Rechnen mit Zahlen oder Rechnen mit Buchstaben
Numerische Mathematik und Mathematische Logik in der Informatik

vON DIRK SIEFKES

Uberblick

Sind Computer unvorstellbar schnelle Rechner oder verarbeiten sie Symbo-
le und sind damit intelligent? Die beiden Auffassungen haben sich nebenei-
nander entwickelt, mit merkwiirdigen Verkniipfungen und zeitlichen Verschie-
bungen, haben aber nicht zu unterschiedlichen Realisierungen gefiihrt. Das
tragt dazu bei, dass wir beim Programmieren Mensch und Maschine so fraglos
,hybridisieren®. Ich gehe den alten, historisch schwer fassbaren Verstrickun-
gen nach, um das neue Phinomen des ,,allgegenwirtigen” Computers und
der ,,definierenden‘ Wissenschaft Informatik besser zu verstehen.

Abstract

Computers — are they unimaginably fast computing machines, or do they handle
symbols and thus are intelligent? These two concepts developed separately,
connected in strange ways, but on differing time lines. They did not, however,
produce different realizations. This fact is part of the reason that in programming
we ,,hybridize* man and machine without much questioning. I follow these
old entanglements in order to better understand the new phenomena of the
,»ubiquitous® computer and its ,,defining" science.

skskok

Einleitung

Einigkeit besteht, dass die Informatik ein Kind von Mathematik und Nach-
richtentechnik sei. So beginnen historische Darstellungen! im Allgemeinen
mit Rechenverfahren und Rechengeriten, setzen mit friilhen Rechenautoma-
ten und anderen Maschinen, die durch Kode gesteuert werden, fort und ge-
langen so geradlinig zu den ersten Computern der 1930er und 1940er Jahre.
Gelegentlich wird dabei die enge Wechselwirkung zwischen mathematischer
und technischer Entwicklung betont.> Mit dem Aufkommen der Informatik
als eigenstindiger Disziplin riickt der Unterschied zwischen den Eltern in
den Hintergrund. Die Entwicklung der Informatik war und ist von dauernden

1 Z.B.Petzold, Hartmut: Moderne Rechenkiinstler. Die Industrialisierung der Rechentechnik
in Deutschland, Miinchen 1992; Naumann, Friedrich: Vom Abakus zum Internet. Die
Geschichte der Informatik, Darmstadt 2001.

2 Coy, Wolfgang: Industrieroboter, Berlin 1985.

Technikgeschichte Bd. 71(2004) H.3 185

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

Auseinandersetzungen geprigt, ob Maschinen oder Formalismen wichtiger
seien, aber der Gegensatz wird selten thematisiert. (Laut wird nur immer die
Kluft zwischen Theorie und Praxis betont, die doch quer dazu liegt und allen
Wissenschaften, wenn nicht unserer Kultur {iberhaupt, eigen ist.) Lange Zeit
wurden Programmiersprachen als Nachweis der gegliickten Verschmelzung
angesehen.’ Und mit dem Durchbruch des Internet als ,,definierender Tech-
nologie** wird der Computer samt seinen Programmen zum Medium erklért,
das weder formal noch technisch, sondern ,,einfach iiberall* sei.

Ich mochte deswegen der Rolle des Technischen und des Formalen in
der Entstehung der Informatik genauer nachgehen. Dabei schliee ich an
neuere Arbeiten an: Heidi Schelhowe® versteht die Metamorphose des Com-
puters von der Maschine iiber das Werkzeug zum Medium als einen Wandel
im Gebrauch und in der Sichtweise: Wir verlieren das Maschinenhafte am
Computer, als dem Menschen nicht addquat, aus dem Blick und nehmen es
damit nicht mehr wahr. Die Anfiange dieser Entwicklung haben wir in einem
Interdisziplindren Forschungsprojekt ,,Sozialgeschichte der Informatik* auf-
gearbeitet.® Peter Eulenhofer’ riickt in seiner Untersuchung das Formale in
den Mittelpunkt: Informatiker benutzen Formalismen, um geistige Tatigkei-
ten und Computer-Abldufe in Korrespondenz zu setzen. Geistige Vorginge
werden schematisiert und dann formal beschrieben, um sie auf die Maschine
bringen zu konnen; maschinelle Abldufe werden formal beschrieben und dann
als geistige Bewegungen interpretiert, um sie verstehen zu kdnnen. Die beiden
gegensitzlichen Bereiche des Menschlichen und des Maschinellen werden
durch das Formale scheinbar vereint, ,,hybridisiert”. Dabei tritt auf jeweils
charakteristische Weise ein Bereich in den Vordergrund und verdeckt den
anderen mehr oder weniger. Die formalen Beschreibungen, die solches Ver-

3 Bauer, Friedrich Ludwig, Was heilit und was ist Informatik? In: IBM-Nachrichten 24,
1974, S. 333-337; Zemanek, Heinz: Was ist Informatik? In: Elektronische Rechenan-
lagen 13, 1971, S. 157-161.

4 Coy, Wolfgang: Defining Discipline, in: Freksa, Christian, Matthias Jantzen u. Riidiger
Valk (Hg.), Foundations of Computer Science — Potential, Theory, Cognition, Heidelberg
1997, S. 21-36.

