiert werden,
die für alle Typen gelten. Die UML-Klasse Class ist die Metaklasse einer Klasse und kann
zur Beschreibung von eigenen Klassen genutzt werden, wie es heutzutage oftmals in Klas-
sendiagrammen erfolgt. Die Klasse TemplateParameterType stellt einen parametrierbaren
Typen dar und wird beispielsweise bei wiederverwendeten Ausdrücken benötigt. Als letzte
Klasse auf der oberen Ebene wird die Klasse DataType aus UML genutzt. Diese Klas-
se beschreibt einen Typen, dessen Instanzen durch einen Wert dargestellt werden. Von
dieser Klasse werden drei verschiedene Unterklassen abgeleitet: CollectionType, Primitive-
Type und TupleType. Die abstrakte Klasse CollectionType beschreibt dabei eine Liste von
Elementen eines bestimmten Typs, der über die Assoziation elementType festgelegt wird.
Dabei gibt es keine Einschränkungen, so können z. B. auch verschachtelte Collections defi-
niert werden. Die abstrakte Klasse hat vier Unterklassen: OrderedSetType, SequenceType,
BagType und SetType. Die Klassen stellen dabei immer eine Sammlung von Elementen dar
und unterscheiden sich in zwei Punkten:

1. Elemente dürfen nur einmal oder mehrfach in der Sammlung vorhanden sein und

2. Elemente liegen in einer Reihenfolge vor oder sind ungeordnet.

20

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3.2 Abstrakte Syntax von BasicOCL

In Tabelle 3.1 sind die Ausprägungen den einzelnen Unterklassen zugeordnet.

Tabelle 3.1: Unterscheidung der Subklassen von CollectionType

Kriterium OrderedSetType SequenceType BagType SetType
Anzahl Einmal Mehrfach Mehrfach Einmal

Reihenfolge Geordnet Geordnet Ungeordnet Ungeordnet

Auf der zweiten Ebene wird die UML-Klasse PrimitiveType wiederverwendet. Diese fasst
einfache Datentypen ohne Unterstrukturen zusammen. Insgesamt werden fünf einfache
Datentypen definiert: Boolean, Integer, Real, String und UnlimitedNatural12. Die letzte
Klasse TupleType beschreibt eine Menge von verschiedenen Typen. Dadurch ist es möglich,
eigene Datenstrukturen innerhalb von OCL zu erstellen. In Programmiersprachen wird dies
oft als struct bezeichnet.

OCL-Ausdrücke

Um Constraints zu definieren, werden Ausdrücke benötigt. In den vorherigen Beispielen
wurden diese dargestellt, ohne näher auf die Art der Ausdrücke einzugehen. In Abbildung
3.3 ist eine vereinfachte Darstellung des Metamodells der OCL-Ausdrücke von BasicOCL
aus der Spezifikation [53] dargestellt. Das vollständige Modell sowie die Semantik sind in
der Spezifikation ausführlich beschrieben.

Abbildung 3.3: BasicOCL Metamodell nach [21]

Auf oberster Ebene werden insgesamt sechs verschiedene Klassen definiert. Die Klasse
LiteralExp definiert einen Ausdruck, welcher ein gegebenes Literal eines primitiven Typs
12Instanzen der Klasse UnlimitedNatural sind Werte der natürlichen Zahlen (0,1,2,...,*). Das Zeichen *

stellt den Wert ”unendlich“ dar. Zumeist findet sich dieser Typ in der Beschreibung von Multiplizität
einer Assoziation.

21

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

auswertet und als Ergebnis zurückgibt, z. B. String oder Integer. Durch die Klasse Varia-
bleExp können Variablen ausgewertet und das entsprechende Ergebnis verwendet werden.
Die referenzierte Variable kann vorher explizit (z. B. mit LetExp) oder implizit (z. B. self)
definiert sein. Die abstrakte Klasse CallExp stellt einen Ausdruck dar, welcher sich auf ein
Attribut, eine Methode oder auf einen vordefinierten Iterator für eine Collection bezieht.
Das Ergebnis ist der Wert des Attributs, der Methode oder der Iteration. Die Unter-
klasse FeatureCallExp wird für die Auswertung von Attributen und Methoden verwendet,
während die Unterklasse LoopExp für die Auswertung einer Iteration über eine Collection
genutzt wird. Die beiden Subklassen IteratorExp und IterateExp iterieren über die Ele-
mente einer Collection, werten einen vorgegebenen Ausdruck für jedes Element aus und
geben das Ergebnis (z. B. eine neue Collection oder einen booleschen Wert) zurück. Die
IteratorExp ist eine Kurzform der IterateExp für bestimmte Methoden, z. B. forAll, select
und sortedBy. Die Klasse IfExp ist ein Ausdruck, welcher eine boolesche Bedingung aus-
wertet und je nach Ergebnis einen von zwei gegebenen Ausdrücken zurückgibt. Um einen
Typen zu referenzieren, kann die Klasse TypeExp genutzt werden. Abschließend kann mit
der Klasse LetExp ein Ausdruck definiert werden, welcher eine neue Variable eines Typs
erstellt und mit einem gegebenen Wert initialisiert. Der Wert der Variable kann danach
nicht mehr geändert werden. Um die verschiedenen Ausdrücke zu verdeutlichen, wird in
Abbildung 3.4 folgende Invariante mit Hilfe der vorgenannten OCL-Klassen dargestellt:
context machine

inv: self.nextjobs -> select (j | j.prio = 1) ->size () <= 1

Die Invariante sagt aus, dass zu jeder Zeit in der Liste der nächsten Aufträge einer Maschine
maximal ein Auftrag enthalten sein darf, der die Priorität 1 hat. Der abstrakte Syntaxbaum
beginnt mit einer Vergleichsoperation auf der obersten Ebene und gliedert sich anschließend
unter Nutzung der OCL-Klassen weiter auf.

3.3 Konkrete Syntax von BasicOCL

In der OCL Spezifikation wird neben der abstrakten Syntax auch eine konkrete Syntax
beschrieben. Diese ist in der erweiterten Backus-Naur-Form (EBNF) formuliert. Zusätzlich
ist das Mapping zu den Elementen der abstrakten Syntax angegeben. Für die Unterschei-
dung zwischen der abstrakten und konkreten Syntax wird bei den Elementen der konkreten
Syntax der Term CS13 als Suffix angehängt.

Für die Erstellung von neuen Syntaxelementen (Wörtern bzw. Symbolfolgen) müssen Pro-
duktionsregeln formuliert werden. Diese geben an, wie Syntaxelemente mit Hilfe der Kom-
bination von anderen Syntaxelementen definiert (produziert) werden. Eine Produktions-
regel besteht aus einem linken und einem rechten Teil, die durch das Syntaxelement ::=
getrennt werden. Der linke Teil stellt dabei das zu erstellende Syntaxelement dar und der
rechte Teil die Anleitung zur Produktion dieses Syntaxelements.

Bei den Syntaxelementen wird in Terminal- und Nichterminalsymbole unterschieden. Ein
Terminalsymbol beschreibt ein Symbol, welches nicht durch andere Symbole ersetzt werden
13CS steht für Concrete Syntax.

22

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3.3 Konkrete Syntax von BasicOCL

Abbildung 3.4: Darstellung der Invariante durch OCL-Klassen

kann. Ein Nichtterminalsymbol ist ein Symbol, für das eine Produktionsregel existiert.
Folglich kann das Symbol durch die Symbole der Produktionsregel ersetzt werden.

In OCL existieren allgemeingültige und vordefinierte Terminalsymbole, um komplexere
Produktionsregeln zu erstellen. Die für diese Arbeit relevanten Symbole werden nachfol-
gend vorgestellt: Durch die Nutzung von Klammern können zusammengehörige Symbo-
le gruppiert werden. Um optionale Symbole oder Symbolgruppen zu kennzeichnen, wird
das Fragezeichen-Symbol an das Symbol oder die Symbolgruppe angehängt. Falls Sym-
bole innerhalb einer Produktionsregel mehrfach benutzt werden, können diese durch die
Verwendung einer Nummer in eckigen Klammern als Suffix unterschieden werden. Kom-
mentare können zeilenweise durch die doppelte Nutzung des Terminalsymbols ”-“ oder
paragraphenweise zwischen den Terminalsymbolen /* und */ hinzugefügt werden. Zur
Veranschaulichung der Verwendung dieser Symbole wird die Produktionsregel für die va-
riableDeclarationListCS beschrieben. Diese erzeugt eine Liste von Variablen, die beispiels-
weise in einem Tupel benötigt wird. Eine variableDeclarationListCS besteht immer aus
mindestens einem Nichtterminalsymbol variableDeclarationCS gefolgt von einer Gruppe,
bestehend aus dem in dieser Produktionsregel definierten Terminalsymbol in Form eines
Kommas und einer weiteren variableDeclarationListCS. An dieser Stelle kann rekursiv ver-
fahren werden, sodass weitere Variablen durch ein Komma getrennt angehängt werden.
Das Fragezeichen am Ende der Gruppe definiert die Gruppe als optional. Somit kann die
Gruppe auch entfallen, was zum Ende der Rekursion führt.
variableDeclarationListCS [1] ::= VariableDeclarationCS

(‘,’ variableDeclarationListCS [2])?

23

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

3 Object Constraint Language

Wichtige Produktionsregeln für diese Arbeit

Für diese Arbeit sind sieben Produktionsregeln wichtig, da diese in Kapitel 9 in der kon-
kreten Syntax verwendet werden. An dieser Stelle wird nur auf die Semantik dieser Pro-
duktionsregeln eingegangen. Die formale Beschreibung der Produktionsregeln kann in der
Spezifikation [53] nachgeschlagen werden.

Die erste Produktionsregel ist die Erstellung des Syntaxelements simpleNameCS, welche es
ermöglicht einen Namen als String zu formulieren. Es können beliebige Zeichen verwendet
werden, wobei immer mit einem Buchstaben, einem Unterstrich oder dem $-Zeichen begon-
nen werden muss. Die nutzbaren Unicode-Zeichen sind in [53] festgelegt. Danach können
beliebig weitere dieser Zeichen und zusätzlich auch die Ziffern 0 bis 9 folgen.

Eine weitere wichtige Produktionsregel ist die für das Syntaxelement OCLExpressionCS,
welche wiederum aus anderen Produktionsregeln besteht. Dabei ist es möglich, die zu-
gehörigen Produktionsregeln für die Sub-Klassen der OCLExpression aus der abstrakten
Syntax zu nutzen, z. B. CallExpCS, VariableExpCS oder LiteralExpCS. Für weitere Infor-
mationen zu diesen Produktionsregeln wird auf die Spezifikation [53] verwiesen.

Für die Erstellung von String-Literalen ist die Produktionsregel des Syntaxelements String-
LiteralExpCS definiert. Mit dieser ist es möglich, ein String-Literal zu erzeugen, welches
durch eine Sequenz aus Zeichen oder Escape-Sequenzen beschrieben wird. Eine Escape-
Sequenz ermöglicht die Darstellung von Sonderfunktionen in Text-Zeichen, z. B. \t für ein
Tabulator oder \n für eine neue Zeile.

Mit dem Syntaxelement CollectionLiteralExpCS können Sammlungen von Objekten dar-
gestellt werden. Dafür muss in der Produktionsregel zunächst der Typ der Sammlungen
Set, Bag, Sequence, Collection oder OrderedSet angegeben werden. Danach folgen die ei-
gentlichen Elemente.

Für die Definition eines Typnamens in einem Ausdruck kann das Syntaxelement typeCS
verwendet werden. Für die Definition werden andere Produktionsregeln wiederverwendet.
Zum Beispiel primitiveTypeCS für die Erstellung von einfachen Datentypen, wie String
oder Boolean, oder pathNameCS, welche eine Sequenz von Strings definiert, zur Beschrei-
bung eines Pfadnamens.

Die letzten zwei Produktionsregeln dienen der Definition einer Liste von Parametern pa-
ramtersCS oder einer Liste von Argumenten argumentsCS. Die erstgenannte Regel ist eine
Sequenz von Variablendeklarationen, die durch ein Komma getrennt werden. Jede dieser
Variablendeklarationen besteht aus einem Namen simpleNameCS und kann optional den
Typ typeCS sowie einen Ausdruck für den Initialwert OCLExpressionCS festlegen. Die
Produktionsregel zur Erstellung des Syntaxelements argumentsCS ist durch eine Sequenz
von OCLExpressionCS, getrennt durch ein Komma, definiert.

24

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4 Interoperabilität

Damit sich zwei Entitäten untereinander verständigen können, brauchen diese ein gemein-
sames Verständnis über die ausgetauschten Daten. Als Beispiel wird folgendes Szenario
betrachtet: Zwei Menschen aus unterschiedlichen Ländern wollen miteinander interagie-
ren. Beide kommen aus unterschiedlichen kulturellen, politischen sowie ethnischen Kreisen
und sprechen jeweils eine andere Sprache, die zusätzlich auf unterschiedlichen Alphabeten
basieren. Diese Personen können sich zunächst nicht mittels einer gesprochenen Sprache
unterhalten. Aus diesem Grund muss entweder einer von beiden Personen die jeweils ande-
re Sprache lernen oder beide lernen eine gemeinsame ggf. einfachere oder weit verbreitetere
Sprache1. Angenommen beide Personen haben eine gemeinsame Sprache in ihren Grund-
formen gelernt. Das Erlernen ist jedoch unterschiedlich erfolgt, sodass die beiden Perso-
nen ein unterschiedliches Vokabular in der Sprache besitzen, wobei das Haupt-Vokabular
gleich ist. Ab diesem Zeitpunkt ist es den Personen möglich, sich mit Hilfe der gemeinsa-
men Sprache über Dinge, die im Haupt-Vokabular enthalten sind, auszutauschen. Nutzt
jedoch eine Person ein Wort aus dem Vokabular, das die andere Person nicht versteht, ist
zunächst wiederum keine 100%ige Kommunikation möglich. Der Kommunikationspartner
kann jedoch ggf. die Bedeutung des fehlenden Wortes durch die anderen Wörter im Satz
vermuten. Dabei tritt ein weiteres Problem auf: die Semantik der Wörter. Wörter können
in verschiedenen Kontexten unterschiedliche Bedeutungen haben. Der Kommunikator muss
anhand des Gesprächskontextes ermitteln, welche Bedeutung den Begriffen gerade zuge-
ordnet werden. Nur wenn dies korrekt erfolgt, können sich zwei Personen verstehen. Ein
weiteres Problem tritt auf, wenn die Grammatik nicht korrekt ist. Menschen können dies
durch Verständnis des Kontextes herausfiltern und die Informationen dennoch verstehen.

Bei der Übertragung dieses Szenarios auf die Kommunikation zwischen Maschinen bzw.
Software-Applikationen treten dieselben Probleme auf. Damit Applikationen interagieren
können, bedarf es zunächst einer gemeinsamen Sprache2. Dies ist in der Regel ein Da-
tenformat. In einem nächsten Schritt müssen die im Datenformat enthaltenen Daten von
beiden Seiten gleich analysiert (z. B. Einheit, Bedeutung, Datentyp) und anschließend kor-
rekt interpretiert werden (z. B. Messwert vom Sensor X an Anlage A ist zu hoch). Erst
wenn diese Voraussetzungen gegeben sind, kann von einer Interaktion zwischen Applika-
tionen gesprochen werden. Ein Unterschied ist jedoch, dass eine Maschine zunächst kein
Kontext-Wissen besitzt und dementsprechend mit fehlerbehafteten Datenformaten oder
Informationen nicht umgehen kann. Es existieren bereits Ansätze, die sich mit dieser The-
matik beschäftigen, auf die nachfolgend verwiesen wird.

Um die verschiedenen Arten der Kommunikationsfähigkeit zwischen Systemen, Applikatio-
nen oder auch Organisationen zu klassifizieren, existiert der Begriff Interoperabilität. Dabei
1Heutzutage ist dies oftmals Englisch.
2Genau genommen einer gemeinsamen Syntax.

25

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4 Interoperabilität

liegen verschiedene Definitionen von Interoperabilität vor. Einige Zusammenfassungen sind
in [54, 55] gegeben. Nachfolgend sind einige Definitionen aufgelistet.

• Duden: Fähigkeit unterschiedlicher Systeme, möglichst nahtlos zusammenzuarbeiten

• Plattform I4.0 Glossar: Fähigkeit zur aktiven, zweckgebundenen Zusammenarbeit
von verschiedenen Komponenten, Systemen, Techniken oder Organisationen

• Oxford Dictionary: The ability of computer systems or programs to exchange infor-
mation

• Cambridge Dictionary: The degree to which two products, programs, etc. can be used
together, or the quality of being able to be used together

• ISO/IEC[56]: The ability of two or more systems or applications to exchange infor-
mation and to mutually use the information that has been exchanged

• IEEE[57]: The ability of two or more systems or components to exchange information
and to use the information that has been exchanged

Diese Arbeit handelt von der Interaktion zwischen Software-Applikationen. Dafür wird eine
Möglichkeit zur Zusammenarbeit von verschiedenen Software-Applikationen von verschie-
densten Herstellern vorgestellt. Interoperabilität wird in dieser Arbeit wie folgt definiert:

Definition 4.1 (Interoperabilität) Fähigkeit von Systemen und Applikationen, Infor-
mationen untereinander auszutauschen und diese für eine aktive und zweckgebundene Zu-
sammenarbeit zu nutzen.

Interoperabilität lässt sich in verschiedene Stufen einteilen. Welche Stufen existieren und
wie diese aufeinander aufbauen, wird im Abschnitt 4.1 dargestellt. In dem darauffolgenden
Abschnitt 4.2 werden die derzeitigen Probleme, die in den einzelnen Stufen auftreten,
detaillierter beschrieben und aktuelle Ansätze zur Lösung dieser Probleme dargestellt.

4.1 Stufen der Interoperabilität

Es existieren mehrere Modelle, die Interoperabilität in verschiedene Stufen einteilen. Nach-
folgend werden einige von diesen vorgestellt und im Anschluss in Bezug zu dieser Arbeit
gesetzt.

In Abbildung 4.1 ist die vierstufige Einteilung nach [58] dargestellt. Diese beginnt auf
der untersten Stufe mit der technischen Interoperabilität, die die Übertragung von Daten
sicherstellt. Aufbauend darauf befindet sich die syntaktische Interoperabilität, die aussagt,
dass zwei Systeme das gleiche Verständnis von Zeichen und Formaten haben. Auf der
dritten Stufe (semantischen Interoperabilität) wird festgelegt, ”aus welchen inhaltlichen
Feldern ein Datensatz in welcher Reihenfolge besteht und mit welchen Codes die Daten in
den einzelnen Feldern erzeugt werden“ [58]. Wie die Daten weiterverarbeitet werden, z. B.
durch abgestimmte Workflows, legt die höchste Stufe, die organisatorische Interoperabilität,
fest.

26

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4.1 Stufen der Interoperabilität

Abbildung 4.1: Interoperabilitätsstufen nach Kubicek [58]

In [59] werden sechs Stufen eingeführt: no connection (keine Interoperabilität zwi-
schen Systemen), technical (Basis- und Netzwerk-Konnektivität), syntactical (Datenaus-
tausch ist gegeben), semantic (Verständnis der ausgetauschten Daten), pragmatic/dy-
namic (Anwendbarkeit der Daten in einem Kontext) und conceptual (geteiltes Wissen
domänenübergreifend). Pantsar Syvaniemie et al. definieren in [60] eine ähnliche Klassifi-
kation mit folgenden sechs Stufen: connection, communication, semantic, dynamic, beha-
vioural und conceptual.

Im militärischen Umfeld hat die NATO mit der System-Interoperabilitäts-Richtlinie (NA-
TO C3 System Interoperability Directive: NIC) eine fünf-stufige Klassifikation entwickelt
[61]. In Stufe 0 muss der Anwender die Systeminteroperabilität herstellen (Isolated Inter-
operability). In Stufe 1 können Systeme bereits Daten untereinander austauschen (Connec-
ted Interoperability). Die Weiterverarbeitung der ausgetauschten Daten zu sinnvollen Infor-
mationen erfolgt in Stufe 2, z. B. durch definierte Schemata in JSON oder XML (Functional
Interoperability). In der nachfolgenden Stufe 3 können die Informationen durch die jeweili-
gen Systeme automatisiert interpretiert werden, ohne dass vorherige Absprachen zwischen
den Systemen notwendig sind (Domain Interoperability). Die Informationen gehören dabei
einer bestimmten Domäne an. Werden die Informationen über Domänengrenzen hinweg
verstanden, ist die 4. Stufe der Interoperabilität erreicht (Enterprise Interoperability).

Noura, Atiquzzaman und Gaedke beschreiben in [62], dass die Klassifikation im Bereich
von Internet of Things (IoT) nicht in Stufen, sondern aus verschiedenen Perspektiven
betrachtet werden sollte. In Abbildung 4.2 sind die fünf verschiedenen Perspektiven dar-
gestellt: Device Interoperability, Network Interoperability, Syntactical Interoperability, Se-
mantic Interoperability und Platform Interoperability. Unter Device Interoperability wird
eine Fähigkeit verstanden, mit der heterogene Geräte Informationen austauschen können.
Es können verschiedene Arten von Geräten von Low-End bis High-End und zudem mit un-
terschiedlichen Kommunikationsprotokollen vorliegen. Außerdem soll die Integration von
neuen Geräten in eine IoT-Plattform möglich sein. Bei Network Interoperability geht es dar-
um, dass Geräte aus unterschiedlichen Netzwerken miteinander interagieren können und

27

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4 Interoperabilität

dass der Informationsaustausch zwischen den Netzwerken möglich ist. Das Datenformat
und die Datenstruktur der ausgetauschten Informationen werden in der Syntactial Inter-
operability festgelegt. Der Fokus liegt auf den Kodierungs- und Dekodierungsregeln der sich
verständigenden Systeme. In Semantic Interoperability wird die Semantik der übertragenen
Daten betrachtet. Dazu muss das Wissen über die Informationen ausgetauscht werden, z. B.
über definierte Informationsmodelle. Abschließend wird die Platform Interoperability be-
trachtet, bei der die Plattform-Abhängigkeit von Systemen und deren Schnittstellen im
Fokus steht. Verschiedenste Plattformen haben unterschiedliche Anforderungen oder eige-
ne Programmiersprachen, sodass Systeme nicht zwingend auf jeder Plattform ausführbar
sind.

Abbildung 4.2: Perspektiven der Interoperabilität nach [62]

In den ISO/IEC 21823-1 und ISO/IEC 19941 Standards [56, 63] werden fünf Facetten
von Interoperabilität beschrieben (siehe Abbildung 4.3): Transport, Syntactic, Semantic,
Behavioural und Policy. Die Transport Interoperability umfasst die Kommunikationsin-
frastruktur, die benötigt wird, um Daten zwischen zwei Entitäten auszutauschen. Hierzu
gehören das physische Medium und die Transportmechanismen (die ersten 4 Layer im
ISO/OSI Schichtenmodell [64]). Die detaillierte Beschreibung ist in Teil 2 des ISO/IEC
21823-Standards [65] gegeben. Die Syntactic Interoperability beschreibt die Fähigkeit, mit
der Systeme oder Geräte Informationen basierend auf ihrer Syntax austauschen können.
Beispiele sind: Web Ontology Language (OWL), XML, Resource Description Framework
Schema (RDFS) oder JSON. Bei der Semantic Interoperabilty steht die Bedeutung des
Datenmodells innerhalb eines Kontextes im Fokus, z. B. wie die Daten für eine konkrete
Domäne zu interpretieren sind. In Teil 3 des ISO/IEC 21823-Standards [66] ist beschrie-
ben, dass dies durch die Nutzung von Ontologien erfolgen soll. Die Behavioural Inter-
operability befasst sich mit der Nutzung der ausgetauschten Informationen. Verschiedene
Entitäten sind für verschiedene Zwecke konzipiert und verfolgen mit den ausgetauschten
Informationen unterschiedliche Absichten. Dies beeinträchtigt die anderen Facetten der
Interoperabilität nicht. Vielmehr ist die Behavioural Interoperability in den Schnittstel-
lenbeschreibungen definiert. Das bedeutet, es wird geprüft, ob die erwartenden Ergebnis-
se beim Aufruf einer Operation mit den tatsächlichen Ergebnissen übereinstimmen. Ab-
schließend beschreibt die Policy Interoperability die Fähigkeit von Entitäten, innerhalb von
rechtlichen, organisatorischen und politischen Rahmenbedingungen zusammenarbeiten zu
können.

Die Modelle sind sich im Grunde ähnlich, unterscheiden sich aber in der Anzahl und
Interpretation der Stufen. Drei Stufen jedes Modells können dabei als identisch interpretiert

28

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4.1 Stufen der Interoperabilität

Abbildung 4.3: Facetten der Interoperabilität nach [56]

werden. Die Zuordnung der Stufenbegriffe ist nur bei der Richtlinie der NATO [61] nicht
eindeutig, wird aber grob wie folgt angenommen und entspricht den Stufen eins bis drei in
Tabelle 4.1:

• Die erste Stufe befasst sich mit dem Transport der Daten und definiert, dass die
Komponenten über eine Verbindung zum Austausch von Daten verfügen.

• In der zweiten Stufe wird der syntaktische Austausch mit Hilfe vorgegebener Daten-
strukturen gefordert.

• Die dritte Stufe beschreibt die semantische Interpretation der Daten, sodass ein ge-
meinsames Verständnis über die ausgetauschten Daten vorliegt.

Während die Stufe eins in [58] und [59] technische Interoperabilität heißt, wird in [60] der
Begriff connection, in [61] der Begriff Connected, in [62] der Begriff Network und in [56,
63] der Begriff Transportinteroperabilität verwendet. In Stufe zwei wird hauptsächlich der
Begriff syntaktisch genutzt. Lediglich in [60] wird stattdessen der Begriff Communication
und in [61] der Begriff Functional verwendet. Bei Stufe drei ist der Hauptbegriff Semantisch.
Nur in der Richtlinie der NATO [61] wird stattdessen der Begriff Domain genutzt.

Aufbauend auf diesen drei Stufen gibt es meistens Stufen, die sich mit dem Verhalten
beschäftigt, z. B. Behavioural Interoperability in [56, 60, 63], oder die organisatorischen,
rechtlichen und politischen Interoperabilitätskriterien beschreiben sowie Aussagen zu den
verwendeten Geräten bzw. Plattformen machen. Im Rahmen dieser Arbeit soll der Fokus
auf der semantischen Interoperabilität liegen, weshalb die vorgestellte Einordnung ausrei-
chend ist.

29

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4 Interoperabilität

Tabelle 4.1: Vergleich der verschiedenen Stufensysteme

Stufe [58] [59] [60] [61] [62] [56, 63]
0 — No

connection
— Isolated Device —

1 Technisch Technical Connection Connected Network Transport
2 Syntaktisch Syntactical Communication Functional Syntactical Syntactic
3 Semantisch Semantic Semantic Domain Semantic Semantic
4 Organi-

satorisch
Pragmatic
/ Dynamic

Dynamic Enterprise Platform Behavioural

5 — Conceptual Behavioural — — Policy
6 — — Conceptual — — —

4.2 Aktuelle Ansätze für Interoperabilität

In [67] wurden 15 der aktuellen Horizon2020-Projekte analysiert und aufgezeigt, für wel-
che Stufen der Interoperabilität diese jeweils Lösungen bereitstellen. Ein detaillierter
Vergleich ist in [62] gegeben, indem 30 verschiedene Lösungen für verschiedene Stufen
der Interoperabilität miteinander verglichen wurden. Die meisten Ansätze beschränken
sich auf die Transport- und die syntaktische Interoperabilität. Lediglich sieben der 30
Lösungsvorschläge betrachten zudem die semantische Interoperabilität. Das lässt sich da-
durch erklären, dass zunächst Lösungen für die unteren Schichten entwickelt werden sollten,
bevor Lösungen für die oberen Schichten erforscht werden. Die semantische Interoperabi-
lität wird aktuell in vielen Forschungsaktivitäten betrachtet und es entstehen zunehmend
Lösungsansätze. In [62, 67–72] werden verschiedenste Ansätze und Forschungsaktivitäten
diskutiert.

Für die Transport-Interoperabilität existieren Ansätze basierend auf Adaptern bzw. Gate-
ways oder virtuellen Netzwerken bzw. Overlay-basierten Lösungen und in Form von uni-
versalen Netzwerk-Technologien. Im Bereich der syntaktischen Interoperabilität werden
ebenfalls Adapter bzw. Gateways genutzt. Zusätzlich werden OpenAPI-Beschreibungen,
Metamodell-getriebene Ansätze und Middleware-Konzepte verwendet. Auch aktuelle Pro-
jekte und Initiativen in Deutschland versuchen die syntaktische Interoperabilität zu ver-
bessern. Beispielsweise die Plattform Industrie 4.0 mit dem Konzept der Verwaltungsschale
oder das BaSys4.0- bzw. BaSys4.2-Projekt mit der Entwicklung eines neuen Middleware-
Konzepts.

Zunächst können die Ansätze für die semantische Interoperabilität hinsichtlich ihrer Her-
kunft unterschieden werden. Während sich [62, 67–70] vorwiegend auf Ansätze im Bereich
des IoT konzentrieren, werden in [71, 72] zusätzlich Lösungskonzepte aus dem Bereich
von Industrie 4.0 bzw. aus der Automation-Community betrachtet. Aus dem IoT-Kontext
ist häufig das Semantic Web [73] mit seinen Ontologien vertreten, während im Bereich
von Industrie 4.0 vorwiegend standardisierte Informationsmodelle (wie z. B. Teilmodelle in
Verwaltungsschalen) diskutiert werden.

So verschieden die Ansätze auf den einzelnen Schichten sind, so gleich sind diese in ihren
übergeordneten Konzepten. Zwei grundlegende Ansatzkonzepte, die häufig genutzt werden,

30

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4.2 Aktuelle Ansätze für Interoperabilität

sind die Standardisierung und das Mapping.

Der offensichtlichste Schritt zur 100%igen Interoperabilität ist die vollständige Standar-
disierung. Dies bedeutet, es existiert für jede Schicht genau eine Lösung, die von allen
Systemen umgesetzt werden muss. Am Beispiel der semantischen Interoperabilität bedeu-
tet dies, dass ein definiertes Modell vorliegt, mit dem alle Informationen Domänen- und
Branchen-übergreifend abgebildet werden können. Dies ist aktuell nicht gegeben und liegt
unter anderem daran, dass durch die freie Marktwirtschaft in den letzten Jahren Umsatz
durch unterschiedliche und nicht zusammen nutzbare Modelle der einzelnen Firmen erwirt-
schaftet wurde. Zudem wurden aufgrund unterschiedlicher Ziele und Interessen individuelle
Lösungen für einzelne Domänen oder Firmen entwickelt [74]. Das Ergebnis ist ein hetero-
genes Feld an Lösungen, wobei jeder Entwickler seine Lösung am zielführendsten hält. Das
nur eine übergreifende Lösung existiert, ist aus Sicht des Verfassers utopisch. Aus diesem
Grund werden nachfolgend alternative Lösungen diskutiert.

Eine Möglichkeit, die aktuell am stärksten vorangetrieben wird, sind standardisierte Infor-
mationsmodelle für einzelne Domänen bzw. Branchen durch Standardisierungsorganisatio-
nen. Unter einem Informationsmodell wird ”im mathematisch-algebraischem Sinne (...) ein
zusammengesetzter Abstrakter Datentyp (ADT) mit mehreren Grundmengen (Sorten),
Variablen und Axiomen, Regeln und Funktionen zwischen den Sorten (verstanden)(...).
Die Anleitungen zur Erstellung von Informationsmodellen sind vielfältig und reichen von
Glossaren und Thesauri über objektorientierte Klassifikationen (z.B. AutomationML) bis
hin zu Modellen auf formaler Logik (z. B. Ontologien)“ [72]. Ein ADT kann in Form von
Datenmodellen mit semantischer Bedeutung oder in Form von Netzen in Ontologien dar-
gestellt werden. Unter Datenmodell mit semantischer Bedeutung werden konkrete Infor-
mationsmodelle für einen Anwendungsfall verstanden, bei dem die Semantik der einzelnen
Elemente spezifiziert wird. In sogenannten Templates oder Spezifikationen werden diese
festgehalten, zur Laufzeit instanziiert und mit aktuellen Daten befüllt. Beispiele sind die
OPC UA Companion Specifications, die anwendungsfallspezifisch die Eigenschaften zu-
sammengehörig mit den Elementtypen des OPC UA Metamodells modellieren, um diese
in konkreten OPC UA Server Instanzen zu nutzen und mit Werten zu füllen. Des Weiteren
entwickeln PROFINET, CAN, IOLINK und EthernetIP entsprechende Geräteprofile und
die Home Gateway Initiative (HGI) veröffentlichte das Smart Device Template (SDT) für
die Gerätemodellierung. Die im Zuge der Industrie 4.0-Initiative entwickelte Verwaltungs-
schale definiert ebenfalls Teilmodelle für diesen Zweck. Im Bereich der Ontologien entste-
hen ebenfalls standardisierte Modelle, wie z. B. oneM2M, ETSI SAREF, W3C SSN, IBM
Watson, SenML, NGSI-LD, die auf den Semantic Web Technologien, wie z. B. Resource
Description Framework (RDF), OWL und SPARQL aufbauen.

Durch die Entwicklung dieser Informationsmodelle durch verschiedene Domänen- und Fa-
chexperten können gleiche Informationen in verschiedenen Informationsmodellen enthal-
ten sein. Die Informationen müssen dabei nicht zwangsweise gleich modelliert sein. Um
die Informationsmodelle gemeinsam zu nutzen, wird vielfach ein Mapping genutzt. Beim
Mapping werden einzelne Elemente eines Informationsmodells mit Elementen eines ande-
ren Informationsmodells in Relation gesetzt. Auf syntaktischer Ebene werden in der Regel
die Datenmodelle ineinander transformiert. Dies kann durch den Anwender von Hand ge-
schehen, mit Hilfe von Modelltransformation (semi-) automatisch oder mit Methoden der

31

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

4 Interoperabilität

künstlichen Intelligenz. Ein Beispiel sind die Arbeiten von Christiansen [75, 76], in de-
nen verschiedene Teil-Topologie-Modelle in ein übergeordnetes größeres Topologie-Modell
zusammengeführt und anschließend je nach Anwendungsfall wieder in Teilmodelle zerlegt
werden. In [77] wird das Konzept der semantischen Transformation für Geodaten darge-
stellt. Im Bereich der künstlichen Intelligenz gibt es ebenfalls erste Ansätze, wie z. B. mit
Hilfe von natürlicher Sprachverarbeitung (Natural Language Processing (NLP)) [16, 17].
Bei Ontologien wird das Mapping durch Festlegung von OWL Relationen realisiert. So
können z. B. Elemente als gleich oder ist SubType von bezeichnet werden, sodass die ein-
zelnen Netze zusammengeführt werden können. Dies kann bei großen Netzwerken jedoch
sehr komplex werden. Ein Konzept zur Erstellung von neuen Informationsmodellen basie-
rend auf existierenden Informationsmodellen wird nur sehr selten betrachtet.

Aufgrund dessen wird in dieser Arbeit eine Lösung für die semantische Interoperabilität
aufgezeigt, die zum Ziel hat, angeforderte Informationsmodelle aus existierenden Informa-
tionsmodellen zu erstellen. Für ein besseres Verständnis wird das Konzept der Verwaltungs-
schale als Anwendungsbeispiel genutzt. Die Verwaltungsschale verwendet zur Darstellung
der Semantik sog. Teilmodelle (vgl. Abschnitt 6.3.2), die Informationsmodelle basierend
auf einem festgelegten Metamodell darstellen. Diese werden in sogenannten Teilmodell-
Templates spezifiziert. Für das Metamodell existieren Serialisierungsformate, sodass eine
syntaktische Interoperabilität hergestellt werden kann. Bei der semantischen Interoperabi-
lität muss neben dem syntaktischen Mapping3 auch ein semantisches Mapping4 erfolgen.
Um das syntaktische Mapping möglichst automatisiert durchzuführen, wurde das Konzept
der Modelltransformation eingeführt. In IEC 21823-4 [78] wird ebenfalls die Modelltrans-
formation als Ansatz für die Herstellung der syntaktischen Interoperabilität verwendet.
Dadurch können die Ansätze auch für die Lösung der Probleme bei der semantischen In-
teroperabilität förderlich sein. Daher wird das Konzept der Modelltransformation für die
Herstellung der semantischen Interoperabilität zwischen verschiedenen Informationsmodel-
len im Zuge dieser Arbeit vorgestellt. Im nächsten Kapitel wird zunächst das Konzept der
Modelltransformation näher beschrieben.

3Regeln für die Transformation von Elementen des einen Datenformats in Elemente des anderen Daten-
formats.

4Welches Element entspricht semantisch welchem anderen Element.

32

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Aufgrund von unterschiedlichen Anforderungen werden immer mehr Modelle spezifiziert.
Diese enthalten vielfach die gleichen semantischen Informationen, sind jedoch für den jewei-
ligen Anwendungsfall unterschiedlich modelliert. Ein Ziel ist, neue Instanzen dieser Modelle
zum Teil oder vollständig aus anderen Modell-Instanzen zu erstellen, um z. B. Fehler bei
der Dateneingabe zu verhindern.

Teilweise können Modelle nicht losgelöst voneinander betrachtet werden, da gegebenenfalls
Änderungen an einem Modell zu Anpassungen an anderen Modellen führen. Somit ist ein
automatisiertes Änderungsmanagement sinnvoll [79].

Die beiden vorgestellten Anwendungsfälle im Bereich der Nutzung von Modellen können
mit Hilfe der Modelltransformation gelöst werden. Gerade im Bereich der modellgetriebe-
nen Softwareentwicklung sind Modelltransformationen ein wichtiger Bestandteil [46, 80].

Aufgrund dessen erfolgt in diesem Kapitel zunächst eine kurze Einführung in die Begriffs-
welt der Modelltransformation (Abschnitt 5.1). Anschließend werden in Abschnitt 5.2 die
Eigenschaften einer Modelltransformation betrachtet, bevor in Abschnitt 5.3 verschiede-
nen Modell-zu-Modell Transformationsansätze diskutiert werden. Abschließend werden in
Abschnitt 5.4 verschiedene Arten von Transformationssprachen sowie die Erstellung einer
solchen erläutert.

5.1 Begriffswelt der Modelltransformation

Eine Transformation ist die Wandlung von Form, Struktur oder Gestalt von einem
Ausgangs- in einen Zielzustand, die mittels Regeln in einem Regelwerk festgelegt wird
[81].

Definition 5.1 Eine Transformation T ist eine Menge von Regeln (Regelwerk), die für
beliebige x aus einer Menge X, die Quelle oder Definitionsbereich genannt wird, ein oder
mehrere y aus einer Menge Y, die Ziel oder Wertebereich genannt wird, zuordnet.

Bei der Modelltransformation werden die Mengen X und Y konkretisiert. Sie bestehen aus
Modellelementen. Bei der Ausführung einer Modelltransformation wird eine Instanz eines
Quellmodells in eine Instanz eines Zielmodells überführt. Als Quellmodell wird das Modell
bezeichnet, aus dem die Daten gewonnen werden. Ein Zielmodell ist das Modell, welches
erstellt oder in dem Änderungen vorgenommen werden. Als Grundvoraussetzung bleibt
die Semantik bei einer Transformation zwischen dem Quell- und dem Zielmodell erhalten,
sofern dies durch die Sprache des Zielmodells ermöglicht wird [81].

33

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Definition 5.2 Eine Modelltransformation TM ist eine Menge von Regeln (Regelwerk), die
für beliebige x aus einer Menge von Modellelementen X, die Quellmodelle genannt werden,
ein oder mehrere y aus einer Menge von Modellelementen Y, die Zielmodelle genannt
werden, unter Beibehaltung der Semantik zuordnet, sofern dies die Sprache des Zielmodells
zulässt.

Die Überführung erfolgt durch die Ausführung der definierten Transformationsregeln. Eine
Transformationsregel beschreibt dabei, wie Elemente des Quellmodells in Elemente des
Zielmodells transformiert werden sollen.

Definition 5.3 Eine Transformationsregel definiert, wie ein oder mehrere Elemente des
Quellmodells in ein oder mehrere Elemente des Zielmodells transformiert werden.

Zusätzlich werden die nutzbaren Sprachelemente in einer Transformationssprache (vgl. 5.4)
definiert.

Definition 5.4 Eine Transformationssprache definiert die nutzbaren Sprachelemente zur
Beschreibung von Transformationsregeln.

Transformationsregeln werden in einer Transformationsdefinition zusammengefasst, die an-
schließend von einem Transformationssystem ausgeführt werden [81].

Definition 5.5 Eine Transformationsdefinition ist eine Menge von Transformationsre-
geln, die beschreiben, wie ein Quellmodell in ein Zielmodell transformiert wird.

Für die Ausführung der Transformationsdefinition wird ein Kontrollalgorithmus benötigt.
Dieser Algorithmus führt die Auswahl und die Anwendung geeigneter Regeln innerhalb der
Transformationsdefinition aus. Ein Transformationssystem übernimmt diese Aufgaben. Es
liest die benötigten Quellmodelle ein, wendet die Regeln innerhalb der Transformations-
definition an und erstellt die Zielmodelle.

Definition 5.6 Ein Transformationssystem ist eine Applikation, die ein oder mehrere
Quellmodelle einliest, die Transformationsdefinition ausführt und damit die Zielmodelle
erstellt.

Die Beziehungen zwischen Transformationsdefinition, Transformationssystem, Modell, Me-
tamodell und Sprache sind in Abbildung 5.1 dargestellt.

34

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

Abbildung 5.1: Beziehungen zwischen Transformation, Modell, Metamodell und Sprache nach
[82, 83]

5.2 Merkmale von Modelltransformationen

Für einen Vergleich von Modelltransformationen werden Unterscheidungsmerkmale
benötigt. In [84–86] wurden diverse Modelltransformationen hinsichtlich potenzieller Un-
terscheidungsmerkmale untersucht. Das Ergebnis ist eine heterogene Menge an Unterschei-
dungsmerkmalen. Diese wurden im Rahmen der Vorveröffentlichung [21] in ihrer Gesamt-
heit analysiert, geordnet und schließlich in vier Kategorien zusammengefasst: ”Allgemeine
Merkmale“, ”Quell- und Ziel(meta)modelle“, ”Transformationsregeln“ und ”Regelnutzung“.
Diese vier Kategorien inklusive ihrer Merkmale sind in Abbildung 5.2 dargestellt. Die fol-
genden Abschnitte beschreiben jede der vier Kategorien und ihre Merkmale im Detail.

5.2.1 Allgemeine Merkmale

Allgemein kann bei einer Modelltransformation unterschieden werden, welcher Beschrei-
bungsmechanismus innerhalb einer Transformationsdefinition genutzt, welche Transforma-
tionsrichtung unterstützt wird und welche Inkrementalität vorliegt. Diese Merkmale werden
in der ersten Kategorie zusammengefasst.

Beschreibungsmechanismus

Modelltransformationen können hinsichtlich ihres verwendeten Mechanismus in deklarative
und operationale/imperative Ansätze unterschieden werden.

Bei einem deklarativen Ansatz wird beschrieben, wie der Start- und wie der Endzustand
auszusehen haben. Es wird dabei nicht vorgeschrieben, wie der Endzustand erreicht wird.
Die Vorteile sind, dass die Navigation innerhalb des Modells, das Anlegen von neuen Model-
lelementen und die Reihenfolge der Regelausführung nicht durch den Regelersteller erfolgt.
Daher sind die Regeln schneller zu formulieren und einfacher zu verstehen. Mit geringem
Aufwand kann zusätzlich durch ein Transformationssystem auch eine bidirektionale Trans-
formation durchgeführt werden. Typische deklarative Sprachen sind LISP, ML, Haskell
oder PROLOG.

Bei einem operationalen/imperativen Ansatz wird beschrieben, wie das Endergebnis zu
erreichen ist. Es werden die einzelnen, durchzuführenden Aktionen formuliert. Der Vorteil

35

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Abbildung 5.2: Merkmale der Modelltransformation

ist eine verbesserte Lesbarkeit, wenn z. B. Variablen zur Laufzeit verändert oder Schleifen
verwendet werden sollen. Die Nachteile sind, dass diese Ansätze in der Regel im Vergleich zu
deklarativen Ansätzen länger und nicht reversibel sind, da das Quellmodell nicht aus dem
Zielmodell generierbar ist. Typische imperative Sprachen sind C, JAVA oder Python.

Zusätzlich existieren auch hybride Ansätze, die deklarative Sprachelemente für das Erstel-
len, Setzen, Löschen und Lesen von Modellelementen nutzen und imperative Sprachele-
mente für die Ablaufsteuerung, wie z. B. Vergleiche, Schleifen oder Variablen.

Transformationsrichtung

Modelltransformationen können unidirektional oder bidirektional erfolgen. Bei einer uni-
direktionalen Transformation erfolgt die Transformation in eine Richtung, meistens vom
Quell- zum Zielmodell. Eine Ausführung in die andere Richtung ist nicht möglich. Bei
bidirektionalen Transformationen können die Transformationen in beide Richtungen erfol-
gen. Dies kann entweder erreicht werden, indem nur bidirektionale Transformationsregeln
verwendet werden (z. B. durch den Einsatz eines deklarativen Beschreibungsmechanismus)

36

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

oder indem Regelpaare definiert werden, die einmal eine Transformation vom Quell- zum
Zielmodell und einmal vom Ziel- zum Quellmodell beschreiben.

Inkrementalität

Die Inkrementalität beschreibt, wie Änderungen in bestehenden Zielmodellen vorgenom-
men werden dürfen. Sie definiert was wann und wie geändert werden darf. Es werden drei
Arten unterschieden:

• Ziel-Inkrementalität: Bei der ersten Erstellung wird alles neu angelegt. Danach folgt
die Speicherung. Bei Änderungen in den Quellmodellen werden die entsprechenden
Regeln ausgeführt. Nicht betroffene Elemente im Zielmodell bleiben erhalten.

• Quell-Inkrementalität: Das Transformationssystem analysiert, welche Regeln von ei-
ner Änderung im Quellmodell betroffen sind und führt diese aus. Dies ist vor allem
bei großen Quellmodellen interessant.

• Erhaltung von Benutzer-Editierungen im Zielmodell: Bei einem Update des Zielm-
odells bleiben Änderungen, die zuvor durch einen Benutzer erfolgten, unberührt.

5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle

Des Weiteren können Transformationen hinsichtlich der Quell- und Zielmodelle und deren
Metamodellen unterschieden werden. Zu dieser Kategorie zählen Art, Anzahl, die Abstrak-
tionsebene der Modelle und in welcher Beziehung die Modelle zueinanderstehen.

Art der Quell- und Zielmodelle

Bei einer Modelltransformation können zwei Arten von Zielmodellen erzeugt werden:
Textartefakte oder Modellartefakte. Die Generierung von Text wird als Modell-zu-Text
Transformation und die Generierung von Modellen als Modell-zu-Modell Transformation
bezeichnet [87]. Bei den Modellen kann zusätzlich nach der internen Struktur unterschieden
werden, z. B. ob diese baumartig ist oder eine Graphstruktur aufweist. Für beide Trans-
formationen sind verschiedene Ansätze entwickelt worden. Eine detaillierte Beschreibung
der Modell-zu-Modell Transformationsansätzen erfolgt in Abschnitt 5.3.

Anzahl der Quell- und Zielmodelle

Neben der Art des Zielmodells kann nach der Anzahl der Quell- und Zielmodelle unter-
schieden werden. Insgesamt existieren vier Kombinationen:

1:1 Modelltransformation: Ein Quellmodell wird in genau ein Zielmodell transformiert.
Beispiel: Ein Modell nach dem ACPLT/KS-Metamodell wird in ein Modell nach dem
OPC UA Metamodell umgewandelt.

1:M Modelltransformation: Ein Quellmodell wird in mehrere Zielmodelle transformiert.
Beispiel: Ein Plattform-unabhängiges Modell wird in verschiedene Plattform-abhängige
Modelle transformiert.

37

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

M:1 Modelltransformation: Mehrere Quellmodelle werden in ein Zielmodell transformiert.
Beispiel: Mehrere Quellmodelle, die unterschiedlich entwickelt wurden, werden in einem
Zielmodell kombiniert oder zusammengeführt.

M:N Modelltransformation: Mehrere Quellmodelle werden in mehrere Zielmodelle trans-
formiert. Beispiel: Mehrere Modelle werden untereinander synchronisiert.

