
Software Code as Expanded Narration

Software Code as Expressive Media

Computer programming is about algorithms, formal logic, precise reasoning, and prob-

lem solving. As such, it would appear to have little to do with what we call creative ex-

pression.The logical act of programming and the self-expressive act of creativity would

seem to be mutually exclusive opposites.We think of creative expression as taking place

within certain literary or visual arts, through certain kinds of communication or sym-

bolic systems, or via certain kinds of writing, speech, discourse, language, and notation.

Some examples of expressive media and genres are poetry, storytelling, nonsense,

humor, musical notation, screenplays, notes for an artwork, notes for a dance or other

choreography, and architectural drawings.We do not normally think of software code as

an expressive medium. When we think of software code, we think of it as being about

how we handle a physical or virtual device that is to be programmed. This is a rational

and calculating activity, a practical outcome of the assumptions of the “symbolic logic”

of philosophers like Bertrand Russell, Friedrich Ludwig Gottlob Frege, or Noam Chom-

sky, and of the classical paradigm of computing theory. It is the issuing of a series of

instructions or commands to a machine, to an object or mechanism that is regarded as

essentially being non-alive.

What is the difference between the expressivity of the expressive act in the literary or

visual arts and the series of instructions that is the computer program?Wehave assumed

that there is an insurmountable wall between these two kinds of writing or notation. To

tear down this wall, like the Berliners did to their Wall in 1989, was almost unthinkable.

Only now are we ready to ask these questions. Could software code also be expressive?

Does software codehave to be only productive?The idea of expandednarration as applied

to software code means going beyond the binary opposition of writing as being either

expressive or utilitarian. The paradigm of software code as we know it is reaching its

limit: the emphasis on engineering and on getting the program to do something, code as

a series of instructions to a machine.

Software development or computer science should begin to concern itself with cul-

tural codes aswell as with software codes.Computer science should transform itself into

a hybrid engineering and humanities discipline.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


262 Decoding Digital Culture with Science Fiction

Friedrich Kittler: The Numeric Kernel is Decisive

One of the most important media theorists was the German Friedrich Kittler, who is re-

garded as being a poststructuralist. Kittler resisted expanding media theory to include

software theory. Kittler wrote a famous essay called “There Is No Software.”665 His po-

sition is that everything in computing breaks down to the digital code of the hardware.

There is no going beyond the pervasive logic of the binary. Kittler correctly points out

that Turing’s computing machine is a reduction of the body of real numbers extant in

nature that we call chaos. Yet, inmy view, Kittler was wrong because digital-binary logic

is not the only possibility for computing. Digital-binary logic is not universal and for-

ever. It is precisely software theory as anacademicfield,deriving frombothmedia theory

and computer science,which leads to new paradigms such as quantum computing, Cre-

ative Coding, software that operates like the reverse-engineered human brain, or soft-

ware as semi-living entities (Artificial Life) rather than inert things to bemanipulated by

the dominating programmer subject.

In “There is No Software,” Kittler fancies himself as writing about the end of history

and the end of writing. In a contemporary writing and cultural scene of endlessly ex-

pandingand limitless signification, there is ironically an implosion into theno-spaceand

no-time of microscopic computer memory.The relationship of information technology

to writing, for Kittler, brings about the situation that he alleges that we do not write any-

more. The idea that software code might be a form of writing, a form of écriture in the

Derridean deconstructionist sense (an intervention or inscription into language that is

more fundamental and effective than speech), never occurs to Kittler. He represses this

thought andassumes that the computermustbringabout theprogrammatic automation

of reading and writing.

“This state of affairs [...],” writes Kittler, “hide[s] the very act of writing…We do not

write anymore.” Kittler believes that writing done on a computer is not an historical act

anymore because the writing tools of the computer are able to read and write by them-

selves.666 He writes:

[The] all-important property of being programmable has, in all evidence, nothing to

do with software; it is an exclusive feature of hardware, more or less suited as it is to

house some notation system. 667

My view is the opposite of Kittler’s. l think that software code can be the site of the

re-emergence of écriture in Derrida’s sense. There can be a shift from programming as

the programmability of some device to programming as creativity, creative expression,

and writing in the deepest sense of effecting change.

I disagree with Kittler’s statement that there is no software and his belief that the nu-

merical logic of the low-level hardware that Alan Turing and John von Neumann con-

ceptualized in the 1930s-1940s is determining and decisive. In my view, just because the

kernel or center of computing is rational and computational, does not mean that all the

other layers, languages, and interfaces of the system, and which surround the kernel,

must follow that logic.The education of the people we call programmers is misguided as

well, since the curriculum of that training assumes that these persons must be oriented

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 263

to logical ratiocination.The education of “humanists” is wrong too – they are supposed

to be the opposite of that. We need instead something hybrid or in-between, like com-

putational aesthetics.

Kittler’s Media Archaeology

The media theory of Friedrich Kittler is very successful and influential in German uni-

versities. Kittler’s media archaeology and media historiography have led to the rise of

the Berlin School of media theory, of whichWolfgang Ernst is at the forefront.668 Kittler

opposes the so-called discourse analysis of the study ofmedia,which he sees as deriving

its methods from hermeneutics and literary criticism. He instead advocates a techni-

cal materialism of data storage devices, data transmission, processors, and automatic

writing systems, that examines what is claimed to be technologies fromwithin.There is

much to respect about Kittler’s work. I understand Kittler’s body of writing as a valuable

contribution to posthumanism and the post-humanities – a gesture that goes beyond

the anthropocentric prejudice of placing humans at the center of history and narratives

of the future.

My thesis regarding thepast and future of informatics is that all layers of the software

above the kernel can indeed be anything. Regarding the history and the science fiction

futurism of computing, it is a question of studying the past as a succession of cultural

theory concepts, and therefore being open to the future of a succession of cultural theory

concepts.

A technical layer of conversion between the computational-digital-binary center and

themore poetic or human-languagediscursive applications and interfaces at the periph-

ery and at the outer zones is possible. These mechanisms of translation can exist at a

certain specific level of the network architecture. I argue against a dualistic opposition

betweenmachinic-computational and poetic-linguistic expression.

Our resistance in ideas to the freeing of software from the kernel of rational-calculat-

ing logic is paradoxically an outmoded humanist clinging to the belief in the specialness

of humans – the sublime qualities of the soul and consciousness (the Cartesian cogito)

that humans allegedly have and which we claim that machines do not have.

Derrida radicalized Saussure’s semiotics when he said that there are endless chains

of signification in sign systems, and not just a one-to-one static relationship between

the signifier and the signified. Linguistic signs always refer to other signs, and there can

never be a sign that is the endpoint of signification. One never arrives at any ultimate

meaning of a word.Writing in Derrida’s sense is the opposite of the system of stabilized

and clear-cut definitions of words which dictionaries are intended to be.There is always

an insurmountable gapbetweenwhat Iwrite or say andwhatmy readers or listeners read

or hear.

For Kittler, the software space is just virtuality or simulation. It is not possible, ac-

cording to him, to establish a new relationship to the world through software program-

ming, any aesthetically coded transformation. Art/aesthetics/design and informatics

have no possible bridge between them. The miniaturization of hardware is, for Kittler,

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


264 Decoding Digital Culture with Science Fiction

the proper dimension of simulation, of our postmodernwriting scenewhich is no longer

a scene of writing.