5 Schelhowe, Heidi: Das Medium aus der Maschine. Zur Metamorphose des Computers,
Berlin 1997.

6 Eulenhofer, Peter, Dirk Siefkes, Heike Stach u. Klaus Stidtler: Die Konstruktion von
Hybridobjekten als Orientierungsmuster in der Informatik (Forschungsbericht des Fach-
bereichs Informatik 97-23, TU Berlin), Berlin 1997; Eulenhdfer, Peter, Dirk Siefkes u.
Heike Stach: Sozialgeschichte der Informatik, in: FIFF-Kommunikation 2, 1998, S. 3f. u.
29-46; Eulenhofer, Peter, Dirk Siefkes, Heike Stach u. Klaus Stéddtler (Hg.): Sozialge-
schichte der Informatik. Kulturelle Praktiken und Orientierungen, Wiesbaden 1998; An-
nette Braun, Peter Eulenhofer, Dirk Siefkes, Heike Stach, Klaus Stadtler (Hg.): Pioniere
der Informatik, Heidelberg 1999.

7 Eulenhofer, Peter: Die formale Orientierung der Informatik. Zur mathematischen Tra-
dition der Disziplin in der Bundesrepublik Deutschland. Dissertation, FB Informatik, TU
Berlin 1999.

186 Technikgeschichte Bd. #1(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
untersagt, mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

stecken ermoglichen, wurden im Projekt Hybridobjekte genannt, der Vor-
gang selbst Hybridisierung. Mit demselben Ansatz beschreibt Heike Stach®
die Entwicklung der Programmierung allgemeiner als Hybridisierung ver-
schiedener Dualismen: Geist und Materie, Lebewesen und Maschine, Text
und Ding, bewegt und bewegend. Die Art und Weise, wie Informatiker hyb-
ridisieren, dndert sich mit der Zeit, sie hidngt von den kulturellen und techni-
schen Orientierungen innerhalb und auBlerhalb der Wissenschaft ab und be-
einflusst die Produkte ihrer Arbeit.

Die Idee, dass Menschen und Maschinen nicht gegensitzlich, sondern ver-
wandt seien, dass der Mensch eine Maschine mit Seele sei oder die Maschine
zum Leben gebracht werden konne, wurzelt tief in unserer Kultur.” Und die
Verbreitung des Computers hat solche Vorstellungen ebenfalls verbreitet und
die Diskussion darum verschirft. Gemafl anerkannten Theorien aus Biologie
und Psychologie beruht lebendige Entwicklung auf der Wechselwirkung zwi-
schen schematisch sich wiederholenden Vorgéngen im Lebewesen und ihrer
Hnterpretation® in der Umgebung. Die Befiirworter z.B. der ,,Kiinstlichen In-
telligenz* oder der ,,Sozionik* setzen auf, wie ich meine, unzulissige Weise
diese ,,Schemata“ mit Computerprogrammen gleich und vergessen dabei die
,Interpretation” oder denken sie sich mitprogrammiert.'

Unter der Hand ist damit neben dem Technischen und Formalen das
Menschliche in der Informatikgeschichte aufgetaucht. Die Informatik als Spross-
ling dreier Eltern? Wohl kaum. Immer wieder wird betont, wie wichtig Psy-
chologie, Linguistik, Soziologie oder andere Geistes- und Sozialwissenschaf-
ten fiir die Informatik seien,'' aber es gibt keine einzelne Wissenschaft, die
,»das Menschliche* (oder ,,das Geistige und Soziale™ oder ,,das Kulturelle®)
vertritt. So haben es die Vertreter der beiden juristischen Eltern leicht, uner-
wiinschte Verwandte von der Kinderstube fernzuhalten. Mathematiker machen
sich selten Gedanken iiber die kulturellen Verwicklungen ihrer Formalismen;
so bestreiten Theoretische Informatiker die Notwendigkeit einer {iber das Ma-
thematische hinausgehenden Theorie der Informatik.!> Und Ingenieure iiber-
lassen solche Fragen gern ihren Kollegen aus Philosophie, Soziologie oder

8 Stach, Heike: Zwischen Organismus und Notation. Zur kulturellen Konstruktion des Com-
puter-Programms, Wiesbaden 2001.

9 Vgl. Bammé, Arno, Giinter Feuerstein, Renate Genth, Eggert Holling, Renate Kahle u.
Peter Kempin: Maschinen-Menschen Mensch-Maschinen, Reinbek b. Hamburg 1983.

10 Vgl. Siefkes, Dirk: Die Rolle von Schemata in der Informatik als kultureller Entwicklung
(Forschungsbericht des Fachbereichs Informatik 99-6, TU Berlin), Berlin 1999.

11 Vgl. Coy, Wolfgang, Frieder Nake, Jorg-Martin Pfliiger, Arno Rolf, Jiirgen Seetzen, Reinhard
Stransfeld u. Dirk Siefkes (Hg.): Sichtweisen der Informatik, Wiesbaden 1992; Floyd,
Christiane, Reinhard Budde, Reinhard Keil-Slawik u. Heinz Ziillighoven (Hg.): Software
Development and Reality Construction, Heidelberg 1992; Friedrich, Jiirgen, Thomas Herr-
mann, Max Peschek u. Arno Rolf (Hg.): Informatik und Gesellschaft, Heidelberg 1995.

12 Vgl. Coy et al. (wie Anm. 11), Nake, Frieder, Arno Rolf u. Dirk Siefkes (Hg.): Informatik —
Aufregung zu einer Disziplin. Tagung Heppenheim 2001 (Uni Hamburg, FB Informatik,
Bericht 235), Hamburg 2001 (im Internet: http://tal.cs.tu-berlin.de/siefkes/Heppenheim).

