4. Softwaregestaltung als Teil der Digitalisierung
Vom Werkzeug der Forschung zum Primat
der Softwareentwicklung bei Nicht-IT-Unternehmen

Warum ist Softwaregestaltung tiberhaupt relevant fir Organisationen? Dieser Frage
geht das Kapitel in einem kurzen historischen Abriss nach. Softwareentwicklung war
und ist zentral, um Digitalisierung zu verstehen, und nicht nur die immer gréfiere
Bedeutung von Daten oder die reine Softwareanwendung. Software ist zentral fiir die
Wettbewerbsfihigkeit von Firmen, und einige setzen mittlerweile von Anfang an auf
Softwareentwicklung als den Kern ihrer Organisation, auch wenn sie keine Software,
sondern andere Dienstleistungen oder Produkte verkaufen (vor allem sogenannte di-
gitale Start-ups). Bei ihnen gilt der Primat der Softwareentwicklung. Das ist nicht bei
allen Unternehmen der Fall und es gibt eine grofRe Vielfalt an Mischformen. Wie die
Softwaregestaltung jeweils organisiert ist, stellt der spitere Empirie-Teil dar. Neben
dem Begriff des Primats der Softwareentwicklung fithrt das Kapitel noch zwei weitere
wichtige Begriffe fir die Analyse der Softwaregestaltung ein: die softwaretechnische
Interdisziplinaritit und die softwaretechnischen Gestaltungsmoglichkeiten. Sie stellen
die beiden Kernprobleme der Softwaregestaltung dar, tauchen in der weiteren Ana-
lyse immer wieder auf und sind Teil des soziotechnischen Begriffsapparates, der zur
Untersuchung der Formen und Folgen der Softwaregestaltung dient.

4.1. Primat der Softwareentwicklung in Nicht-IT-Branchen und -Betrieben

Software: Ihre Programmierung, Gestaltung und Anwendung ist Teil der Geschichte der
IT-Nutzung. Von der vorwiegend wissenschaftlichen Nutzung in den soer Jahren von
IT zur Automatisierung von Routinetitigkeiten in den 6oern und den ersten PCs in den
8oern. Seit den 9oern nimmt die Netzwerk-Integration stetig zu und die Informati-
onstechnologie hat auch verstirkt restrukturierende Effekte auf gesamte Unternehmen
— und nicht nur auf einzelne Titigkeiten. Informationen koénnen vielen zuginglich
gemacht werden und gleichzeitig ist eine zentrale Kontrolle via Daten moglich (vgl.
Schwarz/Brock 1998: 70ff.). Autoren sprechen von einer »open network organization«

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

46

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

(Schwarz/Brock 1998: 67ff.) und von »ubiquitous computing«, da der Zugriff und die
Kontrolle der Umwelt von iitberall und zu jeder Zeit moglich sein soll (wearables, collabo-
rations, crowdworking, realtime) (vgl. Cascio/Montealegre 2016, vgl. Hirschheim/Klein
2012).

Software nimmt dabei eine immer gréf3ere Rolle ein. Friedman/Cornford (1993) ma-
chen drei Phasen der Entwicklung von Computersystemen aus. In der ersten Phase bis
Mitte der 60er waren Beschrinkungen durch die Hardware prigend und in der zwei-
ten Phase bis in die frithen 8oer solche durch Software. Ab der Phase 3 waren die Bezie-
hungen zu den Nutzenden ein Hemmnis (»User Relations Constraints«). Die Nutzen-
den wurden wichtiger und die Softwareentwicklung musste sie einbeziehen, vor allem
weil deren Anforderungen schwieriger zu spezifizieren waren (vgl. Friedmann/Cornford
1993: 325). Bereits Mitte der 70er waren Fehler in der Programmierung selbst nicht mehr
das zentrale Problem: »Analysis and design errors were revealed to be far more common
than coding errors« (Friedmann/Cornford 1993: 204).

Erstim Laufe der Zeit entstanden Firmen, die sich auf die Softwareentwicklung kon-
zentrierten. Zu Zeiten der Grofirechner bis Ende der 8oer war Rechen- und Speicherka-
pazitit begrenzt und kostbar. Mit Software wurde nicht das grofRe Geld verdient. Erst mit
Firmen wie Microsoft im Konsumentenbereich oder SAP und Oracle im Industriebereich
entstanden grofRe Konzerne, deren alleiniges Geschift im Programmieren von Anwen-
dungen (und Datenbanken) bestand. Fiir die Industriefirmen bedeutete das, dass Stan-
dardpakete zur Verfigung standen, die sie zentral implementieren konnten. Es wurde
tiblich, abteilungs- und standortiibergreifend zu arbeiten — an einem digitalen Prozess,
auf einer gemeinsamen, zentralen Datenbank.

