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Starting out from a general mcthodology of data controlled
structural analysis, conscquences from this methodology arc
drawn fora suitable utilization of clustcr analysisin empiricalin-
vestigations, with particular attention being paid to thc ques-
tion; "Given my specific query, what mcthod is best suited tomy
data in my cmpirical and theoretical contexts?”. Thc basis for
answecring this question isa hierarchically ordered system of met-
hod classes and corrcsponding structure classes, with targct-
oriented comparisons of the results yielded by the methods of a
given class making it possible to obtain a data-related rcply.
This, in turn, leads to new starting points for solving the cluster
number problcm, for cluster-analysis method validation stratc-
gies, and for the evaluation and mterpretation of cluster solu-
tiens. (Author)

1. Zur Problemstellung

Bereits seit Jahren gibt cs hunderte verschiedener Me-
thoden der Clusteranalyse, die sich unterschiedlichen
Modelltypenzuordnen lassen tind auchaufunterschiedli-
chen Voraussetzungen beruhen (Abbildung 1). Diese
Vielfalt ist vorwiegend durch die Operationalisierung
des sehr allgemeinen heuristischen Problems entstanden,
eine Objektmenge so in Cluster aufzuteilen, daB sich die
Objektc innerhalb eines Clusters méglichst édhnlich und
Objekte verschiedener Cluster moglichst “unahnlich”
sind.
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Abb. 1.: Ubecrsicht iiber Ausgangspunkte, zugrundeliegende
Konzepie und Strukturtypen verschiedener Methoden der Clu-
stcranalysc. Dicke Linien stehen fiir die am hiiufigsten diskutier-
ten Varianten.

Anwender ausempirischen Wissenschaften stehen da-
mit vor folgendem Addquatheitsproblem: Welche Me-
thode ist meinen Daten unter meiner Fragestellung und
in meinem empirischen und theoretischen Kontext ange-

messen? Weder Lehrbiichernoch Monographien zur Clu-
steranalyse oder Datenanalyse (z.B. 58, 61) noch zur Me-
thodik empirischer Forschung in der Psychologic und an-
deren Sozialwissenschaften (z.B. 59, 64) geben hier er-
schopfende und handhabbare Antworten. Clusteranaly-
se- und Klassifikationsaufgaben zielen auf Aspekte der
Datenstruktur ab, so dal} es sich anbiectet, tiber theore-
tische Fundierungen zu einer allgemeinen Strukturana-
lyse auch die obige Frage fiir Clusteranalysen zu behan-
deln. Dies fiihrt zu weitreichenden Schluf3folgerungen
fiir die Entwicklung, Priifung und Handhabung cluster-
analytischer Methodcn.

2, Gfllndlagen der Strukturanalyse

In (52) haben wir eine allgemcine Methodik filr Struk-
turanalysen cntwickelt, die das Adaquatheitsproblem
bei datengesteuerten Strukturanalysen 16st und zugleich
einen Ansatz fiir eine spezielle Methodik experimenteller
Strukturanalyse bietet. Ausgangspunkt ist eine allge-
meine Fassung des Strukturbegriffs und eine Diskussion
der Problem-und Hypothesenbildung bei Strukturanaly-
sen.

Definition I: Es seien I und J n- bzw. p-elementige In-
dexmengen. Weiterhin seien

Z= {zi,iel} dic Menge der n verschiedenen unter-
scheidbaren Elemente eines bestimmten
Untersuchungsobjekts O,

E= {Ej, j eJ} die Mengc derjenigen Eigenschaften E;
der Elemente z;, die der Untersuchung zu-
grundeliegen,

H = qu Hq = qu( JléJI Hgli g2 g(g)
die nichtleere Menge aller g-stelligen (2 <
q < n) Morphismen in Z bzgl. E, wobei

Hy=H (z,2) = {yik: Zi— zk}g 7z2und
sz iKel Hik’Hikm: H (Zi’ Zys Zm) = Z3und
HJ: U Hikmusw.

ikom el

Dann heiflt das geordnete Tripel S = (Z, E, H) die
Strukturvon O und H die O bzgl. E auf'geprigte Struktur,
Z heif3t Trigermenge der Struktur S.

Definition 2: Gegeben ist eine Struktur S = (Z, E, H).
Jede Abbildungf:Z - (R’);,i=> 1,1 £ j< q,der MengeZ
ineine Folge von g-dimensionalen Raumen, so dal} fiir f
(Z) injedem betrachteten Raum eine Morphismenmenge
f als Schétzung fiir H existiert, heiBt Strukturanal yse.
Die Menge der Modellbedingungen und Optimalitéitskri-
terien dieser Abbildung heilit Strukturkonze pt von f; die
Menge der numerischenund/oder nichtnumerischen Re-
sultatedieser Abbildungheifit Strukturmodell von H bzgl.
SundE.

Bemerkungen:

1. Unter niclunumerisclien Ergebnissen subsumicren wir solche
Moglichkeiten der Ergebnisdarstcllung wie (a) Graphen, (b)
zwei- und dreidimensionaleriumliche Darstellungen von Punkt-
wolken und Vektoren, (c) Cluster-, Simplex- und andcre Konfi-
gurationen (12), (d) Liniendiagramme als graphische Skalen zur
Abbildung hierarchischer oder verbandsgeordnetcr Begriffssy-
steme (70), (e) Feldliniendarstellungen (35) u.d.
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(b)gemiB(15)und zuderenallgemeinpsychologischer (a, b), dit -
ferentialpsychologischer (b) und Einzelifalldeutung (a, b) (vgl.
28). Ist S eine empirische Struktur, so haben wirden Fallder fun-
damentalen Messung, ist S bereits eine abgeleitetc numerische
Struktur, so haben wir den Fallder abgcleiteten Messung. Defini-
tion2 kann damit zur Bestimmung eines all gemeinen Begriffs der
Messung als Modellbildung mit formalisierten (i. a. numeri-
schen) Systemen dienen, der den MeBbcgrif fklassischer Repra-
sentationstheorie etc. als Spczialfall enthdlt.

3. Beispiel: Betrachten wir gewohnliche empirische Distanzma-
trizenD < H, wobeiD & Zx Z, und D = H soll dem Hybridmo-
dell von Carroll/Pruzansky (8) folgen: D=D,+ D,+ ...
+ Dn+ an, wobei Dy, ..., D Distanzmatrizen von Baum-
strukturen und Dg eine Distanzmatrix eines q-dimensionalen
Raumes ist. Dann sind u.a. folgende Spezialfélle ableitbar:

a) D=D,, d.h. i=1, wobei D, als Modellbedingung die
Axiome einer Ultramctrik erfiillen soll. Die Abbildung fbe-
stimmt dann die Klasse der hierarchischen Clusteranal ysen

31).
b) D=D,,d.h.i =1, wobeiD,(0,l)-bindrseinsollunddermul-

tiplikativen Verkniipfungsregel d,, = eg 1 ae Xpe gemiB zer-

legt werden kann. Xist die (0,1)-bindre (n, p)-Zuordnungs-
matrix der n Elemente x,, X, ... auf die p Cluster. Die Abbil-
dung { bestimmt dann die Klasse der partitionierenden Ciu-
steranal ysen (33, 58).

¢) D=Ds;, dh.i=1, und Dsist (0,I)-bindr und geniigt der lo-
gisch-multiplikativen Verkniipfungsregel d,, =e—e"1 Xae N Xpe-

Die Abbildung f bestimmt dann die Klasse iiberlappender
(nichtdis junkter, nichthierarchischer) Clusteranalysen (33,
43).