Technikgeschichte Bd. 71(2004) H.3 187

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
untersagt, mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

Ethik und den Politikern."* Zwar gibt es — einmalig in den Ingenieurwissen-
schaften! — ein Fachgebiet ,,Informatik und Gesellschaft“,"* dieses wird je-
doch von den ,,eigentlichen* Informatikern meist als (")ffnung zum Druck-
ausgleich nach draufien betrachtet, nicht als Verbindung zu anderen Wissen-
schaften. Wenn aber Hybridisierung so zentral fiir die Informatik ist, dann
scheint es angebracht, die Rollen, die mathematische Formalismen als Mit-
tel der Hybridisierung gespielt haben und spielen, ndher anzusehen.

Rechnen
Lange Zeit bestand die Entwicklung der Mathematik in der Entwicklung
von Rechenverfahren und allgemeiner von Formalismen zur Formulierung
solcher Verfahren. Zu berechnen war der Gang der Gestirne, die Fliche von
Ackern, der Inhalt von Geféflen. Probleme und Verfahren wurden kompli-
zierter, die Korrektheit der Verfahren war zu beweisen, die Beweise wurden
aufwindiger. Aber was ein Rechenverfahren ist, wurde nicht hinterfragt. Das
anderte sich erst im 20. Jahrhundert. Auf dem Mathematikerkongress in Pa-
ris 1900 nannte David Hilbert als eine der zehn wichtigsten Aufgaben der
Mathematik, zu kléren ob es ein allgemeines Verfahren gebe, mit dem man
alle mathematischen Probleme 16sen konnte. Man sollte ein solches Verfah-
ren angeben oder beweisen, dass es keines gibt. Das war eine Aufgabe fiir
die mathematische Grundlagenforschung, die in dieser Zeit mit dem Ziel
entstand, mathematische Grundbegriffe wie Menge, Relation, Funktion oder
Beweis zu prézisieren. Da ,Beweis‘ hierbei eine zentrale Rolle spielte, etab-
lierte sich das Gebiet als ,,Mathematische Logik*. Um Hilberts Frage nega-
tiv beantworten zu konnen, miisste man definieren, was Berechnungs-
verfahren oder, mathematisch ausgedriickt, berechenbare Funktionen sind.
Beweise kann man nur fiir mathematisch prézise Begriffe fiihren, nicht fiir
intuitiv gebrauchte, so selbstverstidndlich der Gebrauch auch ist. Hilbert sagt
davon nichts; er spricht von ,,finiten Verfahren®, das scheint ihm klar genug.
Uber 20 Jahre vor dem Hilbertschen Vortrag hatte Richard Dedekind
,primitive Rekursion* benutzt, um Funktionen iiber den natiirlichen Zahlen
zu definieren. So fiihrte er sukzessive Addition, Multiplikation, Exponentia-
tion und weitere wichtige Funktionen auf die Nachfolgerfunktion zuriick.
Guiseppe Peano griindete darauf sein Axiomensystem fiir die natiirlichen
Zahlen, das nur Formeln zur Definition von Null und Nachfolger und fiir die
vollstdndige Induktion umfasste. Lange Zeit galt daher ,primitiv rekursiv*
als geeignetes Verfahren zur Definition berechenbarer Funktionen. In den
1920er Jahren entwickelte Thoralf Skolem damit seine ,,berechenbare Zah-
lentheorie®™. Erst 1928 fand der Hilbert-Schiiler Wilhelm Ackermann eine
Funktion, die nicht primitiv rekursiv, aber berechenbar ist. Sein Verfahren

13 Vgl. MacKenzie, Donald u. Judy Wajcman (Hg.): The Social Shaping of Technology,
Buckingham 1999.
14 Vgl. Friedrich et al. (wie Anm. 11).

188 Technikgeschichte Bd. #1(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

wurde schnell verallgemeinert, und immer groere Klassen berechenbarer
Funktionen kamen ans Licht. Konnte es eine umfassende Definition geben,
die dem ausufernden Prozess ein Ende setzte?

In der ersten Hilfte der 1930er Jahre wurden gleich mehrere solcher Defi-
nitionen vorgeschlagen. In den USA hatte Alonzo Church schon ldnger mit
seinem ,,A-Kalkiil“ (griech. lambda) an einer Grundlegung der Zahlentheorie
gearbeitet.”” Mit geeigneten Auswertungsregeln waren die im Kalkiil defi-
nierbaren Funktionen berechenbar, und Church und seine Schiiler konnten alle
wichtigen Funktionen in dem Kalkiil definieren. Daraufthin vermutete Church
1934, dass das fiir alle berechenbaren Funktionen gehe. Er trug die These 1935
auf einer Konferenz vor, allerdings fiir eine andere gleichwertige Definition:
Kurt Godel, aus Wien in die USA emigriert, hatte 1934 in einer Vortragsreihe
die Funktionen, die durch Auswerten gewisser verallgemeinerter primitiv re-
kursiver Gleichungssysteme gewonnen werden, ,,rekursiv genannt. So ent-
stand die heute so genannte Churchsche These: Alle berechenbaren!® Funktio-
nen sind rekursiv. Wenig spéter definierte Churchs Schiiler Stephen Kleene
die ,,lt-rekursiven’ Funktionen (griech. my), die mit primitiver Rekursion und
einem Auswahloperator auskommen, und die ,,allgemein rekursiven®, fiir die
er beliebige rekursive Gleichungssysteme auf geschickte Weise auswertete.!’
Alle diese Definitionen stellten sich als dquivalent heraus; das heif3t, die Funk-
tionenklassen waren gleich. Das war ein starkes Argument fiir die Churchsche
These. Trotzdem scheint, nach Martin Davis'®, Godel noch nicht iiberzeugt
gewesen zu sein. Alle diese Definitionen beruhten auf bekannten mathema-
tischen Berechnungsverfahren; konnte es nicht ganz andere geben, die auf bis-
her ungeahnte Weise zu rechnen erlaubten?