Abstraktionsebene der Quell- und Zielmodelle

Die Quell- und Zielmodelle können in verschiedenen Abstraktionsebenen der Originale lie-
gen. Aus diesem Grund kann in eine Transformation zwischen Modellen, die auf einer
Abstraktionsebene liegen, und in eine Transformation zwischen Modellen, die auf unter-
schiedlichen Abstraktionsebenen liegen, unterschieden werden. Die erste wird als horizon-
tale Transformation und die zweite als vertikale Transformation bezeichnet. Beispiele für
eine horizontale Transformation sind die Restrukturierung und die Migration. Die Code-
Generierung ist ein Beispiel einer vertikalen Transformation.

Beziehung zwischen Quell- und Zielmodell

Einige Ansätze befassen sich mit der Erstellung von neuen Zielmodellen ohne dabei die
Quellmodelle zu verändern. Andere Ansätze ändern als Ergebnis die Quellmodelle. Im
zweitgenannten Fall, wenn das Zielmodell dem Quellmodell entspricht, wird dies als eine
In-Place-Transformation bezeichnet. Dabei kann weiterhin unterschieden werden, ob ein
reines Ersetzen oder auch ein Update vorliegt. Bei einem Update muss festgelegt werden,
welche Modellelemente geupdatet werden dürfen, z. B. nur neue Modellelemente oder nur
bestimmte Klassen von Modellelementen.

Art der Metamodelle

Neben den Quell- und Zielmodellen kann auch die Art der Metamodelle, nach denen diese
formuliert sind, betrachtet werden. Es wird in endogene und exogene Transformationen
unterschieden. Bei einer endogenen Transformation sind die Metamodelle der Quell- und
Zielmodelle gleich. Sind die Metamodelle verschiedenen, liegt eine exogene Transforma-
tion vor. In [88] wird eine endogene Transformation zusätzlich als Rephrasing und eine
exogene Transformation als Translation bezeichnet. Typische Beispiele für eine endogene
Transformation sind die Optimierung, die Restrukturierung, die Vereinfachung oder die
Normalisierung des Quellmodells. Die Synthese, das Reverse Engineering oder die Migra-
tion sind hingegen klassische Beispiele einer exogenen Transformation.

5.2.3 Merkmale der Transformationsregeln

Viele der vorher genannten Merkmale für Modelltransformationen gelten auch explizit für
Transformationsregeln, wie z. B. die Art der Metamodelle, der Beschreibungsmechanismus
oder die Transformationsrichtung. Zusätzlich existieren weitere Merkmale, die speziell für
Transformationsregeln gelten. Die Merkmale dieser Kategorie werden in diesem Abschnitt
vorgestellt.

38

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.2 Merkmale von Modelltransformationen

Genutzte Konstrukte

Transformationsregeln können hinsichtlich der genutzten Konstrukte - Variablen, Muster
und Logik - unterschieden werden.

Eine Möglichkeit ist die Nutzung von Variablen, um Werte von Elementen zu speichern
und wiederzuverwenden. Dies bedingt einen imperativen Beschreibungsmechanismus. Die
Variablen werden in der Regel als Metavariablen bezeichnet, um sie von den Element-
Variablen bzw. Element-Attributen, die Teile der zu transformierenden Modelle sind, zu
unterscheiden.

Zusätzlich können Muster verwendet werden. Muster sind Modellfragmente und bestehen
aus beliebig vielen Variablen. Zudem können auch Ausdrücke und Aussagen der Metaspra-
che verwendet werden. Dies können sowohl als eine Zeichenkette, als ein Begriff oder als
ein Graph dargestellt werden.

Mit Hilfe von Logik können Berechnungen oder Beschränkungen ausgedrückt werden. Diese
können verschiedenen Paradigmen folgen und in verschiedenen Beschreibungsmechanismen
genutzt werden. Zusätzlich kann die Logik ausführbar, z. B. mit Hilfe von OCL-Abfragen,
oder nicht ausführbar sein, z. B. durch die Festlegung von Einschränkungen.

Die Konstrukte können ferner in untypisiert, syntaktisch typisiert und semantisch typi-
siert unterschieden werden. Untypisierte Konstrukte sind z. B. textuelle Templates. Varia-
blen, die einem Metamodell-Element zugeordnet werden und Elemente dieser Metamodell-
Element-Klasse verwalten können, werden syntaktisch typisiert genannt. Semantisch typi-
sierte Konstrukte erlauben stärkere Eigenschaften, wie z. B. die Wohlgeformtheit (statische
Semantik) oder die Definition des Verhaltens (dynamische Semantik).

Syntaktische Separation

Eine syntaktische Separation liegt vor, wenn eine Trennung der Transformationsregeln
bezüglich der Modelle existiert. Zugehörige Ansätze ermöglichen die Definition von Regeln,
die nur auf dem Quell-Modell oder nur auf dem Ziel-Modell anzuwenden sind. Klassische
Vertreter sind z. B. die Left-Hand-Side (LHS-) und die Right-Hand-Side (RHS-)Regeln. Die
LHS-Regeln werden nur auf die Quell-Modelle und die RHS-Regeln nur auf die Ziel-Modelle
angewendet.

Ausführungsbedingung

Einige Regeln können Ausführungsbedingungen enthalten. Erst wenn diese erfüllt sind,
werden die Regeln ausgeführt. Je nach Art der Ausführungsbedingungen kann das Sche-
duling der Regelanwendung unterschiedlich ausfallen (siehe Abschnitt 5.2.4). Ein Beispiel
sind when-Bedingungen.

Parametrierung

Transformationsregeln können parametrierbar sein. Dies bedeutet, dass generische Regeln
definiert werden können, die mit Hilfe von Parametern konkretisiert werden. Beispielsweise
könnten innerhalb einer Regel mehrere Alternativen implementiert sein und mit Hilfe eines
Parameters ausgewählt werden. Andere Optionen zur Spezialisierung einer Regel sind z. B.
die Übergabe von Datentypen oder Modelltypen.

39

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

5.2.4 Merkmale der Regelnutzung

Abschließen wird die Kategorie Regelnutzung betrachtet. Darunter werden die Merkmale
Steuerung der Regelanwendung und Regelorganisation zusammengefasst. Die Steuerung der
Regelanwendung beantwortet die Fragen bezüglich des Zeitpunkts und auf welche Bereiche
die Regeln ausgeführt werden sollen. Die Regelorganisation beschreibt, wie die Regeln
geordnet abgelegt werden können.

Steuerung der Regelanwendung

Die Steuerung der Regelanwendung wird in Standortbestimmung und Scheduling unter-
gliedert. Die Standortbestimmung beschreibt auf welche Bereiche im Quell- und Zielmodell
die Regeln angewendet werden sollen. Dies ist vor allem interessant, wenn eine Regel auf
mehrere Bereiche bzw. Elemente anwendbar ist. Wird diese Regel auf alle ausgeführt oder
nur auf einzelne und wenn ja, auf welches Element, z. B. das erste gefundene oder das
am tiefsten gefundene. Je nachdem wie die Standortbestimmung festgelegt wird, kann das
Verhalten in deterministisch, nicht deterministisch und interaktiv unterschieden werden.

Das Scheduling definiert zu welchem Zeitpunkt die Regeln ausgeführt werden sollen und
kann in vier Untermerkmale unterschieden werden:

• Erstellung von Steuerung der Regelanwendung: Der Ersteller der Transformations-
definition kann entweder den Planungsalgorithmus, also die Reihenfolge der Regel-
ausführung, selbst definieren (explizites Scheduling) oder diesen aktiv beeinflussen,
z. B. durch die Vorgabe das Regeln der Auslöser für andere Regeln sein können (inter-
nes explizites Scheduling). Alternativ wird der Algorithmus vom Transformationstool
vorgegeben (internes Scheduling).

• Regelauswahl: Die Regelauswahl kann entweder durch explizite Bedingungen, durch
eine nicht deterministische Auswahl, durch einen Konfliktlösungsalgorithmus oder
interaktiv durch den Benutzer erfolgen. Bedingungen (sog. Application Constraints)
können sowohl negativ einschränkend, Negative Application Constraint (NAC), als
auch positiv einschränkend, Positive Application Constraint (PAC), formuliert sein.
Bei NACs werden Elemente festgelegt, die nicht in der gesuchten Quellmodellstruktur
vorkommen dürfen. Ist dies der Fall, wird die Regel ausgeführt. Die PACs hingegen
beschreiben Elemente, die zwingend in der gesuchten Quellmodellstruktur vorkom-
men müssen, damit die Regel ausgeführt wird. Zusätzlich existieren auch einfachere
Bedingungen, wie z. B. Prioritäten.

• Regelwiederholung: In einigen Anwendungsfällen sollen die Regeln oder der gesamte
Regelsatz mehrfach ausgeführt werden. Dadurch ergeben sich ggf. neue Eingangsbe-
dingungen (vor allem bei In-Place-Transformationen (vgl. Abschnitt 5.2.2)). Dafür
können Schleifen, Rekursionen oder Fixpunktiterationen genutzt werden.

• Unterstützung von Phasen: Dieses Unterscheidungsmerkmal liegt vor, wenn eine
Transformation in verschiedene Phasen unterteilt wird. In jeder Phase können aus-
gewählte Regeln ausgeführt werden. Beispielsweise könnte eine Phase zum Erstellen
und eine Phase zum Setzen von Werten definiert werden.

40

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.3 Modell-zu-Modell Transformationsansätze

Regelorganisation

Die Regelorganisation beschreibt, wie Regeln geordnet abgelegt werden, um diese wieder-
zuverwenden. Eine Übersicht der Wiederverwendungsmechanismen wird in [89] aufgeführt.
Die Regelorganisation wird in drei Arten unterschieden:

• Modularisierung: Regeln können in Modulen zusammengefasst werden. Einzelne Mo-
dule können wiederverwendet werden. Sowohl in der aktuellen als auch in andere
Transformationsdefinitionen wird dies ermöglicht, indem die Module importiert wer-
den.

• Wiederverwendung: Regeln können mit Hilfe zuvor definierter Regeln erstellt werden.
Dies kann z. B. durch das Zusammensetzen bestehender Regeln erfolgen oder durch
Prinzipien der Vererbung, wie die Erweiterung oder die Spezialisierung.

• Strukturierung: Regeln können in die Elemente des Quellmodells, des Zielmodells
oder frei organisiert sein. Das bedeutet, dass Regeln z. B. bestimmten Metaklassen
zugeordnet werden. Dies ist beim Quellmodell schwierig, sofern mehrere Metaklassen
vorhanden sind.

5.3 Modell-zu-Modell Transformationsansätze

In Abschnitt 5.2.2 wurde eine Unterscheidung in Modell-zu-Text und Modell-zu-Modell
Transformationen eingeführt. Diese Unterscheidung basiert auf der Forschung von Czar-
necki und Helsen [84], die verschiedene Transformationssysteme untersucht und die ver-
wendeten Ansätze kategorisiert haben. In [87] wurde bestätigt, dass diese Kategorisierung
derzeit noch relevant ist.

Für die Modell-zu-Text Transformation existieren zwei Ansätze: Besucher- und Vorlagen-
Ansatz. Für die Modell-zu-Modell Transformation existieren verschiedene Ansätze, wobei
folgende vier Ansätze in der Regel verwendet werden: der imperative/operationale, der
relationale/deklarative, der Graph-basierte und der hybride Ansatz. Da in dieser Arbeit
eine Modell-zu-Modell Transformation durchgeführt werden soll, werden in diesem Ab-
schnitt die Ansätze für die Modell-zu-Modell Transformation detailliert vorgestellt und
diskutiert.

5.3.1 Imperativer/Operationaler Ansatz

Der imperative/operationale Ansatz basiert auf einer imperativen Sprache und adressiert,
wie und wann eine Transformation ausgeführt werden soll. Dazu erstellt der Anwender eine
Liste von Anweisungen bzw. Regeln, die anschließend auf die Modelle angewendet werden.
Die imperativen Sprachkonstrukte sind mit den Programmiersprachen vergleichbar, erwei-
tern diese aber um spezielle Funktionalitäten, die für Modelltransformationen benötigt
werden, wie z. B. die Rückverfolgung. Ein Beispiel ist die Kombination einer Abfrage-
Sprache, wie z. B. OCL, mit imperativen Konstrukten einer Programmiersprache. Dabei

41

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

können die Extra-Funktionen über Bibliotheken zur Verfügung gestellt werden. Des Weite-
ren hat die OMG einen solchen Ansatz in Form des QVT Operational Mappings entwickelt
und veröffentlicht. Ein guter Einblick ist in [90] gegeben. 16 weitere Umsetzungen, wie z. B.
der von Kermeta [91], sind in [87] aufgelistet.

Ein Sonderfall des operationalen Ansatzes stellt der Direkte-Manipulations-Ansatz dar. Bei
diesem Ansatz liegt eine interne Modellrepräsentation vor, auf die mittels eines impera-
tiven Application Programming Interface (API) zugegriffen werden kann. Mit Hilfe die-
ser Schnittstelle kann das Modell schrittweise verändert werden. Das Framework, welches
diese API anbietet, ist in der Regel objektorientiert implementiert. Typische imperative
Sprachen, die verwendet werden, sind JAVA, C++ oder Python. Der Nutzer formuliert
die Regeln in Form von Anweisungen (Aufrufen von API-Operationen), um das Modell
zu verändern. Er ist aber auch zusätzlich für die richtige Reihenfolge und die korrekte
Ausführung der Regeln/Aufrufe verantwortlich.

Vorteile des imperativen/operationalen Ansatzes sind die sehr gute Performance zur
Laufzeit, die Programmiersprachen mitbringen, sowie die komplette Kontrolle über die
Durchführung der Transformationsschritte. Dies ermöglicht unter anderem die einfache
Integration von User-spezifischen Erweiterungen, wie z. B. ein spezielles Logging oder ei-
ne spezielle Rückverfolgungsstechnik. Für die einen ist es ein Vorteil, für die anderen ein
Nachteil. So gehört die Kenntnis der Sprachelemente und der Aufwand zur Kontrolle für
einen Software-Entwickler zum Arbeitsalltag, für einen Domänenexperten als reinen An-
wender von Modellen, meistens nicht. Ein Domänenexperte möchte auf der Semantikebene
möglichst schnell einfach zu verstehende Regeln formulieren.

5.3.2 Relationaler/Deklarativer Ansatz

Im Gegensatz zum imperativen Ansatz wird beim relationalen/deklarativen Ansatz nicht
festgelegt, wie ein Objekt transformiert wird, sondern nur wie Quell- und Zielobjekt aus-
sehen. Eine Definition, wie das System diese Transformation umsetzt, erfolgt nicht. Das
Hauptkonzept dieses Ansatzes sind mathematische Relationen. Die Grundidee basiert auf
der Definition von Relationen zwischen Elementen im Quell- und Zielmodell mit Hilfe
von Constraints in Form von deklarativen Regeln (z. B. [92]). Eine Regel definiert, wel-
ches Element bzw. Muster im Quellmodell gefunden werden muss und wie dieses danach
im Zielmodell auszusehen hat. Zusätzlich legt die Regel fest, wann sie ausgeführt werden
soll.

Vorteile dieses Ansatzes sind die einfache Definition von Regeln, die Vermeidung von Sei-
teneffekten bei der Ausführung und direkte Erstellung der Zielelemente. Aufgrund der de-
klarativen Beschreibungen sind die Regeln zunächst nicht ohne weiteres ausführbar. Dazu
sind logische Programmiersprachen oder operationale Ansätze notwendig.

Es existieren bereits etablierte Umsetzungen wie die QVT Relations der OMG [93]. Eine
größere Auflistung befindet sich unter anderem in [84, 87].

42

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.3 Modell-zu-Modell Transformationsansätze

5.3.3 Graph-basierter Ansatz

Viele Meta-Modelle werden typischerweise in UML-Notation erstellt und können damit
als Graphen angesehen werden. Aus diesem Grund verwenden einige Ansätze für die
Modelltransformation eine Graph-Grammatik. Dabei werden die Modelle als typisierte
Graphen betrachtet. Transformationsregeln bestehen bei diesem Ansatz aus einer linken
(LHS) und einer rechten Seite (RHS). Die LHS beschreibt, welche Quellmodellelemente
ersetzt, und die RHS, durch welche Elemente diese Quellmodellelemente ersetzt werden
sollen. Bei der Ausführung einer Regel wird der Ausgangsgraph (Quellmodell) nach einer
Übereinstimmung der LHS durchsucht. Wird eine Übereinstimmung gefunden, wird der
Graph durch die RHS ersetzt. Dies erfolgt so lange, bis keine Übereinstimmungen mehr
gefunden werden.

Vorteile sind, dass der Ansatz auf einer theoretischen Grundlage aufbaut, eine In-Place-
Transformation ermöglicht und die Transformationen meistens unidirektional sind. Der
Ansatz ist nicht deterministisch und wird daher in der Praxis selten angewendet.

Um M:N Transformationen, anstelle von In-Place-Transformationen, zu ermöglichen, wur-
de von Schürr die Triple Graph Grammatik (TGG) [94] entwickelt. Er führte einen drit-
ten simultan erzeugten Korrespondenzgraph ein und verwendet kontextsensitive Graph-
Grammatiken. Ein Überblick über die Entwicklungen der TGGs wird in [95] gegeben.

Es gibt bereits mehrere Umsetzungen dieses Ansatzes, z. B. AGG [96] oder UMLX [97].
Diese Umsetzungen waren einer der ersten Realisierungen und werden bis heute genutzt.
Des Weiteren existieren in der Automatisierungstechnik erste Ansätze [79, 98]. Weitere
Umsetzungen sind in [84, 87] untersucht worden.

5.3.4 Hybrider Ansatz

Die zuvor vorgestellten Ansätze haben Vor- und Nachteile. Vielfach sind diese komple-
mentär. So ermöglichen imperative Ansätze eine sehr effiziente Implementierung für kom-
plexe Transformationen, die jedoch mit größeren Transformationsdefinitionen einhergehen.
Dies kann für einen Ersteller und Nutzer zu Problemen bei der Lesbarkeit und Wartbar-
keit führen. Relationale Ansätze sind präziser und einfacher zu verstehen, da die Definition
der Transformation auf einer höheren Ebene mit weniger Implementierungsdetail erfolgt.
Allerdings können Einschränkungen bezüglich der expliziten Definition des Kontrollflus-
ses, vor allem bei komplexeren Transformationen, vorliegen. Der Graph-basierte Ansatz
basiert zwar auf einer theoretischen Grundlage, ist aber nicht deterministisch. Aus diesen
Gründen werden hybride Ansätze entwickelt, die die Vorteile der verschiedenen Ansätze
kombinieren. Diese können in zwei Kategorien unterschieden werden:

• Systeme, die mehrere Ansätze unterstützen, aber diese auf Regelebene trennen

• Systeme, die mehrere Ansätze unterstützen und diese innerhalb von Regeln
ermöglichen

43

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

Zur ersten Kategorie gehört z. B. QVT. QVT unterstützt drei verschiedenen Ansätze: Rela-
tions, Operational mappings und Core. Die drei verschiedenen Ansätze können nicht inner-
halb einer Regel genutzt werden. Eine Kombination von Regeln, die jeweils einen anderen
der drei Ansätze nutzen, ist möglich. Atlas Transformation Language (ATL), Model Trans-
formation Language (MOLA) und Visual Automated Model Transformations (VIATRA)
sind Beispiele der zweiten Kategorie. Bei ATL wird eine Kombination des relationalen und
des imperativen Ansatzes [99], bei MOLA die Kombination des Graph-basierten und des
imperativen Ansatzes [100] und bei VIATRA die Kombination aus relationalem, impera-
tivem und Graph-basiertem Ansatz verwendet [101].

5.4 Transformationssprache und -system

Zur Definition der Transformationsregeln und der Regelsteuerung, wird eine Sprache, die
Transformationssprache, benötigt. Um die Transformationssprache interpretieren und da-
mit Modelltransformationen auszuführen zu können, wird ein passendes Transformations-
system vorausgesetzt. Die Transformationssprache und das Transformationssystem bedin-
gen einander und müssen somit immer gemeinsam entwickelt werden.

Für die Entwicklung von Transformationssprachen wurden zunächst universelle Program-
miersprachen, wie C++, Java oder Python genutzt. Diese haben den Nachteil, dass sie
nicht explizit für diesen Anwendungsfall entworfen wurden. Das hat zur Folge, dass re-
gelmäßig auftretenden Aufgaben nur umständlich umgesetzt werden können [46], da ein
tiefes Verständnis der Programmiersprache notwendig ist [83]. Aus diesem Grund wer-
den konkrete Sprachen für Modelltransformationen entwickelt. Je nach verwendetem An-
satz unterstützen diese deklarative oder imperative Sprachelemente. Zusätzlich können die
Sprachen hinsichtlich ihrer Verwendung in generische und domänenspezifische Transfor-
mationssprachen unterschieden werden.

5.4.1 Generische und domänenspezifische Transformationssprachen

Analog zu Modellsprachen werden auch Transformationssprachen in generische und
domänenspezifische Sprachen unterschieden. Generische Transformationssprachen, häufig
auch General Purpose Transformation Language (GPTL) genannt, ermöglichen die Erstel-
lung von Transformationsregeln zwischen beliebigen Quell- und Ziel-Metamodellen und für
beliebige Anwendungsfälle. Sie sind dadurch vielfältig anwendbar. Um dies zu erreichen,
sind die Sprachelemente allgemein gehalten, wenig typisiert und enthalten somit nur in ei-
nem geringen Maße eine Semantik. Das hat zur Folge, dass die Erstellung von Regeln nur
durch ein tiefes Verständnis der Sprache ermöglicht wird und meistens von entsprechendem
Fachpersonal erfolgt. Typische Beispiele sind QVT [90, 93], ATL [99], Epsilon Transfor-
mation Language (ETL) [102] oder VIATRA [101]. Sollen hingegen Domänenexperten
Transformationsregeln erstellen, ist diese Art der Sprachen nur begrenzt nutzbar.

Um diesem Problem zu entgegnen, wurden domänenspezifische Transformationssprachen
(Domain Specific Transformation Language (DSTL)) entwickelt [103–105]. Diese enthalten

44

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.4 Transformationssprache und -system

Sprachelemente, die an die konkrete Syntax der jeweiligen domänenspezifischen Modellie-
rungssprache (Metamodell) angepasst werden [106]. Dadurch müssen Domänenexperten
nur die Syntax der zusätzlichen Transformationssprachelemente erlernen und können diese
somit schneller nutzen. Im Gegenzug können diese Sprachen dafür ausschließlich für die
Modellsprache genutzt werden, für die sie entwickelt wurden.

Zusätzlich besteht die Option, die Transformationssprache an den jeweiligen Anwendungs-
fall anzupassen, sodass die Sprache deutlich spezifischer definiert werden kann. Dies führt
dazu, dass die Sprache durch den Wegfall von nicht-benötigten Funktionen vereinfacht
wird. In den letzten Jahren wurden vermehrt domänenspezifische Transformationsspra-
chen entwickelt [107]. Immer mehr Arbeiten zeigen die Notwendigkeit auf [108, 109]. Tools
zur Erstellung von domänenspezifischen Transformationssprachen [106, 110, 111] wurden
entwickelt. Eine ausführliche Analyse der Literatur wird in [112] gegeben.

Wenn beliebige Metamodelle transformiert werden und eine generische Sprache für
den vorliegenden Anwendungsfall anwendbar ist, sollte eine generische Sprache ge-
nutzt werden. Erfolgen die Transformationen innerhalb einer Modellierungssprache, sollen
Domänenexperten in die Lage versetzt werden, die Regeln zu erstellen, und ist die Anwen-
dung in der Domäne hoch, sollte hingegen eine domänenspezifische Transformationssprache
genutzt werden.

Aktuelle Forschungen definieren Meta-Transformationssprachen inkl. passenden generi-
schen Transformationssysteme. Diese können mit domänenspezifischen Sprachelementen
erweitert werden, sodass sie als domänenspezifische Transformationssprachen gelten und
dasselbe generische Transformationssystem nutzen. Dadurch kann die Entwicklung auf die
domänenspezifischen Sprachelemente reduziert werden.

5.4.2 Erstellung von Transformationssprachen

Für die Erstellung von Transformationssprachen existieren verschiedene Ansätze: Nutzung
oder Anpassung einer bestehenden, Generierung einer neuen oder vollständige Neuentwick-
lung einer Transformationssprache. In der Vorveröffentlichung [21] wurde ein Leitfaden für
die Erstellung einer Transformationssprache entwickelt. Dieser Leitfaden besteht aus drei
Schritten:

• Klassifikation der durchzuführenden Modelltransformation und der Quell/Ziel-
Metamodelle

• Allgemeine Anforderungen an die Modelltransformationssprache und Festlegung der
notwendigen abstrakten Sprachelemente

• Entwurf der Modelltransformationssprache

Klassifikation der durchzuführenden Modelltransformation und der Quell/Ziel-
Metamodelle

Zunächst werden die Eigenschaften der Modelltransformation beschrieben, um eine pas-
sende Transformationssprache auszuwählen oder zu entwickeln. Nach Vorgabe des Leit-
fadens ist zunächst eine Klassifikation hinsichtlich der allgemeinen Merkmale sowie der
Merkmale zu den Quell- und Ziel(meta)modellen, die in Abschnitt 5.2 definiert wurden,

45

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5 Modelltransformation

durchzuführen. Dies wird darin begründet, dass diese Merkmale bereits durch den gegebe-
nen Anwendungsfall klassifizierbar sind. Die Merkmale für die Transformationsregeln und
für die Regelnutzung formulieren Anforderungen an die Funktionalitäten der Sprache und
werden daher im zweiten Schritt spezifiziert. Zusätzlich soll das Meta-Meta-Modell der
Quell- und Zielmodelle analysiert werden, da die Transformationssprache die Typen der
Modellelemente unterstützen muss.

Allgemeine Anforderungen an die Modelltransformationssprache und Festle-
gung der notwendigen abstrakten Sprachelemente

In diesem Schritt werden Anforderungen an die Sprache spezifiziert, z. B. wie die Regeln
formuliert werden sollen. Die in diesem Schritt ermittelten Anforderungen müssen von der
Syntax der Transformationssprache erfüllt werden. Die Merkmale aus Abschnitt 5.2 hin-
sichtlich der Transformationsregeln und der Regelnutzung gehören in diesen Schritt. Hierzu
zählen die zu unterstützenden Konstrukte, ob eine syntaktische Separation erfolgen soll,
wie die Regeln ausgeführt werden sollen sowie ob und wie die Regeln wiederverwendet wer-
den sollen. Zusätzlich werden in diesem Schritt die abstrakten Sprachelemente festgelegt,
die eine Sprache unterstützen muss.

Entwurf der Modelltransformationssprache

Beim Entwurf der Modelltransformationssprache wird zunächst geprüft, ob bereits eine
existierende Modelltransformationssprache verwendet werden kann, die die zuvor defi-
nierten Klassifikationen und Anforderungen erfüllt. Dies kann sowohl eine bestehende
domänenspezifische als auch eine generische Transformationssprache sein. Ist dies nicht
der Fall, wird geprüft, ob bei einem bestehenden Modelltransformations-Framework die
Sprache und die Tools so angepasst werden können, sodass dieses den Anforderungen
genügt. Dabei kann z. B. eine generische Transformationssprache genutzt und durch kleine
Änderungen in der Syntax (z. B. durch Einführung von weiteren Sprachelementen oder
durch Restriktion auf einen kleineren Umfang der Sprachelemente) für die geforderte
Domäne angepasst werden. In [113] wird eine Anpassung einer generischen Transformati-
onssprache gezeigt. Dies ist nur bei minimalen Anpassungen sinnvoll.

Kann weder eine existierende Sprache direkt genutzt noch angepasst werden, muss eine
neue Sprache entwickelt werden. Es sollten existierende Tools für die (semi-)automatische
Erstellung von Modelltransformationssprachen hinsichtlich ihrer Nutzbarkeit analysiert
werden, um den Aufwand der Neuentwicklung zu reduzieren. Für einige Transformations-
probleme wurden bereits solche Frameworks erstellt. Meistens stellen diese Frameworks
Anforderungen an die Metamodelle, wie z. B. dass diese in einer formalen Sprache defi-
niert sein müssen, oder die zu erfüllenden Aufgaben müssen in einer formalen Darstellung
definiert werden.

Existiert kein nutzbares Generierungs-Framework, muss eine komplette Neuentwicklung
erfolgen. In [114] und [115] sind Beispielprozeduren für die vollständige Erstellung von
neuen Transformationssprachen gegeben. Es ergeben sich drei Schritte für die Erstellung:

• Erstellung einer abstrakten Syntax und Definition der statischen Semantik1,
1Die Bedeutung der Elemente für die Transformation sowie die Definition von Invarianten, vor allem für
Typen.

46

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

5.4 Transformationssprache und -system

• Entwurf einer zugehörigen konkreten Syntax und

• Implementierung eines Parsers, Checkers und Interpreters (auch Transformationssy-
stem genannt).

Bei der Definition der abstrakten und konkreten Syntax sollte betrachtet werden, ob
Sprachkonstrukte von anderen Sprachen, wie z. B. Transformations-, Programmier- oder
Expression-Sprachen, wiederverwendet werden können. Vor allem bei der abstrakten Syn-
tax sollte auf eine umfassende Spezifikation von Expressions geachtet werden, um nicht
betrachtete Randfälle später abbilden zu können. In [111] ist eine Übersicht über typische
Elemente einer Modelltransformationssprache gegeben. Für den Schritt der Implementie-
rung existieren bereits Generatoren, die die entsprechenden Werkzeuge mit einer gegebenen
Sprache automatisiert erzeugen. Diese stellen ähnlich den Generierungs-Frameworks An-
forderungen an die Sprache, für die Werkzeuge erstellt werden können. In [108] wird ein
Generator beschrieben, der automatisiert Code-Templates aus einer formalen Modelltrans-
formationssprache erstellt.

47

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von
Asset-Informationen

Die Modellierung und der Austausch von Asset-Informationen haben in den letzten Jah-
ren eine hohe Bedeutung im Bereich der Forschung an Hochschulen und in der Industrie
erlangt. Dies liegt vor allem an der Einführung der Begriffe Digitaler Zwilling und Ver-
waltungsschale. In diesem Kontext existieren heutzutage zusätzliche Begriffe, wie Digitaler
Schatten oder Digitaler Engel [116]. Im Rahmen dieser Arbeit wird keine weitere Unter-
scheidung zwischen den Begriffen getroffen und der Fokus liegt auf der Modellierung sowie
dem Austausch von Asset-Informationen.

Erstmals wurde der Begriff des Digitalen Zwillings 2003 von Grieves [117] eingeführt. 2010
verwendete die NASA den Begriff des Digitalen Zwillings zur Bezeichnung eines Simula-
tionsmodells eines physischen Raumfahrzeugs [118]. Anschließend entstanden unterschied-
liche Definitionen, die alle eines gemeinsam haben: Sie beschreiben den Digitalen Zwil-
ling als ein informationstechnisches Abbild einer physischen Entität. In [119] wurde eine
ausführliche Literaturrecherche durchgeführt, die aufzeigt, dass vier Forschungsgebiete im
Bereich des Digitalen Zwillings existieren: Die Modellierung von Digitalen Zwillingen (In-
formationsmodell), der Umgang mit Daten (Datenfusion), die Interaktion und Kollaborati-
on zwischen Digitalen Zwillingen sowie die Modellierung, das Auffinden und die Integration
von Diensten Digitaler Zwillinge. Die Bedeutung des Digitalen Zwillings zeigt sich durch
die Technologietrends, die jedes Jahr von Gartner veröffentlicht werden [120–122]. So war
laut Gartner der Digitale Zwilling von 2017 bis 2019 einer der fünf wichtigsten Technolo-
gietrends. In Deutschland wurde zeitgleich der Begriff der Verwaltungsschale [123] geprägt.
Dieser erweitert den Anwendungsbereich des Begriffs des Digitalen Zwillings dahingehend,
dass nicht nur physische, sondern auch virtuelle Entitäten berücksichtigt werden. Diese
physischen und virtuellen Entitäten werden Assets genannt.

In [119] wird aufgezeigt, dass zwar verschiedene Ansätze für die Datenmodellierung existie-
ren, jedoch ein Konsens zwischen diesen zu diesem Zeitpunkt nicht gegeben ist. Sie fordern
generische Modellierungsmethoden für die einzelnen Forschungsgebiete. Bestehende inter-
nationale Normen wurden soweit erkennbar nicht betrachtet. Aus diesem Grund erfolgt
zunächst ein Auszug aus der Vorveröffentlichung [20], in der die aktuelle Normungsland-
schaft im Bereich der Eigenschaftsmodellierung aufgezeigt wird. Dem interessierten Leser
wird zusätzlich [124] empfohlen, in dem ebenfalls aktuelle Modellierungen, auch industri-
elle, für Digitale Zwillinge vorgestellt und verglichen werden.

Nach dem Kurzüberblick werden drei vielversprechende, standardisierte Ansätze für die
Modellierung und den Austausch von Asset-Informationen detaillierter vorgestellt. Das ge-
meinsame Ziel dieser Ansätze ist der Weg von der System-/Gewerke-orientierten zu einer

48

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.1 Aktuelle Normungslandschaft für Eigenschaften

Asset-orientierten Ablage der Informationen. Dieser Wandel ist vor allem in der Prozess-
industrie noch nicht erfolgt [3]. Dadurch soll der Zugriff auf Asset-Informationen deutlich
vereinfacht werden. Am Ende dieses Kapitels erfolgt ein Vergleich der Ansätze sowie eine
Schlussfolgerung, wie die Vorteile der einzelnen Ansätze kombiniert werden können.

6.1 Aktuelle Normungslandschaft für Eigenschaften

Der folgende Abschnitt wurde in Kapitel 2 der Vorveröffentlichung [20] abgedruckt und
stellt die aktuelle Normungslandschaft im Bereich der Eigenschaftenmodellierung vor.
Dabei wird herausgestellt, dass bereits nationale und internationale Normen existieren,
die einen Beitrag leisten.

”Die Normen können in vier Bereiche eingeteilt werden (siehe Abbildung 6.1):

1. Normen, die sich mit der Modellierung von Eigenschaftsbeschreibungen befassen,

2. Normen, die Regeln und Anleitungen für die Erstellung von Eigenschaftsbeschreibun-
gen, Klassifikationen und Lexika bereitstellen,

3. Normen, die Referenzmodelle (Klassifikationen und Eigenschaftsbeschreibungen) de-
finieren und

4. Normen, die Informationsmodelle für den Datenaustausch von Informationen über
Eigenschaften spezifizieren.

Abbildung 6.1: Normungslandschaft für Eigenschaften nach [20]

Um Eigenschaften einheitlich zu beschreiben, wird ein weltweit einheitliches Modell
benötigt. Beide internationale Normungsorganisationen, IEC und ISO, entwickelten je ein
solches Modell (ISO 13584-42[125] und IEC 61360-1[126]) und führten aufgrund der ho-
hen Ähnlichkeit und der Interoperabilität diese zu einem gemeinsamen Informationsmodell

49

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

in der EXPRESS-Sprache [127] zusammen (ISO 13584-42 und IEC 61360-2 [128]), de-
ren zugehörigen Erweiterungen ebenfalls synchronisiert werden. Um auch bei der Definiti-
on der Einheiten und des Datentyps einer Eigenschaftsbeschreibung interoperabel zu blei-
ben, werden die entsprechenden Normen hierfür verwendet (z. B. ISO 8601 oder ISO/IEC
80000).

Aufbauend auf dem Modell für Eigenschaftsbeschreibungen müssen Regeln und Anleitungen
für die Erstellung von konkreten Eigenschaftsbeschreibungen, deren Klassifikationen und
Lexika erstellt werden1. Basierend auf diesen wurden Modelle für Eigenschaftsbeschrei-
bungen definiert und in domänenspezifischen Klassifikationen (z. B. ISO 13399 oder IEC
62683) zusammengeführt. In einigen Domänen existieren bereits eigene Modelle für Eigen-
schaftsbeschreibungen (z. B. ISO 11238 oder IEC 62264). Diese müssen beim Informati-
onsaustausch in das oben definierte Modell transformiert werden.

Zum Austausch von Informationen über Eigenschaften müssen die einzelnen Eigenschaf-
ten eindeutig definiert und in standardisierten Eigenschafts-Lexika hinterlegt sein. Bei-
spiele für existierende Eigenschafts-Lexika sind das IEC 16360 - Common Data Dictiona-
ry (IEC61360-CDD)2 oder ECLASS3.

Die auszutauschenden Informationen treten in allen Phasen des Produkt-Lebenszyklus
auf. Dies beginnt mit der Auswahl, der Bestellung und dem Einkauf von Produk-
ten (Procurement) mit Hilfe von Informationen über den Produkt-Typen. Diese werden
in der Engineering-Phase weiterverwendet und in der Auslieferungsphase um Instanz-
Eigenschaften erweitert. Während des Betriebes stehen vor allem Parametrierungen sowie
Ist-Werte der Instanzen im Fokus und in der Instandhaltung werden ebenfalls Informa-
tionen über den Typen und die jeweilige Instanz benötigt. Aus diesem Grund haben sich
verschiedene Informationsmodelle für die unterschiedlichen Lebensphasen entwickelt. So
wird für den Austausch von Planungsdaten von Anlagen das Informationsmodell Auto-
mationML (IEC 62714 [129]) genutzt, während für Gerätedaten die Merkmalslisten aus
der IEC 61987 [130] verwendet werden. In der Geräteintegration wird die Beschreibungs-
sprache EDDL4 (IEC 61804 [131]), die Schnittstelle FDT5 (IEC 62453 [132]) oder das
Konzept FDI6 (IEC 62769 [133]) genutzt. Für die Verwaltung von Asset-Informationen
wird das Informationsmodell der IEC 62832 [134] oder zukünftig die Verwaltungsschale
verwendet.“7

6.2 Digital Factory Framework - International
Electrotechnical Commission

Das Digital Factory Framework (DF Framework) ist ein internationaler Standard der IEC
für die Modellierung von Produktionssystemen und wurde 2016 als technische Spezifikati-
1Die zugehörigen Normen sind in Bild 6.1 aufgelistet.
2https://cdd.iec.ch/
3https://www.eclass.eu/
4Electronic Device Description Language
5Field Device Tool
6Field Device Integration
7Kapitel 2 der Vorveröffentlichung [20].

50

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.2 Digital Factory Framework - International Electrotechnical Commission

on und 2019 als offizieller Standard veröffentlicht. Der Standard besteht aktuell aus drei
Teilen. Der erste Teil [8] stellt eine allgemeine Einführung sowie einen Überblick über die
Modelle und Konzepte bereit. Im zweiten Teil [9] erfolgt die detaillierte Vorstellung der
einzelnen Modellelemente und in Teil 3 [10] werden die Regeln zur Nutzung dieser Ele-
mente formuliert. Zusätzlich werden in den Anhängen der Teile Mappings zu Technologien
gegeben. In dem nachfolgenden Abschnitt werden das Ziel und der Anwendungsbereich
dieses Standards vorgestellt. Anschließend wird das Informationsmodell beschrieben.

6.2.1 Ziel und Anwendungsbereich

Ziel des Standards ist die Modellierung von Produktionssystemen. Hierfür wird ein Infor-
mationsmodell definiert, um Assets im Bereich von Produktionssystemen, die Beziehungen
zwischen verschiedenen Assets und den Informationsfluss zwischen den Assets zu modellie-
ren. Als Asset wird ein ”physisches oder logisches Objekt, das sich im Besitz einer Organi-
sation befindet oder unter dem Gewahrsam einer Organisation steht, und entweder einen
wahrgenommenen oder tatsächlichen Wert für die Organisation hat“ verstanden [8]. Eine
Rolle wird explizit als Asset ausgeschlossen. Der Standard legt zusätzlich Regeln für die
Nutzung der einzelnen Modellelemente fest (z. B. für die Erstellung von Bibliotheken). Das
vorgestellte Modell gilt für alle Produktionsarten (kontinuierlich, diskret und Batch), für
alle Branchen des industriellen Sektors sowie für alle Phasen im Lebenszyklus von Produk-
tionssystemen. Es soll die Möglichkeit gegeben werden, zu jeder Zeit Informationen über
ein Produktionssystem hinzuzufügen, zu löschen, zu ändern oder zu erhalten. Da bereits
viele Vorarbeiten im Bereich der Modellierung durch Standardisierungsgremien (z. B. ISO
oder IEC), Klassifikationskonsortien (z. B. ECLASS) und Datenlieferanten entwickelt wur-
den, zeigt der Standard einen Weg zur Integration und Nutzung dieser Arbeiten auf und
nennt diese drei Gruppen explizit als Stakeholder. Als Hauptstakeholder wird ein Unter-
nehmen angesehen, welches Produktionssysteme besitzt. Dem Unternehmen soll mit Hilfe
des Standards die Möglichkeit gegeben werden, die eigenen Produktionssysteme in der
Informationswelt abzubilden (siehe Abbildung 6.2).

Explizit ausgeschlossene Anwendungsbereiche sind Gebäudekonstruktionen sowie jegliche
Arten von Produkten, die auf dem Produktionssystem verarbeitet werden (z. B. Eingangs-
material, Verbrauchsmaterial oder Endprodukte). Ebenfalls nicht im Standard enthalten
sind Anforderungen oder eine Spezifikation einer softwaretechnischen Umsetzung. Vielmehr
ist das Ziel, das Informationsmodell in bestehende Austauschformate oder Kommunikati-
onsstandards zu integrieren, wie z. B. in AutomationML (IEC 62714[129]) oder OPC UA
(IEC 62541[135]). Entsprechende Mappings sind im Anhang von [10] enthalten.

6.2.2 Informationsmodell

Das Informationsmodell basiert auf der objektorientierten Modellierung. Folglich existieren
Modellelemente, um sowohl Instanzen als auch Typen zu modellieren (vgl. Abschnitt 2.4).
Zudem wurden Elemente, um ein Begriffswörterbuch zu erstellen, definiert.

51

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

Abbildung 6.2: Überblick über das Digital Factory Framework [8]

Um konkrete Produktionssysteme und deren Teile zu modellieren, existieren insge-
samt fünf Modellelemente (DigitalFactory, DFasset, DataElement, CollectionOfDataEle-
ments (CDEL) und DFassetLink). Abbildung 6.3 zeigt, wie ein Produktionssystem aus
der realen Welt in der Informationswelt durch ein DigitalFactory-Objekt und ein PSasset
durch ein DFasset-Objekt modelliert wird. Sowohl ein DigitalFactory-Objekt als auch ein
DFasset-Objekt können wiederum aus mehreren DFasset-Objekten bestehen. Beide Ob-
jekttypen bestehen aus einem Header und einem Body. Im Header werden administrative
Informationen, wie z. B. der Zweck des Produktionssystems oder die Informationen zur
Identifikation, beschrieben. Im Body werden Informationen über die Eigenschaften, den
Aufbau und die internen Beziehungen des Produktionssystems bzw. des DFasset model-
liert. Dies erfolgt mit Hilfe der drei anderen Modellelemente: DataElement, CDEL und
DFassetLink. Mit DataElement-Objekten können Informationen über einzelne Eigenschaf-
ten inkl. deren Werte modelliert werden, wie z. B. die Beschreibung, der Name oder der
Identifier. Diese können in Listen zusammengefasst und als CDEL modelliert werden. Das
letzte Element ist der DFassetLink. Mit diesem können Beziehungen zwischen zwei oder
mehreren PSassets modelliert werden.

Da die objektorientierte Modellierung angewendet wird, müssen Modellelemente definiert
werden, um Typen zu modellieren. Die Modellelemente DFassetClass und DFassetClas-
sAssociation erfüllen diese Anforderung und dienen als Typen für DFasset und DFas-

52

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.2 Digital Factory Framework - International Electrotechnical Commission

Abbildung 6.3: Modellelemente für die Darstellung von Produktionssystemen [10]

setLink. Die Verbindung zwischen dem jeweiligen Typ und der Instanz wird durch eine
Referenz dargestellt. Die Typen können in Bibliotheken mit Hilfe der Library-Objekten zu-
sammengefasst werden. Zusätzlich wurde das Modellelement ViewElement eingeführt, um
die Möglichkeit von Filterung innerhalb eines Library-Objekts oder eines DigitalFactory-
Objekts zu realisieren.

Um den Objektinstanzen eine semantische Bedeutung zuzuschreiben, werden Elemente
für die Definition von Begriffswörterbüchern festgelegt. Dies erfolgt analog zu den bereits
standardisierten Merkmalsbibliotheken (IEC 61360). Ein Begriffswörterbuch wird in die-
sem Standard durch ein ConceptDictionary-Objekt dargestellt. Wie in Abbildung 6.2 dar-
gestellt, existieren für verschiedene Stakeholder verschiedene Begriffswörterbücher. Dies
wurde in der Modellierung durch abgeleitete ConceptDictionary-Objekte berücksichtigt.
Innerhalb eines Begriffswörterbuchs kann anhand der Modellelemente DFassetClassDefi-
nition, DataElementType und CDELdefinition die begriffliche Festlegung dieser Konzepte
getätigt werden. Somit können z. B. konkrete Asset-Beschreibungen erfolgen. Die vorher
beschriebenen Objekte (z. B. DFassetClass oder DataElement) können jeweils eine Refe-
renz auf einen dieser Begriffe angeben, um damit die Semantik des jeweiligen Objekts
maschinenverarbeitbar festzulegen.

Zusammengefasst wird sowohl die objektorientierte Modellierung verwendet als auch die
semantische Referenzierung im Modell angewendet. Es wurden Elemente für die Modellie-
rung von Produktionssystemen und deren Teilen sowie die Möglichkeit der Klassifikation
und Begriffsfestlegung definiert.

53

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

6.3 Asset Administration Shell - Plattform Industrie 4.0

Die Verwaltungsschale bzw. Asset Administration Shell (AAS) ist ein Konzept für die
digitale Darstellung von Informationen und den herstellerübergreifenden Informationsaus-
tausch [136] und wurde 2015 erstmals in [137] eingeführt. Das Konzept und dessen Struk-
tur wurden in der DIN SPEC 91345 [138] 2016 als deutscher Standard veröffentlicht und
international eingebracht. Eine erste funktionsfähige Modellierung sowie eine zugehörige
quelloffene Referenzimplementierung wurde 2017 vom Zentralverband Elektrotechnik- und
Elektronikindustrie (ZVEI) entwickelt [139]. Die Plattform Industrie 4.0 veröffentlichte
2018 ein Technologie-neutrales Informationsmodell der Verwaltungsschale in UML inklu-
sive verschiedener Serialisierungsformate in [140]. Aktuell liegt die Version 3.0RC01 [4]
vor. Weitere Arbeiten beschäftigen sich mit der Definition von Schnittstellen [5] sowie
Infrastruktur-Elementen [6]. Im November 2019 wurde zusätzlich eine internationale Wor-
king Group initiiert, die eine internationale Standardisierungsreihe dieser Arbeiten als Ziel
hat. Der erste Teil dieser Reihe IEC 63278-1 [141] wurde im November 2020 veröffentlicht.

6.3.1 Ziel und Anwendungsbereich

Ziel des Konzepts sind Modellierung, Zugriff und Austausch von Informationen und Funk-
tionalitäten für ein beliebiges Asset [123]. Als Asset wird analog zum DF Framework ein

”physisches oder logisches Objekt, das sich im Besitz einer Organisation befindet oder un-
ter dem Gewahrsam einer Organisation steht, und entweder einen wahrgenommenen oder
tatsächlichen Wert für die Organisation hat“ verstanden [4]. Zusätzlich wird auch eine Rolle
als Asset betrachtet. Für die in [123] genannten Ziele wurde das Konzept der Verwaltungs-
schale eingeführt, welches die digitale Repräsentation eines Assets in der Informationswelt
für eine Organisationseinheit darstellt. Die Verwaltungsschale bietet als Hauptfunktiona-
lität einen einheitlichen Zugriff auf die Informationen und Funktionalitäten des Assets
in allen Phasen des Lebenszyklus [136]. Das Konzept und die Modelle sind dennoch so
generisch gehalten bzw. technologieunabhängig definiert, dass ein Asset aus einer beliebi-
gen Branche oder Domäne stammen kann. Damit das Konzept auch für die Interaktion
zwischen Maschinen angewendet werden kann, liegt der Hauptfokus auf der semantischen
Annotation der Modellelemente. Es wird auf bestehenden Standards und Bibliotheken auf-
gebaut sowie die Möglichkeit der Erstellung von eigenen Begriffsdefinitionen gegeben. Die
Verwaltungsschale ist nicht nur ein Informationsmodell. Stattdessen umfasst das Konzept
auch eine vollständige Architektur, bestehend aus einem Informationsmodell, Interaktions-
modellen sowie Infrastrukturkomponenten. Für die Umsetzung wurden konkrete Serialisie-
rungsformate in JSON (IETF RFC 8259 [142]), XML (W3C XML [143]), AutomationML
(IEC 62714[129]), OPC UA (IEC 62541[135]) und RDF (W3C RDF [144]) sowie Schnitt-
stellendefinitionen veröffentlicht. Aktuell sind das Informationsmodell und die Serialisie-
rungsformate in [4] sowie eine generische Schnittstellendefinition in [5] standardisiert. Die
anderen Konzeptteile bzw. Modelle werden aktuell in verschiedenen Standardisierungsgre-
mien diskutiert.

