
4. Softwaregestaltung als Teil der Digitalisierung 

Vom Werkzeug der Forschung zum Primat 

der Softwareentwicklung bei Nicht-IT-Unternehmen 

Warum ist Softwaregestaltung überhaupt relevant für Organisationen? Dieser Frage 
geht das Kapitel in einem kurzen historischen Abriss nach. Softwareentwicklung war 
und ist zentral, um Digitalisierung zu verstehen, und nicht nur die immer größere 
Bedeutung von Daten oder die reine Softwareanwendung. Software ist zentral für die 
Wettbewerbsfähigkeit von Firmen, und einige setzen mittlerweile von Anfang an auf 
Softwareentwicklung als den Kern ihrer Organisation, auch wenn sie keine Software, 
sondern andere Dienstleistungen oder Produkte verkaufen (vor allem sogenannte di

gitale Start-ups). Bei ihnen gilt der Primat der Softwareentwicklung. Das ist nicht bei 
allen Unternehmen der Fall und es gibt eine große Vielfalt an Mischformen. Wie die 
Softwaregestaltung jeweils organisiert ist, stellt der spätere Empirie-Teil dar. Neben 
dem Begriff des Primats der Softwareentwicklung führt das Kapitel noch zwei weitere 
wichtige Begriffe für die Analyse der Softwaregestaltung ein: die softwaretechnische 
Interdisziplinarität und die softwaretechnischen Gestaltungsmöglichkeiten. Sie stellen 
die beiden Kernprobleme der Softwaregestaltung dar, tauchen in der weiteren Ana

lyse immer wieder auf und sind Teil des soziotechnischen Begriffsapparates, der zur 
Untersuchung der Formen und Folgen der Softwaregestaltung dient. 

4.1. Primat der Softwareentwicklung in Nicht-IT-Branchen und -Betrieben 

Software: Ihre Programmierung, Gestaltung und Anwendung ist Teil der Geschichte der 
IT-Nutzung. Von der vorwiegend wissenschaftlichen Nutzung in den 50er Jahren von 
IT zur Automatisierung von Routinetätigkeiten in den 60ern und den ersten PCs in den 
80ern. Seit den 90ern nimmt die Netzwerk-Integration stetig zu und die Informati

onstechnologie hat auch verstärkt restrukturierende Effekte auf gesamte Unternehmen 
– und nicht nur auf einzelne Tätigkeiten. Informationen können vielen zugänglich 
gemacht werden und gleichzeitig ist eine zentrale Kontrolle via Daten möglich (vgl. 
Schwarz/Brock 1998: 70ff.). Autoren sprechen von einer »open network organization« 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


46 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

(Schwarz/Brock 1998: 67ff.) und von »ubiquitous computing«, da der Zugriff und die 
Kontrolle der Umwelt von überall und zu jeder Zeit möglich sein soll (wearables, collabo

rations, crowdworking, realtime) (vgl. Cascio/Montealegre 2016, vgl. Hirschheim/Klein 
2012). 

Software nimmt dabei eine immer größere Rolle ein. Friedman/Cornford (1993) ma

chen drei Phasen der Entwicklung von Computersystemen aus. In der ersten Phase bis 
Mitte der 60er waren Beschränkungen durch die Hardware prägend und in der zwei

ten Phase bis in die frühen 80er solche durch Software. Ab der Phase 3 waren die Bezie

hungen zu den Nutzenden ein Hemmnis (»User Relations Constraints«). Die Nutzen

den wurden wichtiger und die Softwareentwicklung musste sie einbeziehen, vor allem 
weil deren Anforderungen schwieriger zu spezifizieren waren (vgl. Friedmann/Cornford 
1993: 325). Bereits Mitte der 70er waren Fehler in der Programmierung selbst nicht mehr 
das zentrale Problem: »Analysis and design errors were revealed to be far more common 
than coding errors« (Friedmann/Cornford 1993: 204). 

Erst im Laufe der Zeit entstanden Firmen, die sich auf die Softwareentwicklung kon

zentrierten. Zu Zeiten der Großrechner bis Ende der 80er war Rechen- und Speicherka

pazität begrenzt und kostbar. Mit Software wurde nicht das große Geld verdient. Erst mit 
Firmen wie Microsoft im Konsumentenbereich oder SAP und Oracle im Industriebereich 
entstanden große Konzerne, deren alleiniges Geschäft im Programmieren von Anwen

dungen (und Datenbanken) bestand. Für die Industriefirmen bedeutete das, dass Stan

dardpakete zur Verfügung standen, die sie zentral implementieren konnten. Es wurde 
üblich, abteilungs- und standortübergreifend zu arbeiten – an einem digitalen Prozess, 
auf einer gemeinsamen, zentralen Datenbank. 

