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1 

Einleitung 

In einer Vielzahl von technischen Anwendungen treten elektrische und mechanische 
Komponenten auf, die elastisch gekoppelte Mehrmassensysteme bilden. Beispiele 
hierfür sind u. a. die Antriebsstränge in Produktionsanlagen, Werkzeugmaschinen 
oder Windenergieanlagen. Bild 0.1 zeigt ein prinzipielles Beispiel eines solchen 
Systems. 

 
Bild 0.1: Beispiel eines elastisch gekoppelten Mehrmassensystems 

In der Praxis sind die Parameter dieser mechanischen Übertragungsstrecke meist nur 
ungenau bekannt. Diese Systeme stellen durch die Elastizitäten der Verbindungs-
elemente, wie Kupplungen und Wellen, schwingfähige Systeme dar. Beispielsweise 
sind die Antriebsstränge von Windenergieanlagen durch Wechsellasten und aero-
elastische Schwingungen der Rotorblätter starken mechanischen Belastungen 
ausgesetzt.  

Erschwerend können noch Lose und Reibung hinzukommen und in Verbindung mit 
den Elastizitäten zu Dauerschwingungen bzw. Stoßbelastungen führen. Dies kann 
z. B. durch ein wiederholtes Stehenbleiben und anschließendes Losbrechen aus der 
Reibung, dem sogenannten „Slip-Stick- Effekt“, verursacht werden.  

Es ist daher zum einen notwendig, für diese Systeme robuste Regelungen zu 
entwerfen, die das System auch bei ungenauer Kenntnis der Struktur und Parameter 
mindestens stabilisieren. Diese Regelungen sollen zudem von möglichst niedriger 
Komplexität sein, um dadurch den Rechenaufwand gering zu halten. 

Zum anderen stellt die belastungsreduzierende Regelung solcher Systeme eine 
weitere wichtige und häufig auftretende regelungstechnische Aufgabe dar. Ziel ist es 
hier, die Regelung elastisch gekoppelter Mehrmassensysteme mit hoher Genauigkeit 
und Dynamik zu ermöglichen, aber gleichzeitig die auftretenden Belastungen so zu 
begrenzen, dass Verschleiß minimiert und die Lebensdauer der Systeme möglichst 
verlängert wird. Daher wird in dieser Arbeit neben der robusten Regelung auch die 
Frage der Belastungsreduzierung für solche Systeme mit regelungstechnischen 
Mitteln behandelt.  
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1 Problemstellung und Stand der Forschung 

Die Regelung elastisch gekoppelter Mehrmassensysteme erfolgt in industriellen 
Anwendungen meist in einer Kaskadenregelung. Eine typische Kaskade enthält als 
innersten Kreis meist eine Strom- bzw. Drehmomentregelung, die in dieser Arbeit 
jedoch nicht betrachtet wird. Dieser ist eine Drehzahlregelung überlagert. Die Drehzahl 
wird mit einem PI-Regler geregelt. Eine Lageregelung kann durch eine der Drehzahl-
regelung überlagerte P-Regelung erfolgen, so dass eine P/PI-Kaskadenregelung 
entsteht [1]. Meist wird versucht, auf lastseitige Sensoren zu verzichten und 
ausschließlich an der Antriebsseite zu messen. Um dennoch die lastseitige Lage bzw. 
Drehzahl regeln zu können, ist für eine solche Konstellation mit alleiniger Messung an 
der Antriebsseite ein Beobachter für die nicht messbaren Systemzustände notwendig.  

Die Reglersynthese erfolgt üblicherweise anhand von Modellen der Regelstrecke. Die 
Güte dieser Streckenmodelle hat direkten Einfluss auf die entworfene Regelung. In der 
Praxis sind jedoch häufig weder die Parameter der mechanischen Übertragungs-
strecke genau bekannt, noch sind alle Details des realen Systems bei der 
Modellbildung berücksichtigt. In industriellen Anwendungen bleiben Nichtlinearitäten 
bei der Reglerauslegung im Allgemeinen unberücksichtigt. Dies führt jedoch zu 
Schwierigkeiten, da bei der konventionellen Regelung eines elastisch gekoppelten, mit 
Lose behafteten Mehrmassensystems insbesondere bei geringem Lastmoment bzw. 
im Leerlauf Grenzschwingungen oder Grenzzyklen auftreten. Die Minderung dieser 
Grenzschwingungen wird üblicherweise durch eine Reduzierung der Kreisverstärkung 
im Drehzahlregelkreis erreicht. Diese hebt jedoch die aktiven Dämpfungs-
eigenschaften der Regelung nahezu auf [2]. Lose kann durch konstruktive 
Maßnahmen oft einfacher klein gehalten werden als Reibung [1]. Übliche Maßnahmen 
sind z. B. Verspannung, durch diese wird allerdings der Verschleiß erhöht. 
Konstruktive Maßnahmen gegen Lose und Reibung sind jedoch in den meisten Fällen 
kostspielig. Es ist daher von großer Bedeutung, mit regelungstechnischen Mitteln Ver-
besserungen zu erreichen, die maschinenbauliche Maßnahmen unterstützen, 
vereinfachen oder sogar ersetzen können. Dies spricht grundsätzlich für die 
Verwendung robuster Regler, die auch Systeme mit sowohl Struktur- als auch 
Parameterunsicherheiten sicher stabilisieren können. Auf der anderen Seite bietet sich 
in dieser Situation auch die Verwendung einer belastungsreduzierenden Regelung an, 
um die Lebensdauer der Systeme möglichst zu verlängern. 

Ein leistungsfähiges Werkzeug zur Lösung des Problems der robusten Regelung ist 
eine H∞-optimale Regelung, wie sie z. B. in [2] beschrieben ist. Unglücklicherweise 
steigt die Ordnung eines H∞-Reglers proportional mit der Ordnung der Regelstrecke. 
H∞-Regler sind deshalb für Strecken höherer Ordnung nur schwer realisierbar. Um 
eine niedrige H∞-Reglerordnung zu erhalten, wird der Regler gegebenenfalls später 
einem Ordnungsreduktionsverfahren unterzogen (s. [3]). Diese Vorgehensweise setzt 
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jedoch ein genaues Modell der Regelstrecke voraus, welches in der Praxis aber im 
Allgemeinen nicht zur Verfügung steht.  

Auf der anderen Seite treten in Mehrmassensystemen, wie z. B. Werkzeugmaschinen 
oder Antriebssträngen von Windenergieanlagen, aufgrund der Elastizitäten in den 
Kopplungselementen sowie äußerer Störgrößen Belastungen auf, die auch bei 
hinreichend genauer Kenntnis und Modellierung der Regelstrecke eine Heraus-
forderung darstellen.  

Beispielsweise stellt die im Antriebsstrang einer Windenergieanlage auftretende 
mechanische Torsion eine wesentliche Belastung dar. Treten zudem starke äußere 
Störungen auf, wie dies bei Windenergieanlagen durch den Einfluß des turbulenten 
Windes der Fall ist, kann ein zu hohes oder zu schnell wechselndes Torsionsmoment 
im Antriebsstrang leicht zu Beschädigungen und Ausfällen der Anlage führen. Eine 
massivere Konstruktion würde dem zwar entgegenwirken, ist aber häufig nicht 
realisierbar und mit zu hohen Kosten verbunden. Es ist daher wünschenswert, das 
auftretende Torsionsmoment durch regelungstechnische Maßnahmen zu minimieren 
bzw. zu begrenzen, um so zu einer längeren Lebensdauer der jeweiligen Systeme 
beizutragen. 

Eine schwingungsdämpfende Regelung wurde in [4] vorgestellt. Dort wird durch eine 
Rückführung im Drehzahlregelkreis das Verhalten eines PT1-Gliedes erzwungen, um 
so eine Anregung im Resonanzbereich zu vermeiden. Brandenburg beschreibt in [5] 
eine Zustandsregelung für ein Zweimassensystem. Weitere Regelkonzepte zur 
aktiven Schwingungdämpfung für Dreimassensysteme, darunter auch H∞-optimale 
Regler auf Basis von [6], wurden in [7] vorgestellt. 

All diesen Ansätzen ist gemeinsam, dass bisher der Einfluß dynamischer Lastwechsel 
bzw. der Beschleunigungsänderungen unberücksichtigt geblieben ist. Insbesondere in 
Getrieben können die dadurch auftretenden Kraftstöße zu Schäden an der 
Verzahnung oder an den Lagern führen. Um diese Schäden und Stoßbelastungen zu 
vermeiden, wird die Regelung solcher Antriebsstränge meist relativ langsam ausgelegt 
oder die Stellgröße tiefpassgefiltert, um schnelle Änderungen zu verhindern. 

Die bisherigen Verfahren sehen keine Begrenzung der Torsionsbelastung vor. Das 
Torsionsmoment wird lediglich zur Verbesserung der Dämpfung genutzt. Weiterhin ist 
anzumerken, dass das Torsionsmoment im Allgemeinen nicht als Messgröße zur 
Verfügung steht und daher durch geeignete Beobachter ermittelt werden muss. 

Unter anderem im Rahmen zuvor durchgeführter Untersuchungen an elastisch 
gekoppelten Mehrmassensystemen, wie z. B. [2] oder [8] zeigt sich, dass sich zwar 
durch eine geeignete Regelung die Dynamik des Antriebsstranges steigern läßt, damit 
jedoch impulsförmige Änderungen des Torsionsmoments verbunden sind. Damit 
ergibt sich die Problemstellung, das Torsionsmoment nicht nur zur aktiven 
Schwingungsdämpfung zurückzuführen, sondern es als Regelgröße einer unter-
lagerten Torsionsmomentregelung zu beeinflussen bzw. zu begrenzen. 
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Ausgehend von diesem Stand der Forschung wird in dieser Arbeit zunächst eine 
robuste, H∞-optimale Regelung für ein Mehrmassensystem mit verteilter Lose und 
Reibung mit nur ungenau bekannten Parametern behandelt. Diese Fragestellung 
wurde auch im Rahmen eines von der DFG geförderten Forschungsprojektes (s. [9]) 
bearbeitet. Aufbauend auf den in [10] erzielten Ergebnissen wird untersucht, unter 
welchen Bedingungen und mit welcher Leistungsfähigkeit solche Mehrmassen-
systeme mit Parameterunsicherheiten mit einem H∞-Regler bzw. einer H∞-
optimalen, klassischen PI-Kaskadenregelung in Kombination mit einer nichtlinearen 
Reibungskompensation geregelt werden können, die von vornherein für ein 
näherungsweise zugrundegelegtes Zweimassenersatzsystem dimensioniert sind.  

Grundsätzlich lässt sich mit Hilfe der Gewichtungsfunktionen ein Frequenzbereich von 
Resonanzfrequenzen angeben, für den der robuste H∞-Regler auszulegen ist [11]. Es 
wird gezeigt, wie dazu die Gewichtungsfunktionen in geeigneter Weise zu wählen sind 
und inwieweit die unterschiedlichen Resonanzfrequenzen des Mehrmassensystems 
über die Wahl der Gewichtungsfunktionen in den H∞-Reglerentwurf auf der Grundlage 
eines vereinfachten Zweimassensystemmodells einbezogen werden können. 
Weiterhin wurde die Kombination des Zweimassen-H∞-Reglers mit einer nichtlinearen 
Reibungskompensation für das Mehrmassensystem untersucht. 

Eine weitere Möglichkeit, eine robuste, H∞ optimale Regelung geringer Ordnung zu 
entwickeln, ist die Festlegung auf Regler fester Struktur. Die in praktischen 
Anwendungen vorzugsweise eingesetzte Regelungsstruktur ist eine PI-Kaskaden-
regelung [12]. Im weiteren Verlauf des Forschungsvorhabens wird daher eine H∞-
optimale PI-Kaskadenregelung entwickelt. Durch die Festlegung auf diese 
Reglerstruktur ist eine relativ geringe Reglerordnung determiniert und der Regler-
entwurf wird auf ein Parameteroptimierungsproblem reduziert. Die Struktur der 
Regelung entspricht einer gewöhnlichen Kaskadenregelung. Neu dabei ist, dass die 
Parameteroptimierung bezüglich Dynamik und Robustheit mit Hilfe der H∞-Norm 
erfolgt. Ziel ist es, durch neue, H∞-optimale Parameteroptimierungsverfahren nur 
ungenau bekannte Mehrmassensysteme auch mit den in der antriebstechnischen 
Praxis üblichen Regelungsstrukturen mit geringer Ordnung erfolgreich und robust 
regeln zu können. 

Hier bieten moderne Optimierungsverfahren einen vielversprechenden Ansatz. Bisher 
wurden z. B. in [13] genetische Algorithmen zur Optimierung der Positionsregelung 
eines Zweimassensystems im Sinne der H∞-Norm verwendet. Regelgröße ist dort die 
antriebsseitige Position. In dieser Arbeit wurde ermittelt, inwieweit dieser Ansatz auch 
für eine Regelung der lastseitigen Position von Mehrmassensystemen geeignet ist. 
Weiterhin wurden andere Optimierungsverfahren auf ihre Anwendbarkeit auf das 
Problem der robusten PI-Kaskadenregelung untersucht und die bisher erzielten 
Ergebnisse durch diese neuen Optimierungsverfahren verifiziert. Betrachtet werden 
die Verfahren „differentielle Evolution“ und „Partikel-Schwarm-Optimierung“. Im 
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Vergleich zu den genetischen Algorithmen ist bei diesen beiden Verfahren nicht 
notwendig, die zu optimierenden Parameter als „Gene“ in Form von Binärwerten zu 
kodieren. Durch den Wegfall dieses Arbeitsschrittes wird die Komplexität der 
Optimirung deutlich verringert. Beide Verfahren stehen in einer Implementation in der 
Programmiersprache C zur Verfügung. 

Neben diesen robusten Regelungskonzepten ist ein weiterer Gegenstand der 
vorliegenden Arbeit eine belastungsreduzierende Regelung von elastisch gekoppelten 
Mehrmassensystemen. Im weiteren Verlauf dieser Arbeit wurden daher 
Regelungskonzepte erforscht, die einen Betrieb solcher Systeme mit hoher Dynamik 
bei gleichzeitiger Begrenzung der auftretenden Torsionsbelastungen erlauben. Diese 
Fragestellung wurde u. a. in Rahmen eines weiteren von der DFG geförderten 
Forschungsprojektes bearbeitet (s. [14]) und fanden ab Kap. 10 Eingang in diese 
Arbeit.  

Dort wurde eine Torsionsmomentregelung für ein Zweimassensystem entwickelt, die 
es erlaubt, eine Begrenzung der im Antriebsstrang, speziell im Getriebe, auftretenden 
Belastungen zu erreichen. Ferner ermöglicht die Regelung auch eine Begrenzung 
bzw. Regelung der Änderungsgeschwindigkeit des Torsionsmomentes, also des 
Torsionsrucks d / dT Tm m t , um Stoßbelastungen zu minimieren.  

Da im Allgemeinen Torsionsmoment, bzw. dessen Ableitung nicht messtechnisch 
erfasst werden können, werden in dieser Arbeit ebenfalls geeignete Beobachter 
vorgestellt und in Verbindung mit der belastungsreduzierenden Regelung untersucht.  

Ziel war es, eine Kombination aus dynamischem Regler und Beobachter zu entwerfen, 
die möglichst keine zusätzlichen Messgrößen benötigt, es aber trotzdem ermöglicht, 
auftretende Lastspitzen im Torsionsmoment zu regeln bzw. zu begrenzen. Dadurch 
kann ein wesentlicher Beitrag zur Verlängerung der Lebensdauer z. B. von Antriebs-
strängen geleistet werden. 
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2 Modellbildung für die robuste Regelung 

In industriellen Anwendungen ist die Regelung elastisch gekoppelter Mehrmassen-
systeme eine häufig auftretende regelungstechnische Aufgabe, da sich viele in der 
Praxis auftretende Regelstrecken, insbesondere Antriebsstränge, als Mehrmassen-
system darstellen lassen.  

Eine Antriebsmaschine ist beispielsweise über eine elastische Welle mit einem 
Getriebe und über eine weitere Welle mit einer Last verbunden. Durch Toleranzen in 
Getrieben oder Kupplungen wird Lose verursacht. Nichtlineare Reibung tritt vor allem 
bei verschiedenen Arten von rotatorischen und translatorischen Gleitlagerungen auf. 
In der Bahnverarbeitung, wie z. B. bei Walzwerken und Papiermaschinen, werden 
Ungenauigkeiten vor allem durch Elastizitäten in Verbindung mit Lose beobachtet. In 
gesteuerten Werkzeugmaschinen und Industrierobotern dominieren Abweichungen 
infolge von Reibeinflüssen. Jedoch kann auch hier Lose nicht ausgeschlossen werden 
und vor allem nach längerer Betriebszeit durch Abnutzungserscheinungen zunehmen 
[5]. 

In diesem Kapitel werden kurz die Phänomene Reibung und Lose erläutert und die 
prinzipielle Struktur eines Mehrmassensystems beschrieben.  

2.1 Reibung 

Reibung ist eine seit langem bekannte, jedoch immer noch nicht vollständig 
modellierbare Erscheinung. Die durch Reibung auftretenden Kräfte bzw. Dreh-
momente sind für verschiedene technische Systeme, abhängig von Art und Zustand 
der jeweiligen Lagerungen, sehr unterschiedlich. Zwar sind sie grundsätzlich von der 
Geschwindigkeit bzw. Drehzahl abhängig, verhalten sich aber stark nichtlinear. 
Allerdings ist es möglich, die Gesamtreibung als Überlagerung verschiedener Formen 
von Einzelreibungen aufzufassen, die im Folgenden erläutert werden. 

2.1.1 Gleitreibung 

Die sogenannte Gleitreibung RG oder Coulombsche Reibung beschreibt die 
bremsende Reibkraft zwischen den Kontaktflächen fester Körper, die sich relativ 
zueinander bewegen, also aufeinander gleiten. Diese Form der Reibung wird als von 
der Geschwindigkeit der Bewegung unabhängig angenommen [15]. 

 G GR N   (2.1) 

Dabei ist µG eine Materialkonstante, der sogenannte Reibungskoeffizient, der vom 
Material und der Oberflächenbeschaffenheit der reibenden Körper abhängt, und N die 
senkrecht zu der Kontaktfläche der Körper stehende Normalkraft. Die Normalkraft 
hängt für die hier betrachteten Mehrmassensysteme in erster Linie vom Gewicht der 
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Körper ab und kann daher bei konstanten Massen ebenfalls als konstant angenommen 
werden. Somit kann die maximale, an jeder Teilmasse auftretende Gleitreibungskraft 
für die Untersuchungen in dieser Arbeit als konstant angenommen werden. Sie ist 
damit nicht von der Geschwindigkeit v abhängig. Der Betrag der Reibkraft kann jedoch 
vom aktuellen Belastungszustand des Systems abhängen, wenn sich die wirksame 
Normalkraft N in Gl. (2.1) ändert. In Bild 2.1 ist der prinzipielle Verlauf der Reibkennlinie 
dargestellt.  

 
Bild 2.1: Kennlinie der Gleitreibung 

2.1.2 Viskose Reibung 

Viskose Reibung tritt u. a. dann auf, wenn die Kontaktflächen der Festkörper durch 
einen Flüssigkeitsfilm, also z. B. ein Schmiermittel, vollständig getrennt sind [16]. Bei 
dieser Form der Reibung ist die bremsende Reibkraft etwa proportional zur 
Bewegungsgeschwindigkeit v. Es besteht also ein linearer Zusammenhang. Daher 
wird diese Form der Reibung auch als lineare Reibung L LR r v   mit einem linearen 
Proportionalitätsfaktor rL bezeichnet.  

Dies kann analog zur Gleitreibung auch über einen linear geschwindigkeitsabhängigen 
Reibungskoeffizienten µL und die Normalkraft dargestellt werden. 

 ( )L LR v N   (2.2) 

Bild 2.2 a) zeigt den Verlauf dieser Reibkennlinie. Theoretisch wird damit die Reibkraft 
mit abnehmender Geschwindigkeit immer kleiner und wird im Stillstand sogar zu Null. 
In der Praxis wird sich aber eine Überlagerung aus viskoser Reibung und Gleitreibung 
einstellen, wie sie in Bild 2.2 b) dargestellt ist und über Gl. (2.3) beschrieben wird. 

  sgn G LR v R r v    (2.3) 
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Bild 2.2: a) Kennlinie der viskosen Reibung 

b) Kennlinie der Mischreibung 

2.1.3 Haftreibung 

Die Haftreibung RH, ist die im Stillstand auftretende Reibkraft, die sich einer 
Beschleunigung des Körpers widersetzt. Sie kann höher sein als die Gleitreibung. Für 
das maximale Haftmoment bzw. die Haftkraft gilt [17]: 

 maxH HR N   (2.4) 

Dabei ist µH wiederum eine Materialkonstante, der sogenannte Haftungskoeffizient, 
der vom Material und der Oberflächenbeschaffenheit der reibenden Körper abhängt, 
und N die senkrecht zu der Kontaktfläche der Körper stehende Normalkraft. 
Grundsätzlich kann auch der Betrag der maximalen Haftreibung belastungsabhängig 
sein, wenn sich durch auftretende Lasten die Normalkraft ändert. Die Normalkraft 
hängt für die hier betrachteten Mehrmassensysteme in erster Linie vom Gewicht der 
Körper ab und kann daher bei konstanten Massen ebenfalls als konstant angenommen 
werden. Somit kann die maximale an jeder Teilmasse auftretende Haftreibung für die 
Untersuchungen in dieser Arbeit als konstant angenommen werden. 

Dadurch, dass die Haftreibung größer sein kann als die Gleitreibung, kann es dazu 
kommen, dass zunächst eine relativ hohe Kraft aufgewendet werden muss, um die 
Haftreibung zu überwinden und den Körper in Bewegung zu versetzen. Hat die 
Bewegung jedoch begonnen, so sinkt der Wert der Reibkraft auf die kleinere Gleit-
reibung. Bleibt die von außen angreifende Kraft gleich, so wird der Körper stärker 
beschleunigt, als es bei gleichbleibender Reibung der Fall wäre. Es kommt zu einem 
„Losrutschen“ des Körpers. Dieser Effekt der bei zunehmender Geschwindigkeit 
zunächst sinkenden Reibkraft wird auch als Stribeck-Effekt bezeichnet [18]. 
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Der prinzipielle Verlauf einer solchen, aus der Überlagerung von Haft-, Gleit- und 
viskoser Reibung zusammengesetzten Reibkennlinie ist in Bild 2.3 zu sehen. In [19] 
ist für dieses Verhalten die folgende, analytischen Beschreibung angegeben. 

    
1

2 sgnH Strib LinR R k v k v v
 

   
 

 (2.5) 

Dabei wird die Geschwindigkeit des Körpers mit v bezeichnet. Der Koeffizient RH 
beschreibt die Haftreibung.  

Der Term  
1

2
Stribk v  bildet die durch den Stribeck-Effekt verursachte negative 

Steigung der Reibkennlinie nach und der Term Link v  berücksichtigt das lineare 
Verhalten.  

 
Bild 2.3: Stribeck-Kurve der Reibung 

Durch die unmittelbar nach Beginn der Bewegung zunächst abnehmende Reibung 
kommt es zu einem „Losrutschen“, da der Körper stärker beschleunigt, als es bei 
gleichbleibender Reibung der Fall wäre. Dies kann insbesondere bei Positions-
regelungen dazu führen, dass ein reibungsbehaftetes System zunächst eine relativ 
große Kraft benötigt, um die Haftreibung zu überwinden, dann jedoch durch die 
anschließende Abnahme der Reibung so weit beschleunigt, dass es sich über die 
gewünschte Position hinausbewegt. Das System muss dann abgebremst und in die 
andere Richtung beschleunigt werden. Sobald das System dabei zum Stillstand 
kommt, gerät es wieder in die Haftreibung und rutscht bei einer ausreichend hohen 
Kraft erneut los, wobei es wieder überschwingen kann. Dieses Verhalten wird auch als 
„Slip-Stick-Effekt“ bezeichnet. 

Eine weitere Möglichkeit die Reibung zu beschreiben, besteht in einer einfachen 
Überlagerung aus konstanter Gleitreibung und geschwindigkeitsabhängiger, viskoser 
Reibung (s. Gl. (2.3)). In diesem Fall ergibt sich beim „Losrutschen“ eine sprung-
förmige Änderung vom Wert der Haftreibung auf den Wert der Gleitreibung. 
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2.2 Lose 

Das Spiel, welche mechanische Komponenten, wie z. B. Zahnräder in Getrieben 
gegeneinander haben, innerhalb dessen sich die Komponenten nicht berühren und 
daher auch keine Kraftübertragung zwischen ihnen stattfindete, wird als Lose 
bezeichnet. Eine Prinzipdarstellung der Lose ist in Bild 2.4 gezeigt.  

 
Bild 2.4: Prinzipdarstellung der Lose 

Dreht sich das Zahnrad entgegen dem Uhrzeigersinn, so muss es erst den Losewinkel 
 zurücklegen, ehe es Kontakt zu den Zähnen der unteren Zahnstange bekommt und 
es so zu einer Kraftübertragung kommt. Während die Lose durchschritten wird, sind 
beide Teilsysteme entkoppelt. Die Lose weist ein nichtlineares Übertragungsverhalten 
auf. Sind in einem Getriebe mehrere Stufen vorhanden, so tritt prinzipiell an jedem 
Zahnradpaar Lose auf. Die Gesamtlose eines solchen Getriebes ergibt sich in diesem 
Fall durch Addition der in jeder einzelnen Stufe auftretenden Lose. 

Hat die Lose durch Verschleiß oder ungenaue Fertigung einen zu großen Wert, so 
kann es z. B. bei einer Positionsregelung zu Positionsfehlern oder gar zur Instabilität 
der Regelung kommen. Die Beschreibung des nichtlinearen Übertragungsverhaltens 
der Lose kann durch eine „tote Zone“ erfolgen [20]. Bild 2.5 zeigt das Blockschaltbild 
und (2.6) die Übertragungsfunktion einer solchen, auch als „Backlash“ bezeichnenten 
„tote Zone“ von der Eingangspositionsdifferenz  zu der um den Losewinkel  
korrigierten Positionsdifferenz . 

 

Bild 2.5: Blockschaltbild einer „Toten Zone“ („Backlash“) 

 * 0

   
   

   

    
     
   

 (2.6) 
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2.3 Struktur des Mehrmassensystems 

Die einfachste Form eines Mehrmassensystems ist ein Zweimassensystem. Bei 
diesem ist die Antriebsseite unmittelbar über eine elastische Welle mit der Lastseite 
gekoppelt. Im allgemeinen Fall befinden sich zwischen Antriebs- und Lastseite noch 
eine oder mehrere Mittel-Massen, die an beiden Seiten elastisch mit weiteren Massen 
verbunden sind. Die prinzipielle Struktur eines Mehrmassensystems kann gut am 
Beispiel eines Dreimassensystems gezeigt werden. Dessen grundsätzliche Struktur 
zeigt Bild 2.6. Wie im Folgenden erläutert wird, kann die mittlere Masse als eigenes 
Teilsystem aufgefasst werden und ist daher in Bild 2.6 rot-gestrichelt umrandet 
dargestellt. 

 
Bild 2.6: Modell eines Dreimassensystems 

Vom Benutzer bzw. einer Regelung wird ein Drehmoment ma soll vorgegeben. Das 
Verhalten der Antriebsmaschine wird hier durch ein PT1-Glied angenähert, so dass 
auf die erste Masse, also z. B. den Rotor der Antriebsmaschine, das Drehmoment ma 
(z. B. elektrisches Luftspaltmoment) wirkt. Dieses Drehmoment ist meist durch die 
maximale Leistung des Motors begrenzt. Dem antreibenden Drehmoment ma wirken 
das Reibmoment mR1 und das auf der ersten Welle wirkende Torsionsmoment m1 
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entgegen. Das resultierende Drehmoment wird durch das Trägheitsmoment der ersten 
Masse 1 (z. B. der Rotor der Antriebsmaschine) geteilt und über die Zeit integriert. 
Die daraus erhaltene Drehzahl 1  wird wiederum integriert und ergibt den Lagewinkel 
des Antriebs 1. Die Position der zweiten Masse wird durch den Lagewinkel 2 
beschrieben. Die Differenz dieser beiden Winkel 1 = 1 - 2 ist der Winkel, um den 
sich die Welle zwischen beiden Massen verdreht, wenn keine Lose auftritt. Hat jedoch 
z. B. die Kupplung eine Lose, so kann diese als tote Zone modelliert werden. In diesem 
Fall wirkt 1 zunächst auf eine tote Zone ± L1 und die Welle verdreht sich nur um den 
resultierenden Winkel 1(1). Mit der Federkonstante C1 ergibt sich daraus das 
Torsionsmoment der ersten Welle mT1. Die Dämpfungseigenschaften der Welle, die 
duch eine Dämfungskonstante rl1 multipliziert mit der Drehzahldifferenz  = 1 - 2 
beschrieben werden können, sind in dieser Modellierung vernachlässigt. Dem 
Torsionsmoment der ersten Welle m1 wirken das Torsionsmoment m2 auf die zweite 
Welle zwischen der zweiten und dritten Masse und das Reibmoment der zweiten 
Masse mR2 entgegen. Aus dem resultierenden Drehmoment ergibt sich durch die 
Division durch das Trägheitsmoment der zweiten Masse 2 und die zeitliche 
Integration schließlich die Drehzahl 2. Nochmalige Integration liefert den Lagewinkel 
der zweiten Masse 2. Die Differenz aus diesem und dem Lagewinkel der dritten Masse 
3 ist 2 = 2 - 3. Wird auf diese die Losefunktion 2(2) angewendet und das 
Ergebnis mit der Federkonstante der zweiten Masse C2 multipliziert, so ergibt sich das 
auf der zweiten Welle wirkende Torsionsmoment m2. Auch hier wird die Dämpfung der 
Welle vernachlässigt. Diesem Torsionsmoment m2 wirkt bei dem Dreimassensystem 
nur das Reibmoment der dritten Masse mR3 und ein ggf. von außen ein als Störgröße 
wirkendes Lastmoment mL entgegen. Integration des wirksamen Drehmomentes über 
die Zeit und Division durch das Trägheitsmoment der dritten Masse 3 ergibt die 
Drehzahl 3. Durch eine weitere zeitliche Integration folgt aus dieser der Lagewinkel 
der dritten Masse 3. 

Es fällt auf, dass die mittlere Masse als eigenes Teilsystem mit je zwei Eingängen (m1, 

3) und zwei Ausgängen (m2, 2) aufgefasst werden kann. In Bild 2.6 ist dies rot-
gestrichelt umrandet dargestellt. Weiterhin kann allgemein in Mehrmassensystemen 
das Verhalten aller Massen, die sich nicht an einem Ende des Systems befinden, über 
derartige Blöcke beschrieben werden. Das Modell kann somit relativ einfach durch 
Aneinanderreihen dieser Blöcke erweitert werden.  
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3 Robuste Regelung 

Grundsätzliche Aufgabe einer Regelung ist es, im Zusammenwirken mit einer realen 
Übertragungsstrecke ein gewünschtes, dynamisches Verhalten für das geregelte 
Gesamtsystem zu erzielen. Insbesondere soll das geregelte System stabilisiert 
werden. Die Parameter des realen Systems sind jedoch meist nur ungenau bekannt. 
Zudem können noch strukturelle Modellunsicherheiten hinzukommen, wenn Teile der 
Systemdynamik des realen Prozesses aufgrund unzureichender Kenntnisse oder zur 
Vereinfachung vernachlässigt werden. Der Regler wird in diesem Fall für ein nominales 
System mit der Übertragungsfunktion G(s) ausgelegt, welche das reale System mit der 
Übertragungsfunktion G0(s) nicht exakt abbildet. 

Der implementierte Regler wird jedoch auf das reale System angewendet und soll 
zusammen mit diesem das gewünschte Verhalten aufweisen. Insbesondere muss 
gefordert werden, dass der Regler das wahre System stabilisiert. Dies entspricht der 
Forderung an einen robusten Regler nach [21]. Danach ist ein robuster Regler ein für 
ein nominales System G(s) entworfener Regler, der das geregelte Gesamtsystem mit 
der realen Strecke G0(s) trotz Modellunsicherheiten stabilisiert. In der Dissertation von 
Karsten Peter [2] wird eine robuste Regelung für ein Zweimassensystem entworfen. 
Die Dissertation bildet die Grundlage für den in dieser Arbeit untersuchten Entwurf 
robuster Regler für Mehrmassensysteme auf der Basis von auf Zweimassensysteme 
reduzierten Ersatzmodellen. Die wesentlichen Inhalte von [2] sollen daher im 
Folgenden wiedergegeben werden. 

3.1 Grundsätzliche Forderungen an eine Regelung 

Allgemein wird in einem Regelkreis, wie er in Bild 3.1 dargestellt ist, gefordert, dass 
die Regelgröße y der Führungsgröße w auch unter Einfluss einer Störgröße z und einer 
Messstörung m möglichst gut folgt [22]. Dazu bestimmt der Regler R aus dem Regel-
fehler e = w − y eine geeignete Stellgröße u. 

 
Bild 3.1: Allgemeiner Regelkreis 
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Für die Führungsübertragungsfunktion ( ) :F s w y  wird also gefordert: 

 ( ) ( )
( ) 1

1 ( ) ( )

R s G s
F s

R s G s
 


 (3.1) 

Die Störübertragungsfunktion ( ) :S s z y  soll dagegen möglichst klein sein, um den 
Einfluss von Störgrößen auf den Ausgang zu unterdrücken. Es muss also gelten: 

 1
( ) 0

1 ( ) ( )
S s

R s G s
 


 (3.2) 

Weiterhin ist die Stellgröße u in realen Systemen durch die technischen Gegeben-
heiten beschränkt. Damit ergibt sich die Forderung: 

 maxu u  (3.3) 

 

( ) ( )

( )
ꞏ

1 ( ) ( )
| |

R s S s

R s
u w

R s G s



 (3.4) 

 ( ) ( )R s S s    (3.5) 

Wirkt im Rückführzweig eine additive Messstörung m(s), so hat diese die Über-
tragungsfunktion: 

 ( ) ( ) ( )
( )

( ) 1 ( ) ( )

y s R s G s
F s

m s R s G s
   


 (3.6) 

Um diese Störung gut zu unterdrücken, muss F(s) betragsmäßig möglichst klein sein, 
also F(s) → 0. Damit geht automatisch S(s) gegen 1, da immer F(s)+S(s)=1 gilt. Dies 
widerspricht jedoch der Forderung nach gutem Führungsverhalten und Störunter-
drückung. Diese Forderungen können somit nicht alle gleichzeitig für jede Frequenz 
erfüllt werden.  

Daher ist es sinnvoll, für die einzelnen Forderungen Frequenzbereiche vorzugeben, in 
denen diese erfüllt werden sollen. Ein gutes Führungsverhalten wird vor allem im 
unteren Frequenzbereich wichtig sein, so dass dort F(s) → 1 zu fordern ist. Damit muss 
dort auch S(s) → 0 gelten. Messstörungen werden sich dagegen eher bei hohen 
Frequenzen negativ auswirken. Daher muss im oberen Frequenzbereich die 
Forderung F(s) → 0 erhoben werden und damit S(s) → 1 gelten. Weiterhin werden 
schnelle Änderungen der Führungsgröße im Allgemeinen eher große Stellgrößen 
benötigen als langsame. Die Beschränktheit der Stellgröße und damit von |R(s)S(s)| ist 
daher ebenfalls für höhere Frequenzen bedeutsamer. 
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3.2 Beschreibung der Modellunsicherheiten 

In der Praxis sind fast immer die Parameter bzw. die Dynamik eines zu regelnden 
Systems nur ungenau bekannt. Mitunter werden auch Teile der Systemdynamik gezielt 
vernachlässigt. Folglich muss ein Regler für ein nominales System G(s) ausgelegt 
werden, welche das reale System G0(s) nicht exakt abbildet. Die Unterschiede 
zwischen dem nominalen System G(s) und dem realen System G0(s) werden als 
Modellunsicherheit bezeichnet. 

Die reale Übertragungsfunktion G0(s) setzt sich also aus der nominellen Übertragungs-
funktion G(s) und den additiven Modellunsicherheiten a(s) zusammen. 

 0 ( ) ( ) ( )aG s G s s    (3.7) 

Nach [23] kann die Modellunsicherheit auch in multiplikativer Form dargestellt werden. 
Mit a = G · m ergibt sich: 

  0 ( ) ( )ꞏ 1 mG s G s    (3.8) 

Zusammengefasst kann das reale System durch die nominelle Übertragungsfunktion 
G(s) und Modellunsicherheit in additiver und/oder multiplikativer Form beschrieben 
werden (s. [11]). 

  0 ( ) ( )ꞏ 1 m aG s G s      (3.9) 

Bild 3.2 zeigt das zugehörige Strukturbild. 

 
Bild 3.2: Darstellung der Modellfehler in additiver und multiplikativer Form 

Es ist jedoch zu beachten, dass a und m als Modellunsicherheiten nicht exakt 
bekannt sind, sondern lediglich durch obere oder untere Schranken abgeschätzt 
werden können [23]. Diese Schranken können dabei in verschiedenen Frequenz-
bereichen unterschiedliche Werte haben. Für die Herleitung der Robustheitskriterien 
wird angenommen, dass für die jeweiligen Modellfehler a und m eine frequenz-
abhängige obere Schranke angegeben werden kann 

 1

( )a
a s

  , (3.10) 

 1

( )m
m s

  . (3.11) 
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3.3 Robustheitskriterien 

Ein für das nominelle System G(s) entworfener Regler R(s) wird als robust bezeichnet, 
wenn auch leicht abweichende Systeme, insbesondere das reale System G0(s), mit 
diesem Regler stabil sind (s. [21]). 

Eine hinreichende Bedingung für die Stabilität wird durch das Small Gain Theorem 
gegeben. 

 
Bild 3.3: Small Gain Theorem 

Sind G(j) und M(j) zwei stabile Übertragungsmatritzen, so ist der geschlossene 
Kreis in Bild 3.3 nach [11] stabil, wenn gilt  

 ( ) ( ) 1G j M j      (3.12) 

und zusätzlich die in Gl. (3.12) verwendete Norm submultiplikativ ist. Dies ist der Fall, 
wenn die Norm die folgende Bedingung erfüllt: 

 ( ) ( ) ( ) ( )G j M j G j M j       (3.13) 

Ein gutes Maß bei der Betrachtung und Bewertung von Robustheitskriterien ist die 

H∞-Norm, die im Folgenden beschrieben wird. 

Die H∞-Norm ist eine Maximumsnorm. Für eine matrixwertige Funktion G(s) ist sie 
definiert als das über alle Frequenzen  ermittelte Supremum des größten Singulär-
wertes   von G(s) (s. [3]): 

  ( ) sup ( )G s G j

 


  (3.14) 

Dieser größte Singulärwert   von G(s) berechnet sich nach 

 ( ) max mit Eigenwerte von T
i i iG G G    . (3.15) 

Die H∞-Norm gibt damit die maximale im System auftretende Verstärkung von einem 
beliebigen Eingang zu einem beliebigen Ausgang an [23]. Die H∞-Norm hat weiterhin 
die Eigenschaft, submultiplikativ zu sein (s.  [3], [11]). Sie erfüllt also Gl. (3.13) und 
eignet sich somit für Stabilitätsbetrachtungen mit Hilfe des Small Gain Theorems. 

Üblicherweise wird die H∞-Norm der Übertragungsmatrix G(s) eines dynamischen 
Systems numerisch aus der Zustandsraumdarstellung ꞏ ꞏx A x B u 

   , des durch G(s) 

beschriebenen Systems berechnet. 
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Nach [3] und [11] gilt für ein beliebiges : 

( )G s 

  genau dann, wenn ( )D   gilt und die Hamiltonmatrix   keine 

Eigenwerte auf der imaginären Achse hat. 

Dabei ist 

 
   
     

1 12 2

1 12 2

T T T T

T
T T T T T

A B I D D D C B I D D B

C I D I D D D A B I D D D C

 

 

 

 

    
  
     
  

  (3.16) 

Die Berechnung der H∞-Norm erfolgt iterativ in folgenden Schritten: 

1. Relativ großes  wählen. 

2. Prüfen, ob ( )G s 

  gilt. 

3. Wenn Ja,  verkleinern, 
wenn Nein,  vergrößern und wieder zu Schritt 2. 

Dieses Vorgehen wird so lange wiederholt, bis ein vom Benutzer gewähltes Abbruch-
kriterium erreicht ist. Im Allgemeinen wird das Verfahren abgebrochen, wenn ( )G s

 

sich nur noch geringfügig ändert.  

Mit diesen Überlegungen lassen sich nun Bedingungen angeben, bei deren Erfüllung 
die Stabilität eines mit Modellfehlern behafteten Systems sichergestellt werden kann. 

Bild 3.4 zeigt einen über einen Regler R(j) geschlossenen Regelkreis eines mit einem 
additiven Modellfehler behafteten Systems G(j)+a(j).  

