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MEMS
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MPJAE
MPJPE
NN
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SO(3)
SE(3)
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two-dimensional

three-dimensional

three-dimensional poses in the wild
Convolutional Neural Network

Degrees of Freedom

Global Positioning System

Inertial Measurement Unit
Micro-Electro-Mechanical Systems

Motion Capture

Mean Per Joint Angular Error

Mean Per Joint Position Error
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Root Mean Square
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Special Orthogonal Group of dimension three
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Video Inertial Poser
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Notation

Numbers and Arrays

a

Pac(b)

VI

A scalar (integer or real)

A vector

A matrix

Transpose of matrix A

Scalar product of a and b

Cross product of a and b

Partial derivative of y with respect to «
Jacobian matrix J € R™*" of f: R* — R™
Homogeneous representation of vector a
Estimate of vector quantity a

L2-norm of a

Determinant of A

Identity matrix with n rows and n columns

Zero matrix with n rows and m columns

A scalar angle

Pose vector parametrizing a kinematic chain
Gradient or perturbation of a pose vector

A kinematic chain

Parent joints of segment b in C
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Notation

3
» 27

=

N(p, %)
o

A rotation matrix R € SO(3)

A matrix representing a rigid body motion M € SE(3)
Projection of a 3D point a to homogeneous pixel coordinates
Matrix of camera intrinsics

Gaussian distribution with mean p and covariance 3

Perturbation-operator (&: G x g — G)

Exponential Mapping

Q

Qlﬂ

aora

exp

log

A Lie group
A Lie algebra
Generator matrix associated to dimension ¢ of a Lie algebra

Wedge-operator to construct a Lie algebra element from a coordinate
vector a

Vee-operator to obtain coordinate vector from an element of a Lie
algebra

Matrix exponential to map from a Lie Algebra element to a Lie Group
element

Logarithm to map from a Lie Group element to a Lie Algebra element

Sets and Graphs

The set of real numbers

A graph

A vertex v in a vertex set V
An edge e in an edge set £

A cost variable

Feasibility set

A label [ in a label set £

A binary indicator variable

An assignment hypothesis
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Abstract

This dissertation explores approaches to capture human motions with a small number
of sensors. Conventional methods either use a large number of static cameras, which
severely limits the recording space, or a high number of body-worn inertial sensors,
which is intrusive and only accurate for short time periods.

The first part of this thesis presents an approach that reconstructs the body pose
from only 6 inertial sensors. Conventionally, up to 17 sensors are needed to cover all
degrees of freedom of the body. Since fewer sensors inevitably lead to ambiguities,
previous approaches estimate the missing information from pre-recorded motion
databases. In contrast, in this work a model-based approach is proposed. More
specifically, a global optimization problem is solved to maximize the consistency of
measurements and model over an entire recording sequence. A key observation is
that the kinematic constraints imposed by a statistical human body model constrain
the search space significantly. This allows to utilize the acceleration data of inertial
sensors to compensate for the missing sensor information. The performance of the
method is demonstrated in challenging outdoor scenarios and accuracy is evaluated
on two benchmark datasets.

The second part of this thesis deals with a hybrid approach to fuse visual information
from a single hand-held camera with inertial sensor data. This approach combines
the advantages of both sensor modalities. It enables capturing multiple interacting
people and works even if many more people are visible in the camera image. In
addition, systematic errors of the inertial sensors can be compensated, leading to
a substantial increase in accuracy. In order to fuse the sensor modalities, visual
information from the camera has to be associated to inertial sensor data. This is
done automatically by formulating a discrete graph labeling problem. Subsequently,
all sensor information of an entire tracking sequence is transformed into a global
model-based optimization problem, which reconstructs body poses, camera pose
and sensor errors. In several experiments accuracy is evaluated quantitatively and
qualitatively. The combination of a single hand-held camera and body-worn inertial
sensors enables motion capture in new complex settings. Using the approach a
variety of motions are recorded, e.g. during shopping in a crowded pedestrian zone
or during a bus ride. These recordings are composed into a novel dataset, which
was made publicly available for research purposes.

Keywords: Human Pose Estimation, Inertial Sensors, Video, Non-static Camera,
Model-based Optimization, Sparse Sensors
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Kurzfassung

Diese Dissertation untersucht Ansétze zur Erfassung menschlicher Bewegungen mit
wenigen Sensoren. Herkommliche Verfahren verwenden entweder eine groe Anzahl
an statischen Kameras, was den Aufnahmebereich stark einschrankt, oder eine hohe
Anzahl am Korper getragenen Inertialsensoren, was als unangenehm empfunden
wird und nur fiir kurze Zeitrdume prézise funktioniert.

Im ersten Teil dieser Arbeit wird ein Ansatz vorgestellt, der die Koérperhaltung
aus den Messdaten von nur 6 Inertialsensoren rekonstruiert. Ublicherweise werden
bis zu 17 Sensoren benétigt um alle Freiheitsgrade des Korpers abzudecken. Da
weniger Sensoren zwangslaufig zu Uneindeutigkeiten fiihren, werden in bisherigen
Ansitzen die fehlenden Informationen aus zuvor aufgenommenen Bewegungsdaten-
banken geschétzt. Im Gegensatz dazu wird ein modellbasierter, generativer Ansatz
entwickelt. Sémtliche Messwerte eine Aufnahmesequenz werden in ein globales
Optimierungsproblem iiberfithrt und die Konsistenz von Messdaten und Modell
maximiert. Die modellierten kinematischen Einschrénkungen des menschlichen
Skelettes fithren zu einer wesentlichen Eingrenzung des Suchraums und erméglichen
so die Beschleunigungsdaten der Inertialsensoren zur Kompensation der fehlenden
Sensorinformationen heranzuziehen. Die Prézision des Ansatzes wird experimentell
untersucht und durch Bewegungsrekonstruktionen aus anspruchsvollen Auflenauf-
nahmen demonstriert.

Im zweiten Teil der Arbeit wird der vorhergehende Ansatz erweitert, um visuelle
Informationen von einer in der Hand gehaltenen Smartphone-Kamera mit den Daten
der Inertialsensoren zu fusionieren. Dieser Ansatz ermoglicht eine mobile Bewe-
gungserfassung von mehreren interagierenden Personen und funktioniert selbst wenn
im Kamerabild viele weitere Personen sichtbar sind. Zuséatzlich kénnen systematis-
che Fehler der Inertialsensoren geschétzt werden, was zu einer erheblich praziseren
Bewegungsschétzung fithrt. Um die verschiedenen Sensorinformation miteinander zu
fusionieren, muss zunéchst eine Zuordnung von Bildinformationen und Inertialsen-
sordaten stattfinden. Diese Zuordnung wird zeitlich konsistent durch eine diskrete
Optimierung mittels Graph-Labeling gelost. AnschlieBend werden sdmtliche Sensorin-
formationen einer gesamten Sequenz in ein globales Optimierungsproblem tiberfithrt
und neben der Korperhaltung nun auch die relative Entfernung zur Kamera, die Kam-
erapose und Sensorfehler geschitzt. Die Prézision des Ansatzes wird in zahlreichen
Experimenten evaluiert. Zusdtzlich werden die im Rahmen der Arbeit aufgenomme-
nen Bewegungssequenzen in Form eines neuartigen Datensatzes vorgestellt und fiir
Forschungszwecke bereitgestellt. Die Kombination von Smartphone-Kamera und
Inertialsensoren ermdglicht erstmalig eine mobile Bewegungserfassung von mehreren
Personen, die auch fiir Alltagssituationen wie beispielsweise beim Einkaufen in einer
belebten FuBgingerzone geeignet ist.

Schlagworter: Erfassung menschlicher Bewegungen, Inertialsensoren, Video, be-
wegliche Kamera, modell-basierte Optimierung, wenige Sensoren

Xl
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1 Introduction

As humans, we constantly perceive the movements of others with our eyes. Over
the course of our lives, we have learned to interpret these observations in various
ways. On the one hand, we develop an exceptional understanding of moments and
forces that generate a motion, e.g. we can easily sense the physical condition of
person by simply looking at his or her movements. On the other hand, we are
also able to recognize moods and attitudes, e.g. if someone is happy, sad, relaxed,
nervous, aggressive, etc. In fact, body language plays a fundamental role in human
communication.

Consequently, there is a lot of information in our movements and this has many
potential applications. Human motions are analyzed to diagnose pathological
conditions or to better understand the biomechanics of our musculoskeletal system.
Human motions are also used for animating virtual characters in movies or games.
This enables to naturally transport moods even for characters who do not look like
a human at all. Furthermore, human motion is an important input to man-machine
and human-computer interaction.

A prerequisite for such applications is the ability to capture human motions and to
transfer them to a numeric representation. This task is commonly called human
motion capture! or simply Motion Capture (MoCap).

1.1 A Brief History

This section provides a very brief overview of the origins of human motion capture.
For a more comprehensive review, we refer the reader to Rosenhahn et al. [1].

There has always been a great interest in capturing, visualizing and analyzing
how humans move and interact with their environment. Probably the earliest
art works visualizing humans in motion date back to 20000 years before present,

'In this work human motion capture refers to the task of reconstructing the body pose, rather
than hand gestures or facial expressions.
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Chapter 1 Introduction

Figure 1.1: The earliest art works showing humans in motion: cavemen drew
hunting scenes at rock walls [2].

where cavemen created paintings of hunting scenes, see Figure 1.1. While artists
commonly deal with the process of visualization, mankind has also always been
interested in understanding and finding physical laws, that explain what we observe.
A famous example who started to investigate the human body and the underlying
physical principles is the polymath Leonardo DaVinci (1452-1519). His drawing The
Vitruvian Man, depicted in Figure 1.2, can be seen as an early work to the research
field of biomechanics and motion analysis.

Figure 1.2: The vitruvian man, drawn by the Italian polymath Leonardo
DaVinci around 1490, shows the correlations of ideal human body propor-
tions [3]. It demonstrates the increasing interest to understand the physical
laws of nature and of the human body and its movements in particular.

In order to objectify the analysis of human motion, researchers and engineers started
to develop motion measurement tools that enable to record and replay human
motions. The first technical realization of a motion capture system was invented by

73.216.80, am 24.01.2026, 12:26:28.© Inhak.
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1.2 Applications

Muybridge (1830-1904), see Figure 1.3. He built an apparatus to capture images at
high frame rates, which enabled to replay and review the motions after they have
been observed.

Figure 1.3: The first technical motion capture system was invented by
Muybridge (1830-1904). His system was capable to take image at high frame
rates as illustrated in the shown sequence of a running man [4].

From then on, various motion capture technologies were developed and nowadays
they are not limited to recording, but are also capable to automatically reconstruct
a numerical representation of the body motion. These numerical representations are
key to various applications.

1.2 Applications

Capturing and reconstructing the body pose has many applications.In bio-medical
and bio-mechanical applications, the focus is on analyzing the motions to diagnose,
adjust or optimize the human musculoskeletal system. For example, in medical
diagnoses, motion capture systems are used to assess physical activity, diagnose
pathological conditions or to monitor rehabilitation progress. In sports science, they
are used to optimize athletes” movements or to find optimal equipment. MoCap
systems are also utilized to evaluate ergonomic aspects of products or workstations
and to remotely monitor sport or rehabilitation exercises.
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In addition to analyzing purposes, motion capture systems are also widely used
to animate virtual characters or for human-machine interactions. Notable movies,
such as Avatar, Lord of the Rings, Pirates of the Caribbeans and many more,
use motion capture technology to transfer the movements of an actor to virtual
avatars. The gaming industry applies the player’s motion to control the gameplay
or to realistically animate virtual characters. In the field of collaborative robots,
interacting persons have to be monitored to prevent accidents. Also, virtual and
augmented reality applications require accurate knowledge about the human pose
to control and interact with virtual objects or environments. A prerequisite for all
these applications is to accurately capture human motion. However, this poses a
challenging problem as described in the following.

1.3 The MoCap Problem

In general, human motion capture is about inferring the unknown body pose from
sensor observations. In this work, we refer to this task as the MoCap Problem.
The MoCap problem is a challenging problem for various reasons. The human
musculoskeletal system of an adult is a complex compound of 206 bones connected
by joints, muscles, ligaments, tendons and other connective tissue.Hence, ideally
the body pose is defined in terms of the actual overall state of this system. How-
ever, modeling the static and dynamic intricacies of this complex system is almost
impossible, specifically, since the musculoskeletal system is very diverse across the
population due to natural variations, but also due to congenital malformations or
injuries.

A further challenge arises from the fact that the skeletal structure is covered by
muscle, fat, other soft tissue, and potentially clothing. Hence the actual bone states
that constitute the body pose cannot be observed directly, and we have to estimate
the underlying hidden states from surface observations. Of course, this could be
circumvented by using x-Ray or by screwing markers into bony structures of the body.
However, in this work we only consider radiation-free and non-invasive methods.

In addition to the challenges arising from modeling the human body and the hidden
nature of the actual bone states, we are also faced with measurement errors in
the sensor observations. All sensors have a limited precision and a method which
addresses the MoCap problem should be able to alleviate these sensor errors in
an adequate way. In the following we introduce common high-level strategies to
approach the MoCap problem.

Human Pose Representation

In order to reduce complexity, the muscoloskeletal system is typically approximated
by a simpler kinematic model. The majority of recent approaches represent the body
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1.3 The MoCap Problem

L\

(b)

Figure 1.4: Human pose representations: (a) Human pose is defined in terms
of the 3D positions of major body joints [5]. (b) Pose is defined in terms of
a skeletal model with associated joint angles. This can be used to animate a
surface mesh.

pose either as a set of pre-defined three-dimensional (3D) key points or in terms of
joint angles, see Figure 1.4.

1. The set of 3D key points usually refers to the coordinates of major joints of
the human body. This representation is simple, intuitive and easy to visualize.
The downside of this representation is that during inference, properties of
the human skeleton, such as constant bone length and symmetry, have to be
imposed explicitly. Further, not all Degrees of Freedom (DoF) of the human
skeleton can be modeled. The state of a bone segment is determined by the 3D
coordinates of the proximal and distal end. This is invariant to rotations about
the bone’s long axis. Hence, pronation and supination cannot be captured
using this representation.

2. Joint angles refer to the set of rotational states of all major joints of the
body. In particular, the joint angle(s) of a single joint describe the relative
orientation between two connected bone segments. This state can be defined
in terms of one, two or three numbers depending on the number of rotational
DoF of the joint. This representation has the advantage that it is well suited
for motion analysis and pose transfer since it is independent of anthropometric
parameters such as bone length and stature. However, for visualization and in
order to relate joint angles to positional sensor observations, this representation
requires a body model which encodes the anthropometric properties of the
body.

Usually, the total number of DoF of both pose representations lies in the range of
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30-80 parameters. This is still a very high-dimensional search space. Also, not all
parameter configurations lead to physically plausible poses. This accounts for joint
limit violations or poses in which limbs would intersect each other.

Inference Models

Intuitively, the MoCap problem can be formalized to find the most probable pose
x € X given the sensor observations z € Z, which corresponds to the maximizer of
the posterior probability according to

arg max p(z|z). (1.1)

A probabilistic view on this problem makes sense, since both the model and measure-
ments are associated with uncertainty. However, in this thesis we will not rely on
this probabilistic view explicitly, but use it to classify approaches according to their
inference model and how temporal information is processed. Almost all methods
in the literature can be categorized to tackle the MoCap problem using either a
generative or discriminative inference model. Generative approaches are based on a
mathematical model relating sensor observations to the underlying unknown states
2. Based on this model, the posterior distribution is typically modeled in terms of a
fitness function f,

fo: X xZ =R, (1.2)

which provides a measure of how well the model under pose parameters x matches
the sensor observations z. The most probable pose is then determined by finding
the maximizer of f using some kind of optimization algorithm.

Approaches using a discriminative inference model are typically based on a direct
mapping fy from observations to pose parameters:

fi: Z — X. (1.3)

Here, the idea is to learn an implicit representation of (1.1) using a large dataset of
observations with corresponding poses.

Generative approaches have the advantages that domain knowledge can be modeled
explicitly and inference is interpretable. Also, typically the number of model param-
eters is rather small and they generalize to arbitrary motions. The disadvantages
are that building an adequate model is usually involved and often inference is slow.

Discriminative approaches on the other hand learn a direct mapping from inputs
to the desired output. Typically, these approaches are easy to implement and
inference is fast. However, incorporating domain knowledge is rather difficult and
the performance heavily depends on the amount and quality of training data. A
problem frequently encountered with discriminative approaches is that they do not
generalize well to unseen poses or motions that have not been in the training data.
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Temporal Processing

Measurements of real sensors always have an associated uncertainty. In order to
better deal with these uncertainties, it makes sense to consider a larger temporal
window of measurements. Also, instead of inferring the pose from measurements at a
single time instance, we are commonly interested in reconstructing the time-varying
pose z(t) for t = 1,..., T, where t refers to sample time and 7 is the total number of
frames. In the following we will use the short-hand notation x1.7 to refer to a time
sequence.

Consequently, instead of maximizing the posterior as in (1.1), it usually makes sense
to maximize the posterior of the time-varying pose x1.7, given all measurements at
corresponding time steps zy.7:

arg maxp(x1:T|leT)' (14)
Z1.T7
Since this incorporates all available information of a complete recording sequence,
we refer to this as a global optimization formulation. However, in order to maximize
(1.4) one has to wait until all measurements are available.

An alternative formulation to this is filtering, which estimates the pose x; at current
time ¢ given all measurements z1; up to and including ¢. The filtering problem can
be expressed in terms of the posterior according to

arg max p(z¢|21.¢), (15)
Tt

which has to be solved at each successive time step. This enables online processing.
The downside is future measurements cannot be taken into account, making it
less accurate than global formulations. A large variety of intermediate methods
exist, which consider fixed window lengths of measurements and states, or use this
information to predict future states.

Capturing and reconstructing the body pose is a very challenging task that can be
solved in various ways. A perfect solution to the MoCap problem would be accurate,
non-intrusive, portable, inexpensive, easy to operate and capable to capture multiple
interacting people in natural environments. However, such a perfect solution does
not exist yet, which is illustrated in the following section.

1.4 State of the Art

In this section, we provide a brief overview of the state of the art relevant to this
work. Human motion capture has been actively researched for decades, hence an
extensive survey is out of the scope of this thesis. For a more comprehensive review
of the literature on this topic we refer the interested reader to survey papers [6, 7, 8].
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In the following the state of the art is structured according to the sensor modality
used. This comprises vision-based, inertial sensor-based and hybrid approaches. In
the last section, we briefly mention magnetic and mechanical systems, which are
rarely used in practice.

1.4.1 Vision-based

Vision-based approaches use cameras to capture human motions. In general, the
process of mapping the 3D scene onto a two-dimensional (2D) sensor surface creates
depth-ambiguities and occlusions, which are resolved in different ways.

Multiple Cameras

Multi-camera approaches recover the depth information by using a set of cameras to
triangulate the 3D position of the human body. This requires to track and associate
points on the body across multiple views. In order to simplify this process, the
majority of commercial systems utilizes special markers attached to anatomical
landmarks on the body. These markers are usually easy to detect in the images, and
once their 3D position is triangulated, the skeletal state can be reconstructed by
fitting a skeletal model to marker positions. Marker-based optical motion capture
systems, such as Vicon [9] or Qualisys [10], are well established and they are generally
considered the gold-standard in motion capture technology.

However, marker-based systems have drawbacks in terms of applicability. Typically
30-50 markers have to be attached to the body to capture all degrees of freedom of
the skeletal structure. This generates long setup times and the subject has to be
careful not to wipe off any markers during the recording. Also, subjects cannot wear
regular clothing as the markers have to be attached to the skin or a tight fitting
capture suit.

In the computer vision community, a great number of approaches have been published
to perform motion capture without the need of markers. Instead, these approaches
automatically create and associate points on the body from image features, such
as silhouettes or edges. Alternatively, optical-flow or statistical models of person
appearance have been used in this context. For a comprehensive overview of marker-
less motion capture approaches we refer to survey papers [6, 7, 11]. Research in this
area has also developed into commercial systems. The Captury [12] and Simi [13]
provide systems that perform marker-less motion capture with multiple standard
RGB-cameras. Marker-less approaches allow to wear regular apparel, but are usually
not as accurate as marker-based approaches.

A common challenge to all camera-based motion capture systems are occlusions. In

order to triangulate a point on the body, a free line of sight has to be available from
at least two cameras at the same time. The articulated structure of the human body
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quickly generates occlusions and points on non-facing surfaces have to be captured
from other views. Consequently, this requires a large number of cameras. Despite
the installation and calibration effort, this also limits the observation space to a
rather small volume.

Depth-Sensors

The field of human pose estimation has experienced significant advances with the
availability of the inexpensive depth sensor Kinect. A depth sensor significantly
simplifies the problem since many depth ambiguities can be resolved. In the
influential paper of Shotton et al. [14] the pose estimation problem is turned into a
body part classification problem, where a pixel with known depth is associated to
points on the human body. Taylor et al. [15] and Pons-Moll et al. [16] extended this
approach to directly regress correspondences to a body model to improve prediction
accuracy. Several other approaches have been published to tackle the problem of
pose and shape estimation from depth sensors. Chen et al. [17] provide a survey
on pose estimation using depth images. Although depth sensors are very appealing
for applications such as gaming, they do not work very well outdoors, and the
recording volume is limited. Furthermore, for both video and depth data, orientation
ambiguities are still an issue.

Monocular Pose Estimation

Monocular pose estimation approaches aim to reconstruct the 3D body pose from a
single 2D image. Typically, in a first step the pixel coordinates of major landmarks of
the human body are detected. Then, the missing depth information is compensated
by lifting the joint positions to 3D using learning-based methods or geometric
reasoning. This direction is researched very actively [18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30]. Monocular approaches are very appealing since they only require
a single camera, work outdoors and do not need any further equipment. However,
they are still much less accurate than multi-camera systems or depth sensors. A
main reason for the limited accuracy is that these approaches require large training
data sets with a high variability in poses, appearance and environments, which are
currently not available. Also, generalization to unseen poses and situations is still
an open research question.

