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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Eine vergleichende Studie von Modellen des Maschinellen Lernens

Prädiktionsgüte der Rückfede-
rung in der Blechbearbeitung

P. Lange, P. Kurrle, U. Pado

ZUSAMMENFASSUNG  Die Rückfederung ist ein für die 
Fertigungsgenauigkeit maßgeblicher Parameter bei Biegepro-
zessen. In dieser Studie wurde die Eignung von maschinellen 
Lernmethoden zur Vorhersage der Rückfederung geprüft  
und die Prädiktionsgüte der Vorhersagen evaluiert. Für den 
 betrachteten Datensatz konnte die Rückfederung beim Biegen 
von Stahlblechen mit hoher Genauigkeit vorhergesagt werden. 
Für verschiedene Einsatzszenarien empfehlen sich verschiede-
ne Lernmethoden und für den Gesamterfolg des Einsatzes von 
maschinellem Lernen erweist sich die Qualität der Trainings -
daten als ausschlaggebend.

Prediction quality of springback  
in sheet metal working – A comparative 
study of machine learning models

ABSTRACT  The springback parameter is crucial for the  
manufacturing accuracy in bending processes. This study 
examined the suitability of machine learning methods for 
springback prediction and evaluated the accuracy of the  
predictions. It was possible to predict springback in bending  
of steel sheets with high accuracy for a given dataset. It turns 
out that different use scenarios require different learning 
 methods and that the quality of training data is crucial for 
overall success when using machine learning methods.

 1 Motivation

Um konkurrenzfähig zu bleiben, müssen sich Fertigungsunter-
nehmen mit der digitalen Transformation befassen. In kaum einer 
anderen Branche ist dies für die globale Wettbewerbs- und 
 Zukunftsfähigkeit so wichtig wie im produzierenden Gewerbe. 
Durch den wachsenden Kostendruck bei gleichzeitig sinkenden 
Profiten nutzen Unternehmen dieses Sektors zunehmend neue 
Wertschöpfungsketten und digitale Lösungsstrategien [1]. Auch 
in der Blechumformung könnte die digitale Transformation einen 
Beitrag zur Effizienzsteigerung und damit zur Kostenreduktion in 
der Produktion leisten.

In der umformenden Bearbeitung werden Abweichungen 
 zwischen Soll- und Ist-Geometrie des bearbeiteten Blechs meist 
durch die Rückfederung nach dem Umformprozess hervorge -
rufen und müssen zur Wahrung der Maßhaltigkeit kompensiert 
werden [2]. Kann die Rückfederung schon im Produktent -
stehungsprozess genau vorhergesagt und damit die benötigte 
Kompensation bestimmt werden, ist es möglich, die notwendige 
Nachbearbeitung an der Form oder dem Prozess zu verringern 
und zeitraubende Anfahrprozesse zu vermeiden. Dadurch kann 
Zeit- und Materialeinsatz bis zum ersten Gutteil und letztlich 
Ausschuss reduziert werden [3]. Aktuell werden zur Vorhersage 
dieser Prozessgröße meistens FEM (Finite-Elemente-Methode) 
-Simulationen in Verbindung mit empirischen Daten, aber auch 
rechnerische Abschätzungen genutzt, die helfen, Biegeprozesse zu 
optimieren [2]. 

Neben den genannten Verfahren können zur präzisen Vorher-
sage der Rückfederung auch Methoden des maschinellen Lernens 
(englisch: Machine Learning, ML) genutzt werden. In diesem 
Zusammenhang untersuchten Cruz, Barbosa et al. die Anwendung 
eines Neuronalen Netzes (englisch: Artificial Neural Network, 
ANN) zur Vorhersage der Rückfederung. Trotz des Vorteils 
 einer effizienten Modellierung durch ANNs sollte berücksichtigt 
werden, dass sie für sich genommen keine explizite Lösung für 
die Modellierungsaufgabe bieten. Weiterhin wird angegeben, dass 
andere maschinelle Lernmethoden Vorteile bei der Vorhersage 
bieten könnten, welche die Schwächen der ANNs ausgleichen. In 
dieser Studie wurde ein Datensatz verwendet, der mittels realer 
experimenteller Messungen generiert wurde, was zu einer be-
grenzen Datenmenge führte [4]. 