 
Bild 3.4: Regelkreis mit additiver Modellunsicherheit 

Wird die für die Stabilitätsbetrachtung unerhebliche Führungsgröße zu Null gesetzt, so 
kann der in Bild 3.4 umrandete Bereich zu einem Teilsystem zusammengefasst 
werden. Die Übertragungsfunktion dieses Teilsystems lautet: 

 ( )
( ) ( )

1 ( ) ( )

R j
R j S j

R j G j

  
 


 


 (3.17) 
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Nach dem Small Gain Theorem ist der geschlossene Kreis mit additivem Modellfehler 
dann sicher stabil, wenn a(j) und –R(j)S(j) stabile Übertragungsmatritzen sind und 
gilt 

 

( ) ( )

( )
( ) ꞏ 1

1 ( ) ( )a

R j S j

R j
j

R j G j

 


 






 


, (3.18) 

  1
( )

( ) ( )a j
R j S j


 



   . (3.19) 

Für einen multiplikativen Modellfehler ergibt sich die in Bild 3.5 dargestellte Situation. 

 
Bild 3.5: Regelkreis mit multiplikativer Modellunsicherheit 

 

Wieder kann die Führungsgröße zu Null gewählt und der umrandete Bereich zu einem 
Teilsystem zusammengefasst werden.  

Dessen Übertragungsverhalten wird beschrieben durch: 

 ( ) ( )
( )

1 ( ) ( )

R j G j
F j

R j G j

  
 


 


 (3.20) 

Der geschlossene Kreis mit multiplikativem Modellfehler ist also dann sicher stabil, 
wenn m(j) und –F(j) stabile Übertragungsmatritzen sind und gilt: 

 

( )

( ) ( )
( ) ꞏ 1

1 ( ) ( )m

F j

R j G j
j

R j G j



 
 






 


 (3.21) 

Damit folgt 1
( )

( )m j
F j






   (3.22) 

 

Ziel des robusten Reglerentwurfs ist es, möglichst große Modellfehler zulassen zu 
können. Wird angenommen, dass für die Modellunsicherheiten jeweils eine obere 
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frequenzabhängige Schranke ( ) 1/ ( )a aj j  


  , ( ) 1/ ( )m mj j  


   ange-

geben werden kann (s. Gl. (3.10), (3.11)), folgt aus (3.19) und (3.22): 

 ( ) ( ) ( )aR j S j j   

  (3.23) 

 ( ) ( )mF j j  

  (3.24) 

Der Regler muss also so entworfen werden, dass die Bedingungen (3.23) und (3.24) 
für möglichst kleine Werte von a und m erfüllt werden. 

3.4 Frequenzabhängige Formulierung der Forderungen an 
die Regelung 

Diese Robustheitsforderungen aus (3.23) und (3.24) müssen gemeinsam mit den 
allgemeinen Forderungen an eine Regelung aus Abschn. 3.1 (Gl. (3.1) bis (3.3)) 
betrachtet werden. Dabei fällt auf, dass die Forderungen nach einer beschränkten 
Stellgröße in (3.3) und einer gesicherten Stabilität des geschlossenen Regelkreises 
bei additivem Modellfehler in Gl. (3.23) auf eine Beschränkung von ( ) ( )R j S j   

führen. Dadurch bewirkt die Berücksichtigung einer beschränkten Stellgröße zugleich 
eine Berücksichtigung eines additiven Modellfehlers. 

Es ergeben sich also zusammenfassend folgende Forderungen an einen robusten 
Regler: 

 Gutes Führungsverhalten besonders im unteren Frequenzbereich Gl. (3.1): 
F(s) → 1 

 Störunterdrückung Gl. (3.2): 
S(s) → 0 

 Beschränkung der Stellgröße bzw. möglichst großer zulässiger additiver 
Modellfehler Gl. (3.5), (3.23): 

( ) ( )R j S j 


 ist beschränkt und möglichst klein 

 Unterdrückung von Messstörungen, besonders im oberen Frequenzbereich 
Gl. (3.6): 
F(s) → 0 

 Möglichst großer zulässiger multiplikativer Modellfehler Gl. (3.24): 
( )F s


 ist beschränkt und möglichst klein 

Daraus lassen sich auch Anforderungen an die Signalerfassung ableiten. Da immer 
F(s)+S(s)=1 gilt, folgt, dass bei einer hohen Messstörung keine gute Störunterdrückung 
mehr erreicht werden kann. Ebenso verhält es sich bei einem großen multiplikativen 
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Modellfehler. Somit kann S(s) → 0 auch nur für den unteren Frequenzbereich gefordert 
werden. 

Es ist daher zweckmäßig, für S(s), R(s)S(s) und F(s) frequenzabhängige Gewichtungen 
W1(s), W2(s), W3(s) vorzugeben. Damit können die Forderungen an einen robusten 
Regler wie folgt geschrieben werden [2]: 

 1( ) ( ) 1W s S s

  (3.25) 

 2 ( ) ( ) ( ) 1W s R s S s

  (3.26) 

 3( ) ( ) 1W s F s

  (3.27) 

Da im unteren Frequenzbereich ein gutes Führungsverhalten erforderlich ist und im 
oberen Frequenzbereich eine gute Unterdrückung von Messstörungen, muss die 
Gewichtungsfunktion W3 eine Hochpasscharakteristik aufweisen. Bedingt durch 
F(s)+S(s)=1, ergibt sich damit für W1 eine Tiefpasscharakteristik. Da die Stellgrößen-
beschränkung besonders im oberen Frequenzbereich zum Tragen kommt, muss W2 
wiederum ein Hochpassverhalten aufweisen. 

Dadurch, dass die H∞-Norm eine Maximumsnorm ist, können diese Forderungen 
zusammengefasst und durch eine gemeinsame Norm berücksichtigt werden: 

 
1

2

3

( ) ( )

( ) ( ) ( ) 1

( ) ( )

W s S s

W s R s S s s j

W s F s





    (3.28) 

Die Gewichtungsfunktionen stellen die einzige Möglichkeit dar, den Entwurf der 
Regelung zu beeinflussen. Alle Forderungen des Anwenders an die Regelung müssen 
daher über sie gestellt werden. Die Gewichtungen müssen dabei folgende 
Eigenschaften haben (s. [2]): 

 Die Gewichtungsfunktionen müssen stabil sein. 

 Die Gewichtungsfunktionen sollten von möglichst niedriger Ordnung sein. 

 Die Gewichtungsfunktionen sollten keine steilen Flanken haben. 

Eine sinnvolle Möglichkeit für die Wahl der Gewichtungsfunktionen sind Hoch- bzw. 
Tiefpassfunktionen erster Ordnung. 

Die Forderung nach Robustheit gegenüber Modellunsicherheiten kann grundsätzlich 
entweder ausschließlich in additiver Form über W2, welche außerdem die 
Beschränkung der Stellgröße berücksichtigt, oder ausschließlich in multiplikativer 
Form über W3 gestellt werden. Üblicherweise wird über W2 die Beschränkung der 
Stellgröße berücksichtigt und die Robustheit gegenüber Modellunsicherheiten in 
multiplikativer Form durch W3 gefordert. 
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Weiterhin beeinflussen sich die Gewichtungsfunktionen gegenseitig. Es ist z. B. nicht 
möglich, bei einer beschränkten Stellgröße eine beliebig hohe Geschwindigkeit der 
Regelung zu fordern. Ebenso widerspricht die Forderung nach hoher Robustheit der 
nach einer schnellen Regelung. Die Gewichtungsfunktionen müssen daher gegen-
einander abgewogen werden. Folglich bedeutet dies, dass sie sich in ihren Durchlass-
bereichen nicht zu stark überlappen dürfen (s. [6]). 

3.5 Mixed-Sensitivity Ansatz 

Die in Gl. (3.28) bezeichnete Norm kann formal als Norm eines fiktiven Mehrgrößen-
systems aufgefasst werden. In diesem fiktiven System wird die Störübertragungs-
funktion des geschlossenen Regelkreises S (englisch: sensitivity function) zusammen 
mit weiteren Übertragungsfunktionen gewichtet und bewertet. Daher wird diese Art der 
Formulierung der Entwurfsaufgabe für einen H∞-optimalen Regler als „Mixed-
Sensitivity Problem“ bezeichnet [11]. Durch den Ansatz eines fiktiven Systems wird 
der Entwurf auf eine Mehrgrößenregelung zurückgeführt. 

Dazu kann die Regelstrecke mit den Gewichtungsfunktionen W1(s), W2(s), W3(s), wie in 
[2] beschrieben, zu einem verallgemeinerten Mehrgrößensystem P(s) erweitert werden 
(s. Bild 3.6).  

 
Bild 3.6: Fiktives, erweitertes System 
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Für dieses erweiterte System P(s) gilt:  

 

1 1 1

22

33

( ) 0 ( )
( ) 0 ( )

1(

( )

)

( )

( )
w

W

W

W

y s w s
e s u s

Ge

y s W W G

s

s

y s W

W Gy

   
                           






 (3.29) 

Dabei sind die Führungsgröße w(s) und die Stellgröße u(s) die Eingänge des Systems. 
Der Regelfehler e(s), sowie die zum Vektor wy

  zusammengefassten Ausgänge der 
Gewichtungsfunktionen bilden die Ausgänge des erweiterten Systems P(s). 

Weiterhin gilt 

 ( ) ( ( ) )u s R s e s . (3.30) 

Damit folgt 

 

1

2

3

,

( )

( ) ( )

( ) ( ) ( ) ( )
ꞏ

( ) ( )

( )

W

Py wW
S s

W s S s

y s W s R s S s
w

e s W F s

S s

 
 
 
 
 

 
            
 







, (3.31) 

mit 
1

, 2

3

( ) ( )

( ) ( ) ( )

( ) ( )
y wW

W s S s

P W s R s S s

W s F s

 




 
 
 

 . 

Die Forderungen an eine robuste Regelung (s. (3.28)) entsprechen also der H∞-Norm 
des erweiterten Systems. 

 
1

, 2

3

( ) ( )

( ) ( ) ( ) 1

( ) ( )
y wW

W s S s

P W s R s S s s j

W s F s






     (3.32) 

Kann für das erweiterte System P(s) ein stabilisierender Regler R(s) gefunden werden, 

für den ,y wW
P


 < 1 gilt, so ist auch das reale System G0(s) mit diesem Regler stabil. 

Um einen möglichst robusten Regler zu finden, wird versucht, diese H∞-Norm zu 
minimieren, da mit kleiner werdendem  in Gl. (3.33) die zulässigen Modellunsicher-
heiten größer werden (s. Abschn. 3.3). 

 , 1y wW
P 


   (3.33) 
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Gesucht ist also ein Regler R(s), der das nominale System G(s) stabilisiert und die H∞-

Norm ,y wW
P


  minimiert. Dies ist dann der robusteste Regler für das reale System 

G0(s), der die gestellten Forderungen erfüllt.  

3.6 H∞-Reglerentwurf 

Zur Lösung des H∞-Mixed-Sensitivity Problems wurden in dem 1980er Jahren 
verschiedene iterative Verfahren entwickelt. Eine Möglichkeit ist die Anwendung der 
Nevanlinna-Pick Interpolation, wie sie z. B. in [23] beschrieben wird. Besondere 
Bedeutung hat jedoch das 1989 von Doyle und Glover in [24] vorgestellte Verfahren 
der -Iteration. Es bildet ebenfalls die Basis des in [2] verwendeten Algorithmus, der 
wiederum Grundlage für die Reglerentwürfe in dieser Arbeit ist. Es handelt sich um ein 
iteratives Verfahren, mit dem ein suboptimaler H∞-Regler ermittelt werden kann.  

Der Regler ist suboptimal, da zunächst ein Wert für in (3.33) vorgegeben wird. 
Anschließend wird versucht, für dieses  einen Regler R(s) zu berechnen. Gelingt dies, 
so wird  verkleinert und anschließend ein neuer Regler berechnet. Dieses Vorgehen 
wird so oft wiederholt, bis sich  nur noch unwesentlich verkleinern lässt. Das Minimum 
der H∞-Norm wird also nicht exakt erreicht. 

Für die Iteration ist es zweckmäßig, das erweiterte System P(s) in eine lineare 
Zustandsraumdarstellung der allgemeinen Form 

 ꞏ ꞏ ; ꞏ ꞏx A x B u y C x D u   
      , (3.34) 

mit n nA  , n pB  , q nC  , q pD   zu bringen. 

 

Die Zustandsraumdarstellung der Übertragungsmatrix P(s) ergibt sich zu (s. [21]): 

 1 1

2

3 3

0 0 0

0 0

0 0 0

0 0

G

W G W

W

W G W

A

B C A
A

A

B C A

 
    
 
  

 (3.35) 

 



11

2

3

1 2

0

0

0

G

W GW

W

W G

B B

B

B DB
B

B

D D

 
                       
  



 (3.36) 
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 

1 1

12

3 3

2

0 0

0 0 0

0 0

0 0 0

W G W

W

W G W

G

D C C

C C
C

D C C

C C

 
 
  
          
 
 
 

 (3.37) 

 

 

1 1

2

3

11 12

21 22

0

0

W W G

W

W G

G

D D

D D

D D D

D

D DD

I D

 
 

   
   
   
         

 
 
 
 
  

  (3.38) 

 1

2

3

( )
; ;

( ) ( )

G

W W

W

W

x

x w s y
x u y

x u s e s

x

 
 

               
  


 

  



 (3.39) 

Dabei sind AG, BG, CG, bzw. DG die Matrizen der Zustandsraumdarstellung von G(s) und

Wi
A , Wi

B , Wi
C , Wi

D  die Matrizen der Zustandsraumdarstellung der jeweiligen 

Gewichtungsfunktion Wi(s). 

Die Übertragungsfunktion bzw. die Übertragungsmatrix bei Mehrgrößensystemen 
kann dagegen allgemein aus der Zustandsraumdarstellung wie folgt gewonnen 
werden. 

Für die Übertragungsmatrix G(s) gilt: 

 ( ) ( )ꞏ ( )y s G s u s
   (3.40) 

Aus der allgemeinen Zustandsraumdarstellung folgt durch Laplace-Transformation: 

 ꞏ ꞏ ꞏx s A x B u 
    (3.41) 

  ꞏ ꞏsI A x B u 
   (3.42) 

   1
ꞏ ꞏx sI A B u

 
   (3.43) 

 ꞏ ꞏy C x D u 
    (3.44) 

   1
ꞏ ꞏ ꞏC sI A B D u

  
  (3.45) 
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und damit 

   1
( ) ꞏ ꞏG s C sI A B D

    (3.46) 

Dafür kann auch kurz als Symbol geschrieben werden: 

   1
( ) : : ꞏ ꞏ

A B
G s C sI A B D

C D
 

    
 

 (3.47) 

Damit ist dann: 

 
1 2

1 11 12

2 21 22

( )

A B B

P s C D D

C D D

 
 

 

 

 (3.48) 

Für die Existenz eines stabilisierenden Reglers R(s) müssen folgende Rand-
bedingungen erfüllt sein (s. [3], [24]): 

1. In der Zustandsraumdarstellung von P(s) (s. (3.48)) müssen die Teilsysteme 
  1,A B  stabilisierbar 

und 
  2,A C  ermittelbar 

sein. 

2. Ferner muss gelten 

  
 
 

12 2

21 2

rang

rang

D p

D q




, 

 2
2

1 12

rang
A j I B

n p
C D

   
   

  
, d.h. voller Spaltenrang   

und 

 1
2

2 21

rang
A j I B

n q
C D

   
   

  
, d.h. voller Zeilenrang  . 

Dabei ist n die Anzahl der Zeilen und Spalten von A, p2 die Anzahl der Spalten von B2 
und q2 die Anzahl der Zeilen von C2. 

 

Sind diese Randbedingungen erfüllt, gilt: 

Ein stabilisierender Regler R(s), für den , 1y wW
P 


   gilt, existiert genau dann, wenn 
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1. die Lösungen X∞ und Y∞ der Matrix-Riccati-Gleichungen 
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 (3.49) 

und 

 

     
     
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0
T

T T T T T

T
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 

 



 

   

   

 

 (3.50) 

positiv semidefinit sind,  

2. für den Spektralradius gilt: 
   2: max i iX Y       (3.51) 

Wobei die i die Eigenwerte von  X Y   sind. 

 

3.7 Reglerberechnung 

Der H∞-Regler R(s) besteht aus der eigentlichen Zustandsrückführung  

 ˆu Kx 
   (3.52) 

und einem Zustandsbeobachter in der Form: 

      12 2 2
1 1 2 2 21 1

ˆ

ˆ ˆ ˆ( )T T

Z e

x A B B X x B u I Y X L e C D B X x  
  

   



      


    
 

 (3.53) 

Der Zustandsbeobachter schätzt dabei die Zustände der fiktiven, erweiterten Strecke 
aus der Regelabweichung e (s. Bild 3.7).  

 

Die Rückführmatrix K ist gegeben durch: 

    1

12 12 2 12 1( ) T T TK s D D B X D C


   (3.54) 
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Die Beobachter-Matrix L ergibt sich zu: 

    1

2 1 21 21 21
T T TL Y C B D D D



   (3.55) 

X∞, Y∞ sind wieder die Lösungen der Matrix-Riccati-Gleichungen (3.49) und (3.50). 

 

Bild 3.7: Struktur des H∞-Reglers 

Die Lösung der Matrix-Riccati-Gleichungen erfolgt nach dem in [21] dargestellten 
Verfahren mit Hilfe der Hamilton-Matrix. 

Eine Matrix-Riccati-Gleichung der Form: 

 0TQ PA A P PBP     (3.56) 

hat eine zugehörige Hamilton-Matrix 

 2 2n n
T

A B

Q A
 

  
  

  (3.57) 

Die n Eigenvektoren, die zu den n Eigenwerten von   mit negativem Realteil gehören, 
werden zu einer Matrix V zusammengefasst. Diese wird dann in zwei n n  Matrizen 
unterteilt: 

 1

2

mit n n
i

V
V V

V
 

  
 

  (3.58) 
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Für die Lösung P der Matrix-Riccati-Gleichung gilt nun: 

 1
2 1P V V    (3.59) 

Die Lösbarkeit der beiden Matrix-Riccati-Gleichungen (3.49) und (3.50) setzt also 
voraus, dass die entsprechenden Hamilton-Matrizen keine rein imaginären Eigenwerte 
haben [23]. Eine notwendige Bedingung dafür ist, dass die Systemmatrizen GA , 

1WA , 

2WA  und 
3WA  keine Pole auf der imaginären Achse haben (s. [2]). Dies ist hier jedoch 

nicht der Fall. 

Die Gewichtungsfunktionen können zwar prinzipiell frei gewählt werden, wird jedoch 
stationäre Genauigkeit des geschlossenen Regelkreises gewünscht, so muss der 
Regelfehler mit integralem Verhalten gewichtet werden. Die Gewichtungsfunktion W1 
wird also einen Integrator und damit einen Pol in Null enthalten. Die Systemmatrix der 
Strecke AG hat ebenfalls immer einen rein imaginären Pol. Dies resultiert daraus, dass 
bei einem n-Massensystem die Lage durch eine Integration der Drehzahl gebildet wird 
und durch diesen Integrator ein Pol in Null auftritt.  

Grundsätzlich kann auf verschiedene Weise mit diesem Problem umgegangen 
werden. Eine Möglichkeit ist, die Pole von der imaginären Achse geringfügig in die 
linke Halbebene zu verschieben, wie auch in [2] beschrieben. Wird dies beispielsweise 
für die Gewichtungsfunktion W1 durchgeführt, so kann zwar keine stationäre 
Genauigkeit mehr erreicht werden, die Verschiebung kann jedoch so gering gewählt 
werden, dass die bleibende Regelabweichung ohne praktische Bedeutung ist [25].  

Der in [21] beschriebene und in [2] verwendete Ablauf für das von Doyle und Glover 
(s. [24]) vorgestellte Verfahren der -Iteration zur Ermittlung eines (sub-) optimalen 

H∞-Reglers, welches auch hier verwendet wird, lautet damit: 

1. Aufstellen der erweiterten Regelstrecke P(s) aus dem nominellen System G(s), den 
Gewichtungsfunktionen Wi(s) und Transformation in die Zustandsraumdarstellung. 

2. Sicherstellen, dass die Randbedingungen 1 bis 4 erfüllt sind (s. Abschn. 3.6) (ggf. 
Gewichtungsfunktionen anpassen). 

3. Zu Beginn  = 1 setzen. 

4. X∞ und Y∞ berechnen. 

5.  X∞ Y∞) < 2 prüfen. 

6. Waren alle Schritte erfolgreich, wird  verkleinert, andernfalls vergrößert. Dann 
werden die Schritte 4 bis 6 so lange wiederholt, bis  nur noch unwesentlich 
geändert werden kann. 

Bild 3.8 zeigt den entsprechenden Ablaufplan. 
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Bild 3.8: Ablauf der -Iteration (vergl. [2]) 
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3.8 Eliminierung des internen Zustandsbeobachters 

Der H∞-Regler besteht intern, wie in Abschnitt 3.7 gezeigt, aus der eigentlichen 
Zustandsrückführung und einem Zustandsbeobachter zur Schätzung der 
Systemzustände des in Bild 3.6 gezeigten, erweiterten Systems P(s) aus der 
gemessenen Ausgangsgröße.  

Die Schätzung der Zustände allein aus dem Regelfehler kann jedoch auch Nachteile 
haben. Zum einen werden möglicherweise im System vorhandene weitere Sensoren 
nicht genutzt. Zum anderen kann der Zustandsbeobachter falsche Werte liefern. Dies 
ist vor allem dann der Fall, wenn der lineare Beobachter Zustände einer nichtlinearen 
Strecke ermitteln muss. Mehrmassensysteme, wie sie in dieser Arbeit betrachtet 
werden, können solche Nichtlinearitäten insbesondere in Form von Lose und 
Haftreibung enthalten. Weiterhin wurde in [2] dargelegt, dass ein im Mehrmassen-
system angreifendes Lastmoment zu einer fehlerhaften Schätzung der Zustände des 
erweiterten Systems führt.  

Der interne Zustandsbeobachter ist für Störgrößen geeignet, die direkt am Ausgang 
des erweiterten Systems angreifen. Die hier betrachtete Regelgröße ist die lastseitige 
Lage. Störungen treten jedoch in Form von im System angreifenden Drehmomenten 
auf. Somit wird ein Störmoment noch mindestens zweimal integriert, ehe es auf die 
Ausgangsgröße wirkt (s. Abschn. 2.1). Auch nichtlineare Reibung kann als ein 
solches, vom Beobachter nicht berücksichtigtes Störmoment interpretiert werden. Der 
interne Zustandsbeobachter des H∞-Reglers eignet sich damit nicht für die bei 
Mehmassensystemen hauptsächlich auftretenden Störungen in Form von Last- oder 
nichtlinearen Reibdrehmomenten. Dies ist besonders kritisch, da ein wesentliches Ziel 
einer Regelung ja in der Unterdrückung von Störgrößen liegt.  

Daher wurde in [2] vorgeschlagen, den internen Zustandsbeobachter des H∞-Reglers 
zu eliminieren. Voraussetzung dafür ist, dass alle Zustände des erweiterten Systems 
P(s) in Bild 3.6 erfasst werden. Für die Zustände Gx


 der Regelstrecke G(s) selbst 

erfolgt dies durch entsprechende Sensoren. Die Zustände der Gewichtungsfunktionen 
W1, W2 und W3 sind dagegen nicht real vorhanden und können somit messtechnisch 
auch nicht erfasst werden. Es ist jedoch möglich, diese Zustände zu berechnen, da die 
Gewichtungsfunktionen beim Reglerentwurf vorgegeben und somit bekannt sind. 
Voraussetzung ist, dass die Eingangsgrößen dieser Funktionen, also der Regel-
fehler e, die Stellgröße u und die Ausgangsgröße y bekannt sind. Damit ergibt sich die 
in Bild 3.9 dargestellte Struktur des H∞-Reglers ohne internen Zustandsbeobachter.  
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Bild 3.9: H∞-Regler ohne internen Zustandsbeobachter (vergl. [2]) 

 

Ein weiterer Vorteil dieser Herangehensweise ist die starke Verringerung der 
Komplexität der Reglerstruktur. Der Regler benötigt also in der Realisierung weniger 
Rechenleistung und ist zudem einfacher zu implementieren.  

Die in kommerziellen Softwarewerkzeugen wie z. B. Matlab implementierten Verfahren 
zum Reglerentwurf liefern als Ergebnis die komplette Reglerstruktur mit 
Zustandsbeobachter. Um die in Bild 3.9 dargestellte Struktur realisieren zu können, ist 
es daher notwendig, auf Zwischenergebnisse des Entwurfs zugreifen zu können. Dies 
ist bei den meisten kommerziellen Werkzeugen jedoch nicht möglich. Aus diesem 
Grunde wurden in [2] auf Basis von [21] eigene Lösungswerkzeuge in Matlab 
entwickelt, die auch in dieser Arbeit verwendet werden.  
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4 Modellbildung für den H∞-Reglerentwurf 

Wie gesehen, wirken sich sowohl die Ordnung der gewählten Gewichtungsfunktionen 
als auch die Ordnung des Systemmodells direkt auf die Ordnung des entworfenen 
Reglers aus. Um H-Regler möglichst geringer Ordnung zu entwerfen, ist es daher 
notwendig, nicht nur möglichst einfache Gewichtungsfunktionen zu wählen, sondern 
auch ein möglichst einfaches Entwurfsmodell für die Reglerberechnung zu verwenden. 
Durch diese Modellvereinfachung werden zusätzlich zu den unvermeidlichen 
Parameterunsicherheiten auch Strukturunsicherheiten im Systemmodell verursacht. 
Nach [11] ist es häufig möglich, Strukturunsicherheiten durch Parameterunsicher-
heiten zu beschreiben und für diese dann einen robusten Regler niedriger Ordnung zu 
entwickeln. Im Folgenden wird daher zunächst ein lineares Modell der vollständigen 
Regelstrecke abgeleitet.  

4.1 Vollständiges, lineares Steckenmodell 

Die in dieser Arbeit betrachteten elastisch gekoppelte Mehrmassensysteme haben 
grundsätzlich die in Abschn. 2.3 beschriebene und in Bild 2.6 dargestellten Struktur. 

Für die weiteren Betrachtungen ist es zweckmäßig, das jeweils zu regelnde System, 
also die Regelstrecke in eine lineare Zustandsraumdarstellung der Form 

 ꞏ ꞏ ;  ꞏ ꞏx A x B u y C x D u   
       (4.1) 

zu bringen. 

Dabei werden nichtlineare Einflüsse vernachlässigt. Die Reibung wird lediglich über 
einen linearen Reibungskoeffizienten RLi an jeder Masse berücksichtigt. Die Lose wird 
in diesem linearen Streckenmodell dagegen ganz vernachlässigt.  

Weiterhin werden die Drehmomente und Drehzahlen auf die entsprechenden 
Nenngrößen m0 = 10 Nm, 0 = 314,16 rad/s bzw. die Positionen auf eine Umdrehung 
normiert 0 = 2 

Die normierten Größen lauten damit 
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Für ein n-Massenmodell ergeben sich damit in normierter Darstellung folgende 
Differentialgleichungen 

  1 1 1 1 1 2
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ꞏ ( )N a L N N N Nm R C
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Diese führen auf die folgende Matrixdarstellung: 
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In der Systemmatrix A kann ebenso wie in der Struktur in Bild 2.6 für jede Masse i ein 
zugehöriger Block identifiziert werden: 

 1 1
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1 1 1 1
( ) 0
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Ni Li Ni Ni Ni
i i i i
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 
 


 

Die Elemente mit dem Reibungsterm -1/Ti RLi sind dabei entlang der Hauptdiagonalen 
aufgereiht. Bei der ersten und der letzten Masse gilt für die nicht vorhandenen 
Federkonstanten CN0 = CNn = 0. 

 

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


35 

Für ein in dieser Arbeit beispielhaft angenommenes Dreimassensystem ergibt sich 
damit: 
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 (4.14) 

 

Ein elastisch gekoppeltes Mehrmassensystem ist grundsätzlich schwingungsfähig.  

Die Imaginärteile der konjugiert-komplexen Eigenwerte der Systemmatrix A 
bezeichnen die Eigenfrequenzen (s. [26]). Die Eigenwerte sind die Nullstellen des 
charakteristischen Polynoms (s. [27]). 

 det( ) 0A I   (4.15) 

Jedes Federelement, also jede Welle eines Mehrmassensystems, verursacht ein 
konjugiert-komplexes Polpaar und somit eine Resonanzfrequenz.  

Da die lineare Reibung im Allgemeinen für die Berechnung der Eigenfrequenzen 
vernachlässigt werden kann, ergeben sich im Falle eines Dreimassensystems: 
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4.2 Reduziertes Entwurfsmodell 

Um einen H∞-optimalen Regler möglichst niedriger Ordnung, also einen Regler mit 
möglicht geringem Rechenaufwand, zu erhalten, wurde der Reglerentwurf anhand 
eines reduzierten Entwurfsmodells durchgeführt. Als Entwurfsmodell wird in dieser 
Arbeit ein Zweimassen-Ersatzmodell des ursprünglichen Mehrmassensystems 
verwendet. Der Regler muss folglich so robust ausgelegt werden, dass er auch für das 
ursprüngliche Mehrmassensystem eine gute Qualität der Regelung liefert, obwohl er 
lediglich für das reduzierte Entwurfsmodell berechnet wurde. Das Entwurfsmodell 
muss somit so gewählt werden, dass es die wesentlichen Eigenschaften des 
Originalsystems möglichst gut abbildet. Eine weitere Fagestellung ist also, inwieweit 
die Wahl eines bestimmten Ersatzsystems als Entwurfsmodell den Reglerentwurf 
beeinflusst. 

Werden Lose und Haftreibung, wie oben gesagt, vernachlässigt, so ergibt sich aus der 
allgemeinen Struktur eines n-Massensystems (s. Gl. (4.11) bis (4.13)) für ein lineares 
Zweimassensystem die folgende, normierte Zustandsraumdarstellung 
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. (4.18) 

Die Eigenfrequenz des Ersatzsystems kann über die Eigenwerte der Systemmatrix 
Aers, d.h. die Nullstellen des charakteristischen Polynoms det (Aers - I) = 0, ermittelt 
werden.  

Für die Berechnung der Eigenfrequenz wird auch die lineare Reibung vernachlässigt. 

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


37 

Damit vereinfacht sich das Polynom wie folgt 
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Es ergibt sich für die Resonanzfrequenz 
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4.2.1 Berechnung der Ersatzgrößen 

Die Zeitkonstanten Ters1, Ters2, die Reibungskonstanten RLers1, RLers2 sowie die Feder-
konstante CN ers des Ersatzsystems müssen aus dem originalen n-Massensystem 
ermittelt werden. Hierzu sind verschiedene Ansätze möglich.  

Grundsätzlich können die mittleren Massen vollständig der Antriebs- bzw. der 
Lastseite zugeschlagen werden oder sie können zwischen Antriebs- und Lastseite 
aufgeteilt werden. Ohne weitere Kenntnisse über das System, wenn z. B. die 
Einzelelastizitäten der Teilwellen unbekannt sind, bietet sich hier eine gleichmäßige 
Aufteilung an. In einem solchen Fall muss dann die Gesamtelestizität des Systems 
oder dessen Resonanzverhalten bekannt sein, um ein Ersatzmodell bestimmen zu 
können. Sind dagegen die Federkonstanten der einzelnen Teilwellen bekannt, ist es 
sinnvoll die mittleren Massen im Verhältnis der Federsteifigkeiten auf die benachbarten 
Massen aufzuteilen (vergl. [28]). 

Für ein Dreimassensystem ergeben sich damit beispielsweise folgende Möglichkeiten 
zur Bestimmung der Ersatzzeitkonstanten: 

1.  1 1 2 2 3;ers ersT T T T T    (4.22) 

2.  2 2
1 1 2 3;
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T T
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3.  1 2
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 (4.24) 

4.  1 1 2 2 3;ers ersT T TT T    (4.25) 
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Die linearen Reibungen werden ebenso zusammengefasst wie die Massen, da 
anzunehmen ist, dass sie den entsprechenden Massen zugeordnet werden können 
(z. B. Lagerreibung der entsprechenden Masse). 

Die Ersatzfederkonstante kann, nach [29], durch Zusammenfassen der einzelnen 
Federkonstanten des Originalsystems ermittelt werden.  

Also für ein Dreimassensystem z. B.: 

 

1 2

1
1 1N ers

N N

C

C C




 (4.26) 

Eine andere Möglichkeit ist, die Ersatzfederkonstante so zu berechnen, dass sich für 
das Ersatzsystem eine Eigenfrequenz einstellt, die der niedrigsten Eigenfrequenz des 
n-Massensystems entspricht. 

 min( )  res i res min   (4.27) 

 :res ers res min   (4.28) 

Die normierte Federkonstante des Ersatzsystems CN ers ist so zu bestimmen, dass die 
Forderung nach gleichen Eigenfrequenzen aus Gl. (4.28) erfüllt ist. 
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 (4.29) 

 

Aus diesen Überlegungen ergeben sich für die hier durchgeführten Untersuchungen 
die folgenden, verschiedenen Arten, wie ein Ersatzmodell gebildet werden kann.  

 

1. Typ 1, „ML/FR“: 

 Trägheitsmomente der mittleren Massen werden zu dem der Lastseite hinzu 
addiert.  

 Die Federkonstante wird so bestimmt, dass das Ersatzsystem die niedrigste 
Resonanzfrequenz des Originalsystems hat.  

 Die Ersatzgrößen berechnen sich nach den Gleichungen (4.22) und (4.29).  
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2. Typ 2a, b, „MV/FR“ a bzw. b: 

 Trägheitsmomente der mittleren Massen werden auf die Antriebs- und die 
Lastseite aufgeteilt. Dies kann entweder a) gleichmäßig oder b) im Verhältnis 
der Federkonstanten geschehen. 

 Die Federkonstante wird ebenfalls entsprechend der niedrigsten 
Resonanzfrequenz des Originalsystems berechnet.  

 Die Ersatzgrößen berechnen sich nach den Gleichungen a) (4.23) bzw. b) 
(4.24) und (4.29) 

 Trägheitsmomente der mittleren Massen werden auf das der Antriebsseite 
aufaddiert.  

 Die Ersatzfederkonstante wird so bestimmt, dass die niedrigste Resonanz-
frequenz des Originalsystems erhalten bleibt.  

 Die Ersatzgrößen berechnen sich nach den Gleichungen (4.25) und (4.29). 

3. Typ 4, „ML/FZ“: 

 Trägheitsmomente der mittleren Massen werden zu dem der Lastseite hinzu 
addiert.  

 Die Ersatzfederkonstante wird durch einfaches Zusammenfassen der Feder-
konstanten des Originalsystems bestimmt.  

 Die Werte für das Ersatzsystem werden nach Gleichung (4.22) und (4.26) 
bestimmt. 

4. Typ 5, „MV/FZ“ a bzw. b: 

 Trägheitsmomente der mittleren Massen werden auf die Antriebs- und die 
Lastseite aufgeteilt. Entweder a) gleichmäßig oder b) im Verhältnis der 
Federkonstanten geschehen. 

 Die Federkonstante des Ersatzsystems wird durch Zusammenfassen der 
Originalfederkonstanten bestimmt.  

 Die Ersatzgrößen berechnen sich nach den Gleichungen a) (4.23) bzw. b) 
(4.24) und (4.26) 

5. Typ 6, „MA/FZ“: 

 Trägheitsmomente der mittleren Massen werden auf das Trägheitsmoment der 
Antriebsseite aufaddiert  

 Die Federkonstante wird durch Zusammenfassen der Federkonstanten des 
Originalsystems bestimmt.  

 Die Ersatzgrößen berechnen sich nach den Gleichungen (4.25) und (4.26). 

Zusammengefasst können also folgende Arten von Ersatzmodellen gebildet werden: 
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Tabelle 4.1: Ersatzmodelltypen 

 Ersatzfederkonstante entspr. 
Resonanzfrequenz 

Ersatzfederkonstante durch 
Zusammenfassen 

Mittlere Massen 
zur Lastseite  Typ ML/FR Typ ML/FZ 

Mittlere Massen 
verteilt 

Typ MV/FRa,  
Typ MV/FRb 

Typ MV/FZa, 
Typ MV/FZb 

Mittlere Massen 
zur Antriebsseite Typ MA/FR Typ MA/FZ 

 

4.2.2 Vergleich von Strecken- und Entwurfsmodell 

Die frequenzabhängigen Modellunsicherheiten des Entwurfsmodells gegenüber dem 
Streckenmodell können durch Vergleich des Frequenzgangs des linearen Zustands-
raummodells der Strecke G(s) mit dem des zum Entwurf verwendeten Ersatzmodells 
Gers(s) ermittelt werden.  

Für die additive Modellunsicherheit gilt 

 ( ) ( )a ersG s G s   . (4.30) 

Die multiplikative Modellunsicherheit ergibt sich zu 

 1( ( ) ( )) ( )m ers ersG s G s G s   . (4.31) 

Diese Modellunsicherheiten beschreiben dabei nur die Ungenauigkeit des Ersatz-
modells in Bezug auf das angenommene, lineare Zustandsraummodell des Original-
systems. Bezüglich des realen Systems G0(s) werden weitere Unsicherheiten auftreten 
(z. B. ungenaue Federkonstanten, nicht berücksichtigte Dynamiken). Diese müssen 
bei der Reglersynthese in der Wahl der Gewichtungsfunktionen mit berücksichtigt 
werden, um die Stabilität zu garantieren.  

Durch die entsprechende Berechnung nach GL. (4.29) stimmt die Resonanzfrequenz 
der Ersatzsysteme (s. Gl. (4.21)) nach Modell Typ ML/FR, MV/FR und MA/FR immer 
mit der niedrigsten Resonanzfrequenz des originalen Streckenmodells (s. Gl. (4.16)) 
überein. Die Resonanzfrequenz des Ersatzsystems nach Modell Typ ML/FZ, MV/FZ 
und MA/FZ stimmt dagegen nicht exakt mit einer Resonanzfrequenz des Original-
systems der Strecke überein, da hier die Ersatzfederkonstante durch Zusammen-
fassen der ursprünglichen Federkonstanten gebildet wurde. Dies wirkt sich durch 
entsprechend höhere Modellunsicherheiten im Bereich der Resonanzfrequenz aus, 
hat jedoch den Vorteil, dass der Verdrehwinkel des Systems bei einem bestimmten 
Torsionsmoment korrekt nachgebildet wird. Abhängig vom jeweiligen Regelungsziel 
kann dies ein Vorteil sein. 
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Die folgenden Untersuchungen zum Modellvergleich wurden anhand eines beispiel-
haften Dreimassensystems als Regelstrecke durchgeführt.  

Dabei wurden folgende Werte angenommen:  
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Die normierten Werte der linearen Reibungskoeffizienten RL1,2 werden hier zu 0,2 
angenommen. 

Die Eigenwerte der Systemmatrix A sind in diesem Fall: 
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Die Resonanzfrequenzen dieses Dreimassensystems ergeben sich damit zu 
res1 = 90,245 rad/s und res2 = 169,96 rad/s. 

Das betrachtete Übertragungsverhalten ist hier das des Antriebsmoments als 
Eingangsgröße zum lastseitigen Lagewinkel als Ausgangsgröße. Somit bildet das 
originale Dreimassensystem eine Übertragungsfunktion sechster Ordnung, wogegen 
das Ersatzsystem eine solche vierter Ordnung darstellt.  

Oberhalb der Ersatzresonanzfrequenz bleibt die Phase für alle Ersatzsysteme 
konstant und die Amplitude fällt mit einer Steigung von -80 dB/Dekade. Das 
Originalsystem weist dagegen bei 170 rad/s eine zweite Resonanz auf und fällt danach 
mit einer Steigung von -120 dB/Dekade. Der Phasengang weist entsprechend bei der 
zweiten Resonanzfrequenz einen weiteren Sprung um -180° auf. Für höhere 
Frequenzen weichen die Ersatzsysteme immer stärker vom Original ab, da weitere 
Resonanzen durch das Zweimassensystem nicht mehr beschrieben werden können. 
Bild 4.1 und Bild 4.2 zeigen beispielhaft die Bode-Diagramme und die Frequenzgänge 
der Modellunsicherheiten des Ersatzmodells vom Typ MV/FRa. Bis zur ersten 
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Resonanzstelle sind die Verläufe von Original- und Ersatzsystem in Bild 4.1 
deckungsgleich. Danach weichen die beiden Frequenzgänge voneinander ab, da das 
Ersatzsystem die zweite Resonanzstelle nicht mehr abbildet. Bild 4.2 zeigt die 
entsprechenden, nach Gl. (4.30) bzw. Gl. (4.31) bestimmten Modellunsicherheiten. 