1.4.2 IMU-based

Inertial sensors are based on the principle of inertia to measure linear acceleration
and rate of turn. Commonly, a set of three orthogonal accelerometers and a set
of three orthogonal gyroscopes are built into an Inertial Measurement Unit (IMU)
to sense motion in all spatial directions. By combining the sensor measurements,
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it is possible to track the IMU orientation in space. Often, an IMU also contains
a three-axis magnetometer measuring the local magnetic field vector to stabilize
the orientation estimates. The body pose can be tracked with inertial sensors by
attaching an IMU to every bone segment of interest.

In the early work of Roetenberg et al. [31] they use 17 IMUs and fuse the sensor
measurements using a Kalman Filter. By achieving stable orientation measurements
17 IMUs completely define the pose of the subject. In the seminal work of Vlasic
et al. [32] a custom made system is proposed. It consists of 18 sensor boards, each
equipped with an IMU and acoustic distance sensors, to compensate for typical
drift in the orientation estimates. For a comprehensive review of IMU-based motion
capture approaches we refer to Lopez-Nava and Munoz-Melendez [8]. Meanwhile,
there also exist commercial solutions for full-body motion capture using IMUs, e.g.
from Xsens [33], Shimmer [34] or Notch [35].

The advantage of IMU-based motion capture is that the sensors are body-worn
and do not require any external equipment. Consequently, the recordings are not
limited to a specific location or volume, and users can wear regular apparel. The
main drawbacks of IMU-based motion capture are that magnetic disturbances can
deteriorate the accuracy of orientation estimates, and absolute position in space
cannot be tracked. In addition, in order to perform full-body motion capture, up to
17 IMUs are required, which is cumbersome to setup and quite intrusive to wear.

In this work, a method is presented that addresses the latter limitation and recon-
structs the body pose from a reduced set of inertial sensors. Similar attempts have
been presented in other works. Slyper and Hodgins [36] and Tautges et al. [37]
reconstruct human pose from 5 accelerometers by retrieving pre-recorded poses with
similar accelerations from a database. Acceleration data is, however, very noisy and
the space of possible accelerations is huge which makes learning a very difficult task.
Liu et al. [38] use 6 IMUs to regress the full pose using online local models to query
a database. Schwarz et al. [39] directly regress full pose using only four IMUs with
Gaussian Process regression. Both methods report very good results when the test
motions are present in the database.

Although pre-recorded human motion greatly constrains the problem, methods that
heavily rely on pre-recorded data are limited; in particular, capturing arbitrary
activities is difficult if it is missing in the databases.

1.4.3 Hybrid Approaches

Accurate vision-based methods require a high number of cameras to resolve the
ambiguities created by mapping the 3D scene onto the 2D sensor surface. Such
systems are limited to a static and rather small recording volume. Inertial sensor-
based systems do not suffer from these limitations since the sensors are body-worn
and no external equipment is required. However, the position of a person in space
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cannot be tracked with IMUs and orientation estimates are only accurate for short
time periods. In general, the characteristics of camera-based and IMU-based motion
capture are complementary.

Several works exploit this fact and combine both sensor modalities to hybrid ap-
proaches. Pons-Moll et al. [40] propose a setup with 4-8 static cameras and 5 IMUs.
A local optimization scheme is applied to fit a body model to IMU orientations and
person silhouettes obtained from the videos. The same setup is used in another
work [41], where a particle-based optimization scheme samples from a manifold of
poses which are consistent with IMU orientations. Trumble et al. [42] propose a
CNN-based approach to fuse information from 8 camera views and IMU data to
directly regress the body pose. Malleson et al. [43] combine IMUs with 2D poses
detected in two or more static cameras. Sparse optical markers and a sparse set of
IMUs are combined by Andrews et al. [44] to reconstruct the body pose. Since these
approaches all use (multiple) static cameras, recordings are restricted to a fixed
recording volume. A simple recording of movements in natural environments is not
possible with such systems. Other works combine depth data with IMUs [45, 46].
However, IMUs are only used to query similar poses in a database and depth data
is used to obtain the full pose.

1.4.4 Other Sensor Modalities

Mechanical systems

Mechanical motion capture systems utilize rigid or flexible body-worn goniometers to
measure the relative angle between body segments [47]. In order to perform full-body
motion capture, the general idea is to construct an articulated exoskeleton which is
driven by the wearer. The pose is then simply defined in terms of the exoskeleton’s
joint states. Mechanical systems do not require external equipment, are invariant to
occlusions and provide a very direct way to measure posture. However, such systems
have to be carefully adapted to each user and the alignment of linkages is difficult,
especially for joints with multiple degrees of freedom. Also, wearing an exoskeleton
is quite intrusive and hampers the user’s motions.

Magnetic systems

Magnetic motion capture systems use sensors attached to the body to measure the
magnetic field generated by a transmitter source [48]. Based on the sensed magnetic
field vector and strength, it is possible to compute sensor orientation and position in
space. Since magnetic fields are unaffected by the human body, such systems have
the advantage of being invariant to occlusions. However, ferro-magnetic materials
in the capture volume can disturb the measurements, and the maximal distance
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from transmitter source to sensors is limited as the magnetic field strength decreases
rapidly as the distance increases.

1.5 Contributions and Outline

This thesis presents two novel methods to solve the MoCap problem. In contrast to
the state of the art, the proposed methods recover the body pose from very sparse
sensor sets and without making any assumptions on the motions to be captured.
This significantly improves practicability and enables motion capture in everyday
environments.

In order to cope with the sparsity of measurements, the proposed methods apply a
global optimization formulation to maximize the consistency between a generative
body model and measurements of an entire recording sequence. In particular, the
modeled cost functions consist of a sum of quadratic error terms which are minimized
using the Levenberg-Marquard method. Interestingly, such a setting has already
been proposed in other areas such as SLAM [49] or bundle adjustment [50]. In
contrast to these methods, however, in this work we do not reconstruct the static 3D
point coordinates and the temporally varying rigid body motion of a single camera.
Rather, the rigid body motions of all individual body segments are optimized over
all frames of a recording sequence. This approach forms the foundation for the
methods developed in this work, which are briefly summarized in the following.

Sparse Inertial Poser

Standard IMU-based human motion capture motion capture systems require 10-17
sensors to capture the full-body pose [33, 34, 35]. This is tedious to setup and
wearing such a high number of sensors is intrusive. Existing approaches, which work
with a smaller number of 5-6 inertial sensors, apply discriminative methods and
reconstruct the full pose from previously recorded motion databases [36, 37, 38, 39].
However, this only works to a limited extent and does not generalize to unseen
movements.

In the first part of this thesis we present the Sparse Inertial Poser (SIP), which is a
generative method to recover the full 3D human pose from only 6 IMUs attached to
wrists, lower legs, waist and head. This is a minimally intrusive solution to capture
human activities with IMUs. However, orientation at the extremities and waist only
provides a weak constraint on the body pose, and incorporation of acceleration data is
usually affected by drift. To solve this difficult problem, we exploit a statistical body
model and formulate a global optimization problem considering all sensor information
of a recording sequence. In particular, we design an objective function that enforces
the coherency between body model orientation and acceleration estimates against

12

216.73.216.80, am 24.01.2026, 12:26:28. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186866103

1.5 Contributions and Outline

IMU recordings. In contrast to the previous methods, the approach works for
arbitrary movements and does not require pre-recorded motion databases. In several
experiments we show that SIP, while simple, is very powerful and can recover all
poses of a sequence as a result of a single optimization.

Video Inertial Poser

In the second part of this thesis, we present the Video Inertial Poser (VIP) which
combines visual information from a hand-held camera with body-worn IMUs. In
contrast to previous works, VIP improves IMU-based motion capture using sparse
visual information, rather than extending a static camera setup with sparse IMU
inputs [40, 51, 41, 42, 43]. This adds a minor additional recording effort and the
system remains portable. With VIP, we extend ideas from SIP to jointly estimate
the body pose of multiple people by using 6-17 IMUs attached at the body limbs and
estimate their relative position and heading drift from the visual cues of the camera.
Specifically, a novel graph-based association method is proposed to automatically
associate IMU data with 2D image observations. This facilitates to fuse visual and
inertial cues by defining an objective function and to jointly optimize for the 3D poses
of the full sequence, the per-sensor heading errors, the camera pose and translation.
This approach enables accurate 3D human motion capture in challenging natural
scenes. We demonstrate applicability of VIP by recording three-dimensional poses in
the wild (3SDPW): a dataset consisting of hand-held video with accurate 3D human
pose and shape in natural environments.

List of Publications

During the course of this dissertation, the following peer-reviewed publications have
been published at major computer vision and computer graphic conferences and
journals. The first three publications deal with human motion capture and form the
basis of this thesis. The fourth publication, which is not part of this thesis, deals
with combining video and inertial sensors for the task of multi-people tracking and
re-identification.

[61] Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn. Human Pose
Estimation from Video and IMUs. In: Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2016.

In this work, we present an approach to fuse video with sparse orientation
data obtained from inertial sensors to improve and stabilize full-body human
motion capture. Even though video data is a strong cue for motion analysis,
tracking artifacts occur frequently due to ambiguities in the images, rapid
motions, occlusions or noise. As a complementary data source, inertial sensors
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[52]

allow for accurate estimation of limb orientations even under fast motions.
However, accurate position information cannot be obtained in continuous
operation. Therefore, we propose a hybrid tracker that combines video with a
small number of inertial units to compensate for the drawbacks of each sensor
type: on the one hand, we obtain drift-free and accurate position information
from video data and, on the other hand, we obtain accurate limb orientations
and good performance under fast motions from inertial sensors. In several
experiments we demonstrate the increased performance and stability of our
human motion tracker.

Timo von Marcard, Bodo Rosenhahn, Michael J. Black, and Gerard Pons-
Moll. Sparse Inertial Poser: Automatic 3D Human Pose Estimation from
Sparse IMUs. In: Computer Graphics Forum 36(2), Proceedings of the 38th
Annual Conference of the European Association for Computer Graphics (Euro-
graphics), 2017.2

We address the problem of making human motion capture in the wild more
practical by using a small set of inertial sensors attached to the body. Since
the problem is heavily under-constrained, previous methods either use a large
number of sensors, which is intrusive, or they require additional video input.
We take a different approach and constrain the problem by: (i) making use of
a realistic statistical body model that includes anthropometric constraints and
(ii) using a joint optimization framework to fit the model to orientation and
acceleration measurements over multiple frames. The resulting tracker Sparse
Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to
the wrists, lower legs, back and head) and works for arbitrary human motions.
Experiments on the recently released TNT15 dataset show that, using the
same number of sensors, SIP achieves higher accuracy than the dataset baseline
without using any video data. We further demonstrate the effectiveness of SIP
on newly recorded challenging motions in outdoor scenarios such as climbing
or jumping over a wall.

Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn,
and Gerard Pons-Moll. Recovering Accurate 3D Human Pose in The Wild
Using IMUs and a Moving Camera. In: European Conference on Computer
Vision (ECCV), 2018.

In this work, we propose a method that combines a single hand-held camera
and a set of Inertial Measurement Units (IMUs) attached at the body limbs
to estimate accurate 3D poses in the wild. This poses many new challenges:
the moving camera, heading drift, cluttered background, occlusions and many
people visible in the video. We associate 2D pose detections in each image
to the corresponding IMU-equipped persons by solving a novel graph based
optimization problem that forces 3D to 2D coherency within a frame and

?Received the Giinter-Enderle Award for the Best Paper at Eurographics 2017

14

216.73.216.80, am 24.01.2026, 12:26:28. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186866103

1.5 Contributions and Outline

[54]

across long range frames. Given associations, we jointly optimize the pose of a
statistical body model, the camera pose and heading drift using a continuous
optimization framework. We validated our method on the TotalCapture
dataset, which provides video and IMU synchronized with ground-truth. We
obtain an accuracy of 26mm, which makes it accurate enough to serve as a
benchmark for image-based 3D pose estimation in the wild. Using our method,
we recorded 3D Poses in the Wild (3DPW), a new dataset consisting of more
than 51,000 frames with accurate 3D pose in challenging sequences, including
walking in the city, going up-stairs, having coffee or taking the bus. We make
the reconstructed 3D poses, video, IMU and 3D models available for research
purposes at http://virtualhumans.mpi-inf.mpg.de/3DPW.

Roberto Henschel, Timo von Marcard, and Bodo Rosenhahn. Simultaneous
Identification and Tracking of Multiple People using Video and IMUs. In:
Computer Vision and Pattern Recognition Workshops (CVPRW), 2019.

Most modern approaches for multiple people tracking rely on human appear-
ance to exploit similarity between person detections. In this work we propose
an alternative tracking method that does not depend on visual appearance
and is still capable to deal with very dynamic motions and long-term occlu-
sions. We make this feasible by: (i) incorporating additional information from
body-worn inertial sensors, (ii) designing a neural network to relate person
detections to orientation measurements and (iii) formulating a graph labeling
problem to obtain a tracking solution that is globally consistent with the video
and inertial recordings. We evaluate our approach on several challenging track-
ing sequences and achieve a very high IDF1 score of 91.2%. We outperform
appearance-based baselines in scenarios where appearance is less informative
and are on-par in situations with discriminative people appearance.

In addition to the peer-reviewed publications, two datasets have been recorded and
published for research purposes:

[55]

[56]

Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn. TNT15 -
Multimodal Motion Capture Dataset. http://www.tnt.uni-hannover.de/project/
TNT15/, 2016.

The TNT15 dataset consists of synchronized data streams from 8 RGB-cameras
and 10 IMUs. In contrast to existing datasets it has been recorded in a normal
office room environment and the high number of 10 IMUs can be used for new
tracking approaches or improved evaluation purposes.

Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn,
and Gerard Pons-Moll. 3DPW - 3D Poses in the Wild Dataset. http://
virtualhumans.mpi-inf.mpg.de/3DPW, 2018.
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The3D Poses in the Wild dataset (3DPW) is the first dataset in the wild with
accurate 3D poses for evaluation. While other datasets outdoors exist, they
are all restricted to a small recording volume. 3DPW is the first one that
includes video footage taken from a moving phone camera.

Structure of the Thesis
The thesis is structured as follows. A graphical overview is shown in Figure 1.5.

Chapter 1. Introduction: Introduces the problem statement of this work and
summarizes the main contributions.

Chapter 2. Fundamentals: Provides the basic mathematical tools relevant
to this work. The chapter covers rigid body motions, modeling human motion and
non-linear least-squares optimization. In addition, the basic working principle of
IMUs are introduced and the final section is dedicated to datasets and metrics used
to evaluate the presented methods.

Chapter 3. Sparse Inertial Poser: This chapter presents a method to re-
construct the full-body pose from only a sparse set of IMUs attached to wrists, lower
legs, head and waist. A global objective function is designed that enforces coherency
between the body model orientation and acceleration estimates against the IMU
recordings for an entire recording sequence. In several quantitative and qualitative
experiments it is shown that motion capture with a reduced set of IMUs is feasible.

Chapter 4. Video Inertial Poser: This chapter presents a method for multi-
person motion capture using inertial sensors and a single hand-held camera. In
order to combine visual and inertial cues, 2D body poses detected in the images
are automatically associated to 3D body poses obtained from IMU data using a
graph labeling formulation. Then the sensor modalities are fused by minimizing
an objective function to reconstruct body poses, camera pose and sensor errors.
In several experiments it is shown that the approach is very accurate and enables
motion capture in challenging natural environments.

Chapter 5. Conclusions: Summary of contributions, results and limitations

of the proposed methods. In addition, interesting directions for future work are
given.
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2 Fundamentals

This thesis deals with human motion in three-dimensional euclidean space. In
particular, we are interested in modeling the time-dependent map g(t) : R® — R?,
which describes how any point of the human body moves over time t. However, due
to the complex and non-rigid structure of the human body, modeling all intricacies
is almost impossible, see Section 1.3.

A common simplification is to approximate the map g by modeling the human body
as a concatenation of rigid body segments. This has several advantages. First, the
motion of all points belonging to a rigid body segment can be described in terms
of a single mapping - a rigid body motion. Second, the articulated structure of
this model enables to compute the rigid body motion of each segment in terms of
joint angles, which describe the relative orientation between adjacent body segments.
This parametrization is well suited to define the pose of a person in a uniform way,
which is independent of anthropometric properties. Further, the rigidity assumption
enables to directly relate sensory observations of sparse points on the body surface
to the underlying skeletal state. The downside to this is that soft tissue motions are
completely disregarded introducing a systematic source of error.

In the following, this chapter introduces the mathematical tools and other important
fundamentals, which are of particular importance for this thesis. Section 2.1 deals
with describing and parametrizing 3D motion of a single rigid body in space. In
Section 2.2, this is extended to kinematic chains and to a full model of the human
body. In order to reconstruct joint angles from sensor measurements, the methods
presented in this thesis apply non-linear least-squares optimization. This topic is
covered in Section 2.3. Section 2.4 deals with inertial sensors. More specifically, it
covers details on measured and derived quantities and briefly describes potential
sources of errors. Finally, in Section 2.5 benchmarks and accuracy metrics are
introduced which are used for evaluating the proposed methods.
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2.1 Rigid Body Motion

A rigid body motion g: R* — R? is a mapping [57], which has the special properties
that it

1. preserves distances between points:

llg(p) — 9@l =1lp — qll.¥p.q € R?
and
2. preserves the cross product (or “orientation”) between vectors:

glv x w) = g(v) x g(w), Yv,w € R®.

The first property ensures that an object or body is not deformed under the transfor-
mation. The second property prevents internal reflections, which are physically not
realizable for rigid objects. The sets of transformations satisfying these properties are
denoted Special Orthogonal Group of dimension three (SO(3)) and Special Euclidean
Group of dimension three (SE(3)), which are briefly introduced in the next section.
For a more comprehensive introduction, we refer the interested reader to Murray et
al. [57].

2.1.1 SO(3) and SE(3): Rigid Body Transformations

A rigid body motion corresponds to an affine transformation between two Cartesian
coordinate frames, which is illustrated in Figure 2.1. We can use such a transfor-
mation to describe how points on the body move with respect to a global reference
coordinate frame. Let p® € R? be a point defined a the body-fixed frame F® and
p® € R3 be the same point with respect to reference frame F. A rigid body motion
g¢: R® — R3 maps the point coordinates from F® to F* according to

p' = Rjp” +t, (2.1)

where R € SO(3) describes the relative rotation between F® and F” and t* € R3
refers to the relative translation between the origins of both coordinate systems,
defined in frame F*. The rotation is an element of SO(3), which refers to the group
of three-dimensional rotation matrices or special orthogonal group of dimension
three:

S0(3) = {R € R¥*: RTR =T, det(R) = +1}. (2.2)

The special structure of a rotation matrix R ensures that the properties of a rigid
body transformation are not violated: due to R’R = I rotation matrices must
have orthonormal columns, which guarantees that the euclidean distance between
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Figure 2.1: The rigid body motion gf corresponds to an affine transformation
of a Cartesian coordinate frame F® to another Cartesian coordinate frame
e

mapped points does not change. Additionally, the constraint det(R) = 41 prohibits
reflections, which have a negative unit determinant.

A rigid body transformation has two interpretations which are useful to keep in mind
for this work. First, if the reference frame F'* represents a fixed world coordinate
frame, then gj describes the actual configuration of the rigid body in space. Second,
if frame F* represents the body frame, but at another time in the past, then the
rigid body transformation refers to the relative net motion the body has experienced
during the specified time interval. Hence, a rigid body transformation can represent
both, pose and motion.

A rigid body transformation of the form Eq. (2.1) can be defined in terms of a linear
matrix operation according to

- Ryt _, ~b

p’ = p’ =: M?p°, 2.3
ALY @3)

where p = (z,y, 2, 1)T denotes the homogeneous representation of a point p =

(z,y,2)T and M € R** is a matrix containing the relative rotation R and translation

t. The set of 4 x 4 matrices representing rigid body motions forms a group under

matrix multiplication and is denoted Special Euclidean Group SE(3):

SE(3) {{Oig ﬂ .R € S0(3).t R3}. (2.4)

Using this representation, we can concatenate rigid body motions in terms of matrix

multiplications
M; = MM, (25)
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and invert them by

o {RT fRTt}

Mg = ()t | (26)
X

The matrix representation of SE(3) is convenient for applying and concatenating
rigid body motions as this can be done by simple matrix operations, see Eq. (2.3)
and Eq. (2.5). However, matrices are not the best representation for other operations
such as differentiation and optimization. This is due to the over-parametrization
of the underlying group: matrices in SE(3) have 12 parameters, while a rigid body
motion only has six DoF: three in rotation and three in translation.

The following section introduces the concepts of Lie groups and exponential coordi-
nates, which provide a minimal parametrization of rigid body motions. At the same
time, this representation naturally relates to infinitesimal transformations which
makes it particularly easy to differentiate. There exist alternative representations
for rigid body motions, such as quaternions or Euler angles which are not covered in
this work. We refer the interested reader to Murray et al. [57] for more details.

2.1.2 Exponential Coordinates

Both SO(3) and SE(3) are Lie groups with an associated Lie algebra. Elements of a
Lie group G form a smooth manifold, where the group operations multiplication
and inversion are differentiable. Associated to each Lie group is a Lie algebra g,
which corresponds to a tangent space at the identity element. The tangent space is
a vector space generated by differentiating the identity element with respect to each
DoF of the corresponding group. The basis elements of a k-dimensional tangent
space are called generators {Gy, ..., Gy}. Every element of the tangent space A € g
can be represented as a linear combination of the generators G; and a vector of
coefficients ¢ € R* according to

k
i=1

Throughout the thesis we will use the wedge-operator (-": R¥ — g) to construct
a Lie algebra element from a coordinate vector and the vee-operator (-¥: g — R¥)
to obtain a coordinate vector from an element of the Lie algebra. To improve
readability, we will also use the hat-operator = as a replacement for -".