Im Friihjahr 1936 kam eine solche ganz andere Definition aus England.
Alan Turing beschrieb Rechnen als Schritte einer gedachten Maschine, die auf
einem beliebig langen Band hin- und herlduft und Symbole druckt, veréndert
oder 16scht.” Nichts anderes tut ein Mathematiker, der mit Bleistift und Papier
rechnet, argumentierte Turing, der sich von Kind an fiir Maschinen begeistert
hatte.?° Und wirklich ist es nicht schwer, mathematische Verfahren wie Aus-

15 30 Jahre spiter entstand daraus die Programmiersprache LISP.

16 Friiher sagte man auch ,,effektiv berechenbar®, um zu betonen, dass es um effektiv ausfiihr-
bare Rechenverfahren (Algorithmen) geht, nicht um Heuristiken.

17 Daraus wurden spéter funktionale algorithmische oder Programmiersprachen wie FP
(Backus), LCF (Scott/Milner), REC (Siefkes, Moschowakis), OPAL (Pepper).

18 Davis, Martin: Why Goédel Didn’t Have Church’s Thesis, in: Information and Control 54,
1982, S. 3-24.

19 Turing, Alan: On Computable Numbers with an Application to the Entscheidungsproblem,
in: Proceedings of the London Mathematical Society 42, 1936, S. 230-265 — Deutsch in
Dotzler, Bernhard, u. Friedrich Kittler (Hg.): Alan Turing, Intelligence Service, Berlin 1987,
S. 18-60.

20 Hodges, Andrew: Alan Turing. The Enigma, Berlin 1989.

Technikgeschichte Bd. 71(2004) H.3 189

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
untersagt, mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

wertungen im A-Kalkiil auf ,,Turingmaschinen® (wie Church sie gleich 1937
in einer Besprechung der Arbeit Turings nannte) zu simulieren.

Es soll Godel gewesen sein, der sofort die Bedeutung des Ansatzes von
Turing erkannte. Er hatte 1931 bewiesen, dass die Zahlentheorie nicht axio-
matisierbar ist, und dafiir mathematische Formeln und Beweise mithsam mit
Hilfe von Primzahlzerlegungen in natiirliche Zahlen kodiert, &hnlich wie man
es heute in der Kryptographie tut. Er musste kodieren, weil die Berechnungs-
verfahren, die er kannte, nur auf Zahlen anwendbar waren. Wer wie Turing
Rechnen auf Symbolmanipulation zuriickfiihrte, konnte sich das Kodieren
in Zahlen ersparen. Nichtsdestoweniger lie3 Turing seine Maschinen (reel-
le) Zahlen berechnen. Erst 1946 fiihrte William van Orman Quine Worter
statt Zahlen als Struktur zum Rechnen ein.?!

Tatséchlich war der Unentscheidbarkeitsbeweis in Turings Arbeit, fiir
den er seinen Formalismus eigentlich entwickelt hatte, weniger kompliziert
als der entsprechende bei Church. Davis vermutet, dass erst Turings Defini-
tion und die Tatsache, dass sie zu den anderen dquivalent ist, Godel von der
Churchschen These iiberzeugt hat. Turing gewann seine Maschinen nicht
aus spezifischen mathematischen Methoden fiir spezifische mathematische
Probleme; Turingmaschinen fiihren die elementaren Operationen aus, die in
jedem Rechenverfahren vorkommen. Allgemeiner kann man ,berechenbar*
nicht definieren. Heutzutage wird daher die Churchsche These oft so formu-
liert (Turingsche These): Alle effektiv 16sbaren Probleme sind mit Turing-
maschinen 16sbar.

Der amerikanische Logiker Emil Post hatte schon in den 1920er Jahren
einen Berechnungsformalismus entwickelt, der mit Turings praktisch iden-
tisch ist: Ein Arbeiter 14uft an einer langen Reihe von Schachteln hin und her
und setzt oder 16scht darin Marken nach einem vorgegebenen Programm —
eine Turingmaschine mit nur einem Symbol. Publiziert hat er die Idee erst
1936, als Church ihm Turings Arbeit ankiindigte.? Inzwischen ist die Church-
Godel-Turingsche These allgemein akzeptiert. Meist werden drei Begriindun-
gen gegeben:

(1) Aquivalenz: Alle Vorschlige zur mathematischen Prizisierung der Be-
rechenbarkeit — es gibt Dutzende — haben sich als dquivalent erwiesen.

(2) Robustheit: Man kann alle diese Definitionen stark verandern, ohne dass
sie ,,Berechnungskraft verlieren oder gewinnen. So kann man Turingma-
schinen auf einem, auf zwei, auf einem halben (das heif3t, nur nach einer

Seite unbeschrinkten) oder auf 17 Bandern rechnen lassen; ebenso auf

2-dimensionalen Rechenfeldern oder im n-dimensionalen Raum; man

21 Quine, Willard van Orman: Concatenation as a Basis for Arithmetic, in: Journal of Symbolic
Logic 11, 1946, S. 105-114.