4. Das Strukturanalyseproblem bestcht alsodarin, eine geeignete
Abbildung f: Z — (R’); zu finden, um ein theoretisch niitzliches
und empirisch tragfihiges Strukturmodell fiir S zu bilden. Das
Strukturkonzept von f hat dabei den Charakter eines Systems
von Hypothcsen, deren Berechtigung zur Beschreibung des em-
pirischen Materials erst gepriift und begriindet werden muB.
Dies cntspricht eigentlich einer Verallgemeinerung der Repri-
sentations- und Bedeutsamkcitsprobleme der klassischen Re-
prisentationstheorie. Offensichtlich (vgl. Beispiel unter 3.) las-
sen sich die strukturanalytischen Methoden nach Umfang und
Explikationsgrad ihres Strukturkonzepts hierarchisch ordnen,
womit eine Hierarchic von Modellstrukturen korrespondiert. Je
hoherdie Hierarchiestufe, desto wenigerexpliziert und damit re-
striktiv ist die Menge korrespondierender Modellstrukturen, die
damit gefaBt werden konnen. Weitcrhin ist von einer ganzen
Reihe von Mcthoden bekannt, daB sie bei ganz bestimmtcn Da-
tenstrukturen zu minimalen Klassifikations- und Strukturie-
rungsfehlern fiihren, und daB sie den Datcn in jedem Falle diese
spezifischen Struktureigenschaften aufprigen (z.B. Ketten- Ef-
fekt der single-linkagc-Methode). Dies fiihrt zu folgender

Definition 3: Eine Methodenklasse F = {fili =1, } ist
eineMengestrukturanalytischer Methoden fimitgleichen
Strukturkonzepten und Abbildungseigenschaften. Eine
Strukturklasse T = {tjfj =1, ﬁ ist eine Menge von
Strukturmodellen tj, die sich durch den gleichen Satz
strukturbeschreibender Aussagen einer beliebigen Spra-
che charakterisieren lassen.

Im allgemeinen wird es bei der Methodenwahl kaum
moglichsein, z.B: eine bestimmte Version des Austausch-
algorithmus zur Minimierung des Varianzkriteriums aus
fachwissenschaftlichen Griinden heraus favorisieren zu
konnen. Man wird in der Hierarchie der Methodenklas-
sen nicht bis zur differenziertesten Stufe hinabsteigen
konnen. Die korrespondierende Strukturklasse wird also
stets eine Menge von Strukturmodellen umfassen, aus
denen fiir die Interpretation ein Modell auszuwiahlen bzw.
zu bildenist. Dieser Unbestimmitsheitseffektist der eigent-
liche Kern des Addquatheitsproblems und Gegenstand
der Methodik der Strukturanalyse. Ausgangspunkt ist

dabei das folgende
16

Addiquatheitspostulat:

Der Grad der Ubereinstimmung der Resultate mehrerer
Methoden einer Methodenklasse niedrigen Hierarchieni-
veaus ist ein Ma@ fiir die Addquatheit der Beschreibung
einer konkreten Datenstruktur durch die korrespondie-
rende Strukturklasse, wenn gleichzeitig Divergenzartef-
fekte (vgl. 28) ausgeschlossen wurden.

Im Mittelpunkt der in (52) entwickelten Methodik
steht daher die Anwendung mehrerer Methoden einer
Methodenklasse auf die Datenmenge. Stimmen die L6-
sungen hinreichend untereinander und mit dem Struk-
turkonzept derr Methodenklasseiiberein, kann durch de-
ren Aggregation ein endgliltiges, interpretierbares Struk-
turmodell abgeleitet werden. Andernfalls bilden die ver-
schiedenen Resultate nur verschiedene Diskussionen, die
im explorativen Sinne vorsichtig interpretiert werden
konnen, wenn nicht willkiirlich eine Dissektion als Struk-
turmodell gedeutet wird.

3. Clusteranalyse als Strukturanalyse
3.1 Partitionierende Clusteranalysen

Die bekanntesten partitionierenden Clusteranalyse-
methoden optimieren ein vorgegebenes Giitekriterium,
in dem eine (vorgegebene) Anfangspartition iterativ ver-
bessert wird. Die Vielfalt der Herangehensweisen (vgl.
Abb. 1) fithrte zur Entwicklung verschiedenster Giitekri-
terien, z.B. dem Varianzkriterium, Determinantenkrite-
rium, Spurkriterium, Determinantenproduktkriterium,
Kriterium der adaptiven Distanzen, Hotelling’s Kriteri-
um, Abstandssummenkriterium, L -Kriterium. Alle
diese Kriterien greifen auf die (quantitativen) Daten
selbstzuriick, basieren jedoch implizit auch aufeiner be-
stimmten, nur fiir diesesKriteriumcharakteristischen Di-
stanzfunktion. Fiir drei derram besten untersuchten Kri-
terien sind in Tabelle 1 Abbildungseigenschaften und
Aspekte der Strukturkonzepte zusammengefal3t (4, 6,
54, 58).

AlledreiKriterien sind monoton fallende Funktionen
der Clusterzahl. Die Verwendung von Streuungsmatri-
zen zur Definition der Giitekriterien impliziert ellipsen-
formige Cluster; in den meisten praktischen Anwendun-
gen diirfte dies unabhdngig vom Robustheitsproblem
dem Gesuchten am Nahesten kommen. Die fir die Mu-
stererkennung (pattern recognition) typische Problema-
tik evtl. kompliziertester Clusterstrukturen (vgl. z.B. 60)
ist fiirdie hier angezielten Anwendungsbereiche nicht re-
levant. Es wird deutlich, daB die drei Kriterien aus Ta-
belle | Unterstrukturklassen der allgemeinen Struktur-
klasse “Partitionen” darstellen. Ein und dieselben Opti-
mierungsalgorithmen kénnen dabei allen korrespondie-
renden Methodenklassen zugeordnet werden, der Unter-
schied bestehtinder Optimierungverschiedener Giitekri-
terien. Damit wirdz.B. dievieldiskutierte Frage, ob Mini-
maldistanz-oder Austauschalgorithmus “besser” im
Sinne der Optimalitdt des Giitekriteriums sind, fiir un-
sere Anwendungsbereiche irrelevant. Die so definierten
Strukturklassen konnen weiter zerlegt werden nach der

2. Vonder Abbildung f wird nur Eindeu(ligkeit verlangt. Ist f so-
garein Homomorphismus und (R'), =R, so fiihrtdas zum klas-
sischcn McBbegriff der Reprisentationstheorie. Unterlegen wir
dabeiallgemeinmehrsortige Strukturen, fithrtdas zur Definition
von Standardmessungen (a) und zusammengcsetzter Messung
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Yarianzkriterium

Determinantenkriterium

Kriterium der adapt. Dist.

1. Cluster sind Hyperkugeln im Rm

2.a.)n;~ N/m oder
b.) Es existiert ein Punkt oge R™so,

daB die Mittel punktcder Cluster K jum
so weiter von o entfernt sind, je klei-

ner ist.

3. Die Cluster werden (paarwcise) durch
Hyperebenen getrennt, d. h., die Cluster
sind konvex und dis junkt

4. Die optimale Partition ist nur invari-
ant gegeniibereinem Vorzeichenwechsel
beliebiger Variablen.

5. Mit . wirdimpliziert, daB alle Variab-
len stochastisch sind, bzw. daB euklidi-
sche Distanzen zugrundeliegen

I. Cluster sind Hyperellipsen mit paral-
lelen Achsen im Rm.

2. wie beim Varianzkriterium

3. wie beim Varianzkriterium

4. Die optimale Partition ist invariant
gegniiber jedcr reguldren Transforma-
tion der Daten.

5.Mitl. wirdimpliziert,daBdie Variab-
len stochastisch abhéngig sind, diese
Abhingigkeiten (und die cntsprechen-
den Kovarianzmatrizen) aber in allen
Clusterngleichsind, d. h. esliegen Ma-
halanobisdistanzen zugrunde.

1. Cluster sind Hypcrellipscn beliebiger
Ausrichtung im R™.

2. mNfm

3. Die Cluster werden (paarweise) durch
Hyperflichen 2. Ordnung getrennt,d. h.die
Cluster sind nicht notwendig konvex

4. wie beim Determinantcnkriterium

5. Wic beim Determinantenkriterium, aber
es liegen infolge clusterspezifischer Abhén-
gigkeiten clusterspezifische Mahalanobis-
distanzen zugrunde.

Tabellel: Eigenschaften ausgewdihlter Kriterien.

RN i)
HOSES )
o Sl

Plasmode 2 ®

Plasmode 3 X Plasmode & x Plasmode 5 x

Abb. 2: Plasmoden | bis 5

vorgegebenen Clusterzahl, womit sich die Mdglichkeit
bietet, mittels der Methodik der Strukturanalyse einen
Zugang zum Clusterzahlproblem zu finden. Zur Priifung
der Anwendung unserer allgemeinen strukturanalyti-
schen Uberlegungen auf Clusteranalysen und zu deren
Demonstration fiihrten wir verschiedene Methodenstu-
dien durch. Dazu konstruierten wir fiinf Plasmoden zu je
37 Objekten (vgl. Abb. 2), die verschiedene geometrische
Eigenschaften aufwiesen. Insbesondere wurde der Ab-
stand der vier Cluster aus Plasmode 2 systematisch vari-
iert.

