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Eine vergleichende Studie von Modellen des Maschinellen Lernens

Pradiktionsgute der Ruckfede-
rung in der Blechbearbeitung

P. Lange, P. Kurrle, U. Pado

ZUSAMMENFASSUNG Die Rickfederung ist ein fiir die
Fertigungsgenauigkeit mal3geblicher Parameter bei Biegepro-
zessen. In dieser Studie wurde die Eignung von maschinellen
Lernmethoden zur Vorhersage der Riickfederung gepriift

und die Pradiktionsglte der Vorhersagen evaluiert. Fiir den
betrachteten Datensatz konnte die Riickfederung beim Biegen
von Stahlblechen mit hoher Genauigkeit vorhergesagt werden.
Fir verschiedene Einsatzszenarien empfehlen sich verschiede-
ne Lernmethoden und flir den Gesamterfolg des Einsatzes von
maschinellem Lernen erweist sich die Qualitat der Trainings-
daten als ausschlaggebend.
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1 Motivation

Um konkurrenzfihig zu bleiben, miissen sich Fertigungsunter-
nehmen mit der digitalen Transformation befassen. In kaum einer
anderen Branche ist dies fiir die globale Wettbewerbs- und
Zukunftsfihigkeit so wichtig wie im produzierenden Gewerbe.
Durch den wachsenden Kostendruck bei gleichzeitig sinkenden
Profiten nutzen Unternehmen dieses Sektors zunehmend neue
Wertschopfungsketten und digitale Losungsstrategien [1]. Auch
in der Blechumformung konnte die digitale Transformation einen
Beitrag zur Effizienzsteigerung und damit zur Kostenreduktion in
der Produktion leisten.

In der umformenden Bearbeitung werden Abweichungen
zwischen Soll- und Ist-Geometrie des bearbeiteten Blechs meist
durch die Riickfederung nach dem Umformprozess hervorge-
rufen und miissen zur Wahrung der Mafhaltigkeit kompensiert
werden [2]. Kann die Riickfederung schon im Produktent-
stehungsprozess genau vorhergesagt und damit die bendtigte
Kompensation bestimmt werden, ist es moglich, die notwendige
Nachbearbeitung an der Form oder dem Prozess zu verringern
und zeitraubende Anfahrprozesse zu vermeiden. Dadurch kann
Zeit- und Materialeinsatz bis zum ersten Gutteil und letztlich
Ausschuss reduziert werden [3] Aktuell werden zur Vorhersage
dieser Prozessgroffie meistens FEM (Finite-Elemente-Methode)
-Simulationen in Verbindung mit empirischen Daten, aber auch
rechnerische Abschitzungen genutzt, die helfen, Biegeprozesse zu
optimieren [2].
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Prediction quality of springback
in sheet metal working — A comparative
study of machine learning models

ABSTRACT The springback parameter is crucial for the
manufacturing accuracy in bending processes. This study
examined the suitability of machine learning methods for
springback prediction and evaluated the accuracy of the
predictions. It was possible to predict springback in bending
of steel sheets with high accuracy for a given dataset. It turns
out that different use scenarios require different learning
methods and that the quality of training data is crucial for
overall success when using machine learning methods.

Neben den genannten Verfahren konnen zur prizisen Vorher-
sage der Riickfederung auch Methoden des maschinellen Lernens
(englisch: Machine Learning, ML) genutzt werden. In diesem
Zusammenhang untersuchten Cruz, Barbosa et al. die Anwendung
eines Neuronalen Netzes (englisch: Artificial Neural Network,
ANN) zur Vorhersage der Riickfederung. Trotz des Vorteils
einer effizienten Modellierung durch ANNs sollte beriicksichtigt
werden, dass sie fiir sich genommen keine explizite Losung fiir
die Modellierungsaufgabe bieten. Weiterhin wird angegeben, dass
andere maschinelle Lernmethoden Vorteile bei der Vorhersage
bieten konnten, welche die Schwichen der ANNs ausgleichen. In
dieser Studie wurde ein Datensatz verwendet, der mittels realer
experimenteller Messungen generiert wurde, was zu einer be-
grenzen Datenmenge fiihrte [4].

Generell erfordern neuronale Netzwerke fiir eine zuverldssige
Mustererkennung umfangreiche Datensitze. Aus diesem Grund
priift die vorliegende Studie weitere ML-Algorithmen auf deren
Korrektheit, Relevanz, Robustheit, Stabilitit, ihren Ressourcen-
verbrauch sowie ihre Interpretierbarkeit.