Baudrillard went beyond this nostalgic position vis-à-vis technology by practicing

photography as ameditation on the technical imagingmedia itself. He wrote of photog-

raphy as the writing of light – a practice of an exemplary media technology as a form of

writing.669

For Kittler, hardware always precedes and determines software. He writes:

There are good grounds to assume the indispensability and, consequently, the prior-

ity of hardware in general… All code operations come down to absolutely local string

manipulations, that is, I am afraid, to signifiers of voltage differences… The so-called phi-

losophy of the so-called computer community tends systematically to obscure hard-

ware with software, electronic signifiers with interfaces between formal and everyday

languages.670

The combinatorial logic always wins out and the software can do nothing more than

tweak bits and bytes.The software industry is one giant conspiracy to hide the machine

from its user. The solution, for Kittler, is to write programs in low-level assembler code

to maintain awareness that the hardware is what the program always resolves itself into

in the end.

The original conception of the digital-binary computer was made in the 1930s and

around the time of the SecondWorldWar bymajor figures in the history of ideas such as

Alan Turing, John von Neumann, and Claude Shannon. Turing first conceptualized the

computer inhis 1936 paper “OnComputableNumberswith anApplication to theEntschei-

dungsproblem.”671 He developed the idea of the Turingmachine: themathematical model of

computationwhere amechanismmoves above an infinitely long tape, stops over one cell,

reads the symbol written in that cell, and changes the symbol to another symbol chosen

from a small set of possible symbols.The control mechanism then moves to another cell

to carry out the next operation,manipulating symbols according to a table of rules, sim-

ulating the logic of any algorithm that is thus proven to be computable or calculable.

The Turing machine is contemporaneous with the idea of representing instructions

and data as finite sequences of binary numbers.VonNeumann is creditedwith the inno-

vation of the stored-program concept.672 Shannon achieved the breakthroughs in elec-

trical engineering that Boolean algebra can be deployed to realize digital electronic cir-

cuitry and that binary electrical switches can support fast algebraic calculations and dig-

ital computer design.673

Wolfgang Hagen on Programming Languages

In his essay “Der Stil der Sourcen” (“The Style of the Source Codes”), the German media

theoristWolfgangHagen studies the history of programming languages up until the end

of the twentieth century.674 He states his agreement with the thesis of Friedrich Kittler

that “there is no software.” Yet on closer examination,Hagen seems to point towards the

opposite.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 265

Hagen seeks to develop a general theory of programming languages.He begins with

the thought experiment of an imaginary “library of modern source codes” which would

catalogue the“Babylonianconfusion” (Kittler).The librarywouldhave to includeprocedu-

ral, functional, declarative, object-oriented, parallel, and neuronal languages. It would

have to encompass compilers, interpreters, assemblers, operating systems, and code de-

velopment environments. It would be so vast that Hagen concludes that “our thought

museum is a logical impossibility.”675

Hagenwants verymuch to agree with Kittler (the founder of German academic “me-

dia science”).There are higher-level languages (“symbolic program texts”) and “real” (Ha-

gen’s term) machine codes. What is crucial is the transition between them. When this

conversion happens, it “kills the language.”676 It is a passage from “being” (software) to

“nothing” (hardware).Since theprogramin thehigher-level languagemust get translated

into assembler ormachine code to run,Hagen asserts that the higher-level software code

disappears.That would come as news to Niklaus Wirth, for example, the chief designer

of many programming languages and author of classic textbooks on the art of program-

ming with data structures and algorithms. Hagen pokes fun at Wirth. To have the idea

that your higher-level program is in a self-preserving relation to themachine is to believe

in “a literal and illusory continuity.” It is naïve idealism.

Hagen criticizes “American philosophers of the Electric Language” likeMichaelHeim

(author ofVirtual Realism) and JayDavid Bolter (author ofWriting Space: Computers,Hyper-

text, and theRemediationofPrint)who claim that, according toHagen,“computer programs

and computer systems are a sophisticated collection of programmed texts that interact

with each other.”677 I do not believe that the two perspectives of “hermeneutic” or de-

constructionist discourse analysis and computer archaeology or materiality must be in

competition against each other. They are looking at computing on two different levels.

Heim and Bolter wrote about hypertext, which becamemassively important in the 1990s

with theWorldWideWeb.Hypertext is an existing phenomenon. Documents which are

“markedup”withhyperlinks are indeed interactingmorewith eachother than, say, in the

Gutenberg Galaxy medium of books. It is legitimate to theorize about and beyond this

development. But, for Hagen, it is not the level of “real computer machines.” He writes:

If programming were a strictly deterministic process that followed fixed rules, writes

the laconic Swiss [Niklaus]Wirth, programmingwould have been automated long ago.

Or, to use Kittler's provocative words, there would be no software.678

What is the difference between “there is no software” and “there would be no software”?

In the statement byWirth towhichHagen refers,Wirth defends the art of programming

as an open-ended activity withmany possibilities.Hagen does not counter the assertion

on its own terms. He dismisses it as self-evidently invalid because indeed the hardware

is where the action is.

Hagen sees a historical trajectory of three evolutionary phases: the mathematical

models of computability; the engineering technology of memory addressing; and the

math and physics of communications engineering. If one goes back to Turing and the

first decades of the computer, there certainly was no software. Does it stay that way for-

ever? The role of software, as Hagen himself recounts, steadily increases. In the early

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


266 Decoding Digital Culture with Science Fiction

1950s, there are symbols in continuous connection with each other but no mathemati-

calmodel. In the late 1950s, declarative languages appear. In the early 1970s in a tentative

way, and then in a full-on rush in the 1980s, there is “the breakthrough of simulation.”679

Object-oriented languages on the code level correspond to the (personal) computer, on

the application level, becoming a media and consumer device.The earlier media of text,

image, and soundmake their comeback.

Hagen then changes gears and focuses on developing a concept of programming

style.The definition of style in the theory and history of rhetoric is that style is paradox-

ically a property of language and an effect of that very property. Can software rise to this

level? He writes: “Can what gets written in software make what is written unrecogniz-

able?” In the codex of ancient Rome that was the precursor of the book, writing became

writable. That is the birth of style. In modern Europe, style freed the bourgeois author

(the subject of speech and writing) from the restrictive regulations of earlier more regi-

mented societies.

Writing style can tell a story or be interpretative. It can structure an argument. It

can be creative. Despite his starting point of Kittler’s “there is no software,” Hagen takes

a wayward turn of intuiting a future of software style: not a language, but “a climate of

language.”

Ten Paradigms of Informatics and Programming

In his book Turing’s Man, J. David Bolter characterizes the information processing tech-

niqueof aUniversal TuringMachineas the replacementof “discrete symbolsoneat a time

according to a finite set of rules.”680 This original logic of computing is firmly rooted in

the dualism of is and is not (the long strings of binary digits or 0s and 1s). It is based on

the switching of registers and signals in both storage and processing, and the alleged

certainty – or identity with itself – of the conventional (pre-quantum physics) scientific

object.

In the chronology of subsequent yet concurrent (in the sense that a new paradigm

doesnot completely cause thepreviousparadigmtodisappear) programmingparadigms

after Alan Turing, ideas which bear a resemblance to hypotheses which Turing “re-

pressed” while devising the hybrid science-and-culture of the digital-binary computer

return to the scene.These ideas reappear during the ensuing phases or paradigms, such

as those of object-orientation and Artificial Life and Creative Coding.The fact that both

program and data can be represented with binary numbers and saved on a physical

storage medium is scientific. The relationship between program code and data varies

from paradigm to paradigm and is cultural. In 1980s object-orientation, for example,

code and data are unified into the single entity or concept of the class or the software

object.This was related to the emergence of personal computers and the GUI, to the new

emphasis on the computer as a media and consumer device.