 
Bild 4.1: Bode-Diagramme von Original- und Ersatzsystem (Typ MV/FRa) 

 
Bild 4.2: Modellunsicherheiten des Ersatzsystems (Typ MV/FRa) gegenüber 

dem Originalsystem  

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


43 

4.3 Simulation zum Modellvergleich 

Auf der Grundlage jedes dieser Ersatzmodelltypen wird ein H∞-Regler entworfen. 
Dieser Regler wird zusammen mit einem um die nichtlinearen Einflüsse von Lose und 
Haftreibung erweiterten Streckenmodell in Matlab/Similink simuliert und das Verhalten 
der jeweiligen Regelungen verglichen. 

Dazu wurde zunächst auf Basis des linearen Streckenmodells ein nichtlineares Modell 
des hier als Regelstrecke angenommenen Dreimassensystems unter Matlab/Simulink 
erstellt. Das Modell entspricht der in Bild 2.6 dargestellten Struktur. Die Lose ist als 
„Tote Zone“ modelliert. Die in dieser Arbeit verwendete Modellierung der Reibung und 
deren Umsetzung in Matlab/Simulink basiert auf dem in [2] verwendeten Modell. 
Dieses stellt einen den Einfluss der Reibung nachbildenden Block in Simulink dar, der 
in das restliche mechanische Modell eingebunden werden kann. Die interne Struktur 
ist in Bild 4.3 dargestellt. Eingangsgrößen dieses Blocks sind das antreibende 
Drehmoment ma und die Drehzahl  der jeweiligen Masse. Ausgangsgröße ist das 
nach Abzug der Reibung verbleibende, auf das restliche System wirkende 
Drehmoment ma - mReib.  

 
Bild 4.3: Modellierung des Reibverhaltens (vergl. [2]) 

Das Verhalten dieses Reibblocks für ein im Stillstand befindliches System kann 
folgendermaßen beschrieben werden. Solange der Betrag des angreifenden Dreh-
momentes ma kleiner als das maximale Haftreibmoment RH max ist, wird kein Dreh-
moment in das restliche System weitergegeben (ma - mReib = 0). Das System verharrt 
im Stillstand. Wird das maximale Haftreibmoment überschritten, so rutscht das System 
los. Die Reibung bestimmt sich nun über eine geschwindigkeitsabhängige Funktion 
f(), die hier lediglich aus einer Überlagerung von Gleitreibung und viskoser Reibung 
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besteht f()=sgn() RG + rL (vergl. Abschn. 2.1). Die für kleine Drehzahlen 
dominierende Gleitreibung RG kann dabei kleiner sein als die maximale Haftreibung 
RH max. Mit zunehmender Geschwindigkeit überwiegt die linear von der Drehzahl 
abhängige viskose Reibung. Das hier versendete Reibmodell berücksichtigt damit das 
sprungförmige, nichtlineare Losbrechen aus der Haftreibung und bildet anschließend 
die Reibung in der Bewegung als Überlagereung aus Gleitreibung und linearer, 
geschwindigkeitsabhängiger Reibung nach. 

Das um diese nichtlinearen Einflüsse erweiterte Streckenmodell wird zusammen mit 
einem H∞-Regler in Matlab/Simulink implementiert und dient zur vergleichenden 
Simulation der mit den verschiedenen Entwurfsmodelltypen berechneten Regler. 

Der H∞-Regler für diese Vergleichssimulationen wird hier durch eine leichte 
Verschiebung der Polstelle in Null ( = 0,00001) synthetisiert (s. Abschn. 3.7). Die 
Systemmatrix Aers lautet damit: 

 

_ 1 _ _
1 1 1

0

0

_ _ 2 _
2 2 2

0

0

1 1 1
0

0 0 0

1 1 1
0

0 0 0

L ers N ers N ers
ers ers ers

ers

N ers L ers N ers
ers ers ers

R C C
T T T

A

C R C
T T T









   
 
 
 
 
  
 
 
 
 
 

 (4.32) 

Über die Gewichtungsfunktion W1 wird zunächst ein gewünschter Frequenzgang der 
Störübertragungsfunktion S(s) vorgegeben. Über die Gewichtungsfunktion W2 wird die 
Beschränkung der Stellgröße berücksichtigt. Die Gewichtungsfunktion W3 ist so 
gewählt, dass sie oberhalb der multiplikativen Modellunsicherheit liegt. Dadurch wird 
Robustheit bezüglich der durch diese Modellunsicherheit beschriebenen Unterschiede 
zwischen Ersatzsystem und realem System gefordert.  

Die Gewichtungsfunktionen beeinflussen sich dabei gegenseitig. Die Forderung nach 
hoher Robustheit widerspricht z. B. der nach einer schnellen Regelung. Es muss also 
ein Kompromiss gefunden werden. Für die Wahl der Gewichtungsfunktionen bedeutet 
dies, dass sie sich in ihren Durchlassbereichen nicht überlappen dürfen 
(s. Abschn. 3.4). Es ist in diesem Fall daher notwendig, für die Gewichtung W2 eine 
Funktion 2. Ordnung zu wählen, um das gewünschte Verhalten zu erreichen. Auch das 
Streckenmodell und die Gewichtungsfunktionen beeinflussen sich gegenseitig. 
Grundsätzlich sollten daher für jedes Ersatzmodell eigene Gewichtungsfunktionen 
gewählt werden.  

Die Gewichtungsfunktionen stellen jedoch auch den maßgeblichen Einflussfaktor auf 
den Reglerentwurf dar. Um hier nur die Auswirkungen der Wahl des Ersatzmodells 
betrachten zu können und eine bessere Vergleichbarkeit zu gewährleisten, wurden die 
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Regler für alle Ersatzmodelle mit dem gleichen, in Bild 4.4 gezeigten Satz 
Gewichtungsfunktionen nach Gl. (4.33) bis Gl. (4.35) berechnet. 

 
7

1 7

10
( )

10 1
W s

s



 (4.33) 

 
2

2 2

0,84 4 4,76
( )

43,64 476,19

s s
W s

s s

 


 
 (4.34) 

 3
0,294 50

( )
0,0059 1

s
W s

s





 (4.35) 

 
Bild 4.4: Gewichtungsfunktionen 

Die Gewichtungsfunktion W2, welche die Beschränkung der Stellgröße und die additive 
Modellunsicherheit berücksichtigt, wurde so gewählt, dass sich ein Regler ergibt, der 
die Beschränkungen der Stellgröße einhält. Bei der Betrachtung der Modellunsicher-
heiten fällt auf, dass W2 in allen Fällen oberhalb der additiven Modellunsicherheit liegt. 
Daher ist anzunehmen, dass die Robustheit schon durch W2 gegeben ist und nicht 
zusätzlich durch die Gewichtungsfunktion W3 gefordert werden muss. Da es das Ziel 
dieser Arbeit ist, einen Regler mit möglichst geringer Ordnung zu entwerfen, ist es 
wünschenswert, mit einem Satz Gewichtungsfunktionen ebenfalls möglichst geringer 
Ordnung auszukommen. Kann eine Gewichtungsfunktion weggelassen oder konstant 
gewählt werden, ergibt sich ein Regler mit einer entsprechend geringeren Ordnung. 
Daher wurden auch Regler mit einem zweiten Satz Gewichtungsfunktionen generiert, 
bei dem W3 konstant mit 0,001 vorgegeben wurde. Der zu W3 gehörende Parameter 
der Zustandsrückführung (s. Bild 3.9) wird dadurch zu Null und kann entfallen. Da sich 
die Gewichtungen gegenseitig beeinflussen, kann auch der gewünschte 
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Frequenzgang der Störübertragungsfunktion S durch W1 neu vorgegeben und W2 leicht 
angepasst weden. Dadurch kann die Dynamik des Reglers verbessert werden. Für die 
Untersuchungen mit den zwei wirksamen Gewichtungsfunktionen W1 und W2 wurden 
folgende Gewichtungsfunktionen verwendet. 

 
10

1 9

10
( )

10 1
W s

s



 (4.36) 

 
2

2 2

0.85 4 4,7
( )

43,39 470,59

s s
W s

s s

 


 
 (4.37) 

 3( ) 0,0001W s   (4.38) 

Es ist naheliegend, auch zu versuchen, die Forderung der Robustheit nur in 
multiplikativer Form über die Gewichtungsfunktion W3 zu stellen und W2 auf einen 
konstanten Wert zu setzen. Dies ist jedoch nicht sinnvoll. Um die Stabilität des 
Systems sicherzustellen, muss verhindert werden, dass der Regler zu hohe 
Stellgrößen im Bereich der Resonanzfrequenzen erzeugt. Dazu ist es erforderlich, die 
Stellgröße im Bereich oberhalb der kleinsten Resonanzfrequenz durch W2 zu 
beschränken. Wird W2 nun als Konstante vorgegeben, ist eine sehr starke 
Beschränkung der Stellgröße notwendig, um ein Aufschwingen sicher zu verhindern. 
Wird W2 dagegen mit einer Tiefpass-Charakteristik vorgegeben und W3 als Konstante 
gewählt, kann der so entworfene Regler vorzugsweise Stellgrößen im unteren 
Frequenzbereich erzeugen. Dadurch kann die Beschränkung der Stellgröße 
insgesamt geringer ausfallen, ohne dass es zu einem Aufschwingen des Mehrmassen-
systems kommt. Es ist also sinnvoller, W2 als Tiefpass und W3 als Konstante zu wählen. 

4.3.1 Simulationsergebnisse 

Für ein Originalsystem wurden verschiedene Zweimassenersatzsyteme berechnet. 
Die für die verschiedenen Ersatzsysteme und Gewichtungsfunktionen synthetisierten 
Regler wurden jeweils als direkte Zustandsregler ohne den internen Beobachter 
(s. Abschn. 3.8) in Matlab/Simulink implementiert und das Verhalten in Verbindung mit 
dem originalen Dreimassensystem mit nichtlinearer Haftreibung und 1° Lose simuliert. 
Zusätzlich wurden auch Simulationen mit einem veränderten Originalsystem 
durchgeführt, um die Robustheit der Regler gegenüber Unsicherheiten oder 
Änderungen des Mehrmassensystems abschätzen zu können, auch wenn diese nicht 
explizit durch die Gewichtungsfunktionen gefordert waren. 

Folgende Fälle wurden untersucht: 

 Die lastseitige Massenträgheit des ursprünglichen Dreimassensystems ist 
verdreifacht. 
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 Als zu regelndes, originales Mehrmassensystem wird ein Fünfmassensystem 
eingesetzt. Dieses ist so berechnet, dass es auf mit dem Dreimassensystem 
identische Ersatzmodelle führt. Es treten daher bei der Regelung zusätzliche 
Dynamiken auf. Somit kann überprüft werden, wie robust die entwickelten 
Regler gegenüber einer, z. B. durch vorhergehende Vereinfachungen, zu gering 
angenommenen Ordnung des realen Systems sind. 

Bei diesen Untersuchungen zeigte sich bei den für die Ersatzmodelle vom Typ ML/FR, 
ML/FZ und MA/FZ synthetisierten Reglern, dass diese die variierten Originalsysteme 
zum Teil nicht stabil regeln konnten. Beim Reglerentwurf wurde Robustheit gegenüber 
Parameterschwankungen des realen Systems allerdings auch nicht explizit gefordert. 
Lediglich die Robustheit gegenüber den Unterschieden zwischen dem Originalsystem 
und dem Ersatzsystem war verlangt. Die übrigen Regler können auch die variierten 
Originalsysteme stabil regeln.  

Beispielhaft zeigt Bild 4.5 a das Ergebnis für das unveränderte System für den 
Reglerentwurf mit drei Gewichtungsfunktionen bzw. Bild 4.5 b einen vergrößerten 
Ausschnitt. Tabelle 4.2 zeigt eine Zusammenfassung der Ergebnisse der Regler, die 
mit drei Gewichtungsfunktionen berechnet wurden und die jeweiligen Systeme stabil 
regeln konnten. Dargestellt sind jeweils die Größe des maximalen Überschwingers, 
die Abweichung und die Zeit beim ersten Stillstand und Verharren in der Haftreibung 
sowie die Zeit bis zum Ausregeln auf 1° genau für die nach Ersatzmodell 
Typ MV/FRa, b, MA/FR und MV/FZa, b berechneten Regler.  

Tabelle 4.2: Ergebnisse der Regelung mit drei Gewichtungsfunktionen 

System Regler berechnet nach 
Ersatzmodell Typ 

max. Über-
schwinger 

Zeit bis 
Abweichung < 1◦ 

  MV/FRa 7,2° 10,3 s 
  MV/FRb 13,3° 8,9 s 

unverändert  MA/FR 13,7° 9,8 s 
  MV/FZa 15,5° 9 s 
  MV/FZb 13,7° 9,1 s 
  MV/FRa 6,5° 10,7 s 

dreifache  MV/FRb 13,3° 8,8 s 
lastseitige   MA/FR 13,7° 9,7 s 

Massenträgheit  MV/FZa 15,5° 8,9 s 
  MV/FZb 13,7° 9 s 
  MV/FRa 7,9° 14,3 s 

Fünf-  MV/FRb 14,4° 12 s 
massen-  MA/FR 14,8° 13,5 s 
system  MV/FZa 16,2° 11,8 s 

  MV/FZb 14,7° 12,4s 
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a)  

b)  

Bild 4.5:  a) Sprungantworten des unveränderten Systems mit nach den  
 jeweiligen Ersatzmodellen mit drei Gewichtungsfunktionen  
 berechnetem Regler 
b) Vergrößerter Ausschnitt 

In Tabelle 4.3 sind die entsprechenden Ergebnisse der mit nur zwei Gewichtungs-
funktionen berechneten Regler dargestellt. Bild 4.6a, b zeigt wiederum beispielhaft das 
Ergebnis für das unveränderte System für den Reglerentwurf mit nur zwei 
Gewichtungsfunktionen. 
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a)  

b)  

Bild 4.6:  a) Sprungantworten des unveränderten Systems mit nach den   
 jeweiligen Ersatzmodellen mit zwei Gewichtungsfunktionen  
 berechnetem Regler 
b) Vergrößerter Ausschnitt 
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Tabelle 4.3: Ergebnisse der Regelung mit nur zwei Gewichtungsfunktionen 

System Regler berechnet nach 
Ersatz- modell Typ 

max. Über- 
schwinger 

Zeit bis 
Abweichung < 1°

  MV/FRa 44° 2,1 s 
  MV/FRb 30,9° 3,4 s 

unverändert  MA/FR 49,4° 1,9 s 
  MV/FZa 42,5° 2 s 
  MV/FZb 29,5° 3,2 s 
  MV/FRa 113,6° 3,7 s 

dreifache  MV/FRb 93,3° 3,2 s 
lastseitige   MA/FR 130° 3,8 s 

Massenträgheit  MV/FZa 110° 5,2 s 
  MV/FZb 91° 3,3 s 
  MV/FRa 44,2° 3 s 

Fünf-  MV/FRb 33,5° 3,7 s 
massen-  MA/FR 52,2° 3 s 
system  MV/FZa 42,1° 3 s 

  MV/FZb 32,4° 3,8 s 
 

Bei den mit allen drei Gewichtungsfunktionen berechneten Reglern tritt der kleinste 
Überschwinger jeweils bei dem Regler für das Ersatzmodell Typ MV/FRa auf. Die 
Regler nach Typ MV/FRb bzw. MV/FZa weisen dagegen jeweils die kürzeste bzw. 
zweitkürzeste Ausregelzeit auf. Die Ausregelzeiten der mit einem Ersatzmodell vom 
Typ MV/FZb berechneten Regler unterscheiden sich ebenfalls nicht nennenswert.  

Für die mit nur zwei wirksamen Gewichtungsfunktionen berechneten Regler ergibt sich 
der kleinste Überschwinger in allen untersuchten Fällen für Ersatzmodell Typ MV/FZb. 
Die Regler nach Ersatzmodell Typ MV/FRb weisen in diesen Fällen jedoch nur 
unwesentlich größere Überschwinger auf. Die Dynamik dieser Regler ist gegenüber 
den mit allen drei Gewichtungsfunktionen berechneten Reglern deutlich besser. 

Zusammenfassend ergeben sich die besten Ergebnisse für die nach Ersatzmodell 
Typ MV/FRa, b und Typ MV/FZa, b bestimmten Regler. Grundsätzlich ist in beiden 
Fällen Variante b vorzuziehen, da die Aufteilung der Massen im Verhältnis der 
Elastizitäten die physikalischen Verhältnisse am besten nachbildet und somit 
geringere Modellunsicherheiten zu erwarten sind. Die weiteren Untersuchungen 
konzentrieren sich daher auf Regler, die auf Basis dieser Typen von Ersatzsystemen 
berechnet wurden. 

In den folgenden Simulationen und Messungen wird zudem nicht mehr zwischen den 
Varianten a und b unterschieden, da bei dem genutzten Dreimassenprüfstand die 
Federkonstanten der Wellen gleich sind und somit beide Varianten zusammenfallen. 
Im Folgenden wird daher nur noch die Bezeichnung Ersatzmodell Typ MV/FR und 
MV/FZ verwendet. 
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5 Versuchsergebnisse mit der H∞-Regelung am 
Prüfstand 

Die Grundlage für die Untersuchungen in diesem Kapitel bildet ein Prüfstand mit drei 
elastisch gekoppelten, rotierenden Massen. Für diese Dreimassensystem werden hier 
Regler auf Basis der Ersatzmodelle Typ MV/FR und MV/FZ aus Abschn. 4.2.1 als 
reduziertes Entwurfsmodell berechnet. Dadurch besteht die Möglichkeit, die 
entworfenen Regler am realen System messtechnisch zu untersuchen. 

Im nächsten Kapitel werden die entsprechenden Regler zusätzlich auch auf ein Fünf-
massensystem angewendet, um das Verhalten bei einem Originalsystem höherer 
Ordnung zu untersuchen. Dieses Fünfmassensystem liegt lediglich als Simulations-
modell vor. Die entsprechenden Untersuchungen werden daher, im Gegensatz zu 
denen am Dreimassensystem in diesem Kapitel, als Simulationen unter Matlab/ 
Simulink durchgeführt.  

5.1 Beschreibung des Prüfstands 
Der in Bild 5.1 dargestellte Prüfstand besteht aus einem Antriebsmotor, der über eine 
Losekupplung und eine Torsionswelle mit einer Schwungmasse verbunden ist. Diese 
wiederum ist über eine weitere Torsionswelle mit einem Lastmotor verbunden. 
Zusammen mit den rotierenden Massen des Antriebsmotors und der Lastmaschine 
ergibt sich damit ein elastisch gekoppeltes Dreimassensystem mit einstellbarer Lose. 

Bei dem Antriebsmotor handelt es sich um eine 4-polige Asynchronmaschine mit 
3,1 kW Nennleistung, einem Nennmoment m0 = 10 Nm und einer Nenndrehzahl 
n0 = 3000 U/min. Die Losekupplung hat mögliche Einstellungen von 0°, 0,5°, 1° ,2° und 
5° Lose. Die Torsionswellen haben als Federelement jeweils einen Flachstahl. Die 
Federsteifigkeit wurde durch Messung der Verdrehung bei Belastung mit einem 
konstanten Drehmoment auf einen Wert von C1,2=1383 Nm pro Umdrehung ermittelt. 
Als mittlere Schwungmasse stehen drei Scheiben zur Verfügung, die einzeln oder 
kombiniert auf der Welle montiert werden können. Diese Scheiben können auch auf 
der Lastseite montiert werden, um so die lastseitige Massenträgheit zu variieren.  

Sie haben die folgenden Trägheitsmomente: 

 

2
1

2
2

2
3

128,7

243,7

508,5

Scheibe

Scheibe

Scheibe

Kg cm

Kg cm

Kg cm

 

 

 

 (5.1) 

Für das in dieser Arbeit betrachtete System wird Scheibe 2 als mittlere Masse genutzt. 
Als Lastmotor wird ein Synchronmotor mit einer Nennleistung von 4,6 kW und einem 

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


52 

Nennmoment von 14,6 Nm verwendet. Lage und Geschwindigkeit der Antriebe können 
über einen Inkrementalgeber mit Sinus-Cosinus-Ausgängen und 2048 Impulsen pro 
Umdrehung ermittelt werden.  

Die Ansteuerung erfolgt über Frequenzumrichter. Die Umrichter ihrerseits werden über 
einen PC mit dSPACE-Karte angesteuert. Der Regler selbst ist in C implementiert. 

 
Bild 5.1: Dreimassenprüfstand 

Für die Trägheitsmomente des Prüfstandes wurden folgende Werte errechnet: 

 Antriebsmotor mit Losekupplung und Torsionswelle: 

 2
1 35,7Kg cm   (5.2) 

 Mittlere Masse (Welle mit Scheibe 2): 

 2
2 251,9Kg cm   (5.3) 

 Lastmotor mit Torsionswelle: 

 2
3 63,9 Kg cm   (5.4) 

Für das Modell des Dreimassensystems ergeben sich damit die folgenden, normierten 
Werte: 

 1 0,1 1 12 5T   (5.5) 

 2 0, 79011T   (5.6) 

 3 0, 20075T   (5.7) 

 1,2  138,3NC   (5.8) 
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Der Wert für die normierte, lineare Lagerreibung wurde empirisch ermittelt: 

 1,2,3 0, 2LR   (5.9) 

Weiterhin wurde mit diesen Werten auch ein um die nichtlinearen Einflüsse von Lose 
und Haftreibung erweitertes Modell, wie es auch in Abschn. 4.3 verwendet wurde, 
erstellt. Mit diesem nichtlinearen Streckenmodell wurden die entworfenen Regler 
zunächst simulatorisch überprüft, ehe sie auf dem Prüfstand implementiert wurden. Im 
folgenden Abschnitt sind zum Vergleich einige beispielhafte Simulationen den ent-
sprechenden Messungen vorangestellt. 

5.2 H∞-Regler mit direkter Zustandsrückführung 

Im folgenden Abschnitt werden Untersuchungen am Prüfstand mit auf Basis von 
Ersatzmodellen vom Typ MV/FR und MV/FZ entworfenen H∞-Regler durchgeführt. 
Wie in [2] und Abschn. 3.8 dargelegt wurde, ist der interne Zustandsbeobachter des 
Standard-H∞-Reglers für den hier vorliegenden Anwendungsfall ungeeignet. Daher 
wird hier der in [2] vorgeschlagene Regler mit direkter Zustandsrückführung 
verwendet. Es wird also in allen in diesem Abschnitt betrachteten Fällen voraus-
gesetzt, dass alle benötigten Zustandsgrößen messbar sind. 

5.2.1 Reglerentwurf mit einem Ersatzmodell vom Typ MV/FR 

Für das Dreimassensystem des Prüfstands mit den in Abschn. 5.1 angegebenen, 
normierten Werten wird nun ein Zweimassen-Ersatzsystem vom Typ MV/FR gebildet. 
Bei diesem Ersatzmodell wird die mittlere Masse auf Antriebs- und Lastseite aufgeteilt. 
Dadurch, dass beide Federkonstanten gleich sind, ergibt sich auch eine gleichmäßige 
Aufteilung der mittleren Masse. Die Ersatzfederkonstante wird entsprechend der 
Resonanzfrequenz berechnet. Für dieses Ersatzmodell wird dann mit dem in 
Abschn. 3.7 beschriebenen Verfahren der -Iteration aus [24] ein H∞-Regler 
berechnet. 

Um das gewünschte Reglerverhalten, die Stellgrößenbeschränkung und Modellun-
sicherheiten des Originalsystems gegenüber dem Ersatzsystem vom Typ MV/FR zu 
berücksichtigen, müssen zunächst entsprechende Gewichtungsfunktionen gewählt 
werden (s. Abschn. 3.4). Dazu wird zunächst vom Anwender über W1 ein gewünschter 
Frequenzgang der Störübertragungsfunktion vorgegeben. Über die Gewichtung W2 
wird zum einen die Robustheit gegenüber additiven Parameterunsicherheiten 
gefordert. Dazu ist es notwendig, dass W2 im relevanten Frequenzbereich oberhalb 
der erwarteten Unsicherheit liegt. Zum anderen ermöglicht die Gewichtung W2 die 
Beschränkung der Stellgröße zu berücksichtigen, indem der Anwender über W2 der 
Stellgröße in unterschiedlichen Frequenzbereichen unterschiedlich hohe „Kosten“ 
zuweist Durch W2 wird jedoch auch der Frequenzgang der Störübertragungsfunktion 
beeinflusst. Das bedeutet W1 muss entsprechend angepasst werden, um einen 
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Kompromiss zwischen dem gewünschten Frequenzgang und der beschränkten 
Stellgröße zu finden. Detaillierte Regeln für die Wahl der Gewichtungsfunktionen sind 
z. B. in [2] zu finden. 

Während in Abschn. 4.3 zum besseren Vergleich der Auswirkungen der 
verschiedenen Ersatzmodelltypen auf den Reglerentwurf alle Regler mit den gleichen 
Gewichtungsfunktionen berechnet wurden, müssen für einen praktischen Regler-
entwurf die Gewichtungsfunktionen an die jeweiligen Modellunsicherheiten angepasst 
werden.  

Wie in Abschn. 4.3 beschrieben, ist es wünschenswert, mit nur zwei frequenz-
abhängigen Gewichtungsfunktionen auszukommen, um einen Regler möglichst 
niedriger Ordnung zu erhalten. Für das hier betrachtete Dreimassensystem zeigt sich, 
dass die Unsicherheiten des Ersatzmodells gegenüber dem Originalsystem in additiver 
Form durch W2 schon abgedeckt werden. Daher wird W3 konstant belassen. Somit 
ergibt sich ein Regler mit einer entsprechend geringeren Ordnung. Zusätzliche 
Robustheit gegenüber Parameterschwankungen des Originalsystems wird hier 
zunächst nicht gefordert. Es wird aber dennoch untersucht, inwieweit der entworfene 
Regler auch Änderungen des realen Systems toleriert. 

Es wurden folgende Gewichtungsfunktionen für das Dreimassensystem gewählt: 
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Der mit diesen Gewichtungsfunktionen auf Basis eines Ersatzmodells vom Typ MV/FR 
entworfene Regler wurde zunächst simulatorisch mit einem nichtlinearen Strecken-
modell, wie es auch in Abschn. 4.3 verwendet wurde, untersucht und anschließend in 
C auf dem Prüfstand implementiert und in Messungen erprobt. Gemessen wurden 
jeweils die Sprungantworten des geregelten Systems für einen Führungsgrößen-
sprung von einer Umdrehung und für einen Lastdrehmomentsprung von 5 Nm, also 
dem halben Nennmoment des Antriebs. 

Betrachtet wurde sowohl die Antwort des unveränderten Systems, als auch die 
entsprechenden Antworten der folgenden, modifizierten Fälle. Zum einen wurde die 
lastseitige Massenträgheit verdreifacht. Zum anderen wurde der Fall einer etwa 
doppelt so großen mittleren Massenträgheit betrachtet. Beim Entwurf des Reglers 
wurde nur Robustheit gegenüber den Unterschieden zwischen Original- und 
Ersatzmodell gefordert. Durch Messungen an diesen modifizierten Systemen soll 
abgeschätzt werden, inwieweit der entworfene Regler dennoch robust gegenüber 
Modellfehlern bzw. Parameterschwankungen ist. 
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Beispielhaft sind in Bild 5.2 und Bild 5.3 die simulierten Verläufe der Führungs- bzw. 
Lastsprungantworten des Dreimassenprüfstands ohne Lose dargestellt. 

 
Bild 5.2:  Simulation – Führungssprung mit Regler nach Ersatzmodell 

Typ MV/FR bei 0° Lose 

 
Bild 5.3:  Simulation – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 0° Lose 
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Wie zu erkennen ist, gelingt es dem Regler in der Simulation in allen betrachteten 
Fällen das System erfolgreich zu stabilisieren und den gewünschten Sollwert zu 
erreichen.  

Nach der simulatorischen Verifikation des Reglers, wurde die entsprechenden 
Messungen der Führungs- und Störgrößensprünge am Prüfstand durchgeführt. Ein 
Vergleich der Simulation mit den in Bild 5.4 bzw. Bild 5.5 dargestellten entsprechenden 
Messergebnissen zeigt, dass die Resultate zwar nicht exakt übereinstimmen, jedoch 
den prinzipiellen Verlauf der mit diesem Regler zu erwartenden Sprungantworten sehr 
gut wiedergeben. 

Weitere, hier nicht mehr dargestellte, Simulationen mit leicht variierten Parametern für 
die Reibung lassen den Schluss zu, dass das genaue Verhalten der simulierten Regel-
strecke wesentlich von der Reibung bestimmt wird. Deren Parameter sind empirisch 
ermittelt und somit nicht exakt bekannt. Dennoch stimmen sowohl die verschiedenen 
Simulationen, als auch die weiter unten dargestellten Messungen am Prüfstand in 
ihrem grundsätzlichen Verlauf so gut überein, dass die Simulation mit diesem 
nichtlinearen Streckenmodell als guter Anhalt für das tatsächliche Verhalten des 
Reglers angesehen werden kann. Entsprechend kann auch davon ausgegangen 
werden, dass die im nächsten Kapitel durchgeführten simulatorischen Unter-
suchungen an einem Fünfmassensystem das grundsätzliche Verhalten der hier 
entworfenen Regler für solche Regelstrecken höherer Ordnung hinreichend genau 
abbilden. 

Hier sollen jedoch zunächst die experimentell am Dreimassenprüfstand ermittelten 
Ergebnisse für das mit einem H∞-Regler mit direkter Zustandsrückführung geregelte 
System für die verschiedenen untersuchten Fälle diskutiert werden. 

Bild 5.4 auf der nächsten Seite, zeigt die gemessenen Führungssprungantworten des 
Dreimassenprüfstands ohne Lose. Bild 5.5 zeigt die Antworten des Prüfstandes ohne 
Lose auf einen Lastmomentsprung. Auch für den Lastsprung wurden entsprechende 
Messungen für das System mit etwa der dreifachen lastseitigen Massenträgheit, sowie 
etwa der doppelten mittleren Massenträgheit wiederholt.  

Zur weiteren Überprüfung der Robustheit wurden alle Messungen zudem auch mit 1° 
bzw. 2° Lose durchgeführt. Die Ergebnisse sind am Ende des Abschnitts nochmals in 
Tabelle 5.1 zusammengefasst.  
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Bild 5.4:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 0° Lose 
 

 
Bild 5.5:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 0° Lose 
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Der unveränderte Prüfstand mit 0° Lose antwortet in Bild 5.4 auf den Führungsgrößen-
sprung mit einem einzelnen Überschwinger. Das System verharrt vor Erreichen der 
Sollposition kurzfristig in der Haftreibung. Nach 1,23 s ist der Lagesollwert auf ±1° 
genau erreicht. Bei einem Lastmomentsprung von 5 Nm weicht das System in Bild 5.5 
um maximal 52,5° nach unten vom Sollwert ab, zeigt danach noch einen 
Überschwinger und ist nach 0,9 s wieder auf ±1° genau ausgeregelt. 

Bei der dreifachen lastseitigen Massenträgheit zeigt das System aufgrund der 
größeren Trägheit sowohl beim Führungsgrößen- als auch beim Lastmomentsprung 
ein etwas stärkeres Schwingungsverhalten. 

Im Falle der etwa doppelt so großen mittleren Massenträgheit treten die stärksten 
Schwingungen auf. Dies ist verständlich, da eine Verdoppelung der mittleren Masse 
die absolut größte Veränderung des Prüfstandes darstellt. Eine Änderung der mittleren 
Masse im realen Dreimassensystem wirkt im Ersatzsystem sowohl auf die antriebs-, 
als auch auf die lastseitige Ersatzmassenträgheit.  

Die Anstiegsflanke der Führungssprungantwort ist in allen Fällen etwa gleich. Aufgrund 
der vergrößerten Massenträgheit bei den veränderten Systemen reagieren diese 
langsamer. Der Regler erzeugt eine entsprechend größere Stellgröße. Dabei gerät der 
Antrieb des Prüfstandes zeitweilig in die Stellgrößenbeschränkung. Diese höhere 
Stellgröße trägt ebenfalls dazu bei, dass das System mit vergrößerter Masse stärker 
schwingt. 

Die Sprungantworten mit einer Einstellung der Losekupplung von 1° Lose zeigen Bild 
5.6 und Bild 5.7. Der grundsätzliche Verlauf der Sprungantworten ähnelt in allen Fällen 
dem System ohne Lose. Lediglich für die Lastsprungantworten zeigen sich etwas 
längere Ausregelzeiten. Dies resultiert vor allem daraus, dass sich das System hier 
beim ersten Verharren in der Haftreibung noch knapp außerhalb der gewählten 
Toleranz von ±1° befindet. Dadurch erhöht sich die Ausregelzeit mit 1° Lose um die 
Zeit, die benötigt wird, die Haftreibung erneut zu überwinden und das System in die 
Sollposition zu führen.  
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Bild 5.6:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 1° Lose 
 

 
Bild 5.7:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 1° Lose 
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Bei 2° Lose ergeben sich die in Bild 5.8 bzw. Bild 5.9 gezeigten Sprungantworten. Das 
unveränderte Dreimassensystem wird mit 2° Lose bei einem Führungsgrößensprung 
in 1,23 s auf 1° genau positioniert. Der maximale Überschwinger hat sich im Vergleich 
zum unveränderten System kaum verändert. Bei einem Lastsprung von 5 Nm wird das 
System in 1,55 s auf 1° genau positioniert. Die maximale Abweichung beträgt 55°.  

Eine dreifache lastseitige Massenträgheit bewirkt auch bei 2° Lose ein stärkeres 
Überschwingen bzw. eine stärkere maximale Abweichung vom Sollwert und eine 
längere Ausregelzeit gegenüber dem unveränderten Dreimassensystem. 

Die Verdoppelung der mittleren Massenträgheit führt mit 2° Lose im Vergleich zum 
unveränderten System zu noch stärkeren Überschwingern und längeren Ausregel-
zeiten. Dies ist wieder darauf zurückzuführen, dass die mittlere Masse die größte ist, 
und eine Verdopplung fast die gleiche absolute Änderung bedeutet wie eine Vervier-
fachung der lastseitigen Massenträgheit.  

Im Vergleich zu dem System mit 1° Lose sind die Ausregelzeiten bei 2° Lose zum Teil 
deutlich kürzer. Dies ist dadurch begründet, dass bei einer Einstellung von 2° Lose das 
System zufällig wieder innerhalb der zulässigen Toleranzgrenzen von ±1° in die 
Haftreibung gerät, und daher die zum Überwinden der Haftreibung notwendige Zeit 
hier nicht mit in die Ausregelzeit eingeht. 

Tabelle 5.1 zeigt die Ergebnisse der Messungen zusammengefasst. Dargestellt sind 
die Art des Versuchs (Führungsgrößen- bzw. Lastmomentsprung), die Einstellung der 
Losekupplung, der Zustand des Systems (unverändert, mit dreifacher lastseitiger 
Massenträgheit bzw. mit doppelter mittlerer Masse), die Größe des maximalen 
Überschwingers und die Zeit, bis das System auf ±1° genau ausgeregelt ist. 
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Bild 5.8:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 2° Lose 
 

 
Bild 5.9:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 2° Lose 
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Tabelle 5.1: Messung - Prüfstand mit Regler nach Ersatzmodell Typ MV/FR 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
grössen-
sprung 

0° 

unverändert 23° 1,23 s 
3 × lastseitige  

Massenträgheit 73° 1,56 s 

2 × mittlere 
Massenträgheit 135° 3,08 s 

1° 

unverändert 23° 1,22 s 
3 × lastseitige  

Massenträgheit 73° 1,56 s 

2 × mittlere 
Massenträgheit 138° 3,3 s 

2° 

unverändert 24° 1,23 s 
3 × lastseitige  

Massenträgheit 74° 1,55 s 

2 × mittlere 
Massenträgheit 137° 2,85 s 

Last-
moment-
sprung 

0° 

unverändert 52,5° 0,9 s 
3 × lastseitige  

Massenträgheit 57,6° 1,4 s 

2 × mittlere 
Massenträgheit 63° 3,2 s 

1° 

unverändert 59° 1,6 s 
3 × lastseitige  

Massenträgheit 60° 1,85 s 

2 × mittlere 
Massenträgheit 63° 3,2 s 

2° 

unverändert 55° 1,55 s 
3 × lastseitige  

Massenträgheit 56° 1,78 s 

2 × mittlere 
Massenträgheit 62° 2,5 s 

 

 

Die größten Überschwinger und längsten Ausregelzeiten treten sowohl für den 
Führungsgrößen- als auch für den Lastmomentsprung bei allen Loseeinstellungen mit 
der verdoppelten mittleren Masse auf, da diese die absolut größte Veränderung des 
Prüfstandes darstellt. 

Wie zu erkennen ist, hat die Lose in dem hier untersuchten Fall keinen nennenswerten 
Einfluss auf das Führungsverhalten des unveränderten Prüfstandes. Bei einem Last-
sprung zeigen sich für die unterschiedlichen Einstellungen der Losekupplung etwas 
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größere Unterschiede in den Ergebnissen. Diese sind jedoch in der Hauptsache darauf 
zurückzuführen, dass das System in leicht unterschiedlichen Positionen zunächst zum 
Stillstand kommt und die Haftreibung erneut überwinden muss.  

Ein Vergleich von Bild 5.4 bis Bild 5.9 zeigt außerdem, dass der prinzipielle Verlauf der 
Sprungantworten durch die Lose nicht wesentlich verändert wird. Dagegen kann die 
jeweilige spezielle Kombination von Lose, Haftreibung und zulässiger Toleranz zu 
verhältnismäßig langen Ausregelzeiten führen, wenn das System im konkreten Fall 
zufällig außerhalb der zulässigen Toleranz in der Haftreibung „stecken bleibt“. Eine 
Haftreibungskompensation erscheint daher wünschenswert. Möglichkeiten dazu 
werden in Abschn. 7 behandelt. 

5.2.2 Reglerentwurf mit einem Ersatzmodell vom Typ MV/FZ 

Analog zu Abschn. 5.2.1 wird für den Prüfstand ein Zweimassenersatzmodell vom 
Typ MV/FZ als Entwurfsmodell für den Regler berechnet. Im Gegensatz zu dem in 
Abschn. 5.2.1 verwendeten Ersatzmodell wird bei dem Ersatzmodell vom Typ MV/FZ 
die Federkonstante durch Zusammenfassen der Elastizitäten der Originalsysteme 
bestimmt.  

Der Entwurf der Regler für die weiteren Untersuchungen erfolgt auf Basis dieses 
Ersatzmodells vom Typ MV/FZ, wieder mit dem Verfahren der -Iteration. 

Da bei einem Ersatzmodell vom Typ MV/FZ die Resonanzfrequenz des Ersatzsystems 
nicht mit der kleinsten Resonanzfrequenz des Originalsystems übereinstimmt, ergibt 
sich in diesem Bereich eine größere Modellunsicherheit. Daher wurden für die 
Reglerauslegung mit einem Ersatzmodell vom Typ MV/FZ die Gewichtungsfunktionen 
angepasst. Die Gewichtungsfunktion W2 muss konservativer gewählt werden als bei 
einem Ersatzmodell vom Typ MV/FR. Dies führt dazu, dass auch W1 angepasst 
werden muss, wodurch das geforderte Führungsverhalten etwas langsamer wird. 

Die folgenden Gewichtungsfunktionen wurden für den Reglerentwurf nach Ersatz-
modell Typ MV/FZ gewählt: 
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Wie zuvor wurde der mit einem Ersatzmodell vom Typ MV/FZ berechnete Regler 
zunächst simulatorisch überprüft und anschließend auf dem Prüfstand implementiert 
und experimentell untersucht. Auch für diesen Regler wurden die Sprungantworten 
des geregelten Systems für einen Führungsgrößensprung und einen Lastmoment-
sprung des robust geregelten Dreimassensystems aufgenommen. Zusätzlich zu dem 
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unveränderten Dreimassensystem, wurden wieder die Fälle mit dreifacher lastseitiger 
Massenträgheit und einer etwa doppelt so großen mittleren Massenträgheit 
untersucht. Alle Messungen wurden jeweils für 0°, 1° und 2° Lose durchgeführt. Die 
Antworten des Systems ohne Lose sind in Bild 5.10 bzw. Bild 5.11 dargestellt.  

Der unveränderte Prüfstand antwortet auf den Führungsgrößensprung mit einem 
Überschwinger von 19°. Das System benötigt im Vergleich zum Regler nach Ersatz-
modell Typ MV/FR etwas länger, um nach dem ersten Halt die Haftreibung wieder zu 
überwinden. Nach 1,18 s ist der Lagesollwert auf ±1° genau erreicht. Bei einem Last-
momentsprung von 5 Nm weicht das System um maximal 80° nach unten vom Sollwert 
ab und ist nach 2,5 s auf 1° genau ausgeregelt.  

Eine Verdreifachung der lastseitigen Massenträgheit führt auch mit einem Regler nach 
Ersatzmodell Typ MV/FZ in allen Fällen zu stärkeren Schwingungen als für das 
unveränderte System. 