2 Stand derTechnik

Um den Umformprozesses, auf dessen Grundlage die Unter-
suchungen der ML-Algorithmen stattfand, besser zu verstehen,
wird im Folgenden auf den Prozess des Freibiegens eingegangen
und im Anschluss die Riickfederung erldutert. Weiterhin werden
kurz das Maschinelle Lernen und die verwendeten Methoden
beschrieben.
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2.1 Freibiegen

Das Freibiegen ist ein Fertigungsverfahren aus der Gruppe
Biegeumformen mit geradliniger Werkzeugbewegung (Bild 1).

Bei der Umformung des Halbzeugs bilden die stationidren Auf-
lager in Kombination mit dem in einer Achse beweglichen Stem-
pel bei Freibiegevorgingen das Werkzeug. Dieses Werkzeug, der
Stempelradius und der Stempelhub sowie die Stirke und die
Materialeigenschaften des Blechs haben einen Einfluss auf die
erzeugte Formgeometrie. Werkzeug und Werkstiick berithren
sich im Linienkontakt, wihrend sich die Biegelinie in der
Umformzone frei bildet. Der erzeugte Innenradius am geformten
Blech ist zudem grofler als der eingesetzte Stempelradius des
Umformwerkzeugs. Der Stempel erzeugt hier ebenfalls durch
eine Translationsbewegung die Umformung der freien Blechgeo-
metrie. Der grofite Vorteil des Freibiegens ist die geometrische
Flexibilitit. Durch den Prozessaufbau ist es durch eine Anderung
der Prozessparameter moglich, den Biegewinkel zu verindern,
ohne die Biegewerkzeuge austauschen zu miissen. Im Vergleich
zu anderen Biegeverfahren (beispielsweise Gesenkbiegen) sind
der resultierende Biegewinkel und Biegeradius nach dem Riickfe-
dern des Blechs vor allem aufgrund der Prozessungenauigkeit nur
schwer vorhersagbar [5].

2.2 Konventionelle Ermittlung
der Rickfederung in der Blechumformung

Die Riickfederung (Bild 2) ist ein mechanisch unabdingbarer,
aber unerwiinschter Vorgang beim Biegen von Blechen.

Durch die vom Werkzeug induzierte Umformkraft auf das
Blech stellt sich eine elastische oder elastisch-plastische Form-
dnderung ein. Sobald das Blech entlastet wird, stellt sich dieses
um den elastischen Anteil der Umformarbeit zuriick. Besonders
beim freien Biegen ist die Riickfederung uneingeschrinkt moglich
und wird {iber die Blecheigenschaften (Harte, Festigkeit), die
Stempelgeometrie und die Prozesseigenschaften beeinflusst. Um
einen spezifischen Winkel am Blech zu erzeugen, wird die Riick-
federung durch Uberbiegen kompensiert. Zur rechnerischen Ab-
schitzung der Kompensation sind Kenntnisse der Blechdicke s,
des mittleren Biegeradius r,, des Elastizititsmodul E, der Quer-
kontraktionszahl n, der Anfangsfliefspannung kg, sowie des elas-
tischen und plastischen Anteils des Biegemoments M, .,
hungsweise M, . notwendig [5]. Zusitzlich zu der bereits auf-
gefiihrten Quelle konnen [2] und [4] herangezogen werden.

bezie-

Um die Vorhersage der Riickfederung zukiinftig zu vereinfa-
chen, sollen maschinelle Lernprogramme trainiert werden, welche
die Kompensation anhand von deutlich weniger Kenngroflen fiir
unterschiedliche Blechgeometrien sowie Materialien vorhersagen
konnen.