I differentiate at least ten paradigms:

(1) Alan Turing’s original formulation of the programming of the hardware state ma-

chine of the digital computer

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 267

(2) The 1950s cyberneticsmovement around figures likeHeinz von Foerster andGregory

Bateson

(3) 1960s procedural programming languages such as Fortran, COBOL, and C

(4) 1970s functional programming languages such as SQL and Lisp

(5) 1980s object-oriented languages such as Smalltalk, C++ and Java, OO analysis and

design, and diagrammatic modeling languages such as UML

Each of these five programming language paradigms (which I have linked roughly with

the decades of the 1940s, 1950s, 1960s, 1970s, and 1980s, respectively) does not correspond

in an exact way to the chronological decade with which I have associated it.The coupling

of each paradigmwith a given decade is an ideal type binding posited for the sake of es-

tablishing a periodic historiographical narrative. Turing wrote his groundbreaking arti-

cle in 1936. I connect the procedural paradigm with the 1960s; yet Fortran first appeared

in 1957, COBOL in 1959, and C in 1972. I link the functional paradigm with the 1970s; yet

in fact, Lisp was created originally in 1958 and SQL in 1974. I affiliate the object-oriented

paradigm with the 1980s; yet in fact, Smalltalk was introduced in 1972, C++ in 1985, and

Java in 1995.

(6) Artificial Intelligence in systems of perceptrons, artificial neural networks (ANNs),

machine learning and Deep Learning

(7) Artificial Life related to theoretical biology

(8) Quantum computing in software

(9) Blockchain transaction network concept and other distributed ledger technologies.

A-Life, quantum computing, and blockchain architectures are examples of the

posthuman worldview

(10)TheCreative Codingmovement

During the period of the 1950s to 1970s, there took place the rise of the academic field of

computer science and the professionalization of computer programming in the corpo-

rate business world.The human computers of the 1940s (who were majority female, and

who carried out the manual labor of setting into machine language the mathematical

calculations specified by male scientists and engineers) were replaced by the automa-

tion (the generation of themachine code to run the program) of assembly languages fol-

lowed historically by language compilers and functional and procedural programming

languages such as Lisp and ALGOL. FORTRAN became the language of scientific com-

putation. COBOL was designed as a universal business data processing language that

was also closer in syntax to English.

Later came higher-level imperative languages such as Pascal and C, declarative

languages such as SQL for database query, and the UNIX operating system, which was

portable to almost all hardware platforms and unified academic and business com-

puting. In the 1960s, IBM became the near-monopoly and archetypal company of the

computer industry, theMassachusetts Institute of Technology (MIT) –with its close ties

to business, government and the military – became the leading university for computer

science, and the Association for ComputingMachinery (ACM) became the leading orga-

nization setting the scientific standards for computing. The concept of the “sciences of

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


268 Decoding Digital Culture with Science Fiction

the artificial” (Herbert A. Simon) was developed, and the question if computer science is

a science or not was raised.

The decade of the 1980s was characterized by the introduction of the personal com-

puter to the marketplace, and its being advertised and sold to the public as a tool of per-

sonal empowerment, interactive visual design, and creative expression.During this era,

the computer was also transformed from a calculation machine to a device for media

consumerism and individual daily life self-administration. The consumer was encour-

aged to participate in the spectacle of cultural-economic activity as herself now amedia

producer. The Graphical User Interface – with its mouse and touchscreen input, desk-

topmetaphor, software applications, hypertext, hypermedia, and the presentation of in-

formation as the multimedia juxtaposition of text and image – replaced the text-based

command-line interface.

In the realm of computer programming, what corresponds to all of these 1980s in-

novations on the levels of code and software design are the event-driven model and the

paradigm of object-orientation. Software development becomes a methodology for the

modelingof real-worldprocesses inpreparation for their subsequent simulation,and for

the creation of computer games and virtual worlds (virtualization). Object-oriented lan-

guages such as Smalltalk, C++ and Java, and diagrammatic modeling languages such as

UML, need to be understood as simultaneously technical and cultural paradigms.These

object-oriented languages are based on the concept of objects, which are instances of

classes, both of which are design artefacts that unify data and code in a single entity.

This informatics paradigm and coding culture mark a major step towards enabling the

autonomy of software objects and their independence from the controlling power of the

programmer-subject.

The First Hyper-Modern Computers

Thefirstmachines of computation that can be called digital-binary programmable com-

puters were built around the time of the Second World War and during the period of

the late 1940s and early 1950s. One very early digital computer – often considered to be

the first –was the Z3 designed by German engineer and businessman Konrad Zuse,who

cooperated to some degree with the Nazi Party and its war effort. Zuse’s invention was

an electro-mechanical machine, based on an area of engineering where German indus-

try was very strong.The first fully electronic digital computer was the Colossus, designed

and built by British Post Office research engineer Tommy Flowers, a specialist of vac-

uum tubes, which took almost a year to assemble and became functional in February

1944. Eleven Colossusmachines were deployed in the British project of cracking the code

of German encryption devices used by Nazi high military command to send battlefield

messages to the front lines.

TheENIAC computer,built for use by theU.S.ArmybyHermanH.Goldstine’s teamat

the University of Pennsylvania, was a milestone achievement of design engineering and

computer science. It became operational inDecember 1945.ENIACwasmuch faster than

Colossus andwas fully Turing-complete. It was a universal computingmachine and could

simulate any so-calledTuringMachine, thebreakthroughmathematicalmodelwhich the

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 269

24-year-old British mathematician Alan Turing had formulated in his historic academic

paper.TheENIAC,however,was still not a stored-programcomputer,meaning thatwires

and switches had to be manually inserted and set rather than the program and data be-

ing stored as software in integrated circuits.TheManchester Baby,whichwas constructed

at the Victoria University of Manchester, England, and went into operation in June 1948,

was the first stored-program computerwhichwas able to store instructions in electronic

memory.The theoretical insights that led to the stored-programconceptwere elaborated

also by Turing in the same watershed 1936 paper and were more concretely fleshed out

as a specification byHungarian Americanmathematician John vonNeumann in his 1945

“First Draft of a Report on the EDVAC.”681The EDVAC was another early electronic com-

puter developed under the auspices of U.S. Army ballistics research, and a successor to

the ENIAC.

Enter Software Studies

Therecent emergence of software studies (MatthewFuller,LevManovich) challengesKit-

tler’s thesis that there is no software and points to the primacy of software as a societally

critical hybrid of technical and cultural patterns. In 2006 Fuller published a pioneering

book on software as media and culture called Behind the Blip.682 In his 2013 book Software

TakesCommand,Manovich expandsmedia theory to include software theory.His book “is

concernedwith ‘media software’ –GUI programs such asWord, PowerPoint, Photoshop,

Illustrator,AfterEffects,FinalCut,Firefox,Blogger,Wordpress,GoogleEarth,Maya,and

3DMax.These programs enable creation, publishing, sharing, and remixing of images,

moving-image sequences, 3D designs, texts, maps, interactive elements...”683

Thinking with Manovich, one sees that a major challenge to media theory is to con-

sider howWeb sites, computer games, andweb andmobile applications transformwhat

media are. And how does software affect the design process? Is the nature of design al-

tered by the fact that it is now everywhere carried out with the tools of simulation built

on top of object-oriented design patterns? What is the relation between software de-

sign patterns and the patterns of other kinds of design – such as architectural, graph-

ical, fashion, communication, industrial, and product design?Manovich asks: “Are there

some structural featureswhichmotion graphics, graphic designs,Web sites,product de-

signs, buildings, and video games share since they are all designed with software?”684

What does media become after software?

