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die Übernahme des Zweitgutachtens. Herrn Prof. Dr. rer. nat. Matthias Gerdts danke ich
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Nomenklatur VII

Nomenklatur

In der folgenden Auflistung werden die grundlegenden Symbole dieser Arbeit erläutert.

Z Die Menge aller ganzen Zahlen.

N Die Menge aller positiven ganzen Zahlen.

R Die Menge aller reellen Zahlen.

C Die Menge aller komplexen Zahlen.

K
n Die Menge aller Vektoren der Ordnung n ∈ N mit Einträgen aus K.

K
n×m Die Menge aller n×m Matrizen mit Einträgen aus K.

a, b, ... Skalare oder Vektoren mit Einträgen aus C werden mit kleinen

lateinischen Buchstaben gekennzeichnet.

A, B, ... Matrizen mit reellen Einträgen werden mit großen lateinischen

Buchstaben gekennzeichnet.

Xi,k Der Eintrag in der i-ten Zeile und der k-ten Spalte von der Matrix X.

xi Der i-te Eintrag des Vektors x.

XT Die Transponierte von der Matrix X.

|X|, Die Determinante einer quadratischen Matrix X.

|x| Der absolute Betrag einer Zahl x ∈ C

j Die imaginäre Einheit.

�(x) Der Realteil einer komplexen Zahl oder eines komplexen Vektors x.

�(x) Der Imaginärteil einer komplexen Zahl oder eines komplexen Vektors x.

In Die Einheitsmatrix der Dimension n.

0 Eine Matrix, die nur den Eintrag 0 enthält.

Symbole zu unsicheren Zahlen, Vektoren und Matrizen

� = {0}, die Menge, die nur die Null enthält.

+• = {x ∈ R|x > 0}, die Menge aller positiven reellen Zahlen.

−• = {x ∈ R|x < 0}, die Menge aller negativen reellen Zahlen.

�+• = {x ∈ R|x ≥ 0}, die Menge aller nicht-negativen reellen Zahlen.

�−• = {x ∈ R|x ≤ 0}, die Menge aller nicht-positiven reellen Zahlen.

� = {x ∈ R|x �= 0}, die Menge aller von Null verschiedenen Zahlen.

�� = R, die Menge aller reellen Zahlen.

V = {�,+• ,−• }, die Menge aller Vorzeichen.

U = {�,+• ,−• ,�−• ,�+• , �,��}, die Menge aller unsicheren Zahlen.

S = {�, �}, die Menge aller strukturellen Zahlen.

S̃ = {�, �,��}.
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VIII Nomenklatur

A, B, ... Zahlen, Vektoren oder Matrizen mit Einträgen aus U werden mit

kaligraphischen Großbuchstaben bezeichnet.

In Eine n×nMatrix mit (+• )-Einträgen auf der Diagonalen und �-Einträgen

auf allen sonstigen Positionen.

IS

n Eine n×n Matrix mit (�)-Einträgen auf der Diagonalen und �-Einträgen

auf allen sonstigen Positionen.

� Eine Matrix mit �-Einträgen auf allen Positionen.

Symbole und Notation zu komplexen Vorzeichenvektoren

A, B, ... Komplexe Vorzeichenvektoren werden mit Frakturbuchstaben

bezeichnet.
wDv Das Vorzeichen von rvrw cos(ϕv − ϕw), wenn q = r · ejϕ ∈ D.
wPv Das Vorzeichen von rvrw sin(ϕv − ϕw), wenn q = r · ejϕ ∈ D.

(wD, wP) Das w-te charakteristische Vorzeichenmuster eines komplexen

Vorzeichenvektors D (siehe Definition 4.3 auf Seite 50).
wq = q/qw, wenn w von Null verschieden in D ist (qw �= 0).

�q(v, w) = (ϕv − ϕw) mod π/2 ≥ 0 ist der Abstand von w zu v in q.

�q(w) Der geringste Abstand von w in q.
w∗Dv Das Vorzeichen von rvrw cos(ϕv − ϕw − ε) mit �q(w) > ε > 0.
w∗Pv Das Vorzeichen von rvrw sin(ϕv − ϕw − ε) mit �q(w) > ε > 0.

(w
∗D, w∗P) Vorzeichen des verdrehten w-ten charakteristischen Vorzeichenmusters.

U∗ = U ∪ {i∗|i ∈ U} für eine Menge U ⊆ {1, . . . , n}.
R Die Menge der Vorzeichenrotationsmatrizen (siehe (4.4) auf Seite 54).

D Der konjugiert komplexe Vorzeichenvektoren von D.

ν Eine Funktion zur Beschreibung eines komplexen Vorzeichenvektors

(siehe Satz 5.3 auf Seite 82).

