Software Code as Expanded Narration

Software Code as Expressive Media

Computer programming is about algorithms, formal logic, precise reasoning, and prob-
lem solving. As such, it would appear to have little to do with what we call creative ex-
pression. The logical act of programming and the self-expressive act of creativity would
seem to be mutually exclusive opposites. We think of creative expression as taking place
within certain literary or visual arts, through certain kinds of communication or sym-
bolic systems, or via certain kinds of writing, speech, discourse, language, and notation.

Some examples of expressive media and genres are poetry, storytelling, nonsense,
humor, musical notation, screenplays, notes for an artwork, notes for a dance or other
choreography, and architectural drawings. We do not normally think of software code as
an expressive medium. When we think of software code, we think of it as being about
how we handle a physical or virtual device that is to be programmed. This is a rational
and calculating activity, a practical outcome of the assumptions of the “symbolic logic”
of philosophers like Bertrand Russell, Friedrich Ludwig Gottlob Frege, or Noam Chom-
sky, and of the classical paradigm of computing theory. It is the issuing of a series of
instructions or commands to a machine, to an object or mechanism that is regarded as
essentially being non-alive.

What is the difference between the expressivity of the expressive act in the literary or
visual arts and the series of instructions that is the computer program? We have assumed
that there is an insurmountable wall between these two kinds of writing or notation. To
tear down this wall, like the Berliners did to their Wall in 1989, was almost unthinkable.
Only now are we ready to ask these questions. Could software code also be expressive?
Does software code have to be only productive? The idea of expanded narration as applied
to software code means going beyond the binary opposition of writing as being either
expressive or utilitarian. The paradigm of software code as we know it is reaching its
limit: the emphasis on engineering and on getting the program to do something, code as
a series of instructions to a machine.

Software development or computer science should begin to concern itself with cul-
tural codes as well as with software codes. Computer science should transform itself into
a hybrid engineering and humanities discipline.

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

262

Decoding Digital Culture with Science Fiction
Friedrich Kittler: The Numeric Kernel is Decisive

One of the most important media theorists was the German Friedrich Kittler, who is re-
garded as being a poststructuralist. Kittler resisted expanding media theory to include
software theory. Kittler wrote a famous essay called “There Is No Software.”**® His po-
sition is that everything in computing breaks down to the digital code of the hardware.
There is no going beyond the pervasive logic of the binary. Kittler correctly points out
that Turing’s computing machine is a reduction of the body of real numbers extant in
nature that we call chaos. Yet, in my view, Kittler was wrong because digital-binary logic
is not the only possibility for computing. Digital-binary logic is not universal and for-
ever. Itis precisely software theory as an academic field, deriving from both media theory
and computer science, which leads to new paradigms such as quantum computing, Cre-
ative Coding, software that operates like the reverse-engineered human brain, or soft-
ware as semi-living entities (Artificial Life) rather than inert things to be manipulated by
the dominating programmer subject.

In “There is No Software,” Kittler fancies himself as writing about the end of history
and the end of writing. In a contemporary writing and cultural scene of endlessly ex-
panding and limitless signification, there is ironically an implosion into the no-space and
no-time of microscopic computer memory. The relationship of information technology
to writing, for Kittler, brings about the situation that he alleges that we do not write any-
more. The idea that software code might be a form of writing, a form of écriture in the
Derridean deconstructionist sense (an intervention or inscription into language that is
more fundamental and effective than speech), never occurs to Kittler. He represses this
thought and assumes that the computer must bring about the programmatic automation
of reading and writing.

“This state of affairs [...],” writes Kittler, “hide[s] the very act of writing... We do not
write anymore.” Kittler believes that writing done on a computer is not an historical act
anymore because the writing tools of the computer are able to read and write by them-
selves.**® He writes:

[The] all-important property of being programmable has, in all evidence, nothing to
do with software; it is an exclusive feature of hardware, more or less suited as it is to
house some notation system. ¢¢7

My view is the opposite of Kittler’s. | think that software code can be the site of the
re-emergence of écriture in Derrida’s sense. There can be a shift from programming as
the programmability of some device to programming as creativity, creative expression,
and writing in the deepest sense of effecting change.

I disagree with Kittler’s statement that there is no software and his belief that the nu-
merical logic of the low-level hardware that Alan Turing and John von Neumann con-
ceptualized in the 1930s-1940s is determining and decisive. In my view, just because the
kernel or center of computing is rational and computational, does not mean that all the
other layers, languages, and interfaces of the system, and which surround the kernel,
must follow that logic. The education of the people we call programmers is misguided as
well, since the curriculum of that training assumes that these persons must be oriented

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

to logical ratiocination. The education of “humanists” is wrong too — they are supposed
to be the opposite of that. We need instead something hybrid or in-between, like com-
putational aesthetics.

Kittler's Media Archaeology

The media theory of Friedrich Kittler is very successful and influential in German uni-
versities. Kittler's media archaeology and media historiography have led to the rise of
the Berlin School of media theory, of which Wolfgang Ernst is at the forefront.**® Kittler
opposes the so-called discourse analysis of the study of media, which he sees as deriving
its methods from hermeneutics and literary criticism. He instead advocates a techni-
cal materialism of data storage devices, data transmission, processors, and automatic
writing systems, that examines what is claimed to be technologies from within. There is
much to respect about Kittler’s work. I understand Kittler’s body of writing as a valuable
contribution to posthumanism and the post-humanities — a gesture that goes beyond
the anthropocentric prejudice of placing humans at the center of history and narratives
of the future.

My thesis regarding the past and future of informatics is that all layers of the software
above the kernel can indeed be anything. Regarding the history and the science fiction
futurism of computing, it is a question of studying the past as a succession of cultural
theory concepts, and therefore being open to the future of a succession of cultural theory
concepts.

A technical layer of conversion between the computational-digital-binary center and
the more poetic or human-language discursive applications and interfaces at the periph-
ery and at the outer zones is possible. These mechanisms of translation can exist at a
certain specific level of the network architecture. I argue against a dualistic opposition
between machinic-computational and poetic-linguistic expression.

Our resistance in ideas to the freeing of software from the kernel of rational-calculat-
ing logic is paradoxically an outmoded humanist clinging to the belief in the specialness
of humans - the sublime qualities of the soul and consciousness (the Cartesian cogito)
that humans allegedly have and which we claim that machines do not have.

Derrida radicalized Saussure’s semiotics when he said that there are endless chains
of signification in sign systems, and not just a one-to-one static relationship between
the signifier and the signified. Linguistic signs always refer to other signs, and there can
never be a sign that is the endpoint of signification. One never arrives at any ultimate
meaning of a word. Writing in Derrida’s sense is the opposite of the system of stabilized
and clear-cut definitions of words which dictionaries are intended to be. There is always
aninsurmountable gap between what I write or say and what my readers or listeners read
or hear.

For Kittler, the software space is just virtuality or simulation. It is not possible, ac-
cording to him, to establish a new relationship to the world through software program-
ming, any aesthetically coded transformation. Art/aesthetics/design and informatics
have no possible bridge between them. The miniaturization of hardware is, for Kittler,

- am 13.02.2026, 09:22:52. @

263

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

264

Decoding Digital Culture with Science Fiction

the proper dimension of simulation, of our postmodern writing scene which is no longer
a scene of writing.