Generell erfordern neuronale Netzwerke für eine zuverlässige 
Mustererkennung umfangreiche Datensätze. Aus diesem Grund 
prüft die vorliegende Studie weitere ML-Algorithmen auf deren 
Korrektheit, Relevanz, Robustheit, Stabilität, ihren Ressourcen-
verbrauch sowie ihre Interpretierbarkeit.

2 Stand der Technik

Um den Umformprozesses, auf dessen Grundlage die Unter -
suchungen der ML-Algorithmen stattfand, besser zu verstehen, 
wird im Folgenden auf den Prozess des Freibiegens eingegangen 
und im Anschluss die Rückfederung erläutert. Weiterhin werden 
kurz das Maschinelle Lernen und die verwendeten Methoden 
 beschrieben. 
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2.1  Freibiegen

Das Freibiegen ist ein Fertigungsverfahren aus der Gruppe 
Biegeumformen mit geradliniger Werkzeugbewegung (Bild 1). 

Bei der Umformung des Halbzeugs bilden die stationären Auf-
lager in Kombination mit dem in einer Achse beweglichen Stem-
pel bei Freibiegevorgängen das Werkzeug. Dieses Werkzeug, der 
Stempelradius und der Stempelhub sowie die Stärke und die 
 Materialeigenschaften des Blechs haben einen Einfluss auf die 
 erzeugte Formgeometrie. Werkzeug und Werkstück berühren 
sich im Linienkontakt, während sich die Biegelinie in der 
Umform zone frei bildet. Der erzeugte Innenradius am geformten 
Blech ist zudem größer als der eingesetzte Stempelradius des 
Umformwerkzeugs. Der Stempel erzeugt hier ebenfalls durch 
 eine Translationsbewegung die Umformung der freien Blechgeo-
metrie. Der größte Vorteil des Freibiegens ist die geometrische 
Flexibilität. Durch den Prozessaufbau ist es durch eine Änderung 
der Prozessparameter möglich, den Biegewinkel zu verändern, 
ohne die Biegewerkzeuge austauschen zu müssen. Im Vergleich 
zu anderen Biegeverfahren (beispielsweise Gesenkbiegen) sind 
der resultierende Biegewinkel und Biegeradius nach dem Rückfe-
dern des Blechs vor allem aufgrund der Prozessungenauigkeit nur 
schwer vorhersagbar [5]. 

2.2 Konventionelle Ermittlung  
 der Rückfederung in der Blechumformung 

Die Rückfederung (Bild 2) ist ein mechanisch unabdingbarer, 
aber unerwünschter Vorgang beim Biegen von Blechen. 

Durch die vom Werkzeug induzierte Umformkraft auf das 
Blech stellt sich eine elastische oder elastisch-plastische Form -
änderung ein. Sobald das Blech entlastet wird, stellt sich dieses 
um den elastischen Anteil der Umformarbeit zurück. Besonders 
beim freien Biegen ist die Rückfederung uneingeschränkt möglich 
und wird über die Blecheigenschaften (Härte, Festigkeit), die 
Stempelgeometrie und die Prozesseigenschaften beeinflusst. Um 
einen spezifischen Winkel am Blech zu erzeugen, wird die Rück-
federung durch Überbiegen kompensiert. Zur rechnerischen Ab-
schätzung der Kompensation sind Kenntnisse der Blechdicke sb, 
des mittleren Biegeradius rm, des Elastizitätsmodul E, der Quer-
kontraktionszahl n, der Anfangsfließspannung kf0 sowie des elas-
tischen und plastischen Anteils des Biegemoments Mb,elast. bezie-
hungsweise Mb,plast. notwendig [5]. Zusätzlich zu der bereits auf-
geführten Quelle können [2] und [4] herangezogen werden.