Lev Manovich’s theses are reminiscent of the ideas of media theorist Vilém Flusser

who, in his book Into the Universe of Technical Images, presented the pragmatic-utopian

vision of an SF society of the continuous creation and prolific exchange of high-tech im-

ages.685

Flusser asserts that technical images are made possible by scientific principles

worked up into technologies. Particles of specific technologies (such as pixels – in the

contexts of data compression and encryption algorithms) are assembled or computed

into visible images. Each image technology (the photograph, the .jpg image, the VRML-

programmed virtual world) is a different way of structuring particles. Technical images

are reservoirs of information. Programming is a form of freedom. In the future society

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


270 Decoding Digital Culture with Science Fiction

of images, everyone will be empowered to envision. Everyone will be a programmer

and a synthesizer of images. “There will be an ongoing dialogical programming of all

apparatuses by all participants,” writes Flusser in Into the Universe of Technical Images.686

New-media artists and creatives should initiate a project of transforming software code

into something other than what it currently is. We must go beyond the unconscious

“reification” (Verdinglichung in German, a termof theHungarianMarxist literary theorist

György Lukácsmeaning the ideological operation of treating an artefact that is a specific

cultural-historical construction as ahistorical or eternal) of assuming that software code

as “left-brain” (the rational-calculating side of the human brain) engineers have defined

it is the only possibility for software.687 I propose starting the activity of the active

transformation of software by Creative Coders who are artists, designers and thinkers:

devising a new curriculum for informatics – a “right-brain” (creative and intuitive side

of the human brain) informatics that builds on existing computer science yet moves it

closer to art, design, sociology, philosophy, and cultural theory.

According to McLuhan and Powers inThe Global Village: Transformations in World Life

and Media in the 21st Century, reading, writing and hierarchical ordering are associated

with the left brain,as arephonetic literacy and the linear concept of time.688Theleft brain

is the locus of analysis, classification, and rationality. The right brain is the locus of the

spatial, tactile, andmusical. Awareness is when the two sides of the brain are in balance.

A key aspect of software code as expanded narration is the concept of similarities –

as opposed to the discrete identities and differences of combinatorial software. Similari-

ties is how the universe is constituted.Urgently required for software development after

object-orientation is the design of relations of similarity, fractal/holographic-like pat-

terns, andmusic-like resonance between the whole (the software instance) and the parts

(smallest units of information or database elements) as opposed to the logic of discrete

identities and differences of Turing machines. The approach that would correspond to

a true breakthrough into twenty-first century science would be to identify relationships

of similarity, to find samples or patterns that capture something of the vitality and com-

plexity of thewholewithout breaking it down in amechanisticway, as in the seventeenth

century Cartesian method of dealing with a complex problem by breaking it down into

smaller,moremanageable parts, along the lines of themechanistic relation between the

whole and its parts in the archetypal car engine.

Designing a logic of similarities involves inclusion of “nonknowledge.” We need to

rethink science with a dose of nonknowledge, away from the obsession with knowing

everything and total information.The importance of nonknowledge for science is man-

ifest in the twentieth century sciences of quantum physics and chaos theory. It is within

quantum physics that we find the idea of a vast number of states of information which

are potentialities, not yet actualized realities, and which have a relationship of similar-

ity to each other.Wewant to build a “quantum reservoir” of non-observable information

that cannot be read or written in a visible way as in the “get” and “set” operations of pro-

gramming without destroying the integrity of the data. In the quantum reservoir, we

want an immensely vast number of software classes which resemble each other in sub-

tle ways.They are invisible to the observer.The information is read and transformed. In

the act of reading, the information transfers from its own quantum state to the domain

of “real world” usefulness. An immense number of states should be possible, but switch-

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 271

ing actions are manageable.There is flexibility in assigning singularities to classes, and

a degree of variability among the individuals of a class.

In the business world, a new software paradigm is emerging – software that handles

uncertain social media data andmassive volumes of data, software that is an ecosystem.

New computing requirements include embedded data analytics, Linked Data, unprece-

dented massive volumes of data, and continuous self-learning by the software. Storage,

memory,networking,andprocessingmovecloser to thedata.Fromtop-downtobottom-

up: long, sequential, symbolic, scripted, ratiocinating logic gives way to short, parallel,

semantic-semiotic, coupling of perception and action, immediate intelligence.

Enter Creative Coding

Creative Coding where a line of code is an aesthetic artifact and not only an instruc-

tion to themachine.Creative Codingwhere a new software layer opens as a performance

space formusic,poetry, storytelling,dance,andphilosophy.CreativeCoding includes the

artist-oriented Integrated Development Environments (IDEs) called openFrameworks,

vvvv, andProcessing.689There is generative art –artworkswhich are createdusing an au-

tonomous systemsuchas a computer,a robot,analgorithm,ormathematics.There is the

areaofprogrammingandmusic,and thegrowingareaofprogramminganddance.There

is the music programming language called SuperCollider, and the music programming

environments called Max/MSP and Pure Data.690 Open-source Creative Coding toolkits

wrap together coding libraries for graphics, typography, computer vision, 3D modeling

and audio, and image and video processing. SuperCollider is a programming language

for real-time audio synthesis and algorithmic composition. It has strengths in just-in-

time programming, objectmodeling, the sonification of linguistic data and socialmedia

data, auditory display, andmicrosound.

The pedagogy of instructing artists and designers to make software involves teach-

ing them how towrite code in a way that is not dry and boring for them (as the engineer-

ing approach can often be for creative-oriented students), teaching them how to design

software that brings together software patterns and artistic/cultural patterns, teaching

them creativity, and teaching them cultural theory so they can grasp conceptually how

the paradigm of object-orientation can be pushed through to the next paradigm.

We need to unpack object-orientation philosophically into two separate streams of

commodifiedandcreative.ThemainstreamunderstandingofOObyengineering schools

and the institutions for which they train programmers is philosophically naïve: they as-

sume the existence of a “real world” and so-called “real-world” processes. Software devel-

opment would be the practice of modeling these real-world processes in software. But

this alleged “real world” is the realm of simulacra and simulation.691

Creative object-orientationneither assumes the existence of a “realworld”nor does it

seek tomodel or simulate that. Creative Codingwants to fashion a “new real,” a hybrid of

the familiar phenomenological environment and new Virtual Realities, new experiences

of existence in ahybrid real/virtual dimension.This is thepotential of software at its best.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


272 Decoding Digital Culture with Science Fiction

Alan Turing: The Imitation Game and Befriending the Evil Demon

The mathematician Alan Turing has similarities with René Descartes. Like Descartes,

Turing is a rationalist and a humanist. He also endeavors to go beyond Descartes in an

interesting post-humanist way. Like Descartes, Turing is engaged in a struggle with an

“evil demon” – yet in the realm of Artificial Intelligence and not that of “reality.” Can we

learn something from the Turing Test for AI to then formulate a “Turing Test for Reality”?

In his seminal 1950 essay “Computing Machinery and Intelligence,” Alan Turing poses

the question “Can machines think?”692 Turing’s paper is widely recognized as one of the

first important historical statements about Artificial Intelligence. Turing immediately

replaces the question “Can machines think?” with another question which he deems to

bemore fruitful: “Are there imaginable digital computerswhichwoulddowell in ‘the Imi-

tationGame’?”693With the term“digital computers,”Turing implies the layers of software

for natural-language processing above the hardware level.The famous Turing Test starts

out life aswhat Turing calls the ImitationGame.Before the ability of amachine to exhibit

linguistic behavior indistinguishable from that of a human comes a thought experiment

about gender: the ability of a man to exhibit linguistic behavior indistinguishable from

that of a woman.

There is aman (Person A), a woman (Person B), and an interrogator (Person C) whose

gender is irrelevant. Person A and Person B are both not visible to Person C. Based on

conversational interaction, the interrogatormust decide which of the other two persons

ismale andwhich is female.Thewoman tells the truth,and themale deceptively pretends

to be female.The interrogator does not know that PersonA is the imposter.The responses

are typed, so the gender identities cannot be gathered fromvoice.The interrogator in the

Imitation Game is a lot like Descartes’ rational subject. Person A is Turing’s evil demon.