In der Geschichte der Stadtwerke Miinchen (SWM) zeigt sich, dass sich unabhingig
von der Liberalisierung der Energiewirtschaft die IT stetig zu einem grofRen, integrier-
ten System entwickelte. Im Frithjahr 1979 waren noch 1206 verschiedene, meist selbst
gestrickte, nicht miteinander verbundene Programme im Einsatz (vgl. Bihr/Erker 2017:
280). 1995 wurde fiir 13,5 Millionen D-Mark das Standard-R/2 ERP-System von SAP
eingefithrt (Bihr/Erker 2017: 327). In der Folge gab es ab Ende 1997 dann eine gezielte
IT-Strategie bei den SWM, »die die datentechnische Durchdringung simtlicher Arbeits-
und Geschiftsprozesse umfasste und als integraler Bestandteil des Transformations-
prozesses begriffen wurde« (Bihr und Erker 2017: 326).

Die Softwareentwicklung selbst hat sich seither nicht in einigen wenigen Soft-
warefirmen konzentriert. Das Gegenteil ist passiert. Sie wird immer einfacher: Mehr
Rechnerleistung, mehr Speicher und mehr Ubertragungskapazitit macht mittlerwei-
le auch das Entwickeln in der Cloud méglich und damit nicht nur neue Formen des
kollaborativen Entwickelns, sondern auch das Nutzen von Entwicklungsumgebungen
und Werkzeugen wie von Amazon (mithilfe von deren Services auf AWS) oder Mi-
crosoft (dem Cloud-Angebot Azure). Durch das Internet, mobile Gerite und immer
fortschreitende Softwareentwicklungstechnologien (Entwicklungsumgebungen, Bi-
bliotheken, Entwicklungsmethoden) und immer mehr Arbeitskrifte mit Know-how
in der Softwareentwicklung (z.B. viele Studienginge mit Informatikanteil, mehrere
Ausbildungsberufe, mehr Absolvent:innen national und international) verbreitet sich
der Einsatz von Software: von einzelnen, einfachen Anwendungen fiir Grof8rechner
zu einer Vielzahl von Anwendungen fir Heimcomputer, Geschiftsprozesse, mobile

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

4. Softwaregestaltung als Teil der Digitalisierung

Endgerite und Industrieanlagen — ob im Hintergrund laufend oder in Form von In-
terfaces mit den Nutzenden interagierend. Dabei werden die Softwarepakete und die
IT-Landschaften komplexer, mit vielen Schnittstellen, Einstellungs-, Anpassungs- und
Erweiterungsmoglichkeiten. Arbeitsmethoden aus der Softwareentwicklung wie Scrum
oder IT-Projekte zur Implementierung oder Entwicklung von Software sind fester Be-
standteil vieler moderner Organisationen. Dabei ist der Kern der Softwaregestaltung
die Datenverarbeitung nach bestimmten Regeln (Algorithmen) und nicht die Daten
selbst.

Nun ist fitr die meisten Organisationen die Software nicht das Produkt, mit dem sie
ihr Geld verdienen, bzw. ihr Organisationszweck. Sie ist das Werkzeug, um Geld zu ver-
dienen oder Leistungen zur Verfiigung zu stellen. Diese Firmen stellen sich die Fragen:
Selbst entwickeln oder entwickeln lassen? Standard' anwenden oder etwas Eigenes ent-
wickeln, was einen von der Konkurrenz abhebt? Ist Software ein reiner Kostenfaktor oder
gar Teil des Kerngeschifts?

Ob Allianz, Siemens oder Volkswagen: Sie sind alle keine reinen Softwareentwick-
lungsfirmen. Doch hat die Allianz erst vor kurzem ihre Strategie wieder aufgegeben, eine
Softwarefirma zu werden und ihre selbst entwickelte Software auch anderen Versiche-
rern anzubieten (vgl. Fromme 2022). Siemens erweitert sein Angebot an Software immer
mehr, indem es bspw. eine Softwarefirma fiir 1,6 Mrd. Euro gekauft hat (vgl. Kopplin
2022). Volkswagen versucht mit Tesla Schritt zu halten, das Software als Kern des Autos
sieht, und hat seine Softwarekompetenz in der Tochterfirma Cariad konzentriert (vgl.
Higler 2022). Das heifdt, fiir Firmen wird Software nicht nur zum Kern ihrer Organisati-
on (wie ERP-Systeme), sie bilden sich nicht nur um Softwarel6sungen herum. Sie nutzen
die Software nicht nur als Plattform fiir die Organisation ihrer Wertschpfung (vor al-
lem bei den sogenannten Plattformfirmen der Gig Economy, Amazon etc.). Es wird der
Kern strategischer Fragen, weil unabhingig vom eigentlichen Kerngeschift (Versiche-
rungen, Autos, Industrieanlagen etc.) die Softwareentwicklung entscheidend wird, um
iiberhaupt eine konkurrenzfihige Wertschopfung oder Produkte zu haben.