Für eine etwa doppelt so große mittlere Massenträgheit treten die im Vergleich zum 
unveränderten System stärksten Schwingungen auf. Der maximale Überschwinger bei 
einem Sollwertsprung ist hier 110° groß. Erst nach 2,8 s erreicht das System den 
Sollwert mit einer Abweichung von ≤1°. Auch beim Lastsprung ergeben sich hier die 
stärksten Schwingungen. Die maximale Abweichung beträgt 90° und die 
Schwingungen des Systems sind erst nach 3,2 s so weit abgeklungen, dass die 
aktuelle Lage weniger als 1° von der Solllage entfernt bleibt. 

Die Sprungantworten mit einer Einstellung der Losekupplung von 1° Lose sind in  Bild 
5.12 und Bild 5.13 gezeigt. Der grundsätzliche Verlauf der Sprungantworten ähnelt in 
allen Fällen dem System ohne Lose. Für den Fall der dreifachen lastseitigen Massen-
trägheit zeigt die Führungssprungantwort ebenfalls keine nennenswerten 
Unterschiede zum System ohne Lose. Bei einem Störsprung vergrößert sich die 
maximale Abweichung auf 89°. Die Ausregelzeit ist mit 1,78 s dagegen kürzer.  
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Bild 5.10:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 0° Lose 
 

 
Bild 5.11:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 0° Lose 
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Bild 5.12:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 1° Lose 
 

 
Bild 5.13:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 1° Lose 
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Bei 2° Lose ergeben sich die in Bild 5.14 bzw. Bild 5.15 gezeigten Sprungantworten. 
Das unveränderte Dreimassensystem wird mit 2° Lose bei einem 
Führungsgrößensprung in 1,25 s auf 1° genau positioniert. Der maximale 
Überschwinger ist 18° groß. Bei einem Lastsprung von 5 Nm wird das System in 2,38 s 
auf 1° genau positioniert. Die maximale Abweichung beträgt 78°.  

Eine dreifache lastseitige Massenträgheit bewirkt wieder ein stärkeres Überschwingen 
bzw. eine stärkere maximale Abweichung vom Sollwert gegenüber dem unveränderten 
Dreimassensystem.  

Die Verdoppelung der mittleren Masse führt im Vergleich zum unveränderten System 
mit 2° Lose zu stärkeren Überschwingern und längeren Ausregelzeiten. Bei einem 
Sollwertsprung ergeben sich ein maximaler Überschwinger von 111° und eine 
Ausregelzeit von 2,9 s. Für den Lastsprung ist die maximale Abweichung 90° groß und 
das System erreicht seinen Sollwert nach 3,3 s wieder mit einer Genauigkeit von ±1°. 

Die gemessenen Ausregelzeiten haben allerdings nur begrenzte Aussagekraft, da das 
System in allen Fällen an der Grenze des Toleranzbereichs von ±1° in die Haftreibung 
gerät. Wenn das System zufällig außerhalb der Toleranz zum Stillstand kommt, erhöht 
sich die Ausregelzeit um die Zeit, die benötigt wird, die Haftreibung zu überwinden. 
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Bild 5.14:  Messung – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 2° Lose 

 
Bild 5.15:  Messung – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 2° Lose 

Tabelle 5.2 zeigt die Ergebnisse der Messungen mit dem Regler auf Basis von Ersatz-
modell vom Typ MV/FZ. Dargestellt sind, wie beim Regler nach Ersatzmodell vom 
Typ MV/FR, die Art des Versuchs (Führungsgrößen- bzw. Lastmomentsprung), die 
Einstellung der Losekupplung, der Zustand des Systems (unverändert, mit dreifacher 
lastseitiger Massenträgheit bzw. mit doppelter mittlerer Masse), die Größe des 
maximalen Überschwingers und die Zeit, bis das System auf ±1° genau ausgeregelt 
ist. 
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Tabelle 5.2: Messung - Prüfstand mit Regler nach Ersatzmodell Typ MV/FZ 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 19° 1,18 s 
3 × lastseitige 

Massenträgheit 65° 1,9 s 

2 × mittlere 
Massenträgheit 110° 2,8 s 

1° 

unverändert 18° 1,22 s 
3 × lastseitige  

Massenträgheit 65° 1,4 s 

2 × mittlere 
Massenträgheit 111° 3 s 

2° 

unverändert 18° 1,25 s 
3 × lastseitige  

Massenträgheit 65° 1,36 s 

2 × mittlere 
Massenträgheit 111° 2,9 s 

Last-
moment-
sprung 

0° 

unverändert 80° 2,5 s 
3 × lastseitige  

Massenträgheit 86° 2,5 s 

2 × mittlere 
Massenträgheit 90° 3,2 s 

1° 

unverändert 79° 2,7 s 
3 × lastseitige  

Massenträgheit 89° 1,78 s 

2 × mittlere 
Massenträgheit 90° 3,3 s 

2° 

unverändert 78° 2,38 s 
3 × lastseitige  

Massenträgheit 85° 1,8 s 

2 × mittlere 
Massenträgheit 90° 3,3 s 

 

Eine dreifache lastseitige Massenträgheit bewirkt bei Einsatz eines Reglers nach 
Ersatzmodell Typ MV/FZ ebenso wie bei einem Regler nach Typ MV/FR in allen Fällen 
ein stärkeres Überschwingen und eine stärkere maximale Abweichung vom Sollwert 
sowie eine längere Ausregelzeit gegenüber dem unveränderten Dreimassensystem. 
Die Verdoppelung der mittleren Massenträgheit führt aufgrund der größeren, absoluten 
Massenänderung wieder zu den stärksten Überschwingern und längsten Ausregel-
zeiten.  
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Insgesamt zeigt Regler nach Ersatzmodell Typ MV/FZ etwas längere Ausregelzeiten 
als der nach Ersatzmodell Typ MV/FR berechnete. Die gemessenen Zeiten sind 
allerdings nur bedingt aussagekräftig. Die gemessenen Ausregelzeiten werden stark 
davon beeinflusst, ob das System zufällig knapp innerhalb oder noch knapp außerhalb 
der zulässigen Toleranzgrenzen von ±1° in die Haftreibung gerät. Im letzteren Fall geht 
die zum Überwinden der Haftreibung notwendige Zeit mit in die Ausregelzeit ein. 
Allgemein reagiert der Regler nach Ersatzmodell Typ MV/FZ auf einen Regelfehler mit 
einer geringeren Änderung der Stellgröße. Dadurch wird zwar der maximale 
Überschwinger bei einem Sollwertsprung geringer, andererseits vergrößert sich 
jedoch die maximale Abweichung im Falle eines Lastmomentsprungs. 

5.3 H∞-Regler mit zusätzlichem Beobachter 

In der Praxis steht häufig keine Positionsmessung an der Lastseite zur Verfügung, 
sondern es wird lediglich die Position der Antriebsmaschine erfasst. Für die robuste 

H∞-Regelung müssen jedoch alle Systemzustände bekannt sein. Die nicht messbaren 
Zustände müssen also aus den messbaren berechnet werden. Diese Berechnung 
erfolgt über Beobachterstrukturen. Die geschätzten Zustände werden anschließend 
zusammen mit den gemessenen zurückgeführt und zur Regelung verwendet. 

Eine der bekanntesten Beobachterstrukturen ist der Luenberger-Beobachter [30]. Der 
Grundgedanke ist, die Zustände aus den allgemeinen Systemgleichungen  

 x A x B u 
    (5.16) 

 y C x D u 
    (5.17) 

und der bekannten Eingangsgröße u zu berechnen, indem parallel zum realen System 
ein mathematisches Modell berechnet wird. Ist das Modell korrekt und sind alle 
Eingangsgrößen bekannt, kann das Systemverhalten berechnet werden und die nicht 
messbaren Zustände können aus dem Parallelmodell ausgelesen werden. Dies setzt 
jedoch die exakte, vollständige Kenntnis der Anfangszustände aller Zustandsvariablen 
voraus, die meist nicht gegeben ist. Fehlerhafte Anfangszustände führen auch bei 
exakter Modellierung und genauer Kenntnis der Eingangsgrößen zu Abweichungen 
der Zustandsvariablen zwischen realem System und Parallelmodell. Es ist daher 
notwendig, die Abweichungen der Anfangszustände zu berücksichtigen und so die 
berechneten Schätzwerte den tatsächlichen Zustandswerten anzugleichen. 

 

Dazu werden bei einem Luenberger-Beobachter die messtechnisch erfassbaren 
Größen des realen Systems my

  mit den entsprechenden berechneten Größen 
verglichen und aus der Differenz über eine Matrix L eine Korrektur für das 
mathematische Modell berechnet. Die Struktur eines solchen Luenberger-
Beobachters zeigt Bild 5.16. 
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Bild 5.16: Struktur eines Luenberger-Beobachters 

Der Vektor der geschätzten Zustände wird mit x̂
  bezeichnet, um ihn vom realen 

Zustandsvektor x
  zu unterscheiden.  

Betrachtet man die messbaren Größen als Ausgangsgrößen des Systems, können 
diese über die Ausgangsgleichung (5.17) mit einer entsprechend gewählten Matrix Cm 
über die Systemzustände dargestellt werden. 

Es gilt also für die realen Größen: 

 m my C x
   (5.18) 

Bzw. für die geschätzten Größen: 

 ˆ ˆ
m my C x
   (5.19) 

Die Systemgleichung (5.16) wird um die Korrekturmatrix L sowie die Differenz ˆ
m my y
   

erweitert und lautet dann: 

  ˆ ˆ ˆ
m mx A x B u L y y   

      (5.20) 

Mit (5.19) kann dies wie folgt zusammengefasst werden: 

  ˆ ˆ
m mx A LC x B u L y   

     (5.21) 

Der eigentliche Beobachterentwurf besteht nun darin, die Beobachtermatrix L so zu 
wählen, dass die Anfangsfehler abklingen und sich die geschätzten Zustände den 
realen möglichst genau annähern. 

Die Bestimmung der Beobachtermatrix L kann nach [22] auf den Entwurf einer fiktiven 
Zustandsregelung zurückgeführt werden. 
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Dieser fiktive Reglerentwurf kann nach bekannten Verfahren, wie z. B. der Polvorgabe 
nach der Ackermann-Formel durchgeführt werden (s. [21], [22]).  

Um dem generellen Ziel dieser Arbeit einer möglichst geringen Ordnung der Regler-
struktur Rechnung zu tragen, wird der Beobachter nicht für das vollständige System-
modell, sondern ebenso wie der Regler für das reduzierte Ersatzsystem entwickelt. 
Die messbaren Größen sind lediglich Position und Geschwindigkeit auf der Antriebs-
seite. Die Größen auf der Lastseite des Ersatzsystems werden über den Beobachter 
geschätzt. 

Die Pole des Beobachters werden dabei so vorgegeben, dass dieser ca. 2 bis 6 mal 
schneller reagiert, als das zu beobachtende System [31]. Dadurch kann der 
Beobachter die Zustände ausreichend schnell ermitteln und die Schätzwerte können 
für eine Zustandsrückführung Verwendung finden. 

Wird ausschließlich ein Luenberger-Beobachter für die Zustände der Lastseite N2, N2 
eingesetzt, zeigt der mit diesem Beobachter zusammen genutzte Regler zwar ein 
gutes Führungsverhalten, beim Auftreten von Lastmomenten schätzt der Beobachter 
die lastseitigen Zustände jedoch fehlerhaft. 

Das Lastmoment als Störgröße ist in der zum Beobachterentwurf verwendeten 
Systembeschreibung nicht berücksichtigt. Diese Vernachlässigung in der Modell-
bildung kann durch den Beobachter nicht ausgeglichen werden [31]. Dadurch entsteht 
bei auftretendem Störmoment ein großer Schätzfehler. Folglich gelingt es dem 
zusammen mit diesem Beobachter eingesetzten Regler nicht, die tatsächliche Lage 
der Lastseite auf den gewünschten Sollwert einzuregeln. 

Da es sich hierbei um ein grundsätzliches Problem dieses Beobachterentwurfs 
handelt, wird hier auf eine ausführliche Darstellung der Ergebnisse verzichtet. 
Beispielhaft werden lediglich die Ergebnisse der gemessenen Sprungantwort des Drei-
massensystems auf einen Lastmomentsprung bei 0° Lose und einer Regler-
Beobachterkombination nach Ersatzmodell Typ MV/FR beschrieben.  

Nach einem Lastmomentsprung von 5 Nm, also 50% des Nennmoments bleibt das 
System zwar stabil und schwingt sich auf einen stationären Zustand ein, es stellt sich 
jedoch eine bleibende Regelabweichung von 11,2° ein.  

Der reine Luenberger-Beobachter ist für eine Verwendung zusammen mit einer 
robusten Lageregelung auf der Basis eines reduzierten Ersatzsystems ungeeignet.  

5.3.1 Beobachter für die Lastseite und die Störgröße 

Da das unbekannte Lastmoment beim reinen Luenberger-Zustandsbeobachter zu 
großen Schätzfehlern führt, ist es notwendig, diese Störgröße in den Beobachter-
entwurf einzubeziehen und diese ebenfalls zu beobachten. 

Für den Entwurf eines solchen Störbeobachters wird die Systembeschreibung um ein 
entsprechendes Störmodell erweitert [22], [32].  
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Allgemein gilt für ein System, auf das über eine Störeingangsmatrix E Störgrößen z


 
wirken: 
 x A x B u E z  

     (5.22) 

 y C x
   (5.23) 

Es wird davon ausgegangen, dass das Verhalten der Störgrößen z


 durch ein 
Störmodell in folgender Form beschrieben werden kann: 

  s s sx A x
   (5.24) 

  s sz C x
  (5.25) 

Damit kann nun allgemein ein gemeinsames, erweitertes System aufgestellt werden: 

 
  

ꞏ ꞏ
0 0

s

s ss

erwerwerwerw
BxAx

A E C x Bx
u

A xx

       
        

     


 



 (5.26) 

  0 ꞏ
s

erwC

x
y C

x

 
  

 




  (5.27) 

Im hier vorliegenden Falle ist die Störgröße das Lastmoment mL. Dessen zeitlicher 
Verlauf ist unbekannt. Für die Modellierung des Verhaltens der Störgröße wird daher 
vereinfachend angenommen, dass sie abschnittsweise konstant ist, also 0Lz m   
gilt. 

Das Lastmoment wirkt im Ersatzmodell auf 2N : 

 2 _ 1 _ 2 2 _ 2
2 2 2 2

1 1 1 1
N N ers N L ers N N ers N L

ers ers ers ers

C R C m
T T T T

    
     (5.28) 

 

Damit gilt für das Lastmoment mL als Störgröße: 

  s Lx z m   (5.29) 

 

2

0

0

1

0

 

ers

E

T

 
 
 
  
 
 
 
 

 (5.30) 

 0sA   (5.31) 

 1sC   (5.32) 
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Für das um das Lastmoment erweiterte Ersatzsystem ergibt sich damit: 

 

1

1

2

2

N

N

Nerw

N

L

x

m






 
 
 
 
 
 
 
 


 (5.33) 

 

1

1

0

0

0

0

ers

ers

T

B

 
 
 
 

  
 
 
  
 

 (5.34) 

 

_ 1 _ _
1 1

0

_ _ 2 _
2 2 2 2

0

1 1
0 0

0 0 0 0

1 1 1 1
0

0 0 0 0

0 0 0 0 0

L ers N ers N ers
ers ers

N ers L ers N ers
ers ers ers ers

erw

R C C
T T

C R
T

A C
T T T





 
 
 
 
 





    
 
 
 
 
 

 (5.35) 

Für dieses erweiterte System kann nun wiederum ein Beobachter berechnet werden. 

Das grundsätzliche Ziel dieser Arbeit ist es, einen robusten Regler niedriger Ordnung 
zu entwerfen. Daher soll auch die Systemordnung des Beobachters möglichst klein 
sein. Es bietet sich daher an, die messbaren Zustände der Antriebsseite aus dem 
Parallelmodell des Beobachters zu eliminieren und so einen reduzierten Beobachter 
zu entwerfen [22], [31], [32]. 

Dazu wird das erweiterte System so aufgeteilt, dass sich die zu beobachtenden 
Zustände im Teilvektor 2x

  und die durch Messung ermittelbaren Zustände im 

Teilvektor 1x
  befinden (s. [22], [32]): 

 1 11 12 1

2 21 22 2

x A A B
u

x A A B

     
      

     




  , (5.36) 

mit 

 1
1

1

N

N

x



 
  
 

  , (5.37) 
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2

2 2

N

N

L

x

m




 
   
 
 

  ; und (5.38) 

 _ 1 _
1 111

0

1 1

0

L ers N ers
ers ers

R C
T TA



  
   
 
 

 , (5.39) 

 _
112

1
0 0

0 0 0

N ers
ers

C
TA

 
    
 

 , (5.40) 

 

_
2

21

1

0 0

0

0 0

N ers
ers

C
T

A

 
 
 
 
 
 
 
 

 , (5.41) 

 

_ 2 _
2 2 2

22 0

1 1 1

0 0

0 0 0

L ers N ers
ers ers ers

R C
T T T

A 

   
 
 
 
 
 
 
 

 , (5.42) 

 11

1

0
ersTB

 
    
 

 , (5.43) 

 2

0

0

0

B

 
   
 
 

. (5.44) 

Mit der Definition 2 1
ˆr x L x 

    lautet die Zustandsraumbeschreibung für den 
reduzierten Beobachter ([22]): 

       22 12 2 1 22 12 21 11 1r A LA r B LB u A LA L A LA x       
    (5.45) 

 2 1 x̂ r Lx 
    (5.46) 

Die Bestimmung der Matrix L erfolgt wie beim Luenberger-Beobachter durch 
Polvorgabe. 
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5.3.2 Regler- und Beobachter nach Ersatzmodell Typ MV/FR 

Wie bereits erwähnt, erfolgt auch der Beobachterentwurf auf Basis eines reduzierten 
Zweimassenersatzmodells. Damit kann auch der Beobachter entweder mit einem 
Ersatzmodell vom Typ MV/FR oder vom Typ MV/FZ berechnet werden. Es ist daher 
möglich, Regler und Beobachter entweder auf Basis des gleichen Ersatzmodells zu 
entwerfen oder unterschiedliche Typen von Ersatzmodellen für den Regler- und den 
Beobachterentwurf zu verwenden. Im Folgenden sollen zunächst ein Regler und ein 
Beobachter, die beide auf Basis von Ersatzmodell Typ MV/FR berechnet wurden 
untersucht werden. Der Regler verwendet dabei lediglich die geschätzten Zustände an 
der Lastseite N2, N2. Es ist grundsätzlich auch möglich, das geschätzte Lastmoment 
ˆ Lm  für eine Störgrößenaufschaltung zu nutzen. Da die Stellgröße auf die Antriebs-

seite, die Störgröße aber auf die Lastseite wirkt, müsste das geschätzte Lastmoment 
vor der Aufschaltung durch Übertragungsfunktionen mit differenzierendem Verhalten 
auf die Antriebsseite umgerechnet werden. Dies ist bezüglich der robusten Stabilität 
problematisch. Weiterhin ist ohne eine solche Störgrößenaufschlatung eine bessere 
Vergleichbarkeit der Ergebnisse mit denen der Regelung bei Messung aller Zustände 
gegeben. 

Das Gesamtsystem hat somit die in Bild 5.17 gezeigte Struktur. Der Regler entspricht 
dabei dem in Bild 3.9 dargestellten, der Beobachter hat intern die in Gl. (5.45), (5.46) 
beschriebene Struktur. 

 
Bild 5.17: Struktur des Systems mit Regler und reduziertem Beobachter 

Der nach dem Ersatzmodell vom Typ MV/FR entworfene reduzierte Störbeobachter 
wurde anschließend zusammen mit dem entsprechenden Regler nach Ersatzmodell 
Typ MV/FR auf dem Prüfstand implementiert. Ebenso wie im Falle der Messung aller 
Zustände wurden auch für den Regler mit Beobachter Messungen an diesem Drei-
massensystem durchgeführt.  

Gemessen wurden die Sprungantworten des lagegeregelten Systems auf einen 
Führungsgrößensprung von einer Umdrehung sowie auf einen Lastmomentsprung von 
5 Nm. Weiterhin wurden die Sprungantworten des Systems mit der dreifachen 
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lastseitigen Massenträgheit und der doppelten, mittleren Massenträgheit aufge-
nommen. Alle Messungen wurden wieder mit jeweils 0°, 1° und 2° Lose durchgeführt. 
Beispielhaft sind die Messergebnisse mit 0° Lose in Bild 5.18 und Bild 5.19 dargestellt.  

 
Bild 5.18:  Messung – Führungssprung mit Regler und Bobachter nach  

Ersatzmodell Typ MV/FR bei 0° Lose 

Der unveränderte Prüfstand antwortet auf den Führungsgrößensprung mit einem 
Überschwinger von 28,6°. Nach 0,77 s ist der Lagesollwert auf ±1° genau erreicht. Bei 
der dreifachen lastseitigen Massenträgheit schwingt das System etwas stärker. Mit 
einem maximalen Überschwinger von 83° benötigt das System 1,7 s bis es 
ausgeregelt ist. 

Im Falle der doppelt so großen mittleren Massenträgheit treten, wie erwartet, die 
stärksten Schwingungen auf, da dies die absolut größte Veränderung gegenüber dem 
nominellen System darstellt. Der maximale Überschwinger bei einem Sollwertsprung 
ist hier 148° groß. Erst nach 3,2 s erreicht das System den Sollwert mit einer 
Abweichung von ≤1°. 
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Bild 5.19:  Messung – Lastsprung mit Regler und Beobachter nach 

Ersatzmodell Typ MV/FR bei 0° Lose 

Bei einem Lastmomentsprung von 5 Nm weicht das unveränderte System um maximal 
61,1° nach unten vom Sollwert ab. Es zeigt sich, dass auch hier der Lagesollwert nicht 
wieder auf ±1° genau erreicht wird. Es stellt sich eine bleibende Regelabweichung von 
ca. 5,4° ein. Diese ist zwar geringer als beim Luenberger-Beobachter, aber immer 
noch außerhalb der zulässigen Toleranzgrenzen. 

Auch im Falle der dreifachen lastseitigen Massenträgheit und der doppelten mittleren 
Massenträgheit erreicht das System die Sollposition nicht wieder. Ebenfalls werden, 
wie zu erwarten war, die Schwingungen mit zunehmender Abweichung des realen 
Systems vom Ersatzmodel größer. Die maximale Abweichung beträgt bei dreifacher 
lastseitiger Massenträgheit 63° und bei doppelter mittlerer Massenträgheit 65,5°. 

Die bleibende Regelabweichung bei auftretendem Lastmoment, die sich bei einem 
Regler mit reduziertem Beobachter nach Ersatzmodell Typ MV/FR einstellt, wird durch 
eine nicht korrekte Schätzung der Torsion verursacht. Dieser Schätzfehler liegt in der 
Art des verwendeten Ersatzmodells Typ MV/FR begründet. Bei diesem Ersatzmodell 
wird die Ersatzfederkonstante so berechnet, dass das Ersatzsystem die gleiche 
Resonanzfrequenz hat wie das Originalsystem (s. Abschn. 4.2.1). Diese angepasste 
Federkonstante ermöglicht zwar bei der Reglerauslegung die Berücksichtigung der 
realen Resonanzfrequenz des Originalsystems, bildet aber die Torsion des realen 
Systems nicht korrekt ab. Entsprechend wird ein Beobachter auf Basis eines 
Ersatzsystems vom Typ MV/FR stets eine falsche Torsion der Welle und somit eine 
falsche Lage der Lastseite schätzen. Da dieses Problem bei einem Beobachter auf 
Basis von Ersatzmodell Typ MV/FR immer auftritt, sind die Sprungantworten des 
Systems für 1° und 2° Lose nicht mehr abgebildet. Tabelle 5.3 zeigt die Ergebnisse für 
alle Loseeinstellungen zusammengefasst. 
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Tabelle 5.3: Messung - Prüfstand mit Regler und reduziertem Beobachter nach 
Ersatzmodell Typ MV/FR 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 28,6° 0,77 s 
3× lastseitige  

Massenträgheit 83° 1,7 s 

2× mittlere 
Massenträgheit 148° 3,2 s 

1° 

unverändert 30,5° 4,5 s 
3× lastseitige  

Massenträgheit 82,8° 4,77 s 

2× mittlere 
Massenträgheit 146° 3,34 s 

2° 

unverändert 26,5° 1,43 s 
3× lastseitige  

Massenträgheit 84,5° 1,58 s 

2× mittlere 
Massenträgheit 145° 3,18 s 

Last-
moment-
sprung 

0° 

unverändert 61,1° --- 
3× lastseitige  

Massenträgheit 63° --- 

2× mittlere 
Massenträgheit 65,5° --- 

1° 

unverändert 62,5° --- 
3× lastseitige  

Massenträgheit 66,7° --- 

2× mittlere 
Massenträgheit 61,5° --- 

2° 

unverändert 61,4° --- 
3× lastseitige  

Massenträgheit 72,5° --- 

2× mittlere 
Massenträgheit 63,5° --- 

 

Die maximalen Überschwinger der Führungsgrößensprungantwort mit Regler und 
Beobachter nach Ersatzmodell Typ MV/FR sind in allen betrachteten Fällen größer als 
die, welche mit dem entsprechenden Regler bei direkter Rückführung aller Zustände 
erreicht wurden. Auch die maximale Abweichung bei einem Lastsprung ist in allen 
Fällen größer. Dies kann damit begründet werden, dass der Beobachter die Lage der 
Lastseite aus den Zuständen der Antriebsseite ermitteln muss und die Regelung so 
erst reagieren kann, wenn eine Veränderung der Antriebsseite eintritt. Dagegen kann 
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der Regler aus Abschn. 5.2.1 direkt auf Änderungen der lastseitigen Lage reagieren. 
Die Ausregelzeiten des Sollwertsprungs sind fast alle mit den entsprechenden aus 
Abschn. 5.2.1 vergleichbar. Bei 1° Lose benötigen das unveränderte System und das 
System mit dreifacher lastseitiger Massenträgheit jedoch deutlich länger. Dies wird 
dadurch verursacht, dass das System in diesem Fall zufällig knapp außerhalb der 
zulässigen Lagetoleranz stehenbleibt und dort längere Zeit in der Haftreibung verharrt. 
Es hat somit keine grundsätzliche Bedeutung.  

Der Lastsprung konnte in keinem Fall erfolgreich ausgeregelt werden. Der Beobachter 
nach Ersatzmodell Typ MV/FR schätzt einen falschen Torsionswinkel, wenn ein 
Lastmoment einwirkt, da die Federkonstante des Ersatzmodells Typ MV/FR aufgrund 
der Berechnung entsprechend der Resonanzfrequenz die Torsion des realen Systems 
nicht korrekt abbildet. 

 

5.3.3 Regler- und Beobachter nach Ersatzmodell Typ MV/FZ 

Ein auf Basis von Ersatzmodell Typ MV/FZ berechneter, reduzierter Beobachter 
verspricht bessere Ergebnisse, da bei diesem Ersatzmodell die Ersatzfederkonstante 
durch Zusammenfassen der Federkonstanten des Originalsystems gebildet wird. 
Dadurch wird das Torsionsverhalten besser abgebildet, als bei Ersatzmodell 
Typ MV/FR. Im Falle einer auftretenden Lose ist auch hier kein vollständiges 
Ausregeln einer auftretenden Störung zu erwarten, da die nichtlineare Lose vom 
Beobachter nicht erfasst wird.  

Der nach Ersatzmodell Typ MV/FZ berechnete Beobachter wird zusammen mit dem 
Regler auf Basis von Ersatzmodell Typ MV/FZ aus Abschn. 5.2.2 eingesetzt.  

Diese Regler-Beobachter-Kombination wurde ebenfalls auf dem Prüfstand implemen-
tiert und zur Regelung dieses Dreimassensystems eingesetzt. Das Führungsverhalten 
wurde wiederum durch eine sprungförmige Änderung der Sollposition von einer 
Umdrehung untersucht. Zur Ermittlung des Störverhaltens wurde ein Lastmoment-
sprung von 5 Nm aufgeschaltet. Weiterhin wurden die Sprungantworten wieder sowohl 
mit dreifacher Massenträgheit auf der Lastseite als auch der doppelten Trägheit der 
mittleren Masse aufgenommen. Alle Messungen wurden jeweils für 0°, 1° und 2° Lose 
durchgeführt, um die Robustheit der Regelung bewerten zu können.  

In Bild 5.20 und Bild 5.21 sind exemplarisch die Verläufe für einen Führungsgrößen-
sprung bzw. einen Lastsprung bei 0° Lose gezeigt. 
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Bild 5.20:  Messung – Führungssprung mit Regler und Bobachter nach  

Ersatzmodell Typ MV/FZ bei 0° Lose 

 
Bild 5.21:  Messung – Lastsprung mit Regler und Beobachter nach 

Ersatzmodell Typ MV/FZ bei 0° Lose 

Für das nominelle System zeigt sich in Bild 5.20 auf einen Führungsgrößensprung bei 
Einsatz eines Reglers und Beobachters, die jeweils nach einem Ersatzmodell 
Typ MV/FZ entworfen wurden, ein maximaler Überschwinger von 20,5°. Die Ausregel-
zeit beträgt 1,2 s. Der Verlauf der Sprungantwort ist insgesamt vergleichbar mit dem, 
den das System mit einem Regler nach Ersatzmodell Typ MV/FZ bei direkter Messung 
aller Zustände zeigt (s. Bild 5.10). 
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Auch die Verläufe der Sprungantworten der Systeme mit verdreifachter Trägheit auf 
der Lastseite bzw. verdoppelter Trägheit der mittleren Masse sind ähnlich zu denen, 
die sich mit diesem Regler bei direkter Messung aller Zustände anstelle der 
beobachteten Größen ergeben. Bei dreifacher Lastträgheit zeigt sich ein maximaler 
Überschwinger von 70,5° bei einer Ausregelzeit von 1,8 s. Bei doppelter Trägheit der 
mittleren Masse ist der Überschwinger maximal 116° groß und die Ausregelzeit 2,6 s 
lang.  

Bild 5.21 zeigt die Antworten der Systeme mit Regler und Beobachter auf einen 
Lastmomentsprung von 5 Nm bei 0° Lose. Die Verläufe der Sprungantworten für das 
nominelle System und die modifizierten Systeme ähneln auch hier prinzipiell den 
entsprechenden, die bei direkter Messung aller Zustände erzielt wurden. Im Falle des 
unveränderten Systems zeigt der Regler mit Beobachter nach Ersatzmodell 
Typ MV/FZ jedoch eine um fast 7° größere maximale Abweichung von 86,7°. Die 
Ausregelzeit ist mit 1,8 s dagegen etwas kürzer. Für das veränderte System mit 
verdreifachter Lastträgheit zeigt sich eine um 1,8° größere maximale Abweichung von 
87,8° und eine Ausregelzeit von 3,3 s. Bei doppelter mittlerer Massenträgheit beträgt 
die maximale Abweichung vom Sollwert 87,9° und die Ausregelzeit 3,7 s. Auch diese 
Werte sind mit denen aus Abschn. 5.2.2 vergleichbar. 

Tabelle 5.4 zeigt zusammengefasst die Ergebnisse aller Messungen mit Regler und 
reduziertem Beobachter auf Basis von Ersatzmodell Typ MV/FZ. Wie bereits oben 
gezeigt wurde, entsprechen die Ergebnisse ohne Lose etwa denen, welche bei direkter 
Messung aller Zustände erreicht wurden. Tritt dagegen Lose auf, zeigt sich, dass der 
Regler mit reduziertem Beobachter nach Ersatzmodell Typ MV/FZ das System nicht 
sicher auf ±1° ausregeln kann, da der lineare Beobachter die nichtlineare Lose nicht 
erfassen kann. Innerhalb der Lose stellen Antriebs- und Lastseite zwei entkoppelte 
Systeme dar, so dass ohne zusätzliche Messungen die Position der Lastseite nicht 
genau bestimmt werden kann. Dies macht es zusammen mit der Unsicherheit der 
durch den Beobachter geschätzten Position, wie sie z. B. durch nicht exakt bekannte 
Federkonstanten verursacht werden können, bei den Versuchen mit 1° und 2° Lose 
unmöglich, die Last auf ±1° genau zu positionieren.  

Bei den Versuchen mit 1° und 2° Lose gelingt es dem Regler nicht, in allen Fällen das 
System wieder auf ±1° genau auszuregeln. So wurde das unveränderte System mit 
Lose 1° bzw. 2° Lose in keinem Fall auf ±1° genau positioniert. Hatte die Lose auf das 
Verhalten des mit einem nach Ersatzmodell Typ MV/FZ berechneten Reglers bei 
Messung aller Zustände in Abschn. 5.2.2 keinen nennenswerten Einfluss, so hat sie 
hier für die Regelung zusammen mit einem Beobachter nach Ersatzmodell Typ MV/FZ 
wesentlich größere Bedeutung.  

Zusammenfassend lässt sich sagen, dass der reduzierte Beobachter nach Ersatz-
modell Typ MV/FZ nur bei vernachlässigbar kleiner Lose geeignet ist, Lage und 
Drehzahl der Lastseite zu schätzen. 
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Tabelle 5.4:  Messung – Prüfstand mit Regler und reduziertem Beobachter nach 
Ersatzmodell Typ MV/FZ 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 20,5° 1,2 s 
3× lastseitige  

Massenträgheit 70,5° 1,8 s 

2× mittlere 
Massenträgheit 116° 2,6 s 

1° 

unverändert 24° --- 
3× lastseitige 

Massenträgheit 69° 1,9 s 

2× mittlere 
Massenträgheit 114° 2,9 s 

2° 

unverändert 24,6° --- 
3× lastseitige  

Massenträgheit 71,6° 1,4 s 

2× mittlere 
Massenträgheit 118,7° --- 

Last-
moment-
sprung 

0° 

unverändert 86,7° 2,3 s 
3× lastseitige  

Massenträgheit 87,8° 3,3 s 

2× mittlere 
Massenträgheit 87,9° 3,7 s 

1° 

unverändert 87,2° --- 
3× lastseitige  

Massenträgheit 88,6° 3,1 s 

2× mittlere 
Massenträgheit 87,5° --- 

2° 

unverändert 91,8° --- 
3× lastseitige  

Massenträgheit 86,7° 2,9 s 

2× mittlere 
Massenträgheit 90,8° --- 
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5.3.4 Regler nach Ersatzmodell Typ MV/FR mit Beobachter nach 
Typ MV/FZ 

Ein Vergleich der Ergebnisse der Regler auf Basis des Ersatzmodells Typ MV/FR, also 
mit an die erste Resonanzfrequenz des ursprünglichen Systems angepasster Ersatz-
federkonstante (Abschn. 5.2.1) bzw. des Ersatzmodell vom Typ MV/FZ, also mit einer 
durch Zusammenfassen der Federkonstanten des Originalsystems berechneten 
Ersatzfederkonstante (Abschn. 5.2.2) zeigt, dass der Regler nach Ersatzmodell 
Typ MV/FR etwas schneller ist. Dies wird darauf zurückgeführt, dass bei der Regler-
berechnung nach Typ MV/FR geringere Modellunsicherheiten auftreten, als bei der 
Reglerberechnung nach Typ MV/FZ, da bei dem Ersatzmodell nach Typ MV/FR die 
Resonanzfrequenz mit dem Original übereinstimmt. 

Für den reduzierten Beobachterentwurf ist dagegen das Ersatzmodell Typ MV/FZ 
besser geeignet, da durch die Resonanzfrequenz angepasste Ersatzfederkonstante 
von Typ MV/FR eine falsche Torsion und somit auch eine falsche Position berechnet 
wird. Es erscheint sinnvoll, den Regler nach Ersatzmodell Typ MV/FR zusammen mit 
einem reduzierten Beobachter nach Ersatzmodell Typ MV/FZ einzusetzen. 

Diese Kombination aus Regler und Beobachter wurde ebenfalls am Prüfstand 
implementiert. Wie zuvor wurden die Sprungantworten des geregelten Dreimassen-
systems für einen Führungsgrößensprung von einer Umdrehung und für einen Last-
momentsprung von 5 Nm aufgenommen. Neben dem ursprünglichen Dreimassen-
system wurden auch für diese Kombination von Regler und Beobachter die 
modifizierten Systeme mit der dreifachen lastseitigen Massenträgheit, sowie etwa der 
doppelten mittleren Massenträgheit untersucht. Da der Regler mit Beobachter, wie in 
den vorhergehenden Abschnitten festgestellt, Systeme mit Lose nicht sicher ausregeln 
kann, wird hier nur der Fall ohne Lose untersucht.  

Die Antworten des Systems ohne Lose sind in Bild 5.22 für einen Sollwertsprung und 
in Bild 5.23 für einen Lastmomentsprung dargestellt.  

Das nominelle System hat bei einem Führungsgrößensprung nach 1,13 s und einem 
maximalen Überschwinger von 25° den Lagesollwert auf ±1° genau erreicht. Dabei 
kommt das System jedoch schon nach ca. 0,7 s mit einer Abweichung von 1,08° knapp 
außerhalb der zulässigen Lagetoleranz zunächst zum Stillstand und benötigt 
anschließend 0,33 s, um die Haftreibung zu überwinden und den Sollwert zu erreichen. 

Bei verdreifachter lastseitiger Trägheit benötigt das System 1,73 s um den Lagesoll-
wert zu erreichen. Der maximale Überschwinger ist mit 83° etwa gleich groß wie zuvor. 
Auch hier kommt das System schon nach 1,54 s mit einer Abweichung von 1,2° 
zunächst zum Stillstand und verharrt für ca. 0,2 s in der Haftreibung. Im Falle der etwa 
doppelt so großen mittleren Massenträgheit weist das System die längste Ausregelzeit 
(3,2 s) und den größten maximalen Überschwinger (144,8°) auf.  
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Bild 5.22:  Messung – Führungssprung mit Regler nach Ersatzmodell 

Typ MV/FR und Beobachter nach Ersatzmodell Typ MV/FZ  
bei 0° Lose 

 
Bild 5.23:  Messung – Lastsprung mit Regler nach Ersatzmodell Typ MV/FR  

und Beobachter nach Ersatzmodell Typ MV/FZ bei 0° Lose 

Bei einem Lastmomentsprung von 5 Nm weicht das nominelle System um maximal 
60,5° nach unten vom Sollwert ab. Die Ausregelzeit beträgt 1,6 s. Bei dem System mit 
verdreifachter Massenträgheit gelingt es der Regelung, den Sollwert in 2,18 s mit der 
gewünschten Genauigkeit von 1° wieder zu erreichen. Die maximale Abweichung 
beträgt 59,7°. Im Falle der verdoppelten mittleren Massenträgheit beträgt die maximale 
Abweichung 62,4°. Nach 3,25 s ist die Störung ausgeregelt.  
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Tabelle 5.5 zeigt eine Zusammenfassung der Ergebnisse. Dargestellt sind die Größe 
des maximalen Überschwingers und die Zeit bis zum Ausregeln auf 1° genau, jeweils 
für das unveränderte System, das System mit dreifacher lastseitiger Massenträgheit 
und das System mit etwa verdoppelter mittlerer Massenträgheit. 

 

Tabelle 5.5:  Messung – Prüfstand mit Regler nach Ersatzmodell Typ MV/FR 
und reduziertem Beobachter nach Ersatzmodell Typ MV/FZ  

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 25° 1,13 s 
3× lastseitige 

Massenträgheit 83° 1,7 s 

2× mittlere 
Massenträgheit 144,8° 3,2 s 

Last-
moment-
sprung 

0° 

unverändert 60,5° 1,6 s 
3× lastseitige  

Massenträgheit 59,7° 2,18 s 

2× mittlere 
Massenträgheit 62,4° 3,25 s 

 

Für die Führungsgrößensprünge sind für die Kombination eines Reglers nach Ersatz-
modell Typ MV/FR mit einem Beobachter nach Ersatzmodell Typ MV/FZ die 
maximalen Überschwinger alle etwas größer als beim Regler und Beobachter nach 
Typ MV/FZ. Die Ausregelzeiten sind für das unveränderte System und das System mit 
dreifacher lastseitiger Massenträgheit etwa gleich. In beiden Fällen kommt das System 
jedoch knapp außerhalb der zulässigen Lagetoleranz zunächst zum Stillstand und 
verharrt dort kurz in der Haftreibung. Bei der doppelten mittleren Massenträgheit ist die 
Ausregelzeit dagegen 0,6 s länger als die entsprechende Zeit in Abschn. 5.3.3, da das 
System hier stärker ins Schwingen gerät und entsprechend länger benötigt, bis die 
Schwingungen abgeklungen sind. 