Yet Turing feels attracted to this deceiver or imposter. It is a certain “queering”of Per-

sonA that fascinates and seduces Turing–a queering of the evil demon.This is disclosed

as he takes the next step in converting the Imitation Game from aman impersonating a

woman to anAImachine impersonating ahuman.Turing switches sides to championing

the participant in the game who is now the AI software or android. Person A goes from

being the threat to rationality to the hopeful possibility of a new paradigm of informat-

ics which Turing defends and for which he argues. The bulk of “Computing Machinery

and Intelligence” consists of Turing’s systematic refutation of nine rationalist arguments

against AI (which he calls “Contrary Views on the Main Question”). He moves intuitively

towards a paradigm shift in informatics beyond classical computer science. The behav-

ior of the self-learning program, he asserts, will be significantly different from what is

normally expected of programs. Turing wants to understand the science of AI machines

which pass the Turing Test. The evil demon starts as mirror-reflection of the rational

thinking subject but becomes a different intelligence.

If the tester cannot determine which of the two interlocutors is the machine, then

the machine has passed the Turing Test and is deemed to be Artificially Intelligent. The

Turing Test is launched into theworld. It inspires sciencefictional posthumannarratives

and philosophical reflection and questioning about the future of informatics. The Next

Generation of Turing Tests is applied to androids like Rachael in Blade Runner and Ava

in Ex Machina. Not only are Rachael and Ava being tested, but the human who was the

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 273

measure of all things is now also placed into question (Deckard inBladeRunner andCaleb

in Ex Machina).

The machine can pass the test by simulating human intelligence. The machine does

not have to think like a human or give precisely correct answers. It is enough for it to give

answers which resemble the answers that a human would give. Alan Turing writes:

In about fifty years’ time it will be possible to program computers with a storage capac-

ity of about 109, to make them play the imitation game so well that an average inter-

rogator will not have more than 70 per cent chance of making the right identification

after five minutes of questioning… We may hope that machines will eventually com-

pete with men in all purely intellectual fields.694

Alan Turing: The Scientific and Cultural Levels of Computing

The invention of the digital-binary computer is the origination of a numeric code to

implement hyperreality in microscopic detail. One way to support the reversal of the

dystopia of hyperreality into a more utopian project is to make the methodological

separation between the scientific and cultural dimensions of the computer in its history

and future. A certain portion of computer science is scientific, and another part is

cultural and is understood as changing in paradigm from decade to decade. What is

scientific in the “science of the artificial” (Herbert A. Simon) of the computer is the fact

that both code and data can be digitalized as numbers.695What is cultural is the specific

relationship between code and data that prevails in given software coding paradigms

which have many different historical configurations. In 1980s “object-orientation,” for

example, code and data are unified into the single entity or concept of “the class” or “the

software object.”This was related to the emergence of personal computers and the GUI,

to the emphasis on the computer as a media and consumer device. The position that

computer science is partly scientific and partly cultural is a more moderate approach

than the “social constructivism” of the “social construction of technology” (SCOT) within

the field of “Science and Technology Studies” (STS) which says that, in effect, “everything

is culture.”

Weneed anovel third knowledge framework that is neither the scientific and techno-

logical view from the inside that existing computer science has of itself nor the tendency

to cultural relativism and denying of any objective validity to science that often ensues

from the view from the outside that is often the research methodology in humanities-

side Science and Technology Studies (STS). I highly value many academic works in Sci-

ence and Technology Studies for their contributions to increasing political awareness of

the power,money-making, sexist, and racist relationships which are widely operative in

the institutions and cultures of scientific research and technological innovation. How-

ever, my primary goal is to develop an intellectual position which simultaneously high-

lights the economic, social, cultural, and institutional state of things (how power rela-

tions are maintained, and capitalist interests served) surrounding science and respects

and grants validity to the rationality and special objective status of scientific knowledge

that transcends historical conditions.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


274 Decoding Digital Culture with Science Fiction

Thethought experimentof theTuringMachineand JohnvonNeumann’s “stored-pro-

gram concept” coincidewith the idea of representing both instructions and data as finite

sequences of binary numbers. The Universal Turing Machine is based on the switching

of registers and signals in both storage and processing, and the alleged certainty – or

identity with itself – of the pre-quantum physics scientific object.

What is objective andeternal as science inAlanTuring’s 1936 formulation (and related

formulations during the birth of computer science which soon followed) is the encoding

and physical writing on temporary memory or a storage medium of both programs and

code as binary numbers.The relationship between code and data changes in technologi-

cal paradigm shifts in parallel with shifts in broader socio-cultural paradigms (deciding

the era-specific purposes for which computers are utilized). Early computers were de-

ployed for scientific calculations and for manipulating numbers using logical rules.The

science part of the invention of computer science: (the hardware and) the algorithms and

the data can all be encoded into lengthy binary strings (i.e., stored as computable num-

bers).The cultural part of the invention of computer science: how one does this (i.e., the

relationship between the code and the data) is a cultural decision.When Turing and von

Neumann ran algorithms on data for calculation, this was driven by a cultural decision,

whichwas the institutionally neededmilitary applicationsduring theSecondWorldWar.

They put into practice a certain precise relationship between program and data in their

specific deployment of computers.

Computer science is a science in ways which are consistent with how the philosophy

and the history of science have studied their objects of inquiry such as in their relation to

the classical cases of astronomy, the physical sciences, and the biological sciences. Com-

puter science is not only a set of eternally rationally decided objective truths (time- and

discourse-independent properties and laws of a science) but is, in addition, a nonobjec-

tive perceptual-interpretive model and a succession of cultural paradigms which evolve

and even quantum-leap from historical phase to historical phase, or decade to decade.

Computer science is a designed orderly assemblage of ideas, a cognitive schema shared

by a community of practitioners which has structured and organized, over a long histor-

ical arc of time, our perspective on the scientific area of software code and the computer.

What the digital-binary computer has been since its inception as associated with lumi-

naries such asTuring andvonNeumann is one essential approach to the scientificfield of

the computer that establishes someof its principles.Other paradigms are possiblewhich

build upon and extend that approach. Alternative-supplementary frameworks of infor-

matics are either historically identifiable in genealogical stages or extant in emerging

and formative states.

The invention of the discrete logic of the on-or-off state of the bit smallest unit, or the

lengthy strings of 0s and 1s, or the symbolic code or algorithms, of digitalization by Alan

Turing was both a universal invention of a scientific technology and was embedded in

Turing’s allegiance to ideas of the twentieth century philosophical movement of British

analytical logical positivism. Turing made certain scientific and design decisions, and

some of these decisions excluded certain other architectural directions which he might

have taken. It is possible to separate the scientific and the philosophical-cultural-discur-

sive aspects. Since informatics has by now made such a deep imprint on our lives that

one can point to a thoroughgoing “information-ization” and “number-ization” of hyper-

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 275

modern society, it can be said that the digital-binary computer is coupled – in an elective

affinity and a prolonged historical trajectory – with certain systemic social, economic,

and institutional values and goals.696

A long and fascinating intellectual and techno-scientific history (which, in a sense,

spans all human history) led up to this quantum leap forward or scientific revolution

whichwas themid-twentieth century crossover fromabstract ideas to the actual physical

construction of the digital-binary computer.Many events in the history ofmathematics,

the philosophy of logic, and the design and building of successive calculation and com-

putationmachines are often chronicled as chapters in the prehistory of the computer.697