In der Geschichte der Stadtwerke München (SWM) zeigt sich, dass sich unabhängig 
von der Liberalisierung der Energiewirtschaft die IT stetig zu einem großen, integrier

ten System entwickelte. Im Frühjahr 1979 waren noch 1206 verschiedene, meist selbst 
gestrickte, nicht miteinander verbundene Programme im Einsatz (vgl. Bähr/Erker 2017: 
280). 1995 wurde für 13,5 Millionen D-Mark das Standard-R/2 ERP-System von SAP 
eingeführt (Bähr/Erker 2017: 327). In der Folge gab es ab Ende 1997 dann eine gezielte 
IT-Strategie bei den SWM, »die die datentechnische Durchdringung sämtlicher Arbeits- 
und Geschäftsprozesse umfasste und als integraler Bestandteil des Transformations

prozesses begriffen wurde« (Bähr und Erker 2017: 326). 
Die Softwareentwicklung selbst hat sich seither nicht in einigen wenigen Soft

warefirmen konzentriert. Das Gegenteil ist passiert. Sie wird immer einfacher: Mehr 
Rechnerleistung, mehr Speicher und mehr Übertragungskapazität macht mittlerwei

le auch das Entwickeln in der Cloud möglich und damit nicht nur neue Formen des 
kollaborativen Entwickelns, sondern auch das Nutzen von Entwicklungsumgebungen 
und Werkzeugen wie von Amazon (mithilfe von deren Services auf AWS) oder Mi

crosoft (dem Cloud-Angebot Azure). Durch das Internet, mobile Geräte und immer 
fortschreitende Softwareentwicklungstechnologien (Entwicklungsumgebungen, Bi

bliotheken, Entwicklungsmethoden) und immer mehr Arbeitskräfte mit Know-how 
in der Softwareentwicklung (z.B. viele Studiengänge mit Informatikanteil, mehrere 
Ausbildungsberufe, mehr Absolvent:innen national und international) verbreitet sich 
der Einsatz von Software: von einzelnen, einfachen Anwendungen für Großrechner 
zu einer Vielzahl von Anwendungen für Heimcomputer, Geschäftsprozesse, mobile 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


4. Softwaregestaltung als Teil der Digitalisierung 47 

Endgeräte und Industrieanlagen – ob im Hintergrund laufend oder in Form von In

terfaces mit den Nutzenden interagierend. Dabei werden die Softwarepakete und die 
IT-Landschaften komplexer, mit vielen Schnittstellen, Einstellungs-, Anpassungs- und 
Erweiterungsmöglichkeiten. Arbeitsmethoden aus der Softwareentwicklung wie Scrum 
oder IT-Projekte zur Implementierung oder Entwicklung von Software sind fester Be

standteil vieler moderner Organisationen. Dabei ist der Kern der Softwaregestaltung 
die Datenverarbeitung nach bestimmten Regeln (Algorithmen) und nicht die Daten 
selbst. 

Nun ist für die meisten Organisationen die Software nicht das Produkt, mit dem sie 
ihr Geld verdienen, bzw. ihr Organisationszweck. Sie ist das Werkzeug, um Geld zu ver

dienen oder Leistungen zur Verfügung zu stellen. Diese Firmen stellen sich die Fragen: 
Selbst entwickeln oder entwickeln lassen? Standard1 anwenden oder etwas Eigenes ent

wickeln, was einen von der Konkurrenz abhebt? Ist Software ein reiner Kostenfaktor oder 
gar Teil des Kerngeschäfts? 

Ob Allianz, Siemens oder Volkswagen: Sie sind alle keine reinen Softwareentwick

lungsfirmen. Doch hat die Allianz erst vor kurzem ihre Strategie wieder aufgegeben, eine 
Softwarefirma zu werden und ihre selbst entwickelte Software auch anderen Versiche

rern anzubieten (vgl. Fromme 2022). Siemens erweitert sein Angebot an Software immer 
mehr, indem es bspw. eine Softwarefirma für 1,6 Mrd. Euro gekauft hat (vgl. Kopplin 
2022). Volkswagen versucht mit Tesla Schritt zu halten, das Software als Kern des Autos 
sieht, und hat seine Softwarekompetenz in der Tochterfirma Cariad konzentriert (vgl. 
Hägler 2022). Das heißt, für Firmen wird Software nicht nur zum Kern ihrer Organisati

on (wie ERP-Systeme), sie bilden sich nicht nur um Softwarelösungen herum. Sie nutzen 
die Software nicht nur als Plattform für die Organisation ihrer Wertschöpfung (vor al

lem bei den sogenannten Plattformfirmen der Gig Economy, Amazon etc.). Es wird der 
Kern strategischer Fragen, weil unabhängig vom eigentlichen Kerngeschäft (Versiche

rungen, Autos, Industrieanlagen etc.) die Softwareentwicklung entscheidend wird, um 
überhaupt eine konkurrenzfähige Wertschöpfung oder Produkte zu haben. 