Baudrillard went beyond this nostalgic position vis-a-vis technology by practicing
photography as a meditation on the technical imaging media itself. He wrote of photog-
raphy as the writing of light — a practice of an exemplary media technology as a form of
writing.%®

For Kittler, hardware always precedes and determines software. He writes:

There are good grounds to assume the indispensability and, consequently, the prior-
ity of hardware in general... All code operations come down to absolutely local string
manipulations, thatis, | am afraid, to signifiers of voltage differences... The so-called phi-
losophy of the so-called computer community tends systematically to obscure hard-
ware with software, electronic signifiers with interfaces between formal and everyday
languages.t7®

The combinatorial logic always wins out and the software can do nothing more than
tweak bits and bytes. The software industry is one giant conspiracy to hide the machine
from its user. The solution, for Kittler, is to write programs in low-level assembler code
to maintain awareness that the hardware is what the program always resolves itself into
in the end.

The original conception of the digital-binary computer was made in the 1930s and
around the time of the Second World War by major figures in the history of ideas such as
Alan Turing, John von Neumann, and Claude Shannon. Turing first conceptualized the
computer in his 1936 paper “On Computable Numbers with an Application to the Entschei-

”7 He developed the idea of the Turing machine: the mathematical model of

dungsproblem.
computation where a mechanism moves above an infinitely long tape, stops over one cell,
reads the symbol written in that cell, and changes the symbol to another symbol chosen
from a small set of possible symbols. The control mechanism then moves to another cell
to carry out the next operation, manipulating symbols according to a table of rules, sim-
ulating the logic of any algorithm that is thus proven to be computable or calculable.

The Turing machine is contemporaneous with the idea of representing instructions
and data as finite sequences of binary numbers. Von Neumann is credited with the inno-
vation of the stored-program concept.®”* Shannon achieved the breakthroughs in elec-
trical engineering that Boolean algebra can be deployed to realize digital electronic cir-
cuitry and that binary electrical switches can support fast algebraic calculations and dig-
ital computer design.*”

Wolfgang Hagen on Programming Languages

In his essay “Der Stil der Sourcen” (“The Style of the Source Codes”), the German media
theorist Wolfgang Hagen studies the history of programming languages up until the end
of the twentieth century.®”* He states his agreement with the thesis of Friedrich Kittler
that “there is no software.” Yet on closer examination, Hagen seems to point towards the
opposite.

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

Hagen seeks to develop a general theory of programming languages. He begins with
the thought experiment of an imaginary “library of modern source codes” which would
catalogue the “Babylonian confusion” (Kittler). The library would have to include procedu-
ral, functional, declarative, object-oriented, parallel, and neuronal languages. It would
have to encompass compilers, interpreters, assemblers, operating systems, and code de-
velopment environments. It would be so vast that Hagen concludes that “our thought
museum is a logical impossibility.”*”*

Hagen wants very much to agree with Kittler (the founder of German academic “me-
dia science”). There are higher-level languages (“symbolic program texts”) and “real” (Ha-
gen’s term) machine codes. What is crucial is the transition between them. When this
conversion happens, it “kills the language.”®’® It is a passage from “being” (software) to
“nothing” (hardware). Since the program in the higher-level language must get translated
into assembler or machine code to run, Hagen asserts that the higher-level software code
disappears. That would come as news to Niklaus Wirth, for example, the chief designer
of many programming languages and author of classic textbooks on the art of program-
ming with data structures and algorithms. Hagen pokes fun at Wirth. To have the idea
thatyour higher-level program is in a self-preserving relation to the machine is to believe
in “a literal and illusory continuity.” It is naive idealism.

Hagen criticizes ‘“American philosophers of the Electric Language” like Michael Heim
(author of Virtual Realism) and Jay David Bolter (author of Writing Space: Computers, Hyper-
text, and the Remediation of Print) who claim that, according to Hagen, “computer programs
and computer systems are a sophisticated collection of programmed texts that interact
with each other.”®”” I do not believe that the two perspectives of “hermeneutic” or de-
constructionist discourse analysis and computer archaeology or materiality must be in
competition against each other. They are looking at computing on two different levels.
Heim and Bolter wrote about hypertext, which became massively important in the 1990s
with the World Wide Web. Hypertext is an existing phenomenon. Documents which are
“marked up” with hyperlinks are indeed interacting more with each other than, say, in the
Gutenberg Galaxy medium of books. It is legitimate to theorize about and beyond this
development. But, for Hagen, it is not the level of “real computer machines.” He writes:

If programming were a strictly deterministic process that followed fixed rules, writes
the laconic Swiss [Niklaus] Wirth, programming would have been automated long ago.
Or, to use Kittler's provocative words, there would be no software.”®

What is the difference between “there is no software” and “there would be no software”?
In the statement by Wirth to which Hagen refers, Wirth defends the art of programming
as an open-ended activity with many possibilities. Hagen does not counter the assertion
on its own terms. He dismisses it as self-evidently invalid because indeed the hardware
is where the action is.

Hagen sees a historical trajectory of three evolutionary phases: the mathematical
models of computability; the engineering technology of memory addressing; and the
math and physics of communications engineering. If one goes back to Turing and the
first decades of the computer, there certainly was no software. Does it stay that way for-
ever? The role of software, as Hagen himself recounts, steadily increases. In the early

- am 13.02.2026, 09:22:52. @

265

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

266

Decoding Digital Culture with Science Fiction

1950s, there are symbols in continuous connection with each other but no mathemati-
cal model. In the late 1950s, declarative languages appear. In the early 1970s in a tentative
way, and then in a full-on rush in the 1980s, there is “the breakthrough of simulation.”*”
Object-oriented languages on the code level correspond to the (personal) computer, on
the application level, becoming a media and consumer device. The earlier media of text,
image, and sound make their comeback.

Hagen then changes gears and focuses on developing a concept of programming
style. The definition of style in the theory and history of rhetoric is that style is paradox-
ically a property of language and an effect of that very property. Can software rise to this
level? He writes: “Can what gets written in software make what is written unrecogniz-
able?” In the codex of ancient Rome that was the precursor of the book, writing became
writable. That is the birth of style. In modern Europe, style freed the bourgeois author
(the subject of speech and writing) from the restrictive regulations of earlier more regi-
mented societies.

Writing style can tell a story or be interpretative. It can structure an argument. It
can be creative. Despite his starting point of Kittler’s “there is no software,” Hagen takes
a wayward turn of intuiting a future of software style: not a language, but “a climate of
language.”

Ten Paradigms of Informatics and Programming

In his book Turing’s Man,]. David Bolter characterizes the information processing tech-
nique of a Universal Turing Machine as the replacement of “discrete symbols one at a time
according to a finite set of rules.”*®® This original logic of computing is firmly rooted in
the dualism of is and is not (the long strings of binary digits or os and 1s). It is based on
the switching of registers and signals in both storage and processing, and the alleged
certainty — or identity with itself — of the conventional (pre-quantum physics) scientific
object.

In the chronology of subsequent yet concurrent (in the sense that a new paradigm
does not completely cause the previous paradigm to disappear) programming paradigms
after Alan Turing, ideas which bear a resemblance to hypotheses which Turing “re-
pressed” while devising the hybrid science-and-culture of the digital-binary computer
return to the scene. These ideas reappear during the ensuing phases or paradigms, such
as those of object-orientation and Artificial Life and Creative Coding. The fact that both
program and data can be represented with binary numbers and saved on a physical
storage medium is scientific. The relationship between program code and data varies
from paradigm to paradigm and is cultural. In 1980s object-orientation, for example,
code and data are unified into the single entity or concept of the class or the software
object. This was related to the emergence of personal computers and the GUI, to the new
emphasis on the computer as a media and consumer device.