Jay David Bolter: Computer Science and Literary Theory

As Turing argued in “On Computable Numbers…,” any specialized automaton (a precur-

sor of the computer program) can be represented by and implementedwith a finite set of

binary instructions.Therefore,a universal automaton (computer hardware) canbe imag-

ined (as a thought experiment by Turing) and then built (the computer architecture of

von Neumann) which would precisely mimic the desired behavior of the specialized au-

tomaton or software by cycling through those same instructions. As Herman H. Golds-

tine – the mathematician and computer scientist who was one of the developers of the

late 1940s ENIAC (the first electronic digital computer) – explains: if the universal au-

tomaton can hypothetically run without any limitation of time, it will always execute at

some juncture in its execution the desired sequence that is contained within the infi-

nite sequence (somewhat like the proverbial monkeys who will eventually reproduce the

complete works ofWilliam Shakespeare if given enough time banging away at typewrit-

ers). Turingmade themathematical proof that the specialized automaton can always be

described by a sequence of discrete directives which are the code input to what would

later become the physical computer. “When the instructions are fed to Turing’s universal

automaton,” notes Goldstine, “it in turn imitates the special automaton.”698

Jay David Bolter, professor of NewMedia at the Georgia Institute of Technology, un-

dertook an interdisciplinary study of informatic technology in his books Turing’s Man:

Western Culture in the Computer Age (1984) and Writing Space: The Computer, Hypertext, and

the Remediation of Print (2001), bringing together computer science and literary theory.699

Yet Bolter (like Kittler) appears to have made little progress in his work in envisaging

software as embodying literary, cultural, or signifying patterns. He instead stays within

the scheme of assuming absolutely that programming is about numerical-combinato-

rial logic and the manipulation of discrete symbols. Like Kittler, Bolter limits computer

thought to a sort of philosophical nominalism where the semantic and semiotic aspects

of the signfyingwords or identifiers (whether keywords or variables named by thewriter

of the code) in programming languages count for nothing: “Computer thought is a se-

quence of operations, of fetch-and-execute cycles of the central processing unit.”700

Bolter is concerned only with the original logic of computing of the Turing Machine

as an information processing device where the symbol written at the storage location

currently pointed at gets replaced by another symbol selected from a finite set of sym-

bols according to a set of rules.This is the embodiedmetaphor of a physical model of re-

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


276 Decoding Digital Culture with Science Fiction

ality that comes with its dubiously perfect “description-language” (reminiscent of what

Paul Feyerabend in Against Method: Outline of an Anarchistic Theory of Knowledge critiqued

as “observation-language” in science701) – the dualism of is and is not, the philosophical-

scientific assumptions behind that, and the long strings of binary digits or 0s and 1s.

The logic of identities and differences, the mathematical-philosophical axiomatic

postulation that a thing is identical to itself, or that there is a one-to-one linguistic

relationship between signifier and signified (the word-token and the meaning of that

word) – this obsession of Western culture with reality is at the root of hyperreality. The

idea of language in Aristotle and in the Noah’s Arc story in the Bible is that language

names the world. Both Aristotle and Noah develop classification systems of naming the

animals.702 The prominent linguist Noam Chomsky thinks that language is a universal

structure of the human brain which is always the same independent of the specific

languages of specific cultures.703 This implies anthropocentrically that language essen-

tially is the world, that language matches the world and harmonizes with the world.My

view is that language is a continuous back-and-forth tension between understandings

and misunderstandings, attempts at contact with the other and the confusion of the

Tower of Babel. The view of language as a classification system is useful for organizing

and categorizing. It overstates its claim that language is only an objective codification

system that describes how everything in the world is.

Bolter states: “Every computer program is the electronic realization, the tangible

proof, of a theorem in logic... Every programmer... is a logician with a theorem to

prove.”704 What is certain concerning the place of electronic digital thinking in the

long arc of the history of ideas, Bolter asserts, it is that the land of CPU clock cycles is

a kingdom from which God, religion, meaning, and ethics are excluded. Philosophy,

psychology, ecology, and literature are exiled. There is no contemplation of existence

or introspection. There is no union between minds or sensuous touching between the

computer and its exterior environment. “The unification of themindwith the idea of the

beautiful, the true, and the good envisioned by Plato” – the ideal world of the Platonic

Forms and Ideas, the beginning of Western philosophy – “the series of perfect patterns

from which the imperfect objects of the material world” are derived, Bolter tells us –

“has no counterpart in computerized thought.”705

As a humanities professor who understands computer science, Bolter was eager to

educate his colleagues about the logic of computing. Yet he inadvertently set up a wall

between a statically conceptualized logic of computing and the thinking of the humani-

ties and cultural studies, thus excluding contributions by the latter to the former.

Lev Manovich, The Language of New Media

In 2001,TheMIT Press published the bookTheLanguage ofNewMedia by LevManovich.706

This is a milestone work in the academic theorization of new media. Manovich investi-

gates cultural software and interfaces, visual culture andmoving images, and the histor-

ical transition from film to digital video and computer games. He develops theses con-

cerning conventions and artefacts of software applications and user experiences in these

areas: interactivity, telepresence, immersion,distance and aura,digital compositing and

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 277

montage, computer animation, databases, algorithms, storing and manipulation of in-

formation, and the navigating of digital and virtual spaces. The cultural and aesthetic

forms of newmedia are both a continuity with and a break from oldermedia such as the

cinema.

Manovich enumerates five principles which characterize newmedia:

(1) Numerical representation – Artefacts exist as data or can be stored as numbers

(2) Modularity –Different elements exist independently

(3) Automation – Artefacts can be created andmodified by automatic processes

(4) Variability – Artefacts exist in multiple versions

(5) Transcoding – The digital-binary logic and its instances influence us culturally –

from technical codes to cultural codes

Newmedia objects are based on code, on the limitless re-programmability of the binary

structure and the electronic impulses. Software Studies (LevManovich,Matthew Fuller,

BenjaminBratton, and other authors in the same-namedMITPress book series) in effect

contests Kittler’s thesis that there is no software.707 Software Studies points to the primacy

of software as ahybrid of technical and cultural patterns that is potentially both critical of

society (Gesellschaftskritisch) and “designing of the future” in a pragmatic-utopian sense.

Software Studies: Coded Objects and Assemblages

In the book Code/Space: Software and Everyday Life (published in the MIT Press Software

Studies book series), Rob Kitchin and Martin Dodge examine the explosive growth of

information about ourselves, the intrusion of this information into our daily lives, and

the ubiquitous availability of this data to institutions and strangers through many net-

workeddevices.708Their approach is to scrutinize software fromtheperspective of space,

to research how the “production of space” (a termof the FrenchMarxist sociologistHenri

Lefebvre) in the guise of the new virtual space is implemented in a detailed way by soft-

ware.709

Kitchin and Dodge see software as increasingly integrated into everyday life in the

four domains of coded objects, coded infrastructures, coded processes, and coded as-

semblages. An assemblage, for Deleuze and Guattari in A Thousand Plateaus: Capitalism

and Schizophrenia, is a unity of social-technological entities amalgamated into a config-

uration that is fluid,multi-functional, and complex.710The assemblage can combine or-

ganic andmachinic components into its dynamically changing aggregation of parts and

its relationswith other assemblages.Assemblage theory is a systems theory for the social

world.

Coded objects are, for Kitchin and Dodge, physical objects which depend on soft-

ware for their functionality. Their product design implementation is made possible via

software code. In the environment of the Internet ofThings, computational power is em-

bedded into many objects.There are other machine-readable objects that lack their own

software but interact with external code. Coded objects are connected to distributed in-

formation and surveillancenetworks.Someobjects develop something like an awareness

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


278 Decoding Digital Culture with Science Fiction

of themselves and theirmilieu (perhaps in KatherineHayles’ sense of the “cognitive non-

conscious”).711 Their interactions with surroundings are recorded and saved on physical

storage media or the cloud.