54

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.3 Asset Administration Shell - Plattform Industrie 4.0

6.3.2 Informationsmodell

Das Informationsmodell der Verwaltungsschale wird von einer Arbeitsgruppe der Plattform
Industrie 4.0 entwickelt und liegt aktuell in der Version 3.0RC01 [4] vor. Es beschreibt die
möglichen Objekttypen sowie die Beziehungen zwischen diesen. In Abbildung 6.4 ist ein
Überblick über die Modellelemente gegeben.

Abbildung 6.4: Überblick über das Metamodell der Verwaltungsschale nach [4]

Das AssetAdministrationShell-Objekt ist das Hauptobjekt und dient als Darstellung der
Verwaltungssschale. Es stellt die digitale Repräsentation genau eines Assets dar und ver-
waltet digitale Modelle zu verschiedenen Aspekten des Assets (Teilmodelle). Aus die-
sem Grund besitzt jedes AssetAdminstrationShell-Objekt ein AssetInformation-Objekt,
welches zur Darstellung der Meta-Informationen eines Assets genutzt wird, z. B. ob ein
Asset-Typ oder eine Asset-Instanz vorliegt (siehe Abschnitt 2.4). Zusätzlich besitzt das
AssetAdminstrationShell-Objekt Referenzen zu Submodel-Objekten, die zur Darstellung
eines digitalen Modells des Assets dienen. Diese Objekte spiegeln jeweils einen Aspekt
des Assets wider und bieten zusammenhängende Informationen innerhalb eines Modell-
verständnisses an, um alle benötigten Informationen für einen Anwendungsfall maschinen-
verarbeitbar zu machen. Ein Submodel-Objekt besteht aus SubmodelElement-Objekten.
Diese lassen sich in verschiedene Untertypen unterscheiden und sind innerhalb des jeweili-
gen Submodels eindeutig identifizierbar (siehe Abbildung 6.5).

55

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

Abbildung 6.5: Modellelemente eines Submodel-Objekts (nach [4])

• RelationshipElement: Ein Objekt, welches eine Beziehung zwischen zwei anderen Ob-
jekten definiert.

• AnnotatedRelationshipElement: Ein Objekt, welches eine Beziehung zwischen zwei
anderen Objekten definiert und zusätzliche Informationen mit Hilfe von Datenele-
menten ermöglicht.

• Property: Ein Datenelement, welches einen Einzelwert besitzt.

• MultiLanguageProperty: Ein Datenelement, welches eine Menge von Zeichenketten in
verschiedenen Sprachen besitzt.

• Range: Ein Datenelement, welches einen Wertebereich mit Hilfe eines Minimal- und
eines Maximalwerts beschreibt.

• Blob: Ein Datenelement, welches ein Blob8-Objekt speichern kann.

• File: Ein Datenelement, welches eine Adresse zu einer Datei mit Hilfe des Pfads und
des Dateinamens inkl. der Dateiendung besitzt.

• ReferenceElement: Ein Datenelement, welches eine logische Referenz zu einem ande-
ren referenzierbaren Objekt besitzt.

• Capability: Ein Objekt, welches eine Referenz auf eine Fähigkeitsbeschreibung be-
sitzt.

• SubmodelElementCollection: Ein Objekt, welches eine beliebige Anzahl an
SubmodelElement-Objekten besitzt.

8Hier ist Blob als Datentyp aus der Informationstechnik gemeint.

56

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.4 Thing Description - Web of Things

• Operation: Ein Objekt, welches Ein- und Ausgabevariablen (Argumente) besitzt und
damit eine Funktion beschreibt.

• BasicEvent: Ein Objekt, welches eine Referenz zu einem beobachteten Objekt hält.

• Entity: Ein Objekt, welches eine Entität beschreibt und Aussagen zu dieser speichert.
Eine Entität kann als CoManaged oder SelfManaged spezifiziert werden. CoMana-
ged bedeutet, dass kein Asset im Sinne der Verwaltungsschale vorliegt, z. B. eine
Schraube. SelfManaged hingegen bedeutet, dass ein Asset existiert und folglich eine
Referenz zu diesem angegeben werden muss.

Sowohl Submodel- als auch SubmodelElement-Objekte sind vom Typ HasSemantics. Somit
können diese Objekte eine Referenz auf eine semantische Beschreibung besitzen. Diese Be-
schreibungen sind für eine Kommunikation zwischen Maschinen unabdingbar. Das Konzept
zur Verwendung dieser semantischen Beschreibungen ist im Bereich der Produktbeschrei-
bung bereits Stand der Technik. Die IEC 61360 [126] definiert ein Informationsmodell für
die Erstellung dieser Konzeptbeschreibungen. Es wurden bereits mehrere Begriffsbibliothe-
ken erstellt, wie z. B. IEC61360-CDD9 oder ECLASS10 (vgl. auch Abschnitt 6.1).

Für Submodell-Objekte sind diese Konzeptbeschreibungen nicht geeignet, da sie für ein-
fache Datenelemente entwickelt wurden. Dafür sollen Submodel-Templates erstellt wer-
den, die anschließend zur Laufzeit instantiiert werden. Die Unterscheidung zwischen einer
Submodel-Instanz und einem Submodel-Template wird über das Attribute modellingKind
angegeben. Außerdem besitzt die Verwaltungsschale View-Objekte. Diese ermöglichen ver-
schiedene Sichten durch Referenzen auf SubmodelElement-Objekte. Die Objekte der Klas-
sen AssetAdministrationShell und Submodel können eigene Lebenszyklen haben. Aufgrund
dessen ist die Beziehung zwischen ihnen mittels Aggregation modelliert. Für die Referen-
zierung besitzen diese einen weltweit eindeutigen Identifizierer.

Zusammengefasst beschreibt [4] ein Informationsmodell mit allen relevanten Objekten und
deren Beziehungen zur Erstellung und Nutzung von Verwaltungsschalen. Das Konzept
nutzt bestehende internationale Normen, wie Konzeptbeschreibungen nach der IEC 61360.
Zusätzlich wird Wert auf die semantischen Annotationen sowie die Möglichkeit der Tren-
nung von Informationen für verschiedene Anwendungsfälle durch Teilmodelle gelegt. Auch
wird das Thema Standardisierung bei Teilmodellen durch die Erstellung von Templates
berücksichtigt.

6.4 Thing Description - Web of Things

Die Thing Description ist ein Modell zur Beschreibung von Metadaten und Schnittstel-
len einer Entität. Das Modell wurde vom W3C 2017 zunächst als Working Draft [11]
veröffentlicht bevor 2020 die Recommendation des Standards in [12] folgte. Das Modell
ist in eine Gesamtarchitektur eingebunden, die ebenfalls 2020 als Recommendation [145]
9https://cdd.iec.ch/
10https://www.eclass.eu/

57

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

veröffentlicht wurde. Das Modell beschreibt ein Set von Interaktionen für die Integrati-
on von verschiedenen Geräten im Web of Things (WoT) und ermöglicht verschiedenen
Applikationen, miteinander zu interagieren.

6.4.1 Ziel und Anwendungsbereich

Ziel des Standards ist, mit einem möglichst einfachen Vokabular den Zugriff auf die In-
formationen eines Dings zu beschreiben. Als Ding (Thing) wird eine ”Abstraktion einer
physischen oder virtuellen Entität, dessen Metadaten und Schnittstellen mit Hilfe einer
WoT Thing Description beschrieben wird“ [145], verstanden. Eine virtuelle Entität stellt
dabei eine Komposition aus einem oder mehreren Dingen dar und ist somit immer noch eine
physische Entität. Eine weitere Einschränkung hinsichtlich der Dinge, z. B. bezüglich der
Domäne, liegt nicht vor. Die Thing Description soll der zentrale Baustein in der Gesamt-
architektur des WoT sein und den Zugriffspunkt zu einem beliebigen Ding darstellen.

Das Modell ermöglicht die Definition von Metadaten sowie die Beschreibung von Zu-
griffsmöglichkeiten auf Eigenschaften, Funktionen und Events des Dings. Dabei liegen die
Werte der Eigenschaften, die konkreten Funktionen oder Events nicht im Modell vor, son-
dern das Modell ermöglicht die Modellierung von Schnittstellen zu diesen. Diese Schnitt-
stellen beinhalten konkrete Technologie-Endpunkte, deren mögliche Interaktions-Pattern
sowie semantische Annotationen. Die Nutzung von bestehenden URI Schemata, z. B. bei
der Definition von Protokoll Bindings11 oder Mediatypen [?] wird fokussiert, um die Kon-
formität zu bestehenden Web-Standards zu wahren. Als Serialisierungsformat wird JSON
(IETF RFC 8259 [142] genutzt. Ziel ist es, die Beschreibung der Verortung der Daten des
Dings sowie deren Zugriffsmöglichkeiten getrennt von der Datenhaltung zu modellieren.

6.4.2 Informationsmodell

Die aktuelle Version des Informationsmodells der Thing Description wurde 2020 in [12]
als Recommendation des W3C veröffentlicht. Das Informationsmodell ist in Abbildung 6.6
vereinfacht dargestellt.

Ein Thing-Objekt dient in dem Modell als das Beschreibungsobjekt eines Dings. Es enthält
Metadaten wie den Identifizierer, den Namen, eine Beschreibung, die Version oder Infor-
mationen über den Ersteller und das Erstelldatum. Zusätzlich besteht das Thing-Objekt
aus bis zu sechs ausgezeichneten Objekten. Das Security Schema (SecurityScheme-Objekt)
muss angegeben werden. Es beschreibt, welcher Security-Mechanismus beim Zugriff auf
die Daten, Funktionen oder Events verwendet wird, z. B. ohne Security, Basic (unver-
schlüsselter Benutzername und Passwort) oder OAuth2 [146]. Mit Hilfe des Link-Objekts
können Verbindungen zu anderen Thing-Beschreibung erstellt werden. Die Objekte Proper-
tyAffordance, ActionAffordance und EventAffordance dienen zur Beschreibung der Inter-
aktion mit einer Eigenschaft, einer Funktion oder einem Event. Für eine Eigenschaft wird
beschrieben, wie auf den Wert zugegriffen werden darf. Als Auswahl steht lesend und schrei-
bend zur Verfügung sowie die Möglichkeit diesen Wert zu beobachten und bei Änderungen
11https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

58

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.4 Thing Description - Web of Things

Abbildung 6.6: Informationsmodell der Thing Description

informiert zu werden. Bei den Funktionen können die Input- und Output-Schemata be-
schrieben und angezeigt werden. Zusätzlich kann hinterlegt werden, ob die Funktion sicher
(d. h. keine Zustandsänderungen durch Aufruf) und somit idempotent ist. Für Events kann
beschrieben werden, wie eine Subscription angelegt und gelöscht werden kann und welche
Daten das Event bei Auslösung übermittelt. Die konkreten Zugriffsadressen und Interakti-
onspattern werden im Form-Objekt festgelegt. Dieses Objekt wird auch Protokoll-Binding
genannt. Es beinhaltet die Arten der semantischen Interaktion (z. B. readproperty, wri-
teproperty oder invokeaction), einen Ziel-Internationalized Resource Identifier (IRI), den
ContentType des Medientypes (z. B. text/plain oder image/jpeg) und optional das Enco-
ding des Inhalts, das SubProtokol, den Security-Mechanismus und den Antworttyp, falls
dieser abweichend vom Anfragetyp ist. Wird ein Form-Objekt im Thing-Objekt verwendet,
gilt dies für alle untergeordneten Objekte, solange kein eigenes Form-Objekt dort vorliegt.
Liegt eines vor, ist dieses verbindlich und das höhergelegene Form-Objekt ist nicht mehr
gültig.

Neben dem vorgestellten Kernmodell besteht zusätzlich noch die Möglichkeit semanti-
sche Annotationen an die Elemente anzuhängen. Dies erfolgt über das ContextExtension-
Objekt. Damit können andere Datenschemas, Ontologie-Einträge oder Konzeptbeschrei-
bungen referenziert werden. Auch das Konzept der Templates wird unterstützt, sodass
für bestimmte Ding-Typen Thing-Templates erstellt werden können, die anschließend zur
Laufzeit für ein konkretes Ding eines Ding-Typs instanziiert und mit konkreten Werten
befüllt werden.

Es wurde ein Informationsmodell mit geringem Vokabular entwickelt, welches die
Möglichkeit bietet, die Interaktion mit den Eigenschaften, Funktionen und Events eines
Dings zu beschreiben. Es baut auf bestehenden Standards auf und nutzt diese in den
verschiedensten Attributen mittels Referenzen. Zusätzlich besteht die Möglichkeit der se-
mantischen Annotationen sowie die Template-Erstellung.

59

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

6.5 Vergleich

In diesem Abschnitt werden die drei vorgestellten Standards für die Modellierung von
Asset-Informationen miteinander verglichen. Der Fokus liegt zunächst auf der Modellie-
rung von Assets. Aus diesem Grund wird im nachfolgenden Abschnitt allgemein die Be-
deutung des Assets und die konkreten Definitionen innerhalb der einzelnen Spezifikationen
betrachtet. Danach werden die drei Spezifikationen bzgl. Ziel, Anwendungsbereich und In-
formationsmodell verglichen.

6.5.1 Asset-Begriff

Für den Begriff des Assets existieren in der Literatur unterschiedliche Definitionen. Diese
variieren innerhalb der Branchen sowie in den jeweiligen Domänen. Aus diesem Grund
wird nachfolgend ein Vergleich der Definitionen im Kontext von Industrie 4.0 und der
vorgestellten Spezifikationen durchgeführt.

Im Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) [123] wird ein Asset als ein ”Ge-
genstand, der einen Wert für eine Organisation hat“, definiert. Diese Definition wird im
Industrie 4.0 Glossar12 erweitert, sodass ein Asset als eine ”Entität, die einen wahrge-
nommenen oder tatsächlichen Wert für eine Organisation hat und der Organisation gehört
oder von ihr individuell verwaltet wird“ verstanden wird. Im Englischen wird Entität durch

”physisches oder logisches Objekt“ ersetzt. Die beiden vorgestellten Spezifikationen, IEC
62832 DF Framework (DF) [8] und Details of the Asset Administration Shell (DotAAS)
[140], nutzen jeweils diese Definition (vgl. Abschnitt 6.2 und 6.3). Die Spezifikationen un-
terscheiden sich jedoch in der Interpretation dieser Entität, da in DF die ”Rolle“ als Asset
in der Begriffsdefinition zunächst explizit ausgeschlossen ist. Allerdings werden zusätzlich
die Begriffe ”ProductionSystemAsset“ und ”DigitalFactoryAsset“ eingeführt, in denen auch
die Rolle mit einbezogen wird. In DF wird jedoch immer der Bezug zu einem Produkti-
onssystem gefordert. Dies ist in DotAAS nicht der Fall, da alle Domänen und Branchen
berücksichtigt werden.

In der dritten Spezifikation Thing Description (TD) [11] wird der Begriff Asset nicht ex-
plizit verwendet. Jedoch wird ”eine physische oder virtuelle Entität, deren Metadaten und
Schnittstellen durch eine WoT Thing Description beschrieben werden, wobei eine virtuelle
Entität die Zusammensetzung eines oder mehrerer Things ist“, angenommen. Dies kann
im Sinne der Modellierung und der anderen Spezifikationen als Asset aufgefasst werden.

Wie zu erkennen ist, existieren verschiedene explizite und implizite Definitionen von Assets.
Diese sind im Kern gleich, unterscheiden sich aber in ihrem Betrachtungsrahmen zum Teil
stark. Während TD lediglich physische Entitäten betrachtet13, wird die Definition in DF
auf logische Objekte erweitert, jedoch mit Bezug zu dem Bereich Produktionssysteme. Als
logische Objekte sind vor allem die Typen von physischen Entitäten zu nennen. Der größte
Betrachtungsraum ist in DotAAS gegeben, da ein Versuch zur Betrachtung aller Domänen
und Entity-Arten unternommen wird.
12https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/Glossar/glossar.html
13Virtuelle Entitäten sind lediglich zusammengesetzte physische Entitäten.

60

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6.5 Vergleich

6.5.2 Ziel, Anwendungsbereich und Informationsmodell

Hinsichtlich Ziel und Anwendungsbereich unterscheiden sich die drei vorgestellten Stan-
dards auf den ersten Blick wenig. Alle drei ermöglichen die Beschreibung der Informatio-
nen einer Entität bzw. Asset. Sie unterscheiden sich aber in der Art der Entität. Während
TD ein rein physisches Objekt ohne weitere Einschränkungen betrachtet, erweitert DF
dieses um virtuelle Entitäten mit der Einschränkung, dass diese Entitäten einen Bezug
zu einem Produktionssystem haben müssen. Dies beinhaltet auch die Beschreibung von
Asset-Typen, während mit dem ersten Standard lediglich Asset-Instanzen modelliert wer-
den können. DotAAS erlaubt als offenster Standard alle Arten von Entitäten, solange diese
einen Wert für ein Unternehmen haben14.

In allen drei Spezifikationen wird Wert auf die Wiederverwendung bestehender Standards
gesetzt. Während sich DotAAS und DF eher auf die internationalen Normungsgremien
IEC und ISO beziehen, bezieht sich TD eher auf die RFC Dokumente der IETF. Dies ist
dem Ursprung der Standards geschuldet. Die ersten beiden stammen aus dem Ingenieurs-
wesen und haben daher einen Bezug zu technischen Fragestellungen, wohingegen der dritte
Standard aus der Informationstechnik stammt und daher aus dieser Sicht versucht, Frage-
stellungen zu beantworten. Dies spiegelt sich auch in den Informationsmodellen wider.

Die Zielvorstellungen der drei Standards unterscheidet sich bezüglich der semantischen
Annotationen. Diese werden von allen drei Standards unterstützt. In DotAAS und DF ist
dies als ein Hauptkonzept fest im Ziel verankert und soll als Erweiterung und Abgren-
zung zu anderen bestehenden Standards dienen. In TD werden semantische Annotationen
ausschließlich als Erweiterung betrachtet und daher nicht im Ziel direkt berücksichtigt.

Alle Standards definieren neben dem Informationsmodell auch zugehörige Serialisierungs-
formate. Während TD eine JSON-Serialisierung festlegt, werden in DF zwei Mappings zu
AutomationML und OPC UA gegeben, die beide aus der Automatisierungstechnik stam-
men. In DotAAS werden die meisten Serialisierungsformate angeboten: JSON, XML, Au-
tomationML, OPC UA und RDF.

Um die Konzepte der Standards sinnvoll nutzen zu können, wird eine zugehörige Architek-
tur benötigt. Diese wird sowohl in DotAAS als auch in TD beschrieben und standardisiert.
DF trifft hierzu keine Aussagen.

In Bezug auf die Informationsmodelle sind die Spezifikationen DF und DotAAS ähnlich.
Beide definieren Objekte, mit denen die Eigenschaften eines Assets inklusive deren Werte
modelliert werden können. DotAAS erweitert dieses Modell um die Möglichkeit, auch Funk-
tionen und Events zu beschreiben. Zusätzlich werden die Datenelemente in konkrete Ele-
menttypen, wie Property- oder Range-Objekte, untergliedert. Beide Modelle unterstützen
in den Objekten die Vorhaltung der Daten. Über die Datenhaltung wird keine weitere Aus-
sage getätigt. Die Daten könnten beispielsweise durch einen Client von einer Datenquelle
bereitgestellt werden. Für eine reine Beschreibung zur Abrufbarkeit der Daten, z. B. durch
die Definition eines speziellen proprietären Protokolls, müssen die zur Verfügung stehenden
Objekten genutzt werden. Hierzu existieren derzeit keine Beispiele oder Modellierungsemp-
fehlungen. Das ist der Hauptunterschied zu TD. Das in TD beschriebene Informationsmo-
dell definiert, im Gegensatz zu den anderen beiden Informationsmodellen, keine konkreten
14Eine detailliertere Betrachtung ist in Abschnitt 6.5.1 gegeben.

61

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

6 Modellierung und Austausch von Asset-Informationen

Werte der Eigenschaften, Funktionen oder Events, sondern bietet die Möglichkeit, den Zu-
griff auf diese zu beschreiben (mit den Form-Objekten). Somit kann eine Applikation diese
Informationen über die Thing Description abrufen und anschließend den konkreten Wert
über das angegebenen Web-Protokoll eigenständig abrufen. Beide Modellierungen haben
ihre Vor- und Nachteile. Wie diese ggf. sinnvoll zusammen genutzt werden können, ist in
Abschnitt 6.6 beschrieben.

6.6 Schlussfolgerung

Aus Modellierungssicht sind zunächst alle drei Ansätze sinnvoll. Bei einer detaillierten
Betrachtung ist zu erkennen, dass DF und DotAAS ähnlich sind. Dies liegt an der zeitli-
chen Historie. DF entstand zunächst, worauf DotAAS anschließend aufbaute und viele der
Konzepte übernommen hat. Zukünftig sollte versucht werden, eine Harmonisierung oder
Zusammenführung der beiden Standards zu erreichen. Da DotAAS umfänglicher ist, wird
in dieser Arbeit ausschließlich diese Veröffentlichung weiter betrachtet.

Im Vergleich zu TD weisen die beiden anderen Spezifikationen ähnliche Konzepte auf, un-
terscheiden sich jedoch in der Zielsetzung. Ein Versuch könnte sein, die Spezifikationen
für verschiedene Anwendungsfälle zu nutzen und somit zu kombinieren. Möglich wäre z. B.
die Verwaltungsschale für die Modellierung von Asset-Typen zu nutzen, da die Verwal-
tungsschale ursprünglich für diesen Zweck entwickelt wurde15. Dieser Bereich ist in ak-
tuellen Forschungsprojekten und Anwendungsszenarien evaluiert und funktionsfähig. Das
Informationsmodell bietet für die Ablage der Typ-Informationen die Möglichkeit, statische
Werte direkt abzulegen und abrufbar zu machen. Für die Modellierung von Asset-Instanzen
ergeben sich besondere Anforderungen in Bezug auf den Zugriff der Ist-Daten. Es müssen
eigene Zugriffsmöglichkeiten über verschiedene proprietäre Protokolle möglich sein. Dies
ist aktuell in DotAAS noch nicht modelliert. So fehlt die Möglichkeit anzugeben, wo die
Daten liegen und wie auf diese zugegriffen werden kann. Dass die Verwaltungsschale diesen
Zugriff immer besitzt, ist eher unwahrscheinlich, da die Security betrachtet werden muss.
Darf die Verwaltungsschale auf die Anlagen zugreifen und die aktuellen Ist-Werte abru-
fen und vor allem auch manipulieren? Genau das wiederum könnte über TD ermöglicht
werden, da das verwendete Konzept die Beschreibung der Funktionen und Ist-Daten lo-
gisch vom physischen Zugriff trennt. Ein Vorschlag ist daher, diese beiden Modellierungen
zusammenzubringen und für Asset-Typen die Verwaltungsschale und für Asset-Instanzen
eine Mischung aus Verwaltungsschale und Thing-Description zu verwenden. Dazu muss
die Thing-Description bei den Protokoll-Bindings dahingehend erweitert werden, dass ne-
ben Web-Protokollen auch andere im industriellen Umfeld auftretende Protokolle, wie z. B.
OPC UA, modelliert werden können.

Für diese Arbeit ist die Datenablage im Hintergrund zunächst nicht relevant, da die se-
mantische Interaktion und der Zugriff auf die Informationen im Vordergrund stehen. Da
der aktuelle Fokus in der Automatisierungs-Community auf der Verwaltungsschale liegt,
wird diese als Anwendungsbeispiel für die Vorstellung des Konzepts genutzt. Aus diesem
Grund wird der Informationsaustausch zwischen Verwaltungsschalen im nächsten Kapitel
genauer betrachtet.
15Es sollen Verwaltungsinformationen zu einem Asset dargestellt werden.

62

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei
Verwaltungsschalen

Im vorherigen Kapitel wurden die Ziele und Anwendungsbereiche sowie die Informations-
modelle von drei Standards für die Modellierung und den Austausch von Asset Informa-
tionen vorgestellt und anschließend miteinander verglichen. Als Ergebnis wird die Ver-
waltungsschale als Anwendungsbeispiel für das vorgestellte Konzept dienen. Aus diesem
Grund wird in diesem Kapitel der Informationsaustausch bei Verwaltungsschalen genauer
betrachtet. Zunächst werden die Erscheinungsformen von Verwaltungsschalen beschrie-
ben. Anschließend wird die Nutzung von Verwaltungsschalen-Teilmodellen beim Informa-
tionsaustausch vorgestellt, aktuelle Probleme bzw. offene Fragestellungen analysiert sowie
mögliche Lösungsoptionen aufgezeigt.

7.1 Erscheinungsformen

In [147] werden erstmals verschiedene Erscheinungsformen von Verwaltungsschalen be-
schrieben. Insgesamt werden drei Arten beschrieben, die in Abbildung 7.1 dargestellt sind.
In der Literatur werden für die einzelnen Erscheinungsformen verschiedene Namen ein-
geführt. In [147] sind folgende drei Begriffen definiert: Passive Verwaltungsschale im Da-
teiformat, Passive Verwaltungsschale mit IP/API-basiertem Zugang und Aktive Verwal-
tungsschale. Die Begriffe ”passiv“ und ”aktiv“ beziehen sich nicht auf die Kommunikati-
onsfähigkeit, sondern auf die Rolle, die die jeweilige Verwaltungsschalen-Erscheinungsform
in der Wertschöpfungskette spielt. Aus diesem Grund wurden die Begriffe weiterentwickelt
und sind heute in der neueren Version [148] wie folgt festgelegt: Passive Verwaltungsscha-
le, Reaktive Verwaltungsschale und Proaktive Verwaltungsschale. Aufgrund der derzeitigen
Diskussionen zur Benennung der Typen in diversen Gremien, werden für diese Arbeit die
Begriffe Typ 1, Typ 2 und Typ 3 verwendet. Ein Einblick in diese drei Typen erfolgt in
den folgenden Unterkapiteln.

7.1.1 Typ 1

Die ”Verwaltungsschale Typ 1“, als erste Erscheinungsform, bietet die Möglichkeit die
Verwaltungsschale in Form einer Datei darzustellen. In [4] wurden verschiedene Seria-
lisierungen (z. B. XML oder JSON) sowie ein eigenes Datei-Format AASX spezifiziert.
Das AASX-Format bietet die Möglichkeiten, alle zu einem Asset gehörenden Informatio-
nen in einer standardisierten Form von einem Wertschöpfungspartner an einen anderen
Wertschöpfungspartner zu übertragen. Dies kann auf verschiedene Weisen funktionieren,

63

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

Abbildung 7.1: Erscheinungsformen von Verwaltungsschalen nach [147]

z.B. mittels eines File-Downloads, dem Versand per Mail oder dem Ablegen auf dem kon-
kreten physischen Asset. Die zu übertragenen Informationen können zuvor angepasst wer-
den, sodass ausschließlich freigegebene Daten in der entsprechenden Datei enthalten sind.
[147, 148] prognostizieren, dass ”dieses Konzept [...] eine neue Qualität dar [stellt], da damit
lebensphasenübergreifender, standardisierter Informationsaustausch möglich wird“. Diese
Art des Informationsaustauschs setzt voraus, dass eine Software existiert, welche die Datei
erstellt, versendet und bei einem anderen Wertschöpfungspartner einliest und weiterverar-
beitet, z. B. der AASX-Package-Explorer1 oder ein Software Development Kit2.

7.1.2 Typ 2

Die ”Verwaltungsschale Typ 2“, als zweite Erscheinungsform, ermöglicht den Zugriff auf
die gleichen Informationsinhalte des ersten Typs, jedoch über eine standardisierte Schnitt-
stelle. Die technologie-unabhängige Schnittstellendefinition ist in [5] spezifiziert. Zusätzlich
wird in einer nächsten Version dieser Veröffentlichung ein konkretes Technologie-Mapping
nach HTTP definiert. Die Vorteile dieser Erscheinungsform sind der individuelle Zugriff
auf einzelne Verwaltungsschalenelemente sowie die Möglichkeit des individuellen Zugriffs-
schutzes für verschiedene Anfragende. Außerdem wird die Möglichkeit geboten, Teile der
Verwaltungsschale separat bereitzustellen, da für mehrere Modellelemente jeweils Schnitt-
stellen entwickelt wurden. Dies ist z. B. für Verwaltungsschalen und Verwaltungsschalen-
Teilmodelle der Fall. Aus Sicht des Informationsaustauschs dienen die Schnittstellen zum
Auslesen, Ändern und Erstellen von Informationen. Die Form und der Ort zur Ablage der
1https://github.com/admin-shell/aasx-package-explorer
2Zum Beispiel: Python-SDK: https://git.rwth-aachen.de/acplt/pyi40aas C#-, Java-SDK: htt-
ps://www.eclipse.org/basyx/

64

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7.1 Erscheinungsformen

Informationen im Hintergrund wird nicht spezifiziert und ist ein Implementierungsdetail.
Möglichkeiten sind:

• das Ablegen in AASX-Dateien (also Verwaltungsschale Typ 1), die bei jedem Aufruf
ausgelesen und wieder beschrieben wird,

• die Speicherung der Informationen in einer Datenbank basierend auf dem Informati-
onsmodell der Verwaltungsschale (vgl. Kapitel 6.3.2), oder

• die Speicherung der Informationen in einem anderen Datenformat, die bei einem
Aufruf in das Informationsmodell der Verwaltungsschale transformiert werden.

7.1.3 Typ 3

Die ”Verwaltungssschale Typ 3“, als dritte Erscheinungsform, unterscheidet sich stark von
Typ 1 und Typ 2. Sie bietet zusätzlich zum reinen Datenzugriff Entscheidungs- und Op-
timierungsalgorithmen an. Damit wird das Konzept des Asset-bezogenen Informationszu-
griffs mit dem Konzept von Agenten verknüpft. Mit Hilfe dieser Algorithmen besteht die
Möglichkeit, dass Verwaltungsschalen gegenseitig proaktiv in Interaktion treten. Dadurch
wird ein erster Schritt in Richtung Autonomie getätigt. Dieser Bereich der Forschung wird
zunehmend größer, da viele Ansätze aus der Agententheorie Wiederverwendung finden.
In [149] und [150] wurden entsprechende Konzepte vorgestellt, die jeweils zwei Ebenen
einführen. Die erste Ebene enthält dabei die Daten in Form von Verwaltungsschalen-
Teilmodellen (Typ 1 oder Typ 2). Die zweite Ebenen verwaltet die Algorithmen und Au-
tomaten für die Entscheidungen und Optimierungen.

In [147] wird festgelegt, dass die Interaktion mit Hilfe der I4.0-Sprache erfolgen soll, die
in der VDI/VDE 2193-Richtlinie [151, 152] beschrieben ist. Diese Sprache definiert das
Vokabular, mit dem eine Protokoll-basierte Interaktion ermöglicht wird. In [153] wird
ein auf dem Vokabular basierendes Protokoll für ein Ausschreibungsverfahren beschrie-
ben. Für die Informationsmodellierung der Daten werden auch in diesen Protokollen die
Verwaltungsschalen-Teilmodelle verwendet.

7.1.4 Vergleich

Bei einem Vergleich der drei Erscheinungsformen ist zu erkennen, dass die ersten beiden
auf die Darstellung bzw. den reinen Zugriff von Asset-Informationen beschränkt sind. Es
wird die Möglichkeit gegeben, das Informationsmodell der Verwaltungsschale in Form einer
Datei oder einer Schnittstelle zur Verfügung zu stellen. Die Semantik des Informationsaus-
tausches steckt in den eigentlichen Daten, hier den Verwaltungsschalen-Teilmodellen. Die
dritte Erscheinungsform ermöglicht zusätzlich die Festlegung von eigenen Interaktionspro-
tokollen. Dadurch verlagert sich die Semantik zunehmend in die Protokolle, die vorgeben,
in welcher Reihenfolge welche Nachrichten auszutauschen sind. Mit Hilfe dieser Protokolle
wird ein erster Schritt in Richtung der Behavioural Interoperability gegangen. Anschlie-
ßend werden die Inhalte der Nachrichten wiederum mit den Daten aus den ersten beiden
Typen in Form von Verwaltungsschalen-Teilmodellen angereichert.

65

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

Aus Kommunikationssicht kann der Austausch in vertikale und horizontale Interaktionen
unterteilt werden. Vertikale Interaktion bedeutet, dass eine Hierarchie vorliegt. Das heißt,
dass ein Interaktionspartner als Server (Slave) und ein weiterer als Client (Master) fungie-
ren [149]. Der Client ruft die Informationen beim Server ab, sodass die Interaktion immer
vom Client initiiert wird. Dies ist z. B. bei der zweiten Erscheinungsform der Fall, bei
der die Daten mittels eines Servers bereitgestellt werden. Bei der horizontalen Interakti-
on sind beide Interaktionspartner gleich berechtigt und werden auch als Peers bezeichnet.
Jeder Peer kann Anfragen starten und gleichzeitig auf Anfragen reagieren. Der Unter-
schied zur Client-Server-Interaktion ist, dass ein eigener Entscheidungsalgorithmus sowie
entsprechende Automaten entscheiden, wie mit eingehenden Anfragen umgegangen wird.
Die Peers unterliegen dabei immer einem selbst verfolgten Ziel. Eine Verwaltungsschale
Typ 3 unterstützt daher sowohl vertikale als auch horizontale Interaktion.

7.2 Nutzung von Verwaltungsschalen-Teilmodellen für
semantische Interoperabilität: Offene Fragestellungen
und mögliche Lösungsoptionen

Unabhängig von der Erscheinungsform werden die Asset-Informationen mit Hilfe von
Verwaltungsschalen-Teilmodellen für andere Kommunikationspartner zur Verfügung ge-
stellt.

In diesem Abschnitt wird beschrieben, wie Verwaltungsschalen-Teilmodelle für die se-
mantische Interoperabilität zu nutzen sind. Wie bereits in Abschnitt 4.2 aufgezeigt, ge-
hen damit einige Probleme einher. Mit Hilfe von Verwaltungsschalen-Teilmodellen werden
domänenspezifische Aspekte eines Assets dargestellt. In Kapitel 6.3.2 sind die Modellele-
mente für die Darstellung eines Verwaltungsschalen-Teilmodells bereits vorgestellt. Da-
durch ist die syntaktische Interoperabilität gewährleistet. Im Nachfolgenden wird näher
auf die Semantik und die Bedeutung für den Informationsaustausch eingegangen.

Ein Verwaltungsschalen-Teilmodell ist die Darstellung genau eines Asset-Aspekts und
wird für einen konkreten Anwendungsfall entwickelt. Folgendes Beispiel soll dies illu-
strieren: Als Asset soll ein Roboter dienen. Je nach Nutzer des Roboters werden andere
Informationen des Roboters benötigt. Für die Raumplanung werden z. B. die geometri-
schen Maße benötigt. Ein Elektriker benötigt jedoch die Informationen für den elektri-
schen Anschluss (z. B. Anschlussleistung, benötigte Spannung). Ein Software-Entwickler
hingegen benötigt die Informationen über die Steuerung, die Protokolle oder die Byte-
Belegung. Um für jeden Nutzer die passenden Informationen bereitzustellen, könnte ein
Verwaltungsschalen-Teilmodell mit einer flachen Liste aller Eigenschaften erstellt werden.
Dies ist aber nicht zielführend, da viele nicht benötigte Informationen für einen Nutzer vor-
liegen. Das Ziel ist daher, die Informationen Anwendungsfall-orientiert in unterschiedliche
Verwaltungsschalen-Teilmodelle zu strukturieren. Durch die Definition von unabhängigen
Verwaltungsschalen-Teilmodellen kann weitere Semantik zu den Informationen hinzugefügt
werden, beispielsweise wie sich Höhe und Ausdehnung des Roboters zueinander verhält.
Viele dieser Informationen gelten auch für andere Roboter, sodass das Ziel sein sollte,

66

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7.2 Nutzung von Verwaltungsschalen-Teilmodellen für semantische Interoperabilität:
Offene Fragestellungen und mögliche Lösungsoptionen

möglichst viele Verwaltungsschalen-Teilmodelle zu standardisieren. Da verschiedene Sta-
keholder jedoch ggf. andere Informationen bei ihrem Informationsaustausch benötigen,
können die Verwaltungsschalen-Teilmodelle lediglich in Grundzügen standardisiert werden
[147, 148]. Anschließend werden einzelnen Interaktionspartner weitere Elemente spezifizie-
ren, die diese zusätzlich für den konkreten Anwendungsfall austauschen.

Applikationen, die Informationen über so einen Aspekt des Assets erhalten, müssen das
entsprechende Verwaltungsschalen-Teilmodell verstehen. Hierfür werden semantische Ver-
weise in Form der SemanticID zur Verfügung gestellt, die auf Konzept-Beschreibungen
zeigen. Applikation können in einer Art Type-Checking prüfen, ob das Element der se-
mantischen Beschreibung folgt, die die Applikation an dieser Stelle erwartet oder benötigt.
Jedoch ist dies vielfach nicht ausreichend, da das Element in seinem Kontext verstan-
den werden muss. Das Verwaltungsschalen-Teilmodell kann diesen Kontext definieren und
gibt dem Element eine entsprechende Bedeutung innerhalb dessen. Dieser Kontext ist für
die Applikation lediglich ermittelbar, wenn die Verwaltungsschalen-Teilmodelle bekannt
sind.

Aus diesem Grund wird versucht, die Verwaltungsschalen-Teilmodell-Templates zu stan-
dardisieren. Da jedoch für verschiedene Aspekte unterschiedliche Verwaltungsschalen-
Teilmodell-Templates entstehen werden, tritt das Problem der semantischen Interoperabi-
lität auf. Die Frage lautet, wie bei Verwaltungsschalen auf Verwaltungsschalen-Teilmodell-
Ebene eine semantische Interoperabilität erreicht wird.

Eine Lösung ist, dass ein gemeinsames und standardisiertes Verwaltungsschalen-
Teilmodell-Template pro Aspekt existiert. Die Verwaltungsschalen-Teilmodell-Templates
zu verschiedenen Aspekten sollten dabei möglichst disjunkt sein, damit nicht zu ähnliche
Verwaltungsschalen-Teilmodell-Templates entstehen und verschiedene Applikationen ver-
schiedene Verwaltungsschalen-Teilmodell-Templates nutzen. Die Möglichkeit von firmen-
internen Verwaltungsschalen-Teilmodell-Templates oder firmeninternen Erweiterungen ist
nicht mehr gegeben. Was passiert jedoch, wenn eine neue Version veröffentlicht wird? Wer-
den die alten Versionen nicht mehr nutzbar, damit nicht zu ähnliche Verwaltungsschalen-
Teilmodell-Templates existieren? Nach Ansicht des Autors ist dies keine zukunftsorientierte
Lösung.

Eine andere Lösung ist, dass jeder Stakeholder beliebige Verwaltungsschalen-Teilmodell-
Templates erstellen, diese zentral verwaltet werden und jede Applikation diese kennt und
nutzt. Dies ist bei einer geringen Anzahl möglich, skaliert aber leider nicht. Gerade vor dem
Hintergrund, dass die Verwaltungsschale Domänen- und Branchen-übergreifend ist, werden
viele Verwaltungsschalen-Teilmodell-Templates entstehen. Die Vergangenheit hat gezeigt,
dass der Markt dies alleine nicht regeln kann. Wie in Abschnitt 4.2 aufgezeigt, werden sich
verschiedene Interessengruppen bilden, die unabhängig voneinander Verwaltungsschalen-
Teilmodell-Templates erstellen.

Eine weitere und vielversprechende Lösung ist die automatische Abbildung der
Verwaltungsschalen-Teilmodell-Templates untereinander. Das bedeutet, dass ein Mapping
der Elemente mehrerer Verwaltungsschalen-Teilmodell-Templates durchgeführt wird. Da-
durch wird ein Nutzer bei der Erstellung bzw. Befüllung von neuen Verwaltungsschalen-
Teilmodellen unterstützt, sodass dies automatisiert erfolgt. Hierfür kann das in Kapi-
tel 5 vorgestellte Konzept der Modelltransformation genutzt werden. In dieser Arbeit

67

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

7 Informationsaustausch bei Verwaltungsschalen

wird die Modelltransformation als eine mögliche Lösung vorgestellt, um formal ange-
forderte Verwaltungsschalen-Teilmodell-Instanzen aus basierenden Verwaltungsschalen-
Teilmodell-Instanzen zu erstellen. Welche Arten der Modelltransformation zwischen
Verwaltungsschalen-Teilmodellen (Informationsmodellen) auftreten und welche Anforde-
rungen an eine entsprechende Modelltransformationssprache vorliegen, wird im nächsten
Kapitel näher beleuchtet.

68

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8 Modelltransformationen für die
semantische Interoperabilität
zwischen verschiedenen
Informationsmodellen

Um die semantische Interoperabilität zwischen Informationsmodellen zu ermöglichen, wird
das Konzept der Modelltransformation (vgl. Kapitel 5) genutzt. Die Modelltransformation
kann in zwei Arten unterteilt werden: syntaktische und semantische Transformation. Worin
der Unterschied liegt und wann welche Transformation auftritt, wird in Abschnitt 8.1
anhand der Informationsmodelle der Verwaltungsschale (Verwaltungsschalen-Teilmodell)
genauer beschrieben.

Da in dieser Arbeit eine Modelltransformationssprache entwickelt wird, werden in den
darauffolgenden Abschnitten die einzelnen Schritte des Leitfadens zur Erstellung einer
Transformationssprache aus Abschnitt 5.4.2 durchgeführt: Klassifikation der Modelltrans-
formation zwischen Informationsmodellen in Abschnitt 8.2, Anforderungsdefinition und
benötigte Sprachelemente in Abschnitt 8.3 und Evaluation bestehender Transformations-
sprachen in Abschnitt 8.4. Für ein besseres Verständnis werden an entsprechenden Stellen
Beispiele aus dem Kontext der Verwaltungsschale vorgestellt.

8.1 Syntaktische und semantische Transformationen

In Abschnitt 3.1 der Vorveröffentlichung [19] wird die Unterscheidung in syntaktische und
semantische Transformationen [154] bei Verwaltungsschalen-Teilmodellen beschrieben und
anhand von konkreten Beispielen erläutert. Nachfolgend ist dieser vorveröffentlichte Ab-
schnitt abgedruckt:

”Die Modell-zu-Modell-Transformationen können in syntaktische und semantische Trans-
formationen unterschieden werden. Bei einer syntaktischen Transformation wird lediglich
die abstrakte Syntax der Modelle umgewandelt, d. h. die modellierten Informationen blei-
ben gleich, werden jedoch durch andere Modellelemente dargestellt. Bei einer semantischen
Transformation werden die Informationen der Modellelemente hingegen genutzt, um dar-
aus neue Strukturen im Zielmodell zu erzeugen und somit explizit neue Semantik hinzu-
zufügen.

69

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen
Informationsmodellen

Abbildung 8.1: Syntaktische Transformationen bei Teilmodellen [19]

In Abbildung 8.1 sind drei mögliche syntaktische Transformationen gezeigt, d.h. solche,
bei denen sich ausschließlich die syntaktische Repräsentation (z. B. Modellelementtyp, Da-
tentyp, SemanticId) wandelt, nicht die Werte. Die erste Transformation zeigt eine reine
Wertübertragung von zwei gleich modellierten Eigenschaften. Da Teilmodelle von unter-
schiedlichen Organisationen und Firmen erstellt werden, können dieselben Eigenschaften
in verschiedenen Teilmodell-Templates jedoch auch unterschiedlich modelliert sein, wie
dies bei den Properties 2 bis 4 bzw. 6 und 7 der Fall ist. Im zweiten Fall wurde für die
Eigenschaft ”Maximale Prozesstemperatur“ zwei verschiedene Eigenschaftsbibliotheken ge-
nutzt (ECLASS und IEC61360-CDD). Dementsprechend sind die Attribute der Properties
(Property 2 und Property 6) unterschiedlich, die Semantik bleibt jedoch gleich. Als letztes
Beispiel wurden für die Eigenschaften ”Maximale Prozesstemperatur“ und ”Minimale Pro-
zesstemperatur“ auf der linken Seite zwei einzelnen Property-Elemente verwendet. Auf der
rechten Seite wurden diese hingegen gemeinsam in einem Range-Element modelliert. Bei
der Transformation müssen daher die Werte (Values) aus den Property-Elementen 3 und
4 extrahiert und in die entsprechenden ”Min“- und ”Max“-Attribute des Range-Elements
übertragen werden.

In Abbildung 8.2 sind demgegenüber semantische Transformationen dargestellt. Hierbei
werden die Werte (Values) aus den Property-Elementen 8 und 9 benutzt, um auf Basis
ihrer Semantik mit Hilfe eines physikalischen Zusammenhangs einen neuen Wert zu be-
rechnen. Dieser wird in Property-Element 11 gespeichert. Bei der unteren Transformation
wird basierend auf der Anzahl der digitalen Eingänge (Value von Property 10) eine ent-
sprechende Anzahl von Repräsentationen digitaler Eingänge (SubmodelElementCollection
13) angelegt.“1

1Abschnitt 3.1 der Vorveröffentlichung [19].

70

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8.2 Klassifikation der Transformationen

Abbildung 8.2: Semantische Transformationen bei Teilmodellen [19]

8.2 Klassifikation der Transformationen

Im ersten Schritt wird eine Klassifikation zur Auswahl einer Transformationssprache durch-
geführt. Dafür werden die Merkmale aus Abschnitt 5.2 genutzt und deren Ausprägungen
festgelegt.

Bei der vorliegenden Modelltransformation sollen (semi)-automatisch neue
Informationsmodell-Instanzen erstellt und mit Werten aus bereits existieren-
den Informationsmodell-Instanzen befüllt werden. Die bereits existierenden
Informationsmodell-Instanzen sollen dabei nicht verändert werden. Eine Rückkopplung
ist somit ausgeschlossen und die Transformation erfolgt rückwirkungsfrei. Die Trans-
formationsrichtung ist somit unidirektional. Im Rahmen dieser Arbeit werden die
Transformationen als nicht-inkrementell angesehen, da das Aktualisieren von bestehenden
Informationsmodell-Instanzen zunächst nicht weiter betrachtet wird. Als Ergebnis der
Transformation wird ein Modellartefakt und explizit kein Textartefakt erzeugt. Aus
diesem Grund liegt eine Modell-zu-Modell-Transformation vor. Da genau eine neue
Informationsmodell-Instanz erzeugt wird, aber Informationen aus beliebig vielen existie-
renden Informationsmodell-Instanzen genutzt werden, liegt eine M:1 Transformation vor.
Die Transformation wird als horizontal bezeichnet, da die Quellmodelle und das Zielmodell
auf gleicher Abstraktionsebene liegen. Zudem sind die Quell- und Zielmodelle unter-
schiedlich, sodass eine Out-Place Transformation gegeben ist. In dieser Arbeit werden die
Informationsmodell-Templates nicht als eigene Metamodelle aufgefasst, sondern als eine
konkrete Ausgestaltung der Modellelemente des zugehörigen Metamodells. Da die beiden

71

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen
Informationsmodellen

Metamodelle von Quell- und Zielmodell gleich sind, liegt eine endogene Transformation
vor.

Zusammengefasst kann die Transformation zwischen Informationsmodellen zur Assetbe-
schreibung gemäß Kapitel 6 wie folgt klassifiziert werden: unidirektional, nicht inkremen-
tell, Modell-zu-Modell, M:1, horizontal, out-place und endogen.

8.3 Anforderungen an die zu entwickelnde
Transformationssprache

Neben der allgemeinen Klassifikation der Modelltransformation in Abschnitt 8.2 werden
Anforderungen an die Gestaltung der Sprachsyntax formuliert. Hierzu zählen Anforderun-
gen an die Art und Weise, wie die Sprache nachher in der Praxis verwendet werden soll.
Zusätzlich existieren zur Definition von Regeln Anforderungen bezüglich der benötigten
Sprachelemente.

8.3.1 Allgemeine Anforderungen

In [19] wird bereits der allgemeine Anwendungsfall der Transformationssprache be-
schrieben. Es soll eine (semi-)automatische Generierung von neuen Informationsmodell-
Instanzen basierend auf Informationen aus anderen bereits existierenden bzw. vorliegen-
den Informationsmodell-Instanzen erfolgen. Die Transformationsdefinitionen sollen in er-
ster Linie von Domänenexperten, z. B. Datenmodellierern in Unternehmen, erstellt wer-
den, die bereits das Konzept und die Grundelemente des übergeordneten Konzepts (hier
Verwaltungsschale) kennen. Aufgrund dessen soll die Syntax der Transformationssprache
für Domänenexperten einfach zu verstehen sein und die individuellen Arbeitsabläufe un-
terstützen. Um dies zu erreichen, soll die Syntax möglichst nahe am Metamodell der In-
formationsmodelle (hier Metamodell der Verwaltungsschale) sein und ausschließlich mit
notwendigen Sprachelementen erweitert werden. Dies ermöglicht anschließend eine einfa-
chere und breitere Verwendung.