Um die Vorhersage der Rückfederung zukünftig zu vereinfa-
chen, sollen maschinelle Lernprogramme trainiert werden, welche 
die Kompensation anhand von deutlich weniger Kenngrößen für 
unterschiedliche Blechgeometrien sowie Materialien vorhersagen 
können. 

2.3  Maschinelles Lernen

ML hat das Ziel, durch die Analyse von Daten Wissen zu ge-
nerieren, um Vorhersagen und Prognosen abzuleiten. Durch das 
sogenannte Training, ein Prozess, der das Modell mit Eingabe -
daten und erwarteten Ausgaben versorgt, können ML-Modelle 
Vorhersagen treffen, ohne dass explizites Programmieren erfor-
derlich ist. [6]. ML-Modelle eignen sich für viele Aufgaben und 
werden in zwei Hauptkategorien eingeteilt: Regression und Klas-
sifikation. Diese Studie konzentriert sich auf die Vorhersage der 

Rückfederung, repräsentiert durch eine kontinuierliche Zahl, und 
stellt daher ein Regressionsproblem dar [7]. Wichtig für die Mo-
dellbewertung und Modellverbesserung ist die richtige Wahl von 
Metriken, wobei der Mean Absolute Error (MAE) und der Root 
Mean Squared Error (RMSE) häufig verwendet werden.

In der Studie wurden verschiedene ML-Algorithmen einge-
setzt, um die Rückfederung beim Biegen von Blechen vorherzusa-
gen. Die Auswahl der ML-Algorithmen wurde in Anlehnung an 
Müller und Guido getroffen, welche die populärsten Algorithmen 
in diesem Bereich nutzen [7]. Aufgrund der Anwendung lag der 
Fokus auf überwachten Modellen (Supervised Learing). Modelle, 
die in der Datenerfassung besonders simpel sind, wurden nicht 
berücksichtigt. Dies schließt beispielsweise lineare Regressionen 
und einfache Entscheidungsbäume aus. Stattdessen wurden 
baumbasierte Ensemble-Modelle wie Random Forest, Extra Trees 
und Gradient Boosting verwendet. Die Auswahl beschränkte sich 
zudem auf Algorithmen, die sich für das vorliegende Regressions-
problem (die Vorhersage der Rückfederung) besonders eignen, 

Bild 1. Exemplarische Darstellung des Freibiegens. Grafik: Fraunhofer IPA

Bild 2. Definition der elastischen Erholung (Rückfederung) beim Biege -
prozess. Grafik: [4]
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wodurch reine Klassifikationsalgorithmen ausgeschlossen wurden. 
Ziel der Studie war es, ein möglichst breites Spektrum an Algo-
rithmen zu evaluieren. Daher wurde mit dem Multilayer Percep-
tron (MLP) lediglich ein neuronales Netzwerkmodell untersucht, 
ohne komplexere neuronale Modelle einzubeziehen. 
Die Methoden umfassen:
• Random Forest (RF): Ein Ensemble-Lernverfahren, das eine 
Menge an Entscheidungsbäumen während des Trainings ge-
neriert und deren Durchschnitt oder Mehrheitsabstimmung 
für die Vorhersage nutzt.

• Extra Trees (ET): Ähnlich wie Random Forest, aber mit 
 einer höheren Stufe an Randomisierung und Daten, was zu 
einer effizienteren Berechnung führt.

• Gradient Boosted Trees (GBT): Ein weiteres Ensemble-
Lernverfahren, das schwache Entscheidungsbäume in einer 
sequenziellen Weise trainiert, wobei jeder Baum die Fehler 
des vorherigen korrigiert. 