22 Post, Emil L.: Finite combinatory processes — Formulation 1, in: Journal of Symbolic
Logic 1, 1936, S. 103-104 — auch in Davis, Martin (Hg.): The Undecidable, New York
1965, S. 289-291.

190 Technikgeschichte Bd. #1(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

kann sie statt Buchstaben ganze Worter lesen und schreiben lassen; man
kann sie deterministisch oder nichtdeterministisch rechnen lassen — die
Probleme, die man damit 16sen kann, dndern sich nicht.

(3) Universalitdt: Man kann in allen diesen Formalismen ,,universelle® Funk-
tionen definieren, aus denen man durch Variation von Parametern alle
berechenbaren Funktionen erhélt. Z.B. gibt es universelle Turingmaschi-
nen, die beliebige Turingmaschinen simulieren, wenn sie deren Programm
als Eingabe erhalten.

Die Aquivalenz fiel schon 1936 ins Gewicht, die anderen Begriindungen

kamen spéter. Entscheidend war wohl 1936 die Gleichwertigkeit der mathe-

matischen Beschreibungen mit der maschinenhaften. Rechnen ist nicht das

Ausfiihren mathematischer Operationen nach mathematischen Methoden,

sondern das mechanische Manipulieren von Symbolen nach vorgegebenen

Regeln.

Rechenautomaten und Hybridisierung

Nachdem Maschinen im 19. Jahrhundert die Fabriken erobert hatten, durch-
drang Maschinendenken in der ersten Halfte des 20. Jahrhunderts alle ge-
sellschaftlichen Bereiche, wie Bettina Heintz schon beschreibt.?* Frederick
Taylor begriindete 1912 die Zerlegung von Arbeitshandlungen in kleinste
Schritte, die dann von Maschinen oder Menschen ausgefiihrt werden kon-
nen, mit ,,wissenschaftlichen Prinzipien* —, genau wie Turing 1936 die ,,Ma-
schinisierung der Kopfarbeit“* psychologisch rechtfertigte, wahrend Post
direkt Taylors Vision folgte. Die Massen bejubelten die maschinenhaften
Aufmarsche der Armeen faschistischer (und anderer) Staaten wie die maschi-
nenhaften Bewegungen der Revuegirls. Zur Olympiade in Berlin 1936 wur-
de die ,,maschinenhafte Priazision* der sportlichen K&rper verherrlicht. Charlie
Chaplin lehnte sich 1936 mit dem Film Modern Times gegen die Maschi-
nisierung des Lebens auf. Aber im selben Jahr machte Turing die Maschine
in der Mathematik salonfdhig, indem er sie abstrakte Berechnungen ausfiih-
ren lieB3.

Ebenfalls 1936 entwarf Konrad Zuse in Deutschland den ersten Compu-
ter im heutigen Sinne des Wortes. Er war Bauingenieur und wollte die
ermildenden numerischen Berechnungen, die er zu machen hatte, von einer
Maschine ausfithren lassen. Er baute daher einen ,,Rechenautomaten®, der
numerische Ausdriicke automatisch auswertet; die ,,Rechenpliane®, die die
Auswertung steuern, sind von den Rechenbdgen der grolen Rechenbiiros
abgeguckt. Mit ihnen hybridisiert Zuse also die Arbeit der Rechenkréfte und
das Rattern der Maschine. Beim Entwurf der Schaltungen erfand Zuse die
Aussagenlogik neu und erweiterte seine Rechenplédne um logische Bedin-

23 Heintz, Bettina: Die Herrschaft der Regel, Frankfurt a.M. 1993, Kap. 4.
24 Nake, Frieder: Informatik und die Maschinisierung von Kopfarbeit, in: Coy et al. (wie
Anm. 11), S. 181-201.

Technikgeschichte Bd. 71(2004) H.3 191

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

gungen, die er aber erst 1950 technisch realisieren konnte. Auch seine weite-
ren Maschinen waren ausschlieBlich fiir numerische Berechnungen ange-
legt. Er traumte aber von Anfang an von beliebigen Anwendungen wie Schach-
spielen oder Verwaltungsaufgaben® und unterschied ganz frith zwischen ,,al-
gebraischen und ,,logistischen Rechenautomaten.?® Wihrend der erzwunge-
nen Arbeitspause zu Kriegsende entwarf er den ,,Plankalkiil®, eine univer-
selle Programmiersprache. Er wusste nichts von den Berechnungsformalismen
der Logiker und auch nichts von den amerikanischen Computern, die in der
Zwischenzeit entwickelt worden waren.?’