Anforderung 8.1 Die Syntax der Sprache soll einfach zu verstehen und nahe am Meta-
modell der Informationsmodelle sein.

Bei klassischen Transformationsproblemen werden Regeln für bestimmte Objekttypen de-
finiert, die dann auf jedes Objekt im Quellmodell angewendet werden. In diesem Fall
soll jedoch die Hauptstruktur der zu erzeugenden Informationsmodell-Instanz in der
Transformationsdefinition konform zum gewünschten Informationsmodell-Template de-
finiert werden2. Das Ziel einer Transformationsdefinition soll sein, eine einzige wohl-
geformte Informationsmodell-Instanz aus den gesammelten Informationen bestehender
Informationsmodell-Instanzen zu erzeugen.
2ForEach-Strukturen, die über die Objekte der Quellmodelle iterieren, werden nur vereinzelt auftreten.

72

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8.3 Anforderungen an die zu entwickelnde Transformationssprache

Anforderung 8.2 Die Sprache soll genau eine wohlgeformte Informationsmodell-Instanz
erzeugen.

Um dem Nutzer die Erstellung einer Informationsmodell-Instanz zu vereinfachen, soll die
Struktur des Zielmodells möglichst in einem verständlichen, vorzugsweise deklarativen
Template-ähnlichen Stil [155] formulierbar sein. Dies bedeutet auch, dass eine explizite
Definition von einzelnen Regeln nicht existieren muss. In der Terminologie von Modell-
transformation bedeutet das: Jede Transformation besteht aus genau einer einzigen Regel,
die ein vollständiges Zielmodell erzeugt. Durch diese Forderung werden keine Sprachele-
mente für die Definition von expliziten Ausführungsbedingungen, Steuerung von Regelan-
wendungen, Regelauswahl, Regelwiederholung und Unterstützung von Phasen erforderlich.
Zudem ist eine syntaktische Separation nicht notwendig.

Anforderung 8.3 Die Sprache soll die Definition der Struktur des Zielmodells in einem
deklarativen Template-ähnlichen Stil unterstützen.

Die vorgestellten Metamodelle für die Asset-Information sind bereits spezifiziert. Daher
liegen in der IT und Automatisierungstechnik viele verschiedene Implementierungen vor,
die in unterschiedlichen Programmiersprachen entwickelt wurden. Damit die Sprache eine
möglichst breite Verbreitung und Umsetzung in bestehenden Systemen erreicht, sollen so
wenig Sprachelementen wie möglich definiert werden. Dies erleichtert die Implementierung
in den erforderlichen Software-Tools. Gleichzeitig soll die Sprache auf Konzepten bzw.
Modellen aus dem aktuellen Stand der Wissenschaft basieren.

Anforderung 8.4 Die Sprache soll einfach implementierbar sein und auf bestehenden
Konzepten und Modellen aus dem Stand der Wissenschaft und Industrie basieren.

Zwingend erforderlich ist eine leistungsfähige Ausdruckssyntax, mit deren Hilfe das Er-
stellen, Manipulieren und die Kombination von Informationen aus den Quellmodellen
ermöglicht wird. Um dem Nutzer die Wiederverwendung von sich wiederholenden Aus-
drücken zu vereinfachen, sollen Sprachmittel für die Modularisierung und Wiederverwen-
dung mit Parametrisierung existieren. Die konkreten benötigten Sprachelemente werden
in Abschnitt 8.3.2 genauer behandelt.

8.3.2 Benötigte Transformationssprachelemente

Um sowohl die syntaktischen als auch semantischen Transformationen (vgl. Abschnitt 8.1)
zwischen Informationsmodellen zu ermöglichen, werden entsprechende Transformations-
sprachelemente benötigt. Diese sollen den allgemeinen Anforderungen aus Abschnitt 8.3.1
entsprechen. Eine Transformationssprache muss daher nachfolgende Sprachelemente an-
bieten:

73

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen
Informationsmodellen

Das Ziel der Transformation ist die Erstellung einer neuen Informationsmodell-Instanz.
Dafür sollen die einzelnen Informationsmodellelemente mit Hilfe von entsprechenden Spra-
chelementen angelegt werden. Eine Sprache muss also die Erstellung von allen Informa-
tionsmodellelementtypen des zugehörigen Metamodells (hier die des Verwaltungsschalen-
Metamodells nach [4]) unterstützen. Dabei ist zu beachten, dass die Objekte inklusive ihrer
Attribute angelegt werden, auch wenn diese zunächst nicht initialisiert werden.

Anforderung 8.5 Die Sprache muss Sprachelemente für die Erstellung von Informati-
onsmodellelementen nach dem zugehörigen Metamodell bereitstellen.

Das Erstellen allein ermöglicht jedoch nicht das Setzen der Attributwerte dieser Infor-
mationsmodellelemente. Die Sprachelemente sind so zu gestalten, dass diese die Datenty-
pen der einzelnen Attribute unterstützen. Zudem sollen je nach Datentyp unterschiedli-
che Ausdrücke (Expressions) ermöglicht werden. Für eine Zeichenkette soll beispielsweise
ermöglicht werden, zwei einzelne Zeichenketten anzugeben, die dann konkateniert wer-
den (z. B. Zeichenkette1 + Zeichenkette2). Aus diesem Grund werden Sprachelemente zur
Definition von Ausdrücken und zum Setzen von Attributen benötigt.

Anforderung 8.6 Die Sprache muss Sprachelemente für das Definieren von Ausdrücken
und das Setzen von Attributen in den Informationsmodellelementen beinhalten.

Sowohl bei der syntaktischen als auch bei der semantischen Transformation wer-
den Quell-Informationsmodellelemente in Ziel-Informationsmodellelemente transformiert.
Dafür müssen zunächst die benötigten Quell-Informationsmodellelemente in den Quell-
Informationsmodell-Instanzen gefunden werden. Es müssen Sprachelemente definiert wer-
den, die das Finden von Informationsmodellelemente im Quellmodell anhand ihrer Attri-
butwerte ermöglichen. Bei Verwaltungsschalen kann z. B. eine Suche über die idShort3 bzw.
eine Liste von idShorts oder über die semanticID erfolgen.

Anforderung 8.7 Die Sprache muss Sprachelemente für das Finden von Informations-
modellelementen in den Quell-Informationsmodellen basierend auf Attributwerten vorse-
hen.

Nach dem Finden des Informationsmodellelements in der zugehörigen Quell-
Informationsmodell-Instanz müssen die Werte der einzelnen Attribute ausgelesen werden
können. Der Zugriff auf die Attribute soll für den Nutzer der Sprache einfach und intuitiv
sein.

Anforderung 8.8 Die Sprache muss Sprachelemente für das Auslesen von Attributwerten
aus Objekten in den Quell-Informationsmodell-Instanzen bereitstellen.
3Objekt-Identifier, die in ihrem Namensraum eindeutig sind, wie z. B. Verwaltungsschalen-Teilmodell oder
SubmodelElementCollection.

74

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8.3 Anforderungen an die zu entwickelnde Transformationssprache

In einigen Fällen können bedingte Fallunterscheidungen (z. B. If-Then-Else) notwendig
sein. Gerade bei optionalen Informationsmodellelementen kann mit Hilfe einer bedingten
Fallunterscheidung entschieden werden, ob im Zielmodell ein Informationsmodellelement
angelegt werden muss oder nicht. Zusätzlich kann basierend auf Attributwerten in einem
Informationsmodellelement der Quell-Informationsmodell-Instanz entschieden werden, ob
oder wie weitere Informationsmodellelemente in der Ziel-Informationsmodell-Instanz ange-
legt oder deren Attribute gesetzt werden sollen. Aus diesem Grund werden Sprachelemente
benötigt, die die Definition von bedingten Fallunterscheidungen ermöglichen.

Anforderung 8.9 Die Sprache muss Sprachelemente zur Unterstützung bedingter Fallun-
terscheidungen definieren.

Bei einigen Transformationen müssen mehrere gleiche Modellelemente in der Ziel-
Informationsmodell-Instanz angelegt werden, deren Bezeichner sich unterscheiden. Um das
Anlegen einer abhängigen Anzahl zu vereinfachen, sollen Sprachelemente bereitgestellt wer-
den, die die Erstellung und Nutzung von Schleifen ermöglichen.

Anforderung 8.10 Die Sprache muss Sprachelemente zur Unterstützung von Schleifen
beinhalten.

Die Zwischenspeicherung und der spätere Zugriff auf Werte in Variablen kann notwendig
sein. Dies kann ein unnötiges wiederholtes Einlesen von Attributwerten eines Informations-
modellelements in den Quell-Informationsmodell-Instanzen einsparen oder die Möglichkeit
der Speicherung von Zwischenwerten bei Formeln oder sonstigen Operationen ermöglichen.
Zusätzlich können Variablen bei Schleifen für das Zählen der Schleifendurchgänge genutzt
werden. Aus diesem Grund sollen Sprachelemente zur Speicherung und zum Auslesen von
Variablen während der Auswertung der Transformationsdefinition existieren.

Anforderung 8.11 Die Sprache muss Sprachelemente zur Speicherung und zum Lesen
von Variablen bereitstellen.

Es kann davon ausgegangen werden, dass eine Vielzahl von Transformationsdefinitionen
existieren und dass Ausdrücke4 ähnlich oder in gleicher Form in verschiedenen Transforma-
tionsdefinitionen vorkommen werden. Um eine effiziente Nutzung und die schnelle Erstel-
lung von Transformationsdefinitionen zu ermöglichen, sollten einmal erstellte Ausdrücke
wiederverwendet werden können. Diese können auch zunächst abstrakter und ohne kon-
krete Werte bzw. mit Variablen spezifiziert und dann bei der Nutzung mit entsprechenden
Werten belegt werden. Dies wird in Programmiersprachen häufig als Makro bezeichnet. Zur
Ermöglichung werden Sprachelemente für die Erstellung, die Speicherung und die Nutzung
dieser Makros benötigt.

Anforderung 8.12 Die Sprache muss Sprachelemente zur Erstellung, Speicherung und
Nutzung von Makros definieren.
4Hier liegt der Fokus auf komplexen Ausdrücken.

75

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen
Informationsmodellen

8.4 Evaluation bestehender Transformationssprachen

Basierend auf der Klassifikation und der Anforderungsdefinition wurden im dritten Schritt,
analog zur Vorgehensweise in Abschnitt 5.4.2, bestehende Transformationssprachen hin-
sichtlich ihrer Eignung evaluiert. Das Ziel ist, diese direkt zu verwenden oder anzupassen
(vgl. Vorveröffentlichung [21]).

Zunächst wurden typische generische Transformationssprachen, wie QVT [156], ATL [99],
ETL [102] oder VIATRA [101] betrachtet. Andere Ansätze nutzen bestehende GPTL und
erweitern diese um domänenspezifische Sprachelemente. Zum Beispiel wird in [113] ei-
ne abgeleitete Transformationssprache für Modelle von Benutzerschnittstellen entwickelt.
Es kann gezeigt werden, dass die Syntax nicht neu entwickelt werden muss, sondern auf
bestehende Konstrukte aufsetzen kann. Jedoch muss aufgrund der Erweiterung auch ein
neues Transformationssystem entwickelt werden, welches sowohl die domänenspezifischen
als auch alle Funktionalitäten der GPTL unterstützt. Dies ist sinnvoll, wenn die GPTL
um Funktionalität erweitert werden soll. Bezogen auf die Anforderungen aus Abschnitt
8.3.1 konnte dieses Verfahren oder die direkte Nutzung jedoch nicht verwendet werden,
da die generischen Transformationssprachen zu viele nicht benötigte Funktionen und Ein-
schränkungen, wie die Definition von Regeln oder keine einfache Unterstützung von Schlei-
fen (ATL), besitzen. Wenn nur wenige Funktionen benötigt werden, sollte eine neue Sprache
entwicklet werden, da die Dokumentation dieser kürzer wird und Entwicklern somit die
Erstellung einer Implementierung vereinfacht wird.

Aus diesem Grund wurden im nächsten Schritt Frameworks zur Generierung von
domänenspezifischen Transformationssprachen hinsichtlich ihrer Nutzbarkeit analysiert.
Baar und Whittle entwickelten in [103] ein Verfahren zur Generierung der abstrakten Syn-
tax einer domänenspezifischen Transformationssprache in Form eines Metamodells. Dazu
wird das Metamodell der domänenspezifischen Modellierungssprache verwendet. Es wird
konzeptionell beschrieben, wie die Syntax automatisiert erstellt werden kann. Eine Be-
schreibung für die Ausführung der Regeln und wie eine mögliche Implementierung ausse-
hen könnte wird nicht bereitgestellt. Auch existiert keine vollständige Implementierung.
Bei weiteren Recherchen konnten keine anderen Arbeiten bzw. Veröffentlichungen zu die-
sem Framework gefunden werden. Daher wird von einer Nutzung dieses Frameworks in
dieser Arbeit abgesehen.

In [108] wurde das Generator-Framework Marius entwickelt, welches Modelle, die mit der
EBNF Syntax entwickelt wurden, transformieren kann. Auch in [106] wurde ein ähnliches
Verfahren entwickelt, wie aus einer domänenspezifischen, textuellen Modellierungsspra-
che die Transformationssprache sowie das Transformationssystem automatisiert generiert
werden kann. Allerdings wird gefordert, dass die Sprachen mit dem MontiCore Frame-
work [157] unter Nutzung der MontiCore-Grammatik (ähnlich zu Erweiterte Backus-Naur-
Form (EBNF)) entwickelt werden. Hölldobler hat in ihrer Arbeit [110] eine Erweiterung ent-
wickelt, welche die n-zu-m Transformation ermöglicht. Allerdings müssen die Modellspra-
chen immer noch in der MontiCore-Grammatik beschrieben sein.

Die drei genannten Verfahren schränken die Nutzbarkeit dahingehend ein, dass diese ledig-
lich bestimmte Sprachen unterstützen. Die Sprachen müssen formal textuell beschrieben
sein und entweder der MontiCore-Grammatik oder der EBNF Syntax folgen. Zusätzlich

76

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

8.5 Fazit

wird die konkrete Syntax bereits von dem Framework vorgegeben, sodass die Definition
von eigenen Syntaxelementen aufwändiger und nur bedingt möglich ist. Aus diesem Grund
wird die Nutzung dieses Frameworks in dieser Arbeit nicht weiter betrachtet.

In [112] wurde ein Metamodell für die Entwicklung von DSTL entwickelt, welches alle
notwendigen Klassen, die bei einer Transformation benötigt werden, beschreibt. Basierend
auf diesem Modell wurde ein Verfahren entwickelt, wie automatisiert die abstrakte und
konkrete Syntax sowie das Transformationssystem erstellt werden. Der Nutzer muss seine
Transformationsregeln mit diesem Metamodell beschreiben und kann dann alles weitere
generieren lassen. Dies vereinfacht die Erstellung der Syntax sowie des Transformations-
systems. Jedoch ist der Nutzer an diesen Workflow und das erstellte Tool gebunden. Zu-
dem muss der Nutzer alle möglichen Regeln formulieren und diese konsistent halten. Der
benötigte Overhead und die Bindung an das erstellte Tool schränken die Verbreitung und
Nutzung in den Domänen signifikant ein.

Zusammenfassend lässt sich sagen, dass alle Frameworks zur Generierung benutzerdefi-
nierter DSTLs nicht verwendbar sind. Entweder sind die Frameworks nicht vollständig
entwickelt, decken nur wenige Schritte ab, treffen Annahmen, die nicht zum gegebenen
Anwendungsfall passen - z.B. die Notwendigkeit einer konkreten Syntax der Modellie-
rungssprache - oder es werden Anforderungen an die vorhandenen Werkzeuge in der Sy-
stemlandschaft gestellt. Zudem sind vielfach die Sprachelemente der generierten Sprachen
nicht so leicht zu verstehen, da sie generisch formuliert sind, um verschiedene Anwen-
dungsfälle abzudecken. Dies reduziert die Verbreitung in hohem Maße, da die Nutzung für
Domänenexperten erschwert wird.

8.5 Fazit

In Abschnitt 8.4 wurde aufgezeigt, dass die geforderten Anforderungen aus Abschnitt 8.3
nicht mit einer am Markt verfügbaren Transformationssprache gelöst werden kann und
auch kein Framework zur Generierung einer passenden Sprache genutzt werden kann. Aus
diesem Grund muss eine neue Transformationssprache entwickelt werden. Dies bedeutet
nach Abschnitt 5.4.2, dass zunächst eine abstrakte Syntax und die Definition der statischen
Semantik (Metamodell der Sprache) erfolgen muss. Dabei soll sich an bestehenden Trans-
formationssprachen orientiert und nutzbare Konzepte wiederverwendet werden. Aufbauend
muss mindestens eine zugehörige konkrete Syntax entworfen werden. Den Abschluss bil-
det die Implementierung eines vollständigen Tool-Sets bestehend aus Parser, Checker und
Interpreter, auch Transformationssystem genannt. In den nächsten Kapiteln wird das Me-
tamodell der neu entwickelten Modelltransformationssprache vorgestellt, eine Abbildung
für Verwaltungsschalen gegeben und eine Implementierung eines zugehörigen Transforma-
tionssystems als Proof-of-Concept beschrieben.

77

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9 Metamodell der
Modelltransformationssprache

Im vorherigen Kapitel wurden die Anforderungen an eine Modelltransformationssprache
beschrieben und aufgezeigt, dass derzeit keine passende Sprache existiert. Aufgrund des-
sen wird in diesem Kapitel das Metamodell einer neuen Modelltransformationssprache defi-
niert, welche allen Anforderungen gerecht wird. Für die Definition des Metamodells werden
die benötigten Sprachelemente und deren Semantik beschrieben, welches in Abschnitt 9.1
erfolgt. Zusätzlich sind für die Sprachelemente zugehörige Syntaxregeln notwendig. Au-
ßerdem wird eine konkrete Syntax für eine Anwendung der Sprache benötigt. Die Regeln
und die Syntaxdarstellungen werden in Abschnitt 9.2 vorgestellt. Abschließend wird in Ab-
schnitt 9.3 gezeigt, dass die Sprache den Anforderungen aus Abschnitt 8.3 gerecht wird.

9.1 Benötigte Sprachelemente und deren Semantik

Viele der notwendigen Sprachelemente aus Abschnitt 8.3 erfordern die Möglichkeit, Aus-
drücke (Expressions) zu formulieren. Zum Beispiel müssen Definitionen von Literalen (z. B.
String oder Boolean), Fallunterscheidungen, Typüberprüfungen, Schleifen sowie die Ver-
wendung von Variablen ermöglicht werden. Die Ausdruckssprache OCL ist ein Bestandteil
der etablierten UML (vgl. Kapitel 3) und unterstützt bereits viele dieser Sprachelemente.
Die Sprache baut dabei auf der Prädikatenlogik auf und erweitert diese. Die Beschreibung
der Sprachelemente erfolgt durch natürliche Sprache, wodurch auch Nicht-Mathematiker
oder Nicht-Informatiker die Sprachelemente verstehen und anwenden können. Zudem ist
OCL eine deklarative Sprache. Da heutige Metamodelle meistens in UML spezifiziert wer-
den (hier z. B. das Metamodell der Verwaltungsschale), OCL eine anerkannte Sprache sowie
die Basis für viele Transformationssprachen ist und bereits viele der benötigten Sprach-
elemente unterstützt, wird diese als Grundlage für die neue Modelltransformationssprache
verwendet.

BasicOCL erfüllt bereits fast alle Anforderungen aus Abschnitt 8.3. Lediglich das Anlegen
von neuen Objekten sowie die Definition von Makros ist mit OCL nicht möglich (Anfor-
derung 8.5). Aufgrund dessen werden neue Sprachelemente für diese Aufgaben benötigt.
Zudem wird ein Sprachelement für die Definition der Elemente einer Transformationsdefi-
nition gebraucht.

In Abbildung 9.1 ist das Metamodell der neuen Modelltransformationssprache dargestellt,
welches auf dem veröffentlichten Metamodell in [21] basiert und weiterentwickelt wurde.
Alle Ausdrücke von BasicOCL werden für die neue Modelltransformationssprache wieder-
verwendet. Diese sind in der Abbildung weiß dargestellt. Zusätzlich wurden die Klassen

78

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9.1 Benötigte Sprachelemente und deren Semantik

Package, TransformationDefiniton, Macro, MacroCallExp, ObjectLiteralExp und Attribu-
teBinding hinzugefügt (in der Abbildung grau dargestellt).

Abbildung 9.1: Metamodell der Modelltransformationssprache nach [21]

Eine Semantikbeschreibung der OCL-Ausdrücke findet sich in Kapitel 3. Um die Seman-
tik der neuen Klassen zu verdeutlichen, ist eine detaillierte Sicht auf die hinzugefügten
Elemente und deren Assoziationen in Abbildung 9.2 dargestellt.

Abbildung 9.2: Detaillierte Ansicht des Metamodells der Modelltransformationssprache nach
[21] inkl. der Assoziationen

Das Element TransformationDefinition stellt den Eingangspunkt für jede Transformations-
definition dar. Um festzulegen, für welche Informationsmodell-Templates die Transformati-
onsdefinition gilt, müssen sowohl die Templates der benötigten Quell-Informationsmodelle
als auch das des Ziel-Informationsmodells angegeben werden. Dies erfolgt in den Attributen
sourceTemplate und targetTemplate. Über das Attribut value wird die eigentliche Trans-
formation durch eine ObjectLiteralExp formuliert. Diese wird ausgewertet und erstellt als
Rückgabewert das zu erzeugende Informationsmodell.

79

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

Um Elemente innerhalb der Informationsmodell-Instanz zu erstellen, reichen die OCLEx-
pressions, im Besonderen die LiteralExp, nicht aus. Mit diesen können lediglich Literale von
einfachen Datentypen, wie Strings oder Booleans, erstellt werden. Aufgrund dessen wird
die Klasse ObjectLiteralExp definiert. Diese ermöglicht die Erstellung von neuen Instanzen
einer konkreten Modellklasse des Informationsmodell-Metamodells. Die ObjectLiteralExp
ist eine Unterklasse der LiteralExp und besteht aus einer TypeExp über die objectType-
Assoziation und einer beliebigen Anzahl von AttributeBindings. Mit der TypeExp wird
die Definition der Modellklasse des zu erstellenden Objekts vorgenommen. Die Klasse At-
tributeBinding ermöglicht das Setzen von Attributen der neu erstellten Instanz. Jeder
ObjectLiteralExp können beliebig viele AttributeBinding-Elemente hinzugefügt werden,
die jeweils die Definition eines Attributwerts ermöglichen. Die AttributeBinding-Elemente
entsprechen dabei den Attributen der Objekt-Klasse. Bei der Ausführung einer ObjectLi-
teralExp wird genau eine neue Objektinstanz erstellt und zurückgegeben. An jeder Stelle,
an der ein mit einer Objekt-Klasse typisierter Ausdruck erwartet wird, können Objekte
der neu eingeführten Klasse verwendet werden.

Jedes AttributeBinding-Element ist Teil einer ObjectLiteralExp und erlaubt die Definition
eines Attributs des zu instanziierenden Objekts. Es enthält einen Verweis auf die Klasse-
neigenschaft, die das Attribut spezifiziert. Zusätzlich muss ein Ausdruck als initExpression
angegeben werden, um den Wert des Attributs zu initialisieren. Der Typ der initExpression
muss mit dem Typ der Klasseneigenschaft übereinstimmen.

Um die Wiederverwendung von komplexen Ausdrücken zu ermöglichen und diese durch
die Übergabe von Parameterwerten zu parametrisieren, wird die Klasse Macro eingefügt.
Viele Modelltransformationssprachen nutzen ähnliche Konzepte, z. B. Helpers in ATL [99].
Beispiele für Makros sind das vollständige Kopieren eines Objekts oder das vereinfachte
Setzen eines Attributs1. Die Klasse Macro formuliert eine beliebige OCLExpression als body
und kann beliebig viele Variablen als Parameter definieren, die im Ausdruck Verwendung
finden können. Das Macro-Element kann entweder zusammen mit der Transformations-
definition in einem Paket oder ohne eine solche (z. B. zur allgemeinen Verwendung in
einer Bibliothek) enthalten sein. Die Klasse für die Bibliothek ist in Abbildung 9.2 nicht
dargestellt.

Um Makros aufzurufen, wird die Klasse MacroCallExp eingeführt. Diese ist eine Unterklas-
se der OCLExpression, die sich bei einem Aufruf zum Body-Ausdruck des referenzierten
Makros auflöst. Sie kann mehrere OCLExpressions als parameterValue enthalten, die bei
Auswertung den Parametervariablen des referenzierten Makros zugewiesen werden. Hier-
mit kann die Auswertung des Ausdrucks parametrisiert werden.

Für eine effiziente Sicherung der Transformationsdefinitionen und Makros wird zusätzlich
die Klasse Package eingeführt. Jedes Objekt dieser Klasse besteht aus maximal einer Trans-
formationsdefinition und kann beliebig viele Makros enthalten. Es ist auch möglich, dass
ausschließlich Makros enthalten sind.

1In Kapitel 10 sind einige Makros für das Metamodell der Verwaltungsschale beschrieben.

80

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

9.2 Syntaxregeln und konkrete Syntax

Für eine vollständige Sprachspezifikation der Modelltransformationssprache müssen
zusätzlich Regeln für die Wohlgeformtheit der in Abschnitt 9.1 beschriebenen Sprach-
elemente spezifiziert werden. Dadurch wird eine Überprüfung der Gültigkeit und Typkon-
sistenz von Transformationsdefinitionen ermöglicht. Diese können durch Invarianten mit
OCL-Sprachelementen formuliert werden. Um die Sprache zu nutzen, wird eine konkrete
Syntax benötigt. Dies erfolgt in Form von Produktionsregeln.

Für die wiederverwendeten Sprachelemente aus OCL werden die Syntaxregeln und die
Produktionsregeln der konkreten Syntax aus der OCL-Spezifikation [53] genutzt. Für die
zusätzlichen Elemente werden folgende Invarianten und Produktionsregeln definiert:

Informationmodel: Da die Sprache unabhängig eines konkreten Metamodells (generisch)
spezifiziert ist, muss die Klasse Informationsmodel bei der Anwendung der Sprache auf ein
Metamodell konkretisiert werden. Beim Verwaltungsschalen-Metamodell ist dies beispiels-
weise die Klasse Submodel.

Macro: Ein Makro ermöglicht, wiederholt auftretende komplexe OCL-Ausdrücke wieder-
zuverwenden. Es enthält genau einen OCL-Ausdruck im Attribut body. Dieser Ausdruck
kann weitere OCL-Ausdrücke beinhalten. Ein Makro ist typisiert und der Typ entspricht
dem Typen des OCL-Ausdrucks im Attribut body. Dabei stellt ein Makro einen Namens-
raum zur Verfügung und ermöglicht die Definition von Parametern (Variablendeklaratio-
nen), die innerhalb des OCL-Ausdrucks verwendet werden. Ein Makro kann beliebig viele
Parameter haben, jedoch müssen die Namen der Parameter eindeutig sein. Um diese bei ei-
nem Aufruf durch eine MacroCallExp mit Werten zu füllen, muss die Reihenfolge festgelegt
sein, da auch Default-Werte unterstützt werden sollen. Der Name eines Makros muss wie-
derum in dem Namensraum, in dem dieser definiert wird, eindeutig sein. Für eine formale
Überprüfung werden diese Syntaxregeln in Form von Invarianten festgelegt:

context Macro
inv: self.name.type. oclIsKindOf (P r i m i t i v e T y p e)
inv: self.name.type.name = ‘ S t r i n g ’
inv: self. parameter .type. oclIsKindOf (SequenceType)
inv: self.parameter -> forAll (oclIsKindOf (Variable))
inv: self.parameter -> isUnique (name)
inv: self.type = self.body.type
inv: self.body.type. oclIsKindOf (OCLExpression)

Für die konkrete Syntax wird die Produktionsregel eines Makros wie folgt definiert: Die
Produktionsregel besteht aus dem Terminalsymbol Macro gefolgt von einem frei definier-
baren Namen, der durch das in OCL definierte Nichtterminalsymbol simpleNameCS [53]
formuliert wird. Danach folgen in Klammern die Parameterdefinitionen. Diese bestehen je-
weils aus dem Namen und dem Typen des Parameters (siehe Definition von parametersCS
in [53]). Da Makros typisiert sind, kann durch einen Doppelpunkt getrennt, der Typ2 des
2Als Typ wird der Rückgabewert verstanden, der bei der Auflösung der enthaltenen Expression erzeugt
wird.

81

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

Makros durch das OCL Nichtterminalsymbol typeCS explizit angegeben werden. Zuletzt
wird der komplexe OCL-Ausdruck innerhalb geschweifter Klammern festgelegt.
MacroDeclarationCS ::= ‘ Macro’ simpleNameCS

‘(’ parametersCS ? ‘)’ (‘:’ typeCS)?
‘{’ OCLExpressionCS ‘}’

MacroCallExp: Für das Aufrufen eines Makros wird die Klasse MacroCallExp eingeführt.
Diese referenziert im Attribut referredMacro ein vorher definiertes Makro und wertet dieses
aus. Der Ausdruck MacroCallExp kann, sofern das referenzierte Makro Parameter spezi-
fiziert, eine Liste von Parameterausdrücken enthalten. Diese werden im Attribut parame-
terValue als eine Sequenz gespeichert. In diesem Fall müssen die Anzahl und die Typen
der Parameterausdrücke mit denen der Parameter des Makros übereinstimmen. Die Ma-
croCallExp ist eine Unterklasse der OCLExpression und kann folglich an einer beliebigen
Stelle genutzt werden, an der ein OCL-Ausdruck benötigt wird, der dem Typen des refe-
renzierten Makros entspricht. Bei der Auswertung wird das referenzierte Makro mit den
übergebenen Parametern ausgewertet.
context MacroCallExp

inv: self.type = self. referredMacro .type
inv: self. parameterValue .type. oclIsKindOf (SequenceType)
inv: self. parameterValue -> forAll (

oclIsKindOf (OCLExpression))
-- Anzahl der ParameterValue und der Parameter des

referenzierten Makros müssen gleich sein
inv: self. parameterValue ->size () =

self. referredMacro .parameter ->size ()
-- Typen der ParameterValue und der Parameter des

referenzierten Makros müssen gleich sein
inv: self. paramterValue -> forAll (p | p.type. conformsTo

(self. referredMacro .parameter ->at
(self. parameterValue -> indexOf (p)).type))

Die Produktionsregel für die Nutzung einer MacroCallExp besteht aus dem Namen des
Makros sowie dem zugehörigen Paket, sofern das Makro nicht im gleichen Paket wie die
Transformationsdefinition spezifiziert wurde. Die Zuordnung zum Paket geschieht optio-
nal durch das OCL Nichtterminalsymbol simpleNameCS gefolgt von zwei Doppelpunkten.
Anschließend wird der Name des Makros ebenfalls durch das OCL Nichtterminalsymbol
simpleNameCS formuliert. Für diesen Fall existiert in OCL bereits das Nichtterminalsym-
bol PathNameCS. Im Anschluss folgen die Variablen in Klammern, die den Parametern
des Makros zugewiesen werden. Diese werden durch das OCL Nichtterminalsymbol argu-
mentsCS beschrieben und entsprechen der Syntax des Aufrufs einer Operation innerhalb
eines Kontexts, wie in [53] spezifiziert.
MacroCallExpCS ::= PathNameCS ‘(’ argumentsCS ? ‘)’

TransformationDefinition: Jedes Objekt der Klasse TransformationDefinition hat
einen Namen, der frei gewählt wird. Das Attribut sourceTemplate ist ein Set von
Informationsmodell-Template-Definitionen, bestehend aus einem Variablennamen zur

82

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

weiteren Nutzung und einem möglichen Attribut-Wert zur Findung der zugehörigen
Quellmodell-Instanzen. Jeder Variablenname sowie mögliche Attribut-Werte dürfen aus-
schließlich einmal verwendet werden, um Mehrfachzuweisungen zu verhindern. Das Attri-
but targetTemplate legt fest, für welches Informationsmodell-Template eine Instanz erstellt
wird. Dafür wird ebenfalls eine Informationsmodell-Template-Definition angegeben. Als Er-
gebnis wird eine neue Instanz eines Informationsmodells erstellt, welche im Attribut value
über eine ObjectLiteralExp formuliert wird. Diese Instanz muss dem Typ des Informa-
tionmodel entsprechen und die geforderten Constraints des Informationsmodell-Templates
erfüllen, welches als targetTemplate angegeben wurde.

context TransformationDefinition
inv: self.name.type. oclIsKindOf (P r i m i t i v e T y p e)
inv: self.name.type.name = ‘ S t r i n g ’
inv: self.value.type. oclIsKindOf (Informationmodel)
inv: self. sourceTemplate .type. oclIsKindOf (S e t)
inv: self. sourceTemplate -> forAll (

oclIsKindOf (InformationmodelTemplate))

Für die Definition einer Transformationsdefinition wird die Produktionsregel wie folgt de-
finiert: Sie wird durch das Terminalsymbol TransformationDefinition eingeleitet und be-
sitzt einen eindeutigen Namen, der über das OCL Nichtterminalsymbol simpleNameCS
angegeben wird. Danach folgen optional die Definitionen der Quell-Informationsmodell-
Templates. Diese werden durch das Terminalsymbol sourceTemplate, gefolgt von einem
Doppelpunkt sowie dem Nichtterminalsymbol InformationmodelTemplateListCS formu-
liert. Zwingend anzugeben ist das Ziel-Informationsmodell-Template, welches durch das
Terminalsymbol targetTemplate, gefolgt von einem Doppelpunkt und der Nutzung des
Nichtterminalsymbols InformationmodelTemplateCS erfolgt. Weiterhin ist die Angabe des
Terminalsymbols value gefolgt von einem Doppelpunkt und einer ObjectLiteralExp durch
die zugehörige Produktionsregel ObjectLiteralExpCS verpflichtend.

TransformationDefinitionCS ::=
‘ TransformationDefinition ’ simpleNameCS
‘ sourceTemplates ’ ‘:’ InformationmodelTemplateListCS ?
‘ targetTemplate ’ ‘:’ InformationmodelTemplateCS
‘ value’ ‘:’ ObjectLiteralExp

InformationmodelTemplate: Die Definition eines Informationsmodell-Templates dient
der Ermittlung der zugehörigen Quellmodelle für die weitere Nutzung in der Trans-
formationsdefinition. Die Definition besitzt eine Variable, über die auf Instanzen die-
ses Templates in der Transformationsdefinition zugegriffen wird. Der Name muss inner-
halb der Transformationsdefinition eindeutig sein. Zusätzlich muss der Typ der Quellm-
odelle angegeben werden. Dieser Typ kann entweder der konkrete Informationsmodell-
Template-Typ oder eine Sammlung eines Informationsmodell-Template-Typs sein, sofern
mehrere Informationsmodell-Instanzen des gleichen Typs verwendet werden. Der Initial-
wert darf nicht gesetzt werden, da er nicht benötigt wird. Danach kann in der Produk-
tionsregel das Terminalsymbol -> gefolgt von einer LiteralExpression genutzt werden.
Diese LiteralExpression stellt den Verweis auf ein Informationsmodell-Template dar, so-

83

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

fern die Informationsmodell-Templates alle vom gleichen Typ sind3. In diesem Fall ist
das Ergebnis der Literal Expression der Attribut-Wert, der für die Unterscheidung der
Informationsmodell-Templates im spezifischen Metamodell spezifiziert ist. Für die Defini-
tion einer Liste von Informationsmodell-Templates wird eine zusätzliche Produktionsregel
definiert:
InformationmodelTemplateCS ::=

VariableDeclarationCS (‘->’ LiteralExpCS)?

InformationmodelTemplateListCS [1] ::=
InformationmodelTemplateCS
(‘,’ InformationmodelTemplateListCS [2])?

ObjectLiteralExp: Die Object Literal Expression dient dem Erstellen eines neuen Ob-
jekts aus dem Metamodell. Der Typ dieses Objekts ist der referenzierte Typ der OCL-
Expression im objectType. Dieser muss folglich ein Subtyp der Klasse Class sein. Die
Klasse Class ist der Obertyp aller Klassen des zugehörigen UML Metamodells. Zusätzlich
kann eine ObjectLiteralExp eine beliebige Anzahl von AttributBinding-Objekten enthal-
ten. Jedes dieser AttributeBinding-Objekte referenziert dabei genau ein Attribut des zu
erstellenden Objekttyps. Zwei AttributeBinding-Objekte dürfen nicht das gleiche Attribut
referenzieren.
context ObjectLiteralExp

inv: self. objectType . referredType . oclIsKindOf (C l a s s)
inv: self.type = self. objectType . referredType
-- AttributBindings müssen genau ein Attribut des

referenzierten Objekttypes referenzieren
inv: self.attribute -> forAll (a |

self. objectType .property -> exists (
a. referredProperty))

-- AttributBindings dürfen nicht das gleiche Attribut des
referenzierten Objekttypes referenzieren

inv: self.attribute -> isUnique (referredProperty)

Die Definition einer Object Literal Expression beginnt mit dem OCL Nichtterminalsymbol
typeCS, welches den Typen des zu erstellenden Objekts spezifiziert, gefolgt von optionalen
AttributeBinding-Objekten in geschweiften Klammern. Dabei können kein, ein oder mehre-
re AttributeBinding-Objekte durch das zugehörige Syntaxelement AttributeBindingListCS
formuliert werden.
ObjectLiteralExpCS ::=

typeCS ‘{’ AttributeBindingListCS ? ‘}’

Da die Object Literal Expression eine Spezialisierung der OCL LiteralExp ist, muss diese
der Produktionsregel für LiteralExp hinzugefügt werden:
[F] LiteralExpCS ::= ObjectLiteralExpCS

3Dies ist z. B. bei den Submodel-Templates im Metamodell der Verwaltungsschale der Fall, die alle vom
Typ Submodel sind. Hier wird die Unterscheidung über das Attribut SemanticId getätigt.

84

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9.2 Syntaxregeln und konkrete Syntax

AttributeBinding: Jedes AttributeBinding-Objekt ist genau einer Object Literal Ex-
pression zugewiesen und bezieht sich auf ein Attribut des zu erstellenden Objekttyps. Auf
dieses Attribut verweist das AttributeBinding-Objekt über die Assoziation referredProper-
ty. Zusätzlich wird über die Assoziation initExpression der Wert des Attributs festgelegt.
Der Typ der initExpression muss dem Typen des referenzierten Attributs entsprechen.
context AttributeBinding

inv: self. initExpression .type = self. referredProperty .type

Die Produktion eines AttributeBinding-Elements beginnt mit der Namensdefinition des re-
ferenzierten Attributs durch das OCL Nichtterminalsymbol simpleNameCS. Danach folgt,
durch einen Doppelpunkt getrennt, die Initialisierung des Wertes. Dafür kann ein beliebi-
ger OCL Ausdruck genutzt werden. Die vollständige Produktionsregel ist daher wie folgt
definiert:
AttributeBindingCS ::= simpleNameCS ‘:’ OCLExpressionCS

Um AttributeBinding-Elemente in einer Liste zusammenzufassen, wird eine weitere Pro-
duktionsregel benötigt. Diese besteht aus der Nutzung des AttributeBindingCS für die De-
finition eines AttributeBinding-Elements, gefolgt von einer optionalen Gruppe bestehend
aus einem Komma und dem rekursiven Aufruf dieser Produktionsregel. Damit können
beliebig viele AttributeBindingCS durch ein Komma getrennt angehängt werden.
AttributeBindingListCS [1] ::=

AttributeBindingCS (‘,’ AttributeBindingListCS [2])?

Package: Ein Package dient der Strukturierung von maximal einer Transformationsdefi-
nition und beliebig vielen Makros. Jedes Package hat einen Namen, der bei der Nutzung
von mehreren Packages eindeutig sein muss. Ein Package kann maximal ein Objekt der
Klasse TransformationDefinition beinhalten sowie eine beliebige Anzahl von Objekten der
Klasse Macro. Die Namen der enthaltenen Makros müssen dabei unterschiedlich sein.
context Package

inv: self.name.type. oclIsKindOf (P r i m i t i v e T y p e)
inv: self.name.type.name = ‘ S t r i n g ’
inv: self. transformationDefiniton ->size () <= 1
inv: self. transformationDefinition .type. oclIsKindOf (

TransformationDefinition)
inv: self.macro -> forAll (oclIsKindOf (Macro))
inv: self.macro -> isUnique (name)

Die Definition eines Packages beginnt durch das Terminalsymbol package gefolgt von einem
eindeutigen Namen, der über das Nichtterminalsymbol simpleNameCS formuliert wird. Da-
nach folgt optional eine Transformationsdefinition mittels des Nichtterminalsymbols Trans-
formationDefinitionCS sowie eine Liste des Nichtterminalsymbols MacroDeclarationCS für
die Definition der enthaltenen Makros.
PackageCS ::=

‘ package ’ simpleNameCS
TransformationDefinitionCS ?
MacroDeclarationCS *

85

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

9 Metamodell der Modelltransformationssprache

9.3 Evaluation der Sprache

Mit Hilfe der neu definierten Sprache kann die Transformation zwischen mehreren
Eingangs-Informationsmodellen hin zu einem Ziel-Informationsmodell formuliert werden.
Als Basis wird BasicOCL verwendet und um zwingend notwendige Sprachelemente erwei-
tert, die zum Teil bereits in anderen Transformationssprachen integriert sind. Dazu wur-
den Konzepte anderer Transformationssprachen analysiert und für diesen Anwendungsfall
sinnvoll angepasst und übernommen, wie z. B. Makros. Die neue Sprache basiert somit
auf dem aktuellen Stand der Wissenschaft und Industrie, und ist durch die Definition von
lediglich notwendigen Sprachelementen leicht zu implementieren (Anforderung 8.4). Mit
Hilfe der OCL-Ausdrücke können Elemente in den Quell-Informationsmodellen gefunden
(Anforderung 8.7) und deren Attribute ausgelesen werden (Anforderung 8.8). Zusätzlich
definiert OCL bereits Ausdrücke, mit denen Fallunterscheidungen definiert (Anforderung
8.9), Schleifen bzw. Iterationen durchgeführt (Anforderung 8.10) sowie Variablen angelegt
werden können (Anforderung 8.11). Ziel der neuen Sprache ist, ein wohlgeformtes Infor-
mationsmodell zu erzeugen, welches gegen konkrete Invarianten von Informationsmodell-
Templates geprüft werden kann. Die Sprachelemente von OCL ermöglichen keine Objekt-
Erstellung. Aufgrund dessen wurden die beiden Klassen ObjectLiteralExp und Attribute-
Binding eingeführt, die die Erstellung von Informationsmodellelemente des Metamodells
ermöglichen (Anforderung 8.5). Bei der Erstellung wird die Sprachsyntax des Metamo-
dells genutzt, sodass der Anwender die Transformationsdefinitionen leichter erstellen kann.
Durch die Klasse AttributeBinding wird sichergestellt, dass alle Attribute eines Objekts
setzbar sind. Dies ist mit den Sprachelementen von OCL allein nicht möglich (Anforde-
rung 8.6). Für die vereinfachte Wertdefinition beim Setzen können wiederum die in OCL
definierten Operationen (z. B. String-Konkatenation, Addition von Zahlenwerten) genutzt
werden. Abschließend ermöglichen die neu eingeführten Klassen Macro und MacroCallExp
das Erstellen von Makros sowie deren Nutzung (Anforderung 8.12). Es wurden bewusst
wenige Sprachelemente spezifiziert, sodass die Sprache einfach zu verstehen ist und dadurch
eine bessere Verbreitung findet (Anforderung 8.1). Zudem wurde, im Gegensatz zu vielen
bestehenden Transformationssprachen, nicht das Mapping zwischen Objekttypen betrach-
tet, sondern die Erstellung genau eines Ziel-Informationsmodells fokussiert (Anforderung
8.2). Alle Sprachelemente sind so formuliert, dass das neue Ziel-Informationsmodell de-
klarativ beschrieben wird (Anforderung 8.3). Die neu definierte Sprache erfüllt somit alle
geforderten Anforderungen aus Kapitel 8.

86

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10 Abbildung der
Modelltransformationssprache für
Verwaltungsschalen

Die in Kapitel 9 vorgestellte Modelltransformationssprache wird für die Nutzung von Ver-
waltungsschalen angepasst. Dafür werden das Informationsmodell und die Referenzierung
zu Informationsmodell-Templates festgelegt sowie Makros für die einfachere Nutzbarkeit
definiert.

10.1 Anpassungen des Informationsmodells

Im Metamodell der Verwaltungsschale werden Informationsmodelle durch die Klasse Sub-
model beschrieben. Das angepasste Metamodell der Sprache ist in Abbildung 10.1 darge-
stellt.

Abbildung 10.1: Detaillierte Ansicht des Metamodells der Modelltransformationssprache inkl.
der Assoziationen nach [21] angepasst für Verwaltungsschalen

Die Referenzierung einer Submodel-Instanz auf das zugehörige Submodel-Template erfolgt
über das Attribut semanticId. Die Klasse Referenz (Reference) besteht aus einer geordneten
Liste von Instanzen der Klasse Key, die drei Attribute besitzt:

• type: Typ der referenzierten Entität, z. B. globale Referenz oder Referenz auf eine
Instanz einer Metamodell-Klasse

87

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache für Verwaltungsschalen

• value: Wert der Referenz, z. B. eine IRDI

• idType: Weitere Unterscheidung zwischen IRI, IRDI, Custom, IdShort oder Frage-
mentId

Eine Referenz auf ein Submodel-Template beginnt mit der Definition des Variablennamens,
gefolgt vom Typ Submodel oder Set(Submodel). Anschließend wird das Submodel-Template
durch eine ObjectLiteralExp vom Typ Reference referenziert:
a: Submodel -> Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value : "http :// acplt.org/ ExampleSMT ",
type: KeyElements :: GlobalReference }}}

Ein Beispiel für eine einfache Transformationsdefinition mit den definierten Sprachelemen-
ten sieht wie folgt aus:
transformationDefinition td1

sourceTemplate :
a: Submodel -> Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: "http :// acplt .org/ ExampleSMT ",
type: KeyElements :: GlobalReference }}} ,

b: Submodel -> Reference {key: Sequence {Key{
idType : KeyType ::IRI ,
value: "http :// acplt .org/ ExampleSMT_2 ",
type: KeyElements :: GlobalReference }}}

targetTemplate :
c: Submodel -> Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: "http :// acplt .org/ ExampleSMT_3 ",
type: KeyElements :: GlobalReference }}}

value : Submodel {
identification : Identifier {

id: "https :// acplt.org/ Test_Submodel ",
idType : IdentifierType :: IRI},

submodelElement : copySubmodelElementSet (
a. submodelElement)->union(

copySubmodelElementSet (b. submodelElement)),
semanticId : Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: "http :// acplt.org/ ExampleSMT_3 ",
type: KeyElements :: GlobalReference }}}

}

Die Transformationsdefinition hat den Namen td1. Sie formuliert die Transformation zwei-
er existierender Teilmodell-Instanzen in eine neue Teilmodell-Instanz. Die Quell-Templates
sind vom Typ Submodel und werden durch die Reference-Deklarationen a und b, die nach

88

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10.2 Makros für das vollständige Kopieren von SubmodelElement-Objekten

dem Terminalsymbol sourceTemplate folgen, festgelegt. Analog erfolgt der Verweis auf das
Ziel-Template. Die eigentliche Transformationsregel wird nach dem Terminalsymbol value
spezifiziert. Durch eine ObjectLiteralExp wird eine neue Teilmodell-Instanz vom Typ Sub-
model erstellt und die entsprechenden Attribute gesetzt. Die neue Teilmodell-Instanz erhält
die Kind-Elemente von beiden Quell-Teilmodell-Instanzen (Attribut submodelElement) so-
wie eine Referenz auf das zugehörige Teilmodell-Template aus der Variable c (Attribut
semanticId). Für die Zuweisung des Attributs submodelElement werden MacroCallExp ge-
nutzt.