I differentiate at least ten paradigms:

(1) Alan Turings original formulation of the programming of the hardware state ma-
chine of the digital computer

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

(2) The1950s cybernetics movement around figures like Heinz von Foerster and Gregory
Bateson

(3) 1960s procedural programming languages such as Fortran, COBOL, and C

(4) 1970s functional programming languages such as SQL and Lisp

(5) 1980s object-oriented languages such as Smalltalk, C++ and Java, OO analysis and
design, and diagrammatic modeling languages such as UML

Each of these five programming language paradigms (which I have linked roughly with
the decades of the 1940s, 19508, 1960s, 1970s, and 1980s, respectively) does not correspond
in an exact way to the chronological decade with which I have associated it. The coupling
of each paradigm with a given decade is an ideal type binding posited for the sake of es-
tablishing a periodic historiographical narrative. Turing wrote his groundbreaking arti-
cle in 1936. I connect the procedural paradigm with the 1960s; yet Fortran first appeared
in 1957, COBOL in 1959, and C in 1972. I link the functional paradigm with the 1970s; yet
in fact, Lisp was created originally in 1958 and SQL in 1974. I affiliate the object-oriented
paradigm with the 1980s; yet in fact, Smalltalk was introduced in 1972, C++ in 1985, and
Java in 1995.

(6) Artificial Intelligence in systems of perceptrons, artificial neural networks (ANNs),
machine learning and Deep Learning

(7) Artificial Life related to theoretical biology

(8) Quantum computing in software

(9) Blockchain transaction network concept and other distributed ledger technologies.
A-life, quantum computing, and blockchain architectures are examples of the
posthuman worldview

(10) The Creative Coding movement

During the period of the 1950s to 1970s, there took place the rise of the academic field of
computer science and the professionalization of computer programming in the corpo-
rate business world. The human computers of the 1940s (who were majority female, and
who carried out the manual labor of setting into machine language the mathematical
calculations specified by male scientists and engineers) were replaced by the automa-
tion (the generation of the machine code to run the program) of assembly languages fol-
lowed historically by language compilers and functional and procedural programming
languages such as Lisp and ALGOL. FORTRAN became the language of scientific com-
putation. COBOL was designed as a universal business data processing language that
was also closer in syntax to English.

Later came higher-level imperative languages such as Pascal and C, declarative
languages such as SQL for database query, and the UNIX operating system, which was
portable to almost all hardware platforms and unified academic and business com-
puting. In the 1960s, IBM became the near-monopoly and archetypal company of the
computer industry, the Massachusetts Institute of Technology (MIT) — with its close ties
to business, government and the military — became the leading university for computer
science, and the Association for Computing Machinery (ACM) became the leading orga-
nization setting the scientific standards for computing. The concept of the “sciences of

- am 13.02.2026, 09:22:52. @

267

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

268

Decoding Digital Culture with Science Fiction

the artificial” (Herbert A. Simon) was developed, and the question if computer science is
a science or not was raised.

The decade of the 1980s was characterized by the introduction of the personal com-
puter to the marketplace, and its being advertised and sold to the public as a tool of per-
sonal empowerment, interactive visual design, and creative expression. During this era,
the computer was also transformed from a calculation machine to a device for media
consumerism and individual daily life self-administration. The consumer was encour-
aged to participate in the spectacle of cultural-economic activity as herself now a media
producer. The Graphical User Interface — with its mouse and touchscreen input, desk-
top metaphor, software applications, hypertext, hypermedia, and the presentation of in-
formation as the multimedia juxtaposition of text and image — replaced the text-based
command-line interface.

In the realm of computer programming, what corresponds to all of these 1980s in-
novations on the levels of code and software design are the event-driven model and the
paradigm of object-orientation. Software development becomes a methodology for the
modeling of real-world processes in preparation for their subsequent simulation, and for
the creation of computer games and virtual worlds (virtualization). Object-oriented lan-
guages such as Smalltalk, C++ and Java, and diagrammatic modeling languages such as
UML, need to be understood as simultaneously technical and cultural paradigms. These
object-oriented languages are based on the concept of objects, which are instances of
classes, both of which are design artefacts that unify data and code in a single entity.
This informatics paradigm and coding culture mark a major step towards enabling the
autonomy of software objects and their independence from the controlling power of the
programmer-subject.

The First Hyper-Modern Computers

The first machines of computation that can be called digital-binary programmable com-
puters were built around the time of the Second World War and during the period of
the late 1940s and early 1950s. One very early digital computer — often considered to be
the first — was the Z3 designed by German engineer and businessman Konrad Zuse, who
cooperated to some degree with the Nazi Party and its war effort. Zuse’s invention was
an electro-mechanical machine, based on an area of engineering where German indus-
try was very strong. The first fully electronic digital computer was the Colossus, designed
and built by British Post Office research engineer Tommy Flowers, a specialist of vac-
uum tubes, which took almost a year to assemble and became functional in February
1944. Eleven Colossus machines were deployed in the British project of cracking the code
of German encryption devices used by Nazi high military command to send battlefield
messages to the front lines.

The ENIAC computer, built for use by the U.S. Army by Herman H. Goldstine’s team at
the University of Pennsylvania, was a milestone achievement of design engineering and
computer science. It became operational in December 1945. ENIAC was much faster than
Colossus and was fully Turing-complete. It was a universal computing machine and could
simulate any so-called Turing Machine, the breakthrough mathematical model which the

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

24-year-old British mathematician Alan Turing had formulated in his historic academic
paper. The ENIAC, however, was still not a stored-program computer, meaning that wires
and switches had to be manually inserted and set rather than the program and data be-
ing stored as software in integrated circuits. The Manchester Baby, which was constructed
at the Victoria University of Manchester, England, and went into operation in June 1948,
was the first stored-program computer which was able to store instructions in electronic
memory. The theoretical insights thatled to the stored-program concept were elaborated
also by Turing in the same watershed 1936 paper and were more concretely fleshed out
as a specification by Hungarian American mathematician John von Neumann in his 1945
“First Draft of a Report on the EDVAC.”*® The EDVAC was another early electronic com-
puter developed under the auspices of U.S. Army ballistics research, and a successor to
the ENIAC.

Enter Software Studies

The recent emergence of software studies (Matthew Fuller, Lev Manovich) challenges Kit-
tler’s thesis that there is no software and points to the primacy of software as a societally
critical hybrid of technical and cultural patterns. In 2006 Fuller published a pioneering
book on software as media and culture called Behind the Blip.*®* In his 2013 book Software
Takes Command, Manovich expands media theory to include software theory. His book “is
concerned with ‘media software’ — GUI programs such as Word, PowerPoint, Photoshop,
Hlustrator, After Effects, Final Cut, Firefox, Blogger, Wordpress, Google Earth, Maya, and
3D Max. These programs enable creation, publishing, sharing, and remixing of images,
moving-image sequences, 3D designs, texts, maps, interactive elements...”*

Thinking with Manovich, one sees that a major challenge to media theory is to con-
sider how Web sites, computer games, and web and mobile applications transform what
media are. And how does software affect the design process? Is the nature of design al-
tered by the fact that it is now everywhere carried out with the tools of simulation built
on top of object-oriented design patterns? What is the relation between software de-
sign patterns and the patterns of other kinds of design — such as architectural, graph-
ical, fashion, communication, industrial, and product design? Manovich asks: “Are there
some structural features which motion graphics, graphic designs, Web sites, product de-
signs, buildings, and video games share since they are all designed with software?”%*
What does media become after software?