The exponential map converts any element from the Lie algebra exactly to an
element of the respective Lie group. For matrix Lie groups, such as SO(3) and
SE(3), the exponential map corresponds to matrix exponentiation. Conversely, the
exponential map can be inverted using the matrix logarithm. Together with the
Adjoint representation, the exponential map is well suited for parametrizing and
differentiating rigid body motions, as described in the following.
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Exponential Map on SO(3)

The exponential map on SO(3) is surjective, thus any rotation matrix R € SO(3)
can be constructed from a matrix exponential of the form

1 1 .
R=exp@) =1+&+ = 51 @)%+ 3 @7 +..., (2.8)
where @ is a skew-symmetric matrix
0 —w, wy
0= w, 0 —wgl- (2.9)
—Wy Wy 0

The set of 3 x 3 skew-symmetric matrices corresponds to the Lie algebra of SO(3):

s0(3) = {S e R¥3 .87 = —8}. (2.10)

—

The generators of s0(3) are given by

00
0 —1|.Gy=
1 0 —1

G, = (2.11)

o O O
o O O

0
0
and we can rewrite @ in terms of a linear combination of the generators according to

@ = wy; G+ wy Gy + w.Gs. (2.12)

T
The coordinate vector w = [ww Wy wz} contains the exponential coordinates of a
rotation.

According to Euler’s rotation theorem [57], any rotational displacement in 3D can be
represented by a rotation of an angle § about a fixed axis of unit length e € R3, see
Figure 2.2. The pair {e, 0} is denoted the axis-angle parameters of a rotation and is
closely related to the exponential coordinates: The angle of rotation corresponds to
6 = ||wl|| and the axis is given by e =

Tl
The matrix exponential in Eq. (2.8) can be computed analytically using the Rodriguez
Formula:

exp(@) =T+ ﬁsin(\\wﬂ) + <ﬁ> (1 — cos(|lw]])) - (2.13)

Exponential Map on SE(3)

The exponential map on SE(3) is surjective. Any rigid motion M € SF(3) can be
written in exponential form

M = exp(§) = +E4 % %Jr..., (2.14)
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Figure 2.2: Any element in SO(3) can be represented as a rotation of an
angle 6 about a fixed unit axis e € R3. The corresponding exponential
coordinates w represent the same orientation in terms of the product of 6
and e.

where E € R¥* is a matrix of the form

0 —w: wy v,
=~ W, 0 —w; vy
= 2.15
¢ —Wy Wy 0 v, ( )

0 0 0 0

The set of matrices of the form & correspond to the Lie algebra of SE(3):

se(3) = {{Oig ;;] @ € 50(3),veR}. (2.16)

The generators of SE(3), which correspond to the infinitesimal translations and
rotations are defined as

00 0 0 0 010 0 -1 00
00 —-10 0 000 1 0 00
G, = G, = G. — .
Ylo1r 0o o’ |=1000” o 0 00
00 0 0 0 000 0 0 00
(2.17)
0001 0000 0000
0000 0001 0000
Gy= .Gy = .G = .
1o o0 0 0] 0000’ o001
0000 0000 0000

An element of E € se(3) is denoted a twist and the six independent parameters
¢ € RS are called exponential coordinates or twist coordinates. They are composed
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of the rotational parameters w € R? and a vector v € R3, which encodes the location
of the axis of rotation and the amount of translation along that axis.

Similar to the exponential map on SO(3), there exists an analytic solution to the
exponential map on SE(3). For a pure translational motion, i.e. if ||w|| = 0, the
analytic solution is simply

exp(@) = [(I,jj; ﬂ | (2.18)

Otherwise, the analytic solution of Eq. (2.14) is given by

(2.19)

exp(E0) — {cxp(@@) (I — exp(@h))(w x v) + waVﬂ |

01><3 1

where a twist is represented as £0 € se(3), such that ||w|| = 1 by appropriate scaling
using 0 € R.

Logarithm

The exponential map defines a surjective map ¢g: g — G from a Lie algebra g to
its corresponding Lie group G. The inverse operation log: G — g is denoted log
function or logarithm on G. Note that, the exponential map for SO(3) and SE(3) is
not injective. A rotation about a unit rotation axis w with angle 6 = 27k for any
integer k produces the same rotation matrix. Hence, we restrict the log function to
6 = [0, 7], where negative rotation angles can be constructed by adapting the sign
of w.

In order to compute the twist coordinates & € RS from a rigid body motion {R,t} €
SE(3) we have to consider two cases [57). If R = I, the rotational parameters are
zero and the twist is given by

e=fo 0o ¢ (2.20)

If R # I, the rotation angle # and unit rotation axis w are given by

Rz — Ras
tr(R) — 1
f = cos™! (%) , w=oo s Ris —Rsi |, (2.21)
Roi — R

where tr(-) refers to the trace of the matrix. From Eq. (2.19) it follows that v equals

v =A%, (2.22)
with
A = (I—exp(62)) @+ ww’o. (2.23)
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Adjoint

A property of Lie groups is that the tangent space has the same structure at all
group elements. Specifically, we can linearly transform a tangent vector at one
element to any other group element using the Adjoint transformation. Given the
twist coordinates £° € R® representing a rigid body motion in coordinate frame F®,
we can use the Adjoint to express the twist coordinates with respect to another
coordinate frame F'* according to

£ = Adjn - €, (2.24)

where M = (R, t) € SE(3) is the configuration of F* with respect to F'* and Adjm
is the Adjoint transformation associated to M. The Adjoint Adjy; € R*6 is defined

(2.25)

Adjng — [ R [t}XR}

03><3 R

The notation [t]x refers to the screw-symmetric matrix generated from t, imple-
menting the cross product in matrix form. Equivalently, the twist action 5 € se(3)
is transformed according to

E=M-& M (2.26)

2.1.3 Differentiation

Using the exponential map formulation we can parametrize a rigid body motion
g: RS — SE(3) using exponential coordinates:

6

(&) = exp(§) = exp(Y_ & - Gy). (2.27)

i=1

During optimization we are commonly interested in differentiating rigid body motions
with respect to the transformation parameters ;. If the differentiation is evaluated
at identity, i.e. £ = 0, this simply equates to the generators:

99(§)
O |

=Gy, fori=1,...,6. (2.28)

Due to the Adjoint property, we can always compute the derivative at identity and
transform the resulting tangent vector to any group element, where we actually want
to compute the derivative. This makes differentiation particularly simple. Note that
Eq. (2.28) only holds if the derivative is computed at identity.
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2.2 Human Motion Modeling

In order to model human motion, we simplify and idealize the human body to an
articulated structure of rigid bone segments, which are connected through joints.
This defines a kinematic chain, which models the configuration space of the human
skeleton. The state of this skeletal model - the body pose - is defined by a set of
joint angles describing the relative orientation between each pair of bones and six
additional parameters referring to global rotation and translation.

In order to accurately relate sensor observations to skeletal motions, we have to
consider anthropometric properties of the person. We use the statistically learned
body model SMPL to obtain person specific body models by fitting the model to
body scans. Further, a central topic of this thesis is to optimize the body pose with
respect to various objectives. We briefly introduce all these topics in the following.

2.2.1 Kinematic Chains

Consider two rigid segments connected by a rotational joint as shown in Figure 2.3.
Attached to the left ends of each segment is a coordinate frame F* and F?°, respec-
tively. The rotational joint is located at the origin of F* and has three rotational
DoF. The map from frame F? to F® constitutes a rigid body motion

e TN

ja
Figure 2.3: A kinematic chain with two segments connected by a rotational
joint. The resulting rigid body motion M¢ mapping from frame F° to F°
depends on the joint rotation R} and relative joint position j.

R(l j(l
M¢ = b 2.2
; [O 1}, (2.20)

where Ry € SO(3) accounts for the joint rotation, i.e. the rotational difference
between F and F?, and j* € R® is the joint location expressed in frame F2. Since
the joint location does not change with respect to frame F'*, we can parametrize
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¢ in terms of the exponential coordinates w € R? of the joint rotation:

Mj(w) = {GX%@) jlu } (2.30)

where we consider the joint location to be a known and constant model parameter.
This setup can be extended to a chain of multiple rigid segments, illustrated in
Figure 2.4. The chain comprises an ordered set (a, b, ¢, d) of segments, connected by
an enumerated set (1,2,3) of rotational joints. In order to map from frame F¢ to

Figure 2.4: A kinematic chain with multiple rigid segments connected by
rotational joints. The resulting rigid body motion from the last segment to
the first segment M4%(6) is a composition of the rigid body motions between
the individual segments. Since the segment lengths are fixed, M4(©) only
depends on the angular states of all joints ©.

frame F* along the chain we simply concatenate the rigid body motions
M;(0) = M (wr) - M(ws) - M (ws). (2.31)

The parameter vector © = {w{ wl wgr € R", with n = 9 in this case, contains
the stacked exponential coordinates of each joint. In general, the map M3(©) :
R"™ — SF(3) from a parameter vector of pose parameters to the resulting rigid body
motion is denoted the forward kinematic map.

2.2.2 Pose Parametrization
In order to model human articulation, we define a root joint that determines the

overall orientation and position of the body. Starting from the root joint, a kinematic
chain C is constructed which ends in the distal extremities and head, see Figure 2.5.
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Id | Name Id | Name

"0 | root 12 | neck
1 | left hip 13 | left chest
2 | right hip 14 | right chest
3 | belly 15 | head
4 | left knee 16 | left shoulder
5 | right knee 17 | right shoulder
6 | spine 1 18 | left elbow
7 | left ankle 19 | right elbow
8 | right ankle 20 | left wrist
9 | spine 2 21 | right wrist
10 | left toes 22 | left fingers
11 | right toes 23 | right fingers

Figure 2.5: Skeletal structure of the SMPL body model. The kinematic
chain comprises 24 joints.

Within the kinematic chain, each joint has a single parent joint, but may have
multiple child joints.

In this work we model the human body with a kinematic chain C consisting of rigid
bone segments linked by N; = 24 joints. Each joint is modeled as a ball joint with
three rotational DoF. At first, this seems counter-intuitive since the human skeleton
comprises several joints with a limited range of motion. However, the restriction to
joints with fewer DoF is not realistic. Even the knee joint, which is typically modeled
as a hinge joint, permits slight internal and external rotations [58]. Secondly, the
range of motion of a joint can be limited in terms of soft constraints during the pose
reconstruction process, which in our observations has proven to be advantageous in
contrast to reducing the DoFs.

While most joints in the body model correspond to anatomical joints, this is not
true for the shoulder belt and spine. Anatomically, the shoulder belt is composed of
two bones, clavicle and scapula, together with muscular connections and allows a
great freedom of movement of the shoulder with respect to the rib cage [58]. This
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flexibility is approximated by inserting a ball joint in the chest region, between
spine and shoulder joint. For modeling the spine, five joints are considered. This is
an approximation to reduce the number of model parameters. In reality, the adult
human spine consists of 24 articulated vertebrae.

Finally, we define the pose of the kinematic chain C in terms of a pose vector x € R?
with d = 3 x 24 + 3 = 75 parameters. This accounts to the exponential coordinates
of the N; = 24 ball joints and three additional parameters for global translation.
To map from a body pose to rigid body motions, we define a Cartesian coordinate
system to the proximal end of each bone. The rigid motion Mj(x): R? — SE(3) of
a bone F® with respect to a global reference coordinate frame F9 depends on the
states of parent joints in the kinematic chain and can be computed by the forward
kinematic map:

Mg(x)—( 0 {exp(@j) JIJD _< 11 exp(gj)>, (2.32)

jepacy L O1xs Jj€Pac (b)

where Pac(b) C {0,---,N; — 1} is an ordered set of parent joints, w; € R? are the
exponential coordinates of the joint rotation, j; € R? is the joint location expressed
in the corresponding parent frame and E] € se(3) is the twist action of joint j.
Since we assume non-variable bone lengths, the joint locations j; are constant model
parameters and only have to be determined to fit the model to the anthropometric
properties of a person. The only exception is the root joint position j; which is also
a variable and accounts for global translations of the overall model.

The kinematic model described in the previous paragraphs is adapted from the
SMPL body model, which is briefly introduced in the following.

2.2.3 SMPL Body Model

The Skinned Multi-person Linear (SMPL) model [59] is a body model that uses a
template mesh T with V = 6890 vertices and a template skeleton, such as described
in the previous section. The actual vertex positions of SMPL are adapted according
to identity-dependent shape parameters and the skeleton pose.

The parameters of the model as well as a regressor from vertices to joint locations

are learned from body scans. Specifically, the joint locations Q = [jT...jI]7 are
predicted as a function of the surface mesh:
Q=JT, (2.33)

where J is a sparse regression matrix and T’ refers to the adapted template
mesh, that has been fitted to the subject shape using the identity-dependent shape
parameters. This is visualized in Figure 2.6.

29

216.73.216.80, am 24.01.2026, 12:26:28. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186866103

Chapter 2 Fundamentals

Figure 2.6: The joint positions of the skeleton in SMPL are predicted as a
function of the surface.

The original intent of SMPL is to generate more realistic surface deformations,
especially in regions of strong articulation. In this work, we use SMPL to primarily
obtain accurate, person-specific joint positions. Hence, we skip a lot of details of
SMPL and refer to the original paper [59] for more details.

2.2.4 Pose Differentiation

In this work, we will often take the derivative of rigid body motions with respect
to the model parameters x. In particular, we are interested how small parameter
variations affect a rigid body motion My (x) to optimize the pose towards a certain
criterion. Instead of using additive perturbations in parameter space, we define a
rotational perturbation of joint j according to

3
R(w; ® 6;) = exp(d;) - R(w;) = exp <Z‘51G1> ‘R(wj), (2.34)
i—1
where R € SO(3) and w;,d; € R? are the pose and perturbation parameters
associated to joint j, respectively. As we will see in the following, this enables to
take derivatives of rigid body motions at identity which is particularly simple, see
Section 2.1.3.

Using the notation of rotational perturbations we can rewrite the forward kinematic
map (Eq. (2.32)) to

MY (x & 8) = ( 0 { exp(9;) - exp(@;) | Js D : (2.35)

GeI(i) 013 ‘ 1
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where the prime of coordinate frame ¢’ reflects the perturbation in the resulting
rigid body motion. If we only consider a scalar perturbation §;; of joint j, we can
use the Adjoint transformation to factorize Eq. (2.35) into two terms:

MY (x & 0;) = MY (3;) - M{(x). (2.36)

The right term corresponds to the original rigid body motion associated with x and
the left term depends only on the perturbation §;,; according to

MY, (64) = M, ; - exp (8;,Gy) - (M,,;) 7", (2.37)

where M, ; corresponds to the motion associated with the parent joints in the chain
including the translational offset j; of the associated joint of j.

Instead of differentiating a rigid body motion with respect to a pose parameter
in x, we can now differentiate with respect to a perturbation d,; and evaluate the
resulting expression at identity, i.e. § = 0:

OMY (x @ 6)

B =M,; G- (Mp,j)_l “Mj(x). (2.38)
06;;

=0

Using Eq. (2.26), this can be simplified to

OMY (x ® 6)

N9
9 M (x). (2.39)

6=0
where the coordinates of the twist E;Z correspond to

§i = Adjn,, - G (2.40)

2.3 Non-Linear Least-Squares Optimization

The methods presented in this thesis reconstruct the body pose of a human body
model from sensor measurements. This task can be formulated as finding the
minimizer of an objective function f : R" — R, which measures the discrepancy
between the model under model parameters x € R™ and the observed sensor
information. In fact, all objective functions developed in this work have a non-linear
least-squares form:
1 m
£ = 5 (), (2.41)
i=1
where r; : R® — R are smooth, non-linear functions representing the deviations from
data point ¢ to the predicted values provided by the model. Since a r; describes the
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residual error between model and observations, we simply refer to it as a residual or
a residual function. By stacking all residuals into a single column vector

T
r= [7‘1 re ... rm] (2.42)
the objective function is typically written in vector form according to
1 1
Fx) = 5l = 5r()r(x). (2.43)

2.3.1 Gauss-Newton Algorithm

The Gauss-Newton algorithm [60] is an iterative method to solve non-linear least-
squares problems. In each iteration, the original residual function r is approximated
by a first-order Taylor expansion according to

r(x; +0) =~ r(x;) + J,.0, (2.44)

where x; are the current parameter values at iteration i, § € R™ is a parameter
perturbation and J,. € R™*" is the Jacobian of r evaluated at x;:

3, = W E (2.45)
By inserting Eq. (2.44) in f we obtain an approximated objective:
£+ 8) = gliex+ 5P (2.46)
~ 2lie() + 3,97 (2.47)
= %(r(xi)Tr(xi) + 26737 r(x;) + 67ITT,6). (2.48)
This approximation is quadratic in  and setting the derivative of f to zero gives
% =JTr(x;) +J7J,0 = 0. (2.49)

Solving for ¢ leads to the optimal parameter perturbation, which minimizes the
approximated objective:

§=—(J73,)1 I r(x,), (2.50)
Finally, the parameter vector can be updated providing the starting point for the
next iteration:
By repeating this process, the Gauss-Newton algorithm iterates to a local minimum
of the original objective. Close to the minimum or in general if the objective is
locally well approximated by the quadratic form in Eq. (2.48), it offers quadratic
convergence rates. However, depending on the shape of the objective and for poorly
initialized parameters the Gauss-Newton method might become unstable. Hence,
convergence is not guaranteed in all cases.
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2.3.2 Levenberg-Marquardt Algorithm

The Levenberg algorithm [60] is an extension to the Gauss-Newton method. Both
methods have similar local convergence properties, but Levenberg proposed a trust-
region strategy to avoid divergence. His algorithm incorporates an additive damping
term AI in the solution of the optimal update step of Eq. (2.50) according to

5= (33, 4+ A1) Tr(x). (2.52)

The non-negative parameter A is used to control the influence of the damping term.
For very small A, the update is identical to Gauss-Newton. If A is very large, the
update step is dominated by the additive term such that

J = —%Jfr(x). (2.53)
This corresponds to an update step of the scaled gradient descent method, which
is guaranteed to converge to a local minimum if the step-size is sufficiently small.
Levenberg proposed to continuously adjust A and to accept an update step only
if the new objective value is smaller than the old one. In this case, the quadratic
approximation seems to be reasonable and A is decreased. This corresponds to less
damping, which can be seen as expanding the trust-region of the approximation. In
contrast, if an update step does not lead to a decreasing objective value, the step is
discarded and the trust-region is shrunken by adapting A to a larger value.

The identity matrix in the damping term of the Levenberg algorithm scales each
parameter dimension equally. This circumstance is improved in the Levenberg-
Marquardt algorithm, which instead uses a diagonal matrix with diagonal elements
of J7J, [61]. Hence, the update step is computed according to

5=~ (IT3, + Miag(373,)) " ITr(x). (2.54)

This has the effect, that for large A convergence is increased in directions with
small gradients. Even though the damping strategy is different, both algorithms are
commonly denoted Levenberg-Marquardt algorithm in the literature. Therefore, it
is usually the update formula which indicates the variant of the algorithm.

The best strategy to initialize, increase and decrease A depends on the starting point
and the properties of the objective function. A rule of thumb, which generally shows
good performance in terms of convergence time, is to use Ay = 10 for initialization
and to use A;1; = 10); for increasing and \; 11 = 0.1); for decreasing the damping
parameter. These parameter settings have also been used for all experiments in this
thesis.

2.3.3 Optimization on SO(3) and SE(3)

So far, the algorithms described for solving non-linear least-squares problems presume
parameter values x € R", which are elements of a vector space. This justified to
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perturb the parameter values using plain vector addition, as in Eq. (2.44) and
Eq. (2.51). However, this operation can not be applied if x represents an element of
a non-euclidean Lie group G, such as SO(3) or SE(3). These groups are not closed
under vector addition and it would require additional effort to back project onto the
manifold. We adopt the notation from Eade [61] and apply a more elegant solution
by defining the

e:Gxg—G (2.55)

operator, which perturbs a group element by an increment defined in terms of the
corresponding Lie algebra g. In this thesis we use a left-multiplicative formulation
and define the parameter perturbation as

X® 8 = exp(d) - x, (2.56)

where x € G and § € g. In order to solve a non-linear least-squares problem, where
x € G, only slight modifications to the Gauss-Newton and Levenberg-Marquardt
algorithm are required. The Taylor expansion of the residuals remains almost
identical, only the perturbation operation has to be replaced:

r(x; ®0) ~r(x;) +Jp -0, (2.57)

where the Jacobian J, is again evaluated at § = 0:

761"(){@3)
3= =0 i (2.58)

Correspondingly, the parameter update is then given by
Tt < T, B 0. (2.59)

This formulation has several advantages over methods that ignore the manifold
structure of the parameter space. The perturbation operator ensures to stay on
the manifold during all steps of the algorithm. Also, the exponential map is always
linearized around zero, which is particularly easy to compute.

In Section 2.2.4, we have already defined a slightly different perturbation operator
@ to model rotational perturbations of joints in a human body model. In contrast
to Eq. (2.56), the parameter x and perturbation § are exponential coordinates
representing rotations. Hence, throughout this thesis we use a modified version of
Eq. (2.59) to update the model parameters:

Wn41 lOg(R(Wn 2] 6))\/1 (260)

where w € R? are the exponential coordinates associated to a joint rotation R €

S0O(3).

An alternative solution to optimize on SO(3) and SE(3) is to directly differentiate the
Rodriguez formula defined in Eq. (2.13) with respect to the exponential coordinates
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representing the rigid body motion. This way, the parameter space is a vector
space and the Rodriguez formula provides an analytic map to the (non-euclidean)
manifold structure of SO(3) and SE(3). Using this approach, updating parameters is
particularly easy (plain vector addition) but computing Jacobians is more involved
due to the analytic form of the Rodriguez formula.

2.4 Inertial Measurement Units

An IMU is a device containing inertial sensors. Commonly this comprises a three-axis
accelerometer and a three-axis gyroscope. These sensors measure linear acceleration
and rate-of-turn based on inertia, hence the naming inertial sensors. Often, IMUs
also contain a three-axis magnetometer measuring the magnetic field strength and
direction.

In practice, IMUs are used to track position and orientation. Originally, they were
mechanical devices used to maneuver aircraft and spacecraft. With the advent of
miniature IMUs based on Micro-Electro-Mechanical Systems (MEMS) technology,
the areas of applications have multiplied: Nowadays IMUs can be found in cars,
smartphones, smartwatches, fitness trackers, gamepads, VR headsets and many more.
The miniaturization of IMUs has also facilitated to track the motion of individual
body limbs, i.e. to perform human motion capture.