James Bessen spricht von »competing on complexity« (2022): In softwareintensiven
Industrien, in denen Software nicht das Produkt ist, ermdglichen es grof3e, proprieti-
re Softwaresysteme, sich gegen die Konkurrenz durchzusetzen. Weil Software leicht er-
weiterbar ist, kann sie immer komplexer werden. Diese Komplexitit konnen die Unter-
nehmen unterschiedlich nutzen: um die Qualitit von Produkten und Dienstleistungen
zu steigern. Um durch zusitzliche Features von Produkten und Dienstleistungen mehr
heterogene Bediirfnisse der Kund:innen zu befriedigen. Mehr Varianten, mehr Auswahl
und auch individualisierte Produkte anzubieten (vgl. ebd. 25f.).

»[Flirms make large investements in systems that combine the advantages of large
scale with the advantages of mass customization« (ebd. 45).

Dafiir miissten die Firmen allerdings in die Entwicklung eigener, proprietirer Software
investieren. Als Vorreiter sieht Bessen Walmart an, die dank ihrer eigenen Software ei-

1 Zum Standard einer Software gehort alles, was nicht fiir eine einzelne Anwenderorganisation bzw.
einzelne Kund:innen einer Softwarefirma programmiert wurde.

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

47

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

48

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ne immer gréfiere Bandbreite an Produkten giinstig anbieten konnten. Das Prinzip des
»competing on complexity« gelte aber mittlerweile fiir simtliche Branchen. 2019 inves-
tierten Firmen in den USA 239 Milliarden Dollar in proprietire Software (vgl. ebd. 29).

Softwareentwicklung kann den Unterschied ausmachen. Um diesen Unterschied
hinzubekommen, ist eine entsprechende Organisation notwendig. Es ist nicht nur eine
Frage des Geldes. Mit wenig (Personal-)Aufwand koénnen Firmen bereits entwickeln. Es
ist mehr eine Frage davon, ob eine Organisation, die nicht auf Softwareentwicklung spe-
zialisiert ist, fahig ist, Teams von Programmierenden einzubinden oder mit grofieren
Softwarefirmen oder -dienstleistungsunternehmen zu kooperieren.

(Vormals) digitale Start-ups sind ein Beispiel dafiir, dass Softwareentwicklung nicht
nur eine fertige Anwendung ist, sondern die gesamte Organisation und Strategie be-
trifft. Ob Fintecs, Amazon, Facebook, Firmen der Gig Economy: Es sind Firmen, die
Software fiir eine bestimmte Anwendung entwickeln und die gesamte Organisation
auf den Softwareentwicklungsprozess ausrichten. Sie bilden nicht einfach bestehende
Strukturen in Software ab. Es geht darum, kontinuierlich den Zugriff und die Konstruk-
tion der Wirklichkeit via Software zu optimieren (bereits 1992 spricht Christiane Floyd
von »Software Development as Reality Construction«). Digitale Start-ups stellen sich die
Frage, wie sie das Potenzial der neuen Technologien in einem bestimmten Geschiftsum-
feld nutzen konnen, und denken damit softwaretechnisches und branchenspezifisches
Know-how von Anfang an zusammen, um daraus Software entwickeln zu kénnen.
Wie Amazon, Google & Co. zeigen, horen sie auch nicht mehr auf damit. Letztendlich
konnen digitale Start-ups als das Ende einer Entwicklung betrachtet werden, in der
in urspriinglichen Nicht-IT-Industrien die Softwareentwicklung immer mehr in den
Kern riickt: Zuerst auf die IT-Abteilung beschrinkt, die einzelne, industriespezifische
Anwendungen schreibt. Dann entstehen immer mehr professionelle Softwarefirmen,
die kostengiinstige Standardsoftware anbieten. Bis letztendlich zum Primat der Soft-
wareentwicklung einer Organisation, wo sich seit der Griitndung die Wertschopfung
um eine Software herum bildet, die kontinuierlich weiterentwickelt wird. Oder anders
ausgedriickt: »Sachverhalte werden von vorneherein als Informationsprozess verstan-
den, formuliert und modelliert« (Schmiede 2006: 465). Zusitzlich bieten solche Firmen
die intern entwickelte Software anderen Unternehmen an. Ein Ingenieur von Amazon
formuliert es so:

»Amazon is a technology company, but its warehouses are a huge laboratory where
we develop new technologies to sell to third parties.« (Massimo 2022)

Organisationen die auf dem Primat der Softwareentwicklung basieren, wie digitale
Start-ups, nutzen keinen rein technischen Vorteil. Sie nutzen vielmehr den Vorteil, neue
soziale Strukturen schaffen zu konnen, welche die Potenziale der Technik ausschépfen
helfen. Dabei soll der softwaretechnische Vorsprung von Google et al. nicht unterschla-
gen werden. Aber nur wenige Organisationen wurden von Beginn an unter der Primisse
aufgebaut, alle Titigkeiten zu priifen, inwiefern sie mit einer Software bearbeitet und
in einer solchen abgebildet werden kénnen. Die meisten (ob in der 6ffentlichen Ver-
waltung oder der Wirtschaft) existieren bereits seit lingerem. Bestehende Strukturen
wurden noch unter anderen technischen Vorzeichen rationalisiert. Sie stammen in ihrer

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

4. Softwaregestaltung als Teil der Digitalisierung

Grundstruktur aus einer Zeit vor Computer und Internet. So ist die Organisation auf die
Produktion von Autos oder die Wartung von Stromnetzen ausgelegt. Die IT-Abteilung
ist eine neben anderen indirekten Bereichen wie Personal oder Buchhaltung.