James Bessen spricht von »competing on complexity« (2022): In softwareintensiven 
Industrien, in denen Software nicht das Produkt ist, ermöglichen es große, proprietä

re Softwaresysteme, sich gegen die Konkurrenz durchzusetzen. Weil Software leicht er

weiterbar ist, kann sie immer komplexer werden. Diese Komplexität können die Unter

nehmen unterschiedlich nutzen: um die Qualität von Produkten und Dienstleistungen 
zu steigern. Um durch zusätzliche Features von Produkten und Dienstleistungen mehr 
heterogene Bedürfnisse der Kund:innen zu befriedigen. Mehr Varianten, mehr Auswahl 
und auch individualisierte Produkte anzubieten (vgl. ebd. 25f.). 

»[F]irms make large investements in systems that combine the advantages of large 
scale with the advantages of mass customization« (ebd. 45). 

Dafür müssten die Firmen allerdings in die Entwicklung eigener, proprietärer Software 
investieren. Als Vorreiter sieht Bessen Walmart an, die dank ihrer eigenen Software ei

1 Zum Standard einer Software gehört alles, was nicht für eine einzelne Anwenderorganisation bzw. 
einzelne Kund:innen einer Softwarefirma programmiert wurde. 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


48 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

ne immer größere Bandbreite an Produkten günstig anbieten konnten. Das Prinzip des 
»competing on complexity« gelte aber mittlerweile für sämtliche Branchen. 2019 inves

tierten Firmen in den USA 239 Milliarden Dollar in proprietäre Software (vgl. ebd. 29). 
Softwareentwicklung kann den Unterschied ausmachen. Um diesen Unterschied 

hinzubekommen, ist eine entsprechende Organisation notwendig. Es ist nicht nur eine 
Frage des Geldes. Mit wenig (Personal-)Aufwand können Firmen bereits entwickeln. Es 
ist mehr eine Frage davon, ob eine Organisation, die nicht auf Softwareentwicklung spe

zialisiert ist, fähig ist, Teams von Programmierenden einzubinden oder mit größeren 
Softwarefirmen oder -dienstleistungsunternehmen zu kooperieren. 

(Vormals) digitale Start-ups sind ein Beispiel dafür, dass Softwareentwicklung nicht 
nur eine fertige Anwendung ist, sondern die gesamte Organisation und Strategie be

trifft. Ob Fintecs, Amazon, Facebook, Firmen der Gig Economy: Es sind Firmen, die 
Software für eine bestimmte Anwendung entwickeln und die gesamte Organisation 
auf den Softwareentwicklungsprozess ausrichten. Sie bilden nicht einfach bestehende 
Strukturen in Software ab. Es geht darum, kontinuierlich den Zugriff und die Konstruk

tion der Wirklichkeit via Software zu optimieren (bereits 1992 spricht Christiane Floyd 
von »Software Development as Reality Construction«). Digitale Start-ups stellen sich die 
Frage, wie sie das Potenzial der neuen Technologien in einem bestimmten Geschäftsum

feld nutzen können, und denken damit softwaretechnisches und branchenspezifisches 
Know-how von Anfang an zusammen, um daraus Software entwickeln zu können. 
Wie Amazon, Google & Co. zeigen, hören sie auch nicht mehr auf damit. Letztendlich 
können digitale Start-ups als das Ende einer Entwicklung betrachtet werden, in der 
in ursprünglichen Nicht-IT-Industrien die Softwareentwicklung immer mehr in den 
Kern rückt: Zuerst auf die IT-Abteilung beschränkt, die einzelne, industriespezifische 
Anwendungen schreibt. Dann entstehen immer mehr professionelle Softwarefirmen, 
die kostengünstige Standardsoftware anbieten. Bis letztendlich zum Primat der Soft
wareentwicklung einer Organisation, wo sich seit der Gründung die Wertschöpfung 
um eine Software herum bildet, die kontinuierlich weiterentwickelt wird. Oder anders 
ausgedrückt: »Sachverhalte werden von vorneherein als Informationsprozess verstan

den, formuliert und modelliert« (Schmiede 2006: 465). Zusätzlich bieten solche Firmen 
die intern entwickelte Software anderen Unternehmen an. Ein Ingenieur von Amazon 
formuliert es so: 

»Amazon is a technology company, but its warehouses are a huge laboratory where 
we develop new technologies to sell to third parties.« (Massimo 2022) 

Organisationen die auf dem Primat der Softwareentwicklung basieren, wie digitale 
Start-ups, nutzen keinen rein technischen Vorteil. Sie nutzen vielmehr den Vorteil, neue 
soziale Strukturen schaffen zu können, welche die Potenziale der Technik ausschöpfen 
helfen. Dabei soll der softwaretechnische Vorsprung von Google et al. nicht unterschla

gen werden. Aber nur wenige Organisationen wurden von Beginn an unter der Prämisse 
aufgebaut, alle Tätigkeiten zu prüfen, inwiefern sie mit einer Software bearbeitet und 
in einer solchen abgebildet werden können. Die meisten (ob in der öffentlichen Ver

waltung oder der Wirtschaft) existieren bereits seit längerem. Bestehende Strukturen 
wurden noch unter anderen technischen Vorzeichen rationalisiert. Sie stammen in ihrer 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


4. Softwaregestaltung als Teil der Digitalisierung 49 

Grundstruktur aus einer Zeit vor Computer und Internet. So ist die Organisation auf die 
Produktion von Autos oder die Wartung von Stromnetzen ausgelegt. Die IT-Abteilung 
ist eine neben anderen indirekten Bereichen wie Personal oder Buchhaltung. 