2.4.1 Coordinate Frames

Inertial sensors measure linear acceleration and angular velocity of the sensor unit
with respect to a stationary reference coordinate frame. In order to describe the
formation of the measured signals, we adopt the notation of Kok et al. [62] and
define the following coordinate frames, wich also depticted in Figure 2.7:

e Sensor frame F* is a body-fixed frame of the moving IMU.
e Navigation frame F™ is a reference frame fixed on the earth surface.

e Farth frame F® has the origin in the center of the earth and and rotates with
the earth at a rate of approximately 7.29 - 1075744,

e Inertial frame I is a stationary frame, which serves as a global reference.
The coordinate axes of F¥ are aligned with respect to the stars and the origin
coincides with the origin of the earth frame.

The gyroscope measures angular velocity ;,w® of the sensor frame with respect to

the inertial frame (indicated by the left subscript), expressed in the sensor frame
(indicated by the right superscript). This quantity is a composition of the earth’s
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Figure 2.7: IMU and reference coordinate frames. Figure adapted from Kok
et al. [62].

angular velocity ;w", transformed to the sensor frame by the rotation matrix
R; € SO(3), and the angular velocity ,,w® of the sensor frame with respect to the
navigation frame:

isws =R,

n

: iewn + nsws‘ (261)

The accelerometer measures the specific force a® of the sensor unit. It is a composition
of the linear acceleration a" due to motion and gravity g":

a’=R;-(a"+g"). (2.62)
For a stationary navigation frame, the linear acceleration is given by
at=a"+2-;w" X V" 4w X w" X pt (2.63)

where a” denotes the acceleration of the sensor unit with respect to the navigation
frame. The terms 2 - ;.w™ X v and ;w™ X ;w™ X p" correspond to Coriolis and
centrifugal acceleration, respectively. They depend on the earth rate as well as the
sensor velocity v with respect to the navigation frame and sensor position p”.

For the task of human motion capture, the magnitude of centrifugal and Coriolis
acceleration is usually smaller than 3.39 - 10~2m/s* [62]. Also, the effect of earth
rotation of approximately 7.29 - 10’5% on the measured angular velocity is rather
small compared to the rates due to motion. Hence, we disregard the effects of
earth rotation in Eq. (2.61) and Eq. (2.63) by setting ;.w” = 0. This facilitates to
re-position the global stationary frame I to the ground of the recording scenery and
coordinate axes aligned to gravity and a user-defined heading. The unconsidered
signal portions stemming from earth rotation are simply considered measurement
noise. In the following, we assume that all angular velocities refer to the rate of turn
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of the sensor frame with respect to the new global stationary frame F* and drop
corresponding left subscripts to simplify notation.

2.4.2 Measurement Models

Similar to all physical sensors, inertial sensor measurements suffer from errors. These
errors might stem physical properties of the measurement principle, manufacturing
tolerances, temperature effects, aging, measurement noise, etc. We refer to Kok et
al. [62] for a detailed description and discussion on these errors.

A common measurement model for inertial sensors relates the output of the sensor
y € R? and the quantity to measure ¥ € R? according to

1+s, myy My
y=| My, 145, my |Yy+b+v, (2.64)
Mz My 148,

where s are scale-factor variations and m represent axis misalignments caused by
non-orthogonal sensor axes. The subscripts refer to the x-,y- and z-axis, respectively.
The vector b € R? denotes a sensor bias and v € R® models sensor noise. Scale-
factors and misalignments are usually considered deterministic and can be calibrated
from the manufacturer.

The sensor bias is a slowly time-varying quantity, which is commonly modeled
as a random walk process or treated constant and calibrated at the beginning of
the recording. The sensor noise is usually modeled with a zero-mean Gaussian
distribution v ~ N(0, X) with a diagonal covariance matrix 3.

We briefly apply the measurement model of Eq. (2.64) to accelerometer, gyroscope
and magnetometer signals in the following. We drop scale-factors and misalignments,
since they are usually pre-calibrated and not important at this point.

The accelerometer output y, € R? is modeled as a composition of the specific force
a®, sensor bias b; and noise v according to

Yo=R{-(a' +g') +b; + v, (2.65)
where we replaced a® with its definition in Eq. (2.62).

The gyroscpoe output y,, € R? is considered to be corrupted by a slowly time-varying
bias b}, and noise v;:
Yo =w’+Db +v:. (2.66)

For the magnetometer we are only interested in the direction m* € R? of the local
magnetic field. This could be the earth magnetic field or a magnetic field due to
magnetic material in the vicinity of the recording site. We model the measured
magnetic field y,, as

Ym =R -m'+v? (2.67)

mo
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where R§ € SO(3) maps from navigation to sensor frame and v$, € R?® represents
sensor noise. The underlying assumption is that the local magnetic field is constant.
However, this assumption is rarely correct and the resulting uncertainty is commonly
considered additional measurement noise.

2.4.3 Orientation Estimation

Inertial sensors provide motion information that can be used to track the sensor
orientation R} with respect to the stationary navigation frame F. If the initial
orientation is known, this can be done by simply integrating gyroscope measurements
y.. However, this only works in theory since the rate-of-turn measurements are
corrupted by noise and bias drift, see Eq. (2.66). Straight integration of y,, also
integrates measurement errors and this leads to an accumulating error in orientation
estimates over time.

To compensate this, acceleration and magnetometer measurements can be incorpo-
rated since they also contain information about R, see Eq. (2.65) and Eq. (2.67).
Typically, this is realized in form of a state observer.

There exist various ways to implement such a state observer. We roughly sketch
a common approach in the following. The state x, € R? at time ¢ represents the
orientation R! in terms of a d-dimensional parametrization (usually exponential
coordinates or quaternions). The subsequent state at time ¢ 4+ 1 can be predicted by
integrating the gyroscope measurements by a non-linear function f:

X1 = f(Xts Yw) (2.68)

Without taking into account further information this quickly becomes inaccurate
due to the integration of gyroscope errors. Under the assumption that on average
the linear acceleration a’ in Eq. (2.65) is zero, we can estimate the acceleration
reading by

Yar = h(x(t)) - ", (2.69)
where h: R? — SO(3) recovers the rotation matrix associated to x(¢). Similarly,
the magnetometer measurements can be estimated by

ym,t = h(X(t)) . mi~ (270)

In the preceding equations, we omitted sensor biases and considered them as noise.
However, they can be augmented to the state vector and considered explicitly in the
corresponding equations.

Equations (2.68), (2.69) and (2.70) constitute a state space model. In such a model,
the state x is frequently corrected to reduce the deviation between estimated and
measured observations. This is usually implemented in terms of an Extended Kalman
Filter, which models measurement and modeling errors as Gaussians or in form of a
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complementary filter that estimates orientations from sensor observations and uses
a weighted average of observations and the current state. Refer to Kok et al. [62]
for more details.

In practice, orientation accuracy for MEMS IMUs is usually < 1° for axes, which
can be stabilized using gravity [63]. This comprises the angles with respect to the
ground plane. Unfortunately, heading direction, which has to be stabilized using
the magnetometer, is not as accurate. Actually, due to magnetic disturbances and
local variations in the magnetic field the heading angle error is unbounded and
accumulates with time.

2.4.4 Calibration

Inertial sensor measurements are taken with respect to static global inertial frame
Fi. Initially, this frame is computed internally in a sensor unit: the y-axis is the
negative direction of gravity measured by the accelerometer and the x-axis is the
horizontal direction of the magnetic field measured by the magnetometer. Finally,
the z-axis is defined by the cross-product of x- and y-axis.

As a result, each sensor defines its own reference frame F¥. If multiple sensors are
used, or if the IMU measurements are related to other sensor modalities, the reference
frame needs to be unified. Since gravity determines attitude, the individual reference
frames differ in a one parametric planar rotation about the vertical axis. This can
be calibrated by aligning the IMUs to a common direction and correcting the IMU
orientations RY by the inverse orientation R} () about the Y-axis associated with
respective heading angle o at ¢t = 0:

R} (1) = Ri(—0) - RL(1). (2.71)

2.5 Benchmarking

2.5.1 Datasets

Marker-less human motion capture has been a very active research area for decades
and there exist various benchmarks for evaluating video-based approaches, e.g. Hu-
manEva [64], Human3.6M [65], CMU [66], TUM kitchen dataset [67]. Unfortunately,
these datasets lack inertial data.

In the early phase of this thesis, the only exception was the MPIO8 dataset [68]
published by Pons-Moll et al. [40] and Baak et al. [69]. This dataset provides inertial
data of five IMUs along with video data recorded in a green screen environment.
Since five IMUs are insufficient for evaluating IMU-based approaches we recorded a
new dataset, called TNT15, and published it in 2016 [51]. In 2018, the TotalCapture
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dataset [42] was published. In addition to IMU data and multi-view video this
dataset also contains ground-truth poses from a marker-based motion capture system.

In this work we use the TNT15 and TotalCapture dataset for evaluating accuracy
and investigating tracking parameters. In the following, we provide details on both
datasets and introduce accuracy metrics used for the experiments. We conclude this
section with a brief discussion on ground-truth poses. The gold-standard to human
motion capture are marker-based systems, but as we will see these systems also have
an associated uncertainty.

TNT15

The TNT15 dataset consists of synchronized data streams from 8 RGB-cameras and
10 IMUs. Four actors perform five activities: walking, running on the spot, rotating
arms, jumping and punching. In total, the TNT15 dataset contains more than 4:30
minutes of video and IMU data, which amounts to almost 13 thousand frames at a
frame rate of 50 Hz.

For each actor, high resolution 3D laser scans are available. The dataset also contains
rigged surface meshes, created by first fitting a template mesh and manually placing
a skeletal model. Then, the mesh vertices are registered to the skeleton using the
approach of Baran and Popovié¢ [70].

Inertial data is recorded with the wire-less MTw Development Kit by XSens [63].
In total, 10 IMUs are attached to shanks, thighs, lower arms, upper arms, sternum
and waist. The actual sensor placement is depicted in Figure 2.8.

Figure 2.8: IMU placement of TNT15 dataset. IMUs are located at shanks,
thighs, lower arms, upper arms, sternum and waist.
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The cameras are arranged along the walls of the recording site and are calibrated to
a common coordinate system. A standard pinhole camera model is applied and the
calibration comprises the internal and external camera parameters as well as radial
distortion coefficients [71].

To synchronize the cameras with the IMU measurements, the actors were asked to
perform a foot stamp at the beginning and end of every sequence. This motion
is very prominent in the camera images and IMU acceleration data and is used to
manually align the data streams.

TotalCapture

The TotalCapture dataset consists of 5 subjects performing several activities such as
walking, acting, range of motions and freestyle motions. Each activity is repeated
three times. In order to evaluate learning-based approaches, the authors of the
dataset recommend a partitioning into train and test sets. In this work, we follow
this recommendation and evaluate only on the test set, which contains the activities
walking 2, freestyle 3 and acting 3 for all five subjects, respectively.

The dataset is recorded using eight calibrated, static RGB-cameras and 13 IMUs
attached to head, sternum, waist, upper arms, lower arms, upper legs, lower legs
and feet. The exact sensor locations are illustrated in Figure 2.9.

Figure 2.9: IMU placement of TotalCapture dataset. IMUs are located at
feet, shanks, thighs, lower arms, upper arms, sternum, waist and head.

Ground-truth poses are obtained using a marker-baser motion capture system. All
data is synchronized and captured at a frame-rate of 60Hz. The ground-truth poses
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are provided in terms of joint positions, which do not contain information about
pronation and supination angles, i.e. rotations about the bone’s long axis. To obtain
ground-truth poses with full DoFs, we fit the SMPL model to the raw ground-truth
markers using a method similar to Loper et al. [72].

Video and IMU data are calibrated to the same coordinate system and synchronized
in a similar fashion as for the TNT15 dataset.

2.5.2 Accuracy Metrics

We evaluate the accuracy of pose estimates using two error metrics: Mean Per
Joint Position Error (MPJPE) and Mean Per Joint Angular Error (MPJAE). The
MPJPE evaluates the accuracy of estimated joint positions with respect to the
ground-truth joint positions in terms of the euclidean distance in R3. In contrast,
the MPJAE evaluates the joint angle error in terms of the geodesic orientation
distance between estimated and ground-truth joint orientations. Hence, it is a
metric referring to SO(3).

The mean position error is a common metric in video-based human motion tracking
benchmarks (e.g. HumanEva [64], Human3.6M [65]) and is partially complementary
to the mean orientation error. Even if the joint locations are perfect, a rotation
about a bone’s axis does not alter the position error. This is only visible in the
orientation error. On the other hand, a rather small orientation error might have a
strong influence on the overall pose. For example a small orientation error in the
shoulder might lead to a large positional error of the wrist due to the articulated
structure. At the same time, a small orientation error about the lower arms bone
axis might not be as critical. Hence, in order to evaluate tracking performance we
have to consider both error metrics.

Mean Per Joint Position Error

We define the MPJPE d,,,: R3*NrxNs s R as the average euclidean distance
between the ground-truth joint positions p € R® and estimated joint position p € R3
according to

dpos = ZZ IIp; (#) — D (D), (2.72)
NrN; N] t=1j=1

where N; refers to the number of considered joints and N7 is the number of frames
of a particular recording sequence.
Joint positions refer to an absolute position in a spatial reference coordinate sys-
tem. For IMU-based motion capture this is not meaningful as global position is
not trackable. A standard practice, which is also often practioned in standard
benchmarks like Human3.6M [65], is to align the estimated joint positions to ground
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truth joint positions before computing the MPJPE. This alignment, commonly
denoted procrustes alignment, comprises a global rigid body motion and makes the
MPJPE independent of global position and orientation.

Mean Per Joint Angular Error

We define the MPJAE d,,; : R3>*M*N; s R as the average geodesic distance between
the ground-truth and estimated joint rotations according to

1 Np Nj
dori = WZZ““J(f)“v (2.73)

J t=1j=1

where w; € R? corresponds to the exponential coordinates of the relative orientation
between ground-truth joint rotation R; € SO(3) and estimated joint rotation
R; € SO(3) of joint j at time ¢:

wj(t) = log (Ry (1) - (Ry(1) ") . (2.74)

Again, Nj refers to the number of considered joints and Np is the number of frames
of a particular recording sequence. The name geodesic distance refers to the fact
that ||w|| with & € s0(3) corresponds to the relative rotation angle 0. Hence this
measure represents an angular distance. An alternative metric is to compute the
Frobenius norm of the rotation matrix differences: denordgar = ||R;(t) — R;(t)||. This
corresponds to a chordal distance, but is not as intuitive as the angular distance
used in this work. Refer to [73] for more information about metrics on SO(3).

2.5.3 Ground-Truth Poses

Both in practical applications and in research, poses obtained with marker-based
motion capture systems are usually considered gold standard. These systems infer
the skeletal pose from surface-mounted markers on the human body. However, this
introduces errors in two ways.

First, every physical sensor has an associated measurement uncertainty. For fully
visible and moving markers, commercial marker-based systems achieve a Root Mean
Square (RMS) marker position error lower than 2.0mm [74, 75]. Positional errors
could be further decreased by incorporating more views. Unfortunately, the number
of cameras is limited and even worse, only a subset of them has usually a free line
of sight to a specific marker.

Second, the human body is a complex system composed of bones, muscles and
various forms of soft tissue, see Section 1.3. Therefore, inferring the underlying
skeletal state from surface-mounted markers introduces errors. In addition, accuracy
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depends on proper and rigid marker positioning, which is rarely perfect in practical
applications.

Even though marker-based systems suffer from the aforementioned errors, the
advantages, overall accuracy and practicability justify their use as a gold standard
to evaluate other motion capture approaches. However, it is important to keep the
limited precision in mind, when considering this ground-truth.
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Figure 3.1: Illustration of the tracking performance using only 6 IMUs
attached wrists, lower legs, back and head. The animation in the bottom
row shows the output of the proposed method for a jumping sequence. The
images in the top row are only shown for reference and are not part of the
method.

This chapter presents a method to improve practicability of IMU-based human
motion capture. In particular, the method enables to recover the full-body pose from
only a small set of inertial sensors attached to the body. Since the problem is heavily
under-constrained, previous methods rely on motion databases learning a mapping
from the lower dimensional input to the full body pose. However, this makes strong
assumptions about the motions to be captured and does not generalize to unseen

!This chapter contains previously published images, text and results [52].
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movements. We take a different approach and constrain the problem by: (i) making
use of a realistic statistical body model that includes anthropometric constraints
and (ii) using a joint optimization framework to fit the model to orientation and
acceleration measurements over multiple frames. The resulting tracker Sparse
Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the
wrists, lower legs, back and head) and works for arbitrary human motions, which is
illustrated in Figure 3.1.

3.1 Introduction

The recording of human motion contributed substantially to the fields of biomechanics
and computer animation. Typically, the recordings are made using commercial
marker-based systems [9, 13|, and numerous recordings of human performances are
now available for research purposes [66, 76, 77]. The recording of human motion is
also important for psychology and medicine, where biomechanical analysis can be
used to assess physical activity and diagnose pathological conditions and monitor
post-operative mobility of patients.

Unfortunately, marker-based systems are intrusive and restrict motions to controlled
laboratory spaces. Therefore, activities such as skiing, biking or simple daily
activities like having coffee with friends cannot be recorded with such systems. The
research community in the field of computer vision has seen significant progress in the
estimation of 3D human pose from images, but this typically involves multi-camera
calibrated systems, which again limit applicability. Also, methods for estimating 3D
human pose from single images have been proposed [78]. However, these methods
are still far less accurate than motion capture systems. A common limitation of all
camera-based systems is that they are prone to occlusions and during continuous
operation, a free line of sight have to be available throughout the whole recording.

Systems based on IMUs do not suffer from such limitations; they can track the
human pose without cameras which make them more suitable for outdoor recordings,
scenarios with occlusions, baggy clothing or where tracking with a dedicated camera
is simply not possible. However, inertial measurement systems such as Xsens
BioMech [33] are quite intrusive, requiring 17 sensors worn on the body or attached
to a suit. This is one of the reasons that large amounts of data have not been
recorded yet. Hence, a less intrusive solution that can capture people through
occlusions is needed.

In this chapter, we present the Sparse Inertial Poser (SIP), a method to recover the
full 3D human pose from only 6 IMUs attached to the end-effectors wrists, lower
legs, head and to the torso. This is a minimally intrusive solution to capture human
activities with inertial sensors. Furthermore, many consumer products already have
IMUs integrated, e.g. smartphones, fitness straps and smartwatches, Google glasses,
and Oculus rift. A 6-sensor system could easily be worn with a hat or glasses, two
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wrist bands, a belt, and shoe or ankle sensors. However, recovering human pose
from only 6 IMUs is a very difficult task.

In state-of-the-art IMU-based human motion capture, IMUs are attached to each
major limb segment of the human body. With theses systems, the body pose is
typically reconstructed by computing the relative orientations of adjacent body
segments. Hence, these solutions primarily utilize sensor orientation to capture
the DoF of respective joints. In our setup, we do not have IMUs at adjacent body
segments, hence we have to compensate for this missing information.

Probably the most obvious solution is to double integrate IMU accelerations to
reconstruct sensor positions in space. Then, given the orientation and position of
end-effectors and torso, the states of intermediate bone segments can be derived
from the articulated structure of the human body. However, reconstructing sensor
position from acceleration signals is only accurate for very short time intervals. This
is due to the double integration of acceleration signals, where sensing errors (see
Section 2.4.2) lead to a rapid deterioration of position estimates. This effect is
usually denoted drift. In order to derive stable position information from acceleration
data, an alternative is to consider other sensor modalities (e.g. Global Positioning
System (GPS) or video) or to detect salient events where the sensor position is
known (e.g. floor contact).

Figure 3.2: Sparse IMU orientations give only weak constraints on the full
pose. Multiple knee and hip joint configurations fit well the IMU orientation
of the lower left leg.

We take a different approach and solve this problem using a more global perspective.
A key insight is that the sparse orientation measurements together with an accurate
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body model constrain the set of admissible poses. In particular, orientation measure-
ments determine the alignment of body end-effectors and waist. This information
alone is not helpful, since the pose of the intermediate body parts could be arbitrary.
However, not all poses are physically realizable. Hence, a body model that accurately
models anatomical restrictions such as joint limits and range of motion, which we
refer to as anthropometric constraints, reduces the set of theoretically possible
poses to a smaller set of feasible poses. In fact, the pose parameters corresponding
to feasible poses collapse to a lower-dimensional manifold. An exemplary pose
manifolds is visualized in Figure 3.2, where several hip and knee joint configurations
lead to identical lower leg orientations.

Figure 3.3: (a) Ilustration of pose manifolds for five subsequent frames. In
each frame the pose manifold is obtained by fitting the IMU orientation of
the lower left leg. (b) Illustration of the pose trajectory (shown in orange),
that lies within the frame-wise pose manifolds and is also consistent with
the acceleration data. The joint optimization over multiple frames helps
to disambiguate the poses obtained with sparse orientation inputs. At the
same time the frame-wise pose manifolds provide sufficient constraints to
incorporate acceleration data, which would produce severe drift otherwise.

Looking at a single frame, exact pose inference is not possible. By looking at a
sequence of frames however, it becomes obvious that the set of admissible poses
is further constrained if we only consider smooth motions. While this is still very
ambiguous, we found that it provides sufficient constraints to prevent drift if we
incorporate acceleration data. Hence, the key idea of the Sparse Inertial Poser is to
find a pose trajectory, which lies within the frame-wise pose manifolds and at the
same time is consistent with the acceleration measurements. This is illustrated in
Figure 3.3.
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In summary, SIP makes the challenging problem of human pose estimation from
sparse IMU data feasible by:

e Making use of a realistic body model that incorporates anthropomorphic
constraints (with a skeletal rig).

e A joint optimization framework that fits the poses of a body model to the
orientation and acceleration measurements over multiple frames.

Altogether SIP is the first method that is able to estimate the 3D human pose from
only 6 IMUs without relying on databases of MoCap or learning methods that make
strong assumptions about the recorded motion.