• Support Vector Machine (SVM): Algorithmus, der durch 
das Finden der optimalen Trennlinie (oder Hyperfläche in 
höher-dimensionalen Räumen) arbeitet, kann auch für 
 Regressionsprobleme angepasst werden.

• Multilayer Perceptron (MLP): Ein einfaches neuronales 
Netzwerk mit einer oder mehreren verborgenen Schichten, 
das in der Lage ist, nicht-lineare Beziehungen im Datensatz 
zu modellieren.

3 Datenerhebung und Versuchsaufbau

ML-Methoden benötigen für das Training Datensätze, welche 
für verschiedene Konstellationen der betrachteten Kenngrößen 
die beobachtete Zielgröße, in diesem Fall die Rückfederung, ent-

halten. Allgemein gesprochen extrahieren sie aus diesen Daten 
statistische Muster, welche für die Vorhersage der Zielgröße in 
neuen Datensätze verwendet werden können. Die Methoden wer-
den anhand von Testdaten evaluiert, für welche die Rückfederung 
zwar grundsätzlich bekannt ist, aber dem Modell nicht zur Verfü-
gung steht.

Die hier beschriebene Untersuchung bedurfte einer einfachen, 
aber präzisen Versuchsdurchführung zur Erhebung von validen 
Trainings- und Testdaten. Dazu wurde der Freibiegeprozess (in 
Anlehnung an DIN EN ISO 178) im 3-Punkt-Biegeverfahren 
ausgewählt. Dabei kam für die Biegeversuche eine Universalprüf-
maschine der Firma Zwick/Roell vom Typ „Zwick 1554 MOPS“ 
zum Einsatz. Die Verwendung einer solchen Prüfmaschine bietet 
sowohl den Vorteil einer reproduzierbaren Prozessführung als 
auch die Möglichkeit zur präzisen Datenerfassung der benötigten 
Stempelkraft und des Stempelhubs. 

Die variablen Prozessparameter sind der Stempelhub zs, der 
Auflagerabstand La und die Blechstärke Sb, die bei jedem Versuch 
zu erfassen sind. Bild 3 zeigt den Versuchsaufbau mit dem Werk-
zeug (Auflager und Stempel in Endposition) sowie das gebogene 
Blech.

Durch Absenken des Stempels in negativer Z-Richtung wird 
im Versuch der Biegewinkel α  über den Stempelhub indirekt ein-
gestellt. Die definierte Translationsbewegung des Stempels startet 
am Berührpunkt von Blech und Stempel. Ist die Endposition 
 erreicht, wird eine Haltezeit von einer Sekunde (maschinen -
bedingt) abgewartet und anschließend die Richtung der Stempel-
bewegung umgekehrt. 

Die vollständige Entlastung des Blechs ist erreicht, sobald die 
gemessene Kraft am Stempel auf das Grundniveau absinkt. Der 
Stempelhub (positive Z-Richtung) zwischen der Endposition und 
dem vollständigen Abheben des Stempels vom Blech markiert den 
Bereich der Rückfederung des Blechs. Dieser Definition folgend 
wird im weiteren Verlauf der eingestellte Biegewinkel und die 
Rückfederung als Länge in Millimeter und nicht als Winkel in 
Grad angegeben.

Zur Erstellung des Datensatzes wurden Stahlbleche (1.4301 
X5CrNi18–10) und verschiedene Parametereinstellungen ge-
wählt und in den Versuchen in allen möglichen Kombinationen 
(Tabelle 1) dreimal wiederholt durchgeführt. Es ergab sich ein 
Datensatz mit 403 einzelnen Beobachtungen.

4 Methodik 

In der Studie wurde ein Vergleich verschiedener ML-Metho-
den durchgeführt: Die Algorithmen sind Random Forest (RF), 
Extra Trees (ET), Gradient Boosted Trees (GBT), Support 
Vector Machine (SVM) und ein Multilayer Perceptron (MLP), 
die in der Python-Bibliothek von scikit-Learn vorliegen [8].