Damit war zugleich der EinfluB der Separiertheit der
Cluster aufdie Ergebnisse der Methoden priifbar. Grofe-
rer Anschaulichkeit wegen beschrdnken wir uns auf nur
zwei Variablen, was zur prinzipiellen Demonstration ge-
nligt, selbst wenn bestimmte Effekte erst bei h6herdimen-
sionalen Daten auftreten. In einer zweiten Studie mit den-
selben Zielstellungen benutzten wir die in (58, S. 158 und
174) verwendeten acht Plasmoden unterschiedlichster
Clusterstruktur, was einen weiteren Vergleich mit den Er-
gebnissen von SPATH gestattete.

Int. Classif. 16 (1989) No. | — Schmidt — Cluster analysis as structure analysis

Zur Durchfiihrung der Studien fiir das Varianzkrite-
rium implementierten wir unter Benutzung der Subrouti-
nen MINDS | und HLCMB 1 (61) das Programm VAR-
KRIST. Weiterhin erstellten wir u.a. mittels Subrouti-
nen aus (58) das Programm KL ASSPAS, in welchemein
Austausch-und ein Minimaldistanzsalgorithmus zur Mi-
nimierung des Varianzkriteriums sowie ein Austausch-
und ein modifizierter Minimaldistanzalgorithmus nach
(6, S. 222f.) zur Minimierung des Determinantenkriteri-
ums implementiert sind. In beiden Programmen ist also
jeweils ein Minimaldistanz-und ein Austauschalgorith-
mus implementiert, VARKRIST benutzt eine Standard-
anfangspartition, KLASSPAS generiert (mehrere) zufil-
ligeAnfangspartitionen. Der Vergleich der Resultate bei-
der Algorithmen firr jede Clusterzahl erfolgt durch Zu-
ordnungder Cluster nach der héchsten Anzahl gemeinsa-
mer Elemente, sodaf} insgesamt die Lésungsiibereinstim-
mung maximiert wird, und Effekte durch verschiedene
Clusternumerierungen eliminiert werden.

Folgende SchluBfolgerungen lassen sich ziehen:

1. Austausch- und Minimaldistanzalgorithmus stimmen
fir das Varianzkriterium bei Standardanfangspartitio-
nen fiir k Cluster vollstdndig iiberein, wenn in den Daten
k kugelformige, ungefahr gleichgroBe, disjunkteund hin-
reichend separierte Cluster vorliegen (Tab. 2, Plasmoden
2undI).

2. Bei weniger klaren Datenstrukturenist dies nicht mehr
gewihrleistet. Vollstindige Ubereinstimmung fehlt (2.1)
oder tritt mehrfach auf (2.2). Im Falle von 2.2. 148t sich
die Ambivalenz durch Vergleich der Eigenschaften der
verschiedenen “guten” Losungen mit den Eigenschaften
der korrespondierenden Strukturklasse aufkldren. Das
bedeutet hier in erster Linie einen Vergleich der cluster-
spezifischen Merkmalsabhédngigkeiten, jedoch auch der
Besetzungsdichten, Clustervarianzen, Clusterabstdnde
u.d. Bei Plasmode 3 bis 5 sind die Variablen der 4-
Cluster-Losung (aus Tab. 2) jeweilsinnerhalb dieser Clu-
ster unkorreliert, die Modelladdquatheit der entspre-
chenden Strukturmodelle ist damit klar. Bei den iibrigen
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Clusterzahl Plas- Plas- Plas- Plas- Plas-
k mode 1 mode 2 mode 3 mode 4 mode 5
2 18 & 2 1 x / X 1 x
3 14 6 12 / 18
4 14 / / / /
5 14 4 & 4 & 5 6
6 14 10 & 5 & 13 13
7 3 12 & 11 12 14
8 10 & 13 & 7 & 9 6 &
9 11 & 12 & 11 & 12 & 15
10 13 & 15 & 10 & 12 & 7 &
Clusterzahl I II III v \ VI VII VIII
k N=37 N=41 N=44 N=73 N=565 N=50 N=52 N=80
2 / 1 x / X 33 3 23 5 23
3 / 10 19 27 1 x 17 2 1 x
4 4 5 3 17 7 1 x 3 5
5 12 2 8 17 7 13 10 25
6 11 9 10 13 13 13 1 x 13

Tubelle 2: Ergebnisse des Programms VARK RIST fiir die fiinf Plasmoden aus Abh. 2 (oherer Teil) und die 8 Plasmoden aus (51) (unterer
Teil). Angegeben sind die Ob jek tzalilen, die von beiden Al gorithmen verschiedenen Clustern zugeordnet wurden, naclidem die Cluster einan-
dernach der hichsten Anzahl gemeinsamer Elemente zugeordnet wurden. &: Mindestens eine Methode erzeugte mindestens ein leeres Clu-
ster. x: Ubereinstimnmng (fast) ideal, aber Ergebnisse entsprechen niclt der Datenstruktur, da mindestens eins der vorgegebenen Cluser
zerrissen wird. Plasmode I: 2 oder 3 disjimkte, ungefihr kugelf 6rmige Cluster. Plasmode I11: ein Cluster mit einem randstcindigen kompak-
ten Kern, das sich kontinuierlich verdiinnt, Plasmode VII: 2 iiberlappende, ellipsoidale Cluster verschiedener Lage im Raum.

Clusterzahl Plasmodo 4 Plasmode 5 Plasmode VII
k (a) (b1) (b2) (a) (bl) (b2) (a) (»1) (b2)
2 2 20 20 / 20 K / 18 2
3 / 20 9 / 15 10 / 20 2
4 / 20 10/1% / 15 17 / 3 6
5 / 11 1 / 4 4/19 / 11 11/17
6 / 7 11716 | 8 2 2/15 [ 18 13 1
2 1 13 2 / 14 5 / 6 1
3 13 9 1 / 1 2 7 T 1/1%
4 / 20 11719 | , 18 7/17 / 2 2/17
5 / 12 1715 | 11 111 / 2 4/12
& 3 6 1/8 k] 5 1/6 17 1 1/10

Tabelle 3: Resultate des Varianzkriteriums (oberer Teil) und des
Determinantenkriteriums (unterer Teil) des Programms KLASS-
PAS fiir die Plasmoden 4, Sund VII. (a): Zahl der Objekte, die von
heiden Algorithmen bei den jeweilsbesten Zielfunktionswerten ver-
schiedenen Clustern zugeordnet werden, nachdemdie Cluster ein-
ander naclider hichsten Anzahl gemeinsamer Elemnte zugeordnet
wurden: (b): Zahl der Anfangspartitionen (von insgesamt 20) mit
dem geringsten Zeitfunktionswert der Endpartitionen, und zwar
(b1} fiir den Austauschalgoritimus, (b2) fiir den (modifizierten)
Minimaldistanzalgorithmus. : ‘

filr diese Plasmoden implizierten Losungen zeigen sich je-
doch .clusterspezifische Merkmalsabhéngigkeiten, d.h.
man muf ellipsoidférmige Cluster fir die 2-bzw. 3-
Cluster-Losung annehmen. Der (praktisch iibliche) allei-
nige Einsatz des Varianzkriteriums kann hier keine Ent-
scheidung liefern. Die Auswahl der addquaten Cluste-
rung wird nur-durch den zusétzlichen Einsatz anderer
Struktur- und Methodenklassen moglich. Bei Plasmode
IIT entsprechenden Besetzungsdichten und Clusterva-

18

Int.

rianzen der 2-Cluster-Losung nicht der Modellstruktur.
Eine detaillierte Priifung fiihrt zur adaquaten Daten-
struktur (vgl. Tab. 2). Im Falle von 2.1 liegt die Notwen-
digkeit des Einsatzes anderer Struktur- und Methoden-
klassen erstrechtaufder Hand.