3.2 Model

3.2.1 Body Model

We use the SMPL body model to reconstruct the body pose from only a sparse set
of IMU measurements. In this section we briefly review the basic equations to model
human motion using a kinematic chain C. Refer to Section 2.2.3 for more details.

The skeletal model of SMPL consists of rigid bone segments linked by N; = 24 joints.
Each joint has three rotational DoF, parametrized with exponential coordinates
w € R3. The full body pose x € R™ is defined in terms of a vector containing the
stacked exponential coordinates of each joint and the three parameters for global
translation.

The rigid body motion Mj: R™ — SE(3) of a bone b with respect to a global
coordinate frame g depends on the pose x in terms of of the forward kinematic map:

exp(wj) |
My (x) = ( I1 [ ) = LI e () ) (3.1)
Jj€Pac(b) Jj€Pac(b)
where Pac(b) C {0,---, N; — 1} is an ordered set of parent joints, w; € R® are the
exponential coordinates of the joint rotation and j € R? is the corresponding joint

location. Since the joint locations are individual to each person, we fit the SMPL
surface mesh to each person to be tracked.

3.2.2 IMU Placement

The Sparse Inertial Poser is capable of recovering human motion from only 6 IMUs
strapped to the lower legs, the lower arms, waist and head, see Figure 3.4. We
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found that this sensor configuration constrains a large number of pose parameters
and produces good quantitative and qualitative results. An alternative sensor
configuration would be to move the lower-leg and lower-arm IMUs to the end-
effectors, i.e. feet and hands. Theoretically, this would enclose the full set of major
limb joint parameters of the human body. However, we found that this adds too much
uncertainty along the kinematic chain structure and results in worse performance
than the proposed sensor placement.

Figure 3.4: Sensor placement for the Sparse Inertial Poser. IMUs are
attached to head, lower legs, wrists and back.

3.2.3 Coordinate Systems

In order to relate IMU measuremts to the body model we introduce several coordinate
systems depicted in Figure 3.5. The body model is defined in the global tracking
coordinate system FY and each bone segment of the body has a local coordinate
system F°. The rigid body motion M € SE(3) defines the mapping from bone to
tracking coordinate system. Equivalently, M € SE(3) defines the mapping from
the local IMU sensor coordinate system F* to a global inertial coordinate system F*.
Both global coordinate systems F9 and F* are static and related by the constant
mapping M? € SE(3). In the following we will assume MY is known and express all
IMU readings in the global tracking frame FY using the transformation rule

M (t) = MY - M(1). (3:2)

Our aim is to find a pose trajectory such that the motion of a limb is consistent
with IMU acceleration and orientation attached to it. Thus we need to know the
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)Mb

w>

Ff, \—/ Fz
M;
Figure 3.5: Several coordinate frames are required to relate IMU measure-
ments to the body model: Global tracking coordinate frame FY, inertial

coordinate frame F?, bone coordinate frame F* and sensor coordinate frame
Fs.

offset between IMU and its corresponding bone coordinate system M®(¢) € SE(3).
We assume that it is constant as the sensors are tightly attached to the limbs and
compute it at the first frame of the tracking sequence according to

M = M(0) - M¥(0). (3.3)

3.3 Method

Recovering full pose from only Ny, = 6 IMUs, strapped at lower arms, lower legs,
head and waist, is highly ambiguous. Orientation data only constrains the full
pose to lie on a lower dimensional manifold. Acceleration measurements are noisy
and naive double integration to obtain position leads to unbounded quadratic drift.
Hence, looking at a single frame the problem is ill-posed. However, looking at the
full sequence, and using anthropometric constraints from a body model, makes the
problem much more constrained, see Figure 3.3. This motivates us to formulate the
following multi-frame objective function:

* .
X1 = arg min Emotion(xl:T7 Rl:T> a1:T)7 (34)
X117
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where x;.7 € R™7 is a vector consisting of stacked model poses for each time step
t =1...T. Ryr are the sensor orientations R, € SO(3) and a;.r are the sensor
acceleration measurements respectively. We define Fyoion as

Emotion(xl:T7 R13T7 al:T) =Worj * Emi (X13T7 Rl:T)
+ Wacc - Eacc(XI:T: al:T) (3‘5)

+ Wanthro * Ear;thro(xl:T)7

where Fo, Faee and E,no are energies related to orientation, acceleration and
anthropometric consistency. The weights of Eq. (3.5) balance the individual energy
terms. In the following, we detail each of the objective terms.

3.3.1 The Orientation Term

The sensor orientations RY(t) € SO(3) are related to the bone orientations by a
constant rotational offset R2. Hence, we define the estimated sensor orientation
RY(x;) at pose x; as

s b

R{(x;) = Ri(x:) - Ry, (3.6)

where R{(x;) is the rotational part of the forward kinematics map defined in Eq. (3.1).
The orientation error e,; € R? are the exponential coordinates of the rotational
offset between estimated and measured sensor orientation:

eori(xe) = log (RE(x)) - (RI(1) "), (3.7)

where the V-operator recovers the coordinates of the skew-symmetric matrix obtained
from the log-operation. We define the orientation consistency E,,; across the sequence

as
T Ns

Eori = % Z Z Heori,n(t)HQv (38)

S t=1n=1
which is the sum of squared L2-norm of orientation errors over all T' frames ¢ and
all Ny sensors. Actually, the squared L2-norm of e, corresponds to the geodesic
distance between RY(x;) and RY(t), see Section 2.5.2.

3.3.2 The Acceleration Term

IMU acceleration measurements a® € R? are provided in the sensor coordinate
system F* shown in Figure 3.5. To obtain the corresponding sensor acceleration
a’d in global tracking frame coordinates F'9 we have to transform a® by the current
sensor orientation RY(t) and subtract gravity g9:

a’(t) = RY(1) -a*(1) — g". (3.9)
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We aim to recover a sequence of poses such that the actual sensor acceleration matches
the corresponding vertex acceleration of the body model. The corresponding vertex
is manually selected. Since the model has the same topology across subjects this
operation is done only once. The vertex acceleration af(t) is approximated by
numerical differentiation

- pi(t—1)—2-pi(t) + p(t +1)
I(t) = 3.10
a1 e : (310)
where p?(t) is the vertex position at time instance ¢ and dt is the sampling time.
The vertex position is related to the model pose x by the forward kinematic map

defined in Eq. (2.32) and is given by
p’(x) = M} (x)p"(0), (3.11)

where p indicates homogeneous coordinates. Hence, we define the acceleration error
as the difference of estimated and measured acceleration

eacc(t) = ég(xtflvxh Xt+1) - ag(t)' (312)

Adding up the acceleration error for all T' frames and N, sensors defines the motion
acceleration consistency Fg.:

=

s

|leacen ()II*- (3.13)
1

1
TN,

M=

Eaee =

-
Il

1n

3.3.3 The Anthropometric Term

In order to constrain the skeletal joint states to human-like poses we use a multivariate
Gaussian distribution of model poses with a mean pose pyx and covariance matrix
3« learned from scan registrations of SMPL. While this encodes anthropometric
constraints it is not motion specific as it is learned from a variety of static poses.
Note that this is much less restrictive than learning based or database retrieval
based approaches. We use the Mahalanobis distance that measures the likelihood of
a pose x given the distribution N (pux, Xx):

o (£) = v/ (%0 — 1) S5 (%, — pix). (3.14)

Additionally, we explicitly model joint limits by an error term which produces
repulsive forces if a joint limit is violated. We define the joint limit error ey, as

€limit (1) = min(x; — Lower, 0) + max(x; — Lypper, 0) (3.15)

where ligye, and lyppe, are lower and upper joint limit parameters. Altogether, the
anthropometric energy term .., is a weighted combination of terms

1 1
Eanthro = wmahal? Z dma]xal(t)Z + wlimit? Z ||elimit (t) ‘ |2 (316)
t=1 t=1

where the weighting factors wyana and wymie balance the influence of the pose prior
term and the joint limits term.
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3.3.4 Energy Minimization

FErotion 18 @ highly non-linear function and generally difficult to optimize. However,
the exponential map formulation enables to analytically compute gradients and since
FEotion 18 composed of a sum of squared residual terms we can use the Levenberg-
Marquardt algorithm introduced in Section 2.3.2.

In order to compute an update-step for the Levenberg-Marquardt algorithm, we have

to linearize the residual terms e € R? around the current pose estimate x € R™:

e(x®d)~e(x)+J(x) 0 (3.17)

where J(x) : R™ — R? is the Jacobian matrix mapping a pose increment § € R™ to
an increment of the residual. The operator @ refers to a parameter perturbation
with respect to the manifold structure of rigid body motions, see Section 2.2.4. In
the following we show how to linearize the respective residual terms associated to
orientation, acceleration and anthropometric consistency.

The orientation residual defined in Eq. (3.7) can be rewritten in terms of an incre-
mental change of the pose parameters § according to

eors(x @ 6) = log (RI(x @ 0) - (R9) "), (3.18)

where Rg (x @ 0) is the rotational part of the forward kinematic map defined in
Eq. (2.35). For a single pose parameter ¢ that has an effect on RY, we can use the
Adjoint to shift the rotation associated to the perturbation d; all the way to the left:

Con(x @ 8,) = log (exp(@) - R(x) - (R) ™). (3.19)

where

Here, the rotation R; refers to the accumulated joint rotations of parental joints of ¢
and G is the corresponding Generator matrix. Instead of taking the derivative with
respect to §; explicitly, we use the first-order approximation of the logarithm [79]:

log (exp(@,) exp(@p)) & @, + @p, (3.21)

where @,, @, € $0(3) to obtain
€ori(X B ) & €0ri(X) + AdjR, (G4)" + 6 = €pri(X) + Jorii(X) - 6. (3.22)
From this we can already read off the Jacobian Jo;(x) € R? for §; which is given by
Jorii(x) = Adjr, - (G:)". (3.23)

The full Jacobian Jui(x) € R**™ of Eq. (3.18) is obtained by simply appending
the Jori(x) for all perturbation parameters 7. If the orientation residual does not
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depend on a particular perturbation parameter, then the corresponding row in the
Jacobian is simply a zero vector. Note that the approximation in Eq. (3.21) is only
reasonably accurate if one exponent is close to identity.

In order to linearize the acceleration residual of Eq. (3.12), we express the estimated

sensor position (Eq. (3.11)) at a single time instance in terms of an incremental
change in the pose vector ¢ according to

P(x @ 6) = Mj(x @ 9) - p(0). (3.24)

Using Eq. (2.39), the derivative of this expression with respect to a single pose
parameter J; equates to

P(x&9)

25, =& Mj(x) - p(0) =: Ji(x), (3.25)

where
& = Adjm, - GY

i

(3.26)

and M; corresponds to the motion associated with the parent joints of i, see
Section 2.2.4. Similar to the orientation residual, we obtain the full Jacobian
J,(x) € R3*™ by simply appending the J,;(x) for all perturbation parameters i. If
the point position does not depend on a perturbation parameter ¢, then J,;(x) is
simply a zero vector.

By combining the position estimates of three successive time steps we get the
linearized acceleration error according to

b1
Cace(t 0) & Cae(t) + [Jp(xim1) —20,(x0) Jp(xien)] | 6 |- (3.27)
Ot41

The residual terms related to anthropomorphic consistency defined in Eq. (3.14) and
Eq. (3.15) are already linear in the pose x. For the Mahalanobis prior we compute
the Cholesky factorization of the inverse covariance matrix

» ! :=L"L, (3.28)
and rewrite the squared Mahalanobis distance as
e NX)T LT L+ (X — ix) = €qapal - Cmahal- (3.29)

Then it becomes obvious that €maha : X — L (X — pix) is a linear mapping with

Jmahal =1L.

In order to compute a descent update step to minimize Ep,otion, We can now simply
stack the linearized residual terms for all frames. For orientation and anthropometric
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terms this leads to sparse equations with the following block-diagonal structure

Jt,1 6t—l e(t — 1)

Jt 5t = e(t) s (330)

Jt+1 (St+1 e(t -+ 1)

where J; denotes the respective Jacobian of the residual term e(t) at time step ¢.
Similarly, the linearized residual terms of the acceleration residuals can be combined
to obtain

_2Jt—1 Jt 515—1 eacc(t - 1)

Jioo =23y Jen & | = €acc(t) . (3.31)

Jo —2J. - 01 €acc(t+1)

By stacking the respective linearized multi-frame residual terms, we can now simply
solve for the parameter updates and iterate until convergence. Iteration results for
a jumping jack sequence are illustrated in Figure 3.6.

3.4 Evaluation

We evaluate SIP on two publicly available benchmark datasets and present tracking
results on challenging outdoor recordings. This section is structured as follows.
First, we present details on the general tracking procedure and computation times
in Section 3.4.1. In Section 3.4.2 we evaluate tracking performance of SIP on the
TNT15 dataset and investigate the influence of using a learned body model in
contrast to a manually rigged body model. Then, in Section 3.4.3 we evaluate our
tracking approach on the TotalCapture dataset and assess tracking accuracy with
respect to a marker-based reference motion capture system. Finally, in Section 3.4.4
we show qualitative results on additional recordings, which were captured using a
sparse set of IMUs and a hand-held smartphone camera for visualization purposes.

3.4.1 Tracker Setup

In order to reconstruct the full-body motion with our proposed SIP, we require a
SMPL body model of the actor, the initial pose at the beginning of the sequence,
and sensor locations on the body. Initial pose and sensor locations are required to
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Figure 3.6: Three iterations of optimizing E,,otion for a jumping jack se-
quence. First row: images of the scene, second row: pose initialization
obtained by minimizing orientation and anthropometric consistency, third
row: intermediate iteration, forth row: result of SIP, i.e. final pose estimates
after convergence.

determine the sensor to bone offsets M®, see Section 3.2.3. Since IMUs are attached
to different locations on the body, we manually selected the SMPL vertices once,
and use them as sensor locations for all actors and experiments. Initial poses for
the quantitative analysis were provided along the corresponding datasets. For the
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outdoor recordings we simply asked the actor to pose upright with straight arms
and legs at the beginning of each sequence. We obtained SMPL body models by
fitting the SMPL template to laser scans or to marker locations in the case of
the TotalCapture dataset, respectively. We also evaluated tracking accuracy using
approximate body models estimated with the method of bodies from words [80]. In
this case shape is estimated from only height, weight and 15 user ratings of the
actor body shape.

The general tracking procedure works as follows. Starting with the initial pose
we optimize the body pose for every frame sequentially using the orientation and
anthropometric terms. We call this method Sparse Orientation Poser (SOP) and
we use it as a baseline later. The resultant pose trajectory from SOP serves as
initialization for optimizing the full cost function defined in Eq. (3.5). As can be
seen in Figure 3.6, optimizing orientation and anthropometric consistency terms
already recovers the pose reasonably well. This step is important, since Eq. (3.5) is
highly non-linear and we apply a local, gradient-based optimization approach. After
initialization, we use a standard Levenberg-Marquardt algorithm to optimize the
full cost cost function and iterate until convergence.

For all experiments, we use weighting parameters wy,; = 1, Waee = 0.05, Wannro = 1,
Winahat = 0.003, and wymis = 0.1, which have been determined empirically. The
overall processing time for a 1000 frame sequence and 20 cost function evaluations
on a quad-core Intel Core i7 3.5 GHz CPU is 7.5 minutes using single-core, non-
optimized MATLAB code. For each iteration the majority of time is spent on
updating the body model (14.4s) and setting up the Jacobians (3.3s), while solving
the sparse equations for a Levenberg-Marquardt update step takes approximately
1.5s. Parallelization of model updates and Jacobian entries on the GPU would
drastically reduce computation time.

3.4.2 Evaluation on TNT15

The TNT15 data set [51] contains recordings of four subjects performing various
activities. The dataset provides inertial sensor data of 10 IMUs attached to lower
legs, thighs, lower arms, upper arms, waist and chest. Refer to Section 2.5.1 for a
more detailed description of the dataset.

We use the TNT15 dataset to evaluate tracking performance with respect to the
ground-truth pose obtained by using all 10 IMUs. A focus is set on investigating
the influence of the body model. In contrast to TotalCapture, the TNT15 dataset
provides rigged body models and laser scans of the actors. This facilitates to fit
SMPL to laser scans and use the manually rigged body models as a reference.
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Figure 3.7: A hand-rigged body model provided along the TNT15 dataset. In
contrast to SMPL, the joints are placed manually and kinematic constraints
are imposed by using hinge and saddle joints.

Baseline Trackers
We compare our tracking results to two baseline methods:

o Sparse Orientation Poser (SOP): Minimizes orientation and anthropomorphic
consistency terms but disregards acceleration.

e SIP using an alternative body model (SIP-M): Identical to SIP, but uses a
manually rigged body model.

The estimated pose trajectory obtained by SOP is used as the initialization of our
proposed SIP. The second baseline, the SIP-M, uses a body model provided along
the TNT15 data set shown in Figure 3.7. It is a body model with manually placed
joints and fewer pose parameters. Anatomical constraints are imposed by using
hinge joints, e.g. for the knee. In total, the body model has 31 pose parameters
and the manual rigging procedure is representative for models that have been used
for tracking so far [81, 41, 51, 82]. In contrast, the SMPL model of SIP uses a
statistical model to estimate joint positions. Every joint has 3 DoFs and anatomical
constraints are imposed with the covariance of joint parameters. By comparing SIP
and SIP-M we want to asses the significance of using a statistically learned body
model in contrast to a typical hand-rigged one.

We also experimented with a single-frame acceleration tracker which combines the
SOP approach with acceleration data using a Kalman filter. This is similar to
approaches of Vlasic et al. [32] and Roetenberg et al. [31] but considers inertial data
of only 6 sensors. Unfortunately, only 6 IMUs do not provide sufficient constraints
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on the poses to prevent drift caused by acceleration. In all cases, the tracker got
unstable and failed after a few frames.

Metrics

We use the MPJPE and MPJAE defined in Section 2.5.2 to evaluate SIP against
the baseline trackers. For computing the MPJPE, we use the ground-truth positions
of N,, = 13 virtual markers on the body model and compare them to the marker
positions obtained with the estimated poses. The virtual marker positions comprise
the SMPL-model joint locations of hips, knees, ankles, shoulders, elbows, wrists
and neck. Unfortunately the TNT15 dataset does not provide ground-truth poses
obtained with a marker-based reference motion capture system. Instead, we use the
full set of 10 IMUs and generate ground-truth by adjusting the SMPL body pose to
match the measured IMU orientations. Since we cannot obtain stable ground-truth
global translation from IMUs alone, we set it to zero for calculating MPJPE.

For computing the MPJAE we use a slightly different approach compared to the
definition in Section 2.5.2. We split the 10 IMUs into tracking and validation sets.
IMUs attached to lower legs, lower arms, waist and chest are used for tracking
and the other IMUs serve as validation sensors. Hence, in this section we compute
the MPJAE in terms of the geodesic distance between the measured validation
sensor orienations and the corresponding virtual sensor orientations obtained with
the estimated poses. This gives a clear separation of signals used for tracking and
validation. This separation is not entirely given for the MPJPE, as ground-truth
positions are obtained using all IMUs.

Quantitative Results

Figure 3.8 shows the tracking errors for a jumping jack sequence of the TNT15
data set. This sequence contains extended arm and leg motions, also visible in
Figure 3.6, as well as two foot stamps around frames 25 and 500. The SOP fails to
accurately reconstruct these motions as orientation measurements of 6 IMUs are
too ambiguous. This is easily illustrated for the case of a foot stamp, which can
be seen in the second column of Figure 3.12. During this motion the lower leg is
tilted, but without acceleration data it is impossible to infer whether the thigh was
lifted at the same time. The SIP-M can resolve this ambiguity but the limited body
model is not sufficiently expressive to accurately reconstruct the jumping jacks and
skiing exercises. In contrast our proposed SIP shows low orientation and position
errors for the whole sequence and clearly outperforms both baseline trackers. The
tracking result of the jumping jack sequence is exemplary for the overall tracking
performance on the TNT15 data set summarized in Table 3.1. In comparison to
SOP, which uses only orientation data, SIP reduces the mean orientation error on
the TNT15 data set from 19.6° to 13.3° and the mean position error decreases from
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Figure 3.8: Illustration of the error metrics for a jumping jack sequence of
the TNT15 data set. SIP (blue) clearly outperforms both baseline trackers
SOP (red) and SIP-M (yellow). The graphs show the angular error and
positional error averaged for each frame, respectively.

Table 3.1: Error metrics and standard deviations for SOP, SIP-M and SIP
evaluated on TNT15.
Approach MPJAE[°] MPJPE[mm]

SOP 19.6 £174 722 £ 89.0
SIP-M 182 £ 158 559 £ 55.4
SIP 13.3 £10.1  39.1 £40.5

72.2mm to 39.1 mm. In contrast, the manually rigged body model used in SIP-M
achieves a MPJAE of 18.2° and a MPJPE of 55.9 mm.

It is remarkable, that SIP-M and SIP achieve a mean orientation error of 18.2° and
13.3°, respectively. In our earlier work [51] we achieved an average orientation error
of 15.7°, using 5 IMUs and 8 cameras by minimizing single-frame orientation and
silhouette consistency terms. SIP-M uses the same body model and is just slightly
worse. Using the SMPL body model in SIP results in an even smaller orientation
error. Thus, without relying on visual cues of 8 cameras we achieve competitive
orientation errors by simply taking IMU accelerations into account and optimizing
over all frames simultaneously.

In Figure 3.9 and Figure 3.10 the error metrics are plotted for all actors, separated
by activities. Throughout all activities, SIP achieves a substantial improvement in
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accuracy with respect to the baseline SOP. Since SIP does not make any assumptions
about the motions to be reconstructed, this supports that SIP can generalize to
arbitrary motions. For SIP-M the results are not as consistent when compared
to SOP. For the majority of activities it outperforms SOP in both error metrics.
However, the MPJPE of SIP-M is worse for walking and rotation arms and the
MPJAE is worse for the walking sequence. Hence, the reduced DoF of the skeletal
model and the manually placed joint positions prevented to successfully disambiguate
the motions.
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Figure 3.9: MPJAE on the TNT15 dataset. Comparison of SOP(red),
SIP-M(yellow) against the proposed SIP (blue).
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Figure 3.10: MPJPE on the TNT15 dataset. Comparison of SOP(red),
SIP-M(yellow) against the proposed SIP (blue).