In ChapterThree “Remaking Everyday Objects,” the authors study how everyday ob-

jects such as domestic appliances, handheld tools, sporting equipment,medical devices,

recreational gadgets, and children’s toys are made software-interface-addressable and

thus available to external processes of discipline, control, and identification. The Inter-

net ofThings can become a platformagainst surveillance.My things ormy objects belong

to me, not to the government or large corporations or the semiotic consumer society.

Software Studies: The Expressivity of Code

In the book Speaking Code: Coding as Aesthetic and Political Expression (MIT Press Software

Studies series),Geoff Cox andAlexMcLean elaborate a hybrid discourse of software code

writing and humanities critical theory.712 Blending text and code, andmusing on code as

script and performance, they locate the signifying import and linguistic reverberations

of code in its practical operations in the online networks. The study of code by Cox and

McLean is an existentialist view of software programs as having open-ended possibili-

ties, rather than the usual emphasis on their social-organizational impact of instituting

fixed structures and processes. Cox and McLean examine the live-coding scene (visually

displaying source code during an artistic performance) and peer production (self-orga-

nizing community efforts such as open-source software projects). They see code as an

expressive and creative act, related to the two activities which have traditionally been

called “art and politics.”

The autonomist thinker Franco Berardi writes in his foreword to Speaking Code:

If we can say that code is speaking us (pervading and formatting our action), the other

way around is also true. We are speaking code in many ways… We are not always

working through the effects of written code. We are escaping (or trying to escape) the

automatisms implied in the written code… Hacking, free software, WikiLeaks are the

names of lines of escape from the determinism of code… Linguistic excess, namely

poetry, art, and desire, are conditions for the overcoming and displacement of the

limits that linguistic practice presupposes.713

Many such projects – andmore generalized in their transformation of what code is – are

possible.Poetic,musical, and symbolically signifying language can reemergewithin code

to counteract the original historical assumption that code is a series of instructions to a

machine, an exercise in formal logic, and the reduction of language to information. Text

and code come together as an embodied cyborg cooperation (Katherine Hayles, Donna

Haraway) or as a relation of uncertainty and indeterminacy where each partner in the

human-machine exchange is reciprocally transformed. This can happen in the double

frame of code as both readable as directions for the processor and as elegant expression

for the human code writer.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 279

Cox and McLean refer to the concept of “double description” as mutual causation or

circularity between mind and biological evolution that was elucidated by the thinker of

second-order cybernetics Gregory Bateson in his 1979 bookMind and Nature: A Necessary

Unity.714 Starting from this notion, the authors speak about “double coding”: a composite

of formal logic and linguistic creativity inCodeworks (AlanSondheim’smixingof creative

writing and code) or “pseudo-code” (informal descriptions of the steps of aprogramor al-

gorithm, often a phase of software development preceding the writing of code), a hybrid

articulation that is both rigorously systematic and carries the force of writing.

Vilém Flusser and Software Code

In Into the Universe of Technical Images, Vilém Flusser presents the pragmatic-utopian vi-

sion of an advancedutopian sciencefictional society of continuous creativity andperma-

nent prolific exchange of high-tech images.715 Flusser writes in the mode of SF theory.

Calculation and computation get added to the scientificmethod, and to reading and

writing, as treasures of theWestern cultural tradition of liberal humanist rationality and

Enlightenmentprogress.Flusser’s vision is a community of creating and sharing images.

Flusser stresses the historical continuity between the culture of written texts of

the pre-digital world (which were both scientific and literary texts) and the universe of

technical images.The technical image is muchmore an outcome of the achievements of

scientific and literary texts than is usually believed.This is the opposite of whatMarshall

McLuhan maintained in his historical genealogy of a radical break between successive

print and media cultures. Technical images are anything but natural or a return to

pictorial images, as McLuhan had claimed (while calling them electronic images and

saying that electronic culture retribalizes humanity). Linear texts, for both McLuhan

and Flusser, have been the dominant carriers of information in human societies for four

thousand years. Prior to that – for “the forty-thousand-year-period of pre-history” –

pictures reigned supreme.716 With the World Wide Web Internet that ascended in the

1990s, there is a shift from linear text to hypertext and hypermedia. Flusser diverges

from McLuhan’s concept of electronic images, pointing out that these images in fact,

“rely on texts from which they have come and, in fact, are not surfaces but mosaics

assembled fromparticles.”717 Technical images are a continuation of theWestern culture

of scientific and literary texts, a continuation by other means.

Flusser calls the traditional pictorial images of pre-history “first-degree abstrac-

tions.” Those images were mimetic representations or phenomenological impressions

of the physical world. The “second-degree abstractions” are texts which are, in turn,

abstracted from traditional images. Technical images are “third-degree abstractions.”

They are abstracted from the abstraction of the abstraction (the pre-historic images)

of the concrete world. Technical images can also be called post-historical.718 Technical

images are reservoirs of information.

Software programming or the writing of code is, for Flusser, a form of freedom and

individual expression. In the future utopian society of images, everyone will be empow-

ered to envision. Everyonewill be a programmer and a synthesizer of images.Hewrites:

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


280 Decoding Digital Culture with Science Fiction

The photographs, films, and television and video images that surround us at present

are only a premonition of what envisioning power will be able to do in the future… All

vision, imagination, and fictions of the past must pale in comparison to our images of

the future.719

From the perspective of the present, we see more clearly the unity of the scientific and

literary cultures as theywere in the past andmight become again in the future. Scientific

and literary cultures will no longer be in opposition to each other.They are both cultures

of the text.

From the Dialogical Society to Creative Coding

Flusser writes about Telematic Man and advocates for emancipatory possibilities inher-

ent in the universe of analogue and beyond-analogue technical images aswell as dialogic

or advanced digital images. Flusser was a utopian thinker, similar in his moral and the-

ological perspective to the philosopher of I andThou (Ich und Du) Martin Buber (“I mean

roughly that which Buber called dialogic life,” writes Flusser), touched by the spirituality

of Jewish Kabbalah in ways close to the historian Gershom Scholem and the Frankfurt

School philosopher of critical theory Walter Benjamin.720 Flusser brings his existential-

ist philosophy to bear onmedia and technologies. In his book Into theUniverse of Technical

Images, he contemplates the prospect of a future society that plays with digital-virtual

images: “It will be a fabulous society, where life is radically different from our own.”721

This utopia will not be automatically realized by new media and new technolo-

gies. The better society can only be realized when digital technologies are designed

consciously with utopian values and goals. “Taking contemporary technical images

as a starting point,” writes Flusser, “we find two divergent trends. One moves toward

a centrally programmed, totalitarian society of image receivers and image adminis-

trators, the other towards a dialogic, telematic society of image producers and image

collectors.”722 Totalitarianism or liberal autonomy and democracy: the choice is up to us.

The future culture of images implements “a technology of dialogue, and if the images

circulated dialogically, totalitarianism would give way to a democratic structure.”723

Either we continue living in a bureaucratic social order with images controlled by a few

powerful monopolies or we architect a telematic society of decentralization, empathic

dialogue,mutual support, and collective authoring of the narratives of visual culture.

Wealsoneed todeepenunderstandingofwhat Flussermeansby image,andhow that

differs from the usual meaning of the term.

There can be a coming together of Virtual Reality or computer games and stories of

high literary quality – a culture of images that continues the culture of literature of the

past.There will be a high level of participation in such a culture. “There will be an ongo-

ing dialogical programming of all apparatuses by all participants.”724 It will be a playful

existence, a society of artists in dialogue via images. Flusser refers to the notion ofHomo

Ludens of the Dutch cultural historian Johan Huizinga on the play element in culture.725

The dialogical society, for Flusser, would envision “situations that have never been seen

and could not be predicted,” lived by players who would “constantly generate new rela-

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 281

tionships by playing off moves against countermoves” and write the code of previously

inconceivable possibilities.726We need a new conscious theory and practice of images –

images related to the reinvigoration of the hybrid scientific-literary culture that is the

legacy of theWest.