3. Die Benutzung mehrerer zuflliger Partitionen bringt
beziiglich unserer Fragestellung nach dem Auffinden ad-
dquater Strukturmodelle keinen Gewinn. SPATH (58, S.
166) ist zuzustimmen, daB bei kanonischen Strukturen
(fast) alle Anfangspartitionen den gleichen Zielfunk-
tionswert erreichen. Wie die in (58) berichteten Resultate
sowieunsere Tabelle 3 zeigen, kann jedoch cine Hiaufung
von besten Zielfunktionswerten, v.a. beim Austauschal-
goritmus bei verschiedenen Clusterzahlen auftreten, so
dal3 nicht notwendig die Auswahl der addquaten Losung
aus ciner Losungsserie fir mehrere Clusterzahlen er-
laubtwird. Auchder Vergleich von Austausch- und Mini-
maldistanzalgorithmus fiir die bestc von mehreren aus
zufilligen Anfangspartitionen erzeugten Losungen er-
laubt nicht die Auswahl der addquaten Losung, da unab-
hingigvon der Datenstruktur die Wahrscheinlichkeit ci-
ner Ubereinstimmung der Resultate erhéht wird (vgl.
Tab. 3). Wird einfach die Losung mit dem besten Ziel-
funktionswert interpretiert, gibt es liberhaupt keinen
Hinweis darauf, ob nur cine Dissektion oder cine Struk-
tur aufgedeckt wurde.

Zusammengefaft. Wenn die Zielstellung Strukturana-
lyse (und nicht nur Dissektion) fiir eine Anwendung par-
tionierender Methoden auf gegebene Daten relevant ist,
sollten folgende Schritte ausgearbeitet werden: 1. Durch
Explikation der fachwisscnschaftlichen Theorie iiber
den zu analysierenden Gegenstand und schrittweisen
Vergleich mit Strukturkonzepten bekannter Methoden
isteine geeignete Methodenklasse auszuwahlen (bzw. de-
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ren Erarbeitung zu beginnen, falls eine solche nicht vor-
liegt). 2. Wenigstens zwei Mcthoden der gewéhlten Me-
thodenklassc sind auf die Daten anzuwenden. 3. Die Re-
sultate dieserr Methoden sind auf geeignete Weise unter-
einander und mit dem Strukturkonzept der Methoden-
klasse zu vergleichen. 4, Im Falle geniigend groBer Ubcr-
einstimmung Ableitung eines addquaten Strukturmo-
dclls, anderenfalls Riickkchr zu Schritt 1.

Die Art und Wecise des Vergleichs, die Baselines fiir die
Ubereinstimmungsgiite und die Art und Weise der Ag-
gregation konnen nur methodenklassenspezifisch festge-
legt werden. Dafiir sind weitere Mcthodenuntersuchun-
gen notig, wie wirsie fiir das Varianzkriterium oben ange-
deutet haben. Leider gibt es eine Unmenge von Model-
len, deren Abbildungseigenschaften nicht genau be-
kannt sind und die sich deshalb nicht sinnvoll in ein hier-
archisches System von Methodenklassen eingliedern las-
sen. Dartiiber hinaus haben verschiedene Untersuchun-
gen(z.B. 11, 23) die mangelnde Reliabilitit einzelner Me-
thoden nachgewiesen. CA-Methoden, die zu sensibel auf
trivialste Datendnderungen reagieren, oder aber Ergeb-
nisse relativ unabhiingig von den konkreten Ausgangsda-
ten generieren, konnen jedoch nicht sinnvoll im empiri-
schen Forschungsprozef3 Verwendung finden. Derartige
Probleme werden in den cinschligigen Programmbe-
schreibungen der Rechenzentreni.a. nicht sichtbar.

3.2 Hierarchische Clusteranalysen

Divisive hierarchische Methoden werden in der ein-
schldgigen Literatur nur sclten behandelt. Zumeist be-
ruft man sich bei einer “Kurzbeschreibung” darauf, daf3
divisive Methoden weit mehr Rechenzeiten brauchen als
agglomerative und Niherungsl6sungen, wie die von
FORTIER/SOLOMON (20), die wenig befriedigend
sind (51). Ein Teil divisiver Methoden, wie die “interco-
lumnar correlational analysis” (45), sind durch zweifel-
hafte Anwendbarkeit und mangelnde Bekanntheit spezi-
fischer Abbildungseigenschaften gekennzeichnet. Diesc
Kritikpunkte treffen auf agglomerative Methoden weni-
ger zu. Hier gibt es eine Reihe sehr bekannter Methoden
(Single Linkage, Complete Linkage, Average Linkage,
Weighted Average Linkage, Median-Verfahren, Cen-
troid-Verfahren, Ward’s Verfahren, Flexible Strategic
nach LANCE/WILLIAMS (39)), die sehr breit unter-
sucht und angcwendet worden sind. Géngige Anwen-
dungspraxis ist dabei die Vorgehenswese, mehrere dieser
Methoden zu probieren und das geeignetste Resultat aus-
zuwihlen. Wie ist diesem Umstand unter Beachtung der
methodischen Anforderungen an cine Strukturanalyse
zu begegnen? Es ist aus theoretischen und empirischen
Untersuchungen hinreichend bekannt, da3 die aggloma-
tiv-hierarchischen Methoden recht unterschiedliche Ei-
genschaften haben und zu recht unterschiedlichen Ergeb-
nissen fiithren (z.B. 57). Single Linkage und Complete
Linkage basieren z.B. auf direkt entgcgengesetzten Ver-
schmelzungsstrategien. Innerhalb der allgemeinen Struk-
turklasse “Hierarchien” scheinen die agglomerativen
Methoden mit verschiedenen, abgrenzbaren Unterklas-
sen zu korrespondieren, die durch wesentlich verschie-
dene Eigenschaften charakterisierbar sind. Ein Metho-
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denvergleich iiber diese Unterklassen hinweg wird damit
nutzlos, selbst wenn bestimmtc Seiten der Datenstruktur
(z.B. die Existenz von Aul3enseitern) in mehreren Losun-
gen zum Vorschein kommt Genau das bleibt in der oben
angeprangerten Anwendungspraxis unberticksichtigt.
Ein Auswegim Sinne unserer Methodik der Strukturana-
lyse bietet sich durch die Flexible-Strategie nach LAN-
CE/WILLIAMS an, die liber Variation cines Parame-
ters eine ganze Verfahrensschar umfaf3t und die bekann-
ten Methoden wie Single Linkage simuliert. Durch syste-
matische Variation des Parameters a8t sich (1) die Stabi-
litéiit einer gefundenen Gruppierung liberpriifen, (2) der
Charakter des Verfahrens dndern. Damit miiflte es mog-
lich sein, wenigstens vier der Strukturklassc “Hierar-
chien” untergeordnete Strukturklassen zu definieren, die
durch die wesentlichen Eigenschaften bestimmter Me-
thoden ausgezeichnet sind:

(I) 1.“Raumkontrahierend”, d.h. Bildung von weni-

gen grolBen Clustern,

2. Kettenbildungseffekt, d.h. eine einzige (zufilli-
ge) kleine Distanz erzwingt Fusion (Beispiel:
Single Linkage)

(II) 1.“Konservativ”, d.h. zwischen Single und Com-
plete Link einzuordnen,

2. weder Kettenbildungs- noch Lassoeffekt, da Fu-
sion auf dem Durchschnitt vieler Distanzen be-
ruht,

3.auf alle Distanzmalle anwendbar, fiir die der
Mittelwert eine sinnvolle GroBe ist, (Beispiel:
Average Linkage)

(III) 1.Tendiertzur Bildung gleichgroBer Cluster,

2. auf beliebige Distanzmalic anwendbar, weder
Lasso-noch Kettenbildungseffekt,

3.entspricht bei quadrierten euklidischen Distan-
zen einer stufenweisen Minimierung des Va-
rianzkriteriums, (Beispiel: Ward’s Methode)

(IV) 1.“Raumdilatierend”, d.h. Bildung vieler kleiner
Cluster,

2.Lassoeffekt, d.h. cine einzige (zufillige) groBe
Distanz verhindert Fusion (Beispiel: Complete
Linkage).