In Table 3.2 we summarize the tracking performance for SIP-BW, SIP-110 and
SIP-120. SIP-BW is identical to SIP but uses a SMPL model estimated with the
bodies from words approach. The tracking error difference is insignificant, which
further proves applicability of SIP. Thus, we do not need the accuracy of a laser
scan, making the proposed solution very easy to use. SIP-110 and SIP-120 use a
scaled version of the SIP body model, where body size was increased by 10% and
20% respectively. Again, the tracking error remains comparably small demonstrating
that SIP is very robust to moderate variations in body shape.
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Table 3.2: Tracking errors of SIP-BW, SIP-110, SIP-120 and SIP evaluated
on TNT15.

Approach MPJAE[’] MPJPE[mm]

SIP-BW 13.5 41.5
SIP-110 13.7 45.7
SIP-120 14.3 55.8
SIP 13.3 39.1

it
)

&

(c) (d)

Figure 3.11: Influence of the anthropometric, orientation and acceleration
consistency terms. (a) image of a climbing scene (b) using only orientation
without anthropometric consistency term, (c) using orientation with anthro-
pometric consistency term , (d) our proposed SIP using anthropometric,
orientation and acceleration consistency terms. The acceleration information
clearly helps to disambiguate the leg poses.

Quantitative results indicate that accurate full-body motion tracking with sparse
IMU data becomes feasible by incorporating acceleration data. The influence of the
anthropometric, orientation and acceleration terms are also illustrated in Figure 3.11.
We have also shown that for our tracking approach, the statistically learned body
model SMPL leads to more accurate tracking results than using a representative
manually rigged body model. Further, the SMPL model can be even created using
only linguistic ratings, which obviates the need for a laser scan of the person. In
Figure 3.12 we show several example frames of the tracking results obtained on the
TNT15 data set.

3.4.3 Evaluation on TotalCapture

The TotalCapture dataset contains motion recordings of five subjects captured with
a marker-based motion capture system and inertial sensor data of 13 IMUs attached
to feet, lower legs, thighs, lower arms, upper arms, waist, sternum and head. Refer
to Section 2.5.1 for a more detailed description of the dataset.

We evaluate SIP on TotalCapture to assess tracking performance of SIP with respect
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Figure 3.12: A comparison of SIP to ground truth and two baselines, the
Sparse Orientation Poser (SOP), and SIP with a manually rigged body model
(SIP-M). Top row: images from the TNT dataset sequences, second row:
ground truth poses obtained by tracking with 10 IMUs (for reference), third
row: results obtained with SOP, fourth row: results obtained with SIP-M
and fifth row: results obtained with SIP. Best results are obtained with SIP.
Without acceleration the pose remains ambiguous for the orientation poser
(SOP) and leads to incorrect estimates, the SIP-M can disambiguate the
poses by incorporating acceleration data but suffers from a limited skeletal
model, which prevents the pose from appropriately fitting to the sensor data.
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to the ground-truth poses obtained with a marker-based motion capture system.

Baseline Trackers

Similar to the evaluation on TNT15 in Section 3.4.2, we compare our tracking results
to two baseline methods:

e Sparse Orientation Poser (SOP): Minimizes orientation and anthropomorphic
consistency terms but disregards acceleration.

o Inertial Tracker (IT): Identical to SOP, but uses all N = 13 IMU orientations.

Again, the comparison to SOP is used to demonstrate the gain in accuracy by
incorporating acceleration data. The second baseline, the IT, determines the body
pose from the full set of IMU sensors. It is equivalent to the approach used to
generate ground-truth poses for the TNT15 dataset. We incorporate this baseline for
two reasons. First, it quantitatively shows the deviations of a marker-based motion
capture systems with respect to a full-body IMU system. Second, it enables an
independent evaluation of accuracy between the full sensor setup and our proposed
approach using only a subset of IMUs.

Metrics

We use the MPJPE and MPJAE as defined in Section 2.5.2 to evaluate SIP against
the baseline trackers. For the MPJPE we consider the joint positions of hips, knees,
ankles, neck, head, shoulders, elbows and wrists. MPJAE is computed using the joint
orientations of hips, knees, neck, shoulders and elbows. In order to be independent
to global position and translation of the root joint, we do a procrustes alignment
before computing the MPJPE.

Quantitative Results

Our tracking results are summarized in Table 3.3. By using only 6 IMUs, SIP
achieves a MPJPE of 52.2mm and a MPJAE of 14.6°. Compared to SOP, which
disregards sensor acceleration, SIP is more accurate and improves the MPJPE by
almost 24 mm and the MPJAE by 5.3°.

However, there is still a gap in tracking accuracy with respect to I'T, which uses all
13 IMUs. While the MPJAE of SIP is only 1.4° higher, the MPJPE is approximately
21 mm worse. Hence, the proposed tracker could not resolve all ambiguities caused
by using a reduced sensor set. To further investigate the reasons for this deviation,
we report the tracking metrics sorted by activities in Table 3.4 and Table 3.5.
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Table 3.3: Tracking errors of SOP, IT and SIP evaluated on TotalCapture.
Approach MPJPE [mm] MPJAE [°]

SOP 76.2 £ 61.7 19.7 £ 14.5
1T 30.5 £ 19.8 13.2 £ 8.6
SIP 522+ 469 146 £11.5

Table 3.4: Mean Joint Position Errors (MPJPE) in [mm] of SOP, IT and
SIP evaluated on TotalCapture.

Approach Walking Freestyle Acting Mean

SOP 55.3 104.1 71.3 76.2
IT 29.8 34.8 27.0 30.5
SIP 34.7 71.9 51.8 52.2

Interestingly, SIP achieves almost the same tracking metrics as IT for walking
sequences. The MPJPE is only 5mm higher and the average deviations in joint
angles are negligible. The main difference in tracking accuracy arises from freestyle
and acting sequences. Manual inspection reveals that SIP has trouble to properly
reconstruct static poses and slow motions. In these situations, measured accelerations
are small and the anthropometric prior pushes the pose towards the mean pose.
From this observation it can be concluded that SIP can only reconstruct rather
dynamic movements. This certainly represents a limitation of the approach.

3.4.4 Qualitative Results

In order to further demonstrate the capabilities of our proposed SIP we recorded
additional motions. For all recordings we have used 6 Xsens MTw IMUs [33] attached
to the lower legs, wrists, head and back. The sensor placement is illustrated in
Figure 3.4. Orientation and acceleration data were recorded at 60Hz and transmitted
wirelessly to a laptop. Additionally, we have captured the motions with a smartphone
camera to qualitatively assess the tracking accuracy.

In Figure 3.13 we show several tracking results for challenging outdoor motions,
such as jumping over a wall, warming exercises, biking and climbing. For all cases,
our proposed SIP approach is able to successfully track the overall motion. For most
of the cases, the recovered poses are visually accurate using only 6 IMUs. Finally, in
Figure 3.14 we demonstrate that SIP is capable of reconstructing the handwriting
on a whiteboard. For this experiment, we attached IMUs to the lower legs, wrists,
back and chest and recorded IMU data while the actor was writing “Eurographics”
on a white board. The resulting wrist motion clearly resembles the hand writing.
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Figure 3.13: Qualitative results obtained using SIP: For most of the cases
SIP successfully recovers the full human pose. This will enable to capture
people performing everyday activities in a minimally intrusive way.
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Table 3.5: Mean Per Joint Angular Errors (MPJAE) in [°] of SOP, IT and
SIP evaluated on TotalCapture.

Approach Walking Freestyle Acting Mean

SOP 15.7 25.8 18.0 19.7
IT 11.3 16.4 12.2 13.2
SIP 11.1 19.2 14.0 14.6

‘ »

Figure 3.14: Hlustration of the reconstructed handwriting on a whiteboard
using SIP. Left figure: image of the writing scene, middle figure: recovered
pose at the end of the handwriting, right figure: recovered wrist motion
projected on the whiteboard plane.

3.5 Conclusion

SIP provides a new method for estimating the pose from sparse inertial sensors. SIP
makes this possible by exploiting a statistical body model and jointly optimizing pose
over multiple frames to fit both orientation and acceleration data. We demonstrate
that the approach works even with approximate body models obtained from a few
body word ratings. Quantitative evaluation shows that SIP can reconstruct human
pose accurately, with mean joint orientation errors of 13.3° and mean joint position
errors of 3.9 cm. However, experiments also showed that this only holds for rather
dynamic motions. In static poses, acceleration does not help do disambiguate the
sparse orientation measurements, which is a limitation of this approach.

While SIP is generally able to track the full-body pose without drift, global position
estimates still suffer from drift over time. This could be reduced by integrating
simple physical constraints into the optimization such as center of mass preservation
and ground contacts. Exploiting laws of conservation of energies is very involved
whereas modeling ground contacts is comparably easier: ground contacts produce
high peaks in the accelerometer signal which are easy to detect. Temporally fixing
the position of body model points is straightforward to integrate in the proposed cost
function and will compensate drift. However, modeling ground contacts depends
on the motion to be tracked and assumes static friction [44]. Other options to
compensate drift are integrating GPS measurements (e.g. from a cell carried phone
on the body), or visual data, e.g. from a body mounted camera [83, 84]. The next
chapter of this thesis deals with a method to compensate drift and other limitations
of IMU-based motion capture with visual cues from an additional hand-held camera.
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Due to the IMU placement on the body, SIP does not capture wrist and ankle joint
parameters, see Section 3.2.2. While these unobserved parameters are also optimized
within the anthropometric prior, one could incorporate constraints derived from the
3D world geometry. Also, instead of using static joint limits in the anthropometric
term one could also incorporate pose-conditioned joint angle limits [85] to obtain
physically plausible poses.

Despite the limitations, SIP provides the technology to capture human motion
with as few as 6 IMUs which is much less intrusive than existing technologies. In
contrast to previous work it does not rely on motion databases and generalizes to
arbitrary motions. This has many potential applications in the fields of virtual
reality, sports analysis, monitoring for health assessment, or recording of movement
for psychological and social studies.
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4 Video Inertial Poser!

Figure 4.1: The Video Inertial Poser (VIP) combines video obtained from a
hand-held smartphone camera with data coming from body-worn IMUs. It
enables to capture motions of multiple people in natural environments.

This chapter presents a method that combines measurements of IMUs attached at
the body limbs and image information of a single hand-held camera to estimate
accurate 3D poses in the wild. Previous methods rely on multiple static cameras,
which limits the operational area and they are commonly limited to track a single
person only. Instead, we present a solution that is capable to track multiple people
in everyday surroundings. The visual information of the camera helps to overcome
the main limitations of IMU-based motion capture: intractable root joint position,
accumulating heading error and unknown sensor-to-bone alignment. However, this
poses many challenges. A single hand-held camera only provides a 2D representation
of the 3D world. Since we record in everyday environments, we usually have many
people visible in the video, frequent occlusions and cluttered background. Also, the
camera is moving which adds additional complexity as we have to simultaneously
estimate camera pose. We solve this task by associating 2D pose detections in each
image to the corresponding IMU-equipped persons. This is done by solving a novel
graph-based optimization problem that forces 3D to 2D coherency within a frame

!This chapter contains previously published images, text and results [53].
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and across a long range of frames. Given these associations, we jointly optimize
the pose of a statistical body model, the camera pose and heading drift using a
continuous optimization framework. In order to prove applicability in everyday
surroundings, we recorded 3D poses in the wild (3DPW), a new dataset consisting of
more than 51.000 frames with accurate 3D pose in challenging sequences, including
walking in the city, going up-stairs, having coffee or taking the bus. We validated our
method on the TotalCapture dataset, which provides video and IMU synchronized
with ground truth. We obtain an accuracy of 26 mm, which makes it accurate
enough to serve as a benchmark for image-based 3D pose estimation approaches.

4.1 Introduction

The method presented in this chapter addresses two inter-related goals. First, it is
capable to accurately reconstructing 3D human pose in outdoor scenes, with multiple
people interacting with the environment, see Figure 4.1. Our method combines
data coming from IMUs (attached at the person’s limbs) with video obtained from
a hand-held phone camera. This allows us to achieve the second goal, which is
collecting the first dataset with accurate 3D reconstructions in the wild. Since
our system works with a moving camera, we can record people in their everyday
environments, for example, walking in the city, having coffee or taking the bus.

3D human pose estimation from single images and videos has been a longstanding
goal in computer vision. Recently, there has been a significant progress, particularly
in 2D human pose estimation [86, 87]. This progress has been possible thanks
to the availability of large training datasets and benchmarks to compare research
methods. While obtaining manual 2D pose annotations in the wild is fairly easy,
collecting 3D pose annotations manually is almost impossible. This is probably the
main reason there exist very limited datasets with accurate 3D pose in the wild.
Datasets such as HumanEva [64] and Human3.6M [65] have facilitated progress
in the field by providing ground truth 3D poses obtained using a marker-based
motion capture system synchronized with video. These datasets, while useful and
necessary, are restricted to indoor scenarios with static backgrounds, little variation
in clothing and no environmental occlusions. As a result, evaluations of 3D human
pose estimation methods in challenging images have been made mainly qualitatively,
so far. There exist several options to record humans in natural scenes, none of which
is satisfactory. Marker-based capture outdoors is limited. Depth sensors like Kinect
do not work under strong illumination and can only capture objects near the camera.
Using multiple cameras requires time consuming set-up and calibration [88]. Most
importantly, the fixed recording volume severely limits the kind of activities that
can be captured.

IMU-based systems hold promise because they are not bound to a fixed space since
they are worn by the person. In practice, however, accuracy is limited by a number of
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factors. Inaccuracies in the initial pose introduce sensor-to-bone misalignments. In
addition, during continuous operation, IMUs suffer from heading drift, see Figure 4.2.
This means, that after some time, each IMU does not measure relative to the same
world coordinate frame. Rather, each sensor provides readings relative to independent
coordinate frames that slowly drift away from the world frame. Furthermore, global

Figure 4.2: Illustration of IMU heading drift. The sensor heading errors
have accumulated after a longer recording session and the obtained 3D pose
is completely off.

position can not be accurately obtained due to positional drift, which makes it
impossible to track people interactions. Moreover, IMU systems do not provide 3D
pose synchronized and aligned with image data.

Therefore, we propose a new method, called VIP, that jointly estimates the pose of
people in the scene by using 6 to 17 IMUs attached at the body limbs and a single
hand-held moving phone camera. Even though IMUs provide much information
about the pose of a person many challenges remain. First, the persons need to be
detected in the video and associated with the IMU data, see Figure 4.3. Second,
during continuous operation IMUs become increasingly inaccurate due to heading
drift. Third, the estimated 3D poses need to align with the images of the moving
camera. Furthermore, the scenes we tackle in this work include complete occlusions,
multiple people, tracked persons falling out of the camera view and camera motion.

To address these difficulties, we define a novel graph-based association method,
and a continuous pose optimization scheme that integrates the measurements from
all frames in the sequence. To deal with noise and incomplete data, we exploit
SMPL [59], which incorporates anthropometric and kinematic constraints.

Specifically, our approach has three steps: initialization, association and data fusion.
During initialization, we compute initial 3D poses by fitting SMPL to the IMU
orientations. The association step automatically associates the 3D poses with
2D person detections for the full sequence by solving a single binary quadratic
optimization problem. Given those associations, in the data fusion step, we define
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Figure 4.3: Illustration of association challenges in crowded environments.
In order to combine IMU data and visual information from the camera view,
2D poses have to be associated to persons wearing IMUs. This is difficult
when several people are in the scene.

an objective function and jointly optimize for the 3D poses of the full sequence,
the per-sensor heading errors, the camera pose and translation. Specifically, the
objective is minimized when (i) the model orientation and acceleration is close to
the IMU readings and (ii) the projected 3D joints of SMPL are close to 2D CNN
detections [87] in the image. To further improve results, we repeat association and
joint optimization once.

With VIP we can accurately estimate 3D human poses in challenging natural scenes.
To validate the accuracy of VIP, we use the Total Capture dataset [42] because it
provides video synchronized with IMU data.

4.2 Model

4.2.1 Body Model

We utilize the Skinned Multi-Person Linear (SMPL) body model [59], see Sec-
tion 2.2.3. We optimize the shape parameters to the person to be tracked by
fitting SMPL to a 3D scan. Holding shape fixed, our aim is to recover the pose
x € R™, consisting of 3 parameters for global translation and 24 relative rotations
represented by exponential coordinates for each joint. We use the standard for-
ward kinematics, defined in (2.32), to map a pose x to the rigid transformation
M (x) : R™ — SE(3) of bone F*. The bone transformation comprises the rotation
and translation M = {R{,t9} to map from the local bone coordinate frame F?® to
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Figure 4.4: TIllustrations of inaccurate 2D pose detections.

mistaken, especially in uncommon poses.

the global SMPL frame FY.

4.2.2 Camera Model

Left image:
current methods have trouble to correctly assign joints to persons if they are
in close interaction. Right image: left and right body limbs are frequently

We apply a pinhole camera model to model the projection of a 3D point to pixel
coordinates in an image [71]. In particular, a 3D point p¢ := (z,¥, 2)T € R? defined
in a camera aligned coordinate frame F*° is projected to pixel coordinates (u,v) in

the image plane by

U
of = (K- x) = K-(p°),
1

(4.1)

where K € R**3 is a matrix of camera intrinsics and the operator = models the

image formation process according to

U 7]
m(p) = |v| = p Yyl
1 Z]
The camera intrinsics K are defined as
kuf 0 e
K:==|0 kf cf,
0 0 1]
where
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e f is the focal length of the camera,

e L, and k, correspond to the pixel density of the sensor, in u- and v-direction
respectively, and

e ¢, and ¢, are the coordinates of the principal point, which is the intersection
of the optical axis with the image plane.

The intrinsic camera parameters can be estimated from correspondences between
known world points and corresponding image coordinates. We used a checkerboard
pattern and the Mathworks MATLAB Camera Calibration Toolbox to obtain the
camera intrinsics. During this process, lens distortion parameters were also estimated
and for tracking images were undistorted in a pre-processing step.

In this work, 3D point coordinates (of the body model) are defined in a static global
coordinate frame F'9. Hence we rewrite Eq. (4.1) according to

u
v| = 7KL M- p), (4.4)
1

where MY € SE(3) corresponds to the camera pose, mapping points from the
global coordinate frame to the camera coordinate frame, and p is the homogeneous
representation of p. The matrix I, is defined as

e

1000
I.=1{0 10 0 (4.5)
0010

S =

and corrects for mismatching matrix dimensions. In order to avoid notational clutter
we will skip this matrix in the following.

At this point, we also define the re-projection error e;,, € R? measuring the
pixel difference of a 2D observation p € R? in the image and the projection of
a corresponding 3D point q € R? under the camera model with camera pose
M € SE(3). For a 3D point on the body model, q is a function of the body pose
x € R™ and we define the re-projection error of a point correspondence as a mapping
€img R™ x SE(3) — R? according to

eimg(x, M) = (K - Mg - q°(x)) — P (4.6)
4.2.3 Coordinate Frames

We introduce several coordinate systems to relate IMU measurements and visual
information to the body model, depicted in Figure 4.5. Despite the camera coordinate
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F9 ~_ i
MY

Figure 4.5: Several coordinate frames are involved to relate the body model
to visual and inertial information: Global tracking frame FY, global inertial
frame F?, bone coordinate frame F®, IMU sensor coordinate frame F* and
camera coordinate frame F*.

frame F, the coordinate frames are identical to the frames defined in Section 3.2.3
for the SIP approach. Nevertheless, we will briefly describe all frames in the following.

IMUs measure the orientation of the local coordinate frame F* (of the sensor box)
relative to a global inertial coordinate frame F?. However, this frame F? is different
from the global reference coordinate frame F9 of SMPL, see Figure 4.5. The offset
MY € SE(3) between these coordinate frames is typically assumed constant, and is
calibrated at the beginning of a recording session. We also need to know the offset
R! € SO(3) from the sensor to the SMPL bone where it is placed. We assume that
sensors do not move relative to the bones, and hence compute R? from the initial
pose xg and IMU orientations in the first frame at ¢ = 0. Using the initial SMPL
bone orientation Rj(x¢) and the initial IMU orientation measurement R¥(0), we
can compute the offset as

Ri(x0) = (R{(x0)) " - RY - R{(0) (4.7)

where the raw IMU reading R!(0) needs to be mapped to the SMPL frame first
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Figure 4.6: Modeling heading drift requires an additional shifted inertial
frame for each sensor. The illustration shows the following coordinate frames
to relate the body model to IMU data: Global tracking frame FY, global
inertial frame F", shifted inertial frame F', bone coordinate frame F? and
IMU sensor coordinate frame F*.

using RY.

In order to relate image cues from a hand-held camera to the body model we will use
the reprojection error defined in Eq. (4.6). This requires knowledge of the camera
pose, which we define as the offset M between a camera-fixed coordinate frame F'
and the global reference coordinate system of SMPL. Since the camera is moving,
M is varying with time and we have to reconstruct it as part of our optimization.

4.2.4 Heading Drift

Unfortunately, the orientation measurements of the IMUs are deteriorated by mag-
netic disturbances, which introduce a time-varying rotational offset to M;, also
commonly known as heading error or heading drift. This drift (M?) shifts the
original global inertial frame F to a disturbed inertial frame F?'. What is even
worse, the drift is different for every sensor. While most previous works ignore
heading drift or treat it as noise, we model it explicitly and recover it as part of the
optimization. We model it as a one-parameter rotation R(y) € SO(3) about the
vertical axis, where 7y is the rotation angle. The collection of all angles, one per IMU
sensor, is denoted as I'. Since the heading error commonly varies slowly, we assume
it is constant during a single tracking sequence. Recovering heading orientation
was crucial in order to be able to perform long recordings without time-consuming
re-calibration.
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4.2.5 Visual Cues: 2D Poses

In order to obtain pose information of humans seen in the camera view, we use an
approach that regresses pixel coordinates of body landmarks from single images. We
will refer to this kind of pose information as 2D poses in the following. Estimating
2D poses from images is a very active research area and recent publications show
impressive performance even for very crowded scenes. A common strategy that can
be found in most state-of-the-art methods is to split the task of 2D pose estimation
into two stages. First, a deep CNN is commonly trained to detect dedicated joints or
body parts in the image. The second stage then aims to associate these detections
to individual humans.