Die erste allgemeine Beschreibung einer solchen Maschine gab 1945 der
ungarische Mathematiker und Chemieingenieur John von Neumann. Als
Jude hatte er sich 1933 — schon beriihmt fiir seine Leistungen in vielen ma-
thematischen Gebieten (einschlieBlich der Mathematischen Logik) und de-
ren Anwendungen — endgiiltig in den USA niedergelassen und hatte gleich
bei Kriegsausbruch angeboten, mit seinen wissenschaftlichen Fahigkeiten
zur Verteidigung gegen Nazi-Deutschland beizutragen. So war er Berater in
wichtigen militdrischen Forschungsvorhaben geworden, insbesondere beim
Atombombenprojekt in Los Alamos, und war auf der Suche nach Rechen-
leistungen auf eine Gruppe gestoBen, die an dem Computer ENIAC arbeite-
te. In einem Bericht® beschreibt er ein Nachfolgeprojekt der Gruppe, die
EDVAC, und stellt dabei die Prinzipien auf, nach denen bis heute unsere
,,von-Neumann-Computer* gebaut werden. Als Mathematiker geht es ihm
um numerische Anwendungen, sein ,,large-scale automatic computing device*
ist also wie bei Zuse ein maschinelles Abbild eines Mathematikers mit ,,or-
gans“ fiir Arithmetik, Steuerung, Speicherung und Ein/Ausgabe. Ebenso ver-
traut ist ihm aus der Ausbildung und aus der Arbeit in praktischen Projekten
die Sicht des Ingenieurs; technische Uberlegungen nehmen einen breiten
Raum ein und bestimmen wichtige Entwurfsunterscheidungen. Die Hybridi-
sierung von Mathematiker und Maschine wird daher nicht problematisiert,
Zahldarstellungen werden direkt zu Speicherkonfigurationen, numerische
Operationen zu ,,Kodes* fiir Anderungen des Speicherinhalts. Weitergehen-
de Anthropomorphismen benutzt er nicht, auch nicht die Berechenbarkeits-
theorie der Logiker, an der er selbst frither gearbeitet hat — insbesondere
nicht die Arbeit Turings, obwohl er sie 1938 begutachtet hat. Sein Computer
soll numerische Berechnungen, nicht mathematische Ableitungen ausfiihren.

25 Zuse, Konrad: Der Computer — mein Lebenswerk, Berlin 1993.

26 Ders.: Rechenplangesteuerte Rechengerite fiir technische und wissenschaftliche Anwen-
dungen. Manuskript, 19 S., Berlin 1943.

27 Mehr dazu in dem schonen Band Hellige, Hans-Dieter (Hg.): Geschichten der Informa-
tik. Visionen, Paradigmen, Leitmotive, Heidelberg 2004.

28 Neumann, John von: First Draft of a Report on the EDVAC, in: Taub, Abraham H. (Hg.):
John von Neumann. Collected Works, Bd. 5, Oxford 1963, S. 1-31.

192 Technikgeschichte Bd. 71(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

Mit einer ganz anderen Hybridisierung, die er ausdriicklich als ,,Neuro-
nen-Analogie® einfiihrt, verkniipft von Neumann dagegen die Arbeitsweise
des Gehirns und des Rechners auf der untersten technischen Ebene. Neuro-
physiologie und behavioristische Denkweise sind ihm aus Diskussionen um
eine neue Wissenschaft bekannt, die Norbert Wiener spéter Kybernetik nennt®
und in der ,,control and communication in the animal and in the machine*
einheitlich behandelt werden sollen. Von Neumann zitiert hier — die einzige
Referenz in dem Papier — die Arbeit von Warren McCulloch und Walter Pitts,*
einem Neurophysiologen und einem Mathematiker, die neuronale Struktu-
ren zu logischen Netzen abstrahieren und beweisen, dass man genau diese
mit aussagenlogischen Formeln mit einem Zeitparameter beschreiben kann.
Auf die gleiche Weise abstrahiert von Neumann von den Eigenschaften kon-
kreter Schaltungen und macht so neuronale Strukturen und technische Schal-
tungen vergleichbar. Damit kann er fiir Auswahl und Aufbau der Schalt-
elemente neurophysiologisch wie technisch argumentieren, in flieBenden
Ubergingen. Sein maschineller Computer ist also so universell’' wie der
menschliche, er kann im Prinzip dasselbe, ist nur um Groenordnungen we-
niger komplex. Die Beschrankung auf einen Prozessor, den beriihmten ,,Von-
Neumann-Flaschenhals®, begriindet er technisch; man kann aber spekulie-
ren, ob ihn nicht unbewusst damalige kybernetische Vorstellungen vom Ge-
hirn als einer Maschine und philosophische vom Denken als einem Bewusst-
seinsstrom ebenso beeinflusst haben.

Von Neumann benutzt also logische Netze als Formalismus, um mensch-
liches Gehirn und Computer auf der elementarsten Ebene zu hybridisieren.
Die selbstverstindliche Hybridisierung von menschlichem und maschinel-
lem Rechnen ist davon vollig getrennt. Deswegen zitiert er Turing nicht, der
die Ebenen nicht unterscheidet.’? In anschlieBenden Arbeiten 1946-47 mit
anderen wird die stillschweigende Gleichsetzung von numerischem Algo-
rithmus und Maschine-Kode problematisiert, und Flussdiagramme und sym-
bolische Adressierung werden als erste Briicken in die entstandene Liicke
gestellt. Man kann die frithe Geschichte der Programmierung — vom Kodie-
ren iiber die ersten hoheren Programmiersprachen bis hin zu funktionalen
Programmiersprachen — als das Bemiihen verstehen, den Weg zwischen
menschlichem Rechnen und rechnender Maschine in beiden Richtungen
gangbar zu machen.*® Je machtiger die Maschine wird, desto groBere Teile

29 Wiener, Norbert: Cybernetics, Cambridge/Mass. 1948 — Deutsch: Kybernetik. Regelung
der Nachrichteniibertragung im Lebewesen und in der Maschine, Diisseldorf 1963.

30 McCulloch, Warren u. Walter Pitts: A Logical Calculus of the Ideas Immanent in Nervous
Activity, in: Anderson, James u. Edward Rosenfeld (Hg.): Neurocomputing, Cambridge/
Mass. 1943, S. 18-28.