Mit Hilfe der Flexiblen Strategie stehen dann fiir jede
dieser Strukturklassen (wenigstens) zwei Methoden zur
Verfiigung und die Adédquatheit eines bestimmten Den-
dogramms wird tiberpriifbar. Es croffnen sich so vollig
neue Moglichkeiten fiir Vergleichsuntersuchungen zu
den Methoden und zu empirisch-psychologischen Frage-
stellungen. Die derzeitige Situation auf diesem Gebiet ist
durch unterschicdlichste und unterschiedlich begriin-
dete Vergleichskriterien verwirrend und unbefriedigend
(vgl. z.B. 295).

4. Konsequenzen
4.1 Zum Clusterzahlproblem

Die Festlegung der “richtigen” Clusterzahl ist cin
Kernproblemin den meisten Clusteranalyse-Anwendun-
gen. Die vielfaltigen in der Literatur vorgeschlagenen
Strategien zur Losung des Clusterzahlproblems lassen
sich vier Richtungen zuordnen:
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1. heuristische Vorschicige: z.B. deutet die Entstehung lee-
rer Cluster bei partitionierenden Methoden an, daB3 die
falsche Clusterzahl gewéhlt wurde (43, 58).

2.graphische Hilfen: z.B. Plotten der Kriteriumswerte,
der Inner-Cluster-Distanzen u.a. {iber die Clusterzahl
analog zum Scree-Test der FA u.d. (17, 50), evtl. Ver-
gleich dieser Kurven mit Kurven der Kriteriumswerte

bei Zufallszahlen (13).
3.statistische Hilfen: z.B. mittels verschiedener F-Tests,

Likelihood-Ratio-Tests (2, 7, 40, 41, 68).

4. Verwendung ven Aufenkriterien: v.a. Verwendung
von nicht in die Clusteranalyse einbezogenen Varia-
bien (67).

Nach (17, 49) liegendie Hauptschwierigkeiten statisti-
scher Kriterien (a) in der Bestimmung geeigneter Nullhy-
pothesen, (b) in der Bestimmung der Stichprobenvertei-
lungen der verschiedenen Distanz- und Ahnlichkeitsma-
Be, (c) inder Entwicklung flexibler Testverfahren. Auf3er-
dem sind die meisten statistischen Tests nur innerhalb en-
ger Grenzen optimal oder erfiillen bestimmte postulierte
Voraussetzungen doch nicht (5). Darin liegt auch eine
Hauptursache fiir die immer wiederkehrende Diskus-
sion von “dissection vs. classification” (10, 17, 18) bzw.
Cluster-Formation vs. Cluster-Analyse (58). Heuri-
stische und graphische Kriterien sind stark subjektiven
Einfliissen unterworfen (4). Darliber hinaus erlaubt die
oft benutzte Betrachtung der Kurve der Kriteriumswerte
bzw. die Suche nach dem grofiten Kriteriumswertabfall
beim Ubergang von einer k-Cluster-Lésung zu einer
(k+ 1)-Cluster-Losung nicht notwendig die Auswahl der
addquaten Losung, weil damit hochstens innerhalb einer
evtl. inaddquaten Strukturklasse das beste Strukturmo-
dell gefunden werden kann. Folgerichtig implizieren alle
Kurven in Abb, 3 die Strukturmodelle mit 4 Clustern als
richtige Losung, d.h. speziell die eindeutig ellipsoidale
Clusterstruktur der Plasmode 5 bleibt unerkannt.

150-

2 3 4 5 6 7 8 9 ® K

Abb. 3: Kurven der Kritcriumswerte des Austauschalgorith-
mus fiir das Varianzkriterium, Programm VARKRIST, Plas-
modcn 3,4, 5.
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Die Verwendung von Aullenvariablen steht vor dem
Dilemma, eine Clusterlésung mit Variablen beurteilen
zu wollen, die fiir das jeweilige Strukturanalyseproblem
nicht relevant sind oder anderenfalls relevante Variablen
nicht in den AnalyseprozeB einflieBen zu lassen (Diver-
genzartefakt-Problematik). Eine befriedigende Losung
des Clusterzahlproblems steht also bisher noch aus, was
sich in den widerspriichlichen Ergebnissen entsprechen-
der Methodenexperimente niederschldgt. Praktisch wird
meist aus mehreren Losungen verschiedener Cluster-
zahl, die eventuell alle die Datenstruktur nur inaddquat
wiedergeben, mit teilweise ausgefeiltesten statistischen
Techniken die Losung mit der “richtigen” Clusterzahl
ausgewahlt, ofme die Strukturaddquatheit iiberpriift zu
haben. Gemil3 obiger Uberlegungen ist das Clusterzahl-
problem jedoch nur im Zusanumenhang mit dem Struk-
turtyp- und dem Methodenproblem l6sbar und sollte als
ein Aspektder Addquatheitsproblematik betrachtet wer-
den. Damit werden scheinbare Paradoxien auflosbar,
wie etwa im Beispiel von (58, 167ff.), in welchem die opti-
malen Partitionen vom Abstand der Punkthaufen abhan-
gen.

4.2 Kritik herkommlicher Validierungsstrategien fiir
Clusteranalyse-Methoden

Seit Beginn der 70er Jahre wurden immer wieder Stu-
dien zur Validierung und Evaluation von Clusterana-
lyse-Methoden publiziert. Prinzipicll lassen sich je nach
Art der verwendeten Daten drei Typen solcher Studien
differenzieren: Evaluationen (1) mittels empirischen Da-
tensitzen, (2) mittels Plasmoden und (3) mittels Daten-
sdtzen, die liber Monte-Carlo-Methoden crzeugt wur-
den. Empirische Datensiitze habeni.a. den Nachteil, daf}
ihre Datenstruktur nichtzweifelsfrei bekannt ist und sich
deshalb nicht als AuBenkriterium einer Validierung eig-
net. Um dies zu umgehen, wéhlten verschiedene Autoren
empirische Datensétze bekannter Struktur. Am bekann-
testen sind die Kraftfahrzeugdaten von BAUMANN (1)
mit der Typeneinteilung der Kraftfahrzeuge als Kriteri-
umsstruktur geworden. In (29) werden mehrere ge-
schlechtsspezifisch beantwortete MMPI-Items und die
Zweiteilung der Vpn-Stichprobe nach dem biologischen
Geschlecht als Kriteriumsstruktur benutzt. Solche Ver-
suche bergen offensichtlich stets die Gefahr in sich, dal3
die intendierte und die tatsdchliche benutzte Kriteriums-
struktur nicht identisch sind. Diese Nachteile konnen
nur durch die Konstruktion geeigneter Datensétze mit
bekannter Struktur ausgeschaltet werden. Zum einen
konnen diese Daten “per Hand” vom Untersucher kon-
struiert werden, z.B. im gewohnlichen zweidimensiona-
len Merkmalsraum, zum anderen sind in den letzten Jah-
ren Monte-Carlo-Datensimulationen hadufig verwendet
worden. Bei Monte-Carlo-Plasmoden taucht nun trotz
des mathematischen Aufwandes das Problem auf, daf3
die geometrischen Strukturen nicht mchr genau bekannt
sind,sondernnur gewisse Verteilungs-, Uberlappungspa-
rameter u.d. Dies muf3 u.E. als Nachteil betrachtet wer-
den, der auch die teilweise Unvergleichbarkeit und Wi-
derspriichlichkeit entsprechender Studien mitverur-
sacht. Wir sehen in folgenden Punk ten Hauptméngel bis-
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herigen Vorgehens bei Validierungsstudien zu Cluster-

analyse-Methoden (vgl. auch 46, 53):

(1) Nach wie vor sind solche Validierungsstudicn als
Suche nach einem “besten” Verfahren angelegt, ob-
wohlu.a. anerkannt wird, daB3 die verschiedenen Me-
thoden unterschiedliche Abbildungseigenschaften
besitzen.

(2) Meist wird eine Partition als Kriteriumsstruktur ge-
wahlt; gepriift werden v.a. aber hicrarchische Verfah-
ren, fir die praktisch kein exakter Test zur Auswahl
ciner Partition existiert.

(3) Unabhiingig vom Strukturtyp der Testdaten werden
Methoden verschiedenster Methodenklassen ge-
priift. Wenn cine Methode unter bestimmten Bedin-
gungen gute Ergebnisseerzielt, ist dennoch nicht gesi-
chert, daB3 diese Ergebnisse bei der praktischen An-
wendung aus einer Serie von LOsungen als gut er-
kannt werden.