Im Kontext von Verwaltungsschalen werden einige Funktionalitäten häufiger benötigt. Die-
se können in Makros gekapselt und dem Anwender zur Verfügung gestellt werden. Aus
diesem Grund werden Makros für folgende Funktionalitäten definiert:

1. Das vollständige Kopieren von einzelnen SubmodelElement-Objekten

2. Das vollständige Kopieren eines Sets aus SubmodelElement-Objekten

3. Der Zugriff auf ein SubmodelElement-Objekt basierend auf dem Attribut IdShort

4. Der Zugriff auf ein SubmodelElement-Objekt basierend auf einem Pfad aus IdShorts

5. Der Zugriff auf ein oder mehrere SubmodelElement-Objekte basierend auf dem At-
tribut SemanticId

6. Das vollständige Kopieren von SubmodelElement-Objekten basierend auf dem Attri-
but IdShort, welches eine Kombination des zweiten und dritten Makros ist

7. Das vollständige Kopieren von SubmodelElement-Objekten basierend auf einem Pfad
aus IdShorts, welches eine Kombination des zweiten und vierten Makros ist

8. Das vollständige Kopieren von SubmodelElement-Objekten basierend auf dem Attri-
but SemanticId, welches eine Kombination des zweiten und fünften Makros ist

Die Makros werden mit den Sprachelementen der Transformationssprache aus Kapitel 9 for-
muliert, sodass keine weitere Auswertelogik von Seiten des Transformations-Tools benötigt
wird. Die vollständige Auflistung der definierten Makros ist in Anhang A gegeben. In
den beiden folgenden Unterkapiteln werden die wesentlichen Inhalte der Makros für das
vollständige Kopieren und dem Zugriff auf SubmodelElement-Objekte vorgestellt.

10.2 Makros für das vollständige Kopieren von
SubmodelElement-Objekten

Sofern die Informationen und die Modellierung der Elemente im Quell- und Ziel-Teilmodell-
Template identisch sind, können Objekte vollständig kopiert werden. Aus diesem Grund
wird für jede SubmodelElement-Klasse ein entsprechendes Makro spezifiziert. Der Aufbau
dieser Makros ist immer identisch. Als Übergabeparameter wird das zu kopierende Objekt
übergeben und in der Variable element gespeichert. Innerhalb des Makros wird eine Object-
LiteralExp formuliert, die ein neues Objekt der entsprechenden Klasse erstellt. Innerhalb
der ObjectLiteralExp werden mit Hilfe von AttributeBinding-Elementen die Attribute des

89

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache für Verwaltungsschalen

neuen Objekts mit den Attribut-Werten des übergebenen Objekts gesetzt. Nachfolgend ist
das Makro für das Kopieren eines Property-Objekts als Beispiel dargestellt:

macro copyProperty (element : Property) : Property {
Property {

idShort : element .idShort ,
valueType : element .valueType ,
value: element .value ,
valueId : element .valueId ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element . semanticId ,
kind: element .kind

}
}

Falls die Modellklasse nicht bekannt ist, kann das Makro copySubmodelElement genutzt
werden, welches die Klasse des übergebenen Objekts analysiert und das entsprechende
Makro für die jeweilige Klasse aufruft.

Einen Sonderfall stellen die SubmodelElement-Klassen SubmodelElementCollection, An-
notatedRelationshipElement und Entity dar, da in ihren Attributen value, annotation
oder statement weitere SubmodelElement-Objekte als Set enthalten sein können. Aus
diesem Grund wird das Makro copySubmodelElementSet definiert, welches ein Set von
SubmodelElement-Objekten als Übergabeparameter erhält. Über dieses wird iteriert, für
jedes enthaltene Objekt das Makro copySubmodelElement aufgerufen, ein neues Set mit
diesen Elementen erstellt und dieses Set zurückgegeben.

In den Anwendungsfällen hat sich gezeigt, dass SubmodelElementCollection-Objekte häufig
nicht vollständig kopiert werden sollen, sondern die enthaltenen SubmodelElement-Objekte
im Attribut value variieren können, und z. B. lediglich eine gewisse Auswahl der Elemente
übernommen wird. Aus diesem Grund wird das Makro copySubmodelElementCollection-
WithValue eingeführt, welches ein SubmodelElementCollection-Objekt sowie ein Set von
SubmodelElement-Objekten übergeben bekommt. Im Makro wird ein neues SubmodelEle-
mentCollection-Objekt erzeugt, welches alle Attributwerte aus dem übergebenen Submo-
delElementCollection-Objekt kopiert, jedoch dem Wert des Attributs value eine Kopie des
übergebenen Sets zuweist.

10.3 Makros für den Zugriff auf ein
SubmodelElement-Objekt

Für den Zugriff auf Objekte des Quell-Teilmodells können drei Arten unterschieden wer-
den: Zugriff mittels des Attributs IdShort, eines Pfads aus idShorts und des Attributs
SemanticId.

90

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10.3 Makros für den Zugriff auf ein SubmodelElement-Objekt

Durch das Verwaltungsschalen-Metamodell ist vorgegeben, dass die eindeutige Identifi-
kation über das Attribut IdShort erfolgt, da die IdShort eines Objekts im Namensraum
des Vater-Objekts eindeutig sein muss. Daher wird das Makro getSubmodelElementByIdS-
hort spezifiziert. Dieses erhält als Übergabeparameter das Vater-Objekt sowie die IdShort
des gesuchten Kind-Objekts, welche vom Typ String ist. Das Metamodell definiert kei-
ne Funktion zur Auflösung einer IdShort. Aus diesem Grund wird zunächst die Klasse
des Vater-Objekts analysiert und je nach Klasse wird anschließend auf das entsprechende
Klassen-Attribut zugegriffen, in dem weitere Elemente enthalten sein können, z. B. anno-
tation oder statement. Auf dieses Attribut wird dann die OCL-Operation select angewen-
det, die über die enthaltenen Objekte iteriert und jedes Element zurückgibt, welches die
übergebene IdShort besitzt. Als Ergebnis wird eine OCL-Collection erzeugt, die in diesem
Fall kein oder ein Element enthalten kann. Über die Funktion first wird das erste Element
dieser Collection zurückgegeben. Konnte kein Element mit dieser IdShort gefunden werden
— enthält die Liste also kein Element — wird das OCL-Objekt Invalid zurückgegeben. Ein
Ausschnitt des Makros ist nachfolgend abgebildet:

macro getSubmodelElementByIdShort (
parent : SubmodelElement ,
idShortVar : S t r i n g) : SubmodelElement {

if parent . oclIsKindOf (Submodel)
then parent . submodelElement -> select (x |

x. idShort = idShortVar)->first ()
else

...
endif

}

Da Kind-Objekte wiederum Kind-Objekte enthalten können, wird durch die IdShorts eine
Baumstruktur aufgebaut. Mit Hilfe des Makros getSubmodelElementByIdShortPath kann
auf ein beliebiges Objekt in dieser Struktur zugegriffen werden. Dafür wird das Vater-
Objekt, bei dem gestartet werden soll und der Pfad zum Kind-Objekt mittels einer Auf-
listung von IdShorts an das Makro übergeben. Dabei muss die Reihenfolge der IdShorts
korrekt sein, weswegen der OCL-Datentyp Sequence genutzt wird. Das Makro iteriert an-
schließend mit der OCL-Funktion iterate über die IdShort-Auflistung und sucht für die
aktuelle IdShort im aktuellen Vater-Objekt das zugehörige Kind-Objekt. Danach wird das
Vater-Objekt mit dem Kind-Objekt überschrieben, sodass das Kind-Objekt zum neuen
Vater-Objekt wird, innerhalb dessen wieder das neue Kind-Objekt gesucht wird. Dies wird
so lange wiederholt, bis die Auflistung vollständig abgearbeitet wurde. Schließlich wird das
letzte Kind-Objekt zurückgegeben. Nachfolgend ist die Definition des Makros abgebildet:

macro getSubmodelElementByIdShortPath (
parent : SubmodelElement ,
idShortPath : Sequence (S t r i n g)) : SubmodelElement {

idShortPath -> iterate (
x: S t r i n g ; sme: SubmodelElement = parent |

getSubmodelElementByIdShort (sme , x))
}

91

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

10 Abbildung der Modelltransformationssprache für Verwaltungsschalen

Die dritte Möglichkeit ist der Zugriff über das Attribut SemanticId mit Hilfe des Makros
getSubmodelElementsBySemanticId. Anders als bei der IdShort sind Elemente über die
SemanticId nicht zwingend in ihrem Vater-Objekt eindeutig. Aufgrund dessen kann nicht
genau ein Element, sondern lediglich eine Sammlung von Objekten zurückgegeben werden.
Analog zum Makro getSubmodelElementByIdShort wird zunächst der Objekttyp des Va-
ters geprüft und anschließend auf dem entsprechenden Attribut die OCL-Funktion select
ausgeführt. Die erstellte Sammlung der select-Funktion wird anschließend zurückgegeben.
Entsprechend sieht das Makro wie folgt aus:
macro getSubmodelElementsBySemanticId (parent :

SubmodelElement , semanticId : Reference) : S e t (
SubmodelElement){

if parent . oclIsKindOf (Submodel) then parent .
submodelElement -> select (x | x. semanticId = semanticId)

else
if parent . oclIsKindOf (Entity) then parent .statement ->

select (x | x. semanticId = semanticId)
else

if parent . oclIsKindOf (SubmodelElementCollection) then
parent .value -> select (x | x. semanticId = semanticId)

else
if parent . oclIsKindOf (AnnotatedRelationshipElement)

then parent . annotation -> select (x | x. semanticId =
semanticId)

else invalid
endif

endif
endif

endif
}

In vielen Fällen besteht die SemanticId lediglich aus einem Key-Objekt und die Werte für
die Attribute idType und type sind KeyType::IRI und KeyElements::GlobalReference. Auf-
grund dessen wird ein weiteres Makro getSubmodelElementsBySemanticIdValue eingeführt,
welches den Wert für das Attribut value dieses Key-Objekts übergeben bekommt, anstelle
eines vollständigen Reference-Objekts. Im Makro wird zunächst das benötigte Reference-
Objekt erstellt und anschließend das Makro getSubmodelBySemanticId aufgerufen:
macro getSubmodelElementsBySemanticIdValue (

parent : SubmodelElement ,
semanticIdValue : S t r i n g) : S e t (SubmodelElement){

getSubmodelElementsBySemanticId (
parent ,
Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: semanticIdValue ,
type: KeyElements :: GlobalReference }}})

}

92

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

11 Transformationssystem

In den Kapiteln 9 und 10 wurde die Transformationssprache vorgestellt, mit der Trans-
formationsdefinitionen zwischen Quell- und Ziel-Informationsmodell-Templates formu-
liert werden können. Für die Ausführung einer Transformationsdefinition mit konkreten
Informationsmodell-Instanzen wird ein Transformationssystem benötigt (vgl. Abbildung
5.1 in Kapitel 5). In den folgenden Abschnitten erfolgt zunächst eine grobe Vorstellung der
Hauptfunktionalitäten des Transformationssystems und basierend darauf eine Beschrei-
bung einer konkreten Umsetzung in Python.

11.1 Allgemeiner Aufbau eines Transformationssystems

Das in dieser Arbeit benötigte Transformationssystem muss drei Funktionen zur Verfügung
stellen:

1. Erstellung des abstrakten Syntaxbaums einer Package-Definition

2. Erstellung eines ausführbaren abstrakten Syntaxbaums1

3. Ausführung des abstrakten Syntaxbaums auf konkrete Quellmodelle

In der Regel wird für die Erstellung des abstrakten Syntaxbaums ein Parser ver-
wendet. Dieser erhält als Eingabe die zu analysierenden Dateien, in denen Transforma-
tionsdefinition und Makros sowie die Grammatik-Definition der Transformationssprache
(konkrete Syntax in Form von Produktionsregeln) enthalten sind. Für die Analyse der Da-
teien nutzt der Parser einen Lexer, der den gegebenen Text bzw. Quellcode in Token zerlegt.
Ein Token ist eine Zeichenkette, die einem der in der Grammatik definierten Terminalen
zugeordnet werden kann. Zum Beispiel kann die Zeichenfolge ”abcd“ dem Terminal Sim-
pleNameCS zugewiesen werden. Mit diesem Ergebnis erstellt der Parser einen Parserbaum.
Dazu können verschiedene Methoden genutzt werden, wie z. B. Top Down oder Bottom
Up [158]. Beim Top-Down-Parsing startet der Parser beim Startsymbol2 und versucht eine
Produktionsregel für die gegebene Zeichenkette zu finden. Anschließend wird das nächste
nicht zugeordnete Symbol betrachtet und die nächste Produktionsregel gesucht. Im Ge-
gensatz dazu startet das Bottom-Up-Parsing bei einem Token auf der untersten Ebene3

und versucht die Zusammenhänge zu den anderen Token zu ermitteln. Der Parser erstellt
aus diesen Zusammenhängen schließlich den Parserbaum. Der finale Parserbaum besteht
zunächst aus den Terminalnamen. Um daraus einen abstrakten Syntaxbaum zu erstellen,
1Instanziierung von ausführbaren Klassen-Objekten.
2Wurzelelement
3Blattelement

93

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

11 Transformationssystem

erfolgt anschließend eine Übersetzung der Terminalnamen in die Klassenbezeichnungen der
abstrakten Syntax.

Für die Erstellung des ausführbaren abstrakten Syntaxbaums erfolgt ein weite-
res Übersetzen der abstrakten Syntaxklassenbezeichnungen zu einem ausführbaren ab-
strakten Syntaxbaums. Dies kann beispielsweise durch die Instanziierung von zugehörigen
Klassenobjekten in einer konkreten Implementierung erfolgen, die eine Möglichkeit der
Ausführbarkeit haben. Das bedeutet, dass eine aufzurufende Funktion zur Evaluation der
Klasseninstanz existieren muss.

Bei der Ausführung des abstrakten Syntaxbaums werden die Quellmodell-Instanzen
eingelesen und der abstrakte Syntaxbaum mit diesen als Eingabedaten ausgeführt. Als
Ergebnis wird die Zielmodell-Instanz erstellt.

Der komplette Ablauf inkl. der benötigten Artefakte ist in Abbildung 11.1 dargestellt.

Abbildung 11.1: Aufbau und Ablauf eines Transformationssystem

Die Trennung dieser drei Funktionalitäten bietet den Vorteil, dass die Daten nicht vor jeder
Durchführung einer Modelltransformation analysiert werden. Dadurch können bereits im
Vorfeld die abstrakten Syntaxbäume erstellt und (zwischen-)gespeichert werden, sodass ein
Transformationssystem diese direkt ausführen kann. Einige der Parser-Implementierungen
bieten bereits die Option, die Erstellung eines ausführbaren abstrakten Syntaxbaum di-
rekt durchzuführen, sodass ein weiteres Übersetzen nicht notwendig ist. Dies ermöglicht
Performance-Vorteile, da direkt ein Baum aus Instanzen der abstrakten Syntaxklassen
erstellt wird, anstelle eines Baums aus Token, der in einem zweiten Schritt vollständig
eingelesen und transformiert werden muss.

94

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

11.2 Umsetzung in Python

11.2 Umsetzung in Python

Im Rahmen dieser Arbeit wurde eine Umsetzung für ein Transformationssystem in der
Programmiersprache Python entwickelt. Die Realisierung wurde generisch gehalten, sodass
diese für verschiedene Metamodelle genutzt werden kann. Dafür wurde eine zusätzliche
Schnittstelle bei der Ausführungseinheit geschaffen, über die die Metamodell-spezifischen
Klassen erzeugt werden.

Als Parser wurde lark4 ausgewählt, da dieser die Möglichkeit der Definition einer kontext-
freien Grammatik in Erweiterter Backus-Naur-Form erlaubt, direkt die Übersetzung zu
den Klasseninstanzen der abstrakten Syntaxklassen ermöglicht sowie verschiedene Optio-
nen der Performance-Optimierung beinhaltet. Um den Code einfach und einzeln wartbar zu
halten, wurden für die einzelnen Teile des Transformationssystems jeweils Python-Skripte
erstellt.

Grammatik: Für die Grammatikdefinition wurden zwei Dateien grammar ocl.lark
und grammar mtl.lark erstellt (Anhang B). Da aktuell keine Python-Umsetzung von
OCL existiert, wurden die Definitionen der Produktionsregeln von OCL Basic [53] in
grammar ocl.lark festgelegt. In grammar mtl.lark wurden die benötigten Regeln inklu-
diert, nach Vorgabe erweitert sowie die neuen Produktionsregeln der Transformationsspra-
che (Kapitel 9.2) hinzugefügt. Die Produktionsregeln in beiden Dateien wurden mit den
Sprachelementen von lark umgesetzt. Die Sprachelemente von lark ermöglichen die De-
finition von Terminalen sowie Nicht-Terminalen (Produktionsregeln). Zusätzlich können
einzelne für die weitere Auswertung nicht benötigte Terminale sowie optionale Terminale
herausgefiltert werden. Des Weiteren wird die Definition der Multiplizität von Terminalen
ermöglicht.

Klassendefinition der abstrakten Syntaxklassen: Für die Python-
Klassendefinitionen der abstrakten Syntaxklassen wurden zwei weitere Python-Skripte
ast ocl.py und ast mtl.py erstellt (Anhang C). Analog zur Grammatikdefinition wur-
den in ast ocl.py Python-Klassen für die OCL-Klassen definiert. Jede Klassendefinition
erbt dabei von der abstrakten Klasse Token, die den Konstruktor spezifiziert. Dieser
erhält die Kind-Token und speichert diese in einer Variablen ab. Um einen ausführbaren
abstrakten Syntaxbaum zu erhalten, definiert jede Klasse eine Funktion, die bei Aufruf
die gespeicherten Token auswertet. Beispielsweise werden beim Aufruf dieser Auswerte-
funktion der Klasse SimpleName die enthaltenen Kind-Token, die jeweils einzelne Zeichen
sind, zu einem String zusammengefügt und an die aufrufende Funktion zurückgeben. Die
enthaltenen Kind-Token können wiederum Instanzen von Klassen mit Auswertefunktion
sein. Zum Beispiel wird bei der IfExp-Klasse zunächst die Funktion des ersten Kind-Token,
welche einen booleschen Wert zurückgibt, aufgerufen. Basierend auf dem Ergebnis wird
entweder die Auswertefunktion des zweiten oder des dritten Kind-Token ausgeführt.
Dadurch kann ein kompletter Baum beginnend beim Wurzel-Token ausgeführt werden.
Um Variablen in verschiedenen Funktionen zu nutzen und die Zugriffe einzuschränken,
wurden zwei Klassen für eine lokale und eine globale Umgebung eingeführt. Beide
Umgebungen dienen dem Speichern von Variablen und Typen sowie dem Zugriff auf
deren Werte. Während die Variablen und Typen der globalen Umgebung einmal festgelegt
4https://github.com/lark-parser/lark

95

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

11 Transformationssystem

werden, können bei der lokalen Umgebung bei jeder Auswertung eines Klassenobjekts
weitere Variablen und Typen hinzugefügt werden.

Für die Klassendefinition der Transformationssprachelemente wurden in ast mtl.py die
benötigten Python-OCL-Klassen aus ast ocl.py inkludiert und die benötigten Python-
Klassen für die Transformationssprachelemente erstellt. Zusätzlich wurde eine neue glo-
bale Umgebung abgeleitet. Diese ermöglicht die Speicherung und den Zugriff auf Ma-
kros. Um in den Auswertefunktionen Instanzen der Metamodell-spezifischen Klassen zu
ermöglichen, kann in der globalen Umgebung die Übersetzung von Python-Klassen ei-
ner Metamodell-Umsetzung auf die eigentlichen Metamodell-Bezeichner gespeichert wer-
den. Für die Anwendungsbeispiele aus Kapitel 10 wurden z. B. die Klassendefinitionen
des Verwaltungsschalen-Python-SDK PyI40AAS5 gespeichert, um Submodel-Instanzen, die
konform zur Metamodell-Definition [4] sind, in Python zu erstellen. Bei jedem Aufruf einer
Auswertefunktion muss je eine Instanz der beiden Umgebungen übergeben werden. Dies
ermöglicht, dass in jeder Auswertefunktion sowohl auf die global definierten Variablen, Ty-
pen und Makros zugegriffen als auch neue innerhalb dieser Funktion benötigten Variablen
erstellt und auf deren Werte zugegriffen werden kann.

Für die Ausführung eines abstrakten Syntaxbaums muss mindestens eine Klasse als Wurzel-
Klasse festgelegt werden. In dieser Sprachdefinition ist das die Klasse PackageDeclaration,
die als Kind-Token maximal eine Transformationsdefinition enthält sowie eine beliebige
Anzahl an Makrodefinitionen. Die Klasse bietet die Möglichkeit, die Transformationsde-
finition sowie die Liste der Makrodefinitionen zu erhalten. Zusätzlich stellt diese Klasse
eine Funktion zur Verfügung, die eine Liste von benötigten Paketen zurückgibt, aus denen
Makrodefinitionen verwendet werden.

Für die Ausführung einer Modelltransformation wird die Auswertefunktion der Klasse
TransformationDefinition genutzt. Beim Aufruf dieser Funktion müssen die Quellmodell-
Instanzen, ggf. der Namen bzw. der Namenspfad auf das Attribut zur eindeutigen De-
finition der zugehörigen Quellmodell-Template-Definitionen, die benötigen Klassendefini-
tionen und vorgegebenen Variablen des Metamodells sowie die benötigten Makro-Token
übergeben werden. Die Funktion erstellt zunächst die Instanzen für die lokale und glo-
bale Umgebung und fügt der globalen Umgebung die übergebenen Klassendefinitionen
und Variablen des Metamodells sowie die Makros hinzu. Im nächsten Schritt werden die
übergebenen Quellmodell-Instanzen hinsichtlich der geforderten Quellmodell-Templates
überprüft. Entspricht eine Instanz dem Template, wird der Wert der entsprechenden Varia-
ble in der Transformationsdefinition durch dieses Objekt ersetzt. Am Ende dieses Schritts
wird überprüft, ob Instanzen für alle geforderten Quellmodell-Templates vorliegen. Nach-
dem die Umgebungen vollständig initialisiert wurden, wird die eigentliche Transformati-
on ausgeführt, indem die Auswertefunktion der enthaltenen ObjectLiteralExp aufgerufen
wird.

5https://git.rwth-aachen.de/acplt/pyi40aas

96

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

11.2 Umsetzung in Python

Parser, Übersetzer und Ausführungseinheit: Die Funktionalitäten des Parsers, des
Übersetzers und der Ausführungseinheit wurden in einem Python-Skript parser.py um-
gesetzt. Dabei wurden drei einzelne Funktionen erstellt:

1. Erstellung des Parsers

2. Erstellung des ausführbaren abstrakten Syntaxbaums

3. Erstellung und Ausführung des abstrakten Syntaxbaums

Die erste Funktion get parser erzeugt eine Instanz des Lark-Parsers basierend auf den
Grammatikdefinitionen in grammar mtl.lark und grammar ocl.lark. Dem Parser wird
eine Transformer-Klasse übergeben, die das Mapping zwischen den Terminal- und Nicht-
terminalnamen und den Python-Klassendefinitionen beschreibt. Als Start-Token wird die
Package-Deklaration vordefiniert sowie als Parsing-Methode LALR (Look-Ahead-Left-To-
Right) genutzt. LALR wurde 1969 von Frank DeRemer erfunden und ermöglicht das Parsen
eines Textes gemäß einer Menge von Produktionsregeln, die durch eine formale Gramma-
tik spezifiziert sind [159]. Die erstellte Instanz kann im Anschluss von den anderen beiden
Funktionen genutzt werden.

Das eigentliche Parsen und Übersetzen wird in der zweiten Funktion
parse transformation definition file durchgeführt. Diese erhält als Parameter
eine Hauptdatei, weitere Dateien sowie optional einen Parser. In der Hauptdatei muss
genau eine Transformationsdefinition enthalten sein. In den weiteren Dateien werden
Makros spezifiziert. Falls kein Parser übergeben wurde, wird in der Funktion als erstes
die Funktion get parser aufgerufen. Anschließend wird das Hauptdokument mit diesem
Parser eingelesen und aus dem Package die enthaltene Transformationsdefinition, die
enthaltenen Makros sowie die benötigten Packages herausgefiltert. Im nächsten Schritt
werden (sofern weitere Packages benötigt werden) die entsprechenden Dateien ebenfalls
eingelesen und die Makros extrahiert. Die Rückgabe besteht aus dem ausführbaren
abstrakten Syntaxbaum der Transformationsdefinition und den benötigten Makros. Mit
diesen sowie den weiteren benötigten Informationen (siehe Auswertefunktion der Klasse
TransformationDefinition) kann die Ausführung der Transformation erfolgen.

Für die Benutzerfreundlichkeit wird eine weitere Funktion
execute transformation definition eingeführt, die zunächst die Funktion
parse transformation definition file aufruft und danach die Auswertefunkti-
on der entsprechenden Transformationsdefinition ausführt. Als Ergebnis wird das
Zielmodell erzeugt.

Es existieren verschiedene Anwendungsfälle. Je nach Anwendungsfall kann es sinnvoll sein,
direkt die Funktion execute transformation definition aufzurufen oder die vorherge-
nannten Funktionen jeweils einzeln zu nutzen. Dies hat unterschiedliche Auswirkungen auf
die Performance. Die genauen Details dazu sind in Abschnitt 12.5 beschrieben.

97

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12 Evaluation

Die in Kapitel 9 vorgestellte und in Kapitel 10 auf Verwaltungsschalen angepasste Sprache
kann für unterschiedliche Anwendungsfälle genutzt werden. In den nachfolgenden Abschnit-
ten werden drei mögliche Anwendungsfälle beschrieben. Der erste Anwendungsfall behan-
delt die Nutzung von abgeleiteten firmenspezifischen Teilmodell-Templates. Im zweiten
Anwendungsfall wird die Verwendung von unterschiedlichen Versionen eines Teilmodell-
Templates beschrieben. Zuletzt wird gezeigt, wie mit Hilfe der vorgestellten Sprache die
Integration von Informationen aus unterlagerten Komponenten in einer zusammengesetz-
ten Anlage oder Maschine erfolgen kann. Danach folgt eine Diskussion über die benötigte
Zeit für die Erstellung einer Transformationsdefinition. Den Abschluss dieses Kapitels bil-
det eine Evaluation der Umsetzung des Transformationssystems aus Kapitel 11. Außerdem
werden verschiedene Optimierungsempfehlungen hinsichtlich der Funktionsaufrufe des ent-
wickelten Transformationssystems zur Verbesserung der Performance in der Anwendung
vorgestellt.

12.1 Anwendungsfall 1: Firmenspezifische
Informationsmodelle

Häufig werden für die firmeninterne Nutzung von Verwaltungsschalen weitere spezifische
Informationen benötigt, die in den standardisierten Teilmodell-Templates nicht abgebildet
sind. Um dennoch die Informationen Firmen-intern einheitlich abzulegen und zu nutzen,
werden Firmen die standardisierten Teilmodell-Templates erweitern und eigene firmenspe-
zifische Teilmodell-Templates erstellen. Dadurch erhalten diese eine eigene SemanticId. Da
externe Kommunikationspartner jedoch die standardisierten Teilmodell-Templates anfra-
gen, müssen die Informationen aus den vorgehaltenen Teilmodell-Instanzen in die Form
der standardisierten Teilmodell-Templates transformiert werden. Hierfür kann die vorge-
stellte Sprache genutzt werden. Vor allem bei einer Reduzierung der Informationen kann
die Transformationsdefinitionen einfach formuliert oder automatisiert generiert werden.

Anhand eines abgeleiteten firmenspezifischen Teilmodell-Templates der Firma
WITTENSTEIN galaxie GmbH wird dieser Anwendungsfall beschrieben. Im Anhang
D.1 ist das UML des vom ZVEI standardisierten Teilmodell-Templates ”ZVEI Digital
Nameplate for industrial equipment (Version 1.0)“ [14] (im Folgenden ZVEI-Template
genannt) dargestellt. Basierend darauf wurde von der Firma WITTENSTEIN galaxie
GmbH eine Erweiterung des Templates für ”Galaxie“-Aktuatoren1 [160] erstellt, welches
dadurch eine neue SemanticId erhalten hat. Ein Ausschnitt des zugehörigen UML ist in
1Galaxie-Aktuatoren sind von der WITTENSTEIN galaxie entwickelte und produzierte radikal innovative
Getriebe und Antriebssysteme https://galaxie.wittenstein.de/de-de/produkte/galaxie/

98

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle

Anhang D.2 gegeben (im Folgenden WITTENSTEIN-Template genannt). Dabei wurden
alle verpflichtenden Elemente übernommen, einige der optionalen Elemente entfernt sowie
neue Elemente hinzugefügt. Die neuen Elemente sind in der SubmodelElementCollection
AssetSpecificProperties dargestellt. Sobald das standardisierte ZVEI-Template angefragt
wird, muss eine entsprechende Instanz dieses Templates erzeugt und mit den Werten des
WITTENSTEIN-Templates befüllt werden. Die zugehörige Transformationsdefinition ist
in Anhang D.3 abgedruckt.

Die Transformationsdefinition beginnt mit der Referenz auf das WITTENSTEIN-Template
als Quell-Informationsmodell-Template, gefolgt von der Referenz auf das ZVEI-Template
als Ziel-Informationsmodell-Template. Im Anschluss folgt die Definition der neu zu
erstellenden Teilmodell-Instanz. Viele der Attribute werden eins zu eins aus dem
WITTENSTEIN-Template übernommen. Lediglich die SemanticId wird auf die des ZVEI-
Template angepasst sowie die enthaltenen SubmodelElements explizit kopiert. Da eine Re-
duktion der Informationen vorliegt, werden zunächst alle gleichen Elemente mit dem Ma-
kro copySubmodelElementByIdShort (s. Kapitel 10) übernommen. Dies beinhaltet auch die
Kindelemente der Elemente vom Typ SubmodelElementCollection, z. B. bei Address oder
Markings. Die firmenspezifisch hinzugefügten Elemente Weight, FeedbackSystem, Moun-
tingPosition, Lubrication, CommutationOffset und TempSensorType werden jedoch nicht
kopiert. Als Ergebnis wird eine zum ZVEI-Template konforme Teilmodell-Instanz erstellt,
die dem Anfragenden zurückgegeben wird.

12.2 Anwendungsfall 2: Verschiedene Versionen
standardisierter Informationsmodelle

In Kapitel 1.1 wurde bereits das Problem von verschiedenen Informationsmodell-Versionen
beschrieben. Im Zuge der Nutzung von Teilmodell-Templates wird immer wieder eine An-
passung der Informationen notwendig, da dies für eine bessere Verarbeitung oder aufgrund
einer anderen Darstellung gefordert wird. Infolgedessen werden neue Versionen dieser stan-
dardisierten Templates entstehen. Die Informationen können identisch, jedoch strukturell
anders modelliert sein. Am Beispiel des unveröffentlichten Teilmodell-Templates ”Minimum
requirements for the Handover documentation from the manufacturer to the operator ba-
sed on the VDI 2770 specification“ wird dies nachfolgend beschrieben. Dazu werden drei
verschiedene nicht veröffentlichte Versionen betrachtet, die bei der Entwicklung des finalen
Teilmodell-Templates entstanden sind. Diese dienen stellvertretend für spätere Versionen
veröffentlichter Teilmodell-Templates. Die UML-Diagramme der einzelnen Versionen sind
in den Anhängen E.1, E.2 und E.3 abgebildet.

Änderungen von Version 1 zu Version 2

In der ersten Version wurden die Informationen durch zwei SubmodelElementCollections
Document und DocumentVersion modelliert. Bei der zweiten Version wurden die Infor-
mationen zur Dokument-Klassifikation in eine weitere SubmodelElementCollection Do-
cumentClassification ausgelagert. Da lediglich eine strukturelle Änderung erfolgte, blei-
ben die Informationen gleich. Die enthaltenen Elemente wurden strukturell und von ihren
Attributwerten wiederverwendet. Zudem wurde ein neues optionales File-Objekt mit der

99

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12 Evaluation

IdShort PreviewFile hinzugefügt. Eine Darstellung der Änderungen ist in Abbildung 12.1
gegeben.

Version 1 idShort semanticId Type Kardinalität
Submodel ManufacturerDocumentation [IRI]http://admin-shell.io/vdi/2770/1/0/Documentation
SMC Document{00} [IRI]http://admin-shell.io/vdi/2770/1/0/Document 0..*

Property DocumentId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/Id string 1
Property IsPrimaryDocument [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/isPrimary boolean 1
Property DocumentClassId [IRI]http://adminshell.io/vdi/2770/1/0/DocumentClassification/ClassId string 1
MLP DocumentClassName [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassName 1
Property DocumentClassificationSystem [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassificationSystem string 1
Ref ReferencedObject{00} [IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0..*
SMC DocumentVersion{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion 0..*

Property Language{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/Language string 1..*
Property DocumentVersionId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/DocumentVersionId string 1
MLP Title [IRI]http://admin-shell.io/vdi/2770/1/0/Description/Title 1
MLP Summary [IRI]http://adminshell.io/vdi/2770/1/0/DocumentDescription/Summary 1
MLP KeyWords [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentDescription/KeyWords 0..1
Property SetDate [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/SetDate date 1
Property StatusValue [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/StatusValue string 1
Property Role [IRI]http://admin-shell.io/vdi/2770/1/0/Party/Role string 1
Property OrganizationName [IRI]http://adminshell.io/vdi/2770/1/0/Organization/OrganizationName string 1
Property OrganizationOfficialName [IRI]http://admin-shell.io/vdi/2770/1/0/Organization/OrganizationOfficialName string 1
File DigitalFile{00] [IRI]http://admin-shell.io/vdi/2770/1/0/StoredDocumentRepresentation/DigitalFile application/pdf 1..*

Version 2 idShort semanticId Type Kardinalität
Submodel ManufacturerDocumentation [IRI]http://admin-shell.io/vdi/2770/1/1/Documentation
SMC Document{00} [IRI]http://admin-shell.io/vdi/2770/1/0/Document 0..*

Property DocumentId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/Id string 1
Property IsPrimaryDocument [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/isPrimary boolean 1
SMC DocumentClassification{00} [IRI]http://admin-shell.io/vdi/2770/1/0/ DocumentClassification/ DocumentClassification 1..*

Property DocumentClassId [IRI]http://adminshell.io/vdi/2770/1/0/DocumentClassification/ClassId string 1
MLP DocumentClassName [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassName 1
Property DocumentClassificationSystem [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassificationSystem string 1

Ref ReferencedObject{00} [IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0..*
SMC DocumentVersion{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion 0..*

Property Language{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/Language string 1..*
Property DocumentVersionId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/DocumentVersionId string 1
MLP Title [IRI]http://admin-shell.io/vdi/2770/1/0/Description/Title 1
MLP Summary [IRI]http://adminshell.io/vdi/2770/1/0/DocumentDescription/Summary 1
MLP KeyWords [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentDescription/KeyWords 0..1
Property SetDate [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/SetDate date 1
Property StatusValue [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/StatusValue string 1
Property Role [IRI]http://admin-shell.io/vdi/2770/1/0/Party/Role string 1
Property OrganizationName [IRI]http://adminshell.io/vdi/2770/1/0/Organization/OrganizationName string 1
Property OrganizationOfficialName [IRI]http://admin-shell.io/vdi/2770/1/0/Organization/OrganizationOfficialName string 1
File DigitalFile{00] [IRI]http://admin-shell.io/vdi/2770/1/0/StoredDocumentRepresentation/DigitalFile application/pdf 1..*
File PreviewFile [IRI] https://admin-shell.io/vdi/2770/1/0/ StoredDocumentRepresentation/PreviewFile image/jpg 0..1

Abbildung 12.1: Detaillierte farbliche Auflistung der semantischen Gleichheiten zwischen Ver-
sion 1 und Version 2

Änderung von Version 2 zu Version 3

In Version 3 wurden, neben der Auslagerung von Informationen in eine neue Submodel-
ElementCollection, auch die IdShorts und SemanticIds geändert. Des Weiteren wurde
eine Aufsplittung von Werten sowie eine Anpassung der Kardinalitäten vorgenommen.
Der erste Unterschied ist die neu eingeführte SubmodelElementCollection DocumentId,
die die Informationen zur Identifikation des Dokuments enthält. Während in Version 2
ausschließlich eine Id enthalten sein konnte, sind in der Version mehrere Ids möglich.
Zusätzlich wurde die DocumentId genauer spezifiziert, sodass die DocumentDomainId
explizit angegeben werden muss, die in Version 2 lediglich implizit enthalten ist. Außerdem
wurde die IdShort IsPrimaryDocument auf IsPrimary gekürzt. Die SubmodelElement-
Collection DocumentClassification wurde im Inhaltlichen beibehalten, jedoch wurden
die IdShorts sowie die SemanticId der Collection selbst gekürzt. Semantisch sind die
Informationen weiterhin identisch. Die Referenz mit der IdShort ReferencedObject wurde
ebenfalls semantisch beibehalten, jedoch wurde die IdShort und die SemanticId verändert.
Abschließend wurden die Elemente der SubmodelElementCollection DocumentVersion fast
vollständig beibehalten. Das Property-Element Role wurde entfernt sowie neue optionale
Elemente hinzugefügt (SubTitle, RefersTo, BasedOn, TranslationOf). Die verschiedenen

100

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle

Änderungen sind in Abbildung 12.2 farblich dargestellt.

Version 2 idShort semanticId Type Kardinalität
Submodel ManufacturerDocumentation [IRI]http://admin-shell.io/vdi/2770/1/0/Documentation
SMC Document{00} [IRI]http://admin-shell.io/vdi/2770/1/0/Document 0..*

Property DocumentId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/Id string 1
Property IsPrimaryDocument [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentId/isPrimary boolean 1
SMC DocumentClassification{00} [IRI]http://admin-shell.io/vdi/2770/1/0/ DocumentClassification/ DocumentClassification 1..*

Property DocumentClassId [IRI]http://adminshell.io/vdi/2770/1/0/DocumentClassification/ClassId string 1
MLP DocumentClassName [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassName 1
Property DocumentClassificationSystem [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassificationSystem string 1

Ref ReferencedObject [IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject 0..1
SMC DocumentVersion{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion 0..*

Property Language{00} [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/Language string 1..*
Property DocumentVersionId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion/DocumentVersionId string 1
MLP Title [IRI]http://admin-shell.io/vdi/2770/1/0/Description/Title 1
MLP Summary [IRI]http://adminshell.io/vdi/2770/1/0/DocumentDescription/Summary 1
MLP KeyWords [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentDescription/KeyWords 0..1
Property SetDate [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/SetDate date 1
Property StatusValue [IRI]http://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/StatusValue string 1
Property Role [IRI]http://admin-shell.io/vdi/2770/1/0/Party/Role string 1
Property OrganizationName [IRI]http://adminshell.io/vdi/2770/1/0/Organization/OrganizationName string 1
Property OrganizationOfficialName [IRI]http://admin-shell.io/vdi/2770/1/0/Organization/OrganizationOfficialName string 1
File DigitalFile{00] [IRI]http://admin-shell.io/vdi/2770/1/0/StoredDocumentRepresentation/DigitalFile application/pdf 1..*
File PreviewFile{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ StoredDocumentRepresentation/PreviewFile image/jpg 0..1

Version 3 idShort semanticId Type Kardinalität
Submodel ManufacturerDocumentation{00} [IRI] https://admin-shell.io/vdi/2770/1/1/Documentation
Entity Entity{00} [IRI] http://adminshell.io/vdi/2770/1/0/EntityForDocumentation 0..*
SMC Document{00} [IRI] http://admin-shell.io/vdi/2770/1/0/Document 0..*

Ref DocumentedEntity{00} [IRI] https://admin-shell.io/vdi/2770/1/0/Document/DocumentedEntity 0..*
SMC DocumentId{00} [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentId 1..*

Property DocumentDomainId [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentId/DocumentDomainId string 1
Property ValueId [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentId/ValueId string 1
Property IsPrimary [IRI]https://admin-shell.io/vdi/2770/1/0/DocumentId/IsPrimary boolean 0..1

SMC DocumentClassification{00} [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentClassification 1..*
Property ClassId [IRI] https://adminshell.io/vdi/2770/1/0/DocumentClassification/ClassId string 1
MLP ClassName [IRI] http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassName 1
Property ClassificationSystem [IRI] http://admin-shell.io/vdi/2770/1/0/DocumentClassification/ClassificationSystem string 1

SMC DocumentVersion{00} [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentVersion 0..*
Property Language{00} [IRI]https://admin-shell.io/vdi/2770/1/0/DocumentDescription/Language string 1..*
Property DocumentVersionId [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentVersion/DocumentVersionId string 1
MLP Title [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentDescription/Title 1
MLP SubTitle [IRI] https://admin-shell.io/vdi/2770/1/0/DocumentDescription/SubTitle 0..1
MLP Summary [IRI] https://adminshell.io/vdi/2770/1/0/DocumentDescription/Summary 1
MLP KeyWords [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentDescription/KeyWords 1
Property SetDate [IRI]https://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/SetDate date 1
Property StatusValue [IRI]https://admin-shell.io/vdi/2770/1/0/LifeCycleStatus/StatusValue string 1
Property OrganizationName [IRI] https://adminshell.io/vdi/2770/1/0/Organization/OrganizationName string 1
Property OrganizationOfficialName [IRI] https://admin-shell.io/vdi/2770/1/0/ Organization/OrganizationOfficialName string 1
File DigitalFile{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ StoredDocumentRepresentation/DigitalFile application/pdf 1..*
File PreviewFile{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ StoredDocumentRepresentation/PreviewFile image/jpg 0..1
Ref RefersTo{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/RefersTo 0..*
Ref BasedOn{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/BasedOn 0..*
Ref TranslationOf{00} [IRI] https://admin-shell.io/vdi/2770/1/0/ DocumentVersion/TranslationOf 0..*

Abbildung 12.2: Detaillierte farbliche Auflistung der semantischen Gleichheiten zwischen Ver-
sion 2 und Version 3

Beispielhafte Transformationsdefinition

Eine beispielhafte Transformationsdefinition für die Transformation eines Teilmodells der
Version 1 in ein Teilmodell der Version 2 ist in Anhang E.4 dargestellt. Zunächst wer-
den die entsprechenden Referenzen auf die beiden Versionen des Teilmodell-Templates
als Quell- und Ziel-Informationsmodell-Template angegeben. Die Definition der neuen
Teilmodell-Instanz übernimmt alle Attribute bis auf die SemanticId und die enthaltenen
SubmodelElemente. Die SemanticId wird auf die zu erstellende Version angepasst. Für
die Erstellung der enthaltenen und zu iterierenden Elemente werden alle SubmodelEle-
mentCollections mit der SemanticId [IRI]http://admin-shell.io/vdi/2770/1/0/Document
ermittelt. In jeder Iteration wird eine neue SubmodelElementCollection mit denselben At-
tributwerten, jedoch mit anderen Kindelementen, erstellt. Bei den Kindelementen werden
zunächst die Elemente mit der IdShort DocumentId und IsPrimary sowie die Elemente
mit der SemanticId [IRI]http://admin-shell.io/vdi/2770/1/0/Document/ReferencedObject
kopiert. Anschließend folgt die Erstellung der neu eingeführten SubmodelElementCollec-

101

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12 Evaluation

tion DocumentClassification mit den definierten Attributen aus der Spezifikation sowie
den SubmodelElementen mit den IdShorts DocumentClassId, DocumentClassName und
DocumentClassificationSystem. Diese stammen aus der vorherigen Version der Submodel-
ElementCollection Document. Als letztes werden alle SubmodelElementCollection mit der
SemanticId [IRI]http://admin-shell.io/vdi/2770/1/0/DocumentVersion hinzugefügt.

Fazit

Es wurde gezeigt, dass alle Informationen der Version 2 aus den Informationen der Version
1 und andersherum erzeugt werden können. Dasselbe trifft auf die Versionen 2 und 3 zu,
wobei die DocumentId bzw. DocumentDomainId und ValueId je nach Richtung nicht di-
rekt aus den vorliegenden Informationen erstellt werden kann. Durch String-Konkatenation
oder String-Splitten ist dies dennoch mit der Sprache möglich. Dazu wird in der Trans-
formationsdefinition eine entsprechende manuelle Entscheidung über den neuen Wert vor-
gegeben. Somit wird mit der vorgestellten Sprache die Erstellung von Transformationsde-
finitionen ermöglicht, die (teils-)automatisch Teilmodell-Instanzen einer anderen Version
instanziieren können. Ziel soll sein, bei der Definition einer neuen Version eine entsprechen-
de Transformationsdefinition zu erstellen und zur Verfügung zu stellen, sodass weiterhin
eine semantische Interoperabilität zwischen Komponenten, die mit verschiedenen Versionen
arbeiten, gewährleistet ist.

12.3 Anwendungsfall 3: Integration von Komponenten
und zugehörigen Informationsmodellen

Bei der Integration von Komponenten in (Teil-)Anlagen können vielfach Informationen
aus den einzelnen Komponenten für die Beschreibung der Gesamtanlage wiederverwendet
werden. Dazu müssen die Informationen in dem Informationsmodell der Anlage zusam-
mengeführt werden. Dieser Vorgang kann mit Hilfe einer Modelltransformation und der in
dieser Arbeit vorgestellten Sprache erfolgen. Anhand von Leistungskennzahlen wird dies
nachfolgend exemplarisch gezeigt.

In Abbildung 12.3 sind beispielhaft zwei Teilmodell-Templates für diesen Anwendungs-
fall definiert. Das erste Template repräsentiert die Leistungsüberwachung einer verbauten
Komponente einer Anlage und enthält ein Property-Element für die maximale Leistungs-
aufnahme, ein Property-Element für die Stromart (Gleichstrom/Wechselstrom), mit der
die jeweilige Komponente betrieben werden darf, sowie ein Property-Element für die Netz-
Nennspannung. Das zweite Teilmodell stellt die Daten der Gesamtanlage dar. Ein Property-
Element enthält dabei die maximale Gesamtleistungsaufnahme der Anlage und ein weite-
res Property-Element die maximal benötigte Netzspannung, sofern alle Komponenten mit
maximaler Netzspannung betrieben werden. Das dritte Property-Element beschreibt alle
benötigten Kombinationen aus Netz-Nennspannung und zugehöriger Stromart.

Dabei wird angenommen, dass jede verbaute elektrische Komponente der Anlage eine In-
stanz des ersten Teilmodell-Templates besitzt. Für einen Servomotor könnte z. B. 36 Watt
sowie 24V DC oder 1100 Watt sowie 400V AC in der Teilmodell-Instanz eingetragen sein. In

102

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12.3 Anwendungsfall 3: Integration von Komponenten und zugehörigen
Informationsmodellen

«Submodel»
PowerMonitoringComponent

- MaxPowerConsumption: Property
- PowerType: Property
- RatedVoltage: Property

«Submodel»
PowerMonitoringPlant

- MaxPowerConsumption: Property
- MaxRatedVoltage: Property
- PowerTypes: Property

Abbildung 12.3: Beispiel für ein Teilmodell-Template zur Erfassung von Leistungskennzahlen

der Teilmodell-Instanz der Gesamtanlage können die Informationen der einzelnen Kompo-
nenten zusammengeführt werden. Dafür werden für die maximale Leistungsaufnahme der
Anlage die Werte der einzelnen Komponenten addiert. Die Netzspannung der Anlage kann
über die maximale Netzspannung alle Komponenten ermittelt werden (MAX-Funktion).
Zur Bestimmung der benötigten Netz-Nennspannung- und Stromart-Kombinationen wer-
den alle verschiedenen Kombinationen der einzelnen Komponenten als Sammlung zusam-
mengetragen. Dadurch können diese an einer Stelle ausgelesen werden und die benötigten
Arten von Netzteilen bzw. AC/DC-Wandlern ermittelt werden.

Eine zugehörige Transformationsdefinition ist in Anhang F gegeben. Als Eingangsinstanzen
werden alle Teilmodelle genutzt, die eine Referenz auf das Teilmodell-Template PowerMo-
nitoringComponent besitzen. Das Ziel-Teilmodell ist eine Instanz des Teilmodell-Templates
PowerMonitoringPlant. Es werden die drei im Teilmodell-Template definierten Property-
Elemente angelegt und mit den entsprechenden Werten belegt. Für das Property-Element
MaxPowerConsumption wird über alle übergebenen Teilmodelle iteriert und jeweils der
Wert aus dem Property-Element MaxPowerConsumption addiert. Das Ergebnis entspricht
der maximalen Gesamtleistungsaufnahme der Anlage. Im zweiten Property-Element Ra-
tedVoltage wird ebenfalls über die einzelnen Teilmodelle iteriert, jedoch wird lediglich der
Maximalwert der Property-Elemente RatedVoltage ermittelt. Für das Property-Element
PowerTypes wird wiederum über die Teilmodelle iteriert. Pro Iteration wird die Kombi-
nation aus Netz-Nennspannung und Stromart in Form eines Strings erstellt. Anschließend
wird in der bestehenden Liste überprüft, ob diese Kombination bereits enthalten ist. Ist
dies der Fall, bleibt die Liste unverändert und die nächste Iteration wird durchgeführt.
Andernfalls wird die neue Kombination der Liste hinzugefügt.