2.3 Maschinelles Lernen

ML hat das Ziel, durch die Analyse von Daten Wissen zu ge-
nerieren, um Vorhersagen und Prognosen abzuleiten. Durch das
sogenannte Training, ein Prozess, der das Modell mit Eingabe-
daten und erwarteten Ausgaben versorgt, konnen ML-Modelle
Vorhersagen treffen, ohne dass explizites Programmieren erfor-
derlich ist. [6]. ML-Modelle eignen sich fiir viele Aufgaben und
werden in zwei Hauptkategorien eingeteilt: Regression und Klas-
sifikation. Diese Studie konzentriert sich auf die Vorhersage der
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Auflager

Bild 1. Exemplarische Darstellung des Freibiegens. Grafik: Fraunhofer IPA

Before SpringBack

------- After SpringBack

Aogg=0; —

Bild 2. Definition der elastischen Erholung (Riickfederung) beim Biege-
prozess. Grafik: [4]

Riickfederung, reprisentiert durch eine kontinuierliche Zahl, und
stellt daher ein Regressionsproblem dar [7]. Wichtig fiir die Mo-
dellbewertung und Modellverbesserung ist die richtige Wahl von
Metriken, wobei der Mean Absolute Error (MAE) und der Root
Mean Squared Error (RMSE) hiufig verwendet werden.

In der Studie wurden verschiedene ML-Algorithmen einge-
setzt, um die Riickfederung beim Biegen von Blechen vorherzusa-
gen. Die Auswahl der ML-Algorithmen wurde in Anlehnung an
Miiller und Guido getroffen, welche die populdrsten Algorithmen
in diesem Bereich nutzen [7]. Aufgrund der Anwendung lag der
Fokus auf iberwachten Modellen (Supervised Learing). Modelle,
die in der Datenerfassung besonders simpel sind, wurden nicht
beriicksichtigt. Dies schliefit beispielsweise lineare Regressionen
und einfache Entscheidungsbiume aus. Stattdessen wurden
baumbasierte Ensemble-Modelle wie Random Forest, Extra Trees
und Gradient Boosting verwendet. Die Auswahl beschriankte sich
zudem auf Algorithmen, die sich fiir das vorliegende Regressions-
problem (die Vorhersage der Riickfederung) besonders eignen,
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Bild 3. Versuchsaufbau zur Erstellung der Test- und Trainingsdaten fiir das
Training der maschinellen Lernprogramme. Grafik: Fraunhofer IPA

wodurch reine Klassifikationsalgorithmen ausgeschlossen wurden.
Ziel der Studie war es, ein moglichst breites Spektrum an Algo-
rithmen zu evaluieren. Daher wurde mit dem Multilayer Percep-
tron (MLP) lediglich ein neuronales Netzwerkmodell untersucht,
ohne komplexere neuronale Modelle einzubeziehen.

Die Methoden umfassen:

« Random Forest (RF) Ein Ensemble-Lernverfahren, das eine
Menge an Entscheidungsbiumen wihrend des Trainings ge-
neriert und deren Durchschnitt oder Mehrheitsabstimmung
fiir die Vorhersage nutzt.

« Extra Trees (ET): Ahnlich wie Random Forest, aber mit
einer hoheren Stufe an Randomisierung und Daten, was zu
einer effizienteren Berechnung fiihrt.

+ Gradient Boosted Trees (GBT): Ein weiteres Ensemble-
Lernverfahren, das schwache Entscheidungsbdume in einer
sequenziellen Weise trainiert, wobei jeder Baum die Fehler
des vorherigen korrigiert.

« Support Vector Machine (SVM): Algorithmus, der durch
das Finden der optimalen Trennlinie (oder Hyperfliche in
hoher-dimensionalen Réiumen) arbeitet, kann auch fiir
Regressionsprobleme angepasst werden.

+ Multilayer Perceptron (MLP): Ein einfaches neuronales
Netzwerk mit einer oder mehreren verborgenen Schichten,
das in der Lage ist, nicht-lineare Beziehungen im Datensatz
zu modellieren.

3 Datenerhebung und Versuchsaufbau
ML-Methoden benétigen fiir das Training Datensitze, welche

fiir verschiedene Konstellationen der betrachteten Kenngroflen
die beobachtete Zielgrofle, in diesem Fall die Riickfederung, ent-
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halten. Allgemein gesprochen extrahieren sie aus diesen Daten
statistische Muster, welche fiir die Vorhersage der Zielgrofle in
neuen Datensitze verwendet werden konnen. Die Methoden wer-
den anhand von Testdaten evaluiert, fiir welche die Riickfederung
zwar grundsitzlich bekannt ist, aber dem Modell nicht zur Verfii-
gung steht.