(4) Teilweise werden Ergebnisse verglichen, ohne die spe-
zifischen Eigenschaften evtl. unterschiedlichster Da-
tensitze in den Verglcich einzubeziehen.

Im Zusammenhang mit der Methodik der Struktur-
analyse wird damit eine gezieltc Reinterpretation bisheri-
ger Studien unter dem Aspekt addquater Strukturerken-
nung noétig. Validierungsstudien sollten prinzipiell me-
thoden- und strukturklassenspezifischangelegt werden.

4.3 Zur Evaluation von Clusterlosungen

Die Literatur der lctzten Jahre enthélt eine Fiille von
Vorschldgen zur Evaluation einer Clusterlosung; z.T.
sind dieseidentisch mit Tests zur Losungdes Clusterzahl-
problems, so daf3 auch die dort geiibte Kritik weiter zu-
trifft. Solange iiber die Strukturaddquatheit einer be-
stimmten Clusterlosung nichts ausgesagt werden kann,
istin praktischen Anwendungen die Benutzung von Eva-
luationsmaflen und -methoden eigentlich unsinnig, da
evtl. inaddquate Strukturmodelle in ihrer “Giite” beur-
teilt werden sollen. Eine Reihe von Autoren (32, 61, 62)
schlagen den Einsatz von Diskriminanz- und Varianz-
analyscn zur Beurteilung von Clusterlésungen vor. Der
standardméBige Anschluf3 dieser Methoden an eine Clu-
steranalyse ist u.E. allerdings kaum sinnvoll, denn: (1)
Losungen von Clusteranalyse-Methoden, die konvexe,
durch Hyperebenen getrennte Cluster erzwingen, niis-
sen bei nachfolgender (lincarer) Diskriminanzanalyse
stets gut abschneiden. (2) Andere Clusterstrukturen miis-
sen bei linearer Diskriminanzanalyse schlecht abschnei-
den, wenn die Losung die tatsachliche Clusterstrukturad-
aquat beschreibt. (3) die varianzanalytische Priifung der
wechselseitigen Isoliertheit der Cluster zu deren Validie-
rung als Struktureinheiten setzt gerade das voraus, was
gepriift werden soll: die Ubereinstimmung der Clusterlo-
sung mit der tatsichlichen Struktur. Die Signifikanz ei-
nes Mittelwertunterschieds ist aber kein Indikator fiir
die Clustervaliditit, sondern kann auch eine artifizielle
Aufteilung der Objektmenge “bestitigen”. Nur unter
der Voraussetzung, daf3 entsprechend unserer Methodik
der Strukturanalyse vorgegangen und auf diese WeiseAr-
tefakte vermieden wurden, ist der Einsatz von Diskrimi-
nanz-und Varianzanalyse nutzbringend. In erster Linie
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lassen sich folgende Fragen damit beantworten: (1) wie
grofB ist die wechselseitige Isoliertheit von Clustern, die
mitteln Varianz- oder Deterininantenkriteriuim gefun-
den wurden? (2) Beinhaltet eine Losung nach dem Krite-
rium der adaptiven Distanzen tiberlappende Cluster?
(Wenn nicht, so lassen sich auch ungleich groBe Ellipsen
verschiedener Hauptachsenrichtung durch Hyperebe-
nen trennen.) (3) Wie groB ist die Diskriminiertheit und
Isoliertheit von Clustern in anderen, nicht in die Cluster-
bildung cingegangenen Variablen? Mit dicser Frage geht
esum das Aufspiiren von differentiellen Zusammenhan-
gen zwischen Merkmalsgruppen untcr Umgehung der
Korrelationsstatistik, die z.B. in (3, 51, 63) stark proble-
matisiert wird. (4) Wie ist der (univariate) Beitrag jeder
einzelnen Variablen zur Klassifizierung? LaBt sich die
Clusterung eventuell durch die klassifikatorische Wir-
kung von cin oder zwei “Trenn”-Variablen erkliiren”?
Konnte tiber unsere Methodik der Strukturanalyse die
Adiquatheit einer Clusterlosung nachgewiesen werden,
so bietensich verschiedeneweitere Moglichkeiten zur dif -
ferenzierten Interpretation und nachfolgenden konfir-
mativen Analyse an. In (44) wird ein Ansatz entwickelt,
der die Methode der Kreuzvalidierung fiir die Cluster-
analyse erstmalsexplizit nutzt. In (9, 14) u.a. werden Per-
mutationsexperimente mit simulierten Datensétzen
durchgefiihrt.In(16,26,27,36,27)u.a.wirddasvon HU-
BERT/SCHULTZ (38) fiir die Datenanalyse nutzbar ge-
machte Paradigma derquadratischen Zuordnung als all-
gemeine nonparametrische Teststrategie weiter entwik-
kelt und konkrete Anwendungsmoglichkeiten aufge-
zeigt. Diese neuen Ansitze lassen interessante Weiterent-
wicklungen und neue Einsatzmoglichkeiten fiir die Da-
tenanalyse allgemein und die Clustcranalyse im Besonde-
ren erwarten.

4.4 Zum Interpretationsproblem

Die Verwendung der Clusteranalyse zur Losung struk-
turanalytischer Fragestellungen erfordert die Behand-
lung der Frage, wie die gewonnene Clusterung der Ob-
jektmenge inhaltlich zuinterpretieren ist, wiedie gefunde-
nen formalen Relationen und Strukturen adiquat in
fachwissenschaftlich relevante Relationen und Struktu-
ren “libersetzt” werden konnen. Die zur Verfiigung ste-
henden Maf3c zur Interpretationder Lésungen miissen al-
lerdings nicht notwendig zur sachgerechten Beantwor-
tung der inhaltlichen Fragen beitragen. Ublicherweise
schlieBt sich z.B. an eine partitionicrende Clusteranalyse
ein Profilvergleich der Clustermittelwerte, evtl. noch un-
ter Einschluf3 der entsprechenden Steuungen, an. Dieses
Vorgehen ist allerdings nur dann wirklich sinnvoll, wenn
nachgewiesen werden konnte, dal} diese Mittelwerte eine
addquate Beschreibung der untersuchten Struktur er-
moglichen, d.h., daB die Struktur durch kugelf6rmige,
disjunkte Cluster gekennzeichnet ist. Die Mittelwertvek-
toren minimieren die Zielfunktionen des Clusteranalyse-
kriteriums, des Determinantenkriteriums wie auch des
Kriteriums der adaptiven Distanzen. Daraus ergibt sich
aber nicht gleichzeitig deren Eignung zur Beschreibung
der Clusterung. Bei zwei ellipsoidf 6rmigen, einander wie
ein vierfliigeliger Propeller liberlappenden Clustern im
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2-dimensionalen Merkmalsraum stimmen die Mittel-
werte sowohl untereinander als auch mit denen der Ge-
samtmenge {liberein, sind also zur Beschreibung der ein-
deutigen Strukturungeeignet. Unter der Voraussetzung,
daB solche Strukturen iiberhaupt erkannt werden (was
mit dem paradigmatisch verwendeten Varianzkriterium
nicht moglich ist), miissen andere Methoden zur Be-
schreibung der Cluster angewandt werden. Denkbar
sind z.B. die clusterspezifischen Kovarianz- bzw. Korre-
lationsmatrizen, die clusterweise Bestimmung von Re-
gressionsgeraden, die Visualisierung der Struktur in den
ersten beiden Hauptkomponenten u.a. Der unkritische
Einsatz der Teststatistik zur Priifung von Mittelwertun-
terschieden kann trotz “signifikantcr” Ergebnisse die
Tatsache eines Artefakts verschleiern. Lasscn sich Arte-
fakte ausschliefen und sind Mittelwertprofile geeignete
Beschreibungsmittel, so sollte man deren Moglichkeiten
(vgl. 34, 47, 51) auch nutzen. Dassclbe gilt fiir alle Mal3e
zur Beschreibung von Homogenitdt und wechsclseitiger
Isolicrtheit der Cluster, z.B. Clusterradien, das Disjunkt-
heitsmaf} (55, 56) u.d. Noch relativ unbekannt ist das
Konzeptder L-und L-Cluster (30, 39), das gute interpre-
tatorische Moglichkeiten bietet. Weiterhin sind die viel-
faltigen im deutschen Sprachraum noch kaum bekann-
ten und eingesetzten graphischcn Methoden zur Lo-
sungsbeschreibung verwendbar, wie z.B. die Polardia-
gramme (auch: Kreis-Linien-Diagramme, polygon
plots), Metroglyphen, Andrew-Kurven (auch: function
plots), Chernoff-Faces, verschiedene Arten von Streu-
ungsdiagrammen u.4. (vgl. z.B. die Ubersichtsreferatein
(19, 65, 66).