In der Tabelle 12.2 ist das Ergebnis beispielhaft auf Basis der Komponentenwerte aus
Tabelle 12.1 einer solchen Transformation dargestellt. Es wird von drei Komponenten aus-
gegangen, die in einer Gesamtanlage verbaut sind.

Tabelle 12.1: Beispielwerte der Komponenten

Property Komponente 1 Komponente 2 Komponente 3
MaxPowerConsumption 36 1100 40

RatedVoltage 24 400 24
PowerType DC AC DC

103

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12 Evaluation

Tabelle 12.2: Beispielwerte der Gesamtanlage

Property Gesamtanlage
MaxPowerConsumption 1176

MaxRatedVoltage 400
PowerTypes {24DC, 400AC}

12.4 Benötigte Zeit für die Erstellung einer
Transformationsdefinition

Eine genaue Angabe der benötigten Zeit für die Erstellung einer Transformationsdefinition
ist nicht möglich. Dies liegt daran, dass zu viele verschiedene Einflussfaktoren vorliegen.
Nachfolgend sind einige Faktoren beschrieben.

Ein entscheidender Faktor ist die Komplexität der Transformation. Je umfangreicher und
komplexer die einzelnen Regeln sind, desto aufwändiger ist die Erstellung. Dies tritt insbe-
sondere dann auf, wenn aus verschiedenen Quellmodellen Informationen zusammengeführt
werden und diese zusätzlich noch in einer anderen Darstellung im Zielmodell vorliegen sol-
len. Zusätzlich muss die Erfahrung des Erstellers im Umgang mit der Sprache betrachtet
werden. Hat der Ersteller bereits Erfahrung im Umgang mit OCL ist die Nutzung der Spra-
che einfacher, da nur wenige neue Sprachelemente gelernt werden müssen. Andernfalls muss
zunächst die Sprache erlernt werden, welches zur langsameren Erstellung führt. Ein weite-
rer wichtiger Faktor ist die Tool-Unterstützung. Zum einen kann eine Tool-Unterstützung
helfen Syntaxfehler zu vermeiden. Dadurch können Transformationsdefinitionen deutlich
schneller entwickelt werden. Zum Anderen muss der Ersteller im ersten Schritt die se-
mantische Gleichheit von verschiedenen Informationen ermitteln. Hierzu könnte ein Assi-
stenzsystem Unterstützung bieten, indem Vorschläge über mögliche Gleichheiten gegeben
werden. Erste Arbeiten in diesem Bereich existieren [16]. Alternativ benötigt der Erstel-
ler Erfahrung im Bereich der semantischen Gleichheit. Je besser ein Domänenexperte die
verschiedenen Informationsmodelle kennt und dadurch schneller die semantischen Zusam-
menhänge herstellen kann, desto schneller kann er auch die dazugehörigen Regeln defi-
nieren. Abschließend kann die Nutzung von Makros eine Reduzierung der Erstellungszeit
erreichen. Hierbei ist sowohl die Anzahl und die Art der verfügbaren Makros zu betrach-
ten als auch die Kenntnis über diese. Je mehr Makros für oft benötigte Regeldefinitionen
vorliegen, desto schneller können Transformationsdefinitionen erstellt werden.

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus
einer Komponente bei Nutzung des entwickelten
Transformationssystems

Für die Evaluation der Implementierung wurden verschiedene Testreihen durchgeführt. Je-
de Testreihe entsprach 100 Durchläufen einer vollständigen Transformation. Dazu wurde

104

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung
des entwickelten Transformationssystems

jeweils ein Dokument mit der durchzuführenden Transformationsdefinition, weitere Doku-
mente mit Makro-Definitionen, sowie entsprechende Test-Instanzen vorgegeben. Es wurden
insgesamt 16 Testreihen mit acht unterschiedlichen Transformationen auf zwei Systemen
durchgeführt. In Tabelle 12.3 sind die Hardware-Spezifikationen der beiden verwendeten
Systeme aufgelistet.

Tabelle 12.3: Hardware-Spezifikationen der Systeme

Nr. CPU Arbeitsspeicher Betriebssystem
1 Intel Core i5-6440HQ 8GB 1067MHz

DDR4-2133
Windows 10 Enterprise LTSC

(Version 1809)
2 Intel Core i7-6700K 32GB 2133MHz

DDR4-2133
Arch Linux (Version 5.12.2)

Die Testreihen unterscheiden sich im Umfang der Transformationsdefinition sowie in der
Anzahl der verwendeten Makros. Es wurden verschiedene Zeitdifferenzen für die einzelnen
Schritte der Transformation gemessen und wie folgt kategorisiert:

1. Erstellung des Parsers

2. Parsen der Datei mit der entsprechenden Transformationsdefinition

3. Ermittlung der benötigten zusätzlichen Dateien aufgrund der Verwendung von Ma-
kros aus diesen Dateien

4. Parsen der zusätzlich benötigten Makro-Dateien

5. Anwendung des ausführbaren abstrakten Syntaxbaums

Für die Analyse wurde der in Kapitel 11 vorgestellte Parser verwendet, der beim Parsen
direkt ausführbare abstrakte Syntaxbäume erstellt.

Die gemessenen Daten sind in den Abbildungen G.1 bis G.10 dargestellt. In den Abbildun-
gen ist die gleiche Skalierung der Achsen gewählt, um die Testreihen besser vergleichen zu
können. Die unterschiedlichen Zeiten zwischen den Testreihen sind durch die unterschied-
lich verwendeten Transformationsdefinitionen und deren benötigte Makros zu erklären.
Beispielsweise waren in der Testreihe Test2 die Makros bereits in dem Dokument mit der
durchzuführenden Transformationsdefinition enthalten. Aus diesem Grund hat das Parsing
der entsprechenden Datei länger gedauert als bei den anderen Testreihen. Dafür musste je-
doch keine weitere Datei geparst werden, weswegen die Zeitdifferenz für den vierten Schritt
gleich null ist.

Aufgrund der geringen Streuung der Werte kann repräsentativ pro Testreihe ein Mittel-
wert berechnet und für die Interpretation genutzt werden. Für einen Vergleich zwischen
den Systemen sind die Mittelwerte der jeweiligen Zeitdifferenzen und Systeme in Tabelle
12.4 aufgelistet. Zusätzlich wurden die prozentualen Anteile der Zeitdifferenzen auf die Ge-
samtzeit der jeweiligen Testreihen berechnet. Erwartungsgemäß konnten die Mittelwerte
der Zeitdifferenzen beim gleichen Testsetup durch eine bessere Hardware-Spezifikation ge-
senkt werden. Eine weitere Erkenntnis ist, dass eine bessere Hardware-Spezifikation keinen
Einfluss auf die prozentualen Anteile der einzelnen Zeitdifferenzen hat. Das bedeutet, dass

105

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12 Evaluation

durch Auslagerung der aufwändigsten Schritte - sofern möglich - ein Performance-Vorteil
in den jeweiligen Applikationen erreicht werden kann.

Der größte Teil der Gesamtzeit wird für die Erstellung des Parsers benötigt (vgl. erste Zeit-
differenz in Tabelle 12.4). Das mehrmalige Erstellen des Parsers ist jedoch nicht notwendig,
da ein einmalig erstellter Parser in beliebig vielen Transformationen wiederverwendet wer-
den kann. Aufgrund dessen sollte dieser beim Starten einer Applikation einmal erstellt
und im Arbeitsspeicher vorgehalten werden. Die nächsten beiden größeren Zeitanteile sind
das Parsen der Transformationsdefinitions-Datei und das Parsen der Makro-Dateien. Dabei
besteht die Option, die Standard-Makros (z. B. die Makrodefinitionen aus Kapitel 10) eben-
falls beim Starten der Applikation zu parsen und die erhaltenen ausführbaren abstrakten
Syntaxbäume der Makros im Arbeitsspeicher abzulegen. Dadurch kann die vierte Zeitdif-
ferenz, sofern keine weiteren Makros benötigt werden, eliminiert werden. Für die zweite
Zeitdifferenz (Parsen der Transformationsdefinitions-Datei) existieren mehrere Optionen.
Eine Option wäre, bereits beim Start häufig benötigte Transformationsdefinitions-Dateien
zu parsen und die entsprechenden ausführbaren abstrakten Syntaxbäume im Arbeitsspei-
cher vorzuhalten. Alternativ könnte nachdem eine Transformationsdefinitions-Datei ge-
parst wurde, der zugehörige ausführbare abstrakte Syntaxbaum für eine gewisse Zeit im
Arbeitsspeicher vorgehalten werden.

Wie gezeigt existieren einige Optimierungsvarianten, die eine Reduzierung der benötigten
Zeit für eine Transformation um bis zu 95% ermöglichen. Welche Variante für die
jeweilige Applikation sinnvoll ist, kann pauschal nicht beantwortet werden, da die
Anforderungen pro Applikation unterschiedlich sein können. Anforderungen könnten
beispielsweise ein möglichst geringer Arbeitsspeicherverbrauch, immer die aktuelle
Transformationsdefinitions-Datei und Makro-Dateien zu nutzen, oder ein Wechsel des Par-
sers je nach auszuführender Transformation sein.

106

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung
des entwickelten Transformationssystems

Ta
be

lle
12

.4
:M

itt
elw

er
te

un
d

pr
oz

en
tu

ale
rA

nt
eil

de
rZ

eit
di

ffe
re

nz
en

an
de

rG
es

am
tz

eit
Te

st
re

ih
e

Sy
st

em
M

W
ZD

1
%

ZD
1

M
W

ZD
2

%
ZD

2
M

W
ZD

3
%

ZD
3

M
W

ZD
4

%
ZD

4
M

W
ZD

5
%

ZD
5

1
1

0.
55

28
81

.1
6

0.
05

99
8.

80
0.

00
03

0.
05

0.
06

69
9.

82
0.

00
12

0.
18

1
2

0.
36

26
81

.3
7

0.
04

02
9.

02
0.

00
02

0.
05

0.
04

19
9.

40
0.

00
07

0.
16

2
1

0.
54

89
76

.3
5

0.
16

70
23

.1
4

0.
00

07
0.

10
0.

00
00

0.
00

0.
00

30
0.

41
2

2
0.

36
19

77
.4

4
0.

10
31

22
.0

6
0.

00
04

0.
09

0.
00

00
0.

00
0.

00
19

0.
41

3
1

0.
54

69
72

.8
2

0.
04

66
6.

20
0.

00
03

0.
04

0.
15

36
20

.4
4

0.
00

37
0.

50
3

2
0.

36
19

73
.8

1
0.

03
02

6.
17

0.
00

02
0.

05
0.

09
55

19
.4

7
0.

00
25

0.
50

4
1

0.
54

19
71

.3
0

0.
06

27
8.

25
0.

00
09

0.
11

0.
14

94
19

.6
5

0.
00

53
0.

70
4

2
0.

36
28

72
.5

1
0.

04
04

8.
08

0.
00

05
0.

10
0.

09
31

18
.6

0
0.

00
36

0.
71

5
1

0.
54

21
71

.2
5

0.
06

03
7.

92
0.

00
08

0.
10

0.
14

87
19

.5
4

0.
00

91
1.

19
5

2
0.

36
17

72
.5

6
0.

03
86

7.
75

0.
00

05
0.

09
0.

09
15

18
.3

5
0.

00
62

1.
24

6
1

0.
54

68
70

.3
7

0.
07

91
10

.1
8

0.
00

11
0.

14
0.

14
39

18
.5

1
0.

00
62

0.
80

6
2

0.
36

33
72

.3
1

0.
05

06
10

.0
7

0.
00

06
0.

12
0.

08
39

16
.7

0
0.

00
40

0.
79

7
1

0.
55

68
67

.8
0

0.
11

77
14

.2
8

0.
00

29
0.

35
0.

13
64

16
.5

9
0.

00
81

0.
99

7
2

0.
36

34
68

.7
9

0.
07

41
14

.0
2

0.
00

17
0.

32
0.

08
38

15
.8

6
0.

00
54

1.
02

8
1

0.
55

07
69

.6
3

0.
09

47
11

.9
7

0.
00

17
0.

22
0.

13
49

17
.0

5
0.

00
89

1.
12

8
2

0.
36

22
70

.9
4

0.
05

97
11

.6
8

0.
00

10
0.

19
0.

08
18

16
.0

1
0.

00
60

1.
17

A
bk

ür
zu

ng
en

:
M

W
M

itt
el

we
rt

%
Pr

oz
en

tu
al

er
A

nt
ei

la
n

de
r

G
es

am
tz

ei
t

Z
D

1
Ze

itd
iff

er
en

z
1:

Er
st

el
lu

ng
Pa

rs
er

Z
D

2
Ze

itd
iff

er
en

z
2:

Pa
rs

en
Tr

an
sfo

rm
at

io
ns

de
fin

iti
on

-D
at

ei
Z

D
3

Ze
itd

iff
er

en
z

3:
Er

m
itt

lu
ng

be
nö

tig
te

r
D

at
ei

en
Z

D
4

Ze
itd

iff
er

en
z

4:
Pa

rs
en

M
ak

ro
-D

at
ei

en
Z

D
5

Ze
itd

iff
er

en
z

5:
A

us
fü

hr
un

g

107

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

13 Zusammenfassung

Zunächst folgt eine kurze Zusammenfassung der Hauptergebnisse der Arbeit, bevor im
Anschluss mögliche Anknüpfungspunkte für weitere Forschungsaktivitäten aufgeführt wer-
den.

In der vorliegenden Arbeit wurde eine neue Modelltransformationssprache bestehend aus
abstrakter und konkreter Syntax vorgestellt, um Modelltransformationen zwischen Infor-
mationsmodellen für Asset-Beschreibungen zu formulieren und maschinell auszuwerten. Die
Sprache ist ein Baustein für die Erreichung der semantischen Interoperabilität zwischen Ap-
plikationen. Hauptziele bei der Sprachentwicklung waren eine einfach zu verstehende Syn-
tax, die Nutzung des aktuellen Stand der Technik sowie eine einfache Implementierbarkeit,
um die Integration in bestehenden Systemen zu fördern. Die Notwendigkeit einer neuen
Sprache wurde durch eine ausführliche Evaluation bestehender Transformationssprachen
begründet.

In dieser Arbeit wird davon ausgegangen, dass ein Mensch die semantische Gleichheit
und die Definition von Regeln zwischen Informationen manuell festlegen muss. Zusätzlich
wird angenommen, dass Software-Entwickler gegen vordefinierte Informationsmodelle im-
plementieren. Dies bedeutet, dass sie die Daten in genau diesen Informationsmodell-
Strukturen erwarten. Die Nutzung der in dieser Arbeit vorgestellten Modelltransformati-
onssprache ermöglicht die Definition dieser Transformationen unter den gegebenen Rand-
bedingungen. Sie ist damit eine Grundlage für die anwendungsfallbezogene Aufbereitung
der Informationen. Die entwickelte Sprache ist praxistauglich, da sie auf der weitverbrei-
teten Ausdruckssprache BasicOCL aufbaut und nur wenige notwendige Sprachelemente
definiert, dabei aber jegliche Art von Regeldefinition unterstützt. Zugehörige Transfor-
mationssysteme sind dadurch leicht zu implementieren und können einfach in bestehende
Systeme integriert werden.

Für die Anwendung im Kontext von Industrie 4.0 wurde die Abbildung auf Verwaltungs-
schalen inklusive einiger dabei unterstützender Makros beschrieben. Die Erprobung der
Sprache wurde anhand einer prototypischen Realisierung eines Transformationssystems
durchgeführt und anhand von drei Anwendungsfällen evaluiert. Es konnte gezeigt wer-
den, dass die gestellten Anforderungen erfüllt werden. Zusätzlich wurden Einflussfaktoren
für die Erstellungszeit und Optimierungsempfehlungen hinsichtlich der Funktionsaufru-
fe des entwickelten Transformationssystems auf Basis von Testreihen beschrieben. Dies
ermöglicht bei der Durchführung von Modelltransformationen eine Verbesserung der Per-
formance in der Anwendung.

108

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

13.1 Ausblick

13.1 Ausblick

Die Themen möglicher zukünftiger Forschungsarbeiten werden in drei Kategorien unter-
teilt. Die erste Kategorie beschreibt weitere zu untersuchende Anwendungsmöglichkeiten
der Sprache sowie Empfehlungen für benötigte Systeme zur einfacheren Nutzung und Er-
stellung von Transformationsdefinitionen. Verbesserungen für die prototypische Realisie-
rung des Transformationssystems werden in der zweiten Kategorie aufgezeigt. Den Ab-
schluss bilden offene Fragestellung zur Verbreitung und Nutzung der Sprache sowie zur
Anwendung bei Verwaltungsschalen.

Anwendungsfälle und benötigte Systeme

In dieser Arbeit wurde die Sprache für Verwaltungsschalen konkretisiert und anhand von
drei Anwendungsfällen evaluiert. Eine Evaluation weiterer Modellierungs- und Kommu-
nikationsprotokolle ist nicht erfolgt. Die Erprobung an weiteren Metamodellen, wie z. B.
OPC UA oder AutomationML, wäre für den Nachweis einer breiten Anwendung sinn-
voll. Dafür könnten weitere spezifische Makros für die konkreten Metamodelle entwickelt
werden.

Um eine bessere Nutzung und Akzeptanz der Sprache zu erreichen, wäre eine Un-
terstützung des Anwenders zielführend. Als Beispiel könnte ein Assistenzsystem entwickelt
werden, welches Anwender bei der Erstellung einer Transformationsdefinition unterstützt
und sicherstellt, dass die zu erzeugenden Informationsmodell-Instanzen den zugehörigen
Templates folgen. Dieses Assistenzsystem könnte ein geeignetes User Interface für die ein-
fachere Erstellung anbieten. Zudem könnten in dem Assistenzsystem KI-basierte Ansätze
integriert werden, die Vorschläge für eine mögliche semantische Gleichheit zwischen Mo-
dellelementen geben. Erste Ansätze aus dem Natural Language Processing existieren be-
reits [16, 161] und könnten in einem Assistenzsystem genutzt werden. Zusätzlich könnten
Ontologien, die im Kontext des Semantic Web genutzt werden, in Verbindung mit einem
zugehörigen Reasoner Vorschläge über semantische Gleichheit geben oder die Abhängigkeit
zwischen Informationen aufzuzeigen [162].

Verbesserungen der prototypischen Realisierung des Transformationssystems

Die Realisierung des Transformationssystems wurde im Rahmen der Arbeit prototypisch
entwickelt. Einige Funktionen von BasicOCL wurden aus diesem Grund zunächst nicht im-
plementiert und sollten hinzugefügt werden, um die volle Ausdrucksfähigkeit von BasicOCL
in Transformationsdefinitionen nutzen zu können. Zusätzlich könnte das Fehlermanage-
ment verbessert werden, sodass dem Anwender hilfreiche Hinweise über aufgetretene Feh-
ler und zugehörige Lösungen angezeigt werden. Für die Überprüfung der spezifizierten
Anforderungen und um bei der Weiterentwicklung eine weitgehend fehlerfreie Nutzung
beizubehalten, sollten automatische Software-Tests erstellt werden.

Verbreitung und Nutzung für Verwaltungsschalen

Die aktuelle Realisierung des Transformationssystems ist in Python implementiert und
nutzt das vom Lehrstuhl für Prozessleittechnik entwickelte Python-SDK PyI40AAS zur
Erstellung von Verwaltungsschalen-Teilmodellen. Nächste Schritte wären zum einen die
Nutzung anderer Python-SDKs und zum anderen die Umsetzung in anderen Program-
miersprachen, z. B. in C# oder Java. Durch zweitgenanntes kann die Sprache auch in

109

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

13 Zusammenfassung

anderen SDKs genutzt und das vorhandene Potential voll ausgeschöpft werden. Dadurch
können Online-Transformationen in den jeweiligen SDKs direkt durchgeführt werden, ohne
dass ein Adapter für die in dieser Arbeit entwickelte Umsetzung genutzt werden muss.

110

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

A Makro-Definitionen für Verwaltungsschalen

package aas_macros
macro copySubmodelElementSet (sme_collection : S e t (

SubmodelElement)) : S e t (SubmodelElement){
sme_collection -> collect (sme_item | aas_macros ::

copySubmodelElement (sme_item))
}

macro copySubmodelElement (sme: SubmodelElement) :
SubmodelElement {

if sme. oclIsKindOf (AnnotatedRelationshipElement) then
aas_macros :: copyAnnotatedRelationshipElement (sme)

else
if sme. oclIsKindOf (RelationshipElement) then

aas_macros :: copyRelationshipElement (sme)
else

if sme. oclIsKindOf (Operation) then
aas_macros :: copyOperation (sme)

else
if sme. oclIsKindOf (Property) then

aas_macros :: copyProperty (sme)
else

if sme. oclIsKindOf (Capability) then
aas_macros :: copyCapability (sme)

else
if sme. oclIsKindOf (BasicEvent) then

aas_macros :: copyBasicEvent (sme)
else

if sme. oclIsKindOf (SubmodelElementCollection
) then

aas_macros :: copySubmodelElementCollection (
sme)

else
if sme. oclIsTypeOf (MultiLanguageProperty)

then
aas_macros :: copyMultiLanguageProperty (

sme)

111

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

else
if sme. oclIsTypeOf (Range) then

aas_macros :: copyRange (sme)
else

if sme. oclIsTypeOf (Blob) then
aas_macros :: copyBlob (sme)

else
if sme. oclIsTypeOf (File) then

aas_macros :: copyFile (sme)
else

if sme. oclIsTypeOf (
ReferenceElement) then

aas_macros :: copyReferenceElement
(sme)

else Error
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
}

macro copyRelationshipElement (element : RelationshipElement
) : RelationshipElement {

RelationshipElement {
idShort : element .idShort ,
first: element .first ,
second : element .second ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyAnnotatedRelationshipElement (element :
AnnotatedRelationshipElement) :
AnnotatedRelationshipElement {

AnnotatedRelationshipElement {
idShort : element .idShort ,

112

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

A Makro-Definitionen für Verwaltungsschalen

first: element .first ,
second : element .second ,
annotation : aas_macros :: copySubmodelElementSet (element

. annotation),
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyOperation (element : Operation) : Operation {
Operation {

idShort : element .idShort ,
inputVariable : element . inputVariable ,
outputVariable : element . outputVariable ,
inoutputVariable : element . inoutputVariable ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyProperty (element : Property) : Property {
Property {

idShort : element .idShort ,
valueType : element .valueType ,
value: element .value ,
valueId : element .valueId ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}
macro copyCapability (element : Capability) : Capability {

Capability {
idShort : element .idShort ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

113

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

macro copyBasicEvent (element : BasicEvent) : BasicEvent {
BasicEvent {

idShort : element .idShort ,
observed : element .observed ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copySubmodelElementCollection (element :
SubmodelElementCollection) : SubmodelElementCollection {

SubmodelElementCollection {
idShort : element .idShort ,
value: aas_macros :: copySubmodelElementSet (element .

value),
ordered : element .ordered ,
allowDuplicates : element . allowDuplicates ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyMultiLanguageProperty (element :
MultiLanguageProperty) : MultiLanguageProperty {

MultiLanguageProperty {
idShort : element .idShort ,
value: element .value ,
valueId : element .valueId ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyRange (element : Range) : Range{
Range {

idShort : element .idShort ,
valueType : element .valueType ,
min: element .min ,

114

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

A Makro-Definitionen für Verwaltungsschalen

max: element .max ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyBlob (element : Blob) : Blob{
Blob {

idShort : element .idShort ,
mimeType : element .mimeType ,
value: element .value ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyFile (element : File) : File{
File {

idShort : element .idShort ,
mimeType : element .mimeType ,
value: element .value ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

macro copyReferenceElement (element : ReferenceElement) :
ReferenceElement {

ReferenceElement {
idShort : element .idShort ,
value: element .value ,
displayName : element . displayName ,
category : element .category ,
description : element . description ,
semanticId : element .semanticId ,
kind: element .kind

}
}

115

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

macro getSubmodelElementByIdShort (parent : SubmodelElement ,
idShortVar : S t r i n g) : SubmodelElement {

if parent . oclIsKindOf (Submodel) then parent .
submodelElement -> select (x | x. idShort = idShortVar)->
first ()

else
if parent . oclIsKindOf (Entity) then parent .statement ->

select (x | x. idShort = idShortVar)->first ()
else

if parent . oclIsKindOf (SubmodelElementCollection)
then parent .value -> select (x | x. idShort =
idShortVar)->first ()

else Error
endif

endif
endif

}

macro getSubmodelElementByIdShortPath (parent :
SubmodelElement , idShortPath : Sequence (S t r i n g)) :
SubmodelElement {

idShortPath -> iterate (x: S t r i n g ; sme: SubmodelElement =
parent | aas_macros :: getSubmodelElementByIdShort (sme ,
x))

}

macro getSubmodelElementsBySemanticId (parent :
SubmodelElement , semanticIdVar : Reference) :
SubmodelElement {

if parent . oclIsKindOf (Submodel) then parent .
submodelElement -> select (x | x. semanticId =
semanticIdVar)

else
if parent . oclIsKindOf (Entity) then parent .statement ->

select (x | x. semanticId = semanticIdVar)
else

if parent . oclIsKindOf (SubmodelElementCollection)
then parent .value -> select (x | x. semanticId =
semanticIdVar)

else Error
endif

endif
endif

}
end_package

116

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

B Grammatikdefinition der Transformationssprache

B.1 Grammar ocl.lark

−−−−−−−−−−−−−−−−−−−−−−−− Terminals −−−−−−−−−−−−−−−−−−−−−−−−

NAME START CHAR: / [A−Z]/ | ” ” | ”$” | / [a−z] /
| / [\ u00C0−\u00D6] / | / [\ u00D8−\u00F6] /
| / [\ u00F8−\u02FF]/ | / [\ u0370−\u037D]/
| / [\ u037F−\u1FFF]/ | / [\ u200C−\u200D]/
| / [\ u2070−\u218F] / | / [\ u2C00−\u2FEF]/
| / [\ u3001−\uD7FF]/ | / [\ uF900−\uFDCF]/
| / [\uFDF0−\uFFFD]/

NAME CHAR: NAME START CHAR | /[0 −9]/

SET: /\ bSet\b/
BAG: /\bBag\b/
SEQUENCE: /\ bSequence\b/
ORDERED SET: /\ bOrderedSet\b/
c o l l e c t i o n t y p e i d e n t i f i e r : SET | BAG | SEQUENCE

| ORDERED SET
TUPLE: /\bTuple\b/

p r i m i t i v e t y pe : BOOLEAN | INTEGER | REAL | STRING
BOOLEAN: /\ bBoolean\b/
INTEGER: /\ bIntege r \b/
REAL: /\ bReal\b/
STRING: /\ bStr ing \b/

o c l t y p e : OCL ANY | OCL INVALID | OCL VOID
OCL ANY: /\bOclAny\b/
OCL INVALID : /\ bOcl Inva l id \b/
OCL VOID: /\bOclVoid\b/

// Bool type
BOOL: /\ btrue \b/ | /\ b f a l s e \b/

// s e l f
SELF : /\ b s e l f \b/

// I t e r a t o r s
p r e d e f i n e d i t e r a t o r s : ANY | CLOSURE | COLLECT

| COLLECT NESTED | EXIST | FOR ALL
| IS UNIQUE | ONE | REJECT | SELECT
| SORTED BY

117

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

ANY: /\bany\b/
CLOSURE: /\ bc l o su r e \b/
COLLECT: /\ b c o l l e c t \b/
COLLECT NESTED: /\ bco l l e c tNe s t ed \b/
EXIST : /\ b e x i s t \b/
FOR ALL: /\ b f o rA l l \b/
IS UNIQUE : /\ bisUnique \b/
ONE: /\bone\b/
REJECT: /\ b r e j e c t \b/
SELECT: /\ b s e l e c t \b/
SORTED BY: /\ bsortedBy\b/

ITERATE: /\ b i t e r a t e \b/

p r e d e f i n e d o p e r a t i o n s a : NOT EQUAL | ADD | SUB | MUL | DIV
| LOWER THAN | GREATER THAN | OR
| XOR | AND | EQ

p r e d e f i n e d o p e r a t i o n s b . 2 :
LOWER OR EQUAL THAN | GREATER OR EQUAL THAN

prede f i n ed ope ra t i on names a :
p r e d e f i n e d o p e r a t i o n s a | p r e d e f i n e d o p e r a t i o n s b

EQ: ”=”
NOT EQUAL: ”<>”
ADD: ”+”
SUB: ”−”
MUL: ”∗”
DIV : ”/”
LOWER THAN: ”<”
GREATER THAN: ”>”
LOWER OR EQUAL THAN: ”<=”
GREATER OR EQUAL THAN: ”>=”
OR: /\ bor\b/
XOR: /\ bxor\b/
AND: /\band\b/

−−−−−−−−−−−−−−−−−−−− Production Rules −−−−−−−−−−−−−−−−−−−−−
prede f i n ed ope ra t i on names b : OCL AS SET | OCL IS NEW

| OCL IS INVALID
| OCL AS TYPE
| OCL IS TYPE OF
| OCL IS KIND OF
| OCL IS IN STATE
| OCL TYPE OP | OLC LOCALE
| OCL IS UNDEFINED | ABS

118

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

| FLOOR | ROUND | MAX | MIN
| TO STRING | DIV OP | MOD
| SIZE | CONCAT
| SUB STRING | TO INTEGER
| TO REAL | TO UPPER CASE
| TO LOWER CASE | INDEX OF
| EQUALS IGNORE CASE | AT
| CHARACTERS | TO BOOLEAN
| NOT | IMPLIES | INCLUDES
| EXCLUDES | COUNT
| INCLUDES ALL
| EXCLUDES ALL | IS EMPTY
| NOT EMPTY | SUM | PRODUCT
| SELECT BY KIND
| SELECT BY TYPE | AS SET
| AS ORDERED SET
| AS SEQUENCE | AS BAG
| FLATTEN | UNION
| INTERSECTION | INCLUDING
| EXCLUDING
| SYMMETRIC DIFFERENCE
| APPEND | PREPREND
| INSERT AT
| SUB ORDERED SET | FIRST
| LAST | REVERSE
| SUB SEQUENCE

prede f ined opera t i on names : p r ede f i n ed ope ra t i on names a
| prede f i n ed ope ra t i on names b

p r e d e f i n e d o p e r a t i o n n a m e s p r o p e r t y c a l l :
p r ede f i n ed ope ra t i on names b

OCL AS SET : /\ boclAsSet \b/
OCL IS NEW: /\ boclIsNew\b/
OCL IS INVALID : /\ b o c l I s I n v a l i d \b/
OCL AS TYPE: /\boclAsType\b/
OCL IS TYPE OF : /\ boclIsTypeOf \b/
OCL IS KIND OF : /\ boclIsKindOf \b/
OCL IS IN STATE : /\ b o c l I s I n S t a t e \b/
OCL TYPE OP: /\ boclType\b/
OLC LOCALE: /\ boc lLoca l e \b/
OCL IS UNDEFINED: /\ boc l I sUnde f ined \b/
ABS: /\babs\b/
FLOOR: /\ b f l o o r \b/
ROUND: /\bround\b/
MAX: /\bmax\b/

119

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

MIN: /\bmin\b/
TO STRING: /\ btoSt r ing \b/
DIV OP : /\ bdiv\b/
MOD: /\bmod\b/
SIZE : /\ b s i z e \b/
CONCAT: /\ bconcat \b/
SUB STRING:/\ bsubs t r ing \b/
TO INTEGER: /\ bto In t ege r \b/
TO REAL: /\ btoReal \b/
TO UPPER CASE: /\btoUpperCase\b/
TO LOWER CASE: /\btoLowerCase\b/
INDEX OF: /\ bindexOf\b/
EQUALS IGNORE CASE: /\ bequals IgnoreCase \b/
AT: /\ bat\b/
CHARACTERS: /\ bcharac t e r s \b/
TO BOOLEAN: /\ btoBoolean\b/
NOT: /\ bnot\b/
IMPLIES : /\ b imp l i e s \b/
INCLUDES: /\ b inc lude s \b/
EXCLUDES: /\ bexc ludes \b/
COUNT: /\ bcount\b/
INCLUDES ALL: /\ b in c l ude sA l l \b/
EXCLUDES ALL: /\ bexc lude sAl l \b/
IS EMPTY: /\bisEmpty\b/
NOT EMPTY: /\bnotEmpty\b/
SUM: /\bsum\b/
PRODUCT: /\ bproduct\b/
SELECT BY KIND: /\ bselectByKind \b/
SELECT BY TYPE: /\ bselectByType\b/
AS SET : /\ basSet \b/
AS ORDERED SET: /\ basOrderedSet \b/
AS SEQUENCE: /\ basSequence\b/
AS BAG: /\basBag\b/
FLATTEN: /\ b f l a t t e n \b/
UNION: /\ bunion\b/
INTERSECTION: /\ b i n t e r s e c t i o n \b/
INCLUDING: /\ b inc lud ing \b/
EXCLUDING: /\ bexc lud ing \b/
SYMMETRIC DIFFERENCE: /\ bsymmetr icDi f f e rence \b/
APPEND: /\bappend\b/
PREPREND: /\ bprepend\b/
INSERT AT: /\ b inse r tAt \b/
SUB ORDERED SET: /\ bsubOrderedSet\b/
FIRST : /\ b f i r s t \b/
LAST: /\ b l a s t \b/
REVERSE: /\ breve r s e \b/
SUB SEQUENCE: /\ bsubSequence\b/

120

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

LET : /\ b l e t \b/
IN : /\ bin \b/

IF : /\ b i f \b/
THEN: /\ bthen\b/
ELSE : /\ b e l s e \b/
ENDIF : /\ bend i f \b/

NULL: /\ bnu l l \b/
INVALID : /\ b inva l i d \b/

−−−−−−−−−−−−−− Import o f l a r k product ion r u l e s −−−−−−−−−−−−

%import common .SIGNED FLOAT
%import common .ESCAPED STRING

// no whitespaces
%import common .WS
%ignore WS

// l i n e comments
%import common .SQL COMMENT
%ignore SQL COMMENT

// m u l t i l i n e comments
%import common .CCOMMENT
%ignore CCOMMENT

−−−−−−−−−−−−−−−−−−−− Production Rules −−−−−−−−−−−−−−−−−−−−−
simple name : (NAME START CHAR NAME CHAR∗)

path name : path name a | path name b
path name a : simple name
path name b : simple name ” : : ” simple name

o c l e x p r e s s i o n : c a l l e x p | va r i ab l e exp | l e t e x p
| i f e x p | l i t e r a l e x p
| ”(” o c l e x p r e s s i o n ”)”

// VariableExp product ion r u l e s
va r i ab l e exp . 2 : v a r i a b l e e x p a | v a r i a b l e e x p b
v a r i a b l e e x p a . 2 : path name
v a r i a b l e e x p b . 3 : SELF

// L i t e r a l product ion r u l e s
? l i t e r a l e x p : c o l l e c t i o n l i t e r a l e x p | t u p l e l i t e r a l e x p

121

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

| p r i m i t i v e l i t e r a l e x p | t y p e l i t e r a l e x p

c o l l e c t i o n l i t e r a l e x p : c o l l e c t i o n t y p e i d e n t i f i e r ”{”
[c o l l e c t i o n l i t e r a l p a r t s] ”}”

c o l l e c t i o n l i t e r a l p a r t s : c o l l e c t i o n l i t e r a l p a r t (” , ”
c o l l e c t i o n l i t e r a l p a r t s)?

c o l l e c t i o n l i t e r a l p a r t : c o l l e c t i o n l i t e r a l p a r t a
| c o l l e c t i o n l i t e r a l p a r t b

c o l l e c t i o n l i t e r a l p a r t a : c o l l e c t i o n r a n g e
c o l l e c t i o n l i t e r a l p a r t b : o c l e x p r e s s i o n

c o l l e c t i o n r a n g e : o c l e x p r e s s i o n ” . . ” o c l e x p r e s s i o n

? p r i m i t i v e l i t e r a l e x p : i n t e g e r l i t e r a l e x p
| r e a l l i t e r a l e x p
| s t r i n g l i t e r a l e x p
| b o o l e a n l i t e r a l e x p
| n u l l l i t e r a l e x p
| i n v a l i d l i t e r a l e x p

t u p l e l i t e r a l e x p : TUPLE ”
{” v a r i a b l e d e c l a r a t i o n l i s t a ”}”

i n t e g e r l i t e r a l e x p : [”+” |” −”] (”0” . . ”9”)+

r e a l l i t e r a l e x p : SIGNED FLOAT //[”+” |” −”] (((” 0 ” . . ” 9 ”) +
(” e ” | ”E”) [”+” |” −”] (”0” . . ” 9 ”)+) |
(((” 0 ” . . ” 9 ”) + ” . ” ((” 0 ” . . ” 9 ”)+)? | ” . ”
(”0” . . ” 9 ”)+) ((” e ” | ”E”) [”+” |” −”]
(” 0 ” . . ” 9 ”) +) ?))

s t r i n g l i t e r a l e x p : ESCAPED STRING
| ESCAPED STRING ESCAPED STRING

b o o l e a n l i t e r a l e x p . 3 : BOOL

n u l l l i t e r a l e x p : NULL

i n v a l i d l i t e r a l e x p : INVALID

t y p e l i t e r a l e x p : type

// CallExp product ion r u l e s
c a l l e x p : f e a t u r e c a l l e x p | l oop exp

122

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

l oop exp : i t e r a t o r e x p | i t e r a t e e x p

i t e r a t o r e x p : i t e r a t o r e x p a
i t e r a t o r e x p a : o c l e x p r e s s i o n ”−>”

p r e d e f i n e d i t e r a t o r s ”(”
[v a r i a b l e d e c l a r a t i o n b [” , ”
v a r i a b l e d e c l a r a t i o n b] ” | ”]
[o c l e x p r e s s i o n] ”)”

i t e r a t e e x p : o c l e x p r e s s i o n ”−>” ITERATE ”(”
[v a r i a b l e d e c l a r a t i o n b ” ; ”]
v a r i a b l e d e c l a r a t i o n c ” | ”
o c l e x p r e s s i o n ”)”

v a r i a b l e d e c l a r a t i o n a : simple name ” : ” type
v a r i a b l e d e c l a r a t i o n b : simple name [” : ” type]
v a r i a b l e d e c l a r a t i o n c : simple name ” : ” type ”=”

o c l e x p r e s s i o n
v a r i a b l e d e c l a r a t i o n d : simple name (” : ” type)?

(”=” o c l e x p r e s s i o n)?

type : path name | c o l l e c t i o n t y p e | tup l e type
| p r im i t i v e t y pe | o c l t y p e

c o l l e c t i o n t y p e : c o l l e c t i o n t y p e i d e n t i f i e r ”(” type ”)”

tup l e type : ”Tuple ” ”(” type ∗ ”)”

v a r i a b l e d e c l a r a t i o n l i s t a : v a r i a b l e d e c l a r a t i o n c
[” , ” v a r i a b l e d e c l a r a t i o n l i s t a]

f e a t u r e c a l l e x p : p r o p e r t y c a l l e x p | o p e r a t i o n c a l l e x p

o p e r a t i o n c a l l e x p : o p e r a t i o n c a l l e x p a
| o p e r a t i o n c a l l e x p b
| o p e r a t i o n c a l l e x p c
| o p e r a t i o n c a l l e x p d

o p e r a t i o n c a l l e x p a : o c l e x p r e s s i o n
prede f ined opera t i on names
o c l e x p r e s s i o n

o p e r a t i o n c a l l e x p b : o c l e x p r e s s i o n ”−>”
prede f ined opera t i on names ”(”
[arguments] ”)”

o p e r a t i o n c a l l e x p c : o c l e x p r e s s i o n ” . ”
(prede f ined opera t i on names |
simple name) ”(” [arguments] ”)”

123

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

o p e r a t i o n c a l l e x p d : prede f ined opera t i on names ”(”
[arguments] ”)”

p r o p e r t y c a l l e x p : p r o p e r t y c a l l e x p a
p r o p e r t y c a l l e x p a : o c l e x p r e s s i o n ” . ” (simple name |

p r e d e f i n e d o p e r a t i o n n a m e s p r o p e r t y c a l l)

arguments : o c l e x p r e s s i o n (” , ” arguments)?

// LetExp product ion r u l e s
l e t e x p : LET v a r i a b l e d e c l a r a t i o n c l e t e x p s u b
l e t e x p s u b : l e t e x p s u b a | l e t e x p s u b b
l e t e x p s u b a : ” ,” v a r i a b l e d e c l a r a t i o n c l e t e x p s u b
l e t e x p s u b b : IN o c l e x p r e s s i o n

// IfExp product ion r u l e s
i f e x p : IF o c l e x p r e s s i o n THEN o c l e x p r e s s i o n ELSE

o c l e x p r e s s i o n ENDIF

parameters : v a r i a b l e d e c l a r a t i o n d (” , ” parameters)?

B.2 Grammar mtl.lark

−−−−−−−−−−−−−−−−−−−−−−−− Terminals −−−−−−−−−−−−−−−−−−−−−−−−
TRANSFORMATION DEFINITION: /\ bt ran s f o rmat i onDe f i n i t i on \b/
SOURCE TEMPLATE: /\ bsourceTemplate\b/
TARGET TEMPLATE: /\ btargetTemplate \b/
VALUE: /\ bvalue \b/
MACRO: /\bmacro\b/
PACKAGE: /\ bpackage\b/
END PACKAGE: /\ bend package\b/

−−−−−−−−−−−−−− Import o f OCL product ion r u l e s −−−−−−−−−−−−−
%import . grammar ocl (simple name ,

parameters , type ,
o c l e x p r e s s i o n ,
arguments ,

v a r i a b l e d e c l a r a t i o n a ,
l i t e r a l e x p ,
s t r i n g l i t e r a l e x p)

−−−−−−−−−−−− Extending o f OCL product ion r u l e s −−−−−−−−−−−−
%extend l i t e r a l e x p : o b j e c t l i t e r a l e x p
%extend o c l e x p r e s s i o n : macro ca l l exp

124

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

B Grammatikdefinition der Transformationssprache

−−−−−−−−−−−−−−−−−−−−− No Whitespaces −−−−−−−−−−−−−−−−−−−−−−
%import common .WS
%ignore WS

−−−−−−−−−−−−−− Line and m u l t i l i n e Comments −−−−−−−−−−−−−−−−
%import common .SQL COMMENT
%ignore SQL COMMENT

%import common .CCOMMENT
%ignore CCOMMENT

−−−−−−−−−−−−−−−−−− New Production Rules −−−−−−−−−−−−−−−−−−−
macro dec l :

MACRO simple name ”(” (parameters)? ”)” ” : ” type
”{” o c l e x p r e s s i o n ”}”

macro ca l l exp :
(simple name ” : : ”) ? simple name ”(” arguments ? ”)”

o b j e c t l i t e r a l e x p :
type ”{” a t t r i b u t e b i n d i n g l i s t ? ”}”

a t t r i b u t e b i n d i n g :
simple name ” : ” o c l e x p r e s s i o n

a t t r i b u t e b i n d i n g l i s t :
a t t r i b u t e b i n d i n g (” , ” a t t r i b u t e b i n d i n g l i s t)?

in format ionmode l template :
v a r i a b l e d e c l a r a t i o n a [”−>” l i t e r a l e x p]

i n f o r m a t i o n m o d e l t e m p l a t e l i s t :
in format ionmode l template (” , ”
i n f o r m a t i o n m o d e l t e m p l a t e l i s t)?

t r a n s f o r m a t i o n d e f i n i t i o n :
TRANSFORMATION DEFINITION [simple name]
SOURCE TEMPLATE ” : ” [i n f o r m a t i o n m o d e l t e m p l a t e l i s t]
TARGET TEMPLATE ” : ” in format ionmode l template VALUE
” : ” o b j e c t l i t e r a l e x p

package dec l :
PACKAGE simple name [t r a n s f o r m a t i o n d e f i n i t i o n]
macro dec l ∗ END PACKAGE

125

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

C Python-Klassendefinition der abstrakten
Syntaxklassen

C.1 ast ocl.py

import abc
import math
import operator
import i t e r t o o l s
from typing import Any , Ca l lab le , Dict , I t e r a b l e , L i s t , Optional ,

Tuple , TypeVar , Union

−∗− encoding : u t f −8 −∗−

class Environment (abc .ABC) :
def i n i t (s e l f) :

s e l f . v a r i a b l e s : Dict [str , Any] = {}
s e l f . types : Dict [str , type] = {}

def add var (s e l f , name : str , type : type = None , va lue : Any = None
) −> None :

i f name in s e l f . v a r i a b l e s :
raise KeyError (f ” Var iab le {name} a l ready e x i s t ! ”)

s e l f . v a r i a b l e s [name] = [type , va lue]

def s e t v a r v a l u e (s e l f , name : str , va lue : Any) −> None :
i f name not in s e l f . v a r i a b l e s :

raise KeyError (f ” Var iab le {name} hasn ’ t been de f ined yet ! ”
)

(s e l f . v a r i a b l e s [name]) [1] = value

def s e t v a r t y p e (s e l f , name : str , type : type) −> None :
i f name not in s e l f . v a r i a b l e s :

raise KeyError (f ” Var iab le {name} hasn ’ t been de f ined yet ! ”
)

(s e l f . v a r i a b l e s [name]) [0] = type

def d e l v a r (s e l f , name : str) −> None :
del s e l f . v a r i a b l e s [name]

def ge t va r type (s e l f , name : str) −> type :
i f name not in s e l f . v a r i a b l e s :

raise KeyError (f ” Var iab le {name} hasn ’ t been de f ined yet ! ”
)

return (s e l f . v a r i a b l e s [name]) [0]

126

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

def g e t v a r v a l u e (s e l f , name : str) −> Any :
i f name not in s e l f . v a r i a b l e s :

Test i f name i s in s e l f . t ype s todo : Hack f o r parser
problems , when g e t t i n g VariableExp in s t ead o f TypeExp

i f name not in s e l f . types :
raise KeyError (f ” Var iab le {name} hasn ’ t been de f ined

yet ! ”)
return s e l f . types [name]

return (s e l f . v a r i a b l e s [name]) [1]

class LocalEnvironment (Environment) :
def i n i t (s e l f) :

super () . i n i t ()

class GlobalEnvironment (Environment) :
def i n i t (s e l f) :

super () . i n i t ()

class Token (abc .ABC) :
def i n i t (s e l f , ∗ tokens) :

s e l f . tokens = None

class OclExpress ion (Token , abc .ABC) :
@abc . abstractmethod
def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :

LocalEnvironment) −> Any :
pass

class PrimitiveType (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0]

class OclType (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0]

127

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

class Type (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [Col lect ionType , TupleType ,

PrimitiveType , OclType] , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0] . e va lua t e va lu e ()

class I n v a l i d :
def i n i t (s e l f) :

raise Exception (”An e r r o r has occurred ”)

class C o l l e c t i o n T y p e I d e n t i f i e r (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0]

class Col lect ionType (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [C o l l e c t i o n T y p e I d e n t i f i e r , Type] , . . .]

= tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0] . e va lua t e va lu e () + ” (” + s e l f . tokens [1] .

e va lua t e va lu e () + ”) ”

class TupleType (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Type , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
tmp type : str = ”Tuple (”
f i r s t = True
for t in s e l f . tokens :

i f not f i r s t :
tmp type += ” , ”

tmp type += t . e va lua t e va lu e ()
f i r s t = False

tmp type += ”) ”

128

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

return tmp type

class SimpleName (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return ’ ’ . j o i n (s e l f . tokens)

class PathName(Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [PathName , SimpleName] , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
i f len (s e l f . tokens) == 2 :

return s e l f . tokens [0] . e va lua t e va lu e () + ” : : ” + s e l f .
tokens [1] . e va lua t e va lu e ()

else :
return s e l f . tokens [0] . e va lua t e va lu e ()

class StringName (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return ’ ’ . j o i n (s e l f . tokens)

class Var iab l eDec l a ra t i on (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [SimpleName , Type , OclExpress ion] ,

. . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> str :
”””
adds the v a r i a b l e to the v a r i a b l e l i s t and re turns the

v a r i a b l e name
”””
var name = ””
var type = None
var va lue = None
for i in s e l f . tokens :

129

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

i f isinstance (i , SimpleName) :
var name = i . eva lua t e va lu e ()

i f isinstance (i , Type) :
var type = g loba l env . ge t type (i . e va lua t e va lu e ())

i f isinstance (i , OclExpress ion) :
va r va lue = i . eva lua t e va lu e (g loba l env , l o c a l e n v)

l o c a l e n v . add var (var name , var type , va r va lue)
return var name

class Litera lExp (OclExpress ion , abc .ABC) :
def i n i t (s e l f) :

super () . i n i t ()

class EnumLiteralExp (Li tera lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Union [SimpleName] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
try :

return l o c a l e n v . g e t v a r v a l u e (s e l f . tokens [0] .
e va lua t e va lu e () + ” : : ” + s e l f . tokens [1] .
e va lua t e va lu e ())

except KeyError :
return g l oba l env . g e t v a r v a l u e (s e l f . tokens [0] .

e va lua t e va lu e () + ” : : ” + s e l f . tokens [1] .
e va lua t e va lu e ())

class Col lect ionRange (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [OclExpress ion , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> L i s t [Union [str , int]] :
lower : Union [str , int] = s e l f . tokens [0] . e va lua t e va lu e (

g loba l env , l o c a l e n v)
upper : Union [str , int] = s e l f . tokens [1] . e va lua t e va lu e (

g loba l env , l o c a l e n v)
va lue : L i s t [Union [str , int]] = []
i f isinstance (lower , str) and isinstance (upper , str) :

Todo : Only u s e f u l wi th S t r i n g L i t e ra l E x p wi th s i n g l e
l e t t e r

for i in range (ord (lower [1]) , ord (upper [1]) + 1) :
va lue . append (chr (i))

130

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

e l i f isinstance (lower , int) and isinstance (upper , int) :
for i in range (lower , upper + 1) :

va lue . append (i)
else :

raise KeyError (”Upper and lower boundary do not have the
same type ”)

return value

def l i s t t o s e t (t m p l i s t : I t e r a b l e) −> set :
tmp set = set ()
for i in t m p l i s t :

i f isinstance (i , l i s t) or isinstance (i , set) :
tmp set . update (l i s t t o s e t (i))

else :
tmp set . add (i)

return tmp set

class C o l l e c t i o nL i t e r a lExp (Litera lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Union [C o l l e c t i o n T y p e I d e n t i f i e r , L i s t [

Col lect ionRange , OclExpress ion]] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
c o l l e c t i o n t y p e : str = s e l f . tokens [0] . e va lua t e va lu e () # type

: i gnore
c o l l e c t i o n i t e m l i s t = []
for i in s e l f . tokens :

i f isinstance (i , Co l lect ionRange) :
t m p l i s t = i . e va lua t e va lu e (g loba l env , l o c a l e n v)
for t in t m p l i s t :

c o l l e c t i o n i t e m l i s t . append (t)
i f isinstance (i , OclExpress ion) :

c o l l e c t i o n i t e m l i s t . append (i . e va lua t e va lu e (
g loba l env , l o c a l e n v))

i f c o l l e c t i o n t y p e == ” Set ” :
return l i s t t o s e t (c o l l e c t i o n i t e m l i s t)

e l i f c o l l e c t i o n t y p e == ”Bag” :
return c o l l e c t i o n i t e m l i s t

e l i f c o l l e c t i o n t y p e == ” Sequence ” :
return c o l l e c t i o n i t e m l i s t

e l i f c o l l e c t i o n t y p e == ” OrderedSet ” :
return l i s t (l i s t t o s e t (c o l l e c t i o n i t e m l i s t)) # todo :

shou ld be an ordered s e t
else :

raise KeyError

131

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

class TupleLitera lExp (Li tera lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Var iab l eDec la rat ion , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> tuple :
t u p l e l i s t = []
for t in s e l f . tokens :

try :
t u p l e l i s t . append (l o c a l e n v . g e t v a r v a l u e (t .

e va lua t e va lu e (g loba l env , l o c a l e n v)))
except KeyError :

t u p l e l i s t . append (g l oba l env . g e t v a r v a l u e (t .
e va lua t e va lu e (g loba l env , l o c a l e n v)))

return tuple (t u p l e l i s t)

class Pr imi t i veL i t e ra lExp (Litera lExp , abc .ABC) :
def i n i t (s e l f) :

super () . i n i t ()

class In t ege rL i t e ra lExp (Pr imi t i veL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> int :
return int (’ ’ . j o i n (s e l f . tokens))

class RealLitera lExp (Pr imi t iveL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [f loat , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> f loat :
return f loat (s e l f . tokens [0])

class St r ingL i t e ra lExp (Pr imi t iveL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [str , . . .] = tokens

132

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> str :
tmp str ing = ’ ’
for i in s e l f . tokens :

i f isinstance (i , str) :
tmp str ing += i . s t r i p (’ ” ’)

return tmp str ing

class BooleanLitera lExp (Pr imi t iveL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> bool :
i f s e l f . tokens [0] == ” true ” :

return True
else :

return False

class Nul lL i te ra lExp (Pr imi t iveL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
return None

class Inva l i dL i t e r a lExp (Pr imi t i veL i t e ra lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Inva l id , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
return s e l f . tokens [0] . e va lua t e va lu e ()

class TypeLiteralExp (Li tera lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Type , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> type :

133

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

return g l oba l env . ge t type (s e l f . tokens [0] . e va lua t e va lu e ())

class VariableExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Union [SimpleName , str] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
i f isinstance (s e l f . tokens [0] , PathName) :

try :
return l o c a l e n v . g e t v a r v a l u e (s e l f . tokens [0] .

e va lua t e va lu e ())
except KeyError :

return g l oba l env . g e t v a r v a l u e (s e l f . tokens [0] .
e va lua t e va lu e ())

else :
return l o c a l e n v . g e t v a r v a l u e (” s e l f ”)

class IfExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [OclExpress ion , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
i f s e l f . tokens [0] . e va lua t e va lu e (g loba l env , l o c a l e n v) :

return s e l f . tokens [1] . e va lua t e va lu e (g loba l env , l o c a l e n v
)

else :
return s e l f . tokens [2] . e va lua t e va lu e (g loba l env , l o c a l e n v

)

class LetExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Union [Var iab l eDec la rat ion , OclExpress ion] ,

. . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
add v a r i a b l e s to env
v a r l i s t = []
for i in s e l f . tokens :

i f isinstance (i , Var i ab l eDec l a ra t i on) :
v a r l i s t . append (i . e va lua t e va lu e (g loba l env , l o c a l e n v

))

134

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

e v a l e xp re s s i on
r e s u l t = s e l f . tokens [len (s e l f . tokens) − 1] . e va lua t e va lu e (

g loba l env , l o c a l e n v)
remove v a r i a b l e s vom env
for var in v a r l i s t :

l o c a l e n v . d e l v a r (var)
return r e s u l t

class PropertyCallExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion , SimpleName ,

Predef inedOperat ionNamesPropertyCal l] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
return getattr (s e l f . tokens [0] . e va lua t e va lu e (g loba l env ,

l o c a l e n v) ,
g l oba l env .

g e t c o r r e c t a t t r i b u t e n a m e b y s d k t y p e (type
(

s e l f . tokens [0] . e va lua t e va lu e (g loba l env ,
l o c a l e n v)) ,

s e l f . tokens [1] . e va lua t e va lu e ())) # type :
i gnore

class P r e d e f i n e d I t e r a t o r s (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> Ca l l ab l e [[I t e r a b l e , Optional [str] ,
Optional [str] , OclExpress ion] , Any] :
name function map : Dict [str , Ca l l ab l e [[I t e r a b l e , Optional [str

] , Optional [str] , OclExpress ion , GlobalEnvironment ,
LocalEnvironment] , Any]] = {
”any” : any ,
” c l o s u r e ” : c l o s u r e ,
” c o l l e c t ” : c o l l e c t ,
” c o l l e c t N e s t e d ” : c o l l e c t n e s t e d ,
” e x i s t ” : e x i s t ,
” f o r A l l ” : f o r a l l ,
” i sUnique ” : i s u n i q u e ,
” one” : one ,
” r e j e c t ” : r e j e c t ,
” s e l e c t ” : s e l e c t ,
” sortedBy ” : s o r t ed by

135

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

}
return name function map [s e l f . tokens [0]]

def any (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>any () only supports one i t e r a t o r var i ab l e ,

two given ! ”)
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
r e s u l t = expr e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v)
i f isinstance (r e s u l t , I n v a l i d) :

return r e s u l t
i f r e s u l t :

return element
return I n v a l i d

def c l o s u r e (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :
pass

def c o l l e c t (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>c o l l e c t () only supports one i t e r a t o r

var i ab l e , two given ! ”)
r e s = []
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , va lue=element)
i f isinstance (element , (tuple , l i s t , set)) :

f l a t t e n
for nes ted e l ement in c o l l e c t (element , i t e r a t o r 1 , None ,

expre s s ion , g loba l env , l o c a l e n v) :
r e s . append (nes ted e l ement)

else :
r e s . append (expr e s s i on . eva lua t e va lu e (g loba l env , l o c a l e n v

))
return r e s

def c o l l e c t n e s t e d (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] ,
i t e r a t o r 2 : Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :

i f i t e r a t o r 2 i s not None :

136

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

raise ValueError (”−>c o l l e c t N e s t e d () only supports one i t e r a t o r
va r i ab l e , two given ! ”)

r e s = []
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
r e s . append (expr e s s i on . eva lua t e va lu e (g loba l env , l o c a l e n v))

return r e s

def e x i s t (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> bool :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>e x i s t s () only supports one i t e r a t o r

var i ab l e , two given ! ”)
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
i f exp r e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v) :

return True
return False

def f o r a l l (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> bool :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>f o r A l l () only supports one i t e r a t o r

var i ab l e , two given ! ”)
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
i f not exp r e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v) :

return False
return True

def i s u n i q u e (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2
: Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>i sUnique () only supports one i t e r a t o r

var i ab l e , two given ! ”)
r e s = []
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
r e s u l t = expr e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v)
i f isinstance (r e s u l t , I n v a l i d) :

return r e s u l t
i f r e s u l t i s not None :

i f r e s u l t in r e s :
return False

137

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

r e s . append (r e s u l t)
return True

def one (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>one () only supports one i t e r a t o r var i ab l e ,

two given ! ”)
was true = False
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
r e s u l t = expr e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v)
i f isinstance (r e s u l t , I n v a l i d) :

return r e s u l t
i f r e s u l t :

i f was true :
return False

was true = True
return False

def r e j e c t (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> L i s t [Any] :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>r e j e c t () only supports one i t e r a t o r

var i ab l e , two given ! ”)
r e s = []
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
i f not exp r e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v) :

r e s . append (element)
return r e s

def s e l e c t (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2 :
Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> L i s t [Any] :

i f i t e r a t o r 2 i s not None :
raise ValueError (”−>s e l e c t () only supports one i t e r a t o r

var i ab l e , two given ! ”)
r e s = []
for element in parent :

l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
i f exp r e s s i on . e va lua t e va lu e (g loba l env , l o c a l e n v) :

r e s . append (element)
return r e s

138

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

def s o r t ed by (parent : I t e r a b l e , i t e r a t o r 1 : Optional [str] , i t e r a t o r 2
: Optional [str] , e xp r e s s i on : OclExpress ion , g l oba l env :
GlobalEnvironment , l o c a l e n v : LocalEnvironment) −> Any :
pass

class I t e ratorExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion , P r e d e f i n e d I t e r a t o r s ,

Var i ab l eDec l a ra t i on] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
i t e r a t o r f u n c t i o n : Ca l l ab l e [[I t e r a b l e , Optional [str] , Optional

[str] , OclExpress ion , GlobalEnvironment , LocalEnvironment
] , Any] = s e l f . tokens [1] . e va lua t e va lu e () # type : i gnore

parent : I t e r a b l e = s e l f . tokens [0] . e va lua t e va lu e (g loba l env ,
l o c a l e n v) # type : i gnore

i t e r a t o r 1 : Optional [str] = None
i f s e l f . tokens [2] i s not None :

i t e r a t o r 1 : Optional [str] = s e l f . tokens [2] . e va lua t e va lu e (
g loba l env , l o c a l e n v) # type : i gnore

i t e r a t o r 2 : Optional [str] = None
o f f s e t = 5 − len (s e l f . tokens)
i f o f f s e t == 0 :

i f s e l f . tokens [3] i s not None :
i t e r a t o r 2 : Optional [str] = s e l f . tokens [3] .

e va lua t e va lu e (g loba l env , l o c a l e n v) # type :
i gnore

i f i t e r a t o r 1 i s None :
i t e r a t o r 1 = ” ”
while True :

try :
l o c a l e n v . g e t v a r v a l u e (i t e r a t o r 1)
i t e r a t o r 1 += ” ”

except KeyError :
l o c a l e n v . add var (” ”)
break

r e s = i t e r a t o r f u n c t i o n (parent , i t e r a t o r 1 , i t e r a t o r 2 , s e l f .
tokens [4 − o f f s e t] , g loba l env , l o c a l e n v) # type : i gnore

l o c a l e n v . d e l v a r (i t e r a t o r 1)
i f i t e r a t o r 2 i s not None :

l o c a l e n v . d e l v a r (i t e r a t o r 2)
return r e s

class I te rateExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

139

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion , Var i ab l eDec l a ra t i on] ,

. . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any : # todo : tbd
parent = s e l f . tokens [0] . e va lua t e va lu e (g loba l env , l o c a l e n v)
i t e r a t o r 1 : Optional [str] = None
i f s e l f . tokens [1] i s not None :

i t e r a t o r 1 : Optional [str] = s e l f . tokens [1] . e va lua t e va lu e (
g loba l env , l o c a l e n v) # type : i gnore

i f i t e r a t o r 1 i s None :
i t e r a t o r 1 = ” ”
while True :

try :
l o c a l e n v . g e t v a r v a l u e (i t e r a t o r 1)
i t e r a t o r 1 += ” ”

except KeyError :
l o c a l e n v . add var (” ”)
break

i t e r a t o r 2 : Optional [str] = s e l f . tokens [2] . e va lua t e va lu e (
g loba l env , l o c a l e n v) # type : i gnore

for element in parent :
l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 1 , element)
l o c a l e n v . s e t v a r v a l u e (i t e r a t o r 2 , s e l f . tokens [3] .

e va lua t e va lu e (g loba l env , l o c a l e n v))
r e s u l t = l o c a l e n v . g e t v a r v a l u e (i t e r a t o r 2)
l o c a l e n v . d e l v a r (i t e r a t o r 1)
l o c a l e n v . d e l v a r (i t e r a t o r 2)
return r e s u l t

PT = TypeVar (”PT” , bool , str , f loat , int)

def f l a t t e n (c) :
r e t = []
for itm in c :

i f not isinstance (itm , l i s t) and not isinstance (itm , set) :
r e t . append (itm)
continue

for i tm in f l a t t e n (itm) :
r e t . append (itm)

return r e t

def a l l pa rams (fn : Ca l l ab l e) −> Ca l l ab l e :
def he lpe r (s e l f : Any , l i s t : L i s t) :

i f not isinstance (s e l f , l i s t) and not isinstance (s e l f , set) :
s e l f = [s e l f]

140

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

return fn (∗{∗ s e l f , ∗ l i s t })
return he lpe r

class PredefinedOperationNames (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> Union [Ca l l ab l e [[Any , Any] , PT] ,
Ca l l ab l e [[Any , L i s t [Any]] , PT]] :
name function map : Dict [str , Optional [Union [Ca l l ab l e [[Any , Any

] , PT] , Tuple [Ca l l ab l e [[Any , L i s t [Any]] , PT] , int]]]] = {
”=” : operator . eq ,
”<>” : operator . ne ,
”+” : operator . add ,
”−” : operator . sub ,
”∗” : operator . mul ,
”/” : operator . t ruediv ,
”<” : operator . l t ,
”>” : operator . gt ,
”<=” : operator . l e ,
”>=” : operator . ge ,
” or ” : operator . or ,
” xor ” : operator . xor ,
”and” : operator . and ,
” oc lAsSet ” : None ,
” oclIsNew ” : None , # fo r pre− and p o s t c o n d i t i o n s
” o c l I s I n v a l i d ” : (lambda x : x i s Inva l id , 0) ,
” oclAsType ” : None ,
” oclIsTypeOf ” : (lambda x , y : type (x) i s y , 1) ,
” oc l I sKindOf ” : (lambda x , y : isinstance (x , y) , 1) ,
” o c l I s I n S t a t e ” : None , # fo r s t a t e machines
” oclType ” : None , # not implemented
” oc lLoca l e ” : None ,
” oc l I sUnde f ined ” : None , # not implemented
” abs ” : (operator . abs , 0) ,
” f l o o r ” : (math . f l o o r , 0) ,
” round” : (round , 0) ,
”max” : a l l pa rams (max) ,
”min” : a l l pa rams (min) ,
” t oS t r i ng ” : (str , 0) ,
” div ” : (operator . f l o o r d i v , 1) ,
”mod” : (operator . mod , 1) ,
” s i z e ” : (len , 0) ,
” concat ” : (operator . concat , 1) ,
” sub s t r i ng ” : (lambda s , s t a r t , end : s [s t a r t : end] , 2) ,
” t o I n t e g e r ” : (int , 0) ,
” toReal ” : (f loat , 0) ,
” toUpperCase ” : (lambda s : s . upper () , 0) ,

141

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

” toLowerCase ” : (lambda s : s . lower () , 0) ,
” indexOf ” : lambda s , n : s . f i n d (n [0]) ,
” equa l s IgnoreCase ” : lambda s , s2 : s . upper () == s2 [0] . upper

() ,
” at ” : (lambda s , pos : s [pos] , 1) ,
” c ha ra c t e r s ” : (lambda s : [x for x in s] , 0) ,
” toBoolean ” : lambda a , : not not a ,
” not ” : operator . neg ,
” i m p l i e s ” : lambda a , b : not a or a and b ,
” i n c l u d e s ” : (lambda c , e : e in c , 1) ,
” exc ludes ” : (lambda c , e : e not in c , 1) ,
” count ” : (len , 0) ,
” i n c l u d e s A l l ” : (lambda c1 , c2 : a l l (e in c1 for e in c2) ,

1) ,
” exc lude sA l l ” : (lambda c1 , c2 : a l l (e not in c1 for e in c2

) , 1) ,
” isEmpty” : (lambda c : len (c) == 0 , 0) ,
”notEmpty” : (lambda c : len (c) != 0 , 0) ,
”sum” : (lambda c : sum(c) , 0) ,
” product ” : (lambda c1 , c2 : i t e r t o o l s . product (c1 , c2) , 1) ,
” se lectByKind ” : (lambda c , k : f i l t e r (lambda e : type (e) i s

k , c) , 1) ,
” selectByType ” : (lambda c , k : f i l t e r (lambda e : isinstance (

e , k) , c) , 1) ,
” asSet ” : (set , 0) ,
” asOrderedSet ” : None , # ordered s e t s aren ’ t implemented
” asSequence ” : (l i s t , 0) ,
”asBag” : (l i s t , 0) ,
” f l a t t e n ” : (f l a t t e n , 0) ,
” union ” : (lambda c1 , c2 : c1 + c2 , 1) ,
” i n t e r s e c t i o n ” : (lambda c1 , c2 : c1 . i n t e r s e c t i o n (c2) , 1) ,
” i n c l ud ing ” : (lambda c , e : c + [e] i f isinstance (c , l i s t)

else {∗c , e } , 1) ,
” exc lud ing ” : (lambda c , l : f i l t e r (lambda e : e i s not l , c)

, 1) ,
” symmetr i cDi f f e rence ” : (lambda c1 , c2 : c1 .

s ymm e t r i c d i f f e r e n c e (c2) , 1) ,
”append” : (lambda c , e : c + (e ,) , 1) ,
” prepend ” : (lambda c , e : (e ,) + c , 1) ,
” in s e r tAt ” : None , # ordered s e t s aren ’ t implemented
” subOrderedSet ” : None , # ordered s e t s aren ’ t implemented
” f i r s t ” : (lambda c : c [0] , 0) ,
” l a s t ” : (lambda c : c [−1] , 0) ,
” r e v e r s e ” : (lambda c : c . r e v e r s e () , 0) ,
” subSequence ” : (lambda c , l , u : c [l : u + 1] , 2)

}
funct ion name = s e l f . tokens [0]
function maybe : Optional [Union [Ca l l ab l e [[Any , Any] , PT] , Tuple

[Ca l l ab l e [[Any , L i s t [Any]] , PT] , int]]] =
name function map [funct ion name]

142

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

i f function maybe i s None :
raise NotImplementedError (f ”{ funct ion name } () i s not

implemented ! ”)
i f not isinstance (function maybe , tuple) :

return name function map [funct ion name]

def fn wrap (s e l f : Any , l i s t : L i s t) −> PT:
i f len (l i s t) != function maybe [1] :

raise ValueError (f ”{ funct ion name } () expect s {
function maybe [1] } parameters , but { l en (l i s t) }
given : ”

+ str (l i s t))
return function maybe [0] (s e l f , ∗ l i s t)

return fn wrap

class Predef inedOperat ionNamesPropertyCal l (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [str , . . .] = tokens

def e va lua t e va lu e (s e l f) −> str :
return s e l f . tokens [0]

class OperationCallExpA (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion ,

PredefinedOperationNames] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
i f isinstance (s e l f . tokens [1] , PredefinedOperationNames) :

ope ra t ion = s e l f . tokens [1] . e va lua t e va lu e ()
else :

raise NotImplementedError ()
var 1 = s e l f . tokens [0] . e va lua t e va lu e (g loba l env , l o c a l e n v)

type : i gnore
var 2 = s e l f . tokens [2] . e va lua t e va lu e (g loba l env , l o c a l e n v)

type : i gnore

return opera t ion (var 1 , var 2) # type : i gnore

class OperationCallExpB (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion ,

143

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

PredefinedOperationNames] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
parent = s e l f . tokens [0] . e va lua t e va lu e (g loba l env , l o c a l e n v)

type : i gnore
opera t ion = s e l f . tokens [1] . e va lua t e va lu e () # type : i gnore
v a r l i s t = []
for i in range (2 , len (s e l f . tokens)) :

v a r l i s t . append (s e l f . tokens [i] . e va lua t e va lu e (g loba l env ,
l o c a l e n v)) # type : i gnore

return opera t ion (parent , v a r l i s t)

class OperationCallExpC (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion ,

PredefinedOperationNames] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
parent = s e l f . tokens [0] . e va lua t e va lu e (g loba l env , l o c a l e n v)

type : i gnore
i f isinstance (s e l f . tokens [1] , PredefinedOperationNames) :

ope ra t ion = s e l f . tokens [1] . e va lua t e va lu e ()
e l i f isinstance (s e l f . tokens [1] , SimpleName) :

ope ra t ion = getattr (parent , s e l f . tokens [1] . e va lua t e va lu e
())

else :
raise NotImplementedError ()

v a r l i s t = []
for i in range (2 , len (s e l f . tokens)) :

v a r l i s t . append (s e l f . tokens [i] . e va lua t e va lu e (g loba l env ,
l o c a l e n v)) # type : i gnore

return opera t ion (parent , v a r l i s t)

class OperationCallExpD (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [OclExpress ion ,

PredefinedOperationNames] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
opera t ion = s e l f . tokens [0] . e va lua t e va lu e () # type : i gnore
v a r l i s t = []
for i in range (1 , len (s e l f . tokens)) :

v a r l i s t . append (s e l f . tokens [i] . e va lua t e va lu e (g loba l env ,

144

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

l o c a l e n v)) # type : i gnore
return opera t ion (None , v a r l i s t)

C.2 ast mtl.py

import time
import typing
from typing import Any , Dict , L i s t , Optional , Tuple , Union , Set
from l a r k . l a r k import Lark
from . a s t o c l import GlobalEnvironment , LocalEnvironment , SimpleName ,

Token , Var iab l eDec la rat ion , Type , OclExpress ion , St r ingL i te ra lExp ,
L i tera lExp

−∗− encoding : u t f −8 −∗−

class GlobalEnvironmentMTL (GlobalEnvironment) :
def i n i t (s e l f) :

”””
: i v a r v a r i a b l e s : Dict o f g l o b a l v a r i a b l e names and t h e i r type

and va lue . Dict [s t r , [type , Any]]
: i v a r macros : Dict o f macro names and t h e i r parameters ,

OclExpress ion and type .
Dict [s t r , [L i s t [Var iab l eDec la ra t i on] ,

OclExpression , type]
: i v a r t ype s : Dict o f g l o b a l e type names and t h e i r type . Dict [

s t r , type]
”””
super () . i n i t ()
s e l f . v a r i a b l e s : Dict [str , Any] = {}
s e l f . macros : Dict [str , Any] = {}
s e l f . types : Dict [str , type] = {}
s e l f . c r e a t e t y p e s : Dict [str , type] = {}
s e l f . i n v e r t e d t y p e s : Dict [type , str] = {}
s e l f . meta mode l types to sdk types : Dict [str , Union [type , Dict

[str , Union [type , Dict [str , str]]]]] = {}
s e l f . sdk types to meta mode l types : Dict [type , Union [str , Dict

[str , Union [type , Dict [str , str]]]]] = {}

add some o c l b a s i c t ype s and v a r i a b l e s
s e l f . add var (”True” , bool , True)
s e l f . add var (” Fa l se ” , bool , Fa l se)
s e l f . add var (” s e l f ”)

def ca l l mac ro (s e l f , name : str , a r g l i s t : L i s t [Any]) −> Any :
i f name not in s e l f . macros :

raise KeyError (f ”Macro {name} hasn ’ t been de f ined yet ! ”)
param l i s t , o c l e x p r e s s i o n , type = s e l f . macros [name]

145

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

i f len (a r g l i s t) != len (pa ram l i s t) :
raise KeyError (f ”Macro param length and given args l ength

i s not equal ”)

add v a r i a b l e s to env todo : check i f type o f arg und param i s
the same

v a r l i s t = []
l o c a l e n v = LocalEnvironment ()
for i in range (len (pa ram l i s t)) :

var name = param l i s t [i] . e va lua t e va lu e (s e l f , l o c a l e n v)
l o c a l e n v . s e t v a r v a l u e (var name , a r g l i s t [i])
v a r l i s t . append (var name)

e v a l e xp re s s i on
r e s u l t = o c l e x p r e s s i o n . e va lua t e va lu e (s e l f , l o c a l e n v)
remove v a r i a b l e s vom env
for var in v a r l i s t :

l o c a l e n v . d e l v a r (var)
return r e s u l t

def add macro (s e l f , name : str , p a ram l i s t : L i s t [”
Var i ab l eDec l a ra t i on ”] , o c l e x p r e s s i o n : ” OclExpress ion ” , type :
type = None) −> None :
i f name in s e l f . macros :

raise KeyError (f ”Macro {name} a l ready e x i s t ! ”)
s e l f . macros [name] = [param l i s t , o c l e x p r e s s i o n , type]

def del macro (s e l f , name : str) −> None :
del s e l f . macros [name]

def get macro type (s e l f , name : str) −> type :
i f name not in s e l f . macros :

raise KeyError (f ”Macro {name} hasn ’ t been de f ined yet ! ”)
return (s e l f . macros [name]) [2]

def add type (s e l f , name : str , type : type) −> None :
s e l f . types [name] = type

def de l t ype (s e l f , name : str) −> None :
del s e l f . types [name]

def ge t type (s e l f , name : str) −> type :
i f name . s t a r t s w i t h (” Set ”) :

item name = name [4 : len (name) − 1]
i f item name not in s e l f . types :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return Set [s e l f . types [item name]]
e l i f name . s t a r t s w i t h (”Bag”) :

item name = name [4 : len (name) − 1]
i f item name not in s e l f . types :

146

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return L i s t [s e l f . types [item name]]
e l i f name . s t a r t s w i t h (” Sequence ”) :

item name = name [9 : len (name) − 1]
i f item name not in s e l f . types :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return L i s t [s e l f . types [item name]]
e l i f name . s t a r t s w i t h (” OrderedSet ”) :

item name = name [1 1 : len (name) − 1]
i f item name not in s e l f . types :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return Set [s e l f . types [item name]]
i f name not in s e l f . types :

raise KeyError (f ”Type {name} hasn ’ t been de f ined yet ! ”)
return s e l f . types [name]

def add c rea t e type (s e l f , name : str , type : type) −> None :
s e l f . c r e a t e t y p e s [name] = type

def d e l c r e a t e t y p e (s e l f , name : str) −> None :
del s e l f . c r e a t e t y p e s [name]

def g e t c r e a t e t y p e (s e l f , name : str) −> type :
i f name . s t a r t s w i t h (” Set ”) :

item name = name [4 : len (name) − 1]
i f item name not in s e l f . c r e a t e t y p e s :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return Set [s e l f . c r e a t e t y p e s [item name]]
e l i f name . s t a r t s w i t h (”Bag”) :

item name = name [4 : len (name) − 1]
i f item name not in s e l f . c r e a t e t y p e s :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return L i s t [s e l f . c r e a t e t y p e s [item name]]
e l i f name . s t a r t s w i t h (” Sequence ”) :

item name = name [9 : len (name) − 1]
i f item name not in s e l f . c r e a t e t y p e s :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return L i s t [s e l f . c r e a t e t y p e s [item name]]
e l i f name . s t a r t s w i t h (” OrderedSet ”) :

item name = name [1 1 : len (name) − 1]
i f item name not in s e l f . c r e a t e t y p e s :

raise KeyError (f ”Type { item name} hasn ’ t been de f ined
yet ! ”)

return Set [s e l f . c r e a t e t y p e s [item name]]

147

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

i f name not in s e l f . types :
raise KeyError (f ”Type {name} hasn ’ t been de f ined yet ! ”)

return s e l f . c r e a t e t y p e s [name]

def add inve r t ed type (s e l f , type : type , name : str) −> None :
s e l f . i n v e r t e d t y p e s [type] = name

def d e l i n v e r t e d t y p e (s e l f , type : type) −> None :
del s e l f . i n v e r t e d t y p e s [type]

def g e t i n v e r t e d t y p e (s e l f , type : type) −> str :
i f type not in s e l f . i n v e r t e d t y p e s :

raise KeyError (f ”Type { type } hasn ’ t been de f ined yet ! ”)
return s e l f . i n v e r t e d t y p e s [type]

def add meta mode l types to sdk types (s e l f , meta model types : Dict
[str , Union [type , Dict [str , Dict [str , str]]]]) −> None :

s e l f . meta mode l types to sdk types = meta model types
for type name in meta model types :

i f isinstance (meta model types [type name] , type) :
s e l f . add type (type name , meta model types [type name])

type : i gnore
s e l f . add c r ea t e type (type name , meta model types [

type name]) # type : i gnore
s e l f . add inve r t ed type (meta model types [type name] ,

type name)
s e l f . sdk types to meta mode l types [meta model types [

type name]] = type name
else :

s e l f . add type (type name , (meta model types [type name])
[” c l a s s ”]) # type : i gnore

s e l f . add c r ea t e type (type name , (meta model types [
type name]) [” c r e a t e ”]) # type : i gnore

s e l f . add inve r t ed type ((meta model types [type name]) [”
c l a s s ”] , type name)

s e l f . sdk types to meta mode l types [meta model types [
type name] [” c l a s s ”]] = \
{” c l a s s ” : type name , ” c r e a t e ” : meta model types [

type name] [” c r e a t e ”] ,
” a t t r i b u t e s ” : meta model types [type name] [”

a t t r i b u t e s ”] }

def get cor rec t at t r ibute name by meta mode l type name (s e l f ,
type name : str , a t t r ibute name : str) −> str :
return ((s e l f . meta mode l types to sdk types [type name]) [”

a t t r i b u t e s ”]) [a t t r ibute name] # type : i gnore

def add sdk types to meta mode l types (s e l f , sdk types : Dict [type ,
Union [str , Dict [str , Union [type , Dict [str , str]]]]]) −> None :

for sdk type in sdk types :

148

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

s e l f . sdk types to meta mode l types [sdk type] = sdk types [
sdk type]

i f isinstance (sdk types [sdk type] , str) :
s e l f . add inve r t ed type (sdk type , sdk types [sdk type])

type : i gnore
else :

s e l f . add inve r t ed type (sdk type , (sdk types [sdk type])
[” c l a s s ”]) # type : i gnore

def g e t c o r r e c t a t t r i b u t e n a m e b y s d k t y p e (s e l f , type : type ,
a t t r ibute name : str) −> str :
return ((s e l f . sdk types to meta mode l types [type]) [”

a t t r i b u t e s ”]) [a t t r ibute name] # type : i gnore

class MacroDecl (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [SimpleName , Var iab l eDec la rat ion , Type

, OclExpress ion] , . . .] = tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment ,
package name : Optional [str] = None) −> str :

”””
adds the macro to the m a c r o l i s t and re turns the macro name
”””
pa ram l i s t : L i s t [Var i ab l eDec l a ra t i on] = []
for i in s e l f . tokens :

i f isinstance (i , Var i ab l eDec l a ra t i on) :
pa ram l i s t . append (i)

i f package name :
g l oba l env . add macro (package name + ” : : ” + s e l f . tokens [0] .

e va lua t e va lu e () , # type : i gnore
param l i s t ,
s e l f . tokens [len (s e l f . tokens) − 1] , #

type : i gnore
g l oba l env . ge t type (

s e l f . tokens [len (s e l f . tokens) −
2] . e va lua t e va lu e ())) # type
: i gnore

else :
g l oba l env . add macro (s e l f . tokens [0] . e va lua t e va lu e () , #

type : i gnore
param l i s t ,
s e l f . tokens [len (s e l f . tokens) − 1] , #

type : i gnore
g l oba l env . ge t type (

s e l f . tokens [len (s e l f . tokens) −
2] . e va lua t e va lu e ())) # type
: i gnore

149

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

return s e l f . tokens [0] . e va lua t e va lu e () # type : i gnore

class MacroCallExp (OclExpress ion) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [SimpleName , OclExpress ion] , . . .] =

tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
a r g l i s t = []
name l i s t = []
for token in s e l f . tokens :

i f isinstance (token , OclExpress ion) :
a r g l i s t . append (token . e va lua t e va lu e (g loba l env ,

l o c a l e n v)) # type : i gnore
i f isinstance (token , SimpleName) :

name l i s t . append (token . e va lua t e va lu e ())
i f len (name l i s t) == 2 :

return g l oba l env . ca l l mac ro (name l i s t [0] + ” : : ” +
name l i s t [1] , a r g l i s t) # type : i gnore

else :
return g l oba l env . ca l l mac ro (name l i s t [0] , a r g l i s t) #

type : i gnore

class Attr ibuteBinding (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [SimpleName , OclExpress ion] , . . .] =

tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Tuple [str , Any] :
return s e l f . tokens [0] . e va lua t e va lu e () , s e l f . tokens [1] .

e va lua t e va lu e (g loba l env , l o c a l e n v) # type : i gnore

class ObjectLi tera lExp (Li tera lExp) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t ()
s e l f . tokens : Tuple [Union [Type , Attr ibuteBinding] , . . .] =

tokens

def e va lua t e va lu e (s e l f , g l oba l env : GlobalEnvironment , l o c a l e n v :
LocalEnvironment) −> Any :
type name : str = s e l f . tokens [0] . e va lua t e va lu e () # type :

i gnore

150

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

type : type = globa l env . g e t c r e a t e t y p e (type name) # type :
i gnore

a t t r d i c t tm p = {}
for i in range (1 , len (s e l f . tokens)) :

attr ibute name , a t t r i b u t e v a l u e = s e l f . tokens [i] .
e va l ua t e va lu e (g loba l env , l o c a l e n v) # type : i gnore

a t t r d i c t tm p [att r ibute name] = a t t r i b u t e v a l u e

a t t r d i c t = {}
for name in a t t r d i c t tm p :

a t t r d i c t [g l oba l env .
ge t cor rec t at t r ibute name by meta mode l type name (
type name , name)] = \

a t t r d i c t tm p [name]

return type (∗∗ a t t r d i c t)

class Trans fo rmat ionDe f in i t i on (Token) :
def i n i t (s e l f , ∗ tokens) :

super () . i n i t (∗ tokens)
s e l f . tokens : Tuple [Union [SimpleName , Var iab l eDec la rat ion ,

L i te ra lExp] , . . .] = tokens

def eva luate (s e l f ,
s o u r c e i n s t a n c e s : L i s t [Any] ,
a t t r ibute name path : L i s t [str] ,
meta mode l types to sdk types : Optional [Dict [str ,

Union [type , Dict [str , Union [type , Dict [str , str
]]]]]] = None ,

sdk types to meta mode l types : Optional [Dict [type ,
Union [str , Dict [str , Union [type , Dict [str , str
]]]]]] = None ,

meta mode l var iab l e s : Optional [Dict [str , Any]] = None
,

macros : Optional [Dict [str , L i s t [MacroDecl]]] = None)
\

−> Optional [Any] :
”””
Create a new o b j e c t o f the g iven in format ion mode l t ype based

on the t rans format ion d e f i n i t i o n us ing
the g iven source in s t ance s

: param s o u r c e i n s t a n c e s : L i s t o f i n s t ance s o f the g iven
in format ion model type which are mapped to the source

t emp la t e s o f the t rans format ion d e f i n i t i o n
: param a t t r i bu t e name pa th : The name o f the a t t r i b u t e in the

g iven in format ion model type to check which g iven
sources in s tance match aga in s t the r equ i r ed source

151

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

t emp la t e s o f the t rans format ion d e f i n i t i o n
: param m e t a m o d e l t y p e s t o s d k t y p e s : L i s t o f meta model

c l a s s e s and t h e i r mapping to the corresponding
c l a s s e s in the under l y ing so f tware i n c l u d i n g the

mapping o f the c l a s s a t t r i b u t e s
: param s d k t y p e s t o m e t a m o d e l t y p e s : L i s t o f c l a s s e s in the

under l y ing so f tware and t h e i r mapping to the
corresponding meta model c l a s s e s i n c l u d i n g the mapping

o f the c l a s s a t t r i b u t e s
Note : Only d i f f e r e n t mappings to the

m e t a m o d e l t y p e s t o s d k t y p e s i s needed
: param meta mode l var iab l e s : L i s t o f v a r i a b l e s de f ined by the

meta model e . g . enums
: param macros : L i s t o f macros wi th are used in t h i s

t rans format ion d e f i n i t i o n

: r a i s e KeyError : I f not enough source in s t ance s are g iven or
the r equ i r ed source in s t ance s are miss ing

”””
g l oba l env = GlobalEnvironmentMTL ()
l o c a l e n v = LocalEnvironment ()
i f meta mode l types to sdk types i s not None :

g l oba l env . add meta mode l types to sdk types (
meta mode l types to sdk types)

i f sdk types to meta mode l types i s not None :
g l oba l env . add sdk types to meta mode l types (

sdk types to meta mode l types)

i f meta mode l var iab l e s i s not None :
for var in meta mode l var iab l e s . i tems () :

g l oba l env . add var (var [0] , None , var [1])

ge t source temp la te l i s t and macro l i s t
s ou r c e t emp la t e s : Dict [Var iab l eDec la rat ion , Union [None , L i s t [

str , L i te ra lExp]]] = {}
token l ength = len (s e l f . tokens)
o b j e c t l i t e r a l e x p : ObjectLitera lExp = s e l f . tokens [

token l ength − 1] # type : i gnore
add t a r g e t t emp la te va lue to v a r i a b l e s
for i in range (1 , token l ength − 3) :

i f isinstance (s e l f . tokens [i] , Var i ab l eDec l a ra t i on) :
i f isinstance (s e l f . tokens [i +1] , L i te ra lExp) :

s ou r c e t emp la t e s [s e l f . tokens [i]] = s e l f . tokens [i +
1] # type : i gnore

else :
s ou r c e t emp la t e s [s e l f . tokens [i]] = None # type :

i gnore

check i f source in s t ance s and source t emp la t e s match and add

152

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

them to env
i f len (s ou r c e t emp la t e s . keys ()) > len (s o u r c e i n s t a n c e s) :

raise KeyError (” Length o f source i n s t anc e l i s t must be
g r e a t e r or equal than the source template l i s t ”)

s i f o u n d = 0
for s t in s ou r c e t emp la t e s :

var name = s t . e va lua t e va lu e (g loba l env , l o c a l e n v) #
type : i gnore

s i found temp = 0
s i l i s t = []
type name = l o c a l e n v . g e t va r type (var name)
i f isinstance (s our c e t emp la t e s [s t] , type (None)) :

i f type (type name) == typing . Gene r i cA l i a s : # type :
i gnore
for s i in s o u r c e i n s t a n c e s :

i f isinstance (s i , type name . a r g s) : # type
: i gnore
s i found temp += 1
s i l i s t . append (s i)
continue

else :
for s i in s o u r c e i n s t a n c e s :

i f isinstance (s i , type name) :
s i found temp += 1
s i l i s t . append (s i)
break

else :
a t t r i b u t e v a l u e = sourc e t emp la t e s [s t] . e va lua t e va lu e (

g loba l env , l o c a l e n v) # type : i gnore
s i found temp = 0
s i l i s t = []
i f type (type name) == typing . Gene r i cA l i a s : # type :

i gnore
for s i in s o u r c e i n s t a n c e s :

i f isinstance (s i , type name . a r g s) : # type
: i gnore
tmp parent = s i
for i in range (len (at t r ibute name path) −

1) :
tmp parent = getattr (tmp parent ,

at t r ibute name path [i])
i f getattr (tmp parent ,

at t r ibute name path [len (
at t r ibute name path) − 1])
== a t t r i b u t e v a l u e :

s i found temp += 1
s i l i s t . append (s i)
continue

else :

153

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

for s i in s o u r c e i n s t a n c e s :
i f isinstance (s i , type name) :

tmp parent = s i
for i in range (len (at t r ibute name path) −

1) :
tmp parent = getattr (tmp parent ,

at t r ibute name path [i])
i f getattr (tmp parent ,

at t r ibute name path [len (
at t r ibute name path) − 1])
== a t t r i b u t e v a l u e :

s i found temp += 1
s i l i s t . append (s i)
break

i f len (s i l i s t) == 0 :
raise KeyError (”No Ins tance f o r source template {}

found in source i n s t anc e l i s t ” . format (var name))
else :

i f type (type name) == typing . Gene r i cA l i a s :
l o c a l e n v . s e t v a r v a l u e (var name , s i l i s t)

else :
l o c a l e n v . s e t v a r v a l u e (var name , s i l i s t [0])

s i f o u n d += 1

i f s i f o u n d != len (s ou r c e t emp la t e s) :
raise KeyError (” Source in s t anc e l i s t does not match the

r equ i r ed source template l i s t ”)

add macros to env
i f macros i s not None :

for package name , m a c r o l i s t in macros . i tems () :
for macro in m a c r o l i s t :

i f isinstance (macro , MacroDecl) :
macro . e va lua t e va lu e (g loba l env , package name)

e v a l u a t e o b j e c t l i t e r a l exp
in format ion mode l = None
i f o b j e c t l i t e r a l e x p i s not None :

in format ion mode l = o b j e c t l i t e r a l e x p . eva lua t e va lu e (
g loba l env , l o c a l e n v)

return in format ion mode l

class PackageDeclarat ion :
def i n i t (s e l f , ∗ tokens) :

s e l f . tokens : Tuple [Union [SimpleName , Trans fo rmat ionDef in i t i on ,
MacroDecl] , . . .] = tokens

def g e t t r a n s f o r m a t i o n d e f i n i t i o n (s e l f) −> Optional [
Trans fo rmat ionDe f in i t i on] :

154

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

C Python-Klassendefinition der abstrakten Syntaxklassen

for token in s e l f . tokens :
i f isinstance (token , Trans fo rmat ionDe f in i t i on) :

return token
return None

def g e t m a c r o l i s t (s e l f) −> L i s t [MacroDecl] :
m a c r o l i s t : L i s t [MacroDecl] = []
for token in s e l f . tokens :

i f isinstance (token , MacroDecl) :
m a c r o l i s t . append (token)

return m a c r o l i s t

def get needed packages (s e l f) −> L i s t [str] :
p a c k a g e l i s t : L i s t [str] = []
parent = s e l f . tokens [1]
m a c r o c a l l e x p l i s t = s e l f . g e t m a c r o c a l l e x p l i s t (parent)
for macro in m a c r o c a l l e x p l i s t :

macro name : L i s t [str] = []
for token in macro . tokens :

i f isinstance (token , SimpleName) :
macro name . append (token . e va lua t e va lu e ())

else :
break

i f len (macro name) == 2 :
i f macro name [0] not in p a c k a g e l i s t :

p a c k a g e l i s t . append (macro name [0])
return p a c k a g e l i s t

def g e t m a c r o c a l l e x p l i s t (s e l f , parent : Token) −> L i s t [
MacroCallExp] :

m a c r o c a l l e x p l i s t : L i s t [MacroCallExp] = []
for token in parent . tokens :

i f isinstance (token , MacroCallExp) :
m a c r o c a l l e x p l i s t . append (token)

i f isinstance (token , Token) :
m a c r o c a l l e x p l i s t . extend (s e l f .

g e t m a c r o c a l l e x p l i s t (token))
return m a c r o c a l l e x p l i s t

155

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

D Anwendungsfall 1: Firmenspezifische
Informationsmodelle

D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0)

Nameplate: Submodel

ManufacturerName: langString [1]
ManufacturerProductDesignation: langString [1]
Address: SubmodelElementCollection [1]
ManufacturerProductFamily: langString [1]
SerialNumber: String [0..1]
YearOfConstruction: String [1]
Markings: SubmodelElementCollection [0..1]

AssetSpecificProperties:
 SubmodelElementCollection [0..1]

1

1

AssetSpecificProperties:
SubmodelElementCollection

GuidelineSpecificProperties{00}:
SubmodelElementCollection [1..*]

GuidelineSpecificProperties:
SubmodelElementCollection

GuidelineForConformityDeclaration: String [1]
{arbitrary}

0..1

1..*

Address: submodelElementCollection

Department: langString [0..1]
Street: langString [1]
Zipcode: langString [1]
POBox: langString [0..1]
ZipCodeOfPOBox: langString [0..1]
CityTown: langString [1]
StateCounty: langString [0..1]
NationalCode: langString [1]
VATNumber: langString [0..1]
AddressRemarks: langString [0..1]
AddressOfAdditionalLink: String [0..1]
Phone{00}: submodelElementCollection [0..*]
Fax{00}: submodelElementCollection [0..*]
Email{00}: submodelElementCollection [0..*]

0..*

0..*

0..*

Phone:
submodelElementCollection

TelephoneNumber: langString [1]
TypeOfTelephone: String [0..1]

Fax:
submodelElementCollection

FaxNumber: langString [1]
TypeOfFaxNumber: String [0..1]

Email:
submodelElementCollection

EmailAddress: String [1]
PublicKey: langString [0..1]
TypeOfEmailAddress: String [0..1]
TypeOfPublickKey: langString [0..1]

Markings: submodelElementCollection

Marking{00}: submodelElementCollection [1..*]

Marking: submodelElementCollection

MarkingName: String [1]
MarkingFile: File [1]
MarkingAdditionalText{00}: String [0..*]

Abbildung D.1: ZVEI Digital Nameplate UML nach [14]

156

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

D Anwendungsfall 1: Firmenspezifische Informationsmodelle

D.2 Digital Nameplate for Galaxie®Actuator der Firma
WITTENSTEIN galaxie GmbH

NameplateForGalaxieD: Submodel

ManufacturerName: langString [1]
ManufacturerProductDesignation: langString [1]
Address: SubmodelElementCollection [1]
ManufacturerProductFamily: langString [1]
SerialNumber: String [0..1]
YearOfConstruction: String [1]
Markings: SubmodelElementCollection [0..1]

AssetSpecificProperties:
 SubmodelElementCollection [0..1]

1

1

AssetSpecificProperties:
SubmodelElementCollection

GuidelineSpecificProperties{00}:
SubmodelElementCollection [2]
Weight: float [1]
FeedbackSystem: string [1]
MountingPosition: string [1]
Lubrication: string [1]
CommutationOffset: float [1]
TempSensorType: string [1]

GuidelineSpecificProperties:
SubmodelElementCollection

GuidelineForConformityDeclaration: String [1]
RatedPower: float [1]
RatedCurrent: float [1]
RatedVoltage: float [1]
RatedMotorRotationSpeed: float [1]
MaxMotorRotationSpeed: float [1]
ThermalInsulationClass: string [1]
ProtectionClass: string [1]

0..1

1

Address: submodelElementCollection

Department: langString [0..1]
Street: langString [1]
Zipcode: langString [1]
CityTown: langString [1]
NationalCode: langString [1]
AddressOfAdditionalLink: String [0..1]
Phone{00}: submodelElementCollection [0..*]
Fax{00}: submodelElementCollection [0..*]
Email{00}: submodelElementCollection [0..*]

0..*

0..*

0..*

Phone:
submodelElementCollection

TelephoneNumber: langString [1]
TypeOfTelephone: String [0..1]

Fax:
submodelElementCollection

FaxNumber: langString [1]
TypeOfFaxNumber: String [0..1]

Email:
submodelElementCollection

EmailAddress: String [1]
Markings: submodelElementCollection

Marking{00}: submodelElementCollection [1..*]