Lev Manovicl's theses are reminiscent of the ideas of media theorist Vilém Flusser
who, in his book Into the Universe of Technical Images, presented the pragmatic-utopian
vision of an SF society of the continuous creation and prolific exchange of high-tech im-
ages.®®

Flusser asserts that technical images are made possible by scientific principles
worked up into technologies. Particles of specific technologies (such as pixels — in the
contexts of data compression and encryption algorithms) are assembled or computed
into visible images. Each image technology (the photograph, the .jpg image, the VRML-
programmed virtual world) is a different way of structuring particles. Technical images
are reservoirs of information. Programming is a form of freedom. In the future society

- am 13.02.2026, 09:22:52. @

269

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

270

Decoding Digital Culture with Science Fiction

of images, everyone will be empowered to envision. Everyone will be a programmer
and a synthesizer of images. “There will be an ongoing dialogical programming of all
apparatuses by all participants,” writes Flusser in Into the Universe of Technical Images.®
New-media artists and creatives should initiate a project of transforming software code
into something other than what it currently is. We must go beyond the unconscious
“reification” (Verdinglichung in German, a term of the Hungarian Marxist literary theorist
Gyorgy Lukics meaning the ideological operation of treating an artefact that is a specific
cultural-historical construction as ahistorical or eternal) of assuming that software code
as “left-brain” (the rational-calculating side of the human brain) engineers have defined
it is the only possibility for software.®” I propose starting the activity of the active
transformation of software by Creative Coders who are artists, designers and thinkers:
devising a new curriculum for informatics — a “right-brain” (creative and intuitive side
of the human brain) informatics that builds on existing computer science yet moves it
closer to art, design, sociology, philosophy, and cultural theory.

According to McLuhan and Powers in The Global Village: Transformations in World Life
and Media in the 21st Century, reading, writing and hierarchical ordering are associated
with the left brain, as are phonetic literacy and the linear concept of time.*®® The left brain
is the locus of analysis, classification, and rationality. The right brain is the locus of the
spatial, tactile, and musical. Awareness is when the two sides of the brain are in balance.

A key aspect of software code as expanded narration is the concept of similarities —
as opposed to the discrete identities and differences of combinatorial software. Similari-
ties is how the universe is constituted. Urgently required for software development after
object-orientation is the design of relations of similarity, fractal/holographic-like pat-
terns, and music-like resonance between the whole (the software instance) and the parts
(smallest units of information or database elements) as opposed to the logic of discrete
identities and differences of Turing machines. The approach that would correspond to
a true breakthrough into twenty-first century science would be to identify relationships
of similarity, to find samples or patterns that capture something of the vitality and com-
plexity of the whole without breaking it down in a mechanistic way, as in the seventeenth
century Cartesian method of dealing with a complex problem by breaking it down into
smaller, more manageable parts, along the lines of the mechanistic relation between the
whole and its parts in the archetypal car engine.

Designing a logic of similarities involves inclusion of “nonknowledge.” We need to
rethink science with a dose of nonknowledge, away from the obsession with knowing
everything and total information. The importance of nonknowledge for science is man-
ifest in the twentieth century sciences of quantum physics and chaos theory. It is within
quantum physics that we find the idea of a vast number of states of information which
are potentialities, not yet actualized realities, and which have a relationship of similar-
ity to each other. We want to build a “quantum reservoir” of non-observable information
that cannot be read or written in a visible way as in the “get” and “set” operations of pro-
gramming without destroying the integrity of the data. In the quantum reservoir, we
want an immensely vast number of software classes which resemble each other in sub-
tle ways. They are invisible to the observer. The information is read and transformed. In
the act of reading, the information transfers from its own quantum state to the domain
of “real world” usefulness. An immense number of states should be possible, but switch-

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

ing actions are manageable. There is flexibility in assigning singularities to classes, and
a degree of variability among the individuals of a class.

In the business world, a new software paradigm is emerging — software that handles
uncertain social media data and massive volumes of data, software that is an ecosystem.
New computing requirements include embedded data analytics, Linked Data, unprece-
dented massive volumes of data, and continuous self-learning by the software. Storage,
memory, networking, and processing move closer to the data. From top-down to bottom-
up: long, sequential, symbolic, scripted, ratiocinating logic gives way to short, parallel,
semantic-semiotic, coupling of perception and action, immediate intelligence.

Enter Creative Coding

Creative Coding where a line of code is an aesthetic artifact and not only an instruc-
tion to the machine. Creative Coding where a new software layer opens as a performance
space for music, poetry, storytelling, dance, and philosophy. Creative Coding includes the
artist-oriented Integrated Development Environments (IDEs) called openFrameworks,
vvvv, and Processing.®®® There is generative art — artworks which are created using an au-
tonomous system such as a computer, arobot, an algorithm, or mathematics. There is the
area of programming and music, and the growing area of programming and dance. There
is the music programming language called SuperCollider, and the music programming

environments called Max/MSP and Pure Data.%°

Open-source Creative Coding toolkits
wrap together coding libraries for graphics, typography, computer vision, 3D modeling
and audio, and image and video processing. SuperCollider is a programming language
for real-time audio synthesis and algorithmic composition. It has strengths in just-in-
time programming, object modeling, the sonification of linguistic data and social media
data, auditory display, and microsound.

The pedagogy of instructing artists and designers to make software involves teach-
ing them how to write code in a way that is not dry and boring for them (as the engineer-
ing approach can often be for creative-oriented students), teaching them how to design
software that brings together software patterns and artistic/cultural patterns, teaching
them creativity, and teaching them cultural theory so they can grasp conceptually how
the paradigm of object-orientation can be pushed through to the next paradigm.

We need to unpack object-orientation philosophically into two separate streams of
commodified and creative. The mainstream understanding of OO by engineering schools
and the institutions for which they train programmers is philosophically naive: they as-
sume the existence of a “real world” and so-called “real-world” processes. Software devel-
opment would be the practice of modeling these real-world processes in software. But
this alleged “real world” is the realm of simulacra and simulation.®*

Creative object-orientation neither assumes the existence of a “real world” nor does it
seek to model or simulate that. Creative Coding wants to fashion a “new real,” a hybrid of
the familiar phenomenological environment and new Virtual Realities, new experiences
of existence in a hybrid real/virtual dimension. This is the potential of software at its best.

- am 13.02.2026, 09:22:52. @

27

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

272

Decoding Digital Culture with Science Fiction
Alan Turing: The Imitation Game and Befriending the Evil Demon

The mathematician Alan Turing has similarities with René Descartes. Like Descartes,
Turing is a rationalist and a humanist. He also endeavors to go beyond Descartes in an
interesting post-humanist way. Like Descartes, Turing is engaged in a struggle with an
“evil demon” - yet in the realm of Artificial Intelligence and not that of “reality.” Can we
learn something from the Turing Test for Al to then formulate a “Turing Test for Reality”?
In his seminal 1950 essay “Computing Machinery and Intelligence,” Alan Turing poses
the question “Can machines think?”®* Turing’s paper is widely recognized as one of the
first important historical statements about Artificial Intelligence. Turing immediately
replaces the question “Can machines think?” with another question which he deems to
be more fruitful: “Are there imaginable digital computers which would do well in ‘the Imi-
tation Game'?”*” With the term “digital computers,” Turing implies the layers of software
for natural-language processing above the hardware level. The famous Turing Test starts
out life as what Turing calls the Imitation Game. Before the ability of a machine to exhibit
linguistic behavior indistinguishable from that of a human comes a thought experiment
about gender: the ability of a man to exhibit linguistic behavior indistinguishable from
that of a woman.

There is a man (Person A), a woman (Person B), and an interrogator (Person C) whose
gender is irrelevant. Person A and Person B are both not visible to Person C. Based on
conversational interaction, the interrogator must decide which of the other two persons
is male and which is female. The woman tells the truth, and the male deceptively pretends
to be female. The interrogator does not know that Person A is the imposter. The responses
are typed, so the gender identities cannot be gathered from voice. The interrogator in the
Imitation Game is a lot like Descartes’ rational subject. Person A is Turing’s evil demon.