Die Vergleichskriterien wurden aus der Arbeit von Siebert et al. 
[9] abgeleitet und umfassen Korrektheit, Relevanz, Robustheit, 
Stabilität und Ressourcenverbrauch. Im Folgenden werden die 
Kriterien näher erläutert und die jeweils zu ihrer Evaluation ge-
nutzten Verfahren genannt. Die Kriterien und Evaluationsmetri-
ken sind zusammengefasst in Tabelle 2.

Im Studienkontext sollen ML-Modelle valide sowie präzise 
Vorhersagen der Rückfederung treffen können. Dabei bezieht 
sich „korrekt“ auf eine möglichst exakte Vorhersage der Rück -
federung durch die ML-Modelle. Die Qualität der Prognose wird 
anhand der Abweichung zwischen Vorhersage und tatsächlicher 

Bild 3. Versuchsaufbau zur Erstellung der Test- und Trainingsdaten für das 
Training der maschinellen Lernprogramme. Grafik: Fraunhofer IPA
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Beobachtung gemessen, wofür der Root Mean Squared Error 
(RMSE) als Metrik verwendet wird.

Ein relevantes Modell ist in der Lage auch neue, bisher nicht 
gesehene Daten korrekt vorherzusagen [10]. Dabei ist es nötig, 
einen optimalen Kompromiss zwischen Bias und Varianz zu fin-
den [9]. Ein Modell mit hohem Bias nimmt starke Annahmen 
über die Daten vor und neigt dazu, die Muster in den Trainings-
daten zu vereinfachen (underfitting). Ein Modell mit hoher Vari-
anz neigt im Gegenteil dazu, zu viele Details der Trainingsdaten 
abzubilden (overfitting). In beiden Fällen können die Modelle 
für ungesehene Daten keine hinreichend genauen Vorhersagen 
treffen. Der Bias wird mit dem Bestimmtheitswert R2 zwischen 
Vorhersage und Beobachtung bewertet. Ein hoher R2-Wert 
 bedeutet, dass das Modell einen großen Teil der Varianz erklären 
kann und wahrscheinlich nicht unter zu hoher Verzerrung leidet. 
Zur Beurteilung der Varianz wurden die Schwankungen in der 
Modellqualität für verschiedene Aufteilungen von Trainings- und 
Testdatensätzen untersucht. Dabei diente die Varianz der Kreuz-
validierung als Metrik. Eine niedrige Varianz in diesem Kontext 
gilt als Qualitätsindikator.

Ein robustes Modell behält seine Funktionsfähigkeit bei, auch 
wenn es mit wenigen oder fehlerhaften Daten konfrontiert wird 
[11]. Typische Fehler sind Ausreißer, fehlende Daten oder Rau-
schen im Datensatz [12]. Der Leistungsabfall des Modells wurde 
anhand unterschiedlich stark verrauschter Daten evaluiert, wobei 
der Root Mean Square Error (RMSE) erneut als Bewertungsme-
trik herangezogen wurde.

Ein Modell sollte zudem eine hohe Stabilität aufweisen und 
konsistente Ergebnisse liefern, wenn es auf verschiedene Teil-
mengen der Trainingsdaten angewendet wird [9]. Dieser Aspekt 
gewinnt vor allem dann an Bedeutung, wenn der Trainingsdaten-
satz, wie in dieser Studie, klein ist. Die Stabilität wurde mit 
 Leave-One-Out-Kreuzvalidierung geprüft und es wurde pro 

 Datenpunkt ein Modell auf allen übrigen Daten trainiert. Um die 
Stabilität des Modells zu ermitteln, wurde der durchschnittliche 
Vorhersagefehler über alle Iterationen berechnet [13]. Ein Modell 
gilt als stabil, wenn es bei diesem Verfahren konsistente Ergebnis-
se liefert. Daher wurde die Standardabweichung der Kreuzvali-
dierungsergebnisse als Indikator für die Stabilität verwendet.