Die hier beschriebene Untersuchung bedurfte einer einfachen,
aber prizisen Versuchsdurchfiihrung zur Erhebung von validen
Trainings- und Testdaten. Dazu wurde der Freibiegeprozess (in
Anlehnung an DIN EN ISO 178) im 3-Punkt-Biegeverfahren
ausgewihlt. Dabei kam fiir die Biegeversuche eine Universalpriif-
maschine der Firma Zwick/Roell vom Typ ,Zwick 1554 MOPS*
zum Einsatz. Die Verwendung einer solchen Priifmaschine bietet
sowohl den Vorteil einer reproduzierbaren Prozessfithrung als
auch die Moglichkeit zur prizisen Datenerfassung der bendtigten
Stempelkraft und des Stempelhubs.

Die variablen Prozessparameter sind der Stempelhub z, der
Auflagerabstand L, und die Blechstirke S,, die bei jedem Versuch
zu erfassen sind. Bild 3 zeigt den Versuchsaufbau mit dem Werk-
zeug (Auflager und Stempel in Endposition) sowie das gebogene
Blech.

Durch Absenken des Stempels in negativer Z-Richtung wird
im Versuch der Biegewinkel a tiber den Stempelhub indirekt ein-
gestellt. Die definierte Translationsbewegung des Stempels startet
am Berithrpunkt von Blech und Stempel. Ist die Endposition
erreicht, wird eine Haltezeit von einer Sekunde (maschinen—
bedingt) abgewartet und anschliefend die Richtung der Stempel-
bewegung umgekehrt.

Die vollstindige Entlastung des Blechs ist erreicht, sobald die
gemessene Kraft am Stempel auf das Grundniveau absinkt. Der
Stempelhub (positive Z-Richtung) zwischen der Endposition und
dem vollstindigen Abheben des Stempels vom Blech markiert den
Bereich der Riickfederung des Blechs. Dieser Definition folgend
wird im weiteren Verlauf der eingestellte Biegewinkel und die
Riickfederung als Linge in Millimeter und nicht als Winkel in
Grad angegeben.

Zur Erstellung des Datensatzes wurden Stahlbleche (1.4301
X5CrNil18-10) und verschiedene Parametereinstellungen ge-
wihlt und in den Versuchen in allen moglichen Kombinationen
(Tabelle 1) dreimal wiederholt durchgefithrt. Es ergab sich ein
Datensatz mit 403 einzelnen Beobachtungen.

4 Methodik

In der Studie wurde ein Vergleich verschiedener ML-Metho-
den durchgefiihrt: Die Algorithmen sind Random Forest (RF),
Extra Trees (ET), Gradient Boosted Trees (GBT), Support
Vector Machine (SVM) und ein Multilayer Perceptron (MLP),
die in der Python-Bibliothek von scikit-Learn vorliegen [8].

Die Vergleichskriterien wurden aus der Arbeit von Siebert et al.
[9] abgeleitet und umfassen Korrektheit, Relevanz, Robustheit,
Stabilitit und Ressourcenverbrauch. Im Folgenden werden die
Kriterien niher erldutert und die jeweils zu ihrer Evaluation ge-
nutzten Verfahren genannt. Die Kriterien und Evaluationsmetri-
ken sind zusammengefasst in Tabelle 2.

Im Studienkontext sollen ML-Modelle valide sowie prizise
Vorhersagen der Riickfederung treffen konnen. Dabei bezieht
sich ,korrekt® auf eine moglichst exakte Vorhersage der Riick-
federung durch die ML-Modelle. Die Qualitit der Prognose wird
anhand der Abweichung zwischen Vorhersage und tatsichlicher
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Tabelle 1. Konstante sowie variable Versuchsparameter zur Erstellung des Datensatzes.

Blechstérke

Stempelhub Zg
Auflagerabstand La
Stempelradius I
Originale Blechlange Ly
Auflagerradius fa
Auflagerbreite B,

Tabelle 2. Kriterien und Metriken fir die Evaluation.

Korrektheit Root Mean Squared Error (RMSE)

Relevanz Varianz der Kreuzvalidierung (KV), R2
Robustheit Reaktion auf Rauschen im Datensatz
Stabilitat Leave-One-Out-Cross-Validation (LOOCV)

Ressourceneffizienz Trainingszeit, Laufzeit

Beobachtung gemessen, wofiir der Root Mean Squared Error
(RMSE) als Metrik verwendet wird.