κ(n) Die Anzahl aller komplexen Vorzeichenvektoren der Ordnung n ∈ N.
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Kurzfassung IX

Kurzfassung

Das Verhalten von den meisten technischen Prozessen lässt sich zumindest in

Arbeitspunkten hinreichend genau mit linearen zeitinvarianten Systemen der Form

dx/dt = A · x+ B · u beschreiben. Zwei wichtige Eigenschaften solcher Systeme sind die

Steuerbarkeit und die Stabilisierbarkeit, welche zu den wesentlichen Voraussetzungen

modernen Methoden der Steuerungs- und Regelungstechnik zählen. Beide Eigenschaften

können anhand der Matrizen A und B numerisch untersucht werden. In den Modellen

zur Beschreibung eines technischen Prozesses basieren die Matrizen oft auf experimentell

ermittelten Daten, sodass die Einträge nur mit einer gewissen Genauigkeit bekannt und

die numerischen Nachweise nicht mehr anwendbar sind.

In dieser Arbeit werden algebraische Methoden zum Nachweis der Steuerbarkeit

und der Stabilisierbarkeit linearer zeitinvarianter Systeme unabhängig von konkreten

numerischen Parametern untersucht. Dafür werden sieben Symbole zur Beschreibung

verschiedener Teilmengen der reellen Zahlen definiert und es wird der Begriff des

unsicheren Systems als Klasse linearer zeitinvarianter Systeme eingeführt. Allgemein

bekannte Spezialfälle von unsicheren Systemen sind strukturelle Systeme, bei denen die

Einträge der Matrizen entweder identisch Null oder von Null verschieden sind, und

Vorzeichen-Systeme, bei denen nur das Vorzeichen der Einträge bekannt ist. Durch

diesen Ansatz wird daher der strukturelle Ansatz mit dem Ansatz über Vorzeichenmuster

vereint. In einem unsicheren System ist es z.B. im Gegensatz zum strukturellen Ansatz

möglich, dass manche Systemparameter sowohl den Wert Null als auch einen von Null

verschiedenen Wert annehmen können. Ein unsicheres System ist streng strukturell

steuerbar, vorzeichen-steuerbar, vorzeichen-stabil oder vorzeichen-stabilisierbar, wenn

jeweils jedes System der Klasse steuerbar, stabil oder stabilisierbar ist. In dieser Arbeit

werden verschiedene bekannte Resultate zu diesen Eigenschaften auf unsichere Systeme

verallgemeinert und es werden zwei bisher ungelöste Probleme, die Charakterisierung der

Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit, gelöst.

Neben zahlreichen akademischen Beispielen werden die Resultate der Arbeit an bekannten

Modellen verschiedener technischer Systeme vorgeführt. Dabei werden z.B. jeweils die

Steuerbarkeit, die Stabilität und die Stabilisierbarkeit der Wankdynamik von Zweirädern,

der Bewegung eines Satelliten, der Längsdynamik eines F-8 Strahlflugzeugs und der

Dynamik eines unbemannten Helikopters im Schwebeflug untersucht.
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X

Abstract

The behavior of most technical processes can be describe with sufficient precision with

linear time-invariant systems of the form dx/dt = A · x+ B · u. Two important properties

of such systems are the controllability and stabilizability which are the preconditions of

most methods in modern control engineering. Both properties can be analyzed with the

matrices A and B by numerical tests. In the models used to describe a technical process,

the entries of the matrices are often known only with a certain accuracy, so that the

numerical tests are no longer applicable.

Hence, algebraic methods for the analysis of the controllability and the stabilizability

of linear time-invariant systems independent of numerical values are investigated in

this work. Therefore, seven symbols to describe different subsets of the real numbers

are defined and the notion of the uncertain system as a class of linear time-invariant

systems is introduced. Common special cases of uncertain systems are structural systems,

where the entries are either zero or nonzero and signed systems, where the entries are

positive, negative or zero. Thus, this new approach combines the structural and the

signed approach to describe uncertainties in linear time-invariant systems. Moreover, in

contrast to structural systems, it is possible, that some entries can be zero as well as

nonzero in an uncertain system. An uncertain system is strong structural controllable,

sign controllable, sign stable or sign stabilizable if every system in the class is controllable,

stable or stabilizable, respectively. In this work, different known results to these properties

are generalized to uncertain systems and two unsolved problems, the characterization of

sign controllability and sign stabilizability are solved.

In addition to numerous academic examples, the results of this work are demonstrated

to known models of various technical systems. Therefore, the controllability, the stability

and the stabilizability of the roll dynamic of bicycles, the motion of a satellite, the

dynamic of an F-8 jet airplane and the dynamic of an unmanned helicopter are analyzed.
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