Die Entwicklung und Anwendung eines ML-Modells sollen 
möglichst ressourcenschonend sein, um das Ziel der Nettoeinspa-
rung von Ressourcen, Materialien sowie Arbeitszeit im Ferti-
gungsprozess zu erreichen. Betrachtet wurde die Laufzeit bei der 
Vorhersage sowie die Zeit, welche für das Training des Modells 
benötigt wird [9]. Die Metriken zur Bewertung der Ressourcen-
nutzung umfassen die Trainingszeit sowie die Inferenzzeit in ms. 
Die Trainingszeit bezieht sich auf die für das Trainieren des Mo-
dells benötigte Zeit. Eine kürzere Trainingszeit wird hier bevor-
zugt, da ein längerer Trainingsprozess mehr Rechnerressourcen 
erfordert. Die Inferenzzeit bezieht sich auf die Zeit, welche die 
Modelle für die Vorhersagen benötigen.

5 Ergebnisse

Tabelle 3 präsentiert die Evaluationsergebnisse der ML-
 Modelle. Die besten Ergebnisse sind hervorgehoben.

Für das Kriterium Korrektheit zeigen alle Modelle einen 
RMSE von unter 0,25. Das bedeutet, dass die durchschnittliche 
Modellvorhersage um maximal 0,25 mm vom beobachteten Wert 
abweicht, entsprechend umgerechnet in Grad beträgt die Abwei-
chung 0,09° bis 0,27°. Die Umrechnung der Rückfederung von 
Millimetern in Grad ist mittels folgender Formel möglich [14]:

 

Die Beurteilung der Leistungsfähigkeit eines Modells in der Pra-
xis erfordert die Festlegung eines akzeptablen Fehlerspielraums, 
was in diesem Fall durch die ISO-2786-Norm geschieht. Sie legt 
verschiedene Genauigkeitsstufen und zugehörige Toleranzen fest. 

Die Norm unterscheidet zwischen den Genauigkeitsstufen „f“ 
(fein), „m“ (mittel), „c“ (grob) und „v“ (sehr grob). Für die in 
dieser Studie verwendeten Metallteile ist eine Toleranzgrenze 
von ±0,5° vorgegeben. Diese Grenze bestimmt die maximal zuläs-
sige Winkelabweichung für die gebogenen Metallkomponenten. 
Damit ergibt sich, dass der Vorhersagefehler aller Modelle in die 
Genauigkeitsstufe „f“ fällt und so höchsten Ansprüchen genügt.

Ein relevantes Modell lernt abstrakte Eigenschaften der Trai-
ningsdaten, ohne sie zu detailliert zu beschreiben. Es sind daher 

Tabelle 2. Kriterien und Metriken für die Evaluation.

Kriterium

Korrektheit

Relevanz

Robustheit

Stabilität

Ressourceneffizienz

Metrik

Root Mean Squared Error (RMSE)

Varianz der Kreuzvalidierung (KV), R² 

Reaktion auf Rauschen im Datensatz

Leave-One-Out-Cross-Validation (LOOCV)

Trainingszeit, Laufzeit

Tabelle 1. Konstante sowie variable Versuchsparameter zur Erstellung des Datensatzes.

Versuchsparameter

Blechstärke 

Stempelhub

Auflagerabstand 

Stempelradius 

Originale Blechlänge 

Auflagerradius 

Auflagerbreite 

Formelzeichen

Sb

zs

La

rs

Lb

ra

Ba

Gewählte Größe

0,5 mm

0,75 mm

80 mm

1 mm

50 mm

1 mm

2,5 mm

10 mm

1,5 mm

5 mm

20 mm

2 mm

10 mm

30 mm

2,5 mm

15 mm

40 mm

3 mm

20 mm

50 mm
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mit Varianz der KV und R2 zwei Maße zur Bewertung nötig. Die 
Analyse der Ergebnisse aus Tabelle 3 zeigt, dass insbesondere die 
Modelle SVM und MLP eine niedrige Varianz und hohen R2 
 erreichen, was auf hohe Relevanz hinweist.