Die Fallstudien werden unterschiedliche Wege zeigen, wie Organisationen, die nicht
primdr auf die Softwareentwicklung ausgerichtet sind, sich mal mehr und mal weniger
auf dem Weg machen, selbst Software zu programmieren.

4.2. Die zwei Kernprobleme der Softwaregestaltung

Traditionelle Nicht-IT-Unternehmen kénnen nicht einfach Start-ups werden und wer-
den es auch nicht. Sie miissen aber fiir sich die Frage beantworten, wie sie mit ihren be-
stehenden Strukturen umgehen. Die Untersuchung der Fallstudien im 8. Kapitel und die
Aufarbeitung des Forschungsstandes ergaben zwei Kernprobleme der Softwaregestal-
tung — egal ob die Organisationen ihre bestehenden sozialen Strukturen (ob z.B. zur Be-
arbeitung von Kund:innenrechnungen oder Antrigen auf Bauférderung) abbilden, ver-
andern oder ganz neu gestalten: die softwaretechnische Interdisziplinaritit und die soft-
waretechnischen Gestaltungsmoglichkeiten. Die beiden Probleme sind deshalb relevant,
weil sie die Besonderheit des Arbeitsprozesses der Softwaregestaltung ausmachen und
die hier vorliegende Untersuchung darum kreist, wie Organisationen diese beiden Pro-
bleme in unterschiedlichen Kontexten l6sen und was das fiir Folgen hat.

4.2.1. Softwaretechnische Interdisziplinaritat

Um Software fiir eine bestimmte Industrie zu entwickeln, ist Wissen iber die entspre-
chende Industrie notwendig. SAP (bekannt fiir industriespezifische Standardsoftware)
ist seit der Griindung 1972 grofd geworden damit, in gemeinsamen Projekten mit Indus-
triefirmen das industriespezifische Wissen in Konzepte und in Software umzusetzen
(vgl. Siegele/Zepelin 2009: 24, 52fF.). Wissen aus dem jeweiligen branchenspezifischen
(zukiinftigen) Anwendungsbereich der Software und softwaretechnisches Know-how
miissen zusammen gedacht werden, um die Moglichkeiten der Technologie auszu-
schopfen. Vom allgemeinen Branchenfachwissen iiber einzelne industriespezifische
Prozesse, iiber Firmenwissen zu firmeninternen Abliufen bis hin zum individuellen An-
wendungswissen eines Arbeitsplatzes mit seinen spezifischen Besonderheiten, an dem
Spezialist:innen arbeiten: Die Programmierenden miissen wissen, was sie zu program-
mieren haben. Wer verantwortlich fiir die Interdisziplinaritatist, d.h. ob die Fertigkeiten
der Softwareentwickelnden erginzt werden (vgl. Baukrowitz/Boes/Eckhardt 1994) oder
andere Ficher am Zug sind (Management, Behavioral Science, VWL) (vgl. Boehm 2006:
25), ist eine Frage, welche die Fallstudien erhellen werden: Es geht nicht nur um das
Wissen Einzelner, sondern vor allem darum, durch den Arbeitsprozess der Software-
gestaltung die verschiedenen Wissenstriger:innen zusammenzubringen. So oder so
nimmt die Herausforderung mit der Spezialisierung der Softwarelandschaft zu: was die
Vielzahl an Anwendungen, aber auch deren Umfang anbelangt. Die immer komplexer
werdenden Softwarepakete haben ihre eigene Biografie und Pfadabhingigkeiten (vgl.
Pollock/Williams 2009: 80ft.), deren Kenntnis oftmals Voraussetzung ist, um sie weiter-

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

49

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

50

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

entwickeln zu kdnnen. Um all dieses Wissen fiir die Softwaregestaltung zu mobilisieren,
konnen unterschiedlichste soziale Einheiten zusammenarbeiten: Softwarefirma und
Verwaltung, IT-Abteilung und Fachbereich, Start-up und Industriekonzern, Scrum-
Entwicklungs-Team und ein Team fiir Stromhandel. Fiir viele Nicht-IT-Firmen ist das
eine Herausforderung, weil der offene, kommunikative Austausch ebenso wenig zum
Organisations- und Arbeitsrepertoire gehort wie die Softwareentwicklung.