Die Fallstudien werden unterschiedliche Wege zeigen, wie Organisationen, die nicht 
primär auf die Softwareentwicklung ausgerichtet sind, sich mal mehr und mal weniger 
auf dem Weg machen, selbst Software zu programmieren. 

4.2. Die zwei Kernprobleme der Softwaregestaltung 

Traditionelle Nicht-IT-Unternehmen können nicht einfach Start-ups werden und wer

den es auch nicht. Sie müssen aber für sich die Frage beantworten, wie sie mit ihren be

stehenden Strukturen umgehen. Die Untersuchung der Fallstudien im 8. Kapitel und die 
Aufarbeitung des Forschungsstandes ergaben zwei Kernprobleme der Softwaregestal

tung – egal ob die Organisationen ihre bestehenden sozialen Strukturen (ob z.B. zur Be

arbeitung von Kund:innenrechnungen oder Anträgen auf Bauförderung) abbilden, ver

ändern oder ganz neu gestalten: die softwaretechnische Interdisziplinarität und die soft

waretechnischen Gestaltungsmöglichkeiten. Die beiden Probleme sind deshalb relevant, 
weil sie die Besonderheit des Arbeitsprozesses der Softwaregestaltung ausmachen und 
die hier vorliegende Untersuchung darum kreist, wie Organisationen diese beiden Pro

bleme in unterschiedlichen Kontexten lösen und was das für Folgen hat. 

4.2.1. Softwaretechnische Interdisziplinarität 

Um Software für eine bestimmte Industrie zu entwickeln, ist Wissen über die entspre

chende Industrie notwendig. SAP (bekannt für industriespezifische Standardsoftware) 
ist seit der Gründung 1972 groß geworden damit, in gemeinsamen Projekten mit Indus

triefirmen das industriespezifische Wissen in Konzepte und in Software umzusetzen 
(vgl. Siegele/Zepelin 2009: 24, 52ff.). Wissen aus dem jeweiligen branchenspezifischen 
(zukünftigen) Anwendungsbereich der Software und softwaretechnisches Know-how 
müssen zusammen gedacht werden, um die Möglichkeiten der Technologie auszu

schöpfen. Vom allgemeinen Branchenfachwissen über einzelne industriespezifische 
Prozesse, über Firmenwissen zu firmeninternen Abläufen bis hin zum individuellen An

wendungswissen eines Arbeitsplatzes mit seinen spezifischen Besonderheiten, an dem 
Spezialist:innen arbeiten: Die Programmierenden müssen wissen, was sie zu program

mieren haben. Wer verantwortlich für die Interdisziplinarität ist, d.h. ob die Fertigkeiten 
der Softwareentwickelnden ergänzt werden (vgl. Baukrowitz/Boes/Eckhardt 1994) oder 
andere Fächer am Zug sind (Management, Behavioral Science, VWL) (vgl. Boehm 2006: 
25), ist eine Frage, welche die Fallstudien erhellen werden: Es geht nicht nur um das 
Wissen Einzelner, sondern vor allem darum, durch den Arbeitsprozess der Software

gestaltung die verschiedenen Wissensträger:innen zusammenzubringen. So oder so 
nimmt die Herausforderung mit der Spezialisierung der Softwarelandschaft zu: was die 
Vielzahl an Anwendungen, aber auch deren Umfang anbelangt. Die immer komplexer 
werdenden Softwarepakete haben ihre eigene Biografie und Pfadabhängigkeiten (vgl. 
Pollock/Williams 2009: 80ff.), deren Kenntnis oftmals Voraussetzung ist, um sie weiter

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


50 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

entwickeln zu können. Um all dieses Wissen für die Softwaregestaltung zu mobilisieren, 
können unterschiedlichste soziale Einheiten zusammenarbeiten: Softwarefirma und 
Verwaltung, IT-Abteilung und Fachbereich, Start-up und Industriekonzern, Scrum- 
Entwicklungs-Team und ein Team für Stromhandel. Für viele Nicht-IT-Firmen ist das 
eine Herausforderung, weil der offene, kommunikative Austausch ebenso wenig zum 
Organisations- und Arbeitsrepertoire gehört wie die Softwareentwicklung. 