In this work, we use the extension of the Convolutional Pose Machines framework
published by Cao et al. [87]. For every image, the approach outputs a list of detected
persons and respective 2D poses. We use the COCO pose parametrization which
contains the image coordinates of Njone = 18 landmark positions of hips, knees,
ankles, shoulders, elbows, wrists, neck, nose, ears and eyes. Along with every 2D
landmark coordinate p € R?, a confidence score w € [0, 1] reflects the detection
uncertainty of the respective landmark. In the following, we denote a 2D pose with
corresponding landmark information as a pose candidate v;;, where ¢ is the i-th
candidate at time ¢. The notion of v for a pose candidate will become more clear as
each candidate will represent a vertex in a graph model later.

4.3 Method

In order to perform accurate 3D human motion capture with hand-held video and
IMUs we perform three subsequent steps: initialization, pose candidate association
and video-inertial fusion. Figure 4.7 provides an overview of the pipeline and we
describe each step in more detail in the following.

4.3.1 Initialization

We obtain initial 3D poses by fitting the SMPL bone orientations to the measured
IMU orientations. For an IMU, the measured bone orientation Ry is given by

R{(x0.7) = R - R{(y) - R} - (Rl(x0)) (48)

where R? represents the bone to sensor offset (Eq. (4.7)), and the concatenation
of Ry, RY and R! describes the rotational map from sensor to global frame, see
Figure 4.5 and Figure 4.6. We define the rotational discrepancy between actual
bone orientation Ry and measured bone orientation R as

\%

" (1, %0, ) = log (R{(x0) - (Rfx0.)) ) (49)
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Figure 4.7: Method overview: By fitting the SMPL body model to the
measured IMU orientations we obtain initial 3D poses X. Given all 2D
poses V detected in the images we search for a globally consistent assignment
of 2D to 3D poses. We jointly optimize camera poses ¥, heading angles
I and 3D poses X with respect to associated IMU and image data. In a
second iteration we feed back camera poses and heading angles which provides
additional information further improving the assignment and tracking results.

where the log-operation recovers the skew-symmetric matrix from the relative
rotation between R{ and Rg , and the Y-operator extracts the corresponding axis-
angle parameters. We find the 3D initial poses at frame ¢ that minimize the sum of
discrepancies for all IMUs

* . 1 X TO
x5 = arg:mn A Z Hes,f(x“ X0, 7)||2 + Wprior Eprior (Xt (4.10)

5 s=1

where Epior(X) is a pose prior weighted by wprior- Eprior(X) is identical t0 Eynghro(X)
defined in Eq. (3.16), enforcing x to remain close to a multivariate Gaussian dis-
tribution of model poses and to stay within joint limits. During the first iteration,
we have no information about the heading angles . To initialize them, we use the
IMU placement as a proxy to know how local sensor axes are aligned with respect
to the body. This gives us a rough estimate of the sensor to bone offset R, which
we use to compute initial heading angles by solving Eq. (4.7) for ~.

In the following, we will refer to this tracking approach simply as the inertial tracker
(IT), which outputs initial 3D pose candidates x;, for every tracked person /. Such
initial 3D poses need to be associated with 2D detections in the video in order to
effectively fuse the data — this poses a challenging assignment problem.
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4.3.2 Pose Candidate Assignment

Using the CNN method of Cao et al. [87], we obtain 2D pose detections v, which
comprise the image coordinates of Njints = 18 landmarks along with corresponding
confidence scores. In order to associate each 2D pose v to a 3D pose candidate, we
create an undirected weighted graph G = (V, &, ¢), with V comprising all detected
2D poses in a recording soquenco An assignment hypothesis, denoted as H(l,v) :=
(x!,v), links the 3D pose x! of person [ € {1 , P} to the 2D pose v € V in the same
frame t. We introduce indicator variables z!, whlch take value 1 if hypothesis H(l, v)
is selected, and 0 otherwise. The basic idea is to assign costs to each hypothesis, and
select the assignments for the sequence that minimize the total costs. We cast the
selection problem as a graph labeling problem by minimizing the following objective

] , ’
wmin S dadd Y At o
zeFN{0,1}IVIP  4eyp {v'}e€

le{1,....P} LU'e{1,...P}

where the feasibility set F is subject to:

p
Sal <1 Wwev, (4.12a)
Sab <1 v, wie{l,..., P} (4.12b)
vEVY

The edge set £ contains all pairs of 2D poses {v,v'} that are considered for the
assignment decision. Eq. (4.12a) ensures that a 2D pose v is assigned to at most
1 person, and Eq. (4.12b) ensures that each person is assigned to at most one of
the 2D pose detections v € V; C V in frame ¢t. The objective in (4.11) consists of
unary costs c measuring 2D to 3D consistency, and pairwise costs cl}lﬂ measuring
consistency across different hypothesis. Our formulation automatically outputs a
globally consistent assignment and does not require manual initialization.

Next we describe the unaries and pairwise potentials — Speciﬁcally7 we introduce
consistency features which are mapped to the costs c, ¢, ;,, of the objective in
(4.11) via logistic regression. Details about the training process are described in
Section 4.4.1. Figure 4.8 visualizes the graph for two example frames and also
illustrates the corresponding labeling solution.

Unary Costs

To measure 2D to 3D consistency of a hypothesis H := H(l, v), we obtain a hypothesis
camera My, by minimizing the re-projection error between 3D landmarks of x! and
the 2D detected ones v. The consistency of a hypothesis is then measured by

Nijoints
Ci!!)g(H7 MH) = Z Wy, - ||eimg,k(H7 M'H)H (413)
joints  p—1
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Figure 4.8: Graph labeling illustration. Every 2D pose represents a node in
the graph which can be assigned to a 3D pose corresponding to person 1 or
2 (represented by colors orange and blue). The graph has intra-frame edges
(shown in black) activated if two nodes are assigned in a single frame and
inter-frame edges (shown in blue and orange) activated for the same person
across multiple frames.

where eimgx(H, My) is the per landmark re-projection error and wy, is the corre-
sponding landmark confidence score. This measure depends heavily on the distance
to the camera. To balance it, we scale it by the average 3D joint distance to the
camera center e.,,(My) to obtain the feature:

qu(H) = eimg(Hv M'H) . ecam(H7 MH)- (4.14)

Pairwise Costs

We define features to measure the consistency of two hypothesis H := (x!,v) and
H' = (x4, v') in frames t and ¢'. In particular, two kinds of edges connect hypothesis:
(a) inter-frame, and (b) intra-frame.

a) Inter-frame: Consider two hypothesis H,H' corresponding to the same person
and separated less than 30 frames. Then, the respective root joint position r(x!) € R3
and orientation R(x!) € SO(3) in camera hypothesis (My,) coordinates should not
vary too much. This variation depends on the temporal distance |t—¢'|. Consequently,
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we introduce the following features

Fuans(H, H') = My - v(xF) = Mo - v(x}), (4.15)
Fort(H, ) = |log (Ra - R(x) ' (Rar - R(x1)) | (4.16)
ftimC(Hv H() = ‘t - tl|7 (417)

where fians and f,; measure root joint translation and orientation consistency, and
frime 18 a feature to accommodate for temporal distance. Here, Ry is the rotational
part of My, and f,o, computes the geodesic distance between R(x!) and R(x}),
similar to Eq. (4.9).

b) Intra-frame: Now consider two hypothesis H,H' for different persons in the
same frame. The resulting camera hypothesis centers should be consistent. To
measure coherency, we compute a meta-camera hypothesis My by minimizing the
re-projection error of both hypothesis at the same time. Then the feature

fintra(H7ﬂ) = ||C(Xi7 M’H) - C(Xiv Mﬂ)” (418)

measures the camera center c(x!, My) to meta-camera center c(x}, My) difference.
Accordingly, we also use the feature finera (H', H) for intra-frame edges.

Graph Optimization

Although the presented graph labeling problem in (4.11) is NP-Hard, it can be
solved efficiently in practice [89, 90]. We use the binary LP solver Gurobi [91] by
applying it to the linearized formulation of (4.11), where we replace each product
xl 2%, by a binary auxiliary variable yili, and add corresponding constraints such

that 2lat, = yil;/ for all v,v" € V, forall [,I" € {1,..., P}.

4.3.3 Video-Inertial Data Fusion

Once the assignment problem is solved we can utilize the associated 2D poses to
jointly optimize model poses, camera poses and heading angles by minimizing the
following energy:

EX,0.I')= EuX,[,¥) + waee Bace(X, T, ¥)+

4.19
wingimg(X7 ‘P) + wpriorEprior(X); ( )

where X is a vector containing the pose parameters for each actor and frame, I is
the vector of IMU heading correction angles and ¥ contains the camera poses for
each frame. Eq, Face and Eipg are energy terms related to IMU orientations, IMU
accelerations and image information, respectively. Eyo, is an energy term related
to pose priors. Finally, every term is weighted by a corresponding weight w.
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Orientation Term
The orientation term is a sum of two parts:

Eori(X7 F7 \II) = (Eori,bone(Xa F) + Eori,carn(ra \Ij))y (420)

1
NTNs
where Fopipone refers to the orientation discrepancy between IMU measurements
with respect to the body model and Eqy; cam models the coherency of estimated and
measured camera orientation. The sum of both terms is normalized by the total
number of frames Ny in a recording sequence and the total number of IMUs Ng.

Eoribone contains the bone to sensor orientation errors of Eq. (4.10), accumulated
for all frames and all body-worn IMUs:

Nr—1Ng—2

Eoripone(X, T) Z Z [le5} (x¢, %0, 7s)|[>- (4.21)

The second term Eoi cam (X, ¥) refers to the deviation of estimated camera orienta-
tion RY and the corresponding measured IMU orientation RY according to

Np—1

B (I, ) = XHW%WU(MQMwaW‘ (422)

Note that the estimated camera orientation RY is given by the inverse rotational
part of camera pose M.

Acceleration Term

The acceleration term enforces consistency of the measured IMU acceleration and
the acceleration of the corresponding model vertex, where the IMU is attached to.
Similar to the orientation term, the acceleration term is also a sum of two parts:

Eacc(X7 F7 ‘I]) = (Eacc,bonc(X7 F) + Eacc,cam (F7 ‘Il)) (423)

Nt N,
In order to compare measured accelerations with the acceleration of model points, we
first have to transform the sensor acceleration a(t)® at time ¢ into world coordinates
by . .

a’(t,7) = R} -R{ (7,) - R{-a’(t) — g’, (4.24)

where g9 is gravity in global coordinates.

For the body-worn IMUs, the corresponding SMPL vertex acceleration a,, is ap-

proximated by finite differences:

pY(t— 1)~ 2 pY(0) + (14 1)
dt? ’

a%(xp1, Xy, Xp41) = (4.25)
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where p9(t) is the vertex position in global coordinates and dt is the sampling
interval. The acceleration term F,c pone then contains the quadratic norm of the
deviation of measured and estimated acceleration for each body-worn IMU over all

frames:
Np—1Ns—

Eacc bonc X F Z Z Hag X1, Xt7xt+1) 7ag( A/S)H2 (426)

5=

Similarly, the acceleration €7(¢) of the camera center q9 with respect to the global
coordinate frame FY9 is approximated by finite differences:

@t —1) = 20°(0) + q(t+ 1)

&I(t) = 4.27
() e (127)
The camera center can be computed from the camera pose Mg according to
g c T c
a’(t) = - (Ry) -t~ (4.28)

here, R refers to the rotational part of Mg and t° is the associated translation.
The camera acceleration term for the camera IMU is then defined as

Np—1

Eacecam (T, ¥) Z [|c9(t) —ad(t 'yg)HQ. (4.29)

Image Term
The image term simply accumulates the re-projection error over all Njoints landmarks
and all frames N according to

N7 Nijoints

Eimg(Xa\I,) NTN Z Z wkHell[lb Xt t)H2~, (430)

oints =1 =k
where wy, is the confidence score associated with a landmark.
Prior Term

The prior term is the same as in Eq. (4.10), now accumulated for all poses X and
scaled by the number of poses Nx.

4.3.4 Optimization

In order to solve the optimization problems related to obtaining initial 3D poses in
Eq. (4.10), obtaining camera poses to minimize re-projection error and to jointly op-
timize all variables in Eq. (4.19), we apply the gradient-based Levenberg-Marquardt
algorithm described in Section 2.3.2.
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4.4 Evaluation

We evaluate our approach quantitatively on the TotalCapture dataset. This dataset
provides IMU data and video synchronized with ground-truth poses obtained with
a marker-based motion capture system. We use TotalCapture to evaluate track-
ing accuracy and perform several ablation studies to investigate the influence of
tracking parameters of our proposed tracker. Additionally, we provide details of the
newly recorded 3DPW dataset and demonstrate 3D pose reconstructions of VIP
in challenging outdoor scenes. We also use 3DPW to evaluate the accuracy of our
automatic assignment of 2D poses to 3D poses. This accounts for natural situations
with multiple people visible at the same time, which is not covered in TotalCapture.

4.4.1 Tracker Setup

Inputs

In order to run our proposed VIP we require

e a SMPL body model of the actor,
e a rough initial pose at the beginning of the sequence,
e IMU sensor locations on the body,

e 2D poses obtained from the video.

We use the initial pose and sensor locations to get a rough estimate of the sensor to
bone offsets M? and initial heading offsets. Similar to the SIP approach of Chapter 3,
we manually selected the SMPL vertices of approximate sensor locations and use
them for all actors and experiments. For the quantitative analysis, initial pose
parameters are set to zero, corresponding to a T-pose for the SMPL body model.
For the outdoor recordings we simply asked the actor to pose upright with straight
arms and legs at the beginning of each sequence. We obtained SMPL body models
by fitting the SMPL template to laser scans or marker locations, respectively. In
order to get 2D poses of all people visible in the video we use the approach of Cao
et al. [87]. The general tracking procedure is divided into three subsequent steps,
described in Section 4.3 and visualized in Figure 4.7.

Pose Assignment

In the graph G, edges e € £ are created between any two nodes that are at most
30 frames apart. This corresponds to a time span of 1s, which is a reasonable
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compromise between motion plausibility and long-term assignment consistency.
Motion plausibility, enforced by the pairwise costs, becomes less descriptive for
longer time spans or overly constrains admissible motion velocities. In contrast,
the graph should contain large temporal dependencies to gap longer periods of
non-visibility of a person.

The logistic regression weights mapping from features to costs, are learned using 5
sequences from 3DPW dataset, which have been manually labeled for this purpose.
Given the features f defined in Section 4.3.2 and learned weights a from logistic
regression, we turn features into costs via ¢ = —(f, @), making the optimization
problem (4.11) probabilistically motivated [92].

Video-inertial Fusion

Different weighting parameters in Eq. (4.10) and Eq. (4.19) produce good results
as long as they are balanced. However, rather than setting them by hand, we
used Bayesian Optimization [93] in the proposed training set of TotalCapture (seen
subjects). The values found are wyee = 0.2, Wimg = 0.0001 and wpyio; = 0.006 and
are kept fixed for all experiments. Note, that these are very few parameters and
therefore, there is very little risk of over-fitting, which is also reflected in the results.

4.4.2 Evaluation on TotalCapture

We quantitatively evaluate tracking accuracy on the TotalCapture dataset. The
dataset consists of 5 subjects performing several activities such as walking, acting,
range of motions and freestyle motions, which are recorded using 8 calibrated,
static RGB-cameras and 13 IMUs attached to head, sternum, waist, upper arms,
lower arms, upper legs, lower legs and feet. Ground-truth poses are obtained
using a marker-based motion capture system. For more details on the dataset, see
Section 2.5.1.

To run our tracker, we only use one camera and the full set of 13 IMUs. The cameras
in TotalCapture are rigidly mounted to the building and are not equipped with an
IMU. Hence we assume a static camera with unknown pose.

Baseline Trackers
We compare our tracking results to three baseline trackers:

e Inertial Tracker (IT): Minimizes orientation and pose prior terms according to
Eq. (4.10).

e Trumble [42]: A hybrid tracking approach of Trumble et al. published along
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TotalCapture. It fuses IMU data with a probabilistic visual hull obtained from
all 8 cameras.

e Malleson [43]: A real-time approach of Malleson et al. to estimate pose from
IMU data and 2D poses obtained from multiple camera views.

The Inertial tracker (IT) corresponds to the single frame approach of Section 4.3.1.
It uses only raw IMU orientations of all 13 sensors and is the initialization for VIP.
We consider the trackers of Trumble et al. [42] and Malleson et al. [43] because they
also report tracking accuracy on TotalCapture and are comparable to our approach
in terms of the sensor modalities used for tracking.

Trumble uses a Convolutional Neural Network (CNN) to regress a volumetric proba-
bilistic visual hull from the different camera views and a subsequent Neural Net-
work (NN) of fully-connected layers to fuse the data with the pose estimate obtained
from the IMU orientations. While different number of cameras have been tested in
their work, we only refer to the 8 camera setup for this evaluation. The tracker of
Malleson minimizes an energy function similar to Eq. (4.19). Besides orientation
and acceleration consistency it also considers the re-projection error with respect
to 2D joint locations detected in the images. Their method runs in real-time and
uses a robust loss function to reject false joint detections. Since it does include a
dedicated pose assignment strategy, it can only track a single person. Also, heading
errors and sensor-to-bone misalignments are not considered in their model. The
approach is evaluated for different numbers of cameras and IMUs. However, for this
evaluation we only consider the setting that incorporates all 8 cameras and 13 IMUs,
which showed best performance on TotalCapture.

One has to keep in mind, that the comparison of selected baselines with VIP is not
completely fair. They all process the data in a frame-by-frame manner which is
an advantage w.r.t. VIP, which jointly optimizes over all frames simultaneously.
However, VIP uses only a single camera with unknown pose whereas the approaches
of Trumble and Malleson use 8 fully calibrated cameras.

Metrics

We report two error metrics: Mean Per Joint Position Error (MPJPE) and Mean
Per Joint Angular Error (MPJAE), as defined in Section 2.5.2. For the MPJPE
we consider the SMPL joint positions of hips, knees, ankles, neck, head, shoulders,
elbows and wrists. The baselines of Trumble and Malleson report the MPJPE with
respect to a skeletal model obtained from the marker-based reference system. This
skeletal model only comprises joint locations, hence angular errors are not presented.
Even though the ground-truth models used for evaluation are different, we consider
the MPJPE a valid metric for comparison as it is computed w.r.t. ground-truth
poses derived from identical marker positions. For the MPJAE we consider the joint
orientations of hips, knees, neck, shoulders and elbows.
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Quantitative Results

Our tracking results on TotalCapture are summarized in Table 4.1, Table 4.2 and
Table 4.3. VIP achieves a remarkable low average MPJPE of 26 mm and a MPJAE
of only 12.1°. Over all sequences, I'T achieves a MPJPE of 55 mm and a MPJAE of
16.9°. Hence, VIP decreases these errors by more than 50% and 25%, respectively.
This demonstrates the usefulness of fusing image information and optimizing heading
angles.

Table 4.1: Mean Per Joint Position Error (MPJPE) and Mean Per Joint
Angular Error (MPJAE) obtained on the TotalCapture dataset.
Approach MPJPE [mm] MPJAE [°]

Trumble [42] 70.0 -
Malleson [43] 62.0 -
1T 55.0 £ 36.9 175+ 9.8
VIP 26.0 £ 17.9 123 +£79

Table 4.2: Mean Joint Position Errors (MPJPE) in [mm] for the TotalCap-
ture dataset.

Approach Walking Freestyle Acting Mean

IT 54.5 57.3 53.2 55.0
VIP 21.9 32.2 24.2 26.0

Table 4.3: Mean Per Joint Angular Errors (MPJAE) in [°] for the TotalCap-
ture dataset.

Approach Walking Freestyle Acting Mean

IT 15.6 20.5 16.8 17.5
VIP 10.5 15.3 11.2 12.3

In Figure 4.9 we show the MPJPE of VIP and IP for an example tracking sequence.
VIP achieves a lower error during all frames of the sequence. In Figure 4.10, we also
show an example frame of estimated and ground-truth poses applied to the SMPL
body model. Both body models are almost perfectly aligned, demonstrating the
accuracy of VIP.

VIP clearly outperforms the learning based approach of Trumble by 44 mm. This
approach uses all 8 cameras for video-inertial data fusion. We also outperform
Malleson, who report a mean MPJPE of 62 mm using 8 cameras and all 13 IMUs.
Interestingly, IT, without using any visual input, also achieves a lower MPJPE
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Figure 4.9: Mean Joint Position Error of the inertial tracker (blue) and our
proposed method (green) for an example sequence of TotalCapture.

(a) (b)

Figure 4.10: Tllustration of the tracking performance on TotalCapture. (a)
camera view and detected 2D pose, (b) Overlay of ground-truth (green) and
estimated pose (grey) of the corresponding frame shown in (a).

compared to approaches of Trumble and Malleson. We informed the authors about
this inconsistency. In addition, we suspect that the MPJPE may have been calculated
differently.

In order to validate that modeling heading angles and sensor-to-bone misalignments
originating from an inaccurate initial pose are crucial and also accurately estimated
by VIP we report tracking results of VIP-IT and VIP-vanilla in Table 4.4. VIP-
vanilla is similar to VIP but does not optimize heading angles and initial pose.
During optimization this causes inconsistencies between IMU related and video
related energy terms leading to a deterioration in tracking accuracy to an MPJPE
of 45.8 mm and a MPJAE of 18.0°. This validates the importance of modeling these
components.
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Table 4.4: Tracking accuracy on TotalCapture for tracker variants with
different heading and initial pose settings.

Approach ~ MPJPE [mm] MPJAE [°]

1T 55.0 17.5
VIP-vanilla 45.8 18.0
VIP-IT 28.2 12.2
VIP 26.0 12.3

VIP-IT is identical to IT, but it uses the estimated heading angles and initial pose
obtained by running the original VIP method in advance. Hence VIP-IT itself
does not utilize any visual information during optimization. The tracking results
of VIP-IT are almost en-par with VIP. This validates the accuracy of estimated
heading errors and initial pose. Also, this shows that VIP can accurately reconstruct
the pose even if the video information is not available all the time. This could be
the case, if a person is occluded or a 2D pose candidate has not been selected during
the assignment step. In the following paragraphs various experiments are presented
to further investigate the influence of VIP parameters and components.