Der Regler nach Ersatzmodell Typ MV/FR reagiert stärker und erzeugt eine höhere 
Stellgröße als der Regler nach Ersatzmodell Typ MV/FZ. Daher kommt es bei der 
Führungssprungantwort zu etwas höheren Überschwingern. Bei einem Lastmoment-
sprung sind die maximalen Abweichungen dagegen geringer, da der Regler hier sofort 
stärker gegensteuert. 
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6 Simulationsergebnisse der Regelung an einem 
Fünfmassensystem 

Nachdem die auf der Basis reduzierter Ersatzmodelle entworfenen H∞-optimalen 
Regler bei den Messungen am Prüfstand gute Ergebnisse für ein Originalsystem mit 
drei Massen zeigen, soll im Folgenden das Verhalten der Regelung für ein Original-
system höherer Ordnung untersucht werden. Da ein solches System real nicht zur 
Verfügung steht, wird hierfür ein unter Matlab/Simulink erstelltes Modell eines 
Fünfmassensystems genutzt. 

Der Vergleich der durchgeführten Messungen und Simulationen am Dreimassen-
system hat gezeigt, dass die Simulationen zwar Abweichungen aufweisen, die im 
Wesentlichen auf den Einfluss der nur ungenau bekannten Reibung zurückgehen, das 
wesentliche Verhalten des geregelten Systems jedoch richtig abbilden. Dies gilt 
sowohl für Führungsgrößen- als auch für Lastsprünge. Es erscheint daher zulässig, 
das Verhalten der auf Basis reduzierter Ersatzmodelle entworfenen robusten Regler 
im Zusammenspiel mit Originalsystemen höherer Ordnung in Simulationen zu 
untersuchen.  

Wie zuvor werden für das angenommene Fünfmassensystem reduzierte 
Entwurfsmodelle gebildet, Regler entworfen und die im vorherigen Abschnitt am 
Prüfstand durchgeführten Untersuchungen analog auch simulatorisch für das 
nichtlineare Streckenmodell des Fünfmassensystems durchgeführt.  

Bei der Wahl der Daten für dieses Simulationsmodell wurden zur besseren 
Vergleichbarkeit die Daten des realen Prüfstandes zu Grunde gelegt. Das Modell 
wurde jedoch um zwei weitere Massen und Torsionswellen in der Mitte erweitert. Da 
am realen Prüfstand drei Schwungscheiben als Optionen für die eine, dort vorhandene 
mittlere Position existieren, werden deren Massenträgheiten als die Trägheiten der 
fiktiven mittleren Massen des Fünfmassenmodells angenommen. Die simulierten 
Trägheiten, bzw. normierten Zeitkonstanten sind in Tabelle 6.1 dargestellt. 

Die normierten Werte der Federkonstanten, bzw. linearen Reibung ergeben sich zu: 

 1,2,3,4 1 ,3 38NC   (6.1) 

 1,2,3,4,5 0, 2LR   (6.2) 

Die normierte Haftreibung wird für das simulierte System wie folgt angenommen: 

 1,2,3,4,5 0,007hR   (6.3) 
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Tabelle 6.1:  Simulierte Trägheiten 

Antriebsmotor mit Losekupplung und Torsionswelle
2

1 35,7Kg cm   

1 0, 11215T   
(6.4) 

1. mittlere Masse (Welle mit Scheibe 1) 
2

2 136,5Kg cm   

2 0, 42883T   
(6.5) 

2. mittlere Masse (Welle mit Scheibe 2) 
2

3 251,9Kg cm   

3 0, 79011T   
(6.6) 

3. mittlere Masse (Welle mit Scheibe 3) 
2

4 516,3Kg cm 

4 1 2 ,62T   
(6.7) 

Lastmotor mit Torsionswelle 
2

5 63,9Kg cm   

5 0, 20075T   
(6.8) 

Für Fünfmassensystem ergibt sich somit jeweils ein entsprechendes Ersatzmodell. Die 
Modellunsicherheiten gegenüber den entsprechenden Originalsystemen unter-
scheiden sich jedoch. Daher wurden für das Fünfmassensystem leicht geänderte 
Gewichtungsfunktionen gewählt. 

 
7 10

1 9

5,58ꞏ10 10
( )

5,58ꞏ10 1

s
W s

s





, (6.9) 

 2
0,04333 0,003

( )
0,03333 1

 
s

W s
s





, (6.10) 

 3( ) 0,1W s   (6.11) 

6.1 H∞-Regler mit direkter Zustandsrückführung 

Wie zuvor messtechnisch am Dreimassenprüfstand geschehen, wird auch das oben 
beschriebene Fünfmassensystem zunächst zusammen mit einem H∞-Regler mit 
direkter Zustandsrückführung auf Basis reduzierter Entwurfsmodelle simuliert, um die 
Robustheit des Reglerentwurfs auf Basis eines vereinfachten Ersatzsystems 
gegenüber Strukturunsicherheiten zu untersuchen. Es werden sowohl Regler auf der 
Basis der Ersatzmodelle Typ MV/FR als auch MV/FZ betrachtet. Die normierten 
Parameter der entsprechenden Ersatzsysteme sind in Tabelle 6.2 aufgeführt. 
Wiederum werden die Antworten des geregelten Systems für einen Führungsgrößen- 
und einen Lastmomentsprung aufgenommen. Ebenso werden auch bei dem Fünf-
massensystem eine verdreifachte lastseitige Massenträgheit und verdoppelte Trägheit 
der mittleren Massen simuliert. Dadurch, dass beim Fünfmassensystem zwei 
zusätzliche Massen vorhanden sind, ergeben sich zwei zusätzliche Simulationen. 
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Weiterhin wird der Einfluss der dreifachen Massenträgheit der Antriebsseite 
untersucht. Alle Simulationen wurden sowohl mit 0°, 1° bzw. 2° Lose durchgeführt.  

Tabelle 6.2: Ersatzmodellparameter 
Ersatzmodell Parameter Typ MV/FR Typ MV/FZ 

2 3 4
1 1 2ers

T T T
T T

 
   1,5326 1,5326 

2 3 4
2 1 2ers

T T T
T T

 
   1,6212 1,6212 

N ersC  110,8455 34,5755 
 

6.1.1 Reglerentwurf mit einem Ersatzmodell vom Typ MV/FR 

Bei der Auswertung der Simulationen des mit dem nach Ersatzmodell Typ MV/FR 
entworfenen Reglers zeigte sich, dass die Lose, wie bei den Messungen am Prüfstand, 
auch für das Fünfmassensystem keinen wesentlichen Einfluss auf die grundsätzliche 
Form des Verlaufs der Sprungantworten hat. Daher sind lediglich die Sprungantworten 
des Reglers nach Ersatzmodell Typ MV/FR zusammen mit dem Fünfmassensystem 
bei 0° Lose in Bild 6.1 und Bild 6.2 dargestellt. Die Ergebnisse für alle 
Loseeinstellungen sind in Tabelle 6.3 aufgeführt. 

Die Ausregelzeit bei einem Führungsgrößensprung bei 0° Lose beträgt für das 
unveränderte System 1,67 s. Dabei schwingt das System um 40° über. Bei dem 
Lastsprung von 5 Nm weicht die Position des unveränderten Systems um maximal 44° 
vom Sollwert ab und der Regler benötigt 1,44 s um das System wieder auszuregeln.  

Im Falle der dreifachen lastseitigen Massenträgheit schwingt die Führungssprung-
antwort um 57° über und erreicht nach 2,4 s den Sollwert mit der gewünschten 
Genauigkeit. Der Lastmomentsprung führt in diesm Falle zu einer maximalen 
Abweichung von 44° und einer Ausregelzeit von 1,35 s. 

Die verschiedenen Varianten geänderter mittlerer Massenträgheiten (verdoppeltes 1 
bis 4) weisen bei einem Führunggrößensprung Ausregelzeiten zwischen 2,38 s und 
5,43 s auf. Die Sprungantwort schwingt zwischen 57° und 133° über (vergl. Tabelle 
6.3). Für den Lastmomentsprung liegen die maximalen Abweichungen zwischen 44° 
und 46°. Die Ausregelzeiten betragen zwischen 1,34 s und 3,58 s. Die größten 
Abweichungen und längsten Ausregelzeiten ergeben sich dabei mit verdoppeltem 4, 
da dies die absolut größte Änderung einer Masse ist. 

Eine Verdreifachung der antriebsseitigen Trägheit führt dagegen im Falle eines 
Führungsgrößensprungs zu einem maximalen Überschwinger von 48° und einer 
Ausregelzeit von 3,39 s, bzw. bei einem Lastsprung zu einer maximalen Abweichung 
von 44° und einer Ausregelzeit von 1,4 s. 
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Bild 6.1:  Simulation – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 0° Lose  

 
Bild 6.2:  Simulation – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR bei 0° Lose 
 

In Tabelle 6.3 finden sich die Simulationsergebnisse des Fünfmassensystems für 0°, 
1° und 2° Lose zusammengefasst. 
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Tabelle 6.3: Simulation – Fünfmassensystem mit Regler nach Modell MV/FR 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1 

Führungs-
größen-
sprung 

 

0° 

unverändert 40° 1.67 s 
3 × Lastträgheit 57° 2,4 s 

2 × 4 133° 5,43 s 
2 × 3 74° 3,46 s 
2 × 2 57° 2,38 s 

3 × Antriebsträgheit 48° 3,39 s 

1° 

unverändert 41,5° 1.64 s 
3 × Lastträgheit 58,5° 2,25 s 

2 × 4 135° 7,17 s 
2 × 3 76° 3,1 s 
2 × 2 58,5° 2,25 s 

3 × Antriebsträgheit 50° 3,3 s 

2° 

unverändert 43° 1.62 s 
3 × Lastträgheit 60° 2,2 s 

2 × 4 137° 6,4 s 
2 × 3 78° 5,44 s 
2 × 2 60° 2,22 s 

3 × Antriebsträgheit 51° 2,57 s 

Last-
moment-
sprung 

0° 

unverändert 44° 1,44 s 
3 × Lastträgheit 44° 1,35 s 

2 × 4 46° 3,58 s 
2 × 3 45° 2,5 s 
2 × 2 44° 1,34 s 

3 × Antriebsträgheit 44° 1,4 s 

1° 

unverändert 44,5° 1.44 s 
3 × Lastträgheit 44,5° 1,34 s 

2 × 4 46° 3,53 s 
2 × 3 44,5° 2,47 s 
2 × 2 44,5° 1,34 s 

3 × Antriebsträgheit 45° 1,4 s 

2° 

unverändert 45° 1,43 s 
3 × Lastträgheit 45° 1,33 s 

2 × 4 47° 3,46 s 
2 × 3 46° 2,45 s 
2 × 2 45° 1,33 s 

3 × Antriebsträgheit 45,5° 1,4 s 
 

In allen Simulationen führte die größte absolute Massenänderung (Verdoppelung von 
4) zu den stärksten Überschwingern und der längsten Ausregelzeit. Zusätzliche 
Simulationen mit fünf gleichen Massen zeigen außerdem, dass sich eine Änderung auf 
der Lastseite geringfügig stärker auswirkt, als eine Änderung auf der Antriebsseite.  
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6.1.2 Reglerentwurf mit einem Ersatzmodell vom Typ MV/FZ 

Das Verhalten des Fünfmassensystems wurde ebenfalls mit einem Regler nach 
Ersatzmodell Typ MV/FZ mit den in Tabelle 6.2 dargestellten Werten simulatorisch mit 
MATLAB/Simulink untersucht. 

Wie oben werden neben dem nominellen System eine verdreifachte Trägheit der 
lastseitigen Masse, jeweils verdoppelte Trägheiten der mittleren Massen und eine 
verdreifachte Massenträgheit auf der Antriebsseite untersucht. 

Da die Lose für den betrachteten Fall auch bei einem Regler nach Ersatzmodell 
Typ MV/FZ keinen wesentlichen Einfluss auf den grundsätzlichen Verlauf der Sprung-
antworten zeigt, sind hier, ebenso wie für den Regler nach Ersatzmodell Typ MV/FR, 
lediglich die Antworten für 0° Lose in Bild 6.3 für den Führungsgrößensprung und in 
Bild 6.4 für den Lastmomentsprung dargestellt.  

In Tabelle 6.4 finden sich die Simulationsergebnisse des Fünfmassensystems für 0°, 
1° und 2° Lose zusammengefasst. 

Wie in Bild 6.3 zu erkennen ist, reagiert das unveränderte System bei 0° Lose auf 
einen Führungsgrößensprung von einer Umdrehung mit einem Überschwingen von 
40° und benötigt 3,05 s, um den Sollwert zu erreichen. Bei verdreifachter lastseitiger 
Massenträgheit schwingt die Sprungantwort 53,7° über und weist eine Ausregelzeit 
von 5,54 s auf. Die verschiedenen, jeweils verdoppelten mittleren Masseträgheiten 
führen auf Ausregelzeiten zwischen 3,74 s und 7,2 s. Die Position des simulierten 
Fünfmassensystems schwingt dabei zwischen 54,2° und 95° über. Bei der dreifachen 
antriebsseitigen Massenträgheit schwingt die Führungssprungantwort um maximal 47° 
über und weist eine Ausregelzeit von 6,6 s auf. 

Das Verhalten der verschiedenen Variationen des simulierten Fünfmassensystems bei 
0° Lose auf ein lastseitiges Drehmoment von 5 Nm ist in Bild 6.4 zu sehen. Hier weicht 
das unveränderte System um maximal 71,5° vom Sollwert ab und erreicht diesen nach 
2,1 s wieder. Bei verdreifachter, lastseitiger Massenträgheit betragen die maximale 
Abweichung 72° und die Ausregelzeit 5,4 s. Im Falle der verdreifachten antriebs-
seitigen Massenträgheit liegt die maximale Abweichung vom Sollwert ebenfalls bei 
72°, die Ausregelzeit beträgt jedoch 5,87 s. Die unterschiedlichen Variationen der 
mittleren Massenträgheiten führen für den simulierten Störgrößensprung von 5 Nm auf 
Abweichungen zwischen 71,5° und 75°. Das System benötigt in diesen Fällen 
zwischen 4,03 s und 5,36 s. 

 

Die mit den weiteren Einstellungen der Lose erzielten Simulationsergebnisse sind in 
Tabelle 6.4 dargestellt. 
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Bild 6.3:  Simulation – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 0° Lose 
 

 
Bild 6.4:  Simulation – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FZ bei 0° Lose 
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Tabelle 6.4: Simulation – Fünfmassensystem mit Regler nach Modell 
Typ MV/FZ 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 40° 3,05 s 
3 × Lastträgheit 53,7° 5,54 s 

2 × 4 95° 7,2 s 
2 × 3 67° 3,74 s 
2 × 2 54,2° 5,53 s 

3 × Antriebsträgheit 47° 6,6 s 

1° 

unverändert 41° 2,8 s 
3 × Lastträgheit 55° 5,56 s 

2 × 4 96° 6,67 s 
2 × 3 68° 8,18 s 
2 × 2 55,5° 5,6 s 

3 × Antriebsträgheit 48° 6,37 s 

2° 

unverändert 42,5° 2,67 s 
3 × Lastträgheit 56° 5,61 s 

2 × 4 97,5° 6,45 s 
2 × 3 69° 7,52 s 
2 × 2 56,5° 5,74 s 

3 × Antriebsträgheit 49,5° 6,57 s 

Last-
moment-
sprung 

0° 

unverändert 71,5° 2,1 s 
3 × Lastträgheit 72° 5,4 s 

2 × 4 75° 5,16 s 
2 × 3 73° 4,03 s 
2 × 2 72,5° 5,36 s 

3 × Antriebsträgheit 72° 5,87 s 

1° 

unverändert 71° 6,49 s 
3 × Lastträgheit 71,5° 5,38 s 

2 × 4 74° 5,18 s 
2 × 3 72,5° 4,06 s  
2 × 2 71,5° 5,28 s 

3 × Antriebsträgheit 71° 5,87 s 

2° 

unverändert 71,5° 6,4 s 
3 × Lastträgheit 72° 5,4 s 

2 × 4 75° 5,16 s 
2 × 3 73° 4,03 s 
2 × 2 72,3° 5,36 s 

3 × Antriebsträgheit 72° 5,87 s 
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6.2 H∞-Regler mit zusätzlichem Beobachter 
Wie zuvor in Abschn. 5.3 für die Regelung des Prüfstandes werden in diesem 
Abschnitt ebenfalls Regler zusammen mit Beobachtern, die beide auf Basis reduzierter 
Ersatzmodelle entworfen wurden zur, Regelung des Fünfmassensystems eingesetzt.  

Wie in Abschn 5.3.2 gesehen, ist das Ersatzmodell Typ MV/FR zum Entwurf eines 
Beobachters für die Lastseite nur bedingt geeignet, da es die Torsion falsch wiedergibt. 
Aus diesem Grunde wurde für die Kombination von Regler und Beobachter nach 
Ersatzmodell Typ MV/FR auf die simulatorische Untersuchung mit dem Fünfmassen-
system verzichtet. 

Im Folgenden werden daher zunächst die Ergebnise der Simulationen einer 
Kombination von Regler und Beobachter nach Ersatzmodell Typ MV/FZ mit dem Fünf-
massensystem beschrieben.  

6.2.1 Regler und Beobachter nach Ersatzmodell Typ MV/FZ 

Der Beobachter entspricht für diese Simulationen dem, welcher auch bei den 
entsprechenden Messungen am Prüfstand in Abschn. 5.3.3 eingestzt wurde. Wie dort, 
werden auch hier neben dem nominellen System veränderte Systeme zur Bewertung 
der Robustheit der Regelung untersucht. Dazu wird das Fünfmassensystem mit 
verdreifachter Trägheit der lastseitigen Masse, jeweils verdoppelten Trägheiten der 
mittleren Massen bzw. einer verdreifachten Massenträgheit auf der Antriebsseite 
simuliert. Da die Messungen am Prüfstand bereits gezeigt haben, dass der auf Basis 
eines Ersatzmodells Typ MV/FZ entworfene Beobachter für Systeme mit nicht 
vernachlässigbarer Lose ungeeignet ist, wird die Regelung mit Beobachter nur für 
Systeme ohne Lose simuliert. 

Bild 6.5 zeigt die Sprungantworten der Fünfmassensysteme ohne Lose mit Regler und 
Beobachter nach Ersatzmodell Typ MV/FZ auf einen Führungsgrößensprung von 
einer Umdrehung.  

Das nominelle System antwortet auf den Führungsgrößensprung mit einem maximalen 
Überschwinger 40,6°. Die Ausregelzeit auf ±1° beträgt 2,9 s. Im Falle der verdrei-
fachten Trägheit der lastseitigen Masse kommt es zu etwas stärkeren Schwingungen. 
Der größte Überschwinger beträgt hier 54,6°, die Ausregelzeit 4,9 s.  

Die Sprungantwort mit dem stärksten Schwingungsverhalten zeigt das System 
wiederum bei der größten absoluten Änderung einer Massenträgheit (verdoppeltes 
4). Der maximale Überschwinger ist hier 96,3° groß. Der Regler mit Beobachter nach 
Ersatzmodell Typ MV/FZ ist jedoch ausreichend robust, um auch dieses modifizierte 
System zu stabilisieren, und ist nach 6,6 s ausgeregelt.  
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Bild 6.5:  Simulation – Führungssprung mit Regler und Beobachter nach  

Ersatzmodell Typ MV/FZ bei 0° Lose 

Die Führungssprungantwort des Systems mit verdoppelter Trägheit 3 zeigt die 
zweitgrößte Schwingungsamplitude. Der maximale Überschwinger beträgt 67,3°. Die 
Regelung kann auch in diesem Fall die vorgegebene Sollposition auf ±1° genau 
erreichen, die Ausregelzeit beträgt dabei 7,4 s. Diese verhältnismäßig lange Zeit ist 
dadurch zu erklären, dass das System nach 3,8 s zunächst mit einer Lageabweichung 
von ca. 1,5° zur Ruhe kommt und die Regelung anschließend eine relativ lange Zeit 
benötigt, die Haftreibung des Systems wieder zu überwinden und die Sollposition mit 
der geforderten Genauigkeit einzustellen. 

Für den Fall des Fünfmassensystems mit verdoppelter Trägheit 2 entspricht die 
Sprungantwort relativ genau der des Systems mit dreifacher lastseitiger Massen-
trägheit. Dies ist damit zu erklären, dass die Änderung der Gesamtträgheit in Vergleich 
zum nominellen System in beiden Fällen etwa gleich ist. Das geregelte System folgt 
dem Sollwertsprung innerhalb von 4,7 s mit der geforderten Genauigkeit. Der 
maximale Überschwinger beträgt hier 54,7°.  

Wird dagegen die Massenträgheit des Antriebs des Fünfmassensystems verdreifacht, 
gelingt es dem auf Basis eines Ersatzsystems Typ MV/FZ für das nominelle Fünf-
massensystem erstellten Regler mit Beobachter, die Sollposition in 5,7 s mit einem 
maximalen Überschwinger von 47,7° zu erreichen. 

Bild 6.6 zeigt die Antworten der Fünfmassensysteme mit dieser Regler-Beobachter-
Kombination auf einen Lastsprung von 5 Nm. 
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Bild 6.6:  Simulation – Lastsprung mit Regler und Beobachter nach 

Ersatzmodell Typ MV/FZ bei 0° Lose 

Für den Lastmomentsprung zeigt das nominelle System mit Regler und Beobachter 
eine maximale Abweichung von 71,5°, die vergleichbar der bei direkter Messung aller 
Zustände erzielten ist. Die Ausregelzeit ist jedoch mit 5,7 s deutlich länger. Dies ist 
darauf zurückzuführen, dass das System nach 2,4 s zunächst zum Stillstand kommt. 
Die Abweichung von der Sollposition beträgt zu diesem Zeitpunkt 1,4° und liegt damit 
außerhalb der gewählten Toleranzgrenzen. Die verbleibende Zeit benötigt der Regler, 
um das System wieder aus der Haftreibung zu lösen und innerhalb der 
Toleranzgrenzen zu positionieren.  

Mit dem dreifachen Trägheitsmoment auf der Lastseite führt ein Lastsprung von 5 Nm 
zu einer maximalen Abweichung vom Sollwert von 72,2°. Das System ist nach 4,9 s 
wieder ausgeregelt. Bei Verdoppelung des Trägheitsmomentes 4 zeigt sich auch hier 
die stärkste Abweichung vom Verhalten des nominellen Systems. Die maximale 
Abweichung steigt um 0,7° auf 72,2°. Nach 4,9 s hat der Regler mit Beobachter nach 
Ersatzmodell Typ MV/FZ die Störung ausgeregelt. Im Falle des zweifachen Trägheits-
momentes 3 ist der Lastsprung nach 3,4 s wieder ausgeregelt. Die maximale 
Abweichung vom Sollwert beträgt dabei 73,3°. Wird 2 verdoppelt, ist der Lastsprung 
nach 4,3 s und einer maximalen Abweichung von 72,9° ausgeregelt. Bei der dreifachen 
Masseträgheit an der Antriebsseite zeigt das Fünfmassensystem bei einem Last-
momentsprung von 5 Nm eine maximale Abweichung von 72,4°. Die Störung wird in 
1,9 s ausgeregelt. Die kurze Ausregelzeit ist jedoch dadurch bedingt, dass sich das 
System hier, wenn es zum Stillstand und damit unter den Einfluss der Haftreibung 
kommt, innerhalb der Toleranzgrenzen befindet. 

In Tabelle 6.5 sind die Simulationsergebnisse des Fünfmassensystems für 0° Lose 
zusammengefasst. 
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Tabelle 6.5: Simulation – Fünfmassensystem mit Regler und reduziertem 
Beobachter nach Ersatzmodell Typ MV/FZ 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 40,6° 2,9 s 
3 × Lastträgheit 54,6° 4,9 s 

2 × 4 96,3° 6,6 s 
2 × 3 67,3° 7,4 s 
2 × 2 54,7° 4,7 s 

3 × Antriebsträgheit 47,7° 5,7 s 

Last-
moment-
sprung 

0° 

unverändert 71,5° 5,7 s 
3 × Lastträgheit 72,2° 4,9 s 

2 × 4 75° 6,1 s 
2 × 3 73,3° 3,4 s 
2 × 2 72,9° 4,3 s 

3 × Antriebsträgheit 72,4° 1,9 s 
 

6.2.2 Regler nach Ersatzmodell Typ MV/FR mit Beobachter nach 
Typ MV/FZ 

Wie in Abschn. 5.3.4 für die Messungen am Prüfstand bietet sich auch für die 
Simulation des Fünfmassensystems die Kombination eines Reglers nach Ersatz-
modell Typ MV/FR mit einem reduzierten Beobachter nach Ersatzmodell Typ MV/FZ 
an. Die entsprechenden Simulationsergebnisse sind im Folgenden dargestellt.  

Auch hier wurde nur der Fall ohne Lose untersucht. Die Sprungantworten sind in Bild 
6.7 für den Führungsgrößensprung und in Bild 6.8 für den Lastmomentsprung gezeigt. 

Das unveränderte Fünfmassensystem wird, wie in Bild 6.7 zu erkennen ist, bei einem 
Führungsgrößensprung in 1,7 s ausgeregelt. Die Sprungantwort zeigt dabei einen 
maximalen Überschwinger von 41,1°. Bei dreifacher lastseitiger Trägheit hat das 
System nach 4,4 s den Sollwert auf ±1° genau erreicht. Der maximale Überschwinger 
der Führungssprungantwort ist 58,5° groß. Bei verdoppeltem 4 ist der maximale 
Überschwinger 139,5° groß und das System hat den Sollwert erst nach 5,9 s erreicht. 
Der maximale Überschwinger für die Führungssprungantwort mit einer doppelten 
Trägheit 3 beträgt 76,5° und das System ist nach 3,17 s in der Sollposition. Wird bei 
dem simulierten Fünfmassensystem 2 verdoppelt, so ist der maximale Über-
schwinger beim Sollwertsprung 58° groß und es dauert 4,5 s, bis der Sollwert auf 1° 
genau erreicht ist. Mit dreifacher antriebsseitiger Massenträgheit ist das System nach 
dem Führungsgrößensprung in 3 s ausgeregelt. Es schwingt dabei maximal 40,1° 
über.  
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Bild 6.7:  Simulation – Führungssprung mit Regler nach Ersatzmodell  

Typ MV/FR und Beobachter nach Ersatzmodell Typ MV/FZ  
bei 0° Lose 

 

 
Bild 6.8:  Simulation – Lastsprung mit Regler nach Ersatzmodell  

Typ MV/FR und Beobachter nach Ersatzmodell Typ MV/FZ  
bei 0° Lose 

 

Bei einem Lastmomentsprung von 5 Nm wird das nominelle Fünfmassensystem nach 
einer maximalen Abweichung von 45,3° in 1,4 s ausgeregelt. Der Lastmomentsprung 
führt bei dreifacher lastseitiger Trägheit zu einem maximalen Überschwingen von 
45,5°. Das System ist in diesem Fall nach 3,2 s wieder ausgeregelt. Bei verdoppeltem 
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4 steigt die maximale Abweichung um 1,8° gegenüber dem unveränderten System 
auf 47,1°. Nach 5,3 s hat der Regler die Störung ausgeregelt. Im Falle der 
verdoppelten Trägheit 3  ist der maximale Überschwinger 46° groß. Nach 2,35 s hat 
der Regler das System wieder auf den Sollwert gebracht. Wird 2 verdoppelt, so 
beträgt die Ausregelzeit für das Fünfmassensystem 3,4 s. Die maximale Abweichung 
vom Sollwert beträgt dabei 45,9°. Im Falle der dreifachen antriebsseitigen Massen-
trägheit beträgt die maximale Abweichung bei einem Lastmomentsprung von 5 Nm 
45,5°. Die Störung wird in 1,35 s ausgeregelt.  

In Tabelle 6.6 finden sich die Simulationsergebnisse des Fünfmassensystems mit 
einem Regler nach Ersatzmodell MV/FR und einem reduzierten Beobachter nach 
Ersatzmodell MV/FZ für 0° Lose zusammengefasst. 

Tabelle 6.6: Simulation – Fünfmassensystem mit Regler nach Ersatzmodell 
Typ MV/FR und reduziertem Beobachter nach Ersatzmodell 
Typ MV/FZ 

Versuch Lose System max. 
Überschwinger 

Zeit bis 
Abweichung < 1° 

Führungs-
größen-
sprung 

0° 

unverändert 41,1° 1,7 s 
3 × Lastträgheit 58,5° 4,4 s 

2 × 4 139,5° 5,9 s 
2 × 3 76,5° 3,17 s 
2 × 2 58° 4,5 s 

3 × Antriebsträgheit 49,1° 3 s 

Last-
moment-
sprung 

0° 

unverändert 45,3° 3,66 s 
3 × Lastträgheit 45,5° 3,2 s 

2 × 4 47,1° 5,3 s 
2 × 3 46° 2,35 s 
2 × 2 45,9° 3,4 s 

3 × Antriebsträgheit 45,5° 1,35 s 

Wird berücksichtigt, dass die Ausregelzeiten stark von den gewählten Toleranz-
grenzen für die Position, also hier ±1°, abhängen, sind die mit dem Regler nach 
Ersatzmodell Typ MV/FR und einem reduzierten Beobachter nach Ersatzmodell 
Typ MV/FZ erzielten Ergebnisse mit denen vergleichbar, die in Abschn. 5.2 bei direkter 
Messung aller Zustände gemessen wurden. 

Der reduzierte Beobachter nach Ersatzmodell Typ MV/FZ führt sowohl bei den 
Messungen am Dreimassenprüfstand, als auch bei den Simulationen des Fünf-
massensystems zusammen mit einem Regler nach Ersatzmodell Typ MV/FR zu 
Ergebnissen, die denen mit Rückführung aller Zustände vergleichbar sind, voraus-
gesetzt die Lose ist vernachlässigbar klein. 
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Zusammenfassend lässt sich sagen, dass sowohl die auf Basis des Ersatzmodells 
vom Typ MV/FR, als auch die auf Basis des Ersatzmodells vom Typ MV/FZ 
entworfenen Regler für eine robuste Regelung mit niedriger Ordnung von elastisch 
gekoppelten Mehrmassensystemen geeignet sind. Für den Fall, dass alle Zustände 
messbar sind, zeigte die Lose keinen wesentlichen Einfluss auf das Verhalten der 
Regelung.  

Aufgrund der Tatsache, dass das Ersatzmodell des Typs MV/FR die erste Resonanz-
fequenz des originalen Mehrmassensystems korrekt abgebildet und somit direkt vom 
Algorithmus für den Reglerentwurf berücksichtigt ist, wird bei den entsprechenden 
Regelungen eine Anregung dieser Resonanz vermieden.  

Die nach einem Ersatzmodell des Typs MV/FZ entworfenen Regler vermeiden von 
sich aus jedoch lediglich die Anregung der fiktiven Resonanz des Ersatzsystems, die 
in einem für das reale Mehrmassensystem unkritischen Bereich liegen kann. Dies führt 
zu größeren Unsicherheiten des Modells gegenüber dem realen System. Die 
tatsächliche Resonanz muss in diesem Falle durch eine entsprechend konservative 
Wahl der Gewichtungsfunktionen berücksichtigt werden.  

Sind dagegen nicht alle Zustände messbar, so bietet das Ersatzmodell des 
Typs MV/FZ aus demselben Grund einen Vorteil für den Beobachterentwurf, da es im 
Gegensatz zu Typ MV/FR die Gesamtsteifigkeit des Originalsystems richtig abbildet.  

Ein auf Basis eines Ersatzmodells des Typs MV/FR entworfener Beobachter enthält 
damit einen systematischen Fehler bei der Schätzung der lastseitigen Position. Eine 
Positionsregelung in Kombination mit einem solchen Beobachter besitzt damit 
ebenfalls einen systematischen Regelfehler. 

Die beste Kombination für eine H∞-optimale robuste Regelung niedriger Ordnung 
eines Mehrmassensystems scheint demnach, ein nach Ersatzmodell Typ MV/FR 
entworfener Regler in Verbindung mit einem nach Ersatzmodell Typ MV/FZ 
entworfenen Beobachter zu sein. 

 

Eine weitere, bisher nicht betrachtete Herausforderung bei der robusten Regelung 
elastisch gekoppelter Mehrmassensysteme stellt die Reibung dar. Daher soll im 
nächten Kapitel auf Möglichkeiten zur Reibungskompensation eingegangen werden. 
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7 Reibungskompensation für die robuste Regelung 
niedriger Ordnung von Mehrmassensystemen 

Wie in den vorhergehenden Abschnitten gesehen, hat die Reibung einen wesentlichen 
Einfluss auf das Verhalten eines elastisch gekoppelten Mehrmassensystems. Die 
Reibung macht einen wesentlichen Teil des nichtlinearen Verhaltens des Systems aus. 
Da die hier verwendeten robusten Regelungskonzepte auf linearen Systemmodellen 
beruhen, ist eine Kompensation der nichtlinearen Reibung sinnvoll.  
Allgemein ist Reibung „der Widerstand, der in den Berührungsflächen zweier Körper 
auftritt und eine gegenseitige Bewegung durch Gleiten, Rollen oder Abwälzen 
beeinträchtigt oder verhindert.“ [33] Die Reibkraft ist also immer entgegen der 
Bewegungsrichtung bzw. im Falle der Haftreibung im Stillstand entgegen der 
angreifenden Kraft, welche die Körper in Bewegung zu setzen sucht, gerichtet. Die 
Relativbewegung der beteiligten Körper zueinander wird also abgebremst bzw. kommt 
erst gar nicht zustande. Reibung setzt sich aus verschiedenen Anteilen zusammen, 
wie sie in Abschn. 2.1 beschrieben sind. 

Für die hier betrachtete robuste Positionsregelung eines Mehrmassensystems stellt 
insbesondere die Haftreibung bzw. das Losrutschen aus dieser bei einem Stillstand in 
der Nähe der Sollposition, z. B. bei der Geschwindigkeitsumkehr nach einem 
Überschwinger, eine Herausforderung dar. Daher wird der Fokus hier im Wesentlichen 
auf eine Kompensation der Haftreibung gelegt. 

7.1 Modellierung der Reibung 

Die prinzipiellen Komponenten der hier betrachteten Reibung sind die im Stillstand 
auftretende Haftreibung, die Gleitreibung und die viskose Reibung, wie sie in 
Abschn. 2.1 beschrieben wurden. Diese Teilreibungen werden hier nochmals kurz 
dargestellt. 

Haft- und Gleitreibung sind unabhängig von der Geschwindigkeit, während die viskose 
Reibung eine lineare Geschwindigkeitsabhänggkeit aufweist. Befindet sich das 
System im Stillstand, so tritt Haftreibung auf. Die Haftreibung äußert sich dabei als 
Drehmoment, das einem von außen angreifenden Drehmoment exakt entgegenwirkt, 
so dass das System im Stillstand verharrt. Erst wenn das angreifende Drehmoment 
das maximale Haftmoment übersteigt, gerät das System in Bewegung. 

Hat sich das System einmal in Bewegung gesetzt, die Haftreibung also überwunden, 
so tritt Gleitreibung auf. Die Gleitreibung kann ebenso wie die Haftreibung beschrieben 
werden. Der Gleitreibungskoeffizient G ist jedoch im allgemeinen kleiner als der 
Haftungskoeffizent [17]. 
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Die von der viskosen Reibung verursachte Reibkraft bzw. das Reibmoment ist linear 
von der Geschwindigkeit bzw. von der Drehzahl abhängig [16]. Die viskose Reibung 
beschreibt hier das Gleiten von Körpern auf einem Flüssigkeitsfilm wie z. B. Öl. 

7.2 Prinzip der verwendeten Reibungskompensation 

Die in dieser Arbeit untersuchte Reibungskompensation stellt eine modifizierte Form 
des in [34] vorgeschlagenen Verfahrens dar, das dort in Verbindung mit einem 
gewöhnlichen Zustandsregler eingesetzt wurde. Hier wird eine vereinfachte Form 
dieser Reibungskompensation zusammen mit dem in den vorhergehenden Kapiteln 
vorgestellten robusten Regler auf Basis eines reduzierten Ersatzsystems betrachtet. 
Die Reibungskompensation basiert auf einem geregelten mathematischen Modell des 
Mehrmassensystems ohne Haft- und Gleitreibung. Sowohl das reale, reibungs-
behaftete System, als auch das Modell ohne Haft- und Gleitreibung werden mit 
identischen Reglern geregelt. Das Prinzip ist in Bild 7.1 dargestellt. 

 
Bild 7.1:  Prinzip der Reibungskompensation 

Da das geregelte Modell keine Reibung aufweist, tritt auch kein Haften und 
Losbrechen („slip-stick“) auf und das Modell wird die Sollposition wie gewünscht 
stationär genau erreichen. Im Gegensatz dazu wird das reale System aufgrund der 
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Reibung ein abweichendes Verhalten zeigen. Die Positionsdifferenz zwischen dem 
Modell und dem realen System sys modell     stellt somit ein Maß für den Einfluss 

der Reibung dar und kann für eine Kompensation genutzt werden.  

Hier wird ein nichtlinearer Kompensationsregler eingesetzt, der eine zusätzliche 
Stellgröße uc generiert und auf das reale System aufschaltet. Dieser nichtlineare 
Regler besitzt folgende Funktion: 

 1
( , )c kompu f

a b
  


   


 (7.1) 

Dabei sind a und b positive Parameter, über die das Verhalten des Kompensations-
reglers beeinflusst werden kann. Nimmt die Drehzahl des Systems ab und nähert sich 
dem Stillstand, so wird die Lageabweichung immer stärker gewichtet. Über den 
Parameter b kann das Verhalten dieser drehzahlabhängigen Verstärkung eingestellt 
werden. Nimmt die Drehzahl wieder zu, so wird auch die Verstärkung der Positions-
abweichung wieder geringer. Mit dem Koeffizienten a lässt sich die maximale 
Verstärkung der Positionsabweichung einstellen. Da im Stillstand uc =  /a gilt, kann 
über diesen Parameter auch eingestellt werden, bis zu welcher Differenz zwischen der 
realen Position und der des reibungsfreien Modells der Kompensationsregler noch 
ausreichend zusätzliche Stellgröße uc erzeugt, um die Haftreibung RH zu überwinden 
(RH max =  /a). Dies stellt somit auch ein Maß für die gewünschte Positionier-
genauigkeit des realen Systems dar.  

7.3 H-Regler mit Reibungskompensation  

Das Verhalten der Reibungskompensation in Verbindung mit dem H∞-Regler wurde 
zunächst simulatorisch in Matlab/Simulink an einem Dreimassensystem mit 2 Nm 
Haftreibung an der Lastseite untersucht. Es wurden auch Simulationen eines Systems 
mit dreifacher lastseitiger Trägheit durchgeführt, um die Robustheit der gewählten 
Reibungskompensation zu bewerten. Die so ermittelten Ergebnisse wurden 
anschließend durch Messungen am realen Dreimassenprüfstand verifiziert. 

Beispielhaft sind hier die Ergebnisse eines nach Ersatzmodell Typ MV/FZ entworfenen 
Reglers in Verbindung mit der Reibungskompensation dargestellt, die auch in [35] 
veröffentlicht wurden. Bild 7.2 zeigt die Sprungantworten des mit einem nach 
Ersatzmodell Typ MV/FZ entworfenen Regler geregelten Systems auf einen 
Führungsgrößensprung von einer Umdrehung. Dargestellt ist das Verhalten mit und 
ohne zusätzliche Reibungskompensation. 
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Bild 7.2:  Messung – Führungssprungantwort mit Regler nach Ersatzmodell  

Typ MV/FZ mit und ohne Reibungskompensation 

Ohne die Reibungskompensation zeigt das System mit erhöhter Haftreibung von 2 Nm 
zunächst einen Überschwinger von 64°, kommt bei der Drehrichtungsumkehr zum 
Stillstand und verharrt dort zunächst in der Haftreibung, bis der Regler eine 
ausreichend große Stellgröße generieren kann, um das System wieder in Bewegung 
zu setzen. Nun zeigt die Sprungantwort einen Unterschwinger, bei dem das System 
mit einer Abweichung von 19,5° für ca. 0,9 s haften bleibt, um anschließend wieder 
überzuschwingen. Innerhalb des gemessenen Zeitraums von 5 s gelingt es dem 
Regler ohne Reibungskompensation nicht, das System mit 2 Nm Haftreibung auf die 
gewünschten ±1° genau zu positionieren.  

Dagegen zeigt das geregelte System mit Reibungskompensation ein deutlich besseres 
Verhalten. Der maximale Überschwinger ist in diesem Fall 45° groß und das System 
weist auch keine wesentlichen Stillstände in der Haftreibung auf. Nach ca. 1,5 s hat 
das System die Sollposition mit der gewünschten Genauigkeit erreicht. 