Yet Turing feels attracted to this deceiver or imposter. It is a certain “queering” of Per-
son A that fascinates and seduces Turing — a queering of the evil demon. This is disclosed
as he takes the next step in converting the Imitation Game from a man impersonating a
woman to an Al machine impersonating a human. Turing switches sides to championing
the participant in the game who is now the Al software or android. Person A goes from
being the threat to rationality to the hopeful possibility of a new paradigm of informat-
ics which Turing defends and for which he argues. The bulk of “Computing Machinery
and Intelligence” consists of Turing’s systematic refutation of nine rationalist arguments
against Al (which he calls “Contrary Views on the Main Question”). He moves intuitively
towards a paradigm shift in informatics beyond classical computer science. The behav-
ior of the self-learning program, he asserts, will be significantly different from what is
normally expected of programs. Turing wants to understand the science of Al machines
which pass the Turing Test. The evil demon starts as mirror-reflection of the rational
thinking subject but becomes a different intelligence.

If the tester cannot determine which of the two interlocutors is the machine, then
the machine has passed the Turing Test and is deemed to be Artificially Intelligent. The
Turing Test is launched into the world. It inspires science fictional posthuman narratives
and philosophical reflection and questioning about the future of informatics. The Next
Generation of Turing Tests is applied to androids like Rachael in Blade Runner and Ava
in Ex Machina. Not only are Rachael and Ava being tested, but the human who was the

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

measure of all things is now also placed into question (Deckard in Blade Runner and Caleb
in Ex Machina).

The machine can pass the test by simulating human intelligence. The machine does
not have to think like a human or give precisely correct answers. It is enough for it to give
answers which resemble the answers that a human would give. Alan Turing writes:

In about fifty years’ time it will be possible to program computers with a storage capac-
ity of about 10%, to make them play the imitation game so well that an average inter-
rogator will not have more than 70 per cent chance of making the right identification
after five minutes of questioning... We may hope that machines will eventually com-
pete with men in all purely intellectual fields.5**

Alan Turing: The Scientific and Cultural Levels of Computing

The invention of the digital-binary computer is the origination of a numeric code to
implement hyperreality in microscopic detail. One way to support the reversal of the
dystopia of hyperreality into a more utopian project is to make the methodological
separation between the scientific and cultural dimensions of the computer in its history
and future. A certain portion of computer science is scientific, and another part is
cultural and is understood as changing in paradigm from decade to decade. What is
scientific in the “science of the artificial” (Herbert A. Simon) of the computer is the fact
that both code and data can be digitalized as numbers.®* What is cultural is the specific
relationship between code and data that prevails in given software coding paradigms
which have many different historical configurations. In 1980s “object-orientation,” for
example, code and data are unified into the single entity or concept of “the class” or “the
software object.” This was related to the emergence of personal computers and the GUI,
to the emphasis on the computer as a media and consumer device. The position that
computer science is partly scientific and partly cultural is a more moderate approach
than the “social constructivism” of the “social construction of technology” (SCOT) within
the field of “Science and Technology Studies” (STS) which says that, in effect, “everything
is culture.”

We need a novel third knowledge framework that is neither the scientific and techno-
logical view from the inside that existing computer science has of itself nor the tendency
to cultural relativism and denying of any objective validity to science that often ensues
from the view from the outside that is often the research methodology in humanities-
side Science and Technology Studies (STS). I highly value many academic works in Sci-
ence and Technology Studies for their contributions to increasing political awareness of
the power, money-making, sexist, and racist relationships which are widely operative in
the institutions and cultures of scientific research and technological innovation. How-
ever, my primary goal is to develop an intellectual position which simultaneously high-
lights the economic, social, cultural, and institutional state of things (how power rela-
tions are maintained, and capitalist interests served) surrounding science and respects
and grants validity to the rationality and special objective status of scientific knowledge
that transcends historical conditions.

- am 13.02.2026, 09:22:52. @

273

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

274

Decoding Digital Culture with Science Fiction

The thought experiment of the Turing Machine and John von Neumann's “stored-pro-
gram concept” coincide with the idea of representing both instructions and data as finite
sequences of binary numbers. The Universal Turing Machine is based on the switching
of registers and signals in both storage and processing, and the alleged certainty - or
identity with itself — of the pre-quantum physics scientific object.

Whatis objective and eternal as science in Alan Turing’s 1936 formulation (and related
formulations during the birth of computer science which soon followed) is the encoding
and physical writing on temporary memory or a storage medium of both programs and
code as binary numbers. The relationship between code and data changes in technologi-
cal paradigm shifts in parallel with shifts in broader socio-cultural paradigms (deciding
the era-specific purposes for which computers are utilized). Early computers were de-
ployed for scientific calculations and for manipulating numbers using logical rules. The
science part of the invention of computer science: (the hardware and) the algorithms and
the data can all be encoded into lengthy binary strings (i.e., stored as computable num-
bers). The cultural part of the invention of computer science: how one does this (i.e., the
relationship between the code and the data) is a cultural decision. When Turing and von
Neumann ran algorithms on data for calculation, this was driven by a cultural decision,
which was the institutionally needed military applications during the Second World War.
They put into practice a certain precise relationship between program and data in their
specific deployment of computers.

Computer science is a science in ways which are consistent with how the philosophy
and the history of science have studied their objects of inquiry such as in their relation to
the classical cases of astronomy, the physical sciences, and the biological sciences. Com-
puter science is not only a set of eternally rationally decided objective truths (time- and
discourse-independent properties and laws of a science) but is, in addition, a nonobjec-
tive perceptual-interpretive model and a succession of cultural paradigms which evolve
and even quantum-leap from historical phase to historical phase, or decade to decade.
Computer science is a designed orderly assemblage of ideas, a cognitive schema shared
by a community of practitioners which has structured and organized, over a long histor-
ical arc of time, our perspective on the scientific area of software code and the computer.
What the digital-binary computer has been since its inception as associated with lumi-
naries such as Turing and von Neumann is one essential approach to the scientific field of
the computer that establishes some of its principles. Other paradigms are possible which
build upon and extend that approach. Alternative-supplementary frameworks of infor-
matics are either historically identifiable in genealogical stages or extant in emerging
and formative states.

The invention of the discrete logic of the on-or-off state of the bit smallest unit, or the
lengthy strings of os and 1s, or the symbolic code or algorithms, of digitalization by Alan
Turing was both a universal invention of a scientific technology and was embedded in
Turing’s allegiance to ideas of the twentieth century philosophical movement of British
analytical logical positivism. Turing made certain scientific and design decisions, and
some of these decisions excluded certain other architectural directions which he might
have taken. It is possible to separate the scientific and the philosophical-cultural-discur-
sive aspects. Since informatics has by now made such a deep imprint on our lives that
one can point to a thoroughgoing “information-ization” and “number-ization” of hyper-

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

modern society, it can be said that the digital-binary computer is coupled — in an elective
affinity and a prolonged historical trajectory — with certain systemic social, economic,
and institutional values and goals.®*

Along and fascinating intellectual and techno-scientific history (which, in a sense,
spans all human history) led up to this quantum leap forward or scientific revolution
which was the mid-twentieth century crossover from abstract ideas to the actual physical
construction of the digital-binary computer. Many events in the history of mathematics,
the philosophy of logic, and the design and building of successive calculation and com-

putation machines are often chronicled as chapters in the prehistory of the computer.®’