In Does Writing Have a Future?, Flusser envisions a path towards meaningful expres-

sivity emerging from themetamorphosis of programming codes.Flusser anticipated the

movement of generative art orCreativeCoding.727 CreativeCoding is rooted in thedesire

and ambition of artists and creative individuals to practice software programming in a

rangeof subcultural activities: live visuals, interactive exhibitions, choreographeddance,

real-time performances, product design prototypes, and 3D printing and hybrid design-

and-technical code experimentation inMaker Labs,demoscenes,andhackerspaces.Cre-

ative Coding includes projects of visual- and natural-language-centered toolkits, soft-

ware poetry, and coder ethos sensitivity to the art of programming.

Flusser investigates the prospects for “writing after writing.” Hope for a better soci-

ety, he states, cannot be placed in those who know how to write the old way yet refuse to

learn the new technological codes.Nor can hope rest with thosewho learn the new codes

in a robotic or merely professional way (without awareness), yet remain ignorant of the

value of writing, both as it was in the past and as it could be in the future. Educational

institutions should teach the new codes while encouraging students to learn the history

of writing and to engage in the renewal of that history. Texts will make their comeback

against their suppression and replacement by computer programs, operating inside the

latter to transform them, to bring text and code back within the overall flow of writing’s

place in history.

In Towards a Philosophy of Photography (1984), Vilém Flusser asserts that media tech-

nologies do not transform the world, they transform the meaning of the world.728 They

transform its symbolic dimension. We are no longer in the era of industrialization and

production (of tools andmachines).The photographer –who, for Flusser, is ametaphor-

ical stand-in for all technology programmers – is not a proletarian in the classical Marx-

ian sense.The imaging technology apparatuses do not do any work.The term photogra-

phy, for Flusser, is a stand-in for all contemporary media. The structure of the gesture

of photography is quantum. It is a gesture of doubt composed of point-like hesitations

and point-like decisions. Photography is a post-industrial and post-ideological gesture.

Photography takes information to be a “new real” in itself. It does not seek to decode the

allegedmeaning of that information. Creative Coding is not semiotic coding and decod-

ing – the concept of ideology with some semiotics added – as in the Marxist television

studies of Stuart Hall.729

The telematic society of the future – if it continues its present dystopian trajectory

– will be divided into two groups: those who write computer programs and those who

cannot write software code.The technocratic programmers will be pawns of the system

just asmuch as the non-programmerswill be.Their personalitieswill be programmedon

a micro-level through each keystroke that they type: a society of programmers who are

programmed.Programmingcan insteadbecome thenewname forwhatused tobe called

writing. Computer programming languages – as they have been until now – are struc-

turally simple (they reduce or translate, as Friedrich Kittler says, to the digital-binary

code), but not at all simple to learn and use.They are structurally simple yet functionally

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


282 Decoding Digital Culture with Science Fiction

complex. Programming, as it is presently constituted, leads to the automatic steering of

human beings and society into a cybernetic system. Programming as we have known it

is the automation of the world.

Flusser was a utopianmedia theorist who wrote about a future playful society of the

democratic exchange of dialogical images. He investigated the place of the writing of

software code in the larger context of the history and future of humanwriting in general.

He connected photography and programming in interesting ways.

From Computer Science Code to Creative Coding Code

What is the difference between code as understood by existing computer science and

code as understood by posthuman Creative Coding? Software programming languages

came into existencemuch later than the original invention of the computer, but they are

marked by the mathematical origins of computer science and the idea of a pure mathe-

matical formal language.Each line of code is a precise unambivalent instruction. It is the

opposite of human language. Human language is imbued with resonance, ambivalence,

poetic qualities, subjective expression, cultural cross-references, and intertextualities.

Code in its existing concept is also not visually creative in any sense of making space for

singular pictographs since it consists of sequences of pre-defined symbols.The symbols

laid out by the algorithmathandare selected froma larger set of symbols of a givendelin-

eated alphabet. In existing computer science, there is a dualistic separation between the

code (or the phase of code-writing) and the (time of the) executable.The activity of writ-

ing the code happens outside of the instantiated process or world which the code has set

in motion.The code has a human-writable and -readable version called the source code.

An interpreter or compiler converts the source code to themachine instructions required

by the computer. Code is a system of rules to convert information to an alternative form

to be sent over a communications channel or saved on a physical storage medium.

The following three new directions for the theory and practice of code in posthuman

Creative Coding stand in the foreground:

Code and Human Language

One of themost popular application domains for projectsmadewith the ProcessingCre-

ative Coding IntegratedDevelopment Environment (IDE) is poetry generators. Software

poetry embeds eloquence into purposefulness.When the center of attention of the writ-

ing of code becomes expressivity as well as functionality, the desire for programming

languages which are closer to human languages grows. This tendency is already visible

in the expansion of Natural Language Processing (NLP); declarative programming lan-

guages for relational databases like SQL; macro languages for lawyers to write Smart

Contracts on the blockchain; the role of natural language in comments and documen-

tation to make source code more readable for other programmers; the choosing of hu-

manly familiar names for variables and methods; the syntax specifications of markup

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


Software Code as Expanded Narration 283

languages like XML and HTML; and in the natural language input styles of AI text and

image generators.

Higher level languages already evolved away from the primitive 0s and 1s towards

human forms of communication and communities of understanding. Higher level lan-

guages are already closer to human language than to machine language.This trend can

be extrapolated into projected further steps towards code as human language as the fu-

ture unfolds.What will the practice of software development be like when its concern is

both software codes and cultural codes? The “new real” emerges when designers of hy-

brid real-virtual environments have a toolkit available which offers building-block com-

ponent options from both the real physical world and from the province of virtual three-

dimensional synthetic imaging technology.

Code and the Visual

Another popular application domain for projects using Processing is music visualizers.

The numerical values of themusic as a data set become the input to code which converts

those values to some real-timedynamically changing, or evenuser-interactive, graphical

representation as output. Processing is especially adept at translating from one expres-

sive media to another, as exemplified in projects that transform electromagnetic waves

in the atmosphere into lively screen or VR animations; transmute dancemovements into

database-storable geometric forms as building blocks for future choreographies; trans-

pose the motion-activity of children’s play into music and light displays; alter weather

data into three-dimensional “fuzzy” phenomena-simulating particle systems; or trans-

figure bodily tactile gestures into large-screen flowing clay sculptures. Processing en-

ables generally the creation of interactive visual artworks and art installations.The dig-

ital version of Generative Design that is related to Creative Coding instantiates an algo-

rithmic system via code which, in turn, serves as the “intelligence” that autonomously-

automatically generates design or artistic output.

If Processing has migrated the attention of coding towards visual output, then the

next step is for the code itself to become more visual – more artistic, intuitive, inspira-

tional, emotional, and pictorial. The symbols available in the language’s symbol set can

be more malleable and expressive of the singularity of the specific expression intended

in the moment. A dynamic pictogram is a flexible graphic symbol signifying its mean-

ing through resemblance to signified likenesses evoked in the imagination. Small vec-

tor-spawned fractal icons can be phonetic letters or elements of the language. Pikto and

Lightbot are examples of already existing pictographic programming languages.730 The

given “pikto” directly embodies an action or object in the game. These languages based

on schematic images avoid the pitfall of the syntactic errors that vex textual languages,

making them suitable for learning by children.

https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/


https://doi.org/10.14361/9783839472422-014 - am 13.02.2026, 09:22:52. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