S. Zum Einsatz der Clusteranalyse in empirischen
Untersuchungen

Die Relevanz unseres Ansatzes fiir praktische empi-
rische Untersuchungen, z.B. in den Sozialwissenschaf-
ten, soll hicr nun an einem Beispiel skizziert werden. Seit
langem wird in der klinisch-psychologischen Forschung
versucht, Zusammenhénge von Personlichkeitsmerkma-
len und psychopathologischen Syndromen aufzudek-
ken. Ziel derartiger Bemiihungen ist es, liber personale
Bedingungen der Genese psychischer Storungen zu wirk-
sameren Prophylaxe-und Therapieprogrammen zukomni-
men. Dabei wurde wiederholt festgestellt, daB es die Su-
cid-, Sucht- oder Neurosepersonlichkeit nicht gibt. Ein
grollerer Gewinn besteht daher in der Auffindung von
Subgruppen von Neurotikern, Alkoholikern usw., die
sich in bestimmten Merkmalskombinationen unterschei-
den. Die Therapierelevanz bisheriger Ergebnisse ist aber:
oft fragwiirdig, die in (21) angebotene 4-Cluster-
Gruppierung fir Alkoholiker (N = 135) fordert z.B. al-
lein aus methodischer Sicht folgende Diskussion heraus:
(1) es ist nicht gesichert, daB3 die interpretierte Losung

der tatsdchlichen Datenstruktur entspricht (es wird
nur die Methode nach WARD benutzt)

(2) eine Reanalyse in (22) mit zwei weiteren CA-Metho-
den ergab insges. drei bzgl. der Variablenprofile der
Cluster, bzgl. der Clustergrofienund bzgl. des Aullen-
kriteriums differentieller Riickfallquoten verschie-
dene Losungen.

D.h., es gibt verschiedene Losungen, die zu untcr-
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schiedlichen inhaltlichenInterpretationen und diagnosti-
schen sowie therapeutischen Konsequenzen fithren. Fiir
relevante Resultate solcher Klassifikation sind also ne-
ben einer komplexcren Untersuchungplanung auch Ad-
dquatheitsfragen bei der Datenauswertung zu beriick-
sichtigen. Letztere sind durch strukturanalytische Heran-
gehensweisen handelbar.

Quellen:

(1) BAUMANN, U.: Psychologische Taxometrie. Bern: 1971

(2) BEALE, E.M.L.: Euclidean cluster analysis. In: Bull.
Int.Stat.Inst. 43(1969)p.92-94.

(3) BERG, M.: Zum Problem der Verallgemeinerbarkeit ip-
ter- und intraindividueller Untcrschiede. In: SCHRO-
DER, H. (Ed.): Psychologieder Personlichkcit und Pcrson-
lichkeitsentwicklung, Berlin: Ges. f. Psychologie der DDR
1982.p.193-201.

(4) BERGS, S.: Optimalitdt bei Clusteranalysen. Disserta-
tion, Munster 1981.

(5) BINDER, D.A.: Bayesian cluster analysis. In: Biometrika
65(1978)p.31-38.

(6) BOCK, H.H.. Automatische Klassifikation. Gottingen:
Vandenhoeck & Ruprecht 1974. p.480.

(7) BUTTNER, J: Zur Clusteranalysc. In:
17(1975)p.163-179.

(8) CARROLL,J.D.,PRUZANSKY, S.: Discreteand hybrid
scaling models. In. LANTERMANN, E.D., FEGER, H.
(Eds.): Similiarity and Choice. Bern: Huber 1980. p.108-
139.

(9) COHEN, A., GNANADESIKAN, R., KETTENRING,
J.R., LANDWEHR, J.M.: Methodolocigal developments
in some applications of clustering, In: KRISHNAIAH,
P.R. (Ed.): Applications of statistics. Amsterdam: North-
Holland 1977, p.142-162.

(10) CORMACK, R.M.: A review of classification. In: J.Royal
Statist. Soc. (Scrics A) 134(1971)p.321-367.

(11) DEGENS, P.O., FEDERKIEL, H.: Clusteranalyse in der
Medizin. In: EHLERS, C.T., KLAR, R. (Eds.): Informa-
tionsverarbeitung in der Medizin, Wege und Irrivege. Ber-
lin: Springer 1979. p.459-464.

(12) DEGERMANN, R.L.: The geometric represcatation of
some simple structurcs. In: SHEPARD, R.N. et al (Eds.):
Multidimensional Scaling. New York: Seminar Press 1972.

(13) DOBBENER, R.: Zur Skalen- und Translationsinvarianz
von Metriken. In: Int.Classif. 8(1981)No.2, p.64-68.

(14) DOBBENER, R.: Grundlagen der numerischen Klassifi-
kation anhand gemischter Merkmale. Dissertation, Bam-
berg 1982.

(15) DUCAMP, A.,,FALMAGNE, J.C.. Composite mcasure-
ment. In: J.of Math.Psychol. 6(1969)p.359-390.

(16) ECKES, T.: Ein nonparamctrischer Test fiir die Ahalich-
keit zwischen Aufteilungen einer Objektmenge. In: Psy-
chol. Beitr. 24(1982)p.76-85.

(17) EVERITT, B.S.: Unresolved problems in Cluster Analy-
sis. In: Biometrics 35(1979)p.169-181.

(18) FLEISS, J.L.,LAWLOR, W.,PLATMAN, S.R., FIEVE,
R.R.: Ontheusc of inverted factor analysis for generating
typologies. In: J. Abnorm.Psychol. 77(1971)p.127-132.

(19) FLURY, B., RIEDWYL, H.: Graphical Representation
of Multivariate Data by Means of Assymetrical Faccs. In:
J.Am.Stat.Ass. 76(1981)p.757-765.

(20) FORTIER, J.J., SOLOMON, M.: Clustcring procedures.
In: KRISHNAIAH, P.R. (Ed.): Multivariate Analysis I.
New York: Academic Press 1966. p.493-506.

(21) FUNKE, J., KOPP, B.: A comparison of 3 methods of clu-
ster analysis: the H mcans/K mcans-algorithm, the fuzzy
set partition and the procedurc of Ward. In: Psycholog.
Beitr. 24(1982)p.286-295.

(22) FUNKE,J ,KLEIN,M.,SCHELLER, R.: ZurKlassifika-
tion von Alkoholikern durch Personlichkcitsmerkmale.
In: Psycholog. Beitr. 23(1981)p.146-158.

(23) FUNKHOUSER, G.R.: A note of thercliability of certain
clustering algorithms. J.Marketing Res. 20(1983)p.99-103.

(24) GEDIGA, G.: Ein Abbruchkritcrium fiir hicrarchische
Clusteranalysen. Psychol. Forschungsberichte, Univ. Os-
nabriick, Nr.20, 1980a.

(25) GEDIGA, G.: Hierarchische Klassifikation. Psychol. For-
schungsberichte, Univ. Osnabriick, Nr.21, 1980b.

(26) GEDIGA, G.: Quadratische Zuordnungsproblemc. Ei-

Biom.Z.

Int. Classif. 16 (1989) No. | — Schmidt — Cluster analysis as structure analysis

21.01.2026, 13:48:18.



https://doi.org/10.5771/0943-7444-1989-1-15
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

nige Algorithmen und Programmec. Arbcitsberichte Psy-
chol. Mcth., Univ. Osnabriick, Nr.7, 1982.

(27) GEDIGA, G.: Kontingenztafelanalyse und die Stabilitédt
von Clusterstrukturen. Arbcitsberichte Psychol. Meth.,
Univ. Osnabriick, Nr.10, 1983.

(28) GIGERENZER, G.: Messung und Modellbildung in der
Psychologic. Miinchen: Ernst Reinhardt 1981. p.475.

(29) GOLDEN, R.R., MEEHL, P.E.: Detection of Biological
Sex: An empirical Test of Cluster Methods. In:
Mult, Bch.Res. 15(1980)p.475-496.