Wegen immer komplizierterer Softwarelandschaften und -l6sungen und immer
komplexerer Industrieprozesse gibt es immer mehr Spezialist:innen, von denen eine
Abhingigkeit besteht und auf deren Partizipation man angewiesen ist (das Heer an
SAP-Beratenden ist nur ein Beispiel). Auch wenn schon frith in der Forschung darauf
hingewiesen wurde, wie wichtig Partizipation bei der Einfithrung von IT-Systemen ist
(vgl. Mann/Williams 1960: 225f.), zeigen die Fallstudien dieser Arbeit, dass in den Un-
ternehmen weniger der Wille ausschlagend ist, die Beschiftigten an der Gestaltung zu
beteiligen. Vielmehr geht es darum, an das fiir die Gestaltung der Software notwendige
Wissen bestimmter Beschiftigter zu gelangen. Der Gestaltungsprozess verteilt sich
auf all diejenigen, die zwischen Anwendenden und Programmierenden Anforderun-
gen aufnehmen, Softwarepakte anpassen, Verhandlungen tiber neue Features fithren.
Hohlmann (2007) spricht in ihrer Untersuchung von Netzwerken der Gestaltung, die
tiber das, wie sie es nennt, Integrationswissen aus Organisations-, Prozess- und Tech-
nologiewissen verfiigen. Andere Autoren sprechen von einem »institutionalisierten
Informationsbruch« (Remer 2008:162) zwischen IT- und Fachabteilung, den es zu tiber-
winden gilt. Durch die Konzentration der IT-Fachkrifte und -Kompetenzen in einer
Abteilung besteht eine Wissensgrenze zu den anderen. Mit dem IT-Alignment gibt es
eine eigene Disziplin in der (Wirtschafts-)Informatik, die erforscht, wie IT- und Fachab-
teilung besser zusammenarbeiten konnen (darauf geht 6.4.1.1 genauer ein). Dabei geht
es z.B. um das IT-Projektmanagement, das aufgrund der fachlichen und technischen
Unsicherheiten in Projekten am besten sowohl iiber fachliches als auch iiber technisches
Wissen verfiigen sollte. Gefragt ist die oder der »hybrid IT PM with one foot in the IT
domain and the other foot in the business domain« (Ko/Kirsch 2017: 316).

Zentral fur die Untersuchung ist, wie in unterschiedlichen Kontexten diese Wissens-
grenzen iiberwunden werden. Die dafiir zustindigen Beschiftigten und Arbeitsabliufe
der Gestaltung stehen dabei im Mittelpunkt. Es handelt sich um eine neue Sorte von Wis-
sensarbeit zwischen Anwendung und Programmierung. Die Wissensarbeitenden verfii-
gen iiber spezifische Qualifikationen, Arbeitsmethoden und Rollen. Sie sorgen fiir die
kontinuierliche Weiterentwicklung der Software. Sie sorgen fiir die Konzeptionslogistik,
dass Programmierende immer wieder neue Konzepte bekommen, die zu programmie-
ren sind. Die Fallstudien machen deutlich, dass diese interdisziplinire Wissensarbeit im
Kontext der Konkurrenz auf der Ebene von Individuen und Organisationen geschieht.
Wirtschaftliche Indikatoren bestimmen Entscheidungen iiber Einsatz und Entwicklung
von Software. Das hat u.a. die Folge, dass es nicht ohne weiteres moglich ist, sich frei von
jeglichen Zwingen tiber die optimale Software auszutauschen. Kooperatives Verhalten
und damit eine Basis fiir einen offenen Wissensaustausch ist zwischen und innerhalb
von Firmen nicht selbstverstindlich.

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

4. Softwaregestaltung als Teil der Digitalisierung
4.2.2. Softwaretechnische Gestaltungsmaglichkeiten

Ein zweites zentrales und typisches Problem fiir den Arbeitsprozess der Softwarege-
staltung ist jenes der softwaretechnischen Gestaltungsméglichkeiten®. Worin liegt das
Problem? Organisationen miissen zwei wesentliche Entscheidungen treffen und den
Arbeitsprozess der Softwaregestaltung entsprechend organisieren:

A) Gestaltung der Software: Ein Quellcode kann nur auf einem Computer existieren
oder auf einem vernetzten Server, auf den die ganze Welt Zugrift hat. Er kann Teil
eines Standards sein, den viele Organisationen nutzen, oder rein individuell und es
nutzt ihn nur eine Organisation. Die Softwaregestaltung steht nun vor dem Problem,
denjeweiligen softwaretechnischen Zuschnitt zu erarbeiten: Soll sie etwas individu-
ell oder als Standard gestalten? Soll sie eine Standardsoftware erweitern oder anpas-
sen?

B) Gestaltung von Arbeit und Organisation: Die anwendende Organisation kann die
Software selbst gestalten oder durch andere wie IT-Dienstleistungsunternehmen
(IT-DL) oder Softwarefirmen gestalten lassen. Beim Primat der Softwareentwick-
lung hat sich eine Organisation dafir entschieden, sich organisatorisch auf die
Softwareentwicklung auszurichten. Das Problem, sich organisatorisch auf die An-
wendung einer (Standard-)Software oder auf die Softwaregestaltung auszurichten,
wird hier als softwaretechnische Ausrichtung einer Organisation bezeichnet.

Die Fallstudien des 8. Kapitels zeigen konkret, dass es fiir die Softwaregestaltung
entscheidend ist, welche softwaretechnischen Gestaltungsmoglichkeiten in puncto
Zuschnitt (Standard oder individuell) und organisatorische Ausrichtung (Anwendung
oder Gestaltung) die Organisationen nutzen.