Initial Pose Optimization

We assess the influence of estimating sensor-to-bone-misalignments in isolation by
disabling the optimization of heading parameters. We call this tracker variant VIP-
noHeadParam. On TotalCapture it achieves a MPJPE of 25.9mm and a MPJAE
of 12.3°. Hence it clearly outperforms VIP-vanilla, which is almost identical but
does not optimize the initial pose. Hence, optimizing the initial pose is crucial to
this method. VIP-noHeadParam is also marginally better than VIP, even without
modeling heading errors. However, the method is based on gradient descent and
the differences can be explained from landing in different local minimums. Also,
during the recordings of TotalCapture, the IMU reference coordinate frames are
re-calibrated frequently. Consequently, the heading errors are rather small. The
tracking accuracy of VIP-noHeadParam, VIP-vanilla and VIP are summarized in
Table 4.5.

Table 4.5: Tracking accuracy on TotalCapture for different VIP variants
demonstrating the influence of initial pose optimization.

Approach MPJPE [mm] MPJAE [°]
VIP-noHeadParam 25.9 12.3
VIP-vanilla 45.8 18.0
VIP 26.0 12.3

90

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186866103

4.4 Evaluation

Heading Drift Estimation

In this section we evaluate the influence of modeling heading drift. In order to
investigate this model parameter in isolation, we utilize ground-truth initial poses
(indicated by gtip) and held it fixed during optimization.7Otherwise heading errors
might also be compensated to some extend by adjusting bone rotations about the
vertical axis in the initial frame.

First, we compare the tracking accuracy of VIP-gtip and its corresponding variant
VIP-gtip-noHead, which does not estimate heading drift. According to Table 4.6,
VIP-gtip performs better than VIP-gtip-noHead but the difference in accuracy is
rather small. This is probably due to frequent re-calibration of heading angles during
dataset recordings. However, without time-consuming frequent re-calibration, the
heading error is unbounded.

Table 4.6: Tracking accuracy on TotalCapture for tracker variants with
different heading settings using ground-truth initial pose (gtip).

Approach MPJPE [mm] MPJAE []
VIP-gtip 25.3 12.4
VIP-gtip-noHeadPar 26.5 13.1
VIP-gtip-25 25.3 12.4
VIP-gtip-45 25.2 12.5
VIP-gtip-25-noHeadPar 34.5 15.8
VIP-gtip-45-noHeadPar 50.3 20.2
VIP 26.0 12.3

For VIP we use the IMU placement as a proxy to know how local sensor axes are
aligned to the body. This gives a rough estimate of the sensor to bone offset, which we
use to compute initial heading angles. In order to investigate how this approximation
affects tracking accuracy we report tracking results of VIP-syntheticHeading25 and
VIP-syntheticHeading45. For both variants the IMU heading angles are synthetically
distorted by a rotation angle sampled from a uniform distribution within the interval
of [—25,25] and [—45, 45] degrees, respectively. These ranges are chosen to model
uncertainty in the IMU placements and hence uncertainty in the initial heading
estimates. The lower range of [—25, 25] degrees represents careful IMU positioning
and the higher range of [—45,45] degrees represents an imprecise IMU attachment.
For each range, we repeat the experiment ten times and report the accuracy metrics
averaged over all runs in Table 4.6. The synthetic heading error has a large impact
on tracking accuracy if heading errors are not considered in the model: For VIP-gtip-
25-noHeadPar the MPJPE increases from 25.3 mm to 34.5 mm and the MPJAE from
12.4° to 15.8°. For VIP-gtip-45-noHeadPar the MPJPE even increases to 50.3 mm
and the MPJAE to 20.2°. In contrast, the tracker variants with heading optimization
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enabled, VIP-gtip-25 and VIP-gtip-45, still achieve the same tracking metrics as for
the undistorted IMU signals. This validates the importance of modeling heading
errors and shows, that VIP can cope with imprecise sensor placements.

Ground-truth 2D poses

In order to investigate how much VIP can improve if 2D pose estimation methods
keep improving, we report tracking accuracy of VIP-2D in Table 4.7. VIP-2D is
identical to VIP, but utilizes ground-truth 2D poses obtained by projecting ground-
truth joint positions to the images. VIP-2D achieves a MPJPE of 15.1mm and a
MPJAE of 10.2°, which indicates how much VIP can improve if 2D pose estimation
methods keep improving.

Table 4.7: Tracking accuracy on TotalCapture using ground-truth joint
detections.

Approach MPJPE [mm]| MPJAE [°]

VIP-2D 15.1 10.2

VIP 26.0 12.3

Ground-truth camera

VIP works with a hand-held camera and estimating camera pose is an important
part of the method to reliably fuse visual and inertial information. In order to
evaluate how much accuracy improves with a known camera pose, we report tracking
accuracy of VIP-Cam in Table 4.8. VIP-Cam is identical to VIP but uses ground-
truth camera pose instead of estimating it. The MPJPE of VIP-Cam is 25.3 mm,
which is only 0.7 mm better compared to VIP. Hence, even though we estimate the
camera pose from a monocular view, VIP is capable to accurately reconstruct the
relative pose between actor and camera.

Table 4.8: Tracking accuracy on TotalCapture using ground-truth camera
pose.
Approach MPJPE [mm] MPJAE [°]

VIP-Cam 25.3 12.2
VIP 26.0 12.3

Sparse IMU setup

In Chapter 3, we present the Sparse Inertial Poser which recovers 3D pose from
only a sparse set of inertial sensors. In this section, we compare SIP to VIP and
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evaluate the influence of incorporating additional information from the camera view.
In particular, we report tracking results of

e SIP-gtInitPose: This tracker corresponds to the SIP approach, presented
in Chapter 3. It uses 6 IMUs and ground-truth initial pose provided in
TotalCapture.

e SIP-zerolnitPose: Identical to SIP, but uses an initial pose with all parameters
set to zero. This corresponds to the standard setting for VIP experiments,
which is more realistic in a natural scenario.

e VIP-GIMU: Identical to VIP, but uses the same sparse set of IMUs as the SIP
tracker variants.

The tracking results are summarized in Table 4.9. By comparing SIP-gtInitPose
and SIP-zerolnitPose we see that an inaccurate initial pose leads to a deterioration
in tracking accuracy for SIP. The joint position error increases from 52.2mm to
68.7mm. However, in TotalCapture subjects start in a T-pose, which permits a
lot of variation in chest, shoulder and arm regions. This adds a lot of variation
to the initial pose, which can be avoided by selecting another more reproducible
pose. Alternatively, the tracking results of VIP-6IMU indicate, that adding visual
information from a single hand-held camera suffices to compensate much of the
initial pose uncertainty. VIP-6IMU achieves a MPJPE of 35.8 mm and a MPJAE of
14.7°. This is not as accurate as VIP with 13 IMUs, but it still remarkably accurate
for the sparse sensory input.

Table 4.9: Tracking accuracy on TotalCapture using sparse inertial sensor

inputs.
Approach MPJPE [mm] MPJAE [°]
SIP-gtInitPose 52.2 14.6
SIP-zerolnitPose 68.7 18.6
VIP-6-zerolnitPose 35.8 14.7
VIP 26.0 12.3

This quantitative evaluation demonstrates the accuracy of VIP. Ideally, we would
evaluate VIP quantitatively also in challenging scenes, like the ones in 3DPW.
However, there exists no dataset with a comparable setting with ground-truth, which
was one of the main motivations of this work.

4.4.3 Evaluation on 3DPW

In comparison to TotalCapture, the additional challenges in 3DPW originate from
multiple people in the scene. Hence, we assess the accuracy of our automatic
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assignment of 2D poses to 3D poses using manually labelled 2D pose candidate 1Ds.

3DPW Dataset

The 3DPW dataset contains synchronized streams from a hand-held smartphone
camera and one or two IMU-equipped actors performing various activities such as
shopping, doing sports, hugging, discussing, capturing selfies, riding bus, playing
guitar, relaxing. In total, the dataset includes 60 sequences, more than 51000 frames
and 7 actors. It also provides non-rigidly fitted SMPL models of the actors similar
to Zhang et al. [94] and Pons-Moll et al. [95].

Due to a limited number of IMU devices, different sensor setups have been used
for single or multi-person tracking, see Figure 4.11. For single subject tracking, we
attached 17 IMUs to all major bone segments. We used 9 — 10 IMUs per person to
simultaneously track up to 2 subjects. During all recordings one additional IMU
was attached to the smartphone.

(b)

Figure 4.11: IMU placement in the 3DPW dataset. In total, 20 IMUs were
available for recordings. One IMU was always attached to the camera and
the rest was distributed to the recorded subjects, depending on the number
of participants. (a) for single person recordings the sensors are strapped to
feet, lower legs, upper legs, waist, shoulders, sternum, head, upper arms,
lower arms and hands. (b) for two person recordings sensors are strapped to
lower legs, upper legs, waist, upper arms and lower arms. One additional
IMU was attached to the head of one out of the two subjects.

Video and inertial data was automatically synchronized by a clapping motion at the
beginning of a sequence as proposed by Pons-Moll et al. [41]. For every sequence,
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the subjects were asked to start in an upright pose with closed arms.

In Figure 4.12 we show qualitative tracking results obtained with VIP, illustrating
the 3D model alignment with the images. Figure 4.13 shows more tracking results,
where we animated the 3D models with the reconstructed poses.

Figure 4.12: Ilustration of the tracking performance of VIP for some chal-
lenging activities. With VIP we get accurate 3D poses aligning well with
the images using the estimated camera poses.

Assignment Accuracy

We use the 3DPW dataset to examine pose candidate assignment accuracy of VIP
under challenging real world conditions. For this purpose, we manually created
ground-truth assignments for each frame. Unfortunately, 2D pose candidates are
not perfect, making the labeling task non-trivial. Frequently, some landmarks of a
pose candidate are off, see Figure 4.4. In these situations, we create a ground-truth
assignment, if at least 7 landmarks of major body joints are correctly located on
a person. The idea behind this strategy is that VIP is rather robust to occasional
landmark errors, since it incorporates information from multiple sensor modalities.
Also, visual information is mainly used to estimate long-term parameters such as
heading errors and sensor-to-bone-misalignments. Hence, sporadic landmark errors
have only a minor impact on the final tracking result. Further, simply rejecting a
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pose candidate if it contains only very few false landmarks would remove to much
valuable information, especially in situation where people interact closely.

Given the ground-truth assignments, we evaluate the assignment accuracy of VIP in
terms of precision and recall rates. Precision refers to the ratio of correctly assigned
person labels with respect to all assignments made. Recall or sensitivity refers to
the ratio of correct assignments with respect to all ground-truth assignments.

VIP achieves an assignment precision of 99.3% and a recall rate of 92.2% demon-
strating the method correctly identifies the tracked persons for the vast majority of
frames. This is a strong indication that VIP achieves a 3D pose accuracy on 3DPW
comparable to the MPJPE of 26mm reported for TotalCapture.

4.5 Conclusion

By combining body-worn IMUs and a single moving camera, we introduced the first
method that can robustly recover pose in challenging scenes. Previous approaches
rely on a set of static cameras and incorporate information of a small set of IMUs
merely to resolve visual ambiguities. In contrast, we use the visual information of
a single hand-held camera to overcome general limitations of IMU-based motion
capture. This has the advantage that the approach is portable and only requires a
minimal number of exteroceptive sensors.

The proposed method, named VIP, is composed of three steps: initialization,
assignment and sensor fusion. In the initialization step, initial 3D poses are obtained
by fitting the body models to IMU data. The initial poses are still deteriorated
by heading drift and inaccurate sensor-to-bone alignments. Also, relative distances
between persons cannot be estimated using IMU data only. Hence, in a second
step we associate 2D joint detections in the images to the initial 3D poses using a
discrete graph labeling formulation. This formulation outputs a globally consistent
assignment and does not require manual initialization. Finally, in the third step
visual and inertial information are combined to estimate 3D pose, heading drift,
camera pose, relative person distances and sensor-to-bone misalignments. Given
the estimated error parameters and camera pose, association and sensor fusion are
repeated once to further refine the results.

We evaluate VIP on TotalCapture, which is a dataset containing IMU data and
ground-truth from a marker-based MoCap system. VIP achieves an average 3D
joint position error of 26 mm and an average angular error of 12.3°, which is a
clear improvement to the initial 3D poses having an error of 55mm and 17.5°
respectively. We validate that modeling heading errors and optimizing sensor-to-
bone misalignments are crucial and further investigate the influence of both aspects
in isolation. We show that VIP can improve up to an average joint positions error
of 15.1mm if 2D pose annotations are perfect and demonstrate that camera pose is
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accurately estimated. In addition, we evaluate the accuracy of VIP if only 6 IMUs
are used. In this case, the average joint position error is 35.8 mm which is only
slightly worse compared to the full IMU setup.

Using VIP we created a new 3DPW dataset consisting of 1-2 person captures in
challenging scenes performing various activities, such as shopping in a very crowded
pedestrian zone, riding bus, doing sports, hugging, etc. 3DPW is publicly available
for research purposes. In total, it contains 60 video sequences (51,000 frames or
1700 seconds of video captured with a phone at 30Hz), IMU data, 3D scans and 3D
people models with 18 clothing variations, and the accurate 3D pose reconstruction
results of VIP in all sequences. We anticipate that the dataset will stimulate novel
research by providing a platform to quantitatively evaluate and compare methods
for 3D human pose estimation.

We also used 3DPW to investigate the accuracy of the association step of VIP. Even
for the challenging scenes in the dataset, VIP achieves an assignment precision of
99.3% and a recall rate of 92.2% validating that the method can correctly associate
visual and inertial information for the vast majority of frames.

A major limitation of the proposed method is that it requires a sequence to be
recorded before inference can take place. Hence, it is not applicable to situations
that process poses in real-time. However, it would be possible to estimate heading
errors and sensor-to-bone misalignments at the beginning of a recording and run
an IMU-based approach online afterwards. In the experiments we show, that this
produces very accurate results. Another limitation is that VIP does not exploit
visual information to full extend. In the proposed method only the pixel coordinates
of detected 2D poses are used. Visual appearance of people could be incorporated to
simplify and improve the association of 2D to 3D poses. Also, geometric information
about the real world geometry could be used to improve 3D poses and to estimate
the camera pose more accurately.
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Figure 4.13: Ilustrations of several example frames of sequences in the
3DPW dataset. The dataset contains large variations in person identity,
clothing and activities. For a couple of cases we also show animated, textured
SMPL body models.
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5 Conclusions

This thesis addresses the MoCap problem, which is to reconstruct the skeletal state
of the human body from sensor measurements. Obtaining a numeric representa-
tion of the body pose has several applications in the fields of medical diagnosis,
biomechanics, computer graphics, human-machine interactions, surveillance and
learning approaches. Consequently, human motion capture has actively researched
for decades and there exist various approaches to solve the MoCap problem.

Marker-based systems reconstruct the body pose by tracking the position of body-
worn markers using several calibrated cameras. While this is accepted as the gold-
standard in human motion capture, such systems are restricted to very controlled
environments and wearing plenty markers on the body is intrusive. Marker-less
methods extract and associate features in images that are used as virtual markers to
estimate their pose. While this permits to wear regular clothing, it still requires a
lot of static cameras to cope with depth-ambiguities and self-occlusions generated by
the articulated structure of the human body. Motion capture with inertial sensors
does not suffer from these limitations. The sensors are body-worn, hence no external
equipment is required and the body pose is reconstructed in terms of the sensed
sensor orientations. However, inertial sensors drift over time and wearing a lot of
them is intrusive.

In this work two novel methods are presented, which work with a sparse sensory
setup addressing several limitations of current MoCap approaches. In particular,
a novel global optimization formulation is developed to incorporate measurements
over a large temporal horizon. Together with anthropometric constraints imposed
by a body model this enables to resolve ambiguities caused by the sparsity of input
signals.

Sparse Inertial Poser

In the first part of this thesis this strategy is applied to reconstruct the full body
pose from only 6 inertial sensors. We call this method Sparse Inertial Poser or SIP.

99

216.73.216.80, am 24.01.2026, 12:26:28. © Inhak.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186866103

Chapter 5 Conclusions

Using only 6 sensors instead of 10-17 introduces ambiguities. Previous approaches
solve this by matching the incomplete sensor signals to the full set of measurements
within a pre-recorded motion database. This is only works satisfactorily, if the query
motions are part of the database. Unseen motions cannot be reconstructed.

Instead, in SIP the ambiguities are resolved with a generative model. We define
a global energy term, that incorporates all available information of a complete
recording sequence and maximize consistency between the model poses and sparse
sensor measurements. A key observation is that the kinematic constraints imposed
by the statistically learned skeletal model of SMPL reduce the search space in
such a way, that acceleration data can be utilized to resolve ambiguities. Before,
incorporating acceleration data in a sparse sensor setup was not possible due to the
inherent drift caused by implicit double integration.

We evaluate SIP on two benchmark datasets, TNT15 and TotalCapture, as well as
in challenging outdoor recordings. In the experiments we show, that the method
can faithfully reconstruct the body pose from the sparse IMU inputs and that a
statistically learned body model is superior to hand-crafted ones.

The reduced sensory effort of SIP can be crucial in applications where setup times
have to be minimized or during long-term recordings, where it is simply more
comfortable to wear fewer sensors. However, we also show that a certain level of
motion is required to disambiguate the sparse sensor information. If acceleration
of body parts are low accuracy degrades, since there is an uncertainty associated
with static poses. Further, similar to all approaches relying only on inertial data,
orientation data is affected by heading drift and global translation cannot be
reconstructed. The latter limitation makes it impossible to capture interactions
between people. This requires accurate knowledge of relative distances.

Video Inertial Poser

In the second part of this thesis we address the limitations of IMU-based motion
capture by incorporating visual information of a single hand-held camera. We
call this method the Video Inertial Poser or VIP. Visual and inertial information
has already been combined in previous works. However, these methods address
tracking problems, in which the body pose is estimated frame by frame. In addition,
inertial information is mainly used to resolve visual orientation ambiguities in a
static multi-camera setup. In contrast, with VIP we apply a global formulation
and use visual information primarily to improve accuracy and remove restrictions
of IMU-based motion capture. Further, using a single hand-held camera has the
advantage that it preserves the portability of IMU-based motion capture.

In order to combine visual and inertial information, we apply a CNN to obtain
2D poses in form of pixel coordinates of major body joints detected in the camera
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images. Since we make no assumptions about the number of persons visible in
the scene, a single-frame approach is prone to tracking failures. The projection of
the 3D worlds onto the 2D image sensor creates ambiguities and usually multiple
2D poses match to the poses of IMU-equipped persons. Also, in close interactions
2D poses are often erroneous, making it even more difficult to reliably incorporate
visual information. In contrast, with VIP we apply a global matching strategy by
formulating a graph labeling problem. The graph consists of all detected 2D poses
of a recording sequence and we find a globally consistent matching to corresponding
3D poses obtained from the IMUs. After solving this discrete optimization problem,
we apply a similar continuous global optimization method as for SIP. However,
the visual information enables to estimate sensor heading drift, relative distances
between people and to correct for IMU-to-bone misalignments originated from an
inaccurate initial pose. Unfortunately, there exists no dataset which contains IMU
and ground-truth data in outdoor scenarios to evaluate VIP in the target scenario.
Hence we evaluate the method in two steps.

First, tracking accuracy of VIP is investigated on the TotalCapture dataset. By
incorporating visual information from a single camera, VIP reduces the mean joint
position error from 55 mm to 26 mm in comparison to the IMU only approach. In
several experiments we investigate various aspects of VIP and demonstrate that
estimating heading drift and correcting for IMU-to-bone misalignments is crucial.

Second, we evaluate assignment accuracy of VIP using the new 3D poses in the
Wild dataset (3DPW). Since TotalCapture is captured in an indoor environment
and does not contain multiple people recordings, we recorded 1-2 persons during
everyday activities, such as shopping in a crowded pedestrian zone or during a
bus ride. Even in very crowded scenes and close interactions, the graph labeling
formulation of VIP achieves an assignment precision of 99.3% and a recall rate of
92.2%. We also use 3DPW to demonstrate the performance of VIP quantitatively.
In summary, VIP enables practicable human motion capture of multiple people in
natural environments. To the best of our knowledge, it is the first method that
fully combines the advantages of camera-based and IMU-based motion capture: It is
accurate, portable, reconstructs the poses of multiple people, can cope with temporal
occlusions and works in natural environments.

Future Work

In this work we present methods that facilitate human motion capture with sparse
sensor configurations, which are more practicable than existing approaches. However,
there are still limitations which might be addressed in future work.

A major contribution of this work is the formulation of a global optimization scheme
which incorporates all measurements of a recording sequence. Consequently, this
requires to wait until all measurements are available. Such a method is not applicable
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to situations that require real-time capabilities. An obvious solution to this is to
apply sliding window techniques. Actually, there are already follow-up works to SIP
applying this strategy. Huang et al. [96] train a long short-term memory network
(LSTM) to reconstruct the full-body pose with 6 IMUs close to real-time and with
competitive accuracy. Since the method relies on deep learning, they called the
tracker Deep Inertial Poser.

The generative methods developed in this work require person-specific body models,
which have been created using laser scanners. This is expensive and impracticable.
In Chapter 3.4.2 we show that SIP also works with body models obtained from
person height, weight and word ratings. Another solution has been presented by
Alldieck et al. [97], who create accurate SMPL body models with a single hand-held
camera. Interestingly, this would ideally suit to the VIP setup.

In the proposed VIP method, visual cues are transformed into 2D body poses using
a CNN. This completely disregards geometric information about the background.
Structure-from-motion approaches might be incorporated to further stabilize camera
pose or to explicitly model interactions between the environment and persons.
Another point related to geometric reasoning which is not considered in this work are
self-intersections or intersections between body models. Modeling interpenetration
cost terms into the objective function could further improve accuracy and realism of
reconstructed poses.
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