Die Robustheit der ML-Modelle wurde ursprünglich anhand 
von zwei Hauptkriterien ermittelt. Erstens, wie die Modelle mit 
fehlenden Daten umgehen und zweitens, wie die Modelle auf 
Rauschen im Trainingsdatensatz reagieren. Um das erste Kriteri-
um zu überprüfen, wurden iterativ Daten aus dem Trainings -
datensatz entfernt, um anschließend zu analysieren, welche Aus-
wirkungen dies auf die Leistungsfähigkeit der Modelle hat. Dabei 
zeigte sich, dass, wenn Daten fehlten, alle Modelle in ähnlichem 
Maße an Performance einbüßten, sodass keine signifikanten Un-
terschiede zwischen den Modellen festgestellt werden konnten. 
Aus diesem Grund ist dieses Kriterium in Tabelle 3 nicht aufge-
führt. Für das zweite Kriterium wurde Rauschen zu den Trai-
ningsdaten hinzugefügt, um die Generalisierungsfähigkeiten der 
Modelle zu beurteilen. Bild 4 zeigt die Leistung der Modelle 
 anhand des RMSE bei zunehmend verrauschten Trainingsdaten. 

Die Leistungsfähigkeit aller Modelle nahm rasch ab, als Rau-
schen in die Daten eingeführt wurde. Bereits bei einer Rausch -

intensität von 20 % war ein signifikanter Anstieg des Vorhersage-
fehlers zu beobachten. Von allen Modellen zeigte das ET-Modell 
die robusteste Leistung und übertraf die anderen Modelle. Auf -
fallend ist, dass die bislang besten Modelle MLP und SVM am 
schlechtesten auf verrauschte Daten reagierten. Eine mögliche 
 Erklärung könnte die Neigung dieser komplexen Modelle zu 
Overfitting sein, wodurch das Rauschen überproportional in ihre 
Vorhersagen einfließt. Diese Beobachtungen betonen die Bedeu-
tung einer umsichtigen Modellauswahl sowie einer präzisen 
Daten erfassung.

Die Stabilität der Modelle wurde durch Betrachtung der Stan-
dardabweichung des Fehlers bei der Leave-One-Out-Kreuzvali-
dierung beurteilt. Ein Modell mit einer geringen Standardabwei-
chung über alle Teilmengen hinweg deutet auf ein stabiles Modell 
hin. Das GBT-Modell ist in dieser Hinsicht das stabilste. Ähnlich 
wie bei der Robustheit weisen die MLP- und SVM-Modelle im 
Vergleich zu den anderen Modellen geringere Stabilitätsniveaus 
auf, obwohl sie bei der Bewertung der Korrektheit am vielver-
sprechendsten waren.

Die Ressourcennutzung wird in dieser Studie in Bezug auf die 
Laufzeit der Modelle bewertet. Aus den Ergebnissen wird ersicht-

Bild 4. Leistung der Machine-Learning-Modelle mit zunehmend verrauschten Daten. Noise: % hinzugefügtes Rauschen; Root Mean Squared Error RMSE: 
Vorhersagefehler. Die gestrichelte Linie zeigt die Performanz der Modelle auf den Standarddaten. Grafik: Fraunhofer IPA

Tabelle 3. Evaluationsergebnisse

ML-Modell

Kriterium

RF

ET

GBT

SVM

MLP

RMSE

Korrektheit

0,244

0,231

0,242

0,200

0,201

Varianz  
der KV

Relevanz

0,041

0,031

0,021

0,016

0,023

R2

Relevanz

0,784

0,889

0,761

0,893

0,825

Reaktion  
auf Rauschen

Robustheit

+

++

+

--

--

Standard- 
abweichung KV

Stabilität

0,047  
± 0,206

0,049  
± 0,194

0,038  
± 0,183

0,053  
± 0,244

0,053  
± 0,244

Trainingszeit  
(ms)