Jay David Bolter: Computer Science and Literary Theory

As Turing argued in “On Computable Numbers...,” any specialized automaton (a precur-
sor of the computer program) can be represented by and implemented with a finite set of
binary instructions. Therefore, a universal automaton (computer hardware) can be imag-
ined (as a thought experiment by Turing) and then built (the computer architecture of
von Neumann) which would precisely mimic the desired behavior of the specialized au-
tomaton or software by cycling through those same instructions. As Herman H. Golds-
tine — the mathematician and computer scientist who was one of the developers of the
late 1940s ENIAC (the first electronic digital computer) — explains: if the universal au-
tomaton can hypothetically run without any limitation of time, it will always execute at
some juncture in its execution the desired sequence that is contained within the infi-
nite sequence (somewhat like the proverbial monkeys who will eventually reproduce the
complete works of William Shakespeare if given enough time banging away at typewrit-
ers). Turing made the mathematical proof that the specialized automaton can always be
described by a sequence of discrete directives which are the code input to what would
later become the physical computer. “When the instructions are fed to Turing’s universal
automaton,” notes Goldstine, “it in turn imitates the special automaton.”**®

Jay David Bolter, professor of New Media at the Georgia Institute of Technology, un-
dertook an interdisciplinary study of informatic technology in his books Turing’s Man:
Western Culture in the Computer Age (1984) and Writing Space: The Computer, Hypertext, and
the Remediation of Print (2001), bringing together computer science and literary theory.*”
Yet Bolter (like Kittler) appears to have made little progress in his work in envisaging
software as embodying literary, cultural, or signifying patterns. He instead stays within
the scheme of assuming absolutely that programming is about numerical-combinato-
rial logic and the manipulation of discrete symbols. Like Kittler, Bolter limits computer
thought to a sort of philosophical nominalism where the semantic and semiotic aspects
of the signfying words or identifiers (whether keywords or variables named by the writer
of the code) in programming languages count for nothing: “Computer thought is a se-
quence of operations, of fetch-and-execute cycles of the central processing unit.””°

Bolter is concerned only with the original logic of computing of the Turing Machine
as an information processing device where the symbol written at the storage location
currently pointed at gets replaced by another symbol selected from a finite set of sym-
bols according to a set of rules. This is the embodied metaphor of a physical model of re-

- am 13.02.2026, 09:22:52. @

275

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

276

Decoding Digital Culture with Science Fiction

ality that comes with its dubiously perfect “description-language” (reminiscent of what
Paul Feyerabend in Against Method: Outline of an Anarchistic Theory of Knowledge critiqued

71 — the dualism of is and is not, the philosophical-

as “observation-language” in science
scientific assumptions behind that, and the long strings of binary digits or os and 1s.

The logic of identities and differences, the mathematical-philosophical axiomatic
postulation that a thing is identical to itself, or that there is a one-to-one linguistic
relationship between signifier and signified (the word-token and the meaning of that
word) — this obsession of Western culture with reality is at the root of hyperreality. The
idea of language in Aristotle and in the Noalr's Arc story in the Bible is that language
names the world. Both Aristotle and Noah develop classification systems of naming the
animals.”®* The prominent linguist Noam Chomsky thinks that language is a universal
structure of the human brain which is always the same independent of the specific
languages of specific cultures.”* This implies anthropocentrically that language essen-
tially is the world, that language matches the world and harmonizes with the world. My
view is that language is a continuous back-and-forth tension between understandings
and misunderstandings, attempts at contact with the other and the confusion of the
Tower of Babel. The view of language as a classification system is useful for organizing
and categorizing. It overstates its claim that language is only an objective codification
system that describes how everything in the world is.

Bolter states: “Every computer program is the electronic realization, the tangible
proof, of a theorem in logic... Every programmer... is a logician with a theorem to
prove.”’®* What is certain concerning the place of electronic digital thinking in the
long arc of the history of ideas, Bolter asserts, it is that the land of CPU clock cycles is
a kingdom from which God, religion, meaning, and ethics are excluded. Philosophy,
psychology, ecology, and literature are exiled. There is no contemplation of existence
or introspection. There is no union between minds or sensuous touching between the
computer and its exterior environment. “The unification of the mind with the idea of the
beautiful, the true, and the good envisioned by Plato” — the ideal world of the Platonic
Forms and Ideas, the beginning of Western philosophy — “the series of perfect patterns
from which the imperfect objects of the material world” are derived, Bolter tells us —
“has no counterpart in computerized thought.””®

As a humanities professor who understands computer science, Bolter was eager to
educate his colleagues about the logic of computing. Yet he inadvertently set up a wall
between a statically conceptualized logic of computing and the thinking of the humani-
ties and cultural studies, thus excluding contributions by the latter to the former.

Lev Manovich, The Language of New Media

In 2001, The MIT Press published the book The Language of New Media by Lev Manovich.”®
This is a milestone work in the academic theorization of new media. Manovich investi-
gates cultural software and interfaces, visual culture and moving images, and the histor-
ical transition from film to digital video and computer games. He develops theses con-
cerning conventions and artefacts of software applications and user experiences in these
areas:interactivity, telepresence, immersion, distance and aura, digital compositing and

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

montage, computer animation, databases, algorithms, storing and manipulation of in-
formation, and the navigating of digital and virtual spaces. The cultural and aesthetic
forms of new media are both a continuity with and a break from older media such as the
cinema.

Manovich enumerates five principles which characterize new media:

(1) Numerical representation — Artefacts exist as data or can be stored as numbers

(2) Modularity — Different elements exist independently

(3) Automation — Artefacts can be created and modified by automatic processes

(4) Variability — Artefacts exist in multiple versions

(5) Transcoding — The digital-binary logic and its instances influence us culturally —
from technical codes to cultural codes

New media objects are based on code, on the limitless re-programmability of the binary
structure and the electronic impulses. Software Studies (Lev Manovich, Matthew Fuller,
Benjamin Bratton, and other authors in the same-named MIT Press book series) in effect
contests Kittler’s thesis that there is no software.”” Software Studies points to the primacy
of software as a hybrid of technical and cultural patterns that is potentially both critical of
society (Gesellschaftskritisch) and “designing of the future” in a pragmatic-utopian sense.

Software Studies: Coded Objects and Assemblages

In the book Code/Space: Software and Everyday Life (published in the MIT Press Software
Studies book series), Rob Kitchin and Martin Dodge examine the explosive growth of
information about ourselves, the intrusion of this information into our daily lives, and
the ubiquitous availability of this data to institutions and strangers through many net-
worked devices.”® Their approach is to scrutinize software from the perspective of space,
to research how the “production of space” (a term of the French Marxist sociologist Henri
Lefebvre) in the guise of the new virtual space is implemented in a detailed way by soft-
ware.”

Kitchin and Dodge see software as increasingly integrated into everyday life in the
four domains of coded objects, coded infrastructures, coded processes, and coded as-
semblages. An assemblage, for Deleuze and Guattari in A Thousand Plateaus: Capitalism
and Schizophrenia, is a unity of social-technological entities amalgamated into a config-
uration that is fluid, multi-functional, and complex.” The assemblage can combine or-
ganic and machinic components into its dynamically changing aggregation of parts and
its relations with other assemblages. Assemblage theory is a systems theory for the social
world.

Coded objects are, for Kitchin and Dodge, physical objects which depend on soft-
ware for their functionality. Their product design implementation is made possible via
software code. In the environment of the Internet of Things, computational power is em-
bedded into many objects. There are other machine-readable objects that lack their own
software but interact with external code. Coded objects are connected to distributed in-
formation and surveillance networks. Some objects develop something like an awareness

- am 13.02.2026, 09:22:52. @

271

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

278

Decoding Digital Culture with Science Fiction

of themselves and their milieu (perhaps in Katherine Hayles’ sense of the “cognitive non-
conscious”).” Their interactions with surroundings are recorded and saved on physical
storage media or the cloud.