Theoretisch kénnte A) bedeuten, dass man weltweit nur noch eine (Softwarebau-
stein-)Bibliothek mit allen méglichen Funktionalititen braucht. Dadurch wire die
Softwaregestaltung deutlich weniger aufwendig. Tatsdchlich gibt es solche Bibliotheken
mit industrieunspezifischen, grundlegenden Softwarebausteinen’®. Auch eine Stan-
dardsoftware wie SAP kann als Versuch gesehen werden, bestimmte Funktionalititen
(bspw. Arbeitsabliufe oder Datenverarbeitungsprozesse) durch identischen Quell-
code fir alle Organisationen gleich abzubilden — selbst die industriespezifischen. Der
softwaretechnische Zuschnitt kann sich aus unterschiedlichen Ursachen ergeben:

« Synergien: Durch generische Teile einer Software oder Standardbausteine fir meh-
rere Anwendungsbereiche (verschiedene Abteilungen, Firmen etc.) oder Program-
mierungen (einzelne Bausteine) sollen Synergien gehoben werden.

2 Es gibt Ahnlichkeiten zur »Bezugsebene« des Informationsraums (vgl. Boes et al., 2016: 34). Auch
wenn die Firmen diese Bezugsebene nutzen, um die softwaretechnischen Gestaltungsmoglichkei-
ten zu verwirklichen: Der Begriff der Bezugsebene allein wiirde nicht verdeutlichen, um welche
spezifischen Eigenschaften von Softwareentwicklung es geht, die fir die Softwaregestaltung be-
sonders relevant sind.

3 Zum Beispiel Java Class Library, C++ Standard Library, React.js, Node.js.

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

52

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

- Institutionell: Die Software wird auf Standards ausgerichtet (bspw. technische oder
regulatorische).

« Abgrenzung von Wettbewerbern: Die individuelle Software soll es ermdglichen, sich
von der Konkurrenz abzuheben - ob durch mehr Effizienz oder individuelle Ange-
bote fiir die Kundschaft.

- Anwendungsperspektive: Die Software soll auf die individuelle Perspektive der an-
wendenden Organisation zugeschnitten werden, bspw. durch die Erweiterung einer
Standardsoftware.

. Priorititen: Die Software bildet nur die wichtigsten Funktionalititen ab. Das kann
bedeuten, dass eine Standardsoftware nur einen bestimmten Umfang hat. Die an-
wendenden Unternehmen miissen diese dann noch individuell erweitern, um ihre
firmeninternen Prozesse dariiber hinaus mit Software abarbeiten zu konnen.

Egal wie der Zuschnitt zustande kommt: Sobald eine Arbeitsteilung existiert und je mehr
Organisationen mitgestalten, desto hoher wird der Koordinations- und Kommunikati-
onsaufwand, um bspw. festzulegen, was in einen Standard hineinkommt oder ob und
wie Synergien gehoben werden oder nicht. Eine Méglichkeit, diesen Aufwand zu um-
gehen, ist, sich einfach einer Standardsoftware unterzuordnen und seine Organisati-
on und die Arbeit jedes Einzelnen auf diese auszurichten. Das bedeutet aber, potenzi-
elle Moglichkeiten der individuellen Softwaregestaltung und unter Umstinden Wettbe-
werbsvorteile auszuschlagen.

Solche Synergien durch Standardbausteine schaffen im Fall von ERP-Systemen
Softwarefirmen. Sie haben es iibernommen, generische, fiir einen Standard relevante
Arbeitsschritte und Prozesse zu entdecken und daraus eine Standardsoftware zu ent-
wickeln — was eine aufwendige Verhandlungsarbeit ist (vgl. Pollock/Williams/D’Adderio
2007). Laut Mormann (2016) beférdern Softwarehersteller den Glauben, dass Orga-
nisationen viel gemeinsam haben, vor allem wenn sie Standardsoftware verkaufen
wollen (vgl. ebd.: 110). Es bestiinde eine »Gleichheitsunterstellung« von SAP und den
SAP-Beratenden: Prozesse in verschiedenen Industrien unterscheiden sich nicht (vgl.
ebd.: 158). Eine Standardsoftware will die Softwarefirma moglichst oft verkaufen (»eco-
nomies of scale«). Wie ein Fall in der Untersuchung hier zeigt (KOOP1), gibt es aber
auch die Moglichkeit, dass mehrere Organisationen sich in kooperativen Projekten die
Frage stellen, was sie denn gemeinsam haben, um dann zusammen eine Software zu
entwickeln. Daraus kann eine umfassende Standardlosung entstehen oder einzelne
Funktionalititen, die iiber die Cloud abrufbar sind. Auch intern kénnen Organisationen
fiir Prozesse Standardsoftwarebausteine entwickeln, die mehrere Abteilungen mit den
gleichen Arbeitsschritten betreffen.