Zur Überprüfung der Robustheit der Regelung in Verbindung mit der Reibungs-
kompensation wurden auch Messungen an dem System mit 2 Nm Haftreibung und der 
dreifachen Massenträgheit an der Lastseite durchgeführt. Die Ergebnisse sind in Bild 
7.3 zu sehen. Ohne die Reibungskompensation zeigt sich ein ähnliches Verhalten zum 
nominellen System. Der maximale Überschwinger ist hier 107° groß. Das System 
verharrt bei jedem Drehrichtungswechsel relativ lange in der Haftreibung und erreicht 
die Sollposition nicht innerhalb von 5 s. Mit der Reibungskompensation ergibt sich 
dagegen ein maximaler Überschwinger von 70° und das System erreicht auch bei 
dreifacher lastseitiger Massenträgheit die Sollposition in 1,7 s mit der gewünschten 
Genauigkeit. 
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Bild 7.3:  Messung – Führungssprungantwort bei dreifacher lastseitiger 

Trägheit und Regler nach Ersatzmodell Typ MV/FZ mit und ohne 
Reibungskompensation 

7.4 H-Regler mit weiter vereinfachter Reibungskompen-
sation  

Die im vorherigen Abschnitt vorgestellte Reibungskompensation basiert im 
Wesentlichen auf einem Vergleich der Position des realen, reibungsbehafteten 
Systems mit der Position eines reibungsfreien Modells. Bei diesem Ansatz ist es somit 
erforderlich, ein, bis auf die Reibung, möglichst genaues Modell des geregelten 
Systems in Echtzeit zu berechnen. Um Komplexität und Rechenaufwand für die 
Reibungskompensation zu verringern, wurde das in Bild 7.1 grün umrandet darge-
stellte, parallel mitberechnete Modell des geregelten Systems ohne Haft- und Gleit-
reibung durch ein Verzögerungsglied zweiter Ordnung, also eine Übertragungs-
funktion vom Typ 1/(T2s2 + 2DTs + 1), ersetzt. Da das Verhalten dieser einfachen Über-
tragungsfunktion dynamisch relativ stark von dem des realen geregelten Systems 
abweicht, wurde der maximale Positionsfehler max zur Berechnung der Kompen-
sationsstellgröße auf 1,5° begrenzt, um einen zu großen Einfluß der Reibungs-
kompensation zu vermeiden. Mit diesen stark vereinfachten Reibungskompensationen 
wurden Messungen am Prüfstand bei ca. 2 Nm Haftreibung durchgeführt. 

Dabei sind sowohl die gewählten Parameter der vereinfachten Parallelstruktur, also 
des PT2-Gliedes, als auch die Parameter a und b der eigentlichen Reibungs-
kompensation von Bedeutung und müssen abhängig vom Anwendungsfall und dem 
verwendeten robusten Regler experimentell bestimmt werden. 
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Für das parallele PT2-Glied wurden hier Parameter gewählt, bei denen der zeitliche 
Verlauf der Sprungantwort der des ursprünglich geregelten Modells ohne Haft- und 
Gleitreibung möglichst nahekommt. Folgende Übertragungsfunktion wurde verwendet: 
f(s) = 1/(0,000333s2 + 0,1333s + 1) .  

Die Wahl der Parameter a und b hängt zudem wesentlich vom auftretenden Haftreib-
moment und von der Dynamik des verwendeten Reglers ab.  

Je dynamischer der robuste Regler reagiert, also selbst größere Stellgrößen erzeugt, 
desto weniger Kompensationsstellgröße muss die Reibungskompensation bereit-
stellen. Ebenso muss in diesem Fall die Kompensationsstellgröße mit zunehmender 
Drehzahl hinreichend schnell kleiner werden, um eine Überkompensation zu 
vermeiden.  

Beispielhaft sind in Bild 7.4 wieder die Ergebnisse eines Führungsgrößensprungs von 
einer Umdrehung für einen nach Ersatzmodell Typ MV/FZ entworfenen Regler ohne 
und mit Einfluss der vereinfachten Reibungskompensation dargestellt. Bei einer 
Positionsfehlerbegrenzung max auf 1,5° wurden in diesem Fall folgende Parameter 
für die Reibungskompensation gewählt: a = 1/20, b = 1/20. 

 
Bild 7.4:  Messung – Führungssprungantwort der vereinfachten Reibungs- 

kompensation mit Regler nach Ersatzmodell Typ MV/FZ 

Das geregelte System mit vereinfachter Reibungskompensation antwortet auf einen 
Führungsgrößensprung von einer Umdrehung mit einem maximalen Überschwinger 
von 29°. Auf dieser Position verharrt das System für 0,3 s in der Haftreibung, um 
anschließend nach 1,55 s die Sollposition mit der gewünschten Genauigkeit zu 
erreichen.  
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Im Vergleich zur der Reibungskompensation mit vollständigem Parallelmodell zeigt die 
vereinfachte Struktur weniger Schwingungen und eine ähnliche Ausregelzeit. 
Grundsätzlich ist also eine Reibungskompensation auch auf Basis vereinfachter 
Parallelstrukturen (z. B. PT2) anstelle eines vollständigen Systemmodells ohne Haft- 
und Gleitreibung möglich.  

Dieser Ansatz bietet den Vorteil des geringeren Rechenaufwandes, allerdings muss 
die Wahl der Parallelstruktur, deren Parameter sowie der Parameter des eigentlichen 
Reibungskompensationsreglers abhängig vom tatsächlichen Verhalten des realen 
Systems erfolgen. Eine sinnvolle Wahl dieser voneinander abhängigen Parameter wird 
oft nur experimentell möglich sein. Ein weiterer Nachteil ist, dass mit zunehmender 
Abweichung des Übertragungsverhaltens der Parallelstruktur von dem des realen 
Systems, wenn dieses keine Haft- und Gleitreibung aufweisen würde, auch die von 
der Reibungskompensation zur Verfügung gestellte zusätzliche Stellgröße 
zunehmend nicht nur von der Reibung, sondern auch von diesen Abweichungen im 
Übertragungsverhalten bestimmt wird. Das vereinfachte Konzept beginnt somit nicht 
nur die Reibung zu kompensieren, sondern auch das Verhalten der eigentlichen 
Positionsregelung zu beeinflussen. 

 

7.5 H∞-Regelung mit Beschleunigungsmessung für die 
Reibungskompensation 

Die bisher vorgestellten Konzepte zur Reibungskompensation setzen eine Messung 
der lastseitigen Position voraus. Wie in Abschn. 5.3 beschrieben, steht diese jedoch 
häufig nicht zur Verfügung. Für die Positionsregelung kann die lastseitige Position mit 
den in Abschn. 5.3 dargestellten Beobachterstrukturen aus der antriebsseitigen 
Position bzw. Geschwindigkeit bestimmt werden. Da diese Beobachter auf linearen 
Modellen, also solchen ohne Haft- und Gleitreibung, basieren, sind die durch diese 
Beobachter ermittelten lastseitigen Positionsdaten nicht für eine Reibungs-
kompensation brauchbar. Ohne Messungen an der Lastseite sind keine Signale 
vorhanden, in denen sich der Einfluss der lastseitigen, nichtlinearen Reibung zeigt. Da 
eine Positions- bzw. Drehzahlmessung in vielen Fällen nicht zur Verfügung steht, 
wurde untersucht, inwieweit mit einer unter Umständen einfacher zu realisierenden 
Beschleunigungsmessung nach dem Ferraris-Prinzip an der Lastseite eine 
Reibungskompensation möglich ist. 

Der Prüfstand wurde dafür um einen lastseitigen Beschleunigungssensor vom Typ 
ACC 94 DUAL der Firma Baumer-Hübner bestehend aus zwei in Reihe geschalteten 
Sensorköpfen mit einem externen Differenzverstärker vom Typ HEAG 164-15 sowie 
einer Wirbelstromscheibe aus Aluminium erweitert. Die Montage der Sensoreinheit 
erfolgte an der Kupplung der Lastmaschine. Die Auswertung des Beschleunigungs-
signals erfolgt über die dSPACE-Karte.  
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In zuvor durchgeführten simulatorischen Untersuchungen [36] stellte sich heraus, dass 
lineare Beobachterkonzepte auch bei Messung der Beschleunigung an der Lastseite 
ungeeignet sind, die Position und Geschwindigkeit der Lastseite unter der Einwirkung 
nichtlinearer Reibung zu ermitteln. Es ist also eine nichtlineare Systembeschreibung 
für den Beobachterentwurf erforderlich. 

Die hier gewählte Beschreibung basiert wiederum auf einem Zweimassenersatz-
modell, berücksichtigt aber zusätzlich Haft- und Gleitreibung. Sie entspricht der auch 
in Abschn. 4.3 verwendeten Modellierung. 

Die in [37] zum Entwurf eines nichtlinearen Beobachters angegebenen Methoden 
können hier jedoch nicht angewendet werden, da für einen „Beobachterentwurf mittels 
Linearisierung“ die notwendige, hinreichende, mehrfache Differenzierbarkeit nicht 
gegeben ist und für den „Beobachterentwurf mittels Gütemaßangleichung“ die 
nichtlineare Systemmatrix nur von Messgrößen abhängig sein darf, was hier ebenfalls 
nicht der Fall ist. Daher wurde hier untersucht, inwieweit eine für den linearen Fall 
entworfene konstante Korrekturmatrix L in Verbindung mit der nichtlinearen System-
beschreibung als Parallelmodell (vergl. Abschn 5.3) zur Schätzung der lastseitigen 
Position und Geschwindigkeit geeignet ist. 

Dazu wurden verschiedene Korrekturmatrizen für vollständige und reduzierte 
Beobachter entworfen und zusammen mit dem nichtlinearen Parallelmodel am 
Prüfstand implementiert und experimentell untersucht [36]. Dabei zeigte sich ein 
vollständiger Beobachter als gute Lösung zum Entwurf der Korrekturmatrix unter dem 
Aspekt des begrenzten Rechenaufwandes. Der Entwurf und die mit diesem Konzept 
erzielten Ergebnisse werden im Folgenden beschrieben. 

Zustandsgrößen für die nichtlineare Systembeschreibung sind jeweils die antriebs- 
und lastseitige Position und Drehzahl. Die lastseitige Beschleunigung wird als Mess-
größe erfasst und über die Ausgangsmatrix in den Entwurf mit einbezogen. Die nicht-
lineare Systembeschreibung lautet in diesem Fall also: 
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Dabei gilt 
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Der Faktor Rh1,2ers /min in den Gleichungen für den Fall, dass das antreibende Dreh-
moment unterhalb der Haftreibung und die Drehzahl unterhalb einer sehr kleinen 
Schranke liegt, bewirkt in dieser Modellierung ein sicheres Stoppen des Systems. Die 
lastseitige Beschleunigung wirkt über die Funktion f2 auf das System. 

Das entsprechende lineare Modell zur Berechnung der Korrekturmatrix L lautet: 
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Für die Ausgangs- bzw. Messgleichung gilt: 
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Die Bestimmung von L kann nach bekannten Verfahren z. B. durch Polvorgabe 
erfolgen. 

Beispielhaft sind im Folgenden die mit diesem nichtlinearen Beobachter in Verbindung 
mit einem nach Ersatzmodell Typ MV/FZ entworfenen Regler am Prüfstand mit 2 Nm 
Haftreibung erzielten Messergebnisse dargestellt. 

Bild 7.5 zeigt die Sprungantwort des geregelten Systems auf einen Führungsgrößen-
sprung von einer Umdrehung ohne Reibungskompensation. Dargestellt ist sowohl die 
geschätzte Position, als auch die tatsächliche gemessene Position. 

 
Bild 7.5: Messung – Führungssprungantwort ohne Reibungskompensation mit 

nichtlinearem Beobachter und Regler nach Ersatzmodell Typ MV/FZ 

In Bild 7.6 sind die entsprechenden Ergebnisse mit Reibungskompensation mit den 
Parameterwerten a = 17 und b = 1 dargestellt. In diesem Fall erreicht die tatsächliche 
Lage den Sollwert mit der gewünschten Genauigkeit nach 2 s. Die geschätzte Position 
befindet sich jedoch noch knapp außerhalb des gewählten Toleranzbandes von ±1° 
und bleibt erst nach 4,8 s innerhalb des Toleranzbandes. 
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Bild 7.6: Messung – Führungssprungantwort mit Reibungskompensation mit  

nichtlinearem Beobachter und Regler nach Ersatzmodell Typ MV/FZ 

Die geschätzte Position zeigt hier im Bereich des ersten Überschwingers ein stärkeres 
Schwingen als ohne die Reibungskompensation. Dies ist darauf zurückzuführen, dass 
sich die von der Reibungskompensation erzeugte zusätzliche Stellgröße direkt auf die 
Beschleunigungsmessung und damit auf die geschätzte Position auswirkt, während 
die tatsächliche Position von diesen relativ kleinen Schwankungen des Antriebs-
momentes nicht nennenswert beeinflusst wird. Eine Tiefpassfilterung des 
Beschleunigungssignals könnte hier zwar Abhilfe bringen, würde jedoch die Dynamik 
des Beobachters entsprechend verschlechtern. 

 

Zusammenfassend lässt sich sagen, dass eine Regelung mit Reibungskompensation 
auf Basis eines nichtlinearen Beobachters zwar prinzipiell möglich ist, aufgrund des 
auftretenden Schätzfehlers jedoch eine Verschlechterung der Regelgüte zu erwarten 
ist. Zudem müssen Regler, Beobachter und Reibungskompensation experimentell 
aufeinander und auf den jeweiligen Anwendungsfall abgestimmt werden.  
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8 H∞-optimale robuste PI-Kaskadenregelung  

Die überwiegende Mehrheit der in der industriellen Praxis eingesetzten Regler sind P- 
bzw. PI-Regler. Die Anwender besitzen für diese Regler ein umfangreiches 
Erfahrungswissen, welches es erlaubt, die Auswirkungen einer Änderung einzelner 
Reglerparameter intuitiv abzuschätzen. 

Das bisher in dieser Arbeit verwendete Entwurfsverfahren für robuste H∞-Regler der 
-Iteration (s. Abschn. 3.6) führt auf eine Kombination von Zustandsregler und 
Beobachter. Die Parameter dieser Reglersysteme lassen sich daher nur schwer intuitiv 
erfassen und in ihrer Bedeutung abschätzen. Auch die in Abschn. 3.8 eingeführte 
Elimination des internen Zustandsbeobachters ändert daran nichts. Es erscheint daher 
sinnvoll, zusätzlich zu den bisherigen Entwurfsverfahren auch eine Optimierung der 
H∞-Norm für eine in ihrer Struktur auf eine PI-Kaskade festgelegte Regelung 
durchzuführen. Durch die Festlegung auf diese Struktur ist auch die Reglerordnung 
festgelegt und der Entwurf wird auf ein Parameteroptimierungsproblem reduziert.  

Ziel ist es, die Parameter von in der antriebstechnischen Praxis üblichen Regelungs-
strukturen geringer Ordnung durch Optimierungsverfahren bezüglich der H∞-Norm so 
zu bestimmen, dass Mehrmassensysteme, die Modellunsicherheiten unterliegen, 
erfolgreich und robust geregelt werden können. Dieser Ansatz wurde in [13] zunächst 
für Zweimassensysteme vorgestellt und wird hier auf die Regelung von Mehrmassen-
systemen angewendet. 

Regelstrecke ist weiterhin ein Mehrmassensystem, wie es beispielhaft für ein Drei-
massensystem in Bild 2.6 dargestellt ist. Die Regelung erfolgt hier über eine Kaskade 
aus einem inneren Drehzahlregelkreis und einem überlagerten Positionsregelkreis, 
wie in Bild 8.1 abgebildet. 

 
Bild 8.1: Kaskadenregelung eines Mehrmassensystems 

Die Regler werden als PI-Regler in der Form 1
( ) P IR s K K

s
   angesetzt.  

Zur Optimierung der Parameter wird der gleiche, in Abschn. 3.5 beschriebene Mixed-
Sensitivity-Ansatz verwendet, der auch beim H∞-Reglerentwurf mittels -Iteration 
genutzt wurde.  
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Das Streckenmodell wird wiederum um die drei Gewichtungsfunktionen W1(s), W2(s), 

W3(s) erweitert, mit denen, wie in Abschn. 3.4 dargestellt, die Anforderungen an die 
Regelung beschrieben werden. Diese Forderungen können, wie in Gl. (3.28) bzw. 
Gl. (3.32) gezeigt, zu einer H∞-Norm zusammengefasst werden und als Norm eines 
fiktiven Mehrgrößensystems P(s) aufgefasst werden.  

 
1

2 ,1 1

3

( ) ( )

( ) ( ) ( ) 1

( ) ( )

( )y u

W s S s

W s R s S s P s j

W s s

s

F






     (8.1) 

Dabei ist F(s) die Führungsübertragungsfunktion, S(s) die Störübertragungsfunktion 
und R(s) die Übertragungsmatrix des robusten Reglers für dieses fiktive Mehrgrößen-
system. Diese hat die Form: 

 

1
0

( )
1

0

P I

P I

K K
sR s

K K
s

 

 

  
  
   

 (8.2) 

Das erweiterte System ist in Bild 8.2 dargestellt. 

 
Bild 8.2: Erweitertes System 

Mit dieser Wahl ist auch die Ordnung des Reglers festgelegt. So kann in diesem Fall 
auf die Verwendung reduzierter Ersatzmodelle zum Reglerentwurf verzichtet werden. 
Damit ist es auch nicht mehr sinnvoll, zur Bestimmung der Gewichtungsfunktionen die 
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aus der Differenz des Frequenzgangs von tatsächlichem Mehrmassensystem und 
Ersatzsystem ermittelten Modellunsicherheiten (s. Gl. (4.30) und Gl. (4.31)) zu 
verwenden. Stattdessen wird hier zur Bestimmung der Modellunsicherheiten der 
Frequenzgang des Mehrmassensystems mit verdreifachter lastseitiger Massen-
trägheit verwendet. Auf dieser Basis wurden für die in diesem Kapitel gemachten 
Untersuchungen folgende Gewichtungsfunktionen gewählt: 

 1 7

0,1 5
( )

5 10

s
W s

s 




 
 (8.3) 

 2
0, 4 0,7

( )
70

s
W s

s





 (8.4) 

 3
0,8 8

( )
26,67

s
W s

s





 (8.5) 

Aufgabe ist es also, einen stabilisierenden Regler R(s) zu finden, der die Bedingung 
für die H∞-Norm in Gl. (8.1) erfüllt. Für eine festgelegte Reglerstruktur existieren 
jedoch keine bekannten Lösungsverfahren. Daher wurden verschiedene moderne 
Optimierungsverfahren zur Lösung dieser Optimierungsaufgabe angewendet. 

8.1 Genetische Algorithmen 

Genetische Algorithmen, wie sie in [38] vorgestellt wurden, sind durch die Biologie 
inspiriert worden und nutzen eine simulierte Evolution zur Lösung einer Optimierungs-
aufgabe. Besteht eine mögliche Lösung des Optimierungsproblems beispielsweise 
aus einem Satz von n Parametern, so ergibt sich ein n-dimensionaler Lösungsraum.  
Zunächt werden bei diesem Verfahren verschiedene Parametersätze zufällig erzeugt 
und als binäre Vektoren codiert. Diese zufällig im Suchraum verteilten Parametersätze 
stellen möglichen Lösungen des Optimierungsproblems das dar und werden als 
Individuen bezeichnet.  

Die Fähigkeit eines solchen Individuums, die gestellte Aufgabe zu lösen, also die Güte 
der Lösung, wird durch ein als Fitnessfunktion bezeichnetes Gütemaß bewertet. Hier 
dient als Gütemaß die H∞-Norm in Gl. (8.1). Auf Grundlage dieser Bewertung werden 
dann Individuen aus der Gesamtpopulation ausgewählt und als „Elternpaare“ zur 
Erzeugung neuer „Nachkommen“ miteinander rekombiniert. Dies kann z. B. dadurch 
erfolgen, dass aus einer von mehreren zufälligen Teilmengen der Gesamtpopulation 
jeweils das Individuum mit der höchsten Fitness gewählt wird. Die Nachkommen 
erhalten ihre binären „Gene“ jeweils zum Teil von beiden Eltern-Individuen. Dazu 
werden die binären „Genfolgen“ der beiden Eltern an einer als „Crossover Punkt“ 
bezeichneten Stelle unterteilt. Dieser „Crossover Punkt“ ist ein Parameter des 
Optimierungsverfahrens selbst und wird vom Benutzer vorgegeben. Bei dem in [13] 
angewandten und hier übernommenen Ansatz wird dieser für jede Rekombination 
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zufällig bestimmt. Das Prinzip dieser Rekombination ist in Bild 8.3 dargestellt. Elternteil 
E1 in Bild 8.3 besteht somit aus den Teilen 1.1 und 1.2 und Elternteil E2 aus den 
Teilen 2.1 und 2.1. Die Kinder werden erzeugt, indem jeweils der vordere Teil des 
einen Elternteils mit dem hinteren Teil des anderen Elternteils kombiniert wird. Damit 
ergeben sich die Kinder K1 bestehend aus den Teilen 1.1 und 2.2, sowie K2 bestehend 
aus 2.1 und 1.2.  

 
Bild 8.3: Prinzipdarstellung der Rekombination 

Weiterhin werden per Zufall einige Gene der Nachkommen verändert, was auch in der 
Natur auftretenden zufälligen Mutationen entspricht. Die Nachkommen werden 
ebenfalls mit der Fitnessfunktion bewertet. Anschließend wird ein Teil der Eltern-
generation mit geringen Fitnesswerten durch eine entsprechende Anzahl von Nach-
kommen mit hoher Fitness ersetzt. Dies entspricht einem teilweisen Generationen-
wechsel durch Aussterben ungeeigneter Individuen. Dieser Prozess der Selektion, 
Rekombination, Mutation und Ersetzung wird solange wiederholt, bis ein festgelegtes 
Abbruchkriterium erfüllt ist. Mögliche Abbruchkriterien sind z. B. das Erreichen eines 
bestimmten Fitnesswertes, die nur noch unwesentliche Änderung der Fitness oder das 
Erreichen einer bestimmten Anzahl von Generationen.  

In [13] bzw. [39] wurde dieses Verfahren erfolgreich zur Regelung eines Zweimassen-
systems mit der antriebsseitigen Position als Regelgröße eingesetzt. Für die 
Optimierung wurde dort eine Generationsgröße von 30 Individuen gewählt und das 
Verfahren nach 80 Generationen abgebrochen, da sich die ermittelte Fittness nur noch 
unwesentlich änderte. Mit diesen Rahmenbedingungen wurde in dieser Arbeit auch 
die Optimierung der PI-Kaskadenregelung für ein Dreimassensystem durchgeführt. 
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Weiterhin wird hier die lastseitige Position als Regelgröße verwendet, da im Allge-
meinen die Position der Last die relevante Größe ist und sich diese von der Position 
des Antriebes insbesondere durch den Einfluss von Störgrößen unterscheiden kann.  

Mit den mittels genetischer Algorithmen optimierten Reglerparametern für ein Drei-
massensystem wurden sowohl Simulationen als auch Messungen am Prüfstand mit 
der lastseitigen Position als Regelgröße durchgeführt. Bei diesen, hier nicht 
dargestellten, Versuchen zeigte sich, dass die Reibung bei diesem Verfahren einen 
relativ großen Einfluss auf das Verhalten des geregelten Systems hat. Bei diesen 
Versuchen wurden mit dieser Optimierungsmethode sehr geringe Integralanteile in 
den Reglern ermittelt. Kommt das System zum Stehen, verharrt es daher relativ lange 
in der Haftreibung, ehe die Regelung genügend Solldrehmoment vorgibt, um es wieder 
in Bewegung zu setzen, wie auch entsprechende Plots in Bild 8.5 und Bild 8.6 zeigen.  

Eine Kombination der mit genetischen Algorithmen optimierten PI-Kaskadenregelung 
mit einer Reibungskompensation erscheint dagegen sehr sinnvoll und wird im 
Folgenden an einem Beispiel erläutert. In Bild 8.5 und Bild 8.6 sind die Ergebnisse 
einer solchen Regelung in Verbindung mit einer vereinfachten Reibungskompensation 
für ein Dreimassensystem mit 2 Nm Haftreibung wiedergegeben, die auch in [40] 
veröffentlicht wurden. 

Die Optimierung mit genetischen Algorithmen im Sinne der H∞-Norm ergab als 
Reglerparameter: KP = 0,5512; KI = 0,0056 sowie KP = 3,6256; KI = 0,0196. 

Für die Reibungskompensation wurden folgende Parameter gewählt: a = 60; b = 20; 
max = 1°. Als vereinfachte Parallelstruktur für die Reibungskompensation wurde ein 
PT2-Glied mit der Übertragungsfunktion f(s) = 155/(s2+18,46s+155) gewählt. 

In Bild 8.4 sind die Sprungantworten des mit der optimierten PI-Kaskade geregelten 
Dreimassensystems jeweils ohne und mit Reibungskompensation auf einen Führungs-
größensprung von einer Umdrehung gezeigt. 

Der grundsätzliche Verlauf ist in beiden Fällen ähnlich. Das geregelte System zeigt 
zunächst einen Überschwinger. Dieser beträgt 73° ohne Reibungskompensation bzw. 
75° mit Reibungskompensation. Ohne Reibungskompensation bleibt das System 
jedoch mit einer Abweichung von 8° stehen und verharrt dort in der Haftreibung, da 
sich die Stellgröße aufgrund der sehr geringen Integralverstärkungen der Regler nur 
sehr langsam erhöht. Mit zusätzlicher Reibungskompensation erreicht das System die 
gewünschte Position dagegen nach 0,8 s mit der gewünschten Genauigkeit. 
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Bild 8.4: Messung – Führungssprungantwort des unveränderten Systems  

ohne und mit Reibungskompensation 
 

Zur Überprüfung der Robustheit der mit genetischen Algorithmen optimierten 
Regelung wurden die Messungen an einem System mit verdreifachter lastseitiger 
Massenträgheit wiederholt. Die dabei erzielten Ergebnisse sind in Bild 8.5 dargestellt. 

 

 
Bild 8.5: Messung – Führungssprungantwort des Systems mit dreifacher  

lastseitiger Massenträgheit ohne und mit Reibungskompensation 
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Die Sprungantwort dieses gestörten Systems zeigt sowohl mit als auch ohne 
Reibungskompensation einen zum ungestörten System sehr ähnlichen Verlauf. Der 
maximale Überschwinger ist mit 84° ohne bzw. 87° mit Reibungskompensation jedoch 
etwas größer. Ohne Reibungskompensation wird auch beim gestörten System die 
Sollposition nicht erreicht und das System bleibt mit einer Abweichung von 4,3° stehen. 
Mit zusätzlicher vereinfachter Reibungskompensation erreicht das Dreimassensystem 
mit verdreifachter lastseitiger Trägheit die gewünschte Position nach 1 s.  

Zusammenfassend kann man sagen, dass eine mit genetischen Algorithmen im Sinne 
der H∞-Norm optimierte PI-Kaskadenregelung zur robusten Positionsregelung von 
Mehrmassensystemen hinsichtlich des Führungsverhaltens geeignet ist, wenn sie 
entweder, wie in [13] bzw. [39] zur Regelung der antriebsseitigen Position verwendet 
wird, oder wie in dieser Arbeit zur Regelung der lastseitigen Position mit einer 
Reibungskompensation kombiniert wird. Allerdings muss angemerkt werden, dass 
sich bei der Optimierung sehr geringe Integralanteile, also fast reine P-Regler ergeben. 
Daher ist insbesondere beim Auftreten von Störungen keine stationäre Genauigkeit zu 
erwarten, wie auch folgende beispielhafte Messergebnisse zeigen. 

In Bild 8.6 sind die Sprungantworten des unveränderten Systems mit und ohne 
Reibungskompensation für einen Störgrößensprung von 5 Nm Drehmoment an der 
Lastseite mit und ohne Reibungskompensation dargestellt.  

 

 
Bild 8.6: Messung – Störgrößensprungantwort des unveränderten Systems  

ohne und mit Reibungskompensation 
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Es ist zu erkennen, dass das geregelte System ohne Reibungskompensation im Falle 
einer Störung zwar stabil bleibt, jedoch eine bleibende Regelabweichung von 70° 
aufweist. Da die Reibungskompensation ausschließlich der nichtlinearen Reibung 
entgegenwirken soll und das Regelungsverhalten nicht wesentlich beeinflussen darf, 
wird diese bleibende Regelabweichung durch die von der Reibungskompensation 
zusätzlich zur Verfügung gestellte Stellgröße lediglich geringer. Sie beträgt in diesem 
Fall nach 5 s ca. 35°. 

Die mit genetischen Algorithmen optimierte Kaskadenregelung der lastseitigen 
Position kann in den hier untersuchten Fällen bei auftretenden Störungen das System 
zwar stabilisieren, die Störung jedoch nicht stationär genau ausregeln. Auch die in [13] 
bzw. [39] vorgestellte optimierte Regelung der antriebsseitigen Position führt zu sehr 
geringen Integralverstärkungen, so dass auch für diesen Fall nicht mit stationärer 
Genauigkeit zu rechnen ist. 

8.2 Differentielle Evolution 

Neben den genetischen Algorithmen existieren noch andere Optimierungsverfahren, 
die zur Parameterfindung einer PI-Kaskadenregelung eingesetzt werden können. Ein 
Verfahren, dass wie die genetischen Algorithmen zu den von der biologischen 
Evolution inspirierten Ansätzen zählt, ist die differentielle Evolution, die in [41] zuerst 
vorgestellt wurden.  

Das Prinzip der Optimierung ist auch hier eine simulierte Evolution von als Individuen 
bezeichneten zufällig erzeugten Reglerparametersätzen, die anhand der H∞-Norm 
bewertet und geeignet rekombiniert und mutiert werden, um eine neue Generation von 
Individuen zu erzeugen. Die erste Generation wird durch eine vom Benutzer 
vorgegebene Anzahl an zufällig erzeugten Individuen (hier 30) gebildet. Als 
wesentlicher Unterschied zu den genetischen Algorithmen verwendet die differentielle 
Evolution keine binäre Darstellung der Parameter. Damit entfällt hier die 
Notwendigkeit, eine geeignete Kodierung zu finden. Die Individuen bestehen bei der 
differentiellen Evolution aus multidimensionalen Vektoren mit reellen Werten. Die 
Dimension n der Vektoren entspricht dabei der Anzahl der zu optimierenden Parameter 
[42]. Im hier vorliegenden Fall sind dies vier. Ein Individuum entspricht somit einem 
Ortsvektor ( , , , )i P i I i P i I ix K K K K

   



 in einem vierdimensionalen Raum. 

Nachdem die erste Generation zufällig erzeugt wurde, werden eine gleiche Anzahl 
neuer, mutierter Individuen iv


 erzeugt. Für diese Mutation stehen verschiedene 

Ansätze zur Verfügung, deren Eignung zur Lösung des vorliegenden Optimierungs-
problems in [43] untersucht wurde. Auf diese soll hier aber nicht näher eingegangen 
werden. Stattdessen wird beispielhaft der Ansatz, der sich dort als der geeignetste 
erwiesen hat, kurz dargestellt. 
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Ein neues, mutiertes Individuum iv


 wird gebildet, indem zunächst zwei Individuen 
1 2,  r rx x
   der alten Population zufällig ausgewählt werden. Die Differenz dieser 
Individuen, die mit einem vom Benutzer vorgegebenen Faktor F gewichtet werden 
kann, wird anschließend zu dem besten bis dahin gefundenen Parametersatz *x

  
addiert.  

 *
1 2( )i r rv x F x x  

     (8.6) 

In [44] wurde für den Faktor F ein Wert von 0,9 als geeignet ermittelt, der hier 
übernommen wurde. Auf diese Weise werden so viele mutierte Individuen gebildet, 
wie in der Ausgangspopulation vorhanden waren.  

Für die nachfolgende Rekombination werden je ein Individuum ix
  der Ausgangs-

population mit einem mutierten Vektor iv
  verknüpft. Dabei wird ein neuer Vektor iu


 

gebildet, dessen Komponenten zufällig entweder ix
  oder iv

  entnommen werden 
(s. [43]). Zusätzlich wird sichergestellt, dass sich der neue Vektor iv

  in mindestens 
einer Komponente vom Ausgangsvektor ix

  unterscheidet (s. [42]). Für den durch den 
neuen Vektor iu

  dargestellten Parametersatz wird der Wert des Gütemaßes, also die 

H∞-Norm des mit diesen Parametern geregelten Systems, ermittelt und mit dem 
entsprechenden Wert des Ausgangsparametersatzes ix

  verglichen. Das Individuum 
mit dem besseren Gütemaß wird dann in die neue Generation übernommen. Die 
Schritte der Mutation, Rekombination und Selektion werden auch hier so lange 
wiederholt, bis ein Abbruchkriterium erfüllt bzw. eine maximale Anzahl an 
Generationen erreicht ist. 

Die Anwendung dieses Verfahrens auf eine H∞-optimale PI-Kaskadenregelung eines 
elastisch gekoppelten Mehrmassensystems führt auf Ergebnisse, die denen der 
genetischen Algorithmen vergleichbar sind.  

Im vorhergehenden Abschnitt wurde die PI-Kaskadenregelung für die lastseitige 
Position als Regelgröße entworfen und zusammen mit einer vereinfachten Reibungs-
kompensation eingesetzt. Da in [13] bzw. [39] auch ohne Reibungskompensation gute 
Ergebnisse für Zweimassensysteme, jedoch mit der antriebsseitigen Position als 
Regelgröße, erzielt wurden, soll nun untersucht werden, ob sich eine für die 
antriebsseitigen Position entworfene robuste Regelung auch zur Regelung der last-
seitigen Position eignet. Die unterschiedlichen Dynamiken der antriebsseitigen und 
lastseitigen Position stellen in diesem Fall Modellunsicherheiten dar. 

Daher wurden hier das erweiterte System P(s), dessen H∞-Norm als Gütemaß dient, 
(s. Bild 8.2) mit der antriebsseitigen Position als Regelgröße aufgestellt ( = Antrieb) und 
die Reglerparameter mit Hilfe differentieller Evolution optimiert.  

Die Optimierung lieferte die folgenden Reglerparameter: KP = 0,177; KI = 0,00012 
sowie KP = 11,446; KI = 0,00107. Der damit erreichte Wert der H∞-Norm beträgt 
0,8188. Die ermittelten Integralfaktoren sind sehr gering, so dass sich praktisch zwei 
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P-Regler ergeben. Mit diesen Parametern wurden Messungen am Prüfstand 
durchgeführt, bei denen wieder die lastseitige Position als Regelgröße verwendet 
wurde. Gemessen wurden die Sprungantworten auf einen Führungsgrößensprung von 
einer Umdrehung sowohl für das unveränderte System, als auch für das System mit 
dreifacher lastseitiger Massenträgheit. Bild 8.7 zeigt die beiden Sprungantworten, die 
auch in [45] veröffentlicht wurden. 

 
Bild 8.7: Messung – Führungssprungantwort der mit Differential Evolution  

optimierten PI-Kaskadenregelung 

Das unveränderte System antwortet auf den Führungsgrößensprung mit einem Über-
schwinger von 20° und erreicht die Sollposition nach 0,65 s mit der gewünschten 
Genauigkeit. Im Falle der dreifachen Lastmasse ist der maximale Überschwinger 35° 
groß. Die Sprungantwort zeigt noch einen Unterschwinger über das zulässige 
Toleranzband hinaus mit einer Abweichung von 1,5°. Das System ist nach 0,9 s 
ausgeregelt.  

Das Verfahren der differentiellen Evolution ist somit ebenso wie die genetischen 
Algorithmen zur Optimierung von PI-Kaskadenregelungen für elastisch gekoppelte 
Mehrmassensysteme geeignet. Gegenüber den genetischen Algorithmen bietet es 
aus Anwendersicht insbesondere den Vorteil, auf eine binäre Kodierung der Regler-
parameter verzichten zu können. Weiterhin ist es für das untersuchte Dreimassen-
system möglich, die robuste Regelung für die antriebsseitige Position zu entwerfen, 
sie jedoch zur Regelung der lastseitigen Position einzusetzen. Dieser Ansatz führt auf 
ein besseres Verhalten der Regelung im Hinblick auf die stationäre Genauigkeit bei 
Reibung. Die Unterschiede im Systemverhalten zwischen der antriebsseitigen Position 
und der lastseitigen Position als Ausgangsgröße können als Modellunsicherheiten 
aufgefasst werden.  
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8.3 Partikelschwarmoptimierung 

Ein weiteres Optimierungsverfahren, welches zur Bestimmung einer robusten PI-
Kaskadenreglung für elastisch gekoppelte Mehrmassensysteme angewendet werden 
kann, ist die Partikelschwarmoptimierung. Das Grundkonzept ist bei diesem Verfahren 
nicht wie bei genetischen Algorithmen oder differentieller Evolution von der natürlichen 
Evolution, sondern vom Schwarmverhalten von Vögeln oder Fischen abgeleitet. Das 
Verfahren wurde 1995 in [46] vorgestellt. Im Folgenden wird das in [42] beschriebene 
prinzipielle Vorgehen kurz zusammengefasst.  

Bei der Partikelschwarmoptimierung werden die zuvor bei genetischen Algorithmen 
und differentieller Evolution als Individuen bezeichneten Parametersätze im Suchraum 
Partikel genannt. Diese Partikel werden als durch den Suchraum fliegende Vögel bzw. 
schwimmende Fische gedacht. Daher ist jedem Partikel neben seiner Position ix

  auch 
ein Geschwindigkeitsvektor iv

 zugeordnet. Das Zeitintervall wird dabei als Eins 
angenommen, so dass die Geschwindigkeit einer Positionsdifferenz entspricht 
(s. [42]). In Schwärmen ist das Verhalten einzelner Individuen im Allgemeinen sowohl 
von den eigenen Erfahrungen, als auch von denen seiner Nachbarn abhängig. Daher 
ist jedem Partikel sowohl die im Sinne eines Gütemaßes beste Position ip

 , die es bis 
zu diesem Zeitpunkt inne hatte, als auch die lokal beste Position gp

 , also die bis zu 
diesem Zeitpunkt beste Position der Partikel in seiner Umgebung (Nachbarschaft) 
bekannt. Die Festlegung dieser Nachbarschaft kann in unterschiedlicher Weise 
erfolgen und stellt eine Möglichkeit dar, mit der der Anwender den Verlauf der 
Optimierung beeinflussen kann. Bekannte Topologien sind z. B. global-Best, local-

Best oder von-Neumann (s. [42]).  

Zu Beginn werden eine vom Benutzer vorgegebene Anzahl von Partikeln mit zufälligen 
Positionen und Geschwindigkeiten im Suchraum verteilt erzeugt. Im nächsten Schritt 
werden für jeden Partikel neue Geschwindigkeiten (s. Gl. (8.7)) und Positionen 
(s. Gl. (8.8)) berechnet. 

   2 21 1 i i g ii neu iv w v c p r p xr x c      
      (8.7) 

 i neu i i neux x v 
    (8.8) 

Die neue Geschwindigkeit setzt sich dabei aus der alten Geschwindigkeit, dem 
Abstand zur individuell besten Position des Partikels und dem Abstand zur besten 
Position der Nachbarpartikel zusammen. Die Parameter w, c1, c2 in Gl. (8.7) können 
vom Benutzer vorgegeben werden, wogegen r1 und r2 Zufallszahlen im Bereich Null 
bis Eins sind, um eine zufällige Komponente in der neuen Geschwindigkeit zu 
erreichen. Für genauere Ausführungen zu diesen Parametern sei hier auf [42] 
verwiesen. Anschließend wird für die Partikel das Gütemaß an den neuen Positionen 
bestimmt und ggf. die individuell-beste und die nachbarschafts-beste Position 
aktualisiert.  
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Mit diesen neuen Werten werden nun wieder neue Geschwindigkeiten und Positionen 
berechnet und die Schritte wiederholen sich, bis ein vom Anwender festgelegtes Ab-
bruchkriterium erfüllt ist. Dieses Abbruchkriterium kann auch hier beispielsweise sein, 
dass das Gütemaß einen bestimmten Wert unterschreitet, sich nur noch unwesentlich 
ändert oder eine festgelegte Anzahl an Schritten erreicht ist. Nach Abschluss der 
Optimierung wird der Partikel mit dem besten Gütemaß als Lösung ausgegeben. 

Im hier vorliegenden Fall dient als Gütemaß wieder die H∞-Norm des erweiterten 
Systems P(s). Die Anzahl der Partikel beträgt wie bei den anderen Verfahren 30 und 
die maximale Anzahl an Schritten wurde auf 80 festgelegt. Als Parameter für die 
Berechnung der Geschwindigkeiten der Partikel wurden w = 0,73, c1 = 1,5 und c2 = 1,5 
gewählt. Die Nachbarschaft wurden über die von-Neumann Topologie definiert 
(s. [43]). 

Wie bei der differentiellen Evolution wurden die Reglerparameter für eine Regelung 
der antriebsseitigen Position optimiert, jedoch für die Regelung der lastseitigen 
Position eingesetzt. Als Ergebnis lieferte die Optimierung mit dem Partikel-
schwarmverfahren die folgenden Werte: KP = 0,177; KI = 3,418∙10-7, KP = 11,443; 
KI = 6,014∙10-7. Der erreichte Wert der H∞-Norm beträgt 0,8187. Die Werte der 
Proportionalfaktoren und der H∞-Norm entsprechen fast genau den mit der Methode 
der differentiellen Evolution erzielten, die Integralfaktoren sind jedoch wesentlich 
geringer. 