Wegen immer komplizierterer Softwarelandschaften und -lösungen und immer 
komplexerer Industrieprozesse gibt es immer mehr Spezialist:innen, von denen eine 
Abhängigkeit besteht und auf deren Partizipation man angewiesen ist (das Heer an 
SAP-Beratenden ist nur ein Beispiel). Auch wenn schon früh in der Forschung darauf 
hingewiesen wurde, wie wichtig Partizipation bei der Einführung von IT-Systemen ist 
(vgl. Mann/Williams 1960: 225f.), zeigen die Fallstudien dieser Arbeit, dass in den Un

ternehmen weniger der Wille ausschlagend ist, die Beschäftigten an der Gestaltung zu 
beteiligen. Vielmehr geht es darum, an das für die Gestaltung der Software notwendige 
Wissen bestimmter Beschäftigter zu gelangen. Der Gestaltungsprozess verteilt sich 
auf all diejenigen, die zwischen Anwendenden und Programmierenden Anforderun

gen aufnehmen, Softwarepakte anpassen, Verhandlungen über neue Features führen. 
Hohlmann (2007) spricht in ihrer Untersuchung von Netzwerken der Gestaltung, die 
über das, wie sie es nennt, Integrationswissen aus Organisations-, Prozess- und Tech

nologiewissen verfügen. Andere Autoren sprechen von einem »institutionalisierten 
Informationsbruch« (Remer 2008: 162) zwischen IT- und Fachabteilung, den es zu über

winden gilt. Durch die Konzentration der IT-Fachkräfte und -Kompetenzen in einer 
Abteilung besteht eine Wissensgrenze zu den anderen. Mit dem IT-Alignment gibt es 
eine eigene Disziplin in der (Wirtschafts-)Informatik, die erforscht, wie IT- und Fachab

teilung besser zusammenarbeiten können (darauf geht 6.4.1.1 genauer ein). Dabei geht 
es z.B. um das IT-Projektmanagement, das aufgrund der fachlichen und technischen 
Unsicherheiten in Projekten am besten sowohl über fachliches als auch über technisches 
Wissen verfügen sollte. Gefragt ist die oder der »hybrid IT PM with one foot in the IT 
domain and the other foot in the business domain« (Ko/Kirsch 2017: 316). 

Zentral für die Untersuchung ist, wie in unterschiedlichen Kontexten diese Wissens

grenzen überwunden werden. Die dafür zuständigen Beschäftigten und Arbeitsabläufe 
der Gestaltung stehen dabei im Mittelpunkt. Es handelt sich um eine neue Sorte von Wis

sensarbeit zwischen Anwendung und Programmierung. Die Wissensarbeitenden verfü

gen über spezifische Qualifikationen, Arbeitsmethoden und Rollen. Sie sorgen für die 
kontinuierliche Weiterentwicklung der Software. Sie sorgen für die Konzeptionslogistik, 
dass Programmierende immer wieder neue Konzepte bekommen, die zu programmie

ren sind. Die Fallstudien machen deutlich, dass diese interdisziplinäre Wissensarbeit im 
Kontext der Konkurrenz auf der Ebene von Individuen und Organisationen geschieht. 
Wirtschaftliche Indikatoren bestimmen Entscheidungen über Einsatz und Entwicklung 
von Software. Das hat u.a. die Folge, dass es nicht ohne weiteres möglich ist, sich frei von 
jeglichen Zwängen über die optimale Software auszutauschen. Kooperatives Verhalten 
und damit eine Basis für einen offenen Wissensaustausch ist zwischen und innerhalb 
von Firmen nicht selbstverständlich. 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


4. Softwaregestaltung als Teil der Digitalisierung 51 

4.2.2. Softwaretechnische Gestaltungsmöglichkeiten 

Ein zweites zentrales und typisches Problem für den Arbeitsprozess der Softwarege

staltung ist jenes der softwaretechnischen Gestaltungsmöglichkeiten2. Worin liegt das 
Problem? Organisationen müssen zwei wesentliche Entscheidungen treffen und den 
Arbeitsprozess der Softwaregestaltung entsprechend organisieren: 

A) Gestaltung der Software: Ein Quellcode kann nur auf einem Computer existieren 
oder auf einem vernetzten Server, auf den die ganze Welt Zugriff hat. Er kann Teil 
eines Standards sein, den viele Organisationen nutzen, oder rein individuell und es 
nutzt ihn nur eine Organisation. Die Softwaregestaltung steht nun vor dem Problem, 
den jeweiligen softwaretechnischen Zuschnitt zu erarbeiten: Soll sie etwas individu

ell oder als Standard gestalten? Soll sie eine Standardsoftware erweitern oder anpas

sen? 
B) Gestaltung von Arbeit und Organisation: Die anwendende Organisation kann die 

Software selbst gestalten oder durch andere wie IT-Dienstleistungsunternehmen 
(IT-DL) oder Softwarefirmen gestalten lassen. Beim Primat der Softwareentwick

lung hat sich eine Organisation dafür entschieden, sich organisatorisch auf die 
Softwareentwicklung auszurichten. Das Problem, sich organisatorisch auf die An

wendung einer (Standard-)Software oder auf die Softwaregestaltung auszurichten, 
wird hier als softwaretechnische Ausrichtung einer Organisation bezeichnet. 

Die Fallstudien des 8. Kapitels zeigen konkret, dass es für die Softwaregestaltung 
entscheidend ist, welche softwaretechnischen Gestaltungsmöglichkeiten in puncto 
Zuschnitt (Standard oder individuell) und organisatorische Ausrichtung (Anwendung 
oder Gestaltung) die Organisationen nutzen. 