Marking: submodelElementCollection

MarkingName: String [1]
MarkingFile: File [1]

1..*

GuidelineSpecificProperties:
SubmodelElementCollection

GuidelineForConformityDeclaration: String [1]
RatedCurrent: float [1]
MaxRotationalSpeed: float [1]
ProtectionClass: string [1]

1

Abbildung D.2: Auszug aus dem abgeleiteten Submodel-Template Digital Nameplate for Ga-
laxie®Actuator der Firma WITTENSTEIN galaxie GmbH nach [160]

157

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

D.3 Transformationsdefinition zwischen dem WITTENSTEIN und
dem ZVEI Teilmodell-Template

transformationDefinition td1
sourceTemplate :

a: Submodel -> Reference {key: Sequence {Key{
idType : KeyType ::IRI ,
value: "https :// wgrp.biz/sm/wgx/ NameplateForGalaxieD

/1/0/ NameplateForGalaxieD ",
type: KeyElements :: Submodel }}}

targetTemplate :
b: Submodel -> Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: "https :// admin - shell .io/zvei/ nameplate /1/0/

Nameplate ",
type: KeyElements :: GlobalReference }}}

value: Submodel {
identification : a. identification ,
submodelElement : Se t {

aas_macros :: copySubmodelElementByIdShort (a, " ManufacturerName "),
aas_macros :: copySubmodelElementByIdShort (a, "

ManufacturerProductDesignation "),
aas_macros :: copySubmodelElementByIdShort (a, "

ManufacturerProductFamily ") ,
aas_macros :: copySubmodelElementByIdShort (a, " SerialNumber "),
aas_macros :: copySubmodelElementByIdShort (a, " YearOfConstruction ") ,
aas_macros :: copySubmodelElementByIdShort (a, " Address ") ,
aas_macros :: copySubmodelElementByIdShort (a, " Markings "),
let smec: Submodel = aas_macros :: getSubmodelElementByIdShort (a, "

AssetSpecificProperties ") in (
SubmodelElementCollection {

idShort : smec.idShort ,
value: aas_macros :: copySubmodelElementsBySemanticIdValue (smec ,

"https :// admin -shell.io/zvei/ nameplate /1/0/ Nameplate /
AssetSpecificProperties / GuidelineSpecificProperties "),

ordered : smec.ordered ,
allowDuplicates : smec. allowDuplicates ,
semanticId : smec.semanticId ,
kind: smec.kind

}
)

},
idShort : a.idShort ,
description : a. description ,
administration : a. administration ,
semanticId : Reference {key: Sequence {Key{

idType : KeyType ::IRI ,
value: "https :// admin -shell.io/zvei/ nameplate

/1/0/ Nameplate ",
type: KeyElements :: GlobalReference }}} ,

kind: ModelingKind :: Instance
}

158

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

E Anwendungsfall 2: Verschiedene Versionen eines
Informationsmodells

E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation

Abbildung E.1: Unveröffentlichte Version 1 des Teilmodell-Templates ManufacturerDocumen-
tation

159

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation

Abbildung E.2: Unveröffentlichte Version 2 des Teilmodell-Templates ManufacturerDocumen-
tation

160

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation
basierend auf der VDI 2770 Spezifikation

Abbildung E.3: Unveröffentlichte Version 3 des Teilmodell-Templates ManufacturerDocumen-
tation

E.4 Transformationsdefinition zwischen den Versionen 1 und 2

t r a n s f o r m a t i o n D e f i n i t i o n td1
sourceTemplate :

a : Submodel −> Reference {key : Sequence {Key{
idType : KeyType : : IRI ,
va lue : ” http :// admin−s h e l l . i o / vdi /2770/1/0/

Documentation ” ,
type : KeyElements : : Globa lReference }}}

targetTemplate :
b : Submodel −> Reference {key : Sequence {Key{

idType : KeyType : : IRI ,
va lue : ” http :// admin−s h e l l . i o / vdi /2770/1/1/

Documentation ” ,
type : KeyElements : : Globa lReference }}}

value : Submodel {
i d e n t i f i c a t i o n : a . i d e n t i f i c a t i o n ,
submodelElement :

161

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

l et smc document l i s t : Set (SubmodelElementCol lect ion) =
aas macros : : getSubmodelElementsBySemanticIdValue (

a ,
” http :// admin−s h e l l . i o / vdi /2770/1/0/Document ”)

in (
smc document l i s t −>i t e r a t e (

smc document : SubmodelElementCol lect ion ;
new set : Set (SubmodelElement) = Set {} |
new set−>i n c l ud ing (

aas macros : : copySubmodelElementCollectionWithValue (
smc document ,
Set {

aas macros : : copySubmodelElementByIdShort (smc document ,
”DocumentId ”) ,

aas macros : : copySubmodelElementByIdShort (smc document ,
” IsPrimaryDocument ”) ,

aas macros : : copySubmodelElementsBySemanticIdValue (
smc document , ” http :// admin−s h e l l . i o / vdi
/2770/1/0/Document/ ReferencedObject ”) ,

SubmodelElementCol lect ion {
idShort : ” DocumentClas s i f i ca t ion00 ” ,
d e s c r i p t i o n : LangStr ingSet {

l angS t r ing : Set {
l angS t r ing {

language : ”en ” ,
name : ” This SubmodelElementCol lect ion ho lds

the in fo rmat ion f o r a VDI2770
DocumentClas s i f i ca t ion e n t i t y ”

}
}

} ,
va lue : Set {

aas macros : : copySubmodelElementByIdShort (
smc document , ” DocumentClassId ”) ,

aas macros : : copySubmodelElementByIdShort (
smc document , ”DocumentClassName ”) ,

aas macros : : copySubmodelElementByIdShort (
smc document , ” DocumentClass i f i cat ionSystem ”)

} ,
ordered : False ,
a l l owDup l i ca t e s : False ,
semant icId : Reference {key : Sequence {Key{

idType : KeyType : : IRI ,
va lue : ” http :// admin−s h e l l . i o / vdi

/2770/1/0/ DocumentClas s i f i ca t ion /
DocumentClas s i f i ca t ion ” ,

type : KeyElements : : Globa lReference }}} ,
kind : ModelingKind : : In s tance

} ,
aas macros : : copySubmodelElementSet (

162

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells

aas macros : : getSubmodelElementsBySemanticIdValue (
smc document ,
” http :// admin−s h e l l . i o / vdi /2770/1/0/ DocumentVersion”

)
)

}
)

)
)

) ,
idShort : a . idShort ,
d e s c r i p t i o n : a . d e s c r i p t i o n ,
admin i s t ra t i on : a . admin i s t rat ion ,
semant icId : Reference {key : Sequence {Key{

idType : KeyType : : IRI ,
va lue : ” http :// admin−s h e l l . i o / vdi /2770/1/1/

Documentation ” ,
type : KeyElements : : Globa lReference }}} ,

kind : ModelingKind : : In s tance
}

163

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

F Anwendungsfall 3: Integration von Komponenten und
zugehörigen Informationsmodellen

t r a n s f o r m a t i o n D e f i n i t i o n td1
sourceTemplate :

a : Set (Submodel) −> Reference {key : Sequence {Key{
idType : KeyType : : IRI ,
va lue : ” https : // a cp l t . org /PowerMonitoring ” ,
type : KeyElements : : Globa lReference }}}

targetTemplate :
b : Submodel −> Reference {key : Sequence {Key{

idType : KeyType : : IRI ,
va lue : ” https : // a cp l t . org /PowerMonitoring

” ,
type : KeyElements : : Globa lReference }}}

value : Submodel {
i d e n t i f i c a t i o n : I d e n t i f i e r {

id : ” https : // a cp l t . org /SM/TestSM” ,
idType : I d e n t i f i e r T y p e : : IRI } ,

submodelElement : Set {
Property {

idShort : ”MaxPowerConsumption ” ,
valueType : In teger ,
va lue : a−>i t e r a t e (sm : Submodel ; max power : In t e g e r = 0 |

max power + aas macros : : getSubmodelElementByIdShort (sm ,
”MaxPowerConsumption ”) . va lue)

} ,
Property {

idShort : ” RatedVoltage ” ,
valueType : In teger ,
va lue : a−>i t e r a t e (sm : Submodel ; max rated vo l tage : In t e g e r = 0

|
max rated vo l tage . max(

aas macros : : getSubmodelElementByIdShort (sm ,
” RatedVoltage ”) . va lue))

} ,
Property {

idShort : ”PowerTypes ” ,
valueType : Str ing ,
va lue :

l et power type : S t r ing = ””
in (

a−>i t e r a t e (sm : Submodel ; p o w e r t y p e l i s t : Set (S t r ing) =
Set {} |

l et tmp str ing : S t r ing = aas macros : :
getSubmodelElementByIdShort (sm ,
” RatedVoltage ”) . va lue . t oS t r i ng () + aas macros : :

getSubmodelElementByIdShort (sm , ”PowerType ”) .
va lue

164

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

F Anwendungsfall 3: Integration von Komponenten und zugehörigen
Informationsmodellen

in (
i f p o w e r t y p e l i s t −>i n c l u d e s (tmp str ing)
then p o w e r t y p e l i s t
else p o w e r t y p e l i s t −>i n c l ud ing (tmp str ing)
endif

)
)−>t oS t r i ng ()

)
}

} ,
idShort : ” PowerMonitoring ” ,
admin i s t ra t i on : Admin i s t ra t ive In fo rmat ion {

ve r s i on : ”1” ,
r e v i s i o n : ”0”} ,

semant icId : Reference {key : Sequence {Key{
idType : KeyType : : IRI ,
va lue : ” https : // a cp l t . org /PowerMonitoring ” ,
type : KeyElements : : Globa lReference }}} ,

kind : ModelingKind : : In s tance
}

165

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

G Testergebnisse der Versuchreihen

Abbildung G.1: Darstellung der Messwerte für die Erstellung des Parsers mit System 1

Abbildung G.2: Darstellung der Messwerte für die Erstellung des Parsers mit System 2

166

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

G Testergebnisse der Versuchreihen

Abbildung G.3: Darstellung der Messwerte für das Parsing der Transformationdefinition-Datei
mit System 1

Abbildung G.4: Darstellung der Messwerte für das Parsing der Transformationdefinition-Datei
mit System 2

Abbildung G.5: Darstellung der Messwerte für die Ermittlung der benötigten zusätzlichen
Dateien mit System 1

167

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Anhang

Abbildung G.6: Darstellung der Messwerte für die Ermittlung der benötigten zusätzlichen
Dateien mit System 2

Abbildung G.7: Darstellung der Messwerte für das Parsing der zusätzlichen Dateien mit Sy-
stem 1

Abbildung G.8: Darstellung der Messwerte für das Parsing der zusätzlichen Dateien mit Sy-
stem 2

168

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

G Testergebnisse der Versuchreihen

Abbildung G.9: Darstellung der Messwerte für die Anwendung des ausführbaren abstrakten
Syntaxbaums mit System 1

Abbildung G.10: Darstellung der Messwerte für die Anwendung des ausführbaren abstrakten
Syntaxbaums mit System 2

169

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[1] B. für Wirtschaft und Energie, “Was ist so revolutionär an Industrie
4.0,” https://www.bmwi.de/Redaktion/DE/FAQ/Industrie-40/faq-industrie-4-0.
html?cms artId=401710, eingesehen am xx.xx.xxxx. [Online]. Availa-
ble: https://www.bmwi.de/Redaktion/DE/FAQ/Industrie-40/faq-industrie-4-0.
html?cms artId=401710

[2] VDI/VDE Industrie 4.0 Begriffe/Terms, VDI, Düsseldorf, Statusreport, 2019.

[3] T. Tauchnitz, “Die Verwaltungsschale - Lösung für das Datenchaos!” atp magazin,
vol. 62, no. 6-7, pp. 50–59, 2020.

[4] Plattform Industrie 4.0, Details of the Asset Administration Shell - Part 1 - The ex-
change of informationen between partners in the value chain of Industrie 4.0 (Version
3.0RC01). Bundesministerium für Wirtschaft und Energie, 2020.

[5] ——, Details of the Asset Administration Shell - Part 2 - Interoperability at Runtime -
Exchanging Information via Application Programming Interfaces (Version 1.0RC01).
Bundesministerium für Wirtschaft und Energie, 2020.

[6] ——, Functional View of the Asset Administration Shell in an Industrie 4.0 Systen
Environment. Bundesministerium für Wirtschaft und Energie, 2021.

[7] W. Mahnke, “Informationsmodellierung mit OPC Unified Architecture,” atp maga-
zin, vol. 62, no. 3, pp. 58–65, 2020.

[8] IEC, IEC TS 62832-1 Ed.1.0 - Industrial-process measurement, control and automa-
tion - Digital factory framework - Part 1: General principles. Beuth Verlag, Berlin,
2020.

[9] ——, IEC TS 62832-2 Ed.1.0 - Industrial-process measurement, control and auto-
mation - Digital factory framework - Part 2: Model elements. Beuth Verlag, Berlin,
2020.

[10] ——, IEC TS 62832-3 Ed.1.0 - Industrial-process measurement, control and auto-
mation - Digital factory framework - Part 3: Application of Digital Factory for life
cycle management of production systems. Beuth Verlag, Berlin, 2020.

[11] S. Kaebisch, T. Kamiya, M. McCool, and V. Charpenay, “Web of Things (WoT)
thing description,” First Public Working Draft, W3C, 2017.

[12] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch, “Web of
Things (WoT) thing description,” Recommendation, W3C, 2020.

170

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[13] Plattform Industrie 4.0, “Specification Submodel Templates of the Asset Admini-
stration Shell: Generic Frame for Technical Data for Industrial Equipment in Ma-
nufacturing (Version 1.1),” Bundesministerium für Wirtschaft und Energie, Berlin,
Standard, 2020.

[14] ——, “Specification Submodel Templates of the Asset Administration Shell: ZVEI
Digital Nameplate for industrial equipment (Version 1.1),” Bundesministerium für
Wirtschaft und Energie, Berlin, Standard, 2020.

[15] ——, “Relationships between I4.0 Components – Composite Components and Smart
Production: Continuation of the Development of the Reference Model for the I4.0
SG Models and Standards ,” Bundesministerium für Wirtschaft und Energie, Berlin,
Standard, 2017.

[16] M. Both and J. Müller, “Deep Learning in Industrie 4.0 Umgebungen als Wegbereiter
für automatisierte Abbildung von Ontologien,” Tagungsband Automation, pp. 675–
686, 2020.

[17] J. Nilsson, F. Sandin, and J. Delsing, “Interoperability and machine-to-machine
translation model with mappings to machine learning tasks,” in 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019,
pp. 284–289.

[18] J. Bakakeu, M. Brossog, J. Zeitler, J. Franke, S. Tolksdorf, H. Klos, and J. Peschke,
“Automated reasoning and knowledge inference on opc ua information models,” in
2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS).
IEEE, 2019, pp. 53–60.

[19] T. Miny, M. Thies, U. Epple, S. Wein, and C. Diedrich, “Konzept für die automati-
sierte Erstellung von Verwaltungsschalen-Teilmodellen mit Hilfe domänenspezifischer
Transformationssprachelemente,” Tagungsband Automation, pp. 103–104, 2020.

[20] T. Deppe, L. Nothdurft, and U. Epple, “DIN SPEC 92000 als Enabler für Plug-and-
Produce-Konzepte,” atp magazin, vol. 62, no. 4, pp. 78–85, 2020.

[21] Miny, Torben and Thies, Michael and Epple, Ulrich and Diedrich, Christian, “Mo-
deltransformation for Asset Administration Shells,” in IECON 2020, 2020.

[22] P. Janich, Sprache und Methode: eine Einführung in philosophische Reflexion. UTB,
2014.

[23] S. Strahringer, “Ein sprachbasierter Metamodellbegriff und seine Verallgemeinerung
durch das Konzept des Metaisierungsprinzips,” in Modellierung, vol. 98, 1998, pp.
15–20.

[24] M. Ulrich, Die Sprache als Sache: Primärsprache, Metasprache, Übersetzung: Unter-
suchungen zum Übersetzen und zur Übersetzbarkeit anhand von deutschen, englischen
und vor allem romanischen Materialen. Gunter Narr Verlag, 1997, vol. 49.

[25] J. Mittelstraß, Enzyklopädie Philosophie und Wissenschaftstheorie: Band 2: HO.
Wissenschaftliche Buchgesellschaft, 2013.

171

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[26] S. Strahringer, Metamodellierung als Instrument des Methodenvergleichs: Eine Eva-
luierung am Beispiel objektorientierter Analysemethoden. Shaker, 1996.

[27] G. Klaus and M. Buhr, Philosophisches Wörterbuch. Verlag Enzyklopädie Leipzig,
1964.

[28] M. Polke, Prozeßleittechnik. Oldenbourg, 1994.

[29] B. Rumpe, Modellierung mit UML. Springer Berlin Heidelberg, 2011.

[30] H. Stachowiak, Allgemeine Modelltheorie. Springer, 1973.

[31] A. Fleischmann, S. Oppl, W. Schmidt, and C. Stary, Ganzheitliche Digitalisie-
rung von Prozessen: Perspektivenwechsel-Design Thinking-wertegeleitete Interaktion.
Springer, 2018.

[32] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U. Mehlig, and U. Zdun,
“Software-Architektur: Grundlagen–Konzepte,” Praxis, vol. 2, 2009.

[33] A. Fleischmann, S. Oppl, W. Schmidt, and C. Stary, “Modellierungssprachen,” in
Ganzheitliche Digitalisierung von Prozessen. Springer, 2018, pp. 71–128.

[34] M. Kobler, Qualität von Prozessmodellen: Kennzahlen zur analytischen Qua-
litätssicherung bei der Prozessmodellierung. Logos Verlag Berlin GmbH, 2010.

[35] N. Chomsky, Aspekte der Syntax-Theorie. Suhrkamp, 1969.

[36] ISO/IEC, “CSA ISO/IEC 9899:2019-10-01: Information technology - Programming
languages - C (Adopted ISO/IEC 9899:2018, fourth edition, 2018-07),” Standard,
2019.

[37] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
1981.

[38] D. Abel, Petri-netze für Ingenieure: Modellbildung und Analyse diskret gesteuerter
Systeme. Springer-Verlag, 2013.

[39] Object Management Group, “OMG Unified Modeling Language (OMG UML), Ver-
sion 2.5.1,” Object Management Group, Standard, 2017.

[40] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, and C. Nebut, “A CSP Approach
for Metamodel Instantiation,” in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence. IEEE, 2013, pp. 1044–1051.

[41] M. Scheidgen, “Metamodelle für Sprachen mit formaler Syntaxdefinition, am Beispiel
von SDL-2000,” Humboldt-Universität zu Berlin, 2004.

[42] J. Cabot and M. Gogolla, “Object Constraint Language (OCL): a Definitive Guide,”
in International School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems. Springer, 2012, pp. 58–90.

[43] M. Fowler, Domain-Specific Languages. Pearson Education, 2010.

172

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[44] M. Strembeck and U. Zdun, “An approach for the systematic development of domain-
specific languages,” Software: Practice and Experience, vol. 39, no. 15, pp. 1253–1292,
2009.

[45] ISO/IEC, ISO/IEC 9075-1:2016: Information technology - Database languages - SQL
- Part 1: Framework (SQL/Framework). Beuth Verlag, Berlin, 2016.

[46] T. Stahl, S. Efftinge, A. Haase, and M. Völter, Modellgetriebene Softwareentwicklung:
Techniken, Engineering, Management. dpunkt. verlag, 2012.

[47] M. Broy and O. Spaniol, VDI-Lexikon Informatik und Kommunikationstechnik.
Springer-Verlag, 2013.

[48] G. Kappel and M. Schrefl, Objektorientierte Informationssysteme: Konzepte, Dar-
stellungsmittel, Methoden. Springer-Verlag, 2013.

[49] ISO/TS 29002-5:2009 Industrial automation systems and integration — Exchange of
characteristic data — Part 5: Identification scheme, 2009.

[50] T. Berners-Lee, R. T. Fielding, and L. Masinter, “RFC 3986: Uniform Resource
Identifier (URI): Generic Syntax,” Proposed Standard, January, 2005.

[51] P. Leach, M. Mealling, and R. Salz, “RFC 4122: A universally unique identifier
(UUID) URN namespace,” Proposed Standard, July, 2005.

[52] J. Winkelmann, “Spezifikation von Visual OCL: Eine Visualisierung der Object Cons-
traint Language,” Ph.D. dissertation, Techn. Univ., Fak. IV, Elektrotechnik und In-
formatik, 2005.

[53] Object Management Group, Object Constraint Language V2.4, 2014.

[54] M. Schleipen, Adaptivität und semantische Interoperabilität von Manufacturing Exe-
cution Systemen (MES). KIT Scientific Publishing, 2013, vol. 12.

[55] A. Zeid, S. Sundaram, M. Moghaddam, S. Kamarthi, and T. Marion, “Interopera-
bility in Smart Manufacturing: Research Challenges,” Machines, vol. 7, no. 2, p. 21,
2019.

[56] IEC, “IEC 21823-1: Internet of Things (IoT) - Interoperability for IoT Systems - Part
1: Framework,” International Electrotechnical Commission, Geneva, CH, Standard,
2019.

[57] I. S. C. Committee et al., “IEEE Standard Glossary of Software Engineering Termi-
nology (IEEE Std 610.12-1990),” CA: IEEE Computer Society, vol. 169, 1990.

[58] H. Kubicek, A. Breiter, and J. Jarke, “Daten, Metadaten, Interoperabilität,” Hand-
buch Digitalisierung in Staat und Verwaltung, pp. 1–13, 2019.

[59] A. Tolk, “Composable Mission Spaces and M&S Repositories - Applicability of Open
Standards,” in Spring simulation interoperability workshop, Arlington (VA), 2004.

173

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[60] S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi, and A. Evesti,
“Situation-based and self-adaptive applications for the smart environment,” Jour-
nal of Ambient Intelligence and Smart Environments, vol. 4, no. 6, pp. 491–516,
2012.

[61] NATO Standardization Office, “Allied Joint Doctrine for Communication and Infor-
mation Systems Edition A Version 1,” Standard, 2017.

[62] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things:
Taxonomies and Open Challenges,” Mobile Networks and Applications, vol. 24, no. 3,
pp. 796–809, 2019.

[63] ISO/IEC 19941: Information technology - Cloud computing - Interoperability and
portability, International Electrotechnical Commission, Geneva, CH, Standard, 2017.

[64] ISO/IEC 7498-1: Information technology - Open System Interconnection - Basic Re-
ference Mode: The Basic Model, International Electrotechnical Commission, Geneva,
CH, Standard, 1994.

[65] IEC 21823-2: Internet of Things (IoT) - Interoperability for IoT Systems - Part 2:
Transport Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2019.

[66] IEC 21823-3: Internet of Things (IoT) - Interoperability for IoT Systems - Part 3:
Semantic Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2019.

[67] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things
Infrastructure: Classification, Challenges, and Future Work,” in International Con-
ference on Internet of Things as a Service. Springer, 2017, pp. 11–18.

[68] ETSI, “ETSI TR 103 535: SmartM2M; Guidelines for using semantic interoperability
in the industry,” 2019.

[69] ——, “ETSI TR 103 536: SmartM2M; Strategic/technical approach on how to achieve
interoperability/interworking of existing standardized IoT Platforms,” 2019.

[70] ——, “ETSI TR 103 537: SmartM2M; PlugtestsTM preparation on Semantic Inter-
operability,” 2019.

[71] IEC, “White Paper Semantic interoperability:2019 - Semantic interoperability: chal-
lenges in the digital transformation age,” 2019.

[72] P. Wegener, “GERMAN STANDARDIZATION ROADMAP Industrie 4.0 Version
4,” DIN e, vol. 2020.

[73] T. Pellegrini and A. Blumauer, “Semantic Web,” Wege zur vernetzten Wissensgesell-
schaft. Berlin [ua] Springer, 2006.

[74] H. van der Veer and A. Wiles, “Achieving Technical Interoperability - the ETSI
Approach,” European telecommunications standards institute, 2008.

174

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[75] L. Christiansen, M. Hoernicke, and A. Fay, “Modellgestütztes Engineering,” atp ma-
gazin, vol. 56, no. 03, pp. 18–27, 2014.

[76] M. Hoernicke, L. Christiansen, and A. Fay, “Anlagentopologien automatisch erstel-
len,” atp magazin, vol. 56, no. 04, pp. 28–40, 2014.

[77] A. Donaubauer, A. Fichtinger, T. Kutzner, and M. Schilcher, “Semantische Modell-
transformation im Kontext von INSPIRE,” Newsletter e-geo. ch, no. 22, pp. 10–13,
2009.

[78] IEC 21823-4: Internet of Things (IoT) - Interoperability for IoT Systems - Part 4:
Syntactic Interoperability, International Electrotechnical Commission, Geneva, CH,
Standard, 2020.

[79] T. Mersch, U. Epple, and A. Schürr, “Regelbasierte Modelltransformation in pro-
zessleittechnischen Laufzeitumgebungen,” Fachgruppe für Materialwissenschaft und
Werkstofftechnik, Tech. Rep., 2017.

[80] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and Soul of
Model-Driven Software Development,” IEEE software, vol. 20, no. 5, pp. 42–45, 2003.

[81] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[82] H. Kern, S. Kühne, and D. Fötsch, “Merkmale und Werkzeugunterstützung für Mo-
delltransformationen im Kontext modellgetriebener Softwareentwicklung,” Fähnrich,
K.-P.; Kühne, S.; Speck, A, 2006.

[83] V. Gruhn, D. Pieper, and C. Röttgers, MDA®: Effektives Software-Engineering mit
UML2® und Eclipse. Springer-Verlag, 2007.

[84] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation approa-
ches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[85] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic notes
in theoretical computer science, vol. 152, pp. 125–142, 2006.

[86] A. Metzger, “A Systematic Look at Model Transformations,” in Model-driven Soft-
ware Development. Springer, 2005, pp. 19–33.

[87] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and D. Varró, “Survey and
classification of model transformation tools,” Software & Systems Modeling, vol. 18,
no. 4, pp. 2361–2397, 2019.

[88] E. Visser, “A Survey of Rewriting Strategies in Program Transformation Systems,”
Electronic Notes in Theoretical Computer Science, vol. 57, no. 2, 2001.

[89] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwin-
ger, “Reuse in model-to-model transformation languages: are we there yet?” Software
& Systems Modeling, vol. 14, no. 2, pp. 537–572, 2015.

175

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[90] S. Nolte, QVT-operational mappings: Modellierung mit der Query views Transfor-
mation. Springer-Verlag, 2009.

[91] J.-M. Jézéquel, O. Barais, and F. Fleurey, “Model Driven Language Engineering
with Kermeta,” in International Summer School on Generative and Transformational
Techniques in Software Engineering. Springer, 2009, pp. 201–221.

[92] D. Akehurst and S. Kent, “A Relational Approach to Defining Transformations in a
Metamodel,” in International Conference on the Unified Modeling Language. Sprin-
ger, 2002, pp. 243–258.

[93] S. Nolte, QVT-Relations Language. Springer Science & Business Media, 2009.

[94] A. Schürr, “Specification of Graph Translators with Triple Graph Grammars,” in In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science. Springer,
1994, pp. 151–163.

[95] A. Schürr and F. Klar, “15 Years of Triple Graph Grammars,” in International
Conference on Graph Transformation. Springer, 2008, pp. 411–425.

[96] C. Ermel, M. Rudolf, and G. Taentzer, “The AGG approach: Language and environ-
ment,” in Handbook Of Graph Grammars And Computing By Graph Transformation:
Volume 2: Applications, Languages and Tools. World Scientific, 1999, pp. 551–603.

[97] E. D. Willink, “UMLX: A graphical transformation language for MDA,” in 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven Ar-
chitecture, 2003.

[98] T. Vogel and H. Giese, Model-Driven Engineering of Adaptation Engines for Self-
Adaptive Software: Executable Runtime Megamodels. Universitätsverlag Potsdam,
2013.

[99] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Science of computer programming, vol. 72, no. 1-2, pp. 31–39, 2008.

[100] A. Kalnins, J. Barzdins, and E. Celms, “Model transformation language MOLA,” in
Model Driven Architecture. Springer, 2004, pp. 62–76.

[101] D. Varró and A. Balogh, “The model transformation language of the VIATRA2
framework,” Science of Computer Programming, vol. 68, no. 3, pp. 214–234, 2007.

[102] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Transformation Langua-
ge,” in International Conference on Theory and Practice of Model Transformations.
Springer, 2008, pp. 46–60.

[103] T. Baar and J. Whittle, “On the Usage of Concrete Syntax in Model Transformati-
on Rules,” in International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. Springer, 2006, pp. 84–97.

[104] R. Grønmo, Using Concrete Syntax in Graph-based Model Transformation, 2009.

176

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[105] B. Rumpe and I. Weisemöller, “A Domain Specific Transformation Language,” arXiv
preprint arXiv:1409.2309, 2014.

[106] I. Weisemöller, Generierung domänenspezifischer Transformationssprachen. Shaker,
2012.

[107] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer, “Explicit Transfor-
mation Modeling,” in International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 2009, pp. 240–255.

[108] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger, and M. Stumptner, “A
generator framework for domain-specific model transformation languages,” in ICEIS
(3), 2006, pp. 27–35.

[109] J. Steel and R. Drogemuller, “Domain-Specific Model Transformation in Building
Quantity Take-Off,” in International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 2011, pp. 198–212.

[110] K. Hölldobler, MontiTrans: Agile, modellgetriebene Entwicklung von und mit
domänenspezifischen, kompositionalen Transformationssprachen. Shaker, 2018.

[111] E. Syriani, J. Gray, and H. Vangheluwe, “Modeling a Model Transformation Lan-
guage,” in Domain Engineering. Springer, 2013, pp. 211–237.

[112] J. S. Cuadrado, E. Guerra, and J. de Lara, “Towards the Systematic Construction of
Domain-Specific Transformation Languages,” in European Conference on Modelling
Foundations and Applications. Springer, 2014, pp. 196–212.

[113] A. Petter, “Modell-zu-Modell-Transformation von Modellen von Benutzerschnittstel-
len,” Ph.D. dissertation, TU-Prints, 2012.

[114] J. I. Irazábal, C. Pons, and C. Neil, “Model transformation as a mechanism for the
implementation of domain specific transformation languages,” Electronic Journal of
SADIO (EJS), vol. 9, pp. 49–66, 2010.

[115] E. Kalnina, A. Kalnins, A. Sostaks, E. Celms, and J. Iraids, “Tree Based Domain-
Specific Mapping Languages,” in International Conference on Current Trends in
Theory and Practice of Computer Science. Springer, 2012, pp. 492–504.

[116] C. Wagner, J. Grothoff, U. Epple, R. Drath, S. Malakuti, S. Grüner, M. Hoffmeister,
and P. Zimermann, “The Role of the Industry 4.0 Asset Administration Shell and
the Digital Twin during the life cycle of a plant,” in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
2017, pp. 1–8.

[117] M. Grieves, “Digital twin: manufacturing excellence through virtual factory replica-
tion,” White paper, vol. 1, pp. 1–7, 2014.

[118] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. Wang,
“Modeling, Simulation, Information Technology & Processing Roadmap,” Technology
Area, vol. 11, 2010.

177

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[119] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital Twin in Industry: State-of-the-
Art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405–2415,
2018.

[120] K. Panetta, “Gartner’s Top 10 Strategic Technology Trends for 2017,” Smarter With
Gartner, vol. 18, 2016.

[121] D. CeArley, B. Burke, S. Searle, and M. J. Walker, “Top 10 Strategic Technology
Trends for 2018,” The Top, vol. 10, 2016.

[122] G. Top, “Strategic Technology Trends for 2019,” David Cearley, Brian Burke, 10.

[123] DIN, “DIN SPEC 91345: Reference Architecture Model Industrie 4.0 (RAMI4.0),”
DIN - German Institute for Standardization, Berlin, DE, Standard, 2016.

[124] M. Jacoby and T. Usländer, “Digital Twin and Internet of Things—Current Stan-
dards Landscape,” Applied Sciences, vol. 10, no. 18, p. 6519, 2020.

[125] ISO 13584-42: Industrial automation systems and integration - Part 42: Description
methodology: Methodology for structuring parts families, International Standardi-
zation Organisation, Geneva, CH, Standard, 2010.

[126] IEC 61360-1: Standard data elements types with associated classification scheme for
electric items - Part 1: Definitions - Principles and methods, International Electro-
technical Commission, Geneva, CH, Standard, 2017.

[127] ISO 10303-11: Industrial automation systems and integration – Product data repre-
sentation and exchange – Part 11: Description methods: The EXPRESS language
reference manual, International Standardization Organisation, Geneva, CH, Stan-
dard, 2004.

[128] IEC 61360-2: Standard data elements types with associated classification scheme
for electric items - Part 2: EXPRESS, International Electrotechnical Commission,
Geneva, CH, Standard, 2012.

[129] IEC 62714-1: Engineering data exchange format for use in industrial automation sy-
stems engineering - Automation Markup Language - Part 1: Architecture and gene-
ral requirements, International Electrotechnical Commission, Geneva, CH, Standard,
2018.

[130] IEC 61987-10: Industrial-Process Measurement and Control - Data Structures and
Elements in Process Equipment Catalogues - Part 10: Lists of Properties (LOPs) for
Industrial-Process Measurement and Control for Electronic Data Exchange. Funda-
mentals, International Electrotechnical Commission, Geneva, CH, Standard, 2009.

[131] IEC 61804-3 (2015): Function Blocks (FB) for process control and Electronic Device
Description Language (EDDL) - Part 3: EDDL syntax and semantics, International
Electrotechnical Commission, Geneva, CH, Standard, 2015.

[132] IEC 62453-1: Field device tool (FDT) interface specification - Part 1: Overview and
guidance, International Electrotechnical Commission, Geneva, CH, Standard, 2016.

178

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[133] IEC 62769-1: Field device integration (FDI) - Part 1: Overview, International Elec-
trotechnical Commission, Geneva, CH, Standard, 2015.

[134] IEC 62832-1: Industrial-process measurement, control and automation - Digital fac-
tory framework - Part 1: General principles, International Electrotechnical Commis-
sion, Geneva, CH, Standard, 2016.

[135] IEC 62541-1: OPC Unified Architecture - Part 1: Overview and Concepts, Interna-
tional Electrotechnical Commission, Geneva, CH, Standard, 2016.

[136] B. Boss, S. Bader, A. Orzelski, M. Hoffmeister, M. ten Hompel, B. Vogel-Heuser,
and T. Bauernhansl, “Verwaltungsschale,” in Handbuch Industrie 4.0: Produktion,
Automatisierung und Logistik. Springer Berlin Heidelberg, 2019.

[137] W. Dorst, Umsetzungsstrategie Industrie 4.0: Ergebnisbericht der Plattform Industrie
4.0. Bitkom Research GmbH, 2015.

[138] D. SPEC, “91345: 2016-04 Referenzarchitekturmodell Industrie 4.0 (RAMI4. 0),”
Tech. rep., DIN Deutsches Institut für Normung e, Standard, 2016.

[139] F. Palm and U. Epple, “openAAS-Die offene Entwicklung der Verwaltungsschale,”
Tagungsband Automation, pp. 103–104, 2017.

[140] Plattform Industrie 4.0, Details of the Asset Administration Shell - Part 1 - The ex-
change of informationen between partners in the value chain of Industrie 4.0 (Version
1.0). Bundesministerium für Wirtschaft und Energie, 2018.

[141] IEC 63278-1: Asset administration shell for industrial applications - Part 1: Admi-
nistration shell structure, International Electrotechnical Commission, Geneva, CH,
Standard, 2020.

[142] T. Bray et al., “RFC 8259: The JavaScript Object Notation (JSON) Data Interchange
Format,” Proposed Standard, December, 2017.

[143] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible
Markup Language (XML) 1.0 (Fifth Edition),” Recommendation, W3C, 2008.

[144] G. Klyne, J. J. Carroll, and B. McBride, “RDF 1.1 Concepts and Abstract Syntax,”
Recommendation, W3C, 2014.

[145] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Kaji-
moto, “Web of Things (WoT) Architecture,” Recommendation, W3C, 2020.

[146] D. Hardt et al., “RFC 6749: The OAuth 2.0 Authorization Framework,” Proposed
Standard, December, 2012.

[147] Plattform Industrie 4.0, Verwaltungsschale in der Praxis - Wie definiere ich Teilm-
odelle, beispielhafte Teilmodelle und Interaktion zwischen Verwaltungsschalen (Ver-
sion 1.0), 2019.

[148] ——, Verwaltungsschale in der Praxis - Wie definiere ich Teilmodelle, beispielhafte
Teilmodelle und Interaktion zwischen Verwaltungsschalen (Version 1.1), 2020.

179

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Literaturverzeichnis

[149] A. Belyaev and C. Diedrich, “Aktive Verwaltungsschale von I4.0-Komponenten,” 07
2019.

[150] S. Wein, Y. Dassen, T. Deppe, S. Storms, and C. Brecher, “Konzept einer Autonomen
Industrie 4.0-Komponente auf Basis Agenten-basierter Ansätze,” 05 2020.

[151] VDI/VDE 2193 Blatt 1: Sprache für I4.0-Komponenten, VDI, Düsseldorf, Standard,
2019.

[152] C. Diedrich, J. B. JensVialkowitsch, T. Deppe, O. Schell, A. Willner, F. Vollmar,
T. Schulz, F. Pethig, J. Neidig, T. Usländer et al., “I4. 0-Sprache–Vokabular, Nach-
richtenstruktur und semantische Interaktionsprotokolle der I4. 0-Sprache,” Platt-
form I4. 0, Herausgeber: Bundesministerium für Wirtschaft und Energie (BMWi)
Öffentlichkeitsarbeit, vol. 11019.

[153] VDI/VDE 2193 Blatt 2: Sprache für I4.0-Komponenten. Interaktionsprotokoll für
Ausschreibungsverfahren, VDI, Düsseldorf, Standard, 2019.

[154] L. Lehto et al., Real-time content transformations in a Web service based delivery
architecture for geographic information. Helsinki University of Technology, 2007.

[155] J. S. Cuadrado, “Towards a Family of Model Transformation Languages,” in Theory
and Practice of Model Transformations. Springer, 2012, pp. 176–191.

[156] I. Kurtev, “State of the Art of QVT: A Model Transformation Language Standard,”
in International Symposium on Applications of Graph Transformations with Indu-
strial Relevance. Springer, 2007, pp. 377–393.

[157] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a framework for compositional
development of domain specific languages,” International journal on software tools
for technology transfer, vol. 12, no. 5, pp. 353–372, 2010.

[158] N. Wirth, Grundlagen und Techniken des Compilerbaus. Oldenbourg Wissenschafts-
verlag, 2012.

[159] F. L. DeRemer, “Practical translators for LR (k) languages,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1969.

[160] Bernd Vojanec, “Arbeiten mit Submodel Templates,” 2021. [Online]. Available:
https://www.youtube.com/watch?v=aV2dA8ZY2v0

[161] M. Both, N. Maisch, and J. Müller, “Semantische Interoperabilität durch Natural
Language – Processing als Basis für Self-X-Fähigkeiten von Verwaltungsschalen in
semantisch heterogenen Asset-Netzwerken,” Tagungsband Automation, pp. 571–584,
2021.

[162] P. Haase and J. Völker, “Ontology learning and reasoning—dealing with uncertainty
and inconsistency,” in Uncertainty reasoning for the semantic web I. Springer, 2006,
pp. 366–384.

180

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Alle 23 Reihen der „Fortschritt-Berichte VDI“
in der Übersicht – bequem recherchieren unter:
elibrary.vdi-verlag.de

Und direkt bestellen unter:
www.vdi-nachrichten.com/shop

Reihe 01 Konstruktionstechnik/
 Maschinenelemente
Reihe 02 Fertigungstechnik
Reihe 03 Verfahrenstechnik
Reihe 04 Bauingenieurwesen
Reihe 05	 Grund-	und	Werkstoffe/Kunststoffe
Reihe 06 Energietechnik
Reihe 07 Strömungstechnik
Reihe 08 Mess-, Steuerungs- und Regelungstechnik
Reihe 09 Elektronik/Mikro- und Nanotechnik
Reihe 10 Informatik/Kommunikation
Reihe 11 Schwingungstechnik
Reihe 12 Verkehrstechnik/Fahrzeugtechnik
Reihe 13 Fördertechnik/Logistik
Reihe 14 Landtechnik/Lebensmitteltechnik
Reihe 15 Umwelttechnik
Reihe 16 Technik und Wirtschaft
Reihe 17 Biotechnik/Medizintechnik
Reihe 18 Mechanik/Bruchmechanik
Reihe 19 Wärmetechnik/Kältetechnik
Reihe 20 Rechnergestützte Verfahren
Reihe 21 Elektrotechnik
Reihe 22 Mensch-Maschine-Systeme
Reihe 23 Technische Gebäudeausrüstung

Black
Preflight Lx3 am Februar 2, 2022 | 14:53:02 | 148 mm x 210 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
le

tz
te

S
ei

te
_r

ec
ht

s_
A

5.
pd

f ·
 S

ei
te

 1

L_220106_Reihe_10_876_letzteSeite_rechts_A5.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Preflight Lx3 am Februar 2, 2022 | 14:53:02 | 148 mm x 210 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
le

tz
te

S
ei

te
_r

ec
ht

s_
A

5.
pd

f ·
 S

ei
te

 2

L_220106_Reihe_10_876_letzteSeite_rechts_A5.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Mehr Meinung. Mehr Orientierung. Mehr Wissen.
Wesentliche Informationen zu neuen Technologien und Märkten.
Das bietet VDI nachrichten, Deutschlands meinungsbildende Wochenzeitung zu Technik,
Wirtschaft und Gesellschaft, den Ingenieuren. Sofort abonnieren und lesen.
Donnerstagabends als E-Paper oder freitags als Zeitung.

 Jetzt abonnieren: Leser-Service VDI nachrichten, 65341 Eltville
Telefon: +49 6123 9238-201, Telefax: +49 6123 9238-244, vdi-nachrichten@vuservice.de

Ingenieure wollen immer alles
ganz genau wissen. Wie wär‘s mit
einem E-Paper- oder Zeitungs-Abo?

www.vdi-nachrichten.com/abo

Cyan Magenta Yellow Black
Preflight Lx3 am Februar 2, 2022 | 15:02:44 | 350 mm x 250 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
C

ov
er

.p
df

 ·
S

ei
te

 2

L_220106_Reihe_10_876_Cover.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

Fortschritt-
Berichte VDI

Konzept für
die semantische
Interoperabilität
zwischen
Informationsmodellen

M. Sc. Torben Miny,
Aachen

BAND
1|1

VOLUME
1|1

NR. 876

REIHE 10
INFORMATIK/
KOMMUNIKATION

ISBN 978-3-18-387610-5

BAND
1|1

VOLUME
1|1

NR. 876

REIHE 10
INFORMATIK/
KOMMUNIKATION

M
in

y
A

us
ta

us
ch

 v
on

 A
ss

et
-In

fo
rm

at
io

ne
n

RE
IH

E
10

|

 N
R.

 8
76

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Cyan Magenta Black
Preflight Lx3 am Februar 2, 2022 | 15:02:44 | 350 mm x 250 mm

L_
22

01
06

_R
ei

he
_1

0_
87

6_
C

ov
er

.p
df

 ·
S

ei
te

 1

L_220106_Reihe_10_876_Cover.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186876102 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:53:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186876102

	Cover
	1 Einleitung
	1.1 Motivation und Zielsetzung
	1.2 Gliederung
	1.3 Eigene Vorveröffentlichungen

	2 Modellierung
	2.1 Sprache und Metasprache
	2.2 Modell und Metamodell
	2.3 Modellsprachen
	2.4 Typ und Instanz
	2.5 Identifikation von Objekten

	3 Object Constraint Language
	3.1 Anwendung von OCL
	3.2 Abstrakte Syntax von BasicOCL
	3.3 Konkrete Syntax von BasicOCL

	4 Interoperabilität
	4.1 Stufen der Interoperabilität
	4.2 Aktuelle Ansätze für Interoperabilität

	5 Modelltransformation
	5.1 Begriffswelt der Modelltransformation
	5.2 Merkmale von Modelltransformationen
	5.2.1 Allgemeine Merkmale
	5.2.2 Merkmale der Quell- und Ziel-(meta-)modelle
	5.2.3 Merkmale der Transformationsregeln
	5.2.4 Merkmale der Regelnutzung

	5.3 Modell-zu-Modell Transformationsansätze
	5.3.1 Imperativer/Operationaler Ansatz
	5.3.2 Relationaler/Deklarativer Ansatz
	5.3.3 Graph-basierter Ansatz
	5.3.4 Hybrider Ansatz

	5.4 Transformationssprache und -system
	5.4.1 Generische und domänenspezifische Transformationssprachen
	5.4.2 Erstellung von Transformationssprachen

	6 Modellierung und Austausch von Asset-Informationen
	6.1 Aktuelle Normungslandschaft für Eigenschaften
	6.2 Digital Factory Framework - International Electrotechnical Commission
	6.2.1 Ziel und Anwendungsbereich
	6.2.2 Informationsmodell

	6.3 Asset Administration Shell - Plattform Industrie 4.0
	6.3.1 Ziel und Anwendungsbereich
	6.3.2 Informationsmodell

	6.4 Thing Description - Web of Things
	6.4.1 Ziel und Anwendungsbereich
	6.4.2 Informationsmodell

	6.5 Vergleich
	6.5.1 Asset-Begriff
	6.5.2 Ziel, Anwendungsbereich und Informationsmodell

	6.6 Schlussfolgerung

	7 Informationsaustausch bei Verwaltungsschalen
	7.1 Erscheinungsformen
	7.1.1 Typ 1
	7.1.2 Typ 2
	7.1.3 Typ 3
	7.1.4 Vergleich

	7.2 Nutzung von Verwaltungsschalen-Teilmodellen für semantische Interoperabilit ät: Offene Fragestellungen und mögliche Lösungsoptionen

	8 Modelltransformationen für die semantische Interoperabilität zwischen verschiedenen Informationsmodellen
	8.1 Syntaktische und semantische Transformationen
	8.2 Klassifikation der Transformationen
	8.3 Anforderungen an die zu entwickelnde Transformationssprache
	8.3.1 Allgemeine Anforderungen
	8.3.2 Benötigte Transformationssprachelemente

	8.4 Evaluation bestehender Transformationssprachen
	8.5 Fazit

	9 Metamodell der Modelltransformationssprache
	9.1 Benötigte Sprachelemente und deren Semantik
	9.2 Syntaxregeln und konkrete Syntax
	9.3 Evaluation der Sprache

	10 Abbildung der Modelltransformationssprache für Verwaltungsschalen
	10.1 Anpassungen des Informationsmodells
	10.2 Makros für das vollständige Kopieren von SubmodelElement-Objekten
	10.3 Makros für den Zugriff auf ein SubmodelElement-Objekt

	11 Transformationssystem
	11.1 Allgemeiner Aufbau eines Transformationssystems
	11.2 Umsetzung in Python

	12 Evaluation
	12.1 Anwendungsfall 1: Firmenspezifische Informationsmodelle
	12.2 Anwendungsfall 2: Verschiedene Versionen standardisierter Informationsmodelle
	12.3 Anwendungsfall 3: Integration von Komponenten und zugehörigen Informationsmodellen
	12.4 Benötigte Zeit für die Erstellung einer Transformationsdefinition
	12.5 Optimierung der Funktionsaufrufe im Lebenszyklus einer Komponente bei Nutzung des entwickelten Transformationssystems

	13 Zusammenfassung
	13.1 Ausblick
	A Makro-Definitionen für Verwaltungsschalen
	B Grammatikdefinition der Transformationssprache
	B.1 Grammar ocl.lark
	B.2 Grammar mtl.lark

	C Python-Klassendefinition der abstrakten Syntaxklassen
	C.1 ast ocl.py
	C.2 ast mtl.py

	D Anwendungsfall 1: Firmenspezifische Informationsmodelle
	D.1 ZVEI Digital Nameplate for industrial equipment (Version 1.0)
	D.2 Digital Nameplate for Galaxie®Actuator der Firma WITTENSTEIN galaxie GmbH
	D.3 Transformationsdefinition zwischen dem WITTENSTEIN und dem ZVEI Teilmodell-Template

	E Anwendungsfall 2: Verschiedene Versionen eines Informationsmodells
	E.1 Version 1 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.2 Version 2 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.3 Version 3 des Teilmodell-Templates ManufacturerDocumentation basierend auf der VDI 2770 Spezifikation
	E.4 Transformationsdefinition zwischen den Versionen 1 und 2

	F Anwendungsfall 3: Integration von Komponenten und zugehörigen Informationsmodellen
	G Testergebnisse der Versuchreihen

	Literaturverzeichnis