In Chapter Three “Remaking Everyday Objects,” the authors study how everyday ob-
jects such as domestic appliances, handheld tools, sporting equipment, medical devices,
recreational gadgets, and children’s toys are made software-interface-addressable and
thus available to external processes of discipline, control, and identification. The Inter-
net of Things can become a platform against surveillance. My things or my objects belong
to me, not to the government or large corporations or the semiotic consumer society.

Software Studies: The Expressivity of Code

In the book Speaking Code: Coding as Aesthetic and Political Expression (MIT Press Software
Studies series), Geoff Cox and Alex McLean elaborate a hybrid discourse of software code
writing and humanities critical theory.”* Blending text and code, and musing on code as
script and performance, they locate the signifying import and linguistic reverberations
of code in its practical operations in the online networks. The study of code by Cox and
McLean is an existentialist view of software programs as having open-ended possibili-
ties, rather than the usual emphasis on their social-organizational impact of instituting
fixed structures and processes. Cox and McLean examine the live-coding scene (visually
displaying source code during an artistic performance) and peer production (self-orga-
nizing community efforts such as open-source software projects). They see code as an
expressive and creative act, related to the two activities which have traditionally been
called “art and politics.”
The autonomist thinker Franco Berardi writes in his foreword to Speaking Code:

If we can say that code is speaking us (pervading and formatting our action), the other
way around is also true. We are speaking code in many ways.. We are not always
working through the effects of written code. We are escaping (or trying to escape) the
automatisms implied in the written code... Hacking, free software, WikiLeaks are the
names of lines of escape from the determinism of code... Linguistic excess, namely
poetry, art, and desire, are conditions for the overcoming and displacement of the
limits that linguistic practice presupposes.”

Many such projects — and more generalized in their transformation of what code is — are
possible. Poetic, musical, and symbolically signifying language can reemerge within code
to counteract the original historical assumption that code is a series of instructions to a
machine, an exercise in formal logic, and the reduction of language to information. Text
and code come together as an embodied cyborg cooperation (Katherine Hayles, Donna
Haraway) or as a relation of uncertainty and indeterminacy where each partner in the
human-machine exchange is reciprocally transformed. This can happen in the double
frame of code as both readable as directions for the processor and as elegant expression
for the human code writer.

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

Cox and McLean refer to the concept of “double description” as mutual causation or
circularity between mind and biological evolution that was elucidated by the thinker of
second-order cybernetics Gregory Bateson in his 1979 book Mind and Nature: A Necessary
Unity.™* Starting from this notion, the authors speak about “double coding”: a composite
of formallogic and linguistic creativity in Codeworks (Alan Sondheim’s mixing of creative
writing and code) or “pseudo-code” (informal descriptions of the steps of a program or al-
gorithm, often a phase of software development preceding the writing of code), a hybrid
articulation that is both rigorously systematic and carries the force of writing.

Vilém Flusser and Software Code

In Into the Universe of Technical Images, Vilém Flusser presents the pragmatic-utopian vi-
sion of an advanced utopian science fictional society of continuous creativity and perma-
nent prolific exchange of high-tech images.” Flusser writes in the mode of SF theory.

Calculation and computation get added to the scientific method, and to reading and
writing, as treasures of the Western cultural tradition of liberal humanist rationality and
Enlightenment progress. Flusser’s vision is a community of creating and sharing images.

Flusser stresses the historical continuity between the culture of written texts of
the pre-digital world (which were both scientific and literary texts) and the universe of
technical images. The technical image is much more an outcome of the achievements of
scientific and literary texts than is usually believed. This is the opposite of what Marshall
McLuhan maintained in his historical genealogy of a radical break between successive
print and media cultures. Technical images are anything but natural or a return to
pictorial images, as McLuhan had claimed (while calling them electronic images and
saying that electronic culture retribalizes humanity). Linear texts, for both McLuhan
and Flusser, have been the dominant carriers of information in human societies for four
thousand years. Prior to that — for “the forty-thousand-year-period of pre-history” -
pictures reigned supreme.”® With the World Wide Web Internet that ascended in the
1990s, there is a shift from linear text to hypertext and hypermedia. Flusser diverges
from McLuhan's concept of electronic images, pointing out that these images in fact,
“rely on texts from which they have come and, in fact, are not surfaces but mosaics
assembled from particles.””” Technical images are a continuation of the Western culture
of scientific and literary texts, a continuation by other means.

Flusser calls the traditional pictorial images of pre-history “first-degree abstrac-
tions.” Those images were mimetic representations or phenomenological impressions
of the physical world. The “second-degree abstractions” are texts which are, in turn,
abstracted from traditional images. Technical images are “third-degree abstractions.”
They are abstracted from the abstraction of the abstraction (the pre-historic images)
of the concrete world. Technical images can also be called post-historical.”® Technical
images are reservoirs of information.

Software programming or the writing of code is, for Flusser, a form of freedom and
individual expression. In the future utopian society of images, everyone will be empow-
ered to envision. Everyone will be a programmer and a synthesizer of images. He writes:

- am 13.02.2026, 09:22:52. @

279

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

280

Decoding Digital Culture with Science Fiction

The photographs, films, and television and video images that surround us at present
are only a premonition of what envisioning power will be able to do in the future... All
vision, imagination, and fictions of the past must pale in comparison to our images of
the future.”?

From the perspective of the present, we see more clearly the unity of the scientific and
literary cultures as they were in the past and might become again in the future. Scientific
and literary cultures will no longer be in opposition to each other. They are both cultures
of the text.

From the Dialogical Society to Creative Coding

Flusser writes about Telematic Man and advocates for emancipatory possibilities inher-
entin the universe of analogue and beyond-analogue technical images as well as dialogic
or advanced digital images. Flusser was a utopian thinker, similar in his moral and the-
ological perspective to the philosopher of I and Thou (Ich und Du) Martin Buber (“I mean
roughly that which Buber called dialogic life,” writes Flusser), touched by the spirituality
of Jewish Kabbalah in ways close to the historian Gershom Scholem and the Frankfurt
School philosopher of critical theory Walter Benjamin.”° Flusser brings his existential-
ist philosophy to bear on media and technologies. In his book Into the Universe of Technical
Images, he contemplates the prospect of a future society that plays with digital-virtual
images: “It will be a fabulous society, where life is radically different from our own.””**

This utopia will not be automatically realized by new media and new technolo-
gies. The better society can only be realized when digital technologies are designed
consciously with utopian values and goals. “Taking contemporary technical images
as a starting point,” writes Flusser, “we find two divergent trends. One moves toward
a centrally programmed, totalitarian society of image receivers and image adminis-
trators, the other towards a dialogic, telematic society of image producers and image
collectors.””* Totalitarianism or liberal autonomy and democracy: the choice is up to us.
The future culture of images implements “a technology of dialogue, and if the images
circulated dialogically, totalitarianism would give way to a democratic structure.”’
Either we continue living in a bureaucratic social order with images controlled by a few
powerful monopolies or we architect a telematic society of decentralization, empathic
dialogue, mutual support, and collective authoring of the narratives of visual culture.

We also need to deepen understanding of what Flusser means by image, and how that
differs from the usual meaning of the term.

There can be a coming together of Virtual Reality or computer games and stories of
high literary quality — a culture of images that continues the culture of literature of the
past. There will be a high level of participation in such a culture. “There will be an ongo-
ing dialogical programming of all apparatuses by all participants.””** It will be a playful
existence, a society of artists in dialogue via images. Flusser refers to the notion of Homo
Ludens of the Dutch cultural historian Johan Huizinga on the play element in culture.”
The dialogical society, for Flusser, would envision “situations that have never been seen
and could not be predicted,” lived by players who would “constantly generate new rela-

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

tionships by playing off moves against countermoves” and write the code of previously
inconceivable possibilities.”*® We need a new conscious theory and practice of images —
images related to the reinvigoration of the hybrid scientific-literary culture that is the
legacy of the West.