Theoretisch könnte A) bedeuten, dass man weltweit nur noch eine (Softwarebau

stein-)Bibliothek mit allen möglichen Funktionalitäten braucht. Dadurch wäre die 
Softwaregestaltung deutlich weniger aufwendig. Tatsächlich gibt es solche Bibliotheken 
mit industrieunspezifischen, grundlegenden Softwarebausteinen3. Auch eine Stan

dardsoftware wie SAP kann als Versuch gesehen werden, bestimmte Funktionalitäten 
(bspw. Arbeitsabläufe oder Datenverarbeitungsprozesse) durch identischen Quell

code für alle Organisationen gleich abzubilden – selbst die industriespezifischen. Der 
softwaretechnische Zuschnitt kann sich aus unterschiedlichen Ursachen ergeben: 

• Synergien: Durch generische Teile einer Software oder Standardbausteine für meh

rere Anwendungsbereiche (verschiedene Abteilungen, Firmen etc.) oder Program

mierungen (einzelne Bausteine) sollen Synergien gehoben werden. 

2 Es gibt Ähnlichkeiten zur »Bezugsebene« des Informationsraums (vgl. Boes et al., 2016: 34). Auch 
wenn die Firmen diese Bezugsebene nutzen, um die softwaretechnischen Gestaltungsmöglichkei

ten zu verwirklichen: Der Begriff der Bezugsebene allein würde nicht verdeutlichen, um welche 
spezifischen Eigenschaften von Softwareentwicklung es geht, die für die Softwaregestaltung be
sonders relevant sind. 

3 Zum Beispiel Java Class Library, C++ Standard Library, React.js, Node.js. 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


52 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

• Institutionell: Die Software wird auf Standards ausgerichtet (bspw. technische oder 
regulatorische). 

• Abgrenzung von Wettbewerbern: Die individuelle Software soll es ermöglichen, sich 
von der Konkurrenz abzuheben – ob durch mehr Effizienz oder individuelle Ange

bote für die Kundschaft. 
• Anwendungsperspektive: Die Software soll auf die individuelle Perspektive der an

wendenden Organisation zugeschnitten werden, bspw. durch die Erweiterung einer 
Standardsoftware. 

• Prioritäten: Die Software bildet nur die wichtigsten Funktionalitäten ab. Das kann 
bedeuten, dass eine Standardsoftware nur einen bestimmten Umfang hat. Die an

wendenden Unternehmen müssen diese dann noch individuell erweitern, um ihre 
firmeninternen Prozesse darüber hinaus mit Software abarbeiten zu können. 

Egal wie der Zuschnitt zustande kommt: Sobald eine Arbeitsteilung existiert und je mehr 
Organisationen mitgestalten, desto höher wird der Koordinations- und Kommunikati

onsaufwand, um bspw. festzulegen, was in einen Standard hineinkommt oder ob und 
wie Synergien gehoben werden oder nicht. Eine Möglichkeit, diesen Aufwand zu um

gehen, ist, sich einfach einer Standardsoftware unterzuordnen und seine Organisati

on und die Arbeit jedes Einzelnen auf diese auszurichten. Das bedeutet aber, potenzi

elle Möglichkeiten der individuellen Softwaregestaltung und unter Umständen Wettbe

werbsvorteile auszuschlagen. 
Solche Synergien durch Standardbausteine schaffen im Fall von ERP-Systemen 

Softwarefirmen. Sie haben es übernommen, generische, für einen Standard relevante 
Arbeitsschritte und Prozesse zu entdecken und daraus eine Standardsoftware zu ent

wickeln – was eine aufwendige Verhandlungsarbeit ist (vgl. Pollock/Williams/D’Adderio 
2007). Laut Mormann (2016) befördern Softwarehersteller den Glauben, dass Orga

nisationen viel gemeinsam haben, vor allem wenn sie Standardsoftware verkaufen 
wollen (vgl. ebd.: 110). Es bestünde eine »Gleichheitsunterstellung« von SAP und den 
SAP-Beratenden: Prozesse in verschiedenen Industrien unterscheiden sich nicht (vgl. 
ebd.: 158). Eine Standardsoftware will die Softwarefirma möglichst oft verkaufen (»eco

nomies of scale«). Wie ein Fall in der Untersuchung hier zeigt (KOOP1), gibt es aber 
auch die Möglichkeit, dass mehrere Organisationen sich in kooperativen Projekten die 
Frage stellen, was sie denn gemeinsam haben, um dann zusammen eine Software zu 
entwickeln. Daraus kann eine umfassende Standardlösung entstehen oder einzelne 
Funktionalitäten, die über die Cloud abrufbar sind. Auch intern können Organisationen 
für Prozesse Standardsoftwarebausteine entwickeln, die mehrere Abteilungen mit den 
gleichen Arbeitsschritten betreffen. 