Ein relevantes Modell ist in der Lage auch neue, bisher nicht
gesehene Daten korrekt vorherzusagen [10]. Dabei ist es notig,
einen optimalen Kompromiss zwischen Bias und Varianz zu fin-
den [9]. Ein Modell mit hohem Bias nimmt starke Annahmen
iiber die Daten vor und neigt dazu, die Muster in den Trainings-
daten zu vereinfachen (underfitting). Ein Modell mit hoher Vari-
anz neigt im Gegenteil dazu, zu viele Details der Trainingsdaten
abzubilden (overfitting). In beiden Fillen konnen die Modelle
fiir ungesehene Daten keine hinreichend genauen Vorhersagen
treffen. Der Bias wird mit dem Bestimmtheitswert R? zwischen
Ein hoher R2-Wert
bedeutet, dass das Modell einen grofen Teil der Varianz erkliren
kann und wahrscheinlich nicht unter zu hoher Verzerrung leidet.
Zur Beurteilung der Varianz wurden die Schwankungen in der
Modellqualitit fiir verschiedene Aufteilungen von Trainings- und

Vorhersage und Beobachtung bewertet.

Testdatensitzen untersucht. Dabei diente die Varianz der Kreuz-
validierung als Metrik. Eine niedrige Varianz in diesem Kontext
gilt als Qualititsindikator.

Ein robustes Modell behilt seine Funktionsfihigkeit bei, auch
wenn es mit wenigen oder fehlerhaften Daten konfrontiert wird
[11]. Typische Fehler sind Ausreifer, fehlende Daten oder Rau-
schen im Datensatz [12]. Der Leistungsabfall des Modells wurde
anhand unterschiedlich stark verrauschter Daten evaluiert, wobei
der Root Mean Square Error (RMSE) erneut als Bewertungsme-
trik herangezogen wurde.

Ein Modell sollte zudem eine hohe Stabilitit aufweisen und
konsistente Ergebnisse liefern, wenn es auf verschiedene Teil-
mengen der Trainingsdaten angewendet wird [9]. Dieser Aspekt
gewinnt vor allem dann an Bedeutung, wenn der Trainingsdaten-
satz, wie in dieser Studie, klein ist. Die Stabilitit wurde mit
Leave-One-Out-Kreuzvalidierung gepriift und es wurde pro
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Datenpunkt ein Modell auf allen iibrigen Daten trainiert. Um die
Stabilitit des Modells zu ermitteln, wurde der durchschnittliche
Vorhersagefehler iiber alle Iterationen berechnet [1 3}. Ein Modell
gilt als stabil, wenn es bei diesem Verfahren konsistente Ergebnis-
se liefert. Daher wurde die Standardabweichung der Kreuzvali-
dierungsergebnisse als Indikator fiir die Stabilitit verwendet.

Die Entwicklung und Anwendung eines ML-Modells sollen
moglichst ressourcenschonend sein, um das Ziel der Nettoeinspa-
rung von Ressourcen, Materialien sowie Arbeitszeit im Ferti-
gungsprozess zu erreichen. Betrachtet wurde die Laufzeit bei der
Vorhersage sowie die Zeit, welche fiir das Training des Modells
benotigt wird [9]. Die Metriken zur Bewertung der Ressourcen-
nutzung umfassen die Trainingszeit sowie die Inferenzzeit in ms.
Die Trainingszeit bezieht sich auf die fiir das Trainieren des Mo-
dells benotigte Zeit. Eine kiirzere Trainingszeit wird hier bevor-
zugt, da ein lingerer Trainingsprozess mehr Rechnerressourcen
erfordert. Die Inferenzzeit bezieht sich auf die Zeit, welche die
Modelle fiir die Vorhersagen benstigen.

5 Ergebnisse

Tabelle 3 prisentiert die Evaluationsergebnisse der ML-
Modelle. Die besten Ergebnisse sind hervorgehoben.

Fiur das Kriterium Korrektheit zeigen alle Modelle einen
RMSE von unter 0,25. Das bedeutet, dass die durchschnittliche
Modellvorhersage um maximal 0,25 mm vom beobachteten Wert
abweicht, entsprechend umgerechnet in Grad betrigt die Abwei-
chung 0,09° bis 0,27°. Die Umrechnung der Riickfederung von
Millimetern in Grad ist mittels folgender Formel moglich [14]:

180

I
arctan (t ) -
s

Die Beurteilung der Leistungsfihigkeit eines Modells in der Pra-
xis erfordert die Festlegung eines akzeptablen Fehlerspielraums,
was in diesem Fall durch die ISO-2786-Norm geschieht. Sie legt
verschiedene Genauigkeitsstufen und zugehorige Toleranzen fest.
Die Norm unterscheidet zwischen den Genauigkeitsstufen ,,f*
(fein), ,m* (mittel), W< (grob) und ,v* (sehr grob). Fiir die in
dieser Studie verwendeten Metallteile ist eine Toleranzgrenze
von 10,5° vorgegeben. Diese Grenze bestimmt die maximal zulis-
sige Winkelabweichung fiir die gebogenen Metallkomponenten.
Damit ergibt sich, dass der Vorhersagefehler aller Modelle in die
Genauigkeitsstufe ,,f“ fillt und so hochsten Anspriichen geniigt.
Ein relevantes Modell lernt abstrakte Eigenschaften der Trai-
ningsdaten, ohne sie zu detailliert zu beschreiben. Es sind daher
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Tabelle 3. Evaluationsergebnisse

MLModell Varianz Reaktion Standard- Trainingszeit Inferenzzeit
der KV auf Rauschen abweichung KV (ms) (ms)

TITELTHEMA - FACHAUFSATZ

Kriterium Korrektheit Relevanz Relevanz Robustheit Stabilitat Ressourceneffizienz Ressourceneffizienz
0,047
RF 0,244 0,041 0,784 + 24912 2,027
+ 0,206
0,049
ET 0,231 0,031 0,889 ++ 19541 1,939
+ 0,194
GBT 0,242 0,021 0,761 + by 43688 1,302
+0,183
0,053
SVM 0,200 0,016 0,893 = 421007 2,587
+ 0,244
0,053
MLP 0,201 0,023 0,825 - 16466261 17,988
+ 0,244
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Bild 4. Leistung der Machine-Learning-Modelle mit zunehmend verrauschten Daten. Noise: % hinzugefiigtes Rauschen; Root Mean Squared Error RMSE:
Vorhersagefehler. Die gestrichelte Linie zeigt die Performanz der Modelle auf den Standarddaten. Grafik: Fraunhofer IPA

mit Varianz der KV und R? zwei Mafe zur Bewertung nétig. Die
Analyse der Ergebnisse aus Tabelle 3 zeigt, dass insbesondere die
Modelle SVM und MLP eine niedrige Varianz und hohen R?
erreichen, was auf hohe Relevanz hinweist.

Die Robustheit der ML-Modelle wurde urspriinglich anhand
von zwei Hauptkriterien ermittelt. Erstens, wie die Modelle mit
fehlenden Daten umgehen und zweitens, wie die Modelle auf
Rauschen im Trainingsdatensatz reagieren. Um das erste Kriteri-
um zu iiberpriifen, wurden iterativ Daten aus dem Trainings-
datensatz entfernt, um anschliefend zu analysieren, welche Aus-
wirkungen dies auf die Leistungsfihigkeit der Modelle hat. Dabei
zeigte sich, dass, wenn Daten fehlten, alle Modelle in dhnlichem
Mafle an Performance einbiifiten, sodass keine signifikanten Un-
terschiede zwischen den Modellen festgestellt werden konnten.
Aus diesem Grund ist dieses Kriterium in Tabelle 3 nicht aufge-
fithrt. Fir das zweite Kriterium wurde Rauschen zu den Trai-
ningsdaten hinzugefiigt, um die Generalisierungsfihigkeiten der
Modelle zu beurteilen. Bild 4 zeigt die Leistung der Modelle
anhand des RMSE bei zunehmend verrauschten Trainingsdaten.

Die Leistungsfihigkeit aller Modelle nahm rasch ab, als Rau-
schen in die Daten eingefithrt wurde. Bereits bei einer Rausch-
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intensitdt von 20 % war ein signifikanter Anstieg des Vorhersage-
fehlers zu beobachten. Von allen Modellen zeigte das ET-Modell
die robusteste Leistung und tibertraf die anderen Modelle. Auf-
fallend ist, dass die bislang besten Modelle MLP und SVM am
schlechtesten auf verrauschte Daten reagierten. Eine mogliche
Erklirung konnte die Neigung dieser komplexen Modelle zu
Opverfitting sein, wodurch das Rauschen iiberproportional in ihre
Vorhersagen einflieft. Diese Beobachtungen betonen die Bedeu-
tung einer umsichtigen Modellauswahl sowie einer prizisen
Datenerfassung.