31 S. oben die Begriindungen zur Churchschen These.

32 Vgl. dazu Heintz (wie Anm. 23), Kap. 6.

33 Vgl. dazu Eulenhofer et al. 1997 (wie Anm. 6); dies. 1998 (wie Anm. 6), Eulenhéfer (wie
Anm. 7), Stach (wie Anm. 8); Siefkes (wie Anm. 10).

Technikgeschichte Bd. 71(2004) H.3 193

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
untersagt, mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

des Weges libernimmt sie, desto mehr tritt sie gleichzeitig — nur scheinbar
paradox — in den Hintergrund, verschwindet durch Hybridisierung hinter
menschlichen Fahigkeiten. Auch wenn Rechnen bald zu fast beliebigen geis-
tigen Fahigkeiten und der Computer zur Datenverarbeitungsanlage verall-
gemeinert werden, bleibt vielen Informatikern als Erbe der Herkunft aus Ma-
thematik und Ingenieurwissenschaft der unerschiitterliche Glaube, die Com-
puterisierung eines Lebens- (Arbeits-, Spiel-) Bereiches bringe, wenn sie
nur gut gemacht werde, eine Verbesserung, aber keine grundsétzliche Verénde-
rung. Getreu der Tradition ihrer Elterndisziplinen meinen sie, Informatiker
miissten nur technisch und formal sauber arbeiten, menschlich seien sie ebenso
wenig involviert wie beim Entwerfen eines mathematischen Formalismus
oder einer Telefonanlage. Ich halte das fiir einen Irrglauben. Mathematiker
hybridisieren geistige Vorginge mit formalen Schritten, Nachrichtentechniker
hybridisieren Kommunikationsprozesse mit dem Austausch technischer Si-
gnale. Informatiker kombinieren beides und potenzieren so die Wirkung. Sie
hybridisieren mit ihrer Arbeit geistig-korperliche menschliche Tétigkeiten,
also Menschen als ganze, mit maschinellen Abléufen; sie greifen viel stérker
in geistige und soziale Zusammenhénge ein als Mathematiker und Nach-
richtentechniker. Wenn sie das nicht beachten, handeln sie blind. Natiirlich
konnen sie nicht iiberall kompetent sein. Aber sie kdnnen sich auf Projekte
beschrianken, bei denen sie sich gemeinsam mit ,,Nutzern® und zustidndigen
Wissenschaftlern engagieren. Dadurch gébe es nicht weniger Arbeit fiir In-
formatiker, aber mehr sinnvolle.**

Von Neumann und Turing

Erst 1948 setzt von Neumann seine Rechenautomaten mit Turings Maschi-
nen in Beziehung. Einen Vortrag auf der ersten Kybernetik-Konferenz* be-
ginnt er mit der Feststellung, Automaten und natiirliche Organismen seien
funktional so dhnlich, dass Mathematiker und Naturwissenschaftler fiir ihre
Untersuchungen dieser Objekte voneinander lernen konnten. Gegenwértig
scheitere das daran, dass natiirliche Organismen viel komplexer seien als
Automaten und dass es fiir derart komplexe Gebilde noch keine Theorie gebe.
Es konne weiterhelfen, Automaten sich selber reproduzieren zu lassen und
diese Evolution zu studieren. Dazu fasst er im letzten Abschnitt des Papiers
seine Automaten als Turingmaschinen auf. Wie diese ihre eigenen Be-
schreibungen kopieren und ausfiihren konnen (s.o. ,,Universalitit®), sollen
jene ihre Beschreibungen kopieren und sich so vermehren. Dabei ver-
schwimmt die Unterscheidung zwischen Maschinen und Beschreibungen,

34 Vgl. dazu den Schluss von Siefkes, Dirk: Sinn im Formalen? Wie wir mit Menschen und
Formalismen umgehen, in: Coy et al. (wie Anm. 11), S. 97-114.

35 Neumann, John von: The General and Logical Theory of Automata, in: Taub (wie Anm.
28), S. 288-328 — Deutsch: Die allgemeine und logische Theorie der Automaten. Kurs-
buch 8, Frankfurt a.M. 1967.

194 Technikgeschichte Bd. 71(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

die er vorher genau diskutiert; unklar bleibt auch, wie so komplexere Auto-
maten entstehen sollen: durch Fehler beim Kopieren, aber durch welche Se-
lektion?