Nicht nur Softwarefirmen oder Nicht-IT-Firmen tun sich schwer, solche Synergien 
zu erkennen. Auch auf Branchenebene ist es schwierig: Ein Beispiel dafür ist das Er

neuerbare-Energien-Gesetz (EEG). Nachdem es die Bundesregierung verabschiedet hat, 
haben sich über die Jahre hinweg regelmäßig die Einspeisevergütungen für Erneuerba

re-Energie-Anlagen geändert. Viele unterschiedliche Energieversorger, Softwarefirmen 
und IT-Beratungen haben erst eigene Lösungen entwickelt, um diese Anlagen abzurech

nen, und diese dann immer wieder angepasst, anstatt zentral eine Lösung zu program

mieren. Im Laufe der Zeit stellten einzelne Softwarefirmen Standardlösungen zur Ver

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


4. Softwaregestaltung als Teil der Digitalisierung 53 

fügung. Aber ob der Weg über den Markt der effizienteste für die Branche war, ist frag

würdig. 
Das zweite praktische Problem der softwaretechnischen Gestaltungsmöglichkeiten 

B) betrifft die Gestaltung von Arbeit und Organisation: wie sich Organisationen dazu 
verhalten, dass sie sich so gestalten könnten, wie es optimal aus Sicht der Softwareent

wicklung ist, und nicht so, wie es z.B. EVU gewohnt sind: nach Fachabteilungen getrennt 
für Instandhaltung, Abrechnung, Einkauf, IT-Abteilung, Stromhandel etc. Sich zusam

men mit vielen anderen Abteilungen auf eine Software einigen oder eigenständig eine 
auswählen? Die IT-Landschaft von der bestehenden Organisation aus gestalten oder die 
bestehende Organisation als softwarebasierte Organisation betrachten und davon aus

gehend nach Optimierungen oder Synergien auf Organisationsebene suchen? Sich an 
einer Standardsoftware ausrichten oder diese anpassen? Wenn Amazon seine Logistik

software auch anderen Firmen anbietet, setzt sich dann nicht nur eine zentrale Software

lösung, sondern auch eine Standardorganisation und -arbeit durch? 
Selbst bei einer Standardsoftware stehen die Unternehmen vor der Frage, ob sie sich 

rein auf die Anwendung konzentrieren oder intern selbst individuelle Anpassungen und 
Erweiterungen an der Standardsoftware vornehmen: Der Bedarf an betriebsindividuel

len Anpassungen ist groß. Die Anzahl an kooperierenden Firmen der Standardsoftware

firma SAP, die unter die Kategorien »Solution Building« und »Consulting Services« fal

len, beträgt 457 in Deutschland und 2796 weltweit4. Das ist möglich, weil SAP sich für 
eine Softwarearchitektur entschieden hat, die neben individuellen Einstellungen auch 
Veränderungen am Quellcode und das Programmieren von Erweiterungen zulässt. 

In vielen Firmen existiert die Mischung aus Standardsoftware und selbst entwickel

ten Erweiterungen oder Anpassungen. Wie es zu dieser Mischung kommt und sie kon

kret aussieht, wäre eine weitere Frage. Es mögen Pfadabhängigkeiten sein oder strategi

sche Entscheidungen, die Softwaregestaltung in verschiedene Bestandteile aufzuteilen: 
einen Teil für Tätigkeitsbereiche der Firmen, in denen durch individuelle Softwareent

wicklung ein Vorteil gegenüber konkurrierenden Firmen erzielt werden kann, und einen 
anderen Teil, bei dem das nicht der Fall ist und daher eine Standardsoftware ausreicht, 
die viele andere auch verwenden (es bleibt die Möglichkeit, durch eine effizientere An

wendung Wettbewerbsvorteile zu erzielen). Es ist eine wichtige strategische Frage, wel

che internen Prozesse sich an einer Standardsoftware ausrichten (können) und dadurch 
»das Differenzierungsmerkmal der Organisation gegenüber möglichen Konkurrenten 
am Markt verloren geht« (Masak 2006: 245). Grundsätzlich IT nicht als strategisch rele

vant und austauschbar wie Bürostühle zu erachten, scheint da wenig plausibel.5 
Die Herausforderungen der softwaretechnischen Gestaltungsmöglichkeiten und 

Interdisziplinarität sind geringer bei Start-ups bzw. bei Firmen, die von Anfang an 
auf Softwareentwicklung als Basis ihrer Leistungserbringung zurückgreifen. Wenn der 

4 Abgerufen von www.sap.com/partners/find.html am 26.04.2023 
5 2003 hat Nicholas Carr den Artikel »IT Doesn’t Matter« geschrieben, in dem er argumentiert, dass 

IT den Unternehmen keine strategischen Vorteile brächte. Sie tendiere dazu, eine austauschbare 
Standardware (»Commodity«) wie bspw. Seife zu sein. Dies wäre dann der Fall, wenn die Software 
einfach zu bedienen ist, ohne große organisatorische Veränderungen ausgetauscht werden kann 
und kein Lock-in-Effekt besteht (vgl. ZDNet Staff 2004). 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://www.sap.com/partners/find.html
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.sap.com/partners/find.html