In Does Writing Have a Future?, Flusser envisions a path towards meaningful expres-
sivity emerging from the metamorphosis of programming codes. Flusser anticipated the
movement of generative art or Creative Coding.” Creative Coding is rooted in the desire
and ambition of artists and creative individuals to practice software programming in a
range of subcultural activities:live visuals, interactive exhibitions, choreographed dance,
real-time performances, product design prototypes, and 3D printing and hybrid design-
and-technical code experimentation in Maker Labs, demoscenes, and hackerspaces. Cre-
ative Coding includes projects of visual- and natural-language-centered toolkits, soft-
ware poetry, and coder ethos sensitivity to the art of programming.

Flusser investigates the prospects for “writing after writing.” Hope for a better soci-
ety, he states, cannot be placed in those who know how to write the old way yet refuse to
learn the new technological codes. Nor can hope rest with those who learn the new codes
in a robotic or merely professional way (without awareness), yet remain ignorant of the
value of writing, both as it was in the past and as it could be in the future. Educational
institutions should teach the new codes while encouraging students to learn the history
of writing and to engage in the renewal of that history. Texts will make their comeback
against their suppression and replacement by computer programs, operating inside the
latter to transform them, to bring text and code back within the overall flow of writing’s
place in history.

In Towards a Philosophy of Photography (1984), Vilém Flusser asserts that media tech-
nologies do not transform the world, they transform the meaning of the world.”® They
transform its symbolic dimension. We are no longer in the era of industrialization and
production (of tools and machines). The photographer — who, for Flusser, is a metaphor-
ical stand-in for all technology programmers - is not a proletarian in the classical Marx-
ian sense. The imaging technology apparatuses do not do any work. The term photogra-
phy, for Flusser, is a stand-in for all contemporary media. The structure of the gesture
of photography is quantum. It is a gesture of doubt composed of point-like hesitations
and point-like decisions. Photography is a post-industrial and post-ideological gesture.
Photography takes information to be a “new real” in itself. It does not seek to decode the
alleged meaning of that information. Creative Coding is not semiotic coding and decod-
ing — the concept of ideology with some semiotics added — as in the Marxist television
studies of Stuart Hall.”

The telematic society of the future - if it continues its present dystopian trajectory
— will be divided into two groups: those who write computer programs and those who
cannot write software code. The technocratic programmers will be pawns of the system
just as much as the non-programmers will be. Their personalities will be programmed on
a micro-level through each keystroke that they type: a society of programmers who are
programmed. Programming can instead become the new name for what used to be called
writing. Computer programming languages — as they have been until now — are struc-
turally simple (they reduce or translate, as Friedrich Kittler says, to the digital-binary
code), but not at all simple to learn and use. They are structurally simple yet functionally

- am 13.02.2026, 09:22:52. @

281

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

282

Decoding Digital Culture with Science Fiction

complex. Programming, as it is presently constituted, leads to the automatic steering of
human beings and society into a cybernetic system. Programming as we have known it
is the automation of the world.

Flusser was a utopian media theorist who wrote about a future playful society of the
democratic exchange of dialogical images. He investigated the place of the writing of
software code in the larger context of the history and future of human writing in general.
He connected photography and programming in interesting ways.

From Computer Science Code to Creative Coding Code

What is the difference between code as understood by existing computer science and
code as understood by posthuman Creative Coding? Software programming languages
came into existence much later than the original invention of the computer, but they are
marked by the mathematical origins of computer science and the idea of a pure mathe-
matical formallanguage. Each line of code is a precise unambivalent instruction. Itis the
opposite of human language. Human language is imbued with resonance, ambivalence,
poetic qualities, subjective expression, cultural cross-references, and intertextualities.
Code in its existing concept is also not visually creative in any sense of making space for
singular pictographs since it consists of sequences of pre-defined symbols. The symbols
laid out by the algorithm athand are selected from a larger set of symbols of a given delin-
eated alphabet. In existing computer science, there is a dualistic separation between the
code (or the phase of code-writing) and the (time of the) executable. The activity of writ-
ing the code happens outside of the instantiated process or world which the code has set
in motion. The code has a human-writable and -readable version called the source code.
An interpreter or compiler converts the source code to the machine instructions required
by the computer. Code is a system of rules to convert information to an alternative form
to be sent over a communications channel or saved on a physical storage medium.

The following three new directions for the theory and practice of code in posthuman
Creative Coding stand in the foreground:

Code and Human Language

One of the most popular application domains for projects made with the Processing Cre-
ative Coding Integrated Development Environment (IDE) is poetry generators. Software
poetry embeds eloquence into purposefulness. When the center of attention of the writ-
ing of code becomes expressivity as well as functionality, the desire for programming
languages which are closer to human languages grows. This tendency is already visible
in the expansion of Natural Language Processing (NLP); declarative programming lan-
guages for relational databases like SQL; macro languages for lawyers to write Smart
Contracts on the blockchain; the role of natural language in comments and documen-
tation to make source code more readable for other programmers; the choosing of hu-
manly familiar names for variables and methods; the syntax specifications of markup

- am 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Software Code as Expanded Narration

languages like XML and HTML; and in the natural language input styles of AI text and
image generators.

Higher level languages already evolved away from the primitive os and 1s towards
human forms of communication and communities of understanding. Higher level lan-
guages are already closer to human language than to machine language. This trend can
be extrapolated into projected further steps towards code as human language as the fu-
ture unfolds. What will the practice of software development be like when its concern is
both software codes and cultural codes? The “new real” emerges when designers of hy-
brid real-virtual environments have a toolkit available which offers building-block com-
ponent options from both the real physical world and from the province of virtual three-
dimensional synthetic imaging technology.

Code and the Visual

Another popular application domain for projects using Processing is music visualizers.
The numerical values of the music as a data set become the input to code which converts
those values to some real-time dynamically changing, or even user-interactive, graphical
representation as output. Processing is especially adept at translating from one expres-
sive media to another, as exemplified in projects that transform electromagnetic waves
in the atmosphere into lively screen or VR animations; transmute dance movements into
database-storable geometric forms as building blocks for future choreographies; trans-
pose the motion-activity of children’s play into music and light displays; alter weather
data into three-dimensional “fuzzy” phenomena-simulating particle systems; or trans-
figure bodily tactile gestures into large-screen flowing clay sculptures. Processing en-
ables generally the creation of interactive visual artworks and art installations. The dig-
ital version of Generative Design that is related to Creative Coding instantiates an algo-
rithmic system via code which, in turn, serves as the “intelligence” that autonomously-
automatically generates design or artistic output.

If Processing has migrated the attention of coding towards visual output, then the
next step is for the code itself to become more visual — more artistic, intuitive, inspira-
tional, emotional, and pictorial. The symbols available in the language’s symbol set can
be more malleable and expressive of the singularity of the specific expression intended
in the moment. A dynamic pictogram is a flexible graphic symbol signifying its mean-
ing through resemblance to signified likenesses evoked in the imagination. Small vec-
tor-spawned fractal icons can be phonetic letters or elements of the language. Pikto and
Lightbot are examples of already existing pictographic programming languages.”® The
given “pikto” directly embodies an action or object in the game. These languages based
on schematic images avoid the pitfall of the syntactic errors that vex textual languages,
making them suitable for learning by children.

- am 13.02.2026, 09:22:52. @

283

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

M 13.02.2026, 09:22:52. @

https://doi.org/10.14361/9783839472422-014
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