Ressourceneffizienz

24912

19541

43688

421007

16466261

Inferenzzeit  
(ms)

Ressourceneffizienz

2,027

1,939

1,302

2,587

17,988
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lich, dass die Modelle ET und RF die kürzeste Trainingszeit 
 haben. Das MLP-Modell ist mit über 16 Sekunden deutlich das 
langsamste. Ein vergleichbares Bild ergibt sich für die Inferenz-
zeit. Dieses Mal ist das GBT-Modell das schnellste Modell, wäh-
rend das MLP weiterhin das Langsamste ist. 

6 Fazit

Die Evaluation verschiedener ML-Modelle für die Vorhersage 
der Rückfederung beim Freibiegen zeigt, dass sehr genaue Vor-
hersagen möglich sind, die den Normanforderungen im höchsten 
Maße genügen. Allerdings schneidet kein ML-Modell in allen 
Kriterien gleichermaßen gut ab. Daher sollten je nach Anwen-
dungsfall in der Praxis andere Modelle ausgewählt werden. Im 
Folgenden sind einige definierte Anwendungsfälle aufgeführt:

In Industrien, in denen mit hoher Präzision gearbeitet werden 
muss, ist das Kriterium Korrektheit am wichtigsten. Ein Beispiel 
für solch hochpräzise Metallkomponenten wäre die Luft- und 
Raumfahrtindustrie. Hier empfehlen sich Modelle wie SVM und 
MLP, welche die Genauigkeit priorisieren.

Wird mit einer Vielzahl verschiedener Metallkomponenten 
 gearbeitet, müssen ML-Modelle an diese Bedingungen anpassbar 
sein. Hier empfiehlt sich ein Modell, das sowohl relevant als auch 
robust ist, um eine gleichbleibende Leistung über verschiedene 
Projekte hinweg zu gewährleisten. In Bezug auf die Relevanz 
 gehörten das SVM- und MLP-Modell zu den besten Modellen. 
Allerdings zeigten gerade diese beiden Modelle Defizite in der 
Robustheit, vor allem wenn sie mit verrauschten Daten konfron-
tiert wurden. Das ET-Modell ist in der Kategorie Relevanz 
durchschnittlich, besticht jedoch durch hohe Robustheit. Daher 
wird es insbesondere für Anwendungen mit variablen Daten 
empfohlen.

In einigen Industrien ist eine variierende Datenqualität zu 
 erwarten, weshalb robuste Modelle für wechselnde Datenqualität 
benötigt werden. Hier eignen sich Modelle, die gut mit Rauschen 
im Datensatz umgehen können. Die Ergebnisse dieser Studie 
 zeigen, dass im Kriterium Robustheit das ET-Modell die beste 
Leistung erzielt.

Unternehmen mit begrenzten technischen Ressourcen, die 
Biegeteile im kleinen Maßstab herstellen, können mittels ML den 
Biegeprozess optimieren, ohne viele Ressourcen zu verbrauchen. 
Die Ergebnisse zeigen, dass sich hier alle getesteten ML-Modelle 
mit Ausnahme des MLP-Modells eignen. Das MLP ist ein kom-
plexes Modell, das sowohl lange Trainings- als auch Interferenz-
zeit erfordert. 

Ein zweites praxisrelevantes Ergebnis der Studie ist die klare 
Abhängigkeit der Performanz der ML-Modelle von der Qualität 
der Trainingsdaten. Durch Beimischung von Rauschen zu den mit 
hoher Genauigkeit erhobenen Studiendaten steigt der Vorher -
sagefehler aller betrachteten Modelle stark an. Es ist für die Nut-
zung eines ML-Modells zur Optimierung der Produktionsprozes-
se also ausschlaggebend, dass Trainingsdaten mit ausreichender 
Genauigkeit erhoben werden.
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