54 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung 

oben erwähnte Primat der Softwareentwicklung gilt, ist die Organisation bereits auf 
deren Anforderungen ausgerichtet. Die industriespezifischen Prozesse werden den 
softwaretechnischen Entwicklungsprozessen untergeordnet und damit die Arbeitsge

staltung komplett selbst in die Hand genommen. 
Die beiden Kernprobleme verdeutlichen, wie wichtig es ist, verschiedene Konstella

tionen der Softwaregestaltung zu untersuchen. Die Firmen der Fallstudien des Empirie- 
Kapitels wählen unterschiedliche Softwarearchitekturen oder Möglichkeiten von Syner

gien, Wissensgrenzen verlaufen jeweils anders und haben entsprechend Auswirkungen 
auf Arbeit und Organisation. Genauso wird sich zeigen, dass es einer besonderen Form 
der Kontrolle der Softwaregestaltung bedarf, um diese beiden Kernprobleme der Soft

waregestaltung zu adressieren. 

Exkurs: Entwicklungsplattform von SAP 

Die ersten vier Fallstudien (INTERN1, INTERN2, KOOP1, KOOP2) des Empirie-Kapitels 
verwenden die Entwicklungsplattform von SAP. Es handelt sich um jene der ERP-Versi
on R/3, die SAP in den 90ern entwickelt hat. Für die Entwicklungsplattform ist SAP Net
Weaver die technische Basis. Sie ist als offene Plattform konzipiert, d.h. nicht nur für den 
SAP-Konzern intern, sondern auch für kooperierende Firmen und die Kundschaft (vgl. 
Siegele/Zepelin 2009: 191). Teil des SAP NetWeaver ist eine eigene, SAP-spezifische Pro
grammiersprache (ABAP) und Werkzeuge, um selbst Änderungen und Erweiterung am 
Standard vorzunehmen: Entwicklungsumgebung (inkl. Debugger), Ticketsystem (Solu
tion Manager) und Transportwesen, um zwischen Entwicklungs-, Test- und Produktiv
system Softwareänderungen zu transportieren (vgl. Frederick/Zierau 2011: 29ff.). Die Ar
chitektur der ERP-Software hat Folgen für die Arbeitsteilung: Außerhalb der ERP-Firma 
programmieren EVU und IT-DL selbst. Zur betrieblichen Realität der EVU gehört deshalb 
nicht nur die angewendete Software, sondern eine Test- und Entwicklungsumgebung. 
Einerseits müssen sich die EVU und IT-DL an die Möglichkeiten halten, die ihnen SAP 
bietet, und es sich gut überlegen, wie weitgehend sie Anpassungen vornehmen, weil 
das für sie mehr Aufwand bedeutet. Andererseits eröffnet es Spielräume für die interne 
IT-Abteilung und externe IT-DL, die Software zu ergänzen und ihre eigenen Softwarelö
sungen an das SAP-System anzudocken. 

Weil Organisationen unterschiedlichster Branchen SAP anwenden, anpassen und 
erweitern, hat sich ein SAP-Ökosystem aus kooperierenden Firmen und SAP-Beraten
den entwickelt. Für die Versorgungswirtschaft (zu der die Energiewirtschaft gehört) gibt 
es insgesamt 202 kooperierende Firmen in Deutschland (siehe Abbildung unten). 150 
davon bieten »Consulting Services« an, zu denen die Programmierung gehört. Zusätz
liche Lösungen, die dann über Schnittstellen mit dem ERP-System von SAP verbunden 
werden, bieten 104 kooperierende Firmen an (»Solution Building«). 

Zu dem SAP-Ökosystem gehören u.a. umfangreiche Hilfe-Seiten und Communities 
im Internet zur ABAP-Entwicklung (z.B. https://community.sap.com/topics/abap). 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://community.sap.com/topics/abap
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://community.sap.com/topics/abap


4. Softwaregestaltung als Teil der Digitalisierung 55 
 
Tabelle 2: Anzahl kooperierende Firmen SAP allgemein und Versorgungswirtschaft 

Kategorie Anzahl 
Kooperierende Firmen mit SAP für die Versorgungswirtschaft in Deutschland 202 
- Solution Sales: SAP product and technology advisory and support services 84 
- Solution Building: Build solutions on top of, or integrate with, SAP technology 104 
- Consulting Services: SAP solution design, development, implementation, and integration 
guidance 

150 

- Outsourced Solution Management: Hosting, managing, and running your SAP solutions 
and IT infrastructure 

34 

- Global Technology; Global vendors of hardware, databases, storage systems, networks, and 
mobile computing technology 

2 

- Education: Learning needs assessment and enablement services 10 

(Quelle: SAP https://www.sap.com/partners/find.html, abgerufen am 28.04.2023) 

https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://www.sap.com/partners/find.html
https://www.sap.com/partners/find.html
https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.sap.com/partners/find.html
https://www.sap.com/partners/find.html


https://doi.org/10.14361/9783839476888-009 - am 13.02.2026, 15:31:05. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839476888-009
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