Nicht nur Softwarefirmen oder Nicht-IT-Firmen tun sich schwer, solche Synergien
zu erkennen. Auch auf Branchenebene ist es schwierig: Ein Beispiel dafir ist das Er-
neuerbare-Energien-Gesetz (EEG). Nachdem es die Bundesregierung verabschiedet hat,
haben sich tiber die Jahre hinweg regelmiRig die Einspeisevergiitungen fiir Erneuerba-
re-Energie-Anlagen geindert. Viele unterschiedliche Energieversorger, Softwarefirmen
und IT-Beratungen haben erst eigene Losungen entwickelt, um diese Anlagen abzurech-
nen, und diese dann immer wieder angepasst, anstatt zentral eine Lésung zu program-
mieren. Im Laufe der Zeit stellten einzelne Softwarefirmen Standardlésungen zur Ver-

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

4. Softwaregestaltung als Teil der Digitalisierung

filgung. Aber ob der Weg iiber den Markt der effizienteste fiir die Branche war, ist frag-
wiirdig.

Das zweite praktische Problem der softwaretechnischen Gestaltungsmoglichkeiten
B) betrifft die Gestaltung von Arbeit und Organisation: wie sich Organisationen dazu
verhalten, dass sie sich so gestalten kénnten, wie es optimal aus Sicht der Softwareent-
wicklung ist, und nicht so, wie es z.B. EVU gewohnt sind: nach Fachabteilungen getrennt
fiir Instandhaltung, Abrechnung, Einkauf, IT-Abteilung, Stromhandel etc. Sich zusam-
men mit vielen anderen Abteilungen auf eine Software einigen oder eigenstindig eine
auswahlen? Die IT-Landschaft von der bestehenden Organisation aus gestalten oder die
bestehende Organisation als softwarebasierte Organisation betrachten und davon aus-
gehend nach Optimierungen oder Synergien auf Organisationsebene suchen? Sich an
einer Standardsoftware ausrichten oder diese anpassen? Wenn Amazon seine Logistik-
software auch anderen Firmen anbietet, setzt sich dann nicht nur eine zentrale Software-
16sung, sondern auch eine Standardorganisation und -arbeit durch?

Selbst bei einer Standardsoftware stehen die Unternehmen vor der Frage, ob sie sich
rein auf die Anwendung konzentrieren oder intern selbst individuelle Anpassungen und
Erweiterungen an der Standardsoftware vornehmen: Der Bedarf an betriebsindividuel-
len Anpassungen ist groR. Die Anzahl an kooperierenden Firmen der Standardsoftware-
firma SAP, die unter die Kategorien »Solution Building« und »Consulting Services« fal-
len, betrigt 457 in Deutschland und 2796 weltweit*. Das ist moglich, weil SAP sich fiir
eine Softwarearchitektur entschieden hat, die neben individuellen Einstellungen auch
Verinderungen am Quellcode und das Programmieren von Erweiterungen zulisst.

In vielen Firmen existiert die Mischung aus Standardsoftware und selbst entwickel-
ten Erweiterungen oder Anpassungen. Wie es zu dieser Mischung kommt und sie kon-
kret aussieht, wire eine weitere Frage. Es mogen Pfadabhingigkeiten sein oder strategi-
sche Entscheidungen, die Softwaregestaltung in verschiedene Bestandteile aufzuteilen:
einen Teil fiir Tatigkeitsbereiche der Firmen, in denen durch individuelle Softwareent-
wicklung ein Vorteil gegeniiber konkurrierenden Firmen erzielt werden kann, und einen
anderen Teil, bei dem das nicht der Fall ist und daher eine Standardsoftware ausreicht,
die viele andere auch verwenden (es bleibt die Moglichkeit, durch eine effizientere An-
wendung Wettbewerbsvorteile zu erzielen). Es ist eine wichtige strategische Frage, wel-
che internen Prozesse sich an einer Standardsoftware ausrichten (kénnen) und dadurch
»das Differenzierungsmerkmal der Organisation gegeniiber moglichen Konkurrenten
am Markt verloren geht« (Masak 2006: 245). Grundsitzlich IT nicht als strategisch rele-
vant und austauschbar wie Biirostiihle zu erachten, scheint da wenig plausibel.”

Die Herausforderungen der softwaretechnischen Gestaltungsmoglichkeiten und
Interdisziplinaritit sind geringer bei Start-ups bzw. bei Firmen, die von Anfang an
auf Softwareentwicklung als Basis ihrer Leistungserbringung zuriickgreifen. Wenn der

4 Abgerufen von www.sap.com/partners/find.html am 26.04.2023

5 2003 hat Nicholas Carr den Artikel »IT Doesn’'t Matter« geschrieben, in dem er argumentiert, dass
IT den Unternehmen keine strategischen Vorteile brachte. Sie tendiere dazu, eine austauschbare
Standardware (»Commodity«) wie bspw. Seife zu sein. Dies wire dann der Fall, wenn die Software
einfach zu bedienen ist, ohne grofie organisatorische Verianderungen ausgetauscht werden kann
und kein Lock-in-Effekt besteht (vgl. ZDNet Staff 2004).