Diese Parameter wurden für die Regelung der lastseitigen Lage am Prüfstand 
eingesetzt. In Bild 8.8 sind die damit erzielten Sprungantworten für einen Führungs-
größensprung von einer Umdrehung sowohl für das unveränderte System, als auch 
für das System mit verdreifachter Lastmasse dargestellt. Wie zu erwarten, zeigt die 
Regelung ein sehr ähnliches Verhalten zu der über differentielle Evolution ermittelten. 
Auch bei der mit dem Partikelschwarmverfahren optimierten Regelung gelingt es, das 
unveränderte System innerhalb von 0,65 s mit der gewünschten Genauigkeit auf den 
Sollwert zu bringen. Der maximale Überschwinger ist dabei mit 20,5° ebenfalls sehr 
ähnlich. Im Falle der verdreifachten lastseitigen Massenträgheit reagiert das System 
mit einem maximalen Überschwinger von 36° und ist nach 0,93 s ausgeregelt. Der 
auch hier vorhandene kleine Unterschwinger lässt das System um 2,2° nach unten 
von der Sollposition abweichen. Ebenso wie bei den mit genetischen Algorithmen 
optimierten Regelungen ergeben sich auch bei einer Optimierung mit differentieller 
Evolution oder dem Partikelschwarmverfahren Regler mit sehr geringen Integral-
anteilen, so dass wiederum Störungen nicht stationär genau ausgeregelt werden. 
Exemplarisch ist in Bild 8.9 die Sprungantwort der mit einer nach dem Partikel-
schwarmverfahren optimierten Kaskade für einen Lastmomentsprung von 5 Nm 
dargestellt. Für das unveränderte System ergibt sich eine bleibende Regelabweichung 
von 105°. Im Falle des Systems mit geänderten Parametern, also der dreifachen 
lastseitigen Massenträgheit, beträgt die Abweichung 108°. 
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Bild 8.8: Messung – Führungssprungantwort der mit dem Partikelschwarm- 

verfahren optimierten PI-Kaskadenregelung 

 

 
Bild 8.9: Messung – Störgrößensprungantwort der mit dem Partikelschwarm- 

verfahren optimierten PI-Kaskadenregelung 
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9 Übersicht über die bisher erzielten Ergebnisse 

Für den Entwurf H∞-optimaler, robuster Regler niedriger Ordnung für elastisch 
gekoppelte Mehrmassensysteme wurden verschiedene Varianten reduzierter Zwei-
massenersatzmodelle untersucht. Die Untersuchungen haben gezeigt, dass die 
Massenträgheiten, wie in Abschn. 4.2.1 dargelegt, am zweckmäßigsten im Verhältnis 
der Federsteifigkeiten des realen Systems zusammengefasst werden. Die Ersatz-
federkonstante kann entweder ebenfalls durch Zusammenfassen der realen 
Federkonstanten ermittelt werden, so dass das Torsionsverhalten richtig abgebildet 
wird, oder sie wird so berechnet, dass das Ersatzsystem die niedrigste Resonanz-
frequenz des ursprünglichen Systems korrekt abbildet.  

Bei der Wahl der zum Reglerentwurf notwendigen Gewichtungsfunktionen zeigte sich, 
dass die in [2] entwickelten Einstellstrategien auch für den Reglerentwurf auf Basis 
reduzierter Ersatzsysteme einsetzbar sind (s. Abschn. 3.4). Die Forderung nach 
Robustheit gegenüber Modellunsicherheiten kann in additiver Form über die Funktion 
W2 oder in multiplikativer Form über die Funktion W3 gestellt werden. Die Gewichtungs-
funktionen sind dabei zweckmäßigerweise so zu wählen, dass ihr Amplituden-
Frequenzgang immer oberhalb des Amplituden-Frequenzgangs der Modellun-
sicherheit des Ersatzsystems gegenüber dem Originalsystem liegt. Mit diesen 
Gewichtungsfunktionen, können dann für das reduzierte Zweimassenersatzmodell 
robuste, H∞-optimale Regler niedriger Ordnung entworfen werden, die das 
Originalsystem zufriedenstellend regeln.  

Weiterhin wurden verschiedene Beobachtervarianten auf Basis der unterschiedlichen 
Ersatzmodelle entworfen und in Verbindung mit der robusten Regelung untersucht. 
Gute Ergebnisse konnten insbesondere mit einer Kombination eines Reglers auf Basis 
eines Ersatzmodells des Typs MV/FR aus Abschn. 4.2.1 mit einem Beobachter auf 
Basis eines Ersatzmodells des Typs MV/FZ erzielt werden, wie in Abschn. 5.3.4 dar-
gestellt. Dabei muss allerdings vorausgesetzt werden, dass die Lose vernachlässigbar 
klein ist.  

Bei den Versuchen zeigte sich, dass die Haftreibung einen wesentlichen Einfluss auf 
das Verhalten der Regelung hat. Daher wurden Methoden für eine möglichst einfache 
Reibungskompensation untersucht. Dabei wurden sowohl Varianten mit einem 
parallelen, linearen Systemmodell, als auch solche mit einer noch weiter vereinfachten 
Parallelstruktur betrachtet. Die entsprechenden Ergebnisse wurden u. a. auch in [33] 
und [34] veröffentlicht. Weiterhin wurden in Abschn. 7.5 Beobachterstrukturen für die 
lastseitigen Größen entworfen, die Beschleunigungsmesswerte der Lastseite 
verwenden und auf ihre Anwendbarkeit hinsichtlich einer Reibungskompensation hin 
untersucht. Diese Variante ist zwar prinzipiell möglich, jedoch erscheint die Güte der 
beobachteten Daten für eine Reibungskompensation nicht ausreichend. 
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Da PI-Kaskadenregelungen in der Praxis weit verbreitet sind, wurde die Möglickeit 
untersucht, diese bekannte und von den Anwendern gut verstandene Struktur 
beizubehalten und lediglich die Reglerparameter im Sinne der H∞-Norm auf 
Robustheit zu optimieren. In Abschn. 8 wurden verschiedene moderne Optimierungs-
verfahren zur Parameterbestimmung untersucht. Die Optimierungsverfahren selbst 
zeigten ein schnelles und gleichmäßiges Konvergenzverhalten, konnten die 
Optimierungsaufgabe ohne Schwierigkeiten lösen und kamen zu ähnlichen 
Ergebnissen. In allen betrachteten Fällen ergaben sich dabei jedoch sehr kleine Werte 
für die Integralanteile, also große Nachstellzeiten, und somit eine unzureichende 
stationäre Genauigkeit. Die Beschränkung auf eine einfache, weit verbreitete Regler-
struktur führt hier also auf wesentliche Einschränkungen der Regelgüte. Inwieweit dies 
durch eine andere Wahl der Gewichtungsfunktionen beeinflusst und eventuell 
verbessert werden kann, wäre einThema für weitere Untersuchungen. 

In allen hier durchgeführten Untersuchungen zur robusten Regelung zeigte sich, dass 
es bei plötzlich auftretenden Drehmomenten, wie etwa beim Losbrechen aus der 
Haftreibung oder sprungförmig auftretenden Änderungen, zu Stoßbelastungen in 
Kupplungselementen bzw. Getrieben kommt. Dies trifft insbesondere auf Systeme mit 
Lose zu. Die Problematik der Impulsbelastungen bei Lose konnte auch schon in [8] 
beobachtet werden. Diese Stoßbelastungen können zu Beschädigungen und einer 
Verringerung der Lebensdauer der entsprechenden Kupplungs- oder Getriebe-
komponenten führen. Neben der robusten Regelung von Mehrmassensystemen mit 
nicht genau bekannten oder vereinfachten Paramtern bzw. Strukturen stellen daher 
die in solchen Systemen auftretenden Belastungen eine wesentliche Herausforderung 
dar. Im Folgenden sollen daher regelungstechnische Möglichkeiten untersucht 
werden, das auftretende Torsionsmoment bzw. dessen Änderungsrate in elastisch 
gekoppelten Mehrmassensystemen zu begrenzen, um so Belastungen zu minimieren. 
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10 Modellbildung für die belastungs- 
reduzierende Regelung 

Ausgangslage für die Beschreibung des Zweimassensystems bildet das im ersten Teil 
dieser Arbeit erstellte Modell mit den mechanischen Zeitkonstanten T1, T2 und der 
Federsteifigkeit C (s. Abschn. 2.3 bzw.4.2). Sollte in dem Antriebsstrang ein Getriebe 
mit einem Übersetzungsverhältnis ungleich 1:1 vorhanden sein, so müssen die Werte 
einer Seite auf die andere umgerechnet werden. Beispielsweise können die Werte der 
Lastseite bei einem Übersetzungsverhältnis ü = n2:n1 ≠ 1, welches vor (antriebsseitig) 
der Elastizität auftritt, wie folgt auf die Antriebsseite bezogen werden: 

 T T originalm ü m  (10.1) 

 2
2 2 originalT ü T  (10.2) 

 2
originalC ü C  (10.3) 

 
2 2

2 2

1

1

original

original

ü

ü

 

 




 (10.4) 

Bezüglich einer möglicherweise im System autretenden Lose muss beachtet werden, 
dass innerhalb der Lose die durch das entsprechende, losebehaftete Kupplungs-
element verbundenen Teilsysteme entkoppelt sind. Das hintere Teilsystem ist in 
diesem Falle nicht beeinflussbar, da keine mechanische Verbindung zwischen beiden 
Teilsystemen besteht. Weiterhin gilt innerhalb der Lose immer mT = 0 (s. Abschn. 2.2). 
Erst nach dem Durchfahren der Lose sind die beiden Teilsysteme wieder gekoppelt 
und können regelungstechnisch beeinflusst werden. Ein Torsionsmoment tritt somit 
nur auf und kann auch nur beeinflusst werden, wenn sich das System im Eingriff 
befindet und die Lose somit nicht wirksam ist. Weiterhin stellt die Lose eine wesentliche 
Nichtlinearität dar. Diese Arbeit soll sich jedoch darauf beschränken, lineare 
Regelungsansätze zu untersuchen. 

Daher wird in dieser Arbeit die Lose vernachlässigt und ein Zweimassensystem ohne 
Lose betrachtet, dessen Torsionsmoment auf der Welle mT begrenzt bzw. geregelt 
werden soll. Bild 10.1 zeigt die Struktur eines solchen Zweimassensystems. 
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Bild 10.1: Blockschaltbild des Zweimassensystems 

Das antreibende Drehmoment ma wirkt zunächst gegen das Torsionsmoment mT, 
sowie gegen die an der Antriebsseite auftretende Reibung. Durch Division des 
verbleibenden Drehmomentes durch das Trägheitsmoment der Antriebsseite ergibt 
sich die Beschleunigung, aus der nach einer Integration die Drehzahl 1 der 
Antriebsseite folgt. Eine weitere Integration führt auf die antriebsseitige Position 1. Die 
Differenz aus antriebs- und lasteitiger Position  = 1 - 2 ergibt nach Multiplikation mit 
der Federkonstanten C das Torsionsmoment mT. Dieses Torsionsmoment wirkt zum 
einen auf die Antriebsseite zurück, zum anderen wirkt es gegen die Reibung auf der 
Lastseite und ein eventuell auftretendes Lastmoment mL. Das verbleibende Dreh-
moment ergibt nach Division duch die lastseitige Massenträgheit die Beschleunigung 
der Lastseite. Weitere Integrationen führen wiederum auf die entsprechende Drehzahl 
2 und Position 2. 

Zum Entwurf einer Torsionsmomentenregelung ist es zweckmäßig, das System 
zusammenzufassen und zu vereinfachen. Es ist nicht notwendig, die beiden 
Drehzahlen jede für sich zu integrieren und anschließend die Differenz zu bilden, um 
das Torsionsmoment zu bestimmen. Da  1 2Tm C      bzw.  1 2Tm C      gilt, 

kann auch die Drehzahldifferenz gebildet und diese dann integriert werden. Dadurch 
fallen die beiden Integrationen von Drehzahl auf Position zu einem Integrator 
zusammen. Die entsprechende Struktur ist in Bild 10.2 dargestellt. 

 

 
Bild 10.2: Zusammengefasstes Blockschaltbild des Zweimassensystems 
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Kann zudem die Reibung vernachlässigt werden, so dass die Drehzahlen selbst im 
Systemmodell nicht benötigt werden, können mit  1 2Tm C       auch die beiden 
Integratoren von Beschleunigung auf Drehzahl zusammengefasst werden. 

Das Zweimassensystem kann in diesem Fall durch folgende Gleichungen beschrieben 
werden 

  1
1

1
a Tm m

T
   , (10.5) 

  2
2

1
T Lm m

T
   , (10.6) 
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   

1 2

1 2

1 1

T

a T T L

m C

C m m m m
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   

 
     

 

 

.

 (10.7) 

Damit kann das Zweimassensystem als System zweiter Ordnung, wie in Bild 10.3 
gezeigt, dargestellt werden. 

 

Bild 10.3: Zweimassensystem mit Tm  und Tm  als Zustandsgrößen 

Für dieses System kann die folgende Zustandsraumdarstellung angegeben werden, 
die als Basis für den Reglerentwuf dient: 
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T T
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T T

m m
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 (10.8) 
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T

m
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m

 
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 
 (10.9) 
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11 Reglerentwurf 

Für das durch Gl. (10.8) und (10.9) beschriebene System kann nun eine Zustands-
rückführung und ein Vorfilter zur Regelung des Torsionsmomentes entworfen werden, 
wie in Gl. (11.1) und Bild 11.1 gezeigt. Als Stellgröße u wird dabei das Antriebsmoment 
ma verwendet. 

  1 2
T

a T soll
T

m
u m K K F m

m

 
   

 
 (11.1) 

 
Bild 11.1: Zustandsrückführung für das Torsionsmoment 

Nachteilig an diesem Ansatz ist, dass hierbei Tm als interner Zustand nicht gezielt 
beeinflusst bzw. begrenzt werden kann. Ein hohes Tm  verursacht jedoch Stoss-
belastungen im Antriebsstrang und führt zu Schäden, die durch eine geeignete 
Regelung möglichst vermieden werden sollen. 

 

11.1 Ruckregelung 

Eine Möglichkeit, den Torsionsruck Tm  zu regeln, besteht darin, die Gleichungen 
(10.8) und (10.9) nach der Zeit zu differenzieren. Das dadurch entstehende System 
hat die gleiche Struktur und das gleiche dynamische Verhalten wie das System in Bild 
10.3. Die Zustandsgrößen lauten nun jedoch Tm  und Tm  (s. Bild 11.2).  
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Bild 11.2: Differenziertes Zweimassensystem 

Zustandsraumdarstellung: 

 

 1 2 1 2

0 1 0 0

0
T T

a L
T T

B EA

m m
m mC C C C

m m
T T T T

     
                               

 
 

 


 (11.2) 

  1 0 T
T

T
C

m
m

m

 
  

 





 (11.3) 

Entsprechend kann für dieses System ein Zustandsregler mit Vorfilter für Tm  entworfen 
werden. Durch die Vorgabe eines maximal zulässigen Sollwertes kann der von der 
Zustandsrückführung eingestellte Torsionsruck grundsätzlich begrenzt werden. Das 
Torsionsmoment ergibt sich durch eine weitere Integration der Ausgangsgröße dieses 
Systems. Die Bestimmung der Reglerparameter erfolgt beispielsweise durch Polvor-
gabe nach Ackermann. 

  1 2
T

a T soll
T

K

m
u m K K F m

m

 
   

 


 

 
 (11.4) 

Der Faktor F kann nach [22] wie folgt bestimmt werden: 

 
11( )F C BK A B

     (11.5) 

Durch diese Zustandsrückführung kann die Dynamik des Rucks Tm  auf der Welle 
beeinflusst und der maximal zulässige Wert festgelegt werden. Dabei ist zu beachten, 
dass die Reglerausgangsgröße nun nicht mehr das Antriebsmoment ma ist, sondern 
dessen zeitliche Ableitung. Da die tatsächliche Stellgröße im realen Antriebsstrang 
jedoch das Antriebsmoment ist, muss die Reglerausgangsgröße noch einmal integriert 
werden, ehe sie auf das reale System aufgeschaltet werden kann. Weiterhin ist das 
real zur Verfügung stehende Antriebsmoment begrenzt.  

Diesem inneren Kreis kann nun ein Regler für das Torsionsmoment mT überlagert 
werden. Es ergibt sich damit eine Kaskade aus Torsionsmomentenregelung mit 
unterlagerter Zustandsrückführung für den Torsionsruck. Diese Struktur ist in Bild 11.3 
dargestellt. 

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


133 

 
Bild 11.3: Torsionsmoment-Kaskadenregelung 

 

11.2 Berücksichtigung der Stellgrößenbeschränkung 

Bei der Bestimmung des maximal zulässigen Torsionsmomentes mT max muss neben 
der mechanischen Belastbarkeit des Antriebsstrangs die Begrenzung der Stellgröße, 
also des maximalen Antriebsmoments ma max beachtet werden. Die unterlagerte 
Zustandsrückführung basiert auf der Annahme eines linearen Systemverhaltens. 
Würde das Antriebsmoment in die Begrenzung geraten, wäre diese Annahme verletzt 
und die korrekte Funktion der Torsionsmomentenregelung wäre nicht mehr gegeben. 
Es ist daher notwendig, durch eine geeignete Begrenzung des geforderten 
Torsionsmomentes sicherzustellen, dass das Antriebsmoment nicht in die Begrenzung 
gerät. 

Zunächst soll untersucht werden, welches Torsionsmoment bei begrenztem Antriebs-
moment maximal stationär auf der Welle eingestellt werden kann, wenn keine 
Störgrößen, also Lastmomente auftreten. Hier muss darauf hingewiesen werden, dass 
ein stationäres Drehmoment ohne Lastmoment eine Beschleunigung bedeutet. 
Entsprechend bewirkt ein positives stationäres Torsionsmoment eine stetig 
zunehmende Drehzahl des Systems. Der Begriff stationärer Zustand kann daher nur 
eingeschränkt auf die Drehmomente bzw. Beschleunigungen und nicht auf die 
Drehzahl angewendet werden. 

In dem in Bild 10.1 dargestellten Blockschaltbild eines Zweimassensystems ist 
ersichtlich, dass das Antriebsmoment ma zunächst die antriebsseitige Masse 
beschleunigt. Werden, wie oben beschrieben, Reibung und Lastmomente vernach-
lässigt, so wird der verbleibende Anteil als Torsionsmoment über die Welle auf die 
lastseitige Masse übertragen und beschleunigt diese. 

 1 1a Tm T m   (11.6) 

 2 2Tm T    (11.7) 

Im stationären Zustand gilt für die Beschleunigungen 1 2      . 
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Also folgt aus der Bewegungsgleichung: 

  1 2 2

1 22

a T

aT

m T T m T

m T Tm T




 
 






 (11.8) 

 2

1 2
T a

T
m m

T T



 (11.9) 

Entsprechend ergibt sich für das maximal stationär ohne Last einstellbare 
Torsionsmoment 

max_T sta
m : 

 2
max_ max

1 2
T asta

T
m m

T T



 (11.10) 

Dieses maximale, stationäre Torsionsmoment ergibt sich also aus dem Verhältnis der 
lastseitigen Trägheit zur Gesamtträgheit bzw. Zeitkonstanten multipliziert mit dem 
maximalen Antriebsmoment. Dies ist auch anschaulich klar, da das Antriebsmoment 
das Gesamtsystem beschleunigen muss, während der als Torsionsmoment über die 
Welle übertragene Teil lediglich die Lastseite beschleunigt. 

Im Allgemeinen werden jedoch zusätzliche Störgrößen in Form von Lastmomenten 
auftreten. Eine statische Begrenzung des maximalen Torsionsmomentes auf den oben 
berechneten Wert ist dann zu konservativ.  

Beispielhaft sei hier der Fall eines Systems mit T1 = T2 und einem zusätzlich an der 
Lastseite wirkenden Drehmoment mL = 0,8 ma max dargestellt. Soll z. B. eine überlagerte 
Drehzahlregelung die Geschwindigkeit der Lastseite konstant halten, so ist dazu 
wegen 2 2 T LT m m    ein Torsionsmoment von mT = 0,8 ma max notwendig. Dazu ist 
nach Gl. (11.6) ein Antriebsmoment von ma = 0,8 ma max erforderlich, was anschaulich 
klar ist, und vom Antrieb auch aufgebracht werden kann. Eine feste Begrenzung würde 
das maximal zulässige Torsionsmoment in diesem Falle jedoch auf mT max = T2/(T1+T2) 

ma max = 0,5 ma max begrenzen. Die überlagerte Drehzahlregelung könnte also die 
Geschwindigkeit nicht halten, obwohl genügend Stellreserve zur Verfügung steht. Es 
ist daher sinnvoll, eine dynamische Begrenzung unter Berücksichtigung auftretender 
Lastmomente einzuführen. 

Wird angenommen, dass sowohl an der Antriebs- als auch an der Lastseite 
zusätzliche, unbekannte Drehmomente mW1, mW2 als Widerstandsmomente auftreten 
können, so gilt: 

 1 1 1a W Tm T m m    (11.11) 

 2 2 2T Wm T m   (11.12) 

Aus Gl. (11.11) folgt für das maximal mit ma max einstellbare Torsionsmoment: 

 max max 1 1 1T a Wm m T m    (11.13) 
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Die unbekannte Störgröße mW1 kann dargestellt werden als 

 1 1 1W a Tm m T m   . (11.14) 

Einsetzen in Gl. (11.13) führt auf 

 max maxT a a Tm m m m   . (11.15) 

Diese Bedingung für das maximal einstellbare Torsionsmoment gilt auch bei auf-
tretenden Widerstandsmomenten und ist abhänging vom zum jeweiligen Zeitpunkt 
tatsächlich vorhandenen Torsionsmoment und dem aktuellen Drehmoment des 
Antriebs. Damit handelt es sich um eine dynamische, adaptive Begrenzung. 

Aus Gl. (11.15) kann nun eine adaptive Begrenzung des Regelfehlers der Torsions-
momentregelung hergeleitet werden, die verhindert, dass die Stellgröße in die 
Begrenzung gerät. 

Der Regelfehler des Torsionsmomentes lautet 

 m T soll TT
e m m  . (11.16) 

Das durch Gl. (11.15) beschriebene maximal einstellbare Torsionsmoment stellt den 
bei beschänkter Stellgröße maximal vorgebbaren Sollwert dar. Wird dies in Gl. (11.16) 
für mT soll eingesetzt, so ergibt sich für den maximal zulässigen Regelfehler 

 maxmaxm a aT
e m m  . (11.17) 

Durch diese dynamisch, vom zum jeweiligen Zeitpunkt anliegenden Antriebsmoment 
abhängige, Begrenzung des wirksamen Regelfehlers der Torsionsmomentregelung 
wird sichergestellt, dass die Stellgröße nicht in die Begrenzung gerät. Dadurch ist die 
korrekte Funktion der unterlagerten Zustandsrückführung für den Ruck gewährleistet. 

Bild 11.4 zeigt die Prinzipdarstellung der Torsionsmomentregelung mit adaptiver 
Begrenzung. 

 
Bild 11.4: Torsionsmoment-Kaskadenregelung mit adaptiver Begrenzung 
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Bei der Betrachtung der in Bild 11.4 dargestellten Regelungsstruktur fällt auf, dass 
diese in eine äquivalente Kombination aus einfachen Grundgliedern wie P-, I- und D-
Gliedern umgewandelt werden kann. 

Dazu wird zunächst der Integrator, der aus der Ausgangsgröße der Zustandsrück-
führung das Antriebsmoment bildet, über die Summation verschoben und vor das 
Vorfilter F bzw. den Rückführvektor K gezogen. Im Rückführzweig bewirkt dies, dass 
nun nicht mehr Tm  und Tm  als Zustandsgrößen zurückgeführt werden, sondern das 
Torsionsmoment Tm  selbst und dessen erste Ableitung Tm . Die sich dadurch 
ergebende Form ist die einer Zustandsregelung mit überlagerter PI-Regelung für das 
Torsionsmoment, welche auf Störverhalten optimierten ist [22]. 

Wird weiterhin der Rückführvektor K = [k1, k2]T in seine Komponenten aufgeteilt und 
der Ruck nicht direkt zurückgeführt, sondern durch Differentiation aus dem Torsions-
moment gebildet, so ergibt sich die in Bild 11.5 gezeigte Form.  

 
Bild 11.5: Zustandsrückführung als PD-Glied 

Der rot umrandete Teil stellt dabei ein PD-Glied mit der (idealen) Übertragungsfunktion 
GPD = k1+k2s bzw. k1(1+Tvs) mit Tv=k2/k1 dar. Wird dieses PD-Glied aus dem Rückführ-
zweig über die Summationsstelle in den direkt auf den Antriebsstrang wirkenden Zweig 
verschoben, muss die inverse Übertragungsfunktion GPD

-1 = 1/(k1+k2 s) in den Zweig 
mit Vorfilter und Integrator eingebracht werden. GPD

-1 hat die Form eines 
Verzögerungsgliedes erster Ordnung mit einer Zeitkonstanten T = k2/k1 und einer 
Verstärkung von 1/k1. Diese kann nun noch mit dem Vorfilter F und der proportionalen 
Verstärkung Kp des Torsionsmomentenreglers kombiniert und vor den Integrator 
gezogen werden, so dass sich die in Bild 11.6 dargestellte Struktur ergibt. 
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Bild 11.6: Torsionsmomentenregelung in PID Darstellung 

Diese besteht aus einem inneren PD-Regler und einem äußeren I-Regler mit adaptiver 
Begrenzung und PT1-Vorfilterung des Regelfehlers. 

11.3 Simulationsergebnisse 

Mit diesem Regelungskonzept wurden Simulationen unter Matlab/Simulink durch-
geführt, um die Funktion der Torsionsmomentenregelung zu überprüfen. 

Simuliert wurde ein Zweimassensystem, das auf dem in Abschn. 5.1 beschriebenen 
Dreimassenprüfstand beruht, jedoch ohne die mittlere Masse. Das Nennmoment des 
Antriebs beträgt also 10 Nm, die Massenträgheit des Antriebsmotors mit Losekupplung 
und Torsionswelle 1 = 35,7 Kg cm2. Der Lastmotor mit Torsionswelle hat eine 
Massenträgheit von 3 = 63,9 Kg cm2. Die mittlere Masse entfällt (2 = 0). Die Feder-
konstante ergibt sich als Zusammenfassung der beiden Federkonstanten des Drei-
massensystems zu C = 691,5 Nm/Umdr. Damit ergeben sich die folgenden normierten 
mechanischen Zeitkonstanten T1, T3 bzw. Federkonstante CN: 

 1 0,1122T   (11.18) 
 3 0, 2007T   (11.19) 

 69,15NC   (11.20) 

Mit diesen Werten wurde ein Zweimassenmodell als Antriebsstrang und eine 
Torsionsmoment-Kaskadenregelung nach Bild 11.4 in Matlab/Simulink implementiert. 
Weiterhin wurde in diesem Modell auch eine normierte, viskose Reibung mit einem 
Faktor von RL = 0,2 berücksichtigt. 

In einem ersten Schritt wurde die innere Zustandsrückführung für die Ableitung des 
Torsionsmomentes entworfen und simuliert, um deren korrekte Funktion zu 
überprüfen. Beide Pole wurden dabei zu -200 gewählt. Damit ergeben sich die 
folgenden Werte für die Zustandsrückführung bzw. das Vorfilter: 

 1

2

1,3552

0,0021

k

k

 


 (11.21) 

 0, 2065F    (11.22) 
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In Bild 11.7 ist die Antwort dieses inneren Kreises auf einen auf 10 Nm/s normierten 
Führungsgrößensprung dargestellt. Es ist zu erkennen, dass die Ableitung des 
Torsionsmoments den gewünschten Sollwert innerhalb von ca. 0,15 s erreicht, ohne 
überzuschwingen.  

Dieser inneren Ruckregelung ist eine Torsionsmomentregelung überlagert. Der 
Verstärkungsfaktor dieses Reglers wurde zu 

 12pK   (11.23) 

gewählt. 

 

Diese Torsionsmomentregelungskaskade einschließlich der adaptiven Begrenzung 
aufgrund der Beschränktheit des Antriebsmoments wurde ebenfalls simulatorisch 
überprüft. Dabei wurde zunächst ein Sollwert von 50% des Nennmoments 
vorgegeben, um sicherzustellen, dass die Regelung den gewünschten Wert erreichen 
kann. Nach Gl. (11.10) liegt das maximal ohne den Einfluss von Störgrößen 
einstellbare Torsionsmoment bei 64% des Nennmomentes. 

 

 

Bild 11.7: Simulation – Sprungantwort der Tm -Regelung 
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In Bild 11.8 ist die Antwort des Regelkreises auf diesen Führungsgrößensprung von 
50% Nennmoment dargestellt. Der Ruck wird erfolgreich begrenzt. Das Torsions-
moment steigt bei begrenztem Ruck linear an und erreicht nach ca. 0,35 s den 
Sollwert. Das Antriebsmoment steigt dabei auf 78% des Nennmoments, was dem 
Verhältnis der trägen Massen nach Gl. (11.10) entspricht. 

 

 
Bild 11.8: Simulation – Führungssprungantwort der mT -Regelungskaskade 

 

In diesem Zustand wird mit t = 0 ein Störgrößensprung von 50% des Nennmoments 
an der Lastseite aufgeschaltet. Bild 11.9 a) zeigt die entsprechenden Antworten des 
geregelten Systems. Zur besseren Übersicht ist in Bild 11.9 b) der relevante Bereich 
vergrößert dargestellt. Der Torsionsruck überschreitet aufgrund der sprungförmigen 
Störung die gewählte Begrenzung, ehe die Regelung eingreifen kann. Der auftretende 
Spitzenwert liegt um den Faktor 42 über dem gewählten Maximum. Zudem treten 
Schwingungen im Torsionsruck auf. Nach 0,065 s gelingt es der Regelung, den Ruck 
wieder auf den gewünschten Bereich zu begrenzen.  
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a)  

b)  

Bild 11.9: a) Simulation – Störsprungantwort der mT -Regelungskaskade  
b) Vergrößerte Darstellung 

 

Die Regelung verringert zunächst das Antriebsmoment, um die Schwingungen zu 
dämpfen und den Ruck zu verringern. Ab 0,085 s nehmen das Torsionsmoment und 
die Stellgröße wieder zu, bis das Torsionsmoment nach 0,4 s den Sollwert von 50% 
des Nennmoments wieder erreicht. Mit der hier simulierten Störung geht das dazu 
benötigte Antriebsmoment von 78% auf 50% des Nennmoments zurück, was den 
Erwartungen entspricht. 
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Um das Verhalten der Regelung bei Vorgabe eines nach Gl. (11.10) stationär nicht 
erreichbaren Sollwertes zu untersuchen, wurde auch ein Führungsgrößensprung auf 
100% des Nennmoments simuliert. Die Ergebnisse sind in Bild 11.10 dargestellt. 

Der innere Regelkreis begrenzt den normierten Torsionsruck erfolgreich. In dem 
Bereich, in dem der Ruck den zulässigen Maximalwert annimmt, steigt das Torsions-
moment linear an. Weiterhin ist zu erkennen, dass es dem Regler nicht gelingt, das 
Torsionsmoment auf den gewünschten Sollwert einzustellen. Das Torsionsmoment 
verharrt bei 64% des Sollwertes, da das Antriebsmoment in die Begrenzung gerät. 
Dies entspricht den Erwartungen und stimmt mit dem nach Gl. (11.10) berechneten 
maximal einstellbaren Wert überein. 

 
Bild 11.10:  Simulation – Sprungantwort der mT -Regelungskaskade 

 

In diesem Zustand wird ein Störgrößensprung von 50% des Nennmomentes an der 
Lastseite aufgeschaltet. Bild 11.11 a) zeigt die Antwort dieser Regelung auf diesen 
Störgrößensprung. Zur besseren Übersicht ist in Bild 11.11 b) dieser Bereich wieder 
vergrößert dargestellt. Es gelingt der Regelung durch die sprungförmige Störung nicht, 
den Ruck auf das geforderte Maß zu beschränken. Die auftretende Spitze liegt um den 
Faktor 42 über der gewählten Begrenzung. Zudem entstehen Schwingungen im 
Torsionsruck, ehe die Regelung eingreifen und diese Schwingungen dämpfen kann. 
Nach ca. 0,06 s erreicht der Ruck wieder Werte innerhalb des gewünschen Bereichs. 
Dieses Verhalten entspricht im Wesentlichen dem schon zuvor beobachteten.  
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a)  

b)  

Bild 11.11:  a) Simulation – Störsprungantwort der mT –Regelungskaskade 
b) Vergrößerte Darstellung 

 

Die Störgröße führt zunächst zu einem Anstieg des Torsionsmomentes. Die Stellgröße 
verringert sich, um den Torsionsruck wieder in den zulässigen Bereich zu bringen und 
die Schwingungen zu dämpfen. Nach ca. 0,06 s kann die Regelung den Ruck auf das 
gewählte Maximum beschränken. Antriebs- und Torsionsmoment nehmen linear zu, 
bis die Stellgröße ihr Maximum erreicht und sich das Torsionsmoment auf den neuen 
stationären Endwert von 82% des Nennmoments einstellt. 
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11.4 Experimentelle Ergebnisse am Prüfstand 

Die Regelung wurde in der Programmiersprache C auf den in Abschn. 11.3 
beschriebenen Zweimassenprüfstand implementiert. Dabei wurde jedoch die mittlere 
Schwungmasse entfernt. Der Prüfstand bildet somit nun ein Zweimassensystem mit 
den auch für die Simulation verwendeten Werten. Am realen System ist jedoch zu 
bedenken, dass es nicht möglich ist, stationär ein konstantes Torsionsmoment auf der 
Welle ohne ein entsprechendes Gegenmoment (Störgröße) zu erzeugen, da ein 
solches Torsionsmoment gleichbedeutend mit einer konstanten Beschleunigung der 
Lastseite ist und die physikalischen Drehzahlgrenzen des realen Prüfstandes nicht 
überschritten werden dürfen. Um dennoch die Torsionsmomentregelung auch 
messtechnisch überprüfen zu können, wurde die Lastseite in einem ersten Ansatz 
mechanisch fixiert. In diesem Falle sind daher stationär das Antriebsmoment und das 
Torsionsmoment gleich. Durch diese Änderung im System war es sinnvoll, für diesen 
Versuch die Pole der Zustandsrückführung zu -200 ± j 500 zu wählen. Damit ergeben 
sich folgende Reglerparameter: 

 1

2

0,0615

0,0021

k

k

 


 (11.24) 

 1,4972F    (11.25) 

Der Torsionsruck wurde auf einen Maximalwert von 30 Nm/s normiert. Der Ver-
stärkungsfaktor des Torsionsmomentreglers wurde wie folgt gewählt: 

 75pK   (11.26) 

Mit diesen Einstellungen wurde zum Zeitpunkt t = 0 bei festgesetzter Lastseite ein 
Führungsgrößensprung von 50% des Nennmomentes, also 5 Nm auf das torsions-
momentgeregelte System gegeben. Bild 11.12 zeigt die entsprechenden Antworten 
von Torsionsmoment bzw. -ruck am Prüfstand. Es gelingt der Regelung den 
normierten Torsionsruck auf 1 zu begrenzen. Das Torsionsmoment nimmt zunächst 
linear zu und erreicht nach ca. 0,3 s den Sollwert. Sowohl die eigentliche Torsions-
momentenregelung, als auch die unterlagerte Zustandsrückführung für den Ruck 
zeigen somit das gewünschte Verhalten. 
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Bild 11.12: Messung – Sprungantworten der Torsionsmomentregelung 

Die Durchführung weiterer Messungen ist an dem Aufbau mit fixierter Lastseite jedoch 
nicht sinnvoll möglich, da keine Störgröße, die ja an der Lasteite angreifen würde, 
aufgeschaltet werden kann. Um das dynamische Verhalten der Torsionsmoment-
regelung auch unter Einfluß von Störgrößen untersuchen zu können und dennoch ein 
unkontrolliertes Hochlaufen des Prüfstandes zu vermeiden, wurde in einem zweiten 
Schritt eine überlagerte Drehzahlregelung implementiert. Diese verwendet als 
Stellgröße das Torsionsmoment und dient hier lediglich zur Erzeugung des Sollwertes 
für die unterlagerte Regelung. Als Drehzahlregler wird ein PI-Regler mit den 
Verstärkungsfaktoren kp = 2, ki = 3 verwendet. Auf das so geregelte System wurde 
jeweils zum Zeitpunkt t = 0 sowohl ein Führungsgrößensprung aus 20% der 
Nenndrehzahl, also 600 U/min, als auch ein Störgrößensprung von 2 Nm Drehmoment 
an der Lastseite, also 20% des Nennmomentes gegeben.  

Die Führungssprungantwort ist in Bild 11.13 a) und b) dargestellt. Bild 11.14 a) und b) 
zeigt die Störsprungantwort.  

Auf den Sprung des Drehzahlsollwertes bei t = 0 reagiert der Drehzahlregler mit einer 
Sollwertvorgabe für den unterlagerten Torsionsmomentregelkreis. Dieser gelingt es, 
den Torsionsruck im Wesentlichen, bis auf wenige Spitzen unterhalb der gewählten 
Begrenzung zu halten. Antriebs- und Torsionsmoment nehmen zunächst linear zu. Mit 
der dadurch ansteigenden Drehzahl sinkt der Torsionsmomentsollwert und der Anstieg 
des Istwertes geht ab ca. 0,1 s zurück. Ab ca. 0,15 s folgt der Istwert dem weiter 
abnehmenden Sollwert relativ gut. Nach ca. 0,4 s hat die Drehzahl ihren Endwert 
erreicht und das Torsionsmoment nimmt einen stationären Wert von 8,6% des 
Nennmoments an, um die im System vorhandenen Reibung zu überwinden und die 
Drehzahl konstant zu halten. Der Torsionsruck schwankt um Null. Die relativ großen 
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Schwankungen im Messsignal des Torsionsrucks sind vermutlich im Wesentlichen auf 
mechanische Ungenauigkeiten des Prüfstandes, wie nichtlineare, positionsabhängige 
Reibung zurückzuführen. Weiterhin wird der Torsionsruck aus der Drehzahldiffenrenz 
der Antriebs- und Lastseite, also der differenzierten Positionsdifferenz ermittelt. Durch 
diese Differentiation wird auftretendes Messrauschen verstärkt. 

 

a)  

b)  

Bild 11.13:  Messung – Führungssprungantwort  
a) der überlagerten Drehzahlregelung 
b) der unterlagerten Torsionsmomentregelung 
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In diesem Zustand, also mit konstanter Drehzahl von 0,2-facher Nenndrehzahl und 
konstantem Torsionsmoment von 0,089-fachem Nennmoment, wird nun an der Last-
seite ein Störmoment von 20% des Nennmoments, also 2 Nm, aufgeschaltet. Die 
entsprechenden Sprungantworten sind für die Drehzahlregelung in Bild 11.14 a) und 
für die unterlagerte Torsionsmometregelung in Bild 11.14 b) gezeigt.  

 

a)  

b)  

Bild 11.14:  Messung – Störsprungantwort  
a) der überlagerten Drehzahlregelung 
b) der unterlagerten Torsionsmomentregelung 
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Die normierte Drehzahl sinkt mit Auftreten der Störung zunächst von 0,2 auf 0,105. 
Nach 0,25 s beginnt die Drehzahl langsam wieder zu steigen und erreicht den Sollwert 
nach ca. 3,5 s wieder. Da die Drehzahlregelung hier nicht im Fokus steht, ist in Bild 
11.14 a) lediglich der Bereich bis 0,75 s dargestellt.  

In Bild 11.14 b) ist zu erkennen, dass mit dem Auftreten der Störung bei t = 0 der 
Torsionsruck einen Impuls vom 1,47-fachen des gewünschen Maximalwertes 
aufweist, ehe der Regler reagieren kann. Das vom überlagerten Drehzahlregler 
vorgegebene normierte Solltorsionsmoment steigt vom ungestörten Wert von 0,089 
innerhalb von ca. 0,35 s auf den neuen Sollwert von 0,35, um der Störung entgegen 
zu wirken. Die unterlagerte Torsionsmomentregelung kann diesem Sollwert gut folgen. 
Das Antriebsmoment geht zunächst etwas zurück, um dem Impuls im Ruck entgegen 
zu wirken und steigt anschließend wieder an. Der Torsionsruck bleibt bis auf den 
ersten Impuls innerhalb der gewählten Grenzen. 