(30) GORDON, A.D.: Classilication. Methods for the explora-
tory analysis of multivariatedata. London 1981.

(31) HARTIGAN, J.A: Representation of similarity matrices
by trees.In: J. Amer.Stat.Ass. 62(1967)p.1140-1158.

(32) HARTIGAN, J. A : Clustcring Algorithms. Ncw Y ork: Wi-
ley 1975.

(33) HARTMANN, W.: Modelle und Verfahren der Cluster-
analyse auf der Basis von Skalarprodukt-Relationen. In:
Int.Classif. 9(1982)p.129-139.

(34) HODAPP, V.: Versuche zur Typenfindung (Cluster-Ana-
lyse). In: KOLLER, S. (Ed.): Klinisch-statistische For-
schungen. Mainz 1976. p.241-251.

(35) HORST, W., MORAWE, G.: Kompartimenticrung von
Zustandsriaumen durch Feldlinien. In: BOCK, H.H. (Ed.):
Anwendungen der Klassifikation: Datenanalyse und Nu-
merische Klassifikation. Frankfurt (Main): Indcks Verlag
1984. p.153-161.

(36) HUBERT, L.J.: Inference proccdurcs for thc evaluation
and comparison of proximity matrices. In: FELSEN-
STEIN, J: (Ed.): Numerical Taxonomy. New York 1982.

(37) HUBERT, L.J.,, GOLLEDGE, R.G.: A heuristic mcthod
for the comparison of related structures. In: J.Math.Psy-
chol. 23(1981)p.214-226.

(38) HUBERT, L.I., SCHULTZ, J.V.: Quadratic assignmcnt
as a general data analysis strategy. Brit. In: J.Math.Sta-
tist.Psychol. 29(1976)p.190-24l1.

(39) JARDINE, N.: Towards a general theory of clustering. In:
Biometrics 25(1969)p.609-610.

(40) KAUFMANN,H.L ,ENGELHARDT, K..: Zur Klasscn-
zahlbestimmung bei Mischverteilungsverfahren. In: THM,
P.;DAHLBERG, I. (Eds.): Numecrischcund Nicht-Numec-
rische Klassifikation zwischen Theorie & Praxis. Frank-
furt/Main: Indeks Verlag 1982. p.122-131.

(41) KLASTORIN,T.D.: Assessing cluster analytic results. In:
J.Marketing Res. 20(1983)p.92-99.

(42) LANCE, G.N., WILLIAMS, W.T; A general theory of
classificatory sorting strategies. In: Computer J. 9 (1967)
.373-380.

(43) MARRIOTT, F.H.C.: Optimization mcthods of clustcr
analysis. In: Biometrika 69(1982)p.417-22.

(44) McINTYRE, R.M., BLASHFIELD, R.U.: A pearest-
centroid technique for evaluating thc minimum-variance
clustering procedure. In: Mult.Beh.Res. 15(1980)p.225-
238

(45) McQUITTY, L.L.: Multiple clusters, types and dimen-
sions from iterative intcrcolumnar correlational analysis.
In: Mulit.Bch.Res. 3(1968)p.465-447.

(46) MILLIGAN, G.W.: Areview of Monte Carlo tests of clu-
ster analysis. In: Mult.Beh.Res. 16(1981)p.379-407.

(47) MULLER, L.: Auswertungsmethoden zur Clusteranaly-
se. Dissertation, Hamburg 1977.

(48) OPITZ, O.: Numecrische Taxonomic. Stuttgart: G. Fi-
scher-Verlag 1980.

(49) PERRUCHET, C.: Significancc tcsts for Clusters: Over-
view and Comments. In: FELSENSTEIN, J. (Ed.): Nume-
rical Taxonomy. New York 1983.

(50) RASCH, D.,, HERRENDORFER, G., BOCK, J,
BUSCH, K.: Verfahrensbibliothek Versuchsplanung und -

Int, Classif, 16 (1989) No. 1 — Schmidt — Cluster analysis as structure analysis

-auswertung. Berlin: Dt. Landwirtschaf(sverlag 1981. Bd.

3.

(51) SCHLOSSER, O.: Sozialwissenschaftliche Zusammecn-
hangs-Analyse und Profil-Cluster-Analyse. Dissertation,
Berlin 1975.

(52) SCHMIDT, H.. Methodik der Strukturanalysc — cin Bei-
trag zur Modellbildung in der Psychologie. (To be publis-
hed in Z Psychol. 197(1989)No.2.

(53) SCHNEIDER, W., SCHEIBLER, D.: Zur Evaluation nu-
mcrischer Klassifikation: Probleme beim Vergleich von
Clusteranalysen. Bericht aus dem Psychologischen Institut
der Universitdt Heidelberg, Nr. 26, 1981,

(54) SCOTT, A.J., SYMONS, M.J.: Cinstering mcthods bascd
on likelihood ratio criteria. In: Biometrics 27(1971)p.387-
397.

(55) SNEATH, P.H.A.: Amcthod fortesting the distinctness of
clusters: a test of the disjunction of two clusters in Eucli-
dcan Spacc as measured by their overlap. In: J.Int.As-
soc.Math.Geol. 9(1977)p.123-143.

(56) SNEATH, P.H.A.: Some empirical tests for significance of
clusters. In: DIDAY, E., LEBART, L., PAGES, J.P., TO-
MASSONE, R. (Eds.): Data analysis and inf ormation. Am-
sterdam: North-Holland 1980, p.491-508.

(57) SPATH, H.: Cluster-Analyse-Algorithmen. Miinchen: @l-
denbourg 1975. p.217.

(58) SPATH, H.: Cluster-Formation und -analysc. Miinchcn:
Oldenbourg 1983. 236 p.

(59) SPRUNG, L., SPRUNG;, H.: Grundlagen der Methdolo-
gie und Methodik der Psychologic. Berlin: Dt. Verlag der
Wissenschaften 1984.452 p.

(60) STEINHAGEN, H.E., FUCHS, S.. Objckterkennung.
Berlin 1976.

(61) STEINHAUSEN, D., LANGER, K.: Clusteranalyse. Ber-
lin: de Gruyter 1977,

(62) STEINHAUSEN, D., STEINHAUSEN, J.: Clusterana-
lyseals Instrument der Zielgruppendefinition in der Markt-
forschung. In: SPATH, H: (Ed.): Fallstudicn Cluster- Ana-
lyse. Miinchen: Oldenbourg 1977. p.9-36.

(63) STELZL, 1.: Fchler und Fallen der Statistik. Bern: Hans
Huber 1982.

(64) TRAXEL, W.: Grundlagen und Methoden der Psycholo-
gie. Bern: Huber 1974.

(65) TURNER, D.W.: Graphical methods for representing
points inn-dimcnsional space. 789. Tagungder Amer. Ma-
themat. Ges., Amherst 1981 (typc-written manuscript).

(66) WAINER, H.: Multivariate display from Quipus to Faces.
Technical Report No.82-32, Educational Testing Service,
Princeton 1982,

(67) WARD, J.11.: Hierarchical grouping to optimize an objec-
tive function, In: J.Am.Statist. Assoc. 58(1963)p.236-244.

(68) WEHNER, T.: Die Methode der “Passiv”-Variablen-Pro-
jektion als elementar-statistisches Vorgehen bei der Inter-
pretation einer optimalen Clusterzahl. In: Z.Sozialpsych.
12(1981)No.1, p.42-48.

(69) WILLE, R.: Linicndiagramme hierarchischer Begriffssy-
steme. In: BOCK, H.H. (Ed.): Anwendungen der Klassifi-
kation: Datenanalyse und Numerische Klassifikation.
Frankfurt: Indcks Verlag 1984. p.32-51. (Also: Linc dia-
grams of hierarchical concept systcms. Int.Classif.
11(1984)No.2, p.77-86)

(70) WOLFE, .I.H.: Pattern clustering by multivariate mixture
analysis. In: Mult.Beh.Res. 5(1970)No.3, p.329-350.

Dr. Helfried Schmidt, Sektion Psychologie, Karl-Marx-
Universitit, Karl-Marx-Platz, DDR-7010 Leipzig

23

21.01.2026, 13:48:18.



https://doi.org/10.5771/0943-7444-1989-1-15
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