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

53

https://www.sap.com/partners/find.html
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.sap.com/partners/find.html

54

Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

oben erwihnte Primat der Softwareentwicklung gilt, ist die Organisation bereits auf

deren Anforderungen ausgerichtet. Die industriespezifischen Prozesse werden den
softwaretechnischen Entwicklungsprozessen untergeordnet und damit die Arbeitsge-
staltung komplett selbst in die Hand genommen.

Die beiden Kernprobleme verdeutlichen, wie wichtig es ist, verschiedene Konstella-
tionen der Softwaregestaltung zu untersuchen. Die Firmen der Fallstudien des Empirie-
Kapitels wihlen unterschiedliche Softwarearchitekturen oder Moglichkeiten von Syner-
gien, Wissensgrenzen verlaufen jeweils anders und haben entsprechend Auswirkungen
auf Arbeit und Organisation. Genauso wird sich zeigen, dass es einer besonderen Form
der Kontrolle der Softwaregestaltung bedarf, um diese beiden Kernprobleme der Soft-
waregestaltung zu adressieren.

Exkurs: Entwicklungsplattform von SAP

Die ersten vier Fallstudien (INTERN1, INTERN2, KOOP1, KOOP2) des Empirie-Kapitels
verwenden die Entwicklungsplattform von SAP. Es handelt sich um jene der ERP-Versi-
on R/3, die SAP in den 90ern entwickelt hat. Fiir die Entwicklungsplattform ist SAP Net-
Weaver die technische Basis. Sie ist als offene Plattform konzipiert, d.h. nicht nur fiirden
SAP-Konzern intern, sondern auch fiir kooperierende Firmen und die Kundschaft (vgl.
Siegele/Zepelin 2009:191). Teil des SAP NetWeaver ist eine eigene, SAP-spezifische Pro-
grammiersprache (ABAP) und Werkzeuge, um selbst Anderungen und Erweiterung am
Standard vorzunehmen: Entwicklungsumgebung (inkl. Debugger), Ticketsystem (Solu-
tion Manager) und Transportwesen, um zwischen Entwicklungs-, Test- und Produktiv-
system Softwarednderungen zu transportieren (vgl. Frederick/Zierau 2011: 29ff.). Die Ar-
chitektur der ERP-Software hat Folgen fiir die Arbeitsteilung: Aufierhalb der ERP-Firma
programmieren EVU und IT-DLselbst. Zur betrieblichen Realitdt der EVU gehort deshalb
nicht nur die angewendete Software, sondern eine Test- und Entwicklungsumgebung.
Einerseits miissen sich die EVU und IT-DL an die Moglichkeiten halten, die ihnen SAP
bietet, und es sich gut iiberlegen, wie weitgehend sie Anpassungen vornehmen, weil
das fiir sie mehr Aufwand bedeutet. Andererseits eroffnet es Spielraume fiir die interne
IT-Abteilung und externe IT-DL, die Software zu ergdnzen und ihre eigenen Softwarelo-
sungen an das SAP-System anzudocken.

Weil Organisationen unterschiedlichster Branchen SAP anwenden, anpassen und
erweitern, hat sich ein SAP-Okosystem aus kooperierenden Firmen und SAP-Beraten-
den entwickelt. Fiir die Versorgungswirtschaft (zu der die Energiewirtschaft gehort) gibt
es insgesamt 202 kooperierende Firmen in Deutschland (siehe Abbildung unten). 150
davon bieten »Consulting Services« an, zu denen die Programmierung gehort. Zusitz-
liche Losungen, die dann Gber Schnittstellen mit dem ERP-System von SAP verbunden
werden, bieten 104 kooperierende Firmen an (»Solution Building«).

Zu dem SAP-Okosystem gehéren u.a. umfangreiche Hilfe-Seiten und Communities
im Internet zur ABAP-Entwicklung (z.B. https://community.sap.com/topics/abap).

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://community.sap.com/topics/abap
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://community.sap.com/topics/abap

4. Softwaregestaltung als Teil der Digitalisierung

Tabelle 2: Anzahl kooperierende Firmen SAP allgemein und Versorgungswirtschaft

Kategorie Anzahl
Kooperierende Firmen mit SAP fir die Versorgungswirtschaft in Deutschland 202
- Solution Sales: SAP product and technology advisory and support services 84
- Solution Building: Build solutions on top of, or integrate with, SAP technology 104
- Consulting Services: SAP solution design, development, implementation, and integration 150
guidance

- Outsourced Solution Management: Hosting, managing, and running your SAP solutions 34
and IT infrastructure

- Global Technology; Global vendors of hardware, databases, storage systems, networks, and 2
mobile computing technology

- Education: Learning needs assessment and enablement services 10

(Quelle: SAP https://www.sap.com/partners/find.html, abgerufen am 28.04.2023)

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

55

https://www.sap.com/partners/find.html
https://www.sap.com/partners/find.html
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.sap.com/partners/find.html
https://www.sap.com/partners/find.html

https://dol.org/10:14361/9783839476888-009 - am 13.02.2026, 15:31:0!

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