 

Die entworfenen Kaskadenregelung für das Torsionsmoment, wie sie in Bild 11.4 bzw. 
Bild 11.5 dargestellt ist, zeigt also auch in den Messungen am Prüfstand das 
gewünschte Verhalten. Diese Ergebnisse wurden auch in [47] veröffentlicht. Damit ist 
sie für eine belastungsreduzierende Regelung geeignet, wenn alle notwendigen 
Größen, also das Torsionsmoment und dessen erste bzw. zweite Ableitung, 
messtechnisch erfasst werden können.  
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12 Regelung mit Beobachter 

Voraussetzung für den Einsatz der entworfenen Torsionsmomentkaskadenregelung 
ist bisher allerdings noch, dass das Torsionsmoment und der -ruck messtechnisch 
erfasst werden können, bzw. der Ruck erfolgreich durch Differentiation aus dem 
gemessenen Torsionsmoment bestimmt werden kann. Dies wird in der Praxis jedoch 
meist nicht gegeben sein. Es ist daher sinnvoll, diese Größen über geeignete 
Beobachterstrukturen zu ermitteln. Es ergibt sich damit die in Bild 12.1 dargestellte 
Struktur der Torsionsmoment-Kaskadenregelung in Verbindung mit einem Beobachter 
zur Schätzung der Regelgrößen. 

 
Bild 12.1: Torsionsmoment-Kaskadenregelung mit Beobachter 

Grundsätzlich können nicht messbare Zustände eines dynamischen Systems aus den 
messbaren Zuständen bzw. Linearkombination von Zuständen ermittelt werden. Bei 
dem für den Reglerentwurf verwendeten System in Bild 10.3 bzw. der differenzierten 
Variante in Bild 11.2 sind jedoch alle Zustände und Ausgangsgrößen nicht messbar, 
so dass diese Modellbeschreibungen für einen Beobachterentwurf ungeeignet sind. 
Es ist daher zweckmäßig, auf die ursprüngliche Beschreibung eines Zweimassen-
systems, wie es z. B. in Bild 10.1 dargestellt ist, zurück zu gehen. 

Ist das reale System ein Zweimassensystem, bzw. ist bei einem realen Mehrmassen-
system die Gesamttorsion zwischen Antriebs- und Lastseite die relevante, zu regelnde 
Größe, so kann das Torsionsmoment aus der Positionsdifferenz von Antriebs- und 
Lastseite bestimmt werden. Der Ruck folgt entsprechend aus der Drehzahldifferenz. 

Sind also beide Positionen messbar, so kann mT direkt berechnet werden. Im 
Allgemeinen wird eine Positionserfassung an der Lastseite jedoch nicht immer 
vorhanden sein (s. Abschn. 5.3). Daher wird hier der in Abschn. 5.3.1 vorgestellte 
reduzierte Beobachter verwendet, um Drehzahl und Lage der Lastseite zu schätzen 
und daraus das Torsionsmoment und den -ruck zu bestimmen. 
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Die grundsätzliche Zustandsraumbeschreibung für einen reduzierten Beobachter 
lautet [22]:  

       22 12 2 1 22 12 21 11 1r A LA r B LB u A LA L A LA x       
    (12.1) 

 2 1 x̂ r Lx 
    (12.2) 

Die Matrizen entsprechen den in Gl. (5.37) bis Gl. (5.44) beschriebenen. Der Faktor 
für die normierte, lineare Reibung RL wurde dabei zu 0,2 angenommen. Die Matrix L 
wird wie zuvor durch Polvorgabe bestimmt. Hier wurden alle Pole des Beobachters 
empirisch zu -250 gewählt.  

Weiterhin ist anzumerken, dass die beiden Messgrößen nicht unabhängig voneinander 
sind. Da die Position durch Integration aus der Drehzahl hervorgeht, bietet die 
Messung beider Größen prinzipiell keine neuen Informationen. Es ist also grund-
sätzlich möglich, auch mit der Messung nur einer Größe auszukommen. In diesem 
Falle ist eine Spalte der 3 x 2 Matrix L eine Nullspalte. 

Damit ergibt sich die Rückführmatrix L zu 

 
1,2148 0

5,4992 0

101,7467 0

L

 
   
  

. (12.3) 

In Kombination mit diesem Beobachter musste die Dynamik der Torsionsmoment-
reglerkaskade und der überlagerten Drehzahlregelung angepasst werden. Dabei 
wurde bewusst ein geringfügiges Überschwingen der Regelgrößen in Kauf 
genommen. Folgende Parameter wurden für die Torsionsmomentkaskade, wie sie in 
Bild 12.1 zu sehen ist, verwendet 

 1

2

0,1795

0,0049

k
K

k

   
    

  
, (12.4) 

 1,7382F   , (12.5) 

 20pk  . (12.6) 

Für den Drehzahlregler kamen folgende Parameter zur Anwendung 

 1,4pk  , (12.7) 

 2,8ik  . (12.8) 

Der maximale Torsionsruck wurde zu 50 Nm/s gewählt. 
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12.1 Simulationsergebnisse der Regelung mit Beobachter 

Mit diesen Parametern wurde die Regelung in Verbindung mit dem Beobachter 
zusammen mit dem in Abschn. 11.3 beschriebenen Modell des Prüfstandes simuliert. 
Untersucht wurden sowohl ein Führungsgrößensprung der Drehzahlregelung auf 20% 
der Nenndrehzahl, als auch ein Störgrößensprung von 2 Nm, also 20% des Nenn-
moments. 

Bild 12.2 a) zeigt die Sprungantwort der überlagerten Drehzahlregelung auf den 
Führungsgrößensprung, wenn die beobachtete, lastseitige Position als Regelgröße 
verwendet wird. Wie zu erkennen ist, stimmen die beobachtete und reale Drehzahl 
sehr gut überein. Die Anregelzeit beträgt ca. 0,3 s. Nach einem Überschwinger auf 
0,221 der Nenndrehzahl ist der Sollwert von 0,2 nach ca. 2 s erreicht. Auch hier dient 
diese überlagerte Drehzahlregelung beispielhaft der Sollwertvorgabe für die unter-
lagerte Torsionsmomentkaskade. Die entsprechenden Größen dieser Kaskade sind in 
Bild 12.2 b) abgebildet. 

 

Das beobachtete Torsionsmoment und der -ruck stimmen sehr gut mit den realen 
Größen überein, so dass die Regelung das gewünschte Verhalten zeigt. Das Soll-
torsionsmoment springt auf ca. 0,3 und geht im weiteren Verlauf auf 0,04 zurück. Die 
unterlagerte Torsionsmomentregelung reagiert darauf mit einem Anstieg des 
Antriebsmomentes. Der Torsionsruck weist dabei aufgrund der gewählten Regler-
dynamik einen kurzen Überschwinger über das gewählte Maximum hinaus auf. Nach 
ca. 0,02 s bleibt Tm  innerhalb des zulässigen Bereiches. Dieses kurze Überschwingen 
wurde hier bewusst in Kauf genommen und könnte durch Wahl anderer Regler-
parameter vermieden werden. Das Torsionsmoment folgt dem Sollwert nach einer 
Anregelzeit von 0,1 s relativ gut und erreicht nach ca. 1 s den stationären Wert von 
0,04. Dieses Drehmoment ist erforderlich, um die an der Lastseite im System 
vorhandene Reibung zu überwinden und die Drehzahl zu halten. Das Antriebsmoment 
zeigt ein qualitativ ähnliches Verhalten, hat jedoch einen stationären Endwert von 0,08, 
da es zusätzlich die an der Antriebsseite auftretende Reibung überwinden muss. 
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a)  

b)  

Bild 12.2:  Simulation – Führungssprungantwort  
a) der überlagerten Drehzahlregelung 
b) der unterlagerten Torsionmomentkaskade 
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In diesem Zustand wurde eine Störgröße in Form eines Drehmoments von 5 Nm an 
der Lastseite aufgeschaltet. Bild 12.3 a) zeigt die Sprungantwort der überlagerten 
Drehzahlregelung, Bild 12.3 b) die entsprechenden Größen der Torsionmoment-
kaskadenregelung. Da Details in Bild 12.3 b) nur schwer zu erkennen sind, ist in Bild 
12.4 der relevante Bereich vergrößert dargestellt. 

 

a)  

b)  

Bild 12.3:  Simulation – Störsprungantwort  
a) der überlagerten Drehzahlregelung 
b) der unterlagerten Torsionmomentkaskade 
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Bild 12.4:  Simulation – Antworten der unterlagerten Torsionmomentkaskade  
Vergrößerte Darstellung 

Auch hier übersteigt der von der Störung verursachte Torsionsruck zuerst die 
gewünschten Grenzen, ehe die Regelung wirksam werden kann. Weiterhin fällt auf, 
dass der erste Impuls im geschätzten Torsionsruck dem tatsächlichen entgegen-
gesetzt ist. Dies ist unvermeidlich, da die erste messtechnische Erfassung der 
Auswirkungen der Störung in einer Abnahme der antriebsseitigen Drehzahl besteht, 
aus welcher der Beobachter auf eine Abnahme des Torsionsrucks schließen muss. 
Real wurde die Verringerung der antriebsseitigen Drehzahl dagegen durch eine 
Zunahme des Torsionsmomentes, also einen positiven Ruck bewirkt. Es ist dem 
Beobachter daher prinzipiell nicht möglich, aus den vorhandenen Messdaten die 
initiale Änderung von Tm  korrekt zu schätzen. Dieses entgegengesetzte Verhalten gilt 
nur für den ersten Impuls. Nach ca. 0,03 s ist der beobachtete Wert auf den realen 
Wert von Tm  eingeschwungen und folgt diesem sehr gut. Bis auf den ersten Impuls 
gelingt es der Regelung, auch mit Beobachter das abgeleitete Torsionsmoment 
innerhalb der gewählten Grenzen zu halten. Reales und beobachtetes Torsions-
moment stimmen gut überein. Das Verhalten des Torsionsmomentes entspricht bei 
der Regelung mit Beobachter dem bei direkter Messung gesehenen. Lediglich die 
initiale Abweichung in der Schätzung von Tm  verursacht auch im Torsionsmoment 
einen zusätzlichen Impuls. Nach ca. 0,3 s hat das Torsionsmoment den von der 
überlagerten Drehzahlregelung vorgegebenen Sollwert erreicht und folgt diesem sehr 
gut.  
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12.2 Versuchsergebnisse am Prüfstand 

Nachdem die Regelung in Verbindung mit dem Beobachter in der Simulation gute 
Ergebnisse gezeigt hat, wurde der Beobachter in C auf dem DSP implementiert. 
Anschließend wurde die Funktion der Regelung auf Grundlage der durch den 
Beobachter ermittelten Größen auch messtechnisch am Prüfstand untersucht. Die 
verwendeten Regler- und Beobachterparameter entsprechen für diese Messungen 
denen, die für die Simulation genutzt wurden. Wie in der Simulation, wurden auch am 
Prüfstand ein Führungsgrößensprung der überlagerten Drehzahlregelung auf 20% der 
Nenndrehzahl als auch ein Störmomentsprung an der Lastseite von 20% des Nenn-
drehmomentes untersucht. 

Die Sprungantwort der Drehzahlregelung auf den Führungsgrößensprung ist in Bild 
12.5 a) dargestellt. Bild 12.5 b) zeigt das Verhalten des Sollwertes, des beobachteten 
und realen Wertes des Torsionsmoments sowie des Antriebsmoments auf den 
Führungssprung. Das entsprechende Verhalten des Torsionsrucks ist in Bild 12.5 c) 
abgebildet.  

Wie in Bild 12.5 a) zu erkennen ist, stimmen die beobachtete und die gemessene 
Drehzahl am Prüfstand sowohl für den Führungsgrößen- als auch für den Lastsprung 
sehr gut überein. Die Drehzahl hat den neuen Sollwert ohne überzuschwingen nach 
0,6 s erreicht und bleibt anschließend konstant auf dem Sollwert.  

In Bild 12.5 b) springt der von der überlagerten Drehzahlregelung geforderte Torsions-
momentsollwert zunächst auf 0,28, steigt dann in ca. 0,03 s auf 0,29 und fällt 
anschließend in etwa einer Sekunde auf einen stationären Wert von 0,13 zurück. 
Beobachtetes und reales Torsionsmoment stimmen gut überein. Nach einer Anregel-
zeit von 0,1 s mit etwa linearem Anstieg folgt das Torsionsmoment dem Sollwert und 
erreicht ebenfalls den stationären Endwert von 0,13, der notwendig ist, um die 
Drehzahl gegen die lastseitige Reibung zu halten. Das dazu notwendige Antriebs-
moment zeigt einen qualitativ ähnlichen Verlauf, hat jedoch einen stationären Endwert 
von 0,145. Es fällt auf, dass insbesondere das reale und beobachtete Torsionsmoment 
Schwingungen aufweisen. Diese sind zum einen darauf zurückzuführen, dass der 
Prüfstand ein schwingungsfähiges System darstellt, das mit seiner Eigenfrequenz 
schwingt, und zum anderen auf mechanische Ungenauigkeiten, wie eine positions- 
und damit drehzahlabhängige Reibung. Die dadurch verursachten internen 
Anregungen führen ebenfalls zu Schwingungen des Prüfstands. 

Die in Bild 12.5 c) gezeigten Verläufe der beobachteten und realen Ableitung des 
Torsionsmoments weisen ebenfalls relativ starke Schwingungen auf. Da diese Größe 
durch differenzieren der Positionsdifferenz ermittelt wird, und auch diese bereits die 
oben genannten Schwingungen aufweist, war eine Verstärkung dieses Verhaltens zu 
erwarten. 
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a)  

b)  

c)  

Bild 12.5:  Messung – Führungssprungantworten  
a) Drehzahl (real und beobachtet) 
b) Drehmomente (real und beobachtet) 
c) Ableitung des Torsionsmoments (real und beobachtet) 
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Im Mittel stimmen beobachteter und gemessener Torsionsruck jedoch gut überein und 
zeigen den erwarteten Verlauf. Zu Beginn steigt Tm  auf ca. 50% des hier beispielhaft 
zu 50 Nm gewählten Maximalwertes und verharrt dort bis etwa 0,08 s. Dies entspricht 
dem linearen Anstieg des Torsionsmoments. Anschließend geht der Ruck zurück und 
ist bis ca. 0,5 s im Mittel negativ, was mit dem in Bild 12.5 b) zu erkennenden 
Rückgang von Tm  korrespondiert. Im weiteren Verlauf schwankt Tm  um Null und das 
Torsionsmoment bleibt etwa konstant. 

Insgesamt gelingt es der Torsionsmomentregelung in Verbindung mit dem Beobachter 
bei einem Führungsgrößensprung die gestellten Anforderungen zu erfüllen und die 
Belastung innerhalb der gewählten Grenzen zu halten. Dies konnte sowohl in der 
Simulation als auch experimentell am Prüfstand gezeigt werden. 

 

Nachdem der Führungsgrößensprung ausgeregelt war, wurde ein Lastmoment von 
2 Nm an der Lastseite aufgeschaltet, um auch das Störverhalten messtechnisch zu 
überprüfen.  

Die entsprechende Sprungantwort der überlagerten Drehzahlregelung ist in Bild 
12.6 a) dargestellt. Bild 12.6 b) zeigt wieder die Verläufe des von der Drehzahlregelung 
geforderten Sollwertes, des beobachteten und realen Torsionsmomentes, und des 
Antriebsmomentes. Die Ableitung des beobachteten und des realen Torsions-
momentes ist in Bild 12.6 c) zu sehen. 

Wie in Bild 12.6 a) zu erkennen ist, geht nach dem Auftreten der Störung die Drehzahl 
zunächst innerhalb von 0,3 s von den geforderten 20% auf 9% der Nenndrehzahl 
zurück. Anschließend steigt die Drehzahl wieder an und erreicht nach ca. 2 s den 
Sollwert. Beobachtete und reale Drehzahl stimmen wiederum sehr gut überein. 

Auch das geschätzte und das reale Torsionsmoment in Bild 12.6 b) stimmen relativ 
gut überein. Es kommt jedoch zu einem geringen Offset. Das beobachtete Torsions-
moment liegt nach dem Ausregeln der Störung um etwa 0,15 Nm, also 1,5% des 
Nennmoments über dem realen Torsionsmoment. Beide Größen zeigen jedoch 
qualitativ den gleichen Verlauf.  

Unmittelbar nach dem Aufschalten der Störgröße zeigt sich ein Impuls im Torsions-
moment. Die Regelung reagiert darauf, indem sie zunächst das Antriebsmoment 
zurücknimmt, um die Änderung des Torsionsmomentes zu begrenzen. Die überlagerte 
Drehzahlregelung fordert im weiteren Verlauf einen höheren Sollwert für das Torsions-
moment, den die unterlagerte Kaskade erfolgreich einstellt, indem sie das Antriebs-
moment wieder anhebt. Das beobachtete Torsionsmoment folgt dem Sollwert sehr gut. 
Beim realen Torsionsmoment kommt es zu dem oben beschriebenen Offset. 
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a)  

b)  

c)  

Bild 12.6:  Messung – Störsprungantworten      
a) Drehzahl (real und beobachtet) 
b) Drehmomente (real und beobachtet) 
c) Ableitung des Torsionsmoments (real und beobachtet) 
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In Bild 12.6 c) sind jeweils die Antworten der Ableitung des beobachteten und des 
realen Torsionsmoments auf den Störgrößensprung zu erkennen. Wieder ist der erste 
Ausschlag der beobachteten Größe dem der realen Ableitung entgegengesetzt, da 
sich dies wie in Abschn. 12.1 beschrieben prinzipiell aus den dem Beobachter zur 
Verfügung stehenden Messgrößen ergibt. 

Auch bei dieser Messung zeigt das abgeleitete Torsionsmoment, welches sowohl 
beobachtet, als auch messtechnisch erfasst wurde, relativ starke Schwingungen, die 
wie zuvor auf mechanische Ungenauigkeiten im Prüfstand, Messrauschen, und die 
Tatsache, dass die Größe über eine Differentiation berechnet wird, zurückzuführen 
sind. 

 

Zusammenfassend lässt sich sagen, dass die belastungsreduzierende Regelung in 
Verbindung mit einem Beobachter auf Basis eines Zweimassensystems sowohl in der 
Simulation als auch in praktischen Messungen am Prüfstand gute Ergebnisse zeigt, 
die auch in [48] veröffentlicht wurden. 
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13 Anwendung der Regelung bei Windenergie-
anlagen 

Aufgrund der bisher erzielten guten Ergebnisse wurde in weiteren Arbeiten untersucht, 
ob sich die entwickelte Torsionsmoment- und Torsionsruckregelung auch zur 
Regelung von Windenergiegeneratoren einsetzen lässt, um Überlastungen im 
Antriebsstrang der Anlagen zu verringern oder im Idealfall ganz zu vermeiden. Wenn 
dies gelingt, wäre damit ein wichtiger Schritt zur Steigerung der Lebensdauer und 
damit der Effizienz der Anlagen erreicht. 

Für diese Untersuchungen wurde ein noch weiter reduziertes Beobachterkonzept 
verwendet, dessen Grundidee auf dem in [8] vorgestellten Konzept beruht und für die 
hier vorgestellte belastungsreduzierende Regelung angepasst wurde. Dieser 
Beobachter basiert auf einem Einmassensystem und stellt ein interessantes Konzept 
dar, das in Abschn. 13.2 kurz vorgestellt werden soll. 

13.1 Beschreibung des Prüfstands 

Der Beobachter wurde zusammen mit der belastungsreduzierenden Regelung auf 
einem im Rahmen der Dissertation von C. Mehler [49] verwendeten Prüfstand 
implementiert, der den Antriebsstrang einer Windenergieanlage nachbildet und aus 
einer Asynchronmaschine mit einer Leistung von 60 kW besteht, die über ein Getriebe 
mit einem doppeltgespeisten Asynchrongenerator mit 22 kW Leistung gekoppelt ist. 
Die Asynchronmaschine (ASM) wird über einen Frequenzumrichter vom Typ Lenze 
9331S F angesteuert. Sie stellt das Antriebsmoment für den Versuchsaufbau zur 
Verfügung und stellt somit das vom Wind in den Antriebsstrang eingetragene 
Drehmoment dar. Die ASM ist über ein einstufiges Stirnradgetriebe mit einem 
Übersetzungsverhältnis von 1:1,9565 an den doppeltgespeisten Asynchrongenerator 
(DASG) angekoppelt. Sowohl an der Antriebs- als auch auf der Abtriebsseite des 
Getriebes sind Drehmomentmessflansche verbaut. Weiterhin stehen sowohl das 
Getriebe, als auch der Generator auf Kraftsensoren, um die auf das Fundament 
übertragenen Kräfte erfassen zu können. Der Rotorkreis des Generators wird über 
einen am IALB entwickelten, rückspeisefähigen Frequenzumrichter gespeist, der auch 
für die Netzanbindung des Generators genutzt wird. Bild 13.1 zeigt den 
Versuchaufbau. Für eine genauere Beschreibung diese Prüfstandes wir hier auf [49] 
verwiesen. 

Auf diesem Prüfstand wurde sowohl ein im folgenden Abschnitt beschriebener 
Beobachter auf Basis eines Einmassensystems als auch die belastungsreduzierende 
Regelung implementiert. Stellgröße ist dabei die vom Generator abgeforderte 
elektrische Leistung, also das Drehmoment im Luftspalt. Störgröße ist der von der 
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ASM dargestellte Wind. Die Implementierung erfolgte auf dem digitalen Signal-
prozessor im Frequenzumrichter des Generators (s. [49]). 

 
Bild 13.1: Aufbau des Prüfstands aus [49] 

13.2 Beobachter für das Torsionsmoment auf Basis eines 
Einmassensystems 

Der in Abschn. 12 vorgestellte Beobachter auf Basis eines Zweimassensystems stellt 
ein System dritter Ordnung dar, das die lastseitige Position und Drehzahl sowie die 
von außen eingetragene Störgröße mw schätzt. Aus diesen Zustandsgrößen werden 
dann das zur Regelung benötigte Torsionsmoment mT sowie dessen Ableitung 
berechnet. 

Eine andere Möglichkeit, das Torsionsmoment direkt zu schätzen, geht vom Ansatz 
eines Einmassensystems aus, wie er in [50] vorgestellt und in [8] verwendet wurde.  

Ausgangspunkt ist die Bewegungsgleichung eines Einmassensystems, bei dem das 
Torsionsmoment als von außen auftretende Störgröße aufgefasst wird: 
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  1
1

1
a Tm m  


  (13.1) 

Die Drehzahl 1 ist messbar, ebenso wie das aufgebrachte Antriebsmoment ma. 
Weiterhin wird die Massenträgheit des Antriebs 1 als bekannt vorausgesetzt. 
Prinzipiell könnte das Torsionsmoment also aus den bekannten Größen direkt 
berechnet werden. 

 1 1T am m     (13.2) 

Dabei ist jedoch die auftretende Differentiation der Drehzahl problematisch. 

13.2.1 Herleitung aus einem Drehzahlbeobachter 

Eine einfache Möglichkeit zur Schätzung des Torsionsmoments kann aus grundsätz-
lichen Überlegungen zum Zustandsbeobachter hergeleitet werden. Diese Heran-
gehensweise wurde auch in [8] angewendet. 

Grundsätzlich stellt ein Zustandsbeobachter ein parallel zum realen System 
berechnetes Modell mit den gleichen Eingangsgrößen dar. Zur Korrektur eventuell 
auftretender Anfangsfehler wird die Differenz der messbaren Zustände und ihrer 
entsprechenden Schätzwerte über entsprechende Korrekturfaktoren in das Modell 
zurückgeführt, um so auch die Schätzwerte für die nicht messbaren Zustände zu 
verbessern [30].  

Im vorliegenden Fall ist das System ein Einmassensystem, also ein System erster 
Ordnung mit der Drehzahl als einzigem Zustand und damit der denkbar einfachste Fall 
eines dynamischen Systems. Wird für dieses System ein einfacher Luenberger-
Beobachter für seinen einzigen Zustand, also die Drehzahl entworfen, so hat dieser 
die in Bild 13.2 dargestellte Form. 

 
Bild 13.2: Drehzahlbeobachter für das Einmassensystem 

Die Schätzung der Drehzahl erscheint zunächst nicht sinnvoll, da diese messbar ist, 
jedoch kann darüber ein Schätzwert für das Torsionsmoment ermittelt werden. 

Angenommen im realen System würde ein konstantes Torsionsmoment ungleich Null 
auftreten, so wird dort nur noch der Anteil ma - mT beschleunigend wirken. Da das 
Parallelsystem des Beobachters das Torsionsmoment jedoch nicht berücksichtigt, 
kommt es zu einem Schätzfehler 1 1ˆ  , der über einen Korrekturfaktor K ins Modell 
zurückgeführt wird. Erreicht der Beobachter einen stabilen, eingeschwungenen 
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Zustand, so muss dieser Korrekturwert gerade der durch das Torsionsmoment 
verursachten Störbeschleunigung entsprechen. Die Multiplikation dieses Rückführ-
wertes mit dem Trägheitsmoment des Antriebs 1 ergibt also einen Schätzwert für das 
Torsionsmoment ˆTm .  

 1 1 1
1

1 1 1

1
ˆ ˆ( )

ˆˆ ( )

a

T

m K

m K

  

 

  


  


 (13.3) 

Umformen dieser Gleichungen führt auf: 

 
 



1
1

1 1 1

1
ˆ ˆ

ˆˆ ( )

a T

T

V

m m

m K



 

 


  



 (13.4) 

Diese Struktur ist in Bild 13.3 dargestellt.  

 
Bild 13.3: Torsionsmomentbeobachter auf Basis eines Einmassensystems  

(vergl. [8]) 

Diese Struktur stellt eine einfache, aber sehr wirkungsvolle Möglichkeit dar, das 
Torsionsmoment zu schätzen. Die mit diesem Beobachter erzielten Ergebnisse sind in 
Abschnitt 13.3 dargestellt. 

13.2.2 Herleitung als reduzierter Störgrößenbeobachter 

Eine weitere Möglichkeit diese Struktur herzuleiten, basiert auf einem reduzierten Stör-
größenbeobachterentwurf für das Einmassensystem. Der Vollständigkeit halber soll 
auch diese Herleitung hier kurz dargestellt werden. 

Wird Gl. (13.1) als Zustandsgleichung eines Einmassensystems mit Störgrößenein-
fluss aufgefasst und in die übliche Darstellung überführt, so ergibt sich: 

   





1 1
1 1

1 1
0 a T
Ax x zu

B E

m m  
  

 


  (13.5) 

Dieses System wird unter der Annahme einer abschnittsweise konstanten Störgröße, 
also 0Tm  , um das Torsionsmoment als zusätzlichen Zustand erweitert.  
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 (13.6) 

Für dieses erweiterte System wird, wie bereits in Abschn. 5.3.1 beschrieben, ein 
reduzierter Beobachter entworfen. Entsprechend Gl. (5.36), Gl. (5.45) und Gl. (5.46) 
ergibt sich mit der der Definition des Zustandsverktors des Beobachtersystems 

1ˆTr m L 
  

 
2

1
1 1 1

a
L L L

r r m   
  


 
, (13.7) 

 1ˆTm r L   . (13.8) 

Dies kann umgeformt werden zu: 
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Dies entspricht der Struktur in Bild 13.3. Der dort abgebildete Beobachter entspricht 
damit einem reduzierten Störgrößenbeobachter für ein Einmassensystem. 

13.3 Experimentelle Ergebnisse 

Zunächst wurde die Funktion des Beobachters verifiziert. Dazu wurde über die An-
triebsmaschine eine Drehzahländerung mit definierter Beschleunigung vorgegeben 
und das geschätzte Torsionsmoment mit dem am Messflansch zwischen Getriebe und 
Generator erfassten Drehmoment verglichen. Bild 13.4 a) bis c) zeigen beispielhaft 
eine solche Messung mit einer Drehzahländerung von ca. 10% auf 29% der 
Generatornenndrehzahl von 1460 U/min. Dabei ist das Drehmoment auf das 
Nennmoment des Generators von 144 Nm und die Ableitung des Drehmomentes auf 
einen frei gewählten Wert von 500 Nm/s normiert. Der tatsächliche Torsionsruck wurde 
durch Differentiation des vom Messflansch aufgenommenen Signals und 
anschließende Tiefpassfilterung ermittelt. 

Wie zu erkennen ist, weichen sowohl das beobachtete Torsionsmoment, als auch 
dessen Ableitung nicht wesentlich von den realen Größen ab und können somit für die 
belastungsreduzierende Regelung verwendet werden. 

Wie zuvor wurde eine von der Antriebsmaschine, also der Störgröße verursachte 
Änderung der Störgröße vorgegeben. Bild 13.4 a) bis c) können damit als Vergleich 
für das Verhalten des Systems ohne belastungsreduzierende Regelung dienen.  
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a)  

b)  

c)  

Bild 13.4:  Messung zur Verifikation des Beobachters    
a) Drehzahländerung 
b) Torsionsmoment (real und beobachtet) 
c) Ableitung des Torsionsmoments (real und beobachtet) 
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Für den Test der Regelung wurde als Sollwert für das Torsionsmoment auf der 
Generatorwelle konstant Null vorgegeben, während die Drehzahl sich durch den 
Einfluss der Störgröße ändert. Bild 13.5 a) bis c) zeigen die entsprechenden 
Messergebnisse mit der belastungsminimierenden Regelung. 

Wie zuvor wird über die Antriebsmaschine ein Drehmoment eingebracht, welches eine 
Drehzahländerung bewirkt. Aufgabe der unterlagerten Torsionsmomentregelung ist es 
in diesem Fall, das vom Beobachter geschätzte Torsionsmoment zu Null zu regeln. 
Als Stellgröße steht das vom Generator erzeugte Drehmoment zur Verfügung. Hier ist 
anzumerken, dass in diesem speziellen Fall der Generator auch motorisch wirken 
muss, um den vorgegebenen Sollwert halten zu können. 

Bild 13.5 a) zeigt den Anstieg der Drehzahl unter dem Einfluss der Störgröße. Wie im 
ungeregelten Fall, steigt die Drehzahl in 0,44 s von ca. 10% auf 29% der Nenndreh-
zahl. Der entsprechende Verlauf des geregelten Torsionsmomentes ist in Bild 13.5 b) 
dargestellt. Wie zu erwarten war, weicht mT zunächst vom Sollwert ab, ehe es der 
Regelung gelingt, den Sollwert wieder einzustellen. Dieses Verhalten ist, wie oben 
gesagt, dadurch begründet, dass die Störung erst den gesamten Antriebsstrang 
durchlaufen muss, ehe sie durch die generatorseitige Drehzahlmessung erfasst wird. 
Erst danach kann die Regelung eingreifen. Entsprechend steigt das Torsionsmoment 
auf 15% des Nenndrehmoments an, ehe es 0,11 s nach Auftreten der Störung wieder 
auf Null zurückgegangen ist. Ab 0,43 s wird mT  negativ, da sich die Drehzahl nun nicht 
mehr wesentlich ändert und das von der Antriebsmaschine aufgebrachte Störmoment 
somit zurückgeht.  

Der sich ergebende Ruck ist in Bild 13.5 c) zu sehen. Dieser hat jedoch hier keinen 
Einfluss auf das Verhalten der Regelung, da der Maximalwert so groß gewählt wurde, 
dass die Ruckbegrenzung nicht zum Tragen kommt. 

Die in diesem Anschnitt dargestellten Ergebnisse sind auch in [51] veröffentlicht 
worden.  

Zusammenfassend lässt sich sagen, dass die vorgeschlagene belastungs-
reduzierende Regelung in Verbindung mit einem Torsionsmomentbeobachter auf 
Basis eines Einmassensystems grundsätzlich auch für Antriebsstränge von Wind-
energieanlagen geeignet ist. Sie kann also dort zur Verringerung der mechanischen 
Lasten und Erhöhung der Lebensdauer der Anlagen eingesetzt werden. 
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a)  

b)  

c)  

Bild 13.5:  Messung mit mT-Regelung      
a) Drehzahländerung 
b) Torsionsmoment (beobachtet) 
c) Ableitung des Torsionsmoments (beobachtet) 

https://doi.org/10.51202/9783186263087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:59:09. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186263087


167 

14 Zusammenfassung und Ausblick 

Ziel dieser Arbeit war es, eine robuste Regelung niedriger Ordnung für elastisch 
gekoppelte Mehrmassensysteme zu entwickeln. Dazu wurde der Reglerentwurf auf 
Basis eines reduzierten Ersatzsystems durchgeführt. Verschiedene Methoden, ein 
reduziertes Zweimassenersatzmodell zu entwerfen, wurden untersucht und in Bezug 
auf Regler- und Beobachterentwurf bewertet. Die Ergebnisse der Untersuchungen zur 
robusten Regelung wurden schon in Abschn. 9 beschrieben. Daher sollen hier nur die 
wesentlichen Punkte dargestellt werden. 

Die in [2] entwickenten Einstellstrategien für die Gewichtungsfunktionen W1, W2 und 
W3 für den Mixed-Sensitifity Ansatz beim Entwurf robuster, H∞-optimaler Regler 
erwiesen sich auch hier als zweckmäßig. Die durch die Verwendung eines verein-
fachten Ersatzmodells gemachten Vernachlässigungen können als Modellun-
sicherheiten aufgefasst werden. Eine sinnvolle Möglichkeit für die Wahl der 
Gewichtungsfunktionen sind Hoch- bzw. Tiefpassfunktionen niedriger Ordnung. 

Für den Fall nicht messbarer Größen an der Lastseite wurden Beobachterstrukturen 
niedriger Ordnung ebenfalls auf Basis der reduzierten Ersatzsysteme entworfen und 
in Kombination mit der robusten Regelung untersucht.  

Die Untersuchungen zeigten, dass die Haftreibung einen wesentlichen Einfluss auf die 
Regelgüte hat. Daher wurden verschiedene, möglichst einfache Methoden zur 
Kompensation der nichtlinearen Reibung untersucht. Der Einsatz eines Beschleu-
nigungssensors an der Lastseite konnte dabei jedoch nicht die erhoffte Verbesserung 
der Reibungskompensation bewirken. 

Um die weit verbreitete und von den Anwendern gut verstandene Struktur der PI-
Kaskadenregelung auch für eine robuste Regelung zu nutzen, wurde zudem der 
Ansatz verfolgt, die Struktur von vornherein festzulegen und lediglich die 
Reglerparameter im Sinne der H∞-Norm zu optimieren. Die Beschränkung auf diese 
feste Struktur führte jedoch zu starken Einschränkungen bezüglich der stationären 
Genauigkeit der Regelung. Der strukturoffene Entwurf mit Hilfe der -Iteration 
(s. Abschn. 3.6) führt dagegen auf Regler, die auch Störgrößen stationär genau 
ausregeln können.  

Im weiteren Verlauf der Arbeit wurde eine belastungsreduzierende Regelung für 
elastisch gekoppelte Mehrmassensysteme entwickelt. Der Reglerentwurf erfolgt dabei 
auf Basis eines Zweimassensystems. Die Regelgrößen sind das Torsionsmoment 
bzw. dessen Ableitung, also der Torsionsruck. Die hier vorgeschlagene Reglerstruktur 
besteht aus einer inneren Zustandsrückführung mit Intergralanteil zur Regelung bzw. 
Begrenzung des Torsionsrucks mit einem überlagerten Regler für das Torsions-
moment selbst.  
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Diese Reglerstruktur kann auch als Kaskade aus klassischen PID-Reglern aufgefasst 
werden. Es ergibt sich dabei eine Kombination aus einem Verzögerungsglied erster 
Ordnung als Vorfilter, einem Integralregler und einem nachgeschalteten PD-Regler. 
Ein wesentlicher Vorteil dieser Darstellung ist es, dass dadurch auf das häufig bei den 
Anwendern vorhandene Erfahrungswissen über PID-Regler zurückgegriffen werden 
kann, ohne dass spezielle Kenntnisse im Bereich der Zustandsregelung notwendig 
sind. Dadurch wird dem Praktiker die Auslegung und Anwendung der Torsions-
momentregelung wesentlich erleichtert. 

Weiterhin wurde eine adaptive Begrenzung des Torsionsmomentes entwickelt, die 
eine Regelung mit hoher Dynamik erlaubt, ohne das mechanische System zu 
überlasten. Die Regelungsstruktur wurde sowohl simulatorisch als auch in Messungen 
an einem Zweimassenprüfstand untersucht. Die Ergebnisse zeigen, dass sich mit 
einer solchen Regelung die Torsionsbelastungen in Antriebssträngen durchaus 
beschränken lassen. Ein direkter Einsatz dieser Regelungsstruktur setzt allerdings 
voraus, dass das Torsionsmoment und dessen Ableitung im System messtechnisch 
erfasst werden können. Dies wird in den meisten Fällen jedoch nicht möglich sein. 
Daher wurden Beobachterstrukturen für die nicht messbaren Größen entworfen und in 
Verbindung mit der belastungsreduzierenden Regelung untersucht.  

Zum einen wurde ein Beobachter auf Basis eines Zweimassenmodells entworfen. 
Dieses Modell berücksichtigt, im Gegensatz zu dem für den Reglerentwurf verwen-
deten, auch lineare Reibung und die von außen angreifende Störgröße mw. Für dieses 
erweiterte Modell wurde ein reduzierter Störbeobachter entworfen und in Verbindung 
mit der belastungsreduzierenden Regelung untersucht. Sowohl in Simulationen als 
auch am Prüfstand konnten damit im Falle eines Führungsgrößensprungs das 
Torsionsmoment und dessen Ableitung erfolgreich geregelt bzw. begrenzt werden. Im 
Falle eines Störgrößensprunges kann dagegen der erste Impuls der Belastung 
prinzipiell nicht von der Regelung abgefangen werden, da dieser erst nach 
Durchlaufen des Antriebsstrangs messtechnisch erfasst werden kann. 

Zum anderen wurde ein einfacher, aber wirkungsvoller Torsionsmomentbeobachter 
auf Basis eines Einmassensystems entworfen, der ebenfalls als reduzierter Stör-
größenbeobachter aufgefasst weden kann. Diese Variante wurde zusammen mit der 
belastungsreduzierenden Regelung auf einem Windenergieanlagen-Prüfstand 
implementiert.  

Die Messergebnisse der damit durchgeführten Versuche zeigen, dass der Beobachter 
das an der Generatorwelle auftretende Torsionsmoment ebenso wie dessen Ableitung 
für diesen Anwendungsfall erfolgreich ermitteln kann. Auf Basis dieser Schätzwerte 
gelingt es der Regelung, das Torsionsmoment auch unter dem Einfluss von 
Störgrößen auf einen vorgegebenen Wert einzustellen. Die Regelung ist somit auch in 
Verbindung mit diesem sehr einfachen Beobachter geeignet das Torsionsmoment in 
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Antriebssträngen zu regeln bzw. zu begrenzen und dadurch die Lebensdauer dieser 
Systeme zu verlängern. 

Es erscheint daher sinnvoll, in zukünftigen Arbeiten den Einsatz sowohl der robusten 
als auch der belastungsreduzierenden Regelung auf realen Systemen zu untersuchen. 

Eine weitere wesentliche Herausforderung besteht darin, auftretende Störgrößen 
hinreichend frühzeitig zu erfassen. Die in dieser Arbeit vorgestellten Beobachter-
konzepte für das Torsionsmoment basieren alle auf einer messtechnischen Erfassung 
von Größen am Ende des Antriebsstranges, also z. B. dem Generator einer 
Windenergieanlage. Dies hat jedoch den grundsätzlichen Nachteil, dass eine durch 
eine Windboe eingetragene Störung erst erfasst werden kann, nachdem sie den 
Antriebsstrang komplett durchlaufen hat. Somit ist eine belastungsreduzierende 
Regelung, die sich auf die bisher vorgestellten Beobachterstrukturen stützt, nicht in 
der Lage, den ersten Impuls einer auftretenden Störung zu minimieren. Als ein weiterer 
Schwerpunkt zukünftiger Arbeiten bietet sich daher die Entwicklung neuer Beobachter-
strukturen an. Diese sollen es ermöglichen, aus Messungen möglichst weit am Anfang 
der Wirkungskette, z. B. am Rotor einer Windenergieanlage, auf die zu erwartenden 
Belastungen zu schließen, noch ehe diese tatsächlich im Antriebsstrang auftreten. 
Durch diesen Vorhalt wird es der Regelung ermöglicht, auch die hochdynamischen 
Anfangsimpulse auftretender Störungen zu beeinflussen. Dadurch kann eine weitere 
Belastungsreduktion und somit Verlängerung der Lebensdauer der Anlage erreicht 
werden. Zudem besteht grundsätzlich die Möglichkeit, die von den jeweiligen 
Beobachterstrukturen ermittelten Werte für weitere Regelungen bzw. Überwachungen 
(z. B. Condition Monitoring) zu nutzen. 

Da in allen in dieser Arbeit untersuchten Fällen die nichtlineare Reibung einen 
wesentlichen Einfluss hatte, bietet sich die Erforschung weiterer, nichtlinearer Regler- 
bzw. Beobachterstrukturen hinsichtlich ihrer Eignung zur robusten bzw. belastungs-
minimierenden Regelung von Mehrmassensystemen mit wesentlichen, nichtlinearen 
Anteilen wie Reibung und Lose an. 

Weiterhin bietet die Frage, inwieweit eine robuste Reglung ausreichend Dynamik für 
eine Belastungsreduktion aufweist, bzw. wie stark die realen Parameter eines Mehr-
massensystems mit belastungsreduzierender Regelung vom Entwurfsmodell 
abweichen dürfen, Raum für weitere Forschungen.  
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