Die Stabilitit der Modelle wurde durch Betrachtung der Stan-
dardabweichung des Fehlers bei der Leave-One-Out-Kreuzvali-
dierung beurteilt. Ein Modell mit einer geringen Standardabwei-
chung tiber alle Teilmengen hinweg deutet auf ein stabiles Modell
hin. Das GBT-Modell ist in dieser Hinsicht das stabilste. Ahnlich
wie bei der Robustheit weisen die MLP- und SVM-Modelle im
Vergleich zu den anderen Modellen geringere Stabilititsniveaus
auf, obwohl sie bei der Bewertung der Korrektheit am vielver-
sprechendsten waren.

Die Ressourcennutzung wird in dieser Studie in Bezug auf die
Laufzeit der Modelle bewertet. Aus den Ergebnissen wird ersicht-
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lich, dass die Modelle ET und RF die kiirzeste Trainingszeit
haben. Das MLP-Modell ist mit tiber 16 Sekunden deutlich das
langsamste. Ein vergleichbares Bild ergibt sich fiir die Inferenz-
zeit. Dieses Mal ist das GBT-Modell das schnellste Modell, wih-
rend das MLP weiterhin das Langsamste ist.

6 Fazit

Die Evaluation verschiedener ML-Modelle fiir die Vorhersage
der Riickfederung beim Freibiegen zeigt, dass sehr genaue Vor-
hersagen mdoglich sind, die den Normanforderungen im héchsten
Mafle geniigen. Allerdings schneidet kein ML-Modell in allen
Kriterien gleichermaflen gut ab. Daher sollten je nach Anwen-
dungsfall in der Praxis andere Modelle ausgew#hlt werden. Im
Folgenden sind einige definierte Anwendungsfille aufgefiihrt:

In Industrien, in denen mit hoher Prizision gearbeitet werden
muss, ist das Kriterium Korrektheit am wichtigsten. Ein Beispiel
fiir solch hochprazise Metallkomponenten wire die Luft- und
Raumfahrtindustrie. Hier empfehlen sich Modelle wie SVM und
MLP, welche die Genauigkeit priorisieren.

Wird mit einer Vielzahl verschiedener Metallkomponenten
gearbeitet, miissen ML-Modelle an diese Bedingungen anpassbar
sein. Hier empfiehlt sich ein Modell, das sowohl relevant als auch
robust ist, um eine gleichbleibende Leistung iiber verschiedene
Projekte hinweg zu gewihrleisten. In Bezug auf die Relevanz
gehorten das SVM- und MLP-Modell zu den besten Modellen.
Allerdings zeigten gerade diese beiden Modelle Defizite in der
Robustheit, vor allem wenn sie mit verrauschten Daten konfron-
tiert wurden. Das ET-Modell ist in der Kategorie Relevanz
durchschnittlich, besticht jedoch durch hohe Robustheit. Daher
wird es insbesondere fiir Anwendungen mit variablen Daten
empfohlen.

In einigen Industrien ist eine variierende Datenqualitit zu
erwarten, weshalb robuste Modelle fiir wechselnde Datenqualitit
bendétigt werden. Hier eignen sich Modelle, die gut mit Rauschen
im Datensatz umgehen konnen. Die Ergebnisse dieser Studie
zeigen, dass im Kriterium Robustheit das ET-Modell die beste
Leistung erzielt.

Unternehmen mit begrenzten technischen Ressourcen, die
Biegeteile im kleinen Mafistab herstellen, konnen mittels ML den
Biegeprozess optimieren, ohne viele Ressourcen zu verbrauchen.
Die Ergebnisse zeigen, dass sich hier alle getesteten ML-Modelle
mit Ausnahme des MLP-Modells eignen. Das MLP ist ein kom-
plexes Modell, das sowohl lange Trainings- als auch Interferenz-
zeit erfordert.

Ein zweites praxisrelevantes Ergebnis der Studie ist die klare
Abhingigkeit der Performanz der ML-Modelle von der Qualitit
der Trainingsdaten. Durch Beimischung von Rauschen zu den mit
hoher Genauigkeit erhobenen Studiendaten steigt der Vorher-
sagefehler aller betrachteten Modelle stark an. Es ist fiir die Nut-
zung eines ML-Modells zur Optimierung der Produktionsprozes-
se also ausschlaggebend, dass Trainingsdaten mit ausreichender
Genauigkeit erhoben werden.
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