Turing selbst hat 1936-1938 am MIT gearbeitet und bei Church in ma-
thematischer Logik promoviert. Ein Angebot fiir eine neue Stelle bei von
Neumann schlug er wegen der politischen Lage aus und kehrte nach Eng-
land zuriick.*® Dort arbeitete er wiahrend des Krieges fiir den Geheimdienst
an der Entschliisselung des Kodes der Deutschen Wehrmacht fiir die U-Boo-
te. Die Maschinen, die dafiir gebaut wurden, wiirde man heute ,,special
purpose computer” nennen. Nach dem Krieg war er in der staatlichen Com-
puterentwicklung angestellt. Seine Vorbilder waren die EDVAC von Neu-
manns und andere amerikanische ,,number-cruncher, nicht seine eigenen
Papier-und-Bleistift-Maschinen von 1936. 1948 geriet er in Konflikt mit sei-
nen Vorgesetzten, weil die Presse nach einem Interview mit ihm die noch
unfertigen Produkte als Wundermaschinen, ,,giant brains“, der Offentlich-
keit vorstellte. Er schrieb eine Rechtfertigung, die er 1950 iiberarbeitete und
unter dem Titel Computing Machinery and Intelligence veroffentlichte.’” Um
die strittige Frage ,,Can machines think? zu kldren, schldgt er zwei ,,imitation
games“ vor, bei dem (1) ein Mann und eine Frau, (2) eine Maschine und ein
Mensch daran unterschieden werden sollen, wie sie auf Fragen schriftlich
antworten. ,,Wir wollen eine Maschine intelligent nennen, wenn sie im Spiel
(2) den Frager (,who may be of either sex‘) ebenso oft tduschen kann wie ein
Mann im Spiel (1), ist seine Definition. Turing sagt voraus, dass bis zum
Ende des Jahrhunderts Maschinen solche Intelligenz erreicht haben werden.
Die 50 Jahre sind um, und rund um die Welt spielen Computer-Freaks Turing-
Tests — vom Typ (2), nicht vom Typ (1) — auf Konferenzen und im Internet.
Uber die Ergebnisse ist man sich nicht einig. Fiir mich sind zwei andere Punk-
te in Turings Papier bemerkenswert: Wie von Neumann zur gleichen Zeit glaubt
Turing nicht, dass man intelligente Maschinen direkt konstruieren kdnne. Das
Programmieren sei zu aufwindig. (Ahnlich spekuliert von Neumann, die Be-
schreibung neuronaler Strukturen sei so aufwindig, dass fiir komplexere Struk-
turen die kiirzeste Beschreibung ,,die Struktur selbst® sein konne.) Deswegen
konne man intelligente Maschinen nur durch Erziehung gewinnen. Wahrend
bei von Neumann an der Evolution maschineller Intelligenz nur Automaten
beteiligt zu sein scheinen, die in grofer Zahl durcheinanderschwimmen, ent-
wickeln sich Turings Maschinen unter menschlichen Strafen und Belohnungen.
Beide gehen auf den Lernprozess nicht niher ein.

Von Neumann entwickelt seine Vision automatischer Intelligenz nicht
fiir die Maschinen, an denen er arbeitet, sondern fiir Turingmaschinen; er
denkt theoretisch, nicht praktisch. Turing dagegen — das ist das zweite Be-

36 Hodges (wie Anm. 20).
37 Turing, Alan: Computing Machinery and Intelligence, in: Mind 59, 1950, S. 433-460 —
Deutsch in Dotzler/Kittler (wie Anm. 19), S. 148-182.

Technikgeschichte Bd. 71(2004) H.3 195

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

merkenswerte — schreibt ausdriicklich iiber reale Computer. Denen, nicht
seinen Papiermaschinen, traut er Intelligenz zu. Deswegen wohl wird sein
Papier, und nicht das von von Neumann, als der Ursprung der Kiinstlichen
Intelligenz (KI) angesehen. Wie er sich die Programmierung der Zoglinge
vorstellte, ob als numerische oder symbolverarbeitende, wissen wir nicht.

Zahlen und Buchstaben in der Informatik
Fiir die symbolische KI dagegen beruht Intelligenz auf der Verwendung von
Symbolen, und Computer sind symbolverarbeitende Maschinen. In den
1950er Jahren wurden erste Programme entwickelt, die ,,wie Menschen* aus
(z.B. geometrischen) Aussagen logische Schliisse ziehen konnen sollen. Als
der Mathematiker John McCarthy 1960 diese Ansétze erweitern und verein-
heitlichen wollte, verwarf er FORTRAN als ungeeignet und entwickelte eine
Sprache, der nicht Zahlen und numerische Funktionen, sondern Listen und
Listenoperationen zugrundeliegen. Seine Gruppe machte daraus die Program-
miersprache LISP, die fiir viele Jahre die beherrschende Sprache zur Textverar-
beitung darstellte und bis heute in der KI eine wichtige Rolle spielt. LISP-
Programme sind keine Turingmaschinen; die arbeiten auf unstrukturierten
Symbolfolgen. Aber McCarthy hatte Turings Arbeit®® studiert und daraus die
Idee gewonnen, dass Computer nicht blo3 grofle Rechenautomaten sind.*
In den letzten zehn Jahren sind symbolverarbeitende Programme in der
KI weitgehend durch ,,(kiinstliche) neuronale Netze verdrangt worden. Das
sind aus elementaren Schaltungen zusammengesetzte Netze, die sich auf ,,Be-
lohnung oder Bestrafung* hin ,,selbst andern‘ und so ein vorgegebenes (Ein/
Ausgabe-) ,,Verhalten* stochastisch ,,lernen®. Sie sind fiir bestimmte Anwen-
dungen symbolischen KI-Programmen weit iiberlegen und spielen z.B. in
der Mustererkennung eine grofle Rolle. Hier werden, wie in von Neumanns
Neuronenanalogie, neurophysiologische Vorgénge und Abléufe in elektro-
nischen Schaltungen mit Hilfe Mathematischer Logik und Wahrscheinlich-
keitstheorie hybridisiert. Wieviel ,,Intelligenz* dabei wirklich erzielt wird,
ist strittig. Aber niemand kdme mehr auf die Idee, wie Turing Computer-
programmen, die ,,rechnen — also Zahlen verarbeiten —, Intelligenz zuzu-
schreiben. Meist werden heute — in der neuronalen wie in der symbolischen
KI — der Entwicklung ,,lernender Maschinen® explizite Lerntheorien aus
Neurophysiologie oder Kognitiver Psychologie zugrundegelegt — merkwiir-
digerweise nicht aus der Entwicklungspsychologie, obwohl dort beginnend
mit Piaget und Vygotsky die Entwicklung kindlicher Intelligenz im Wech-
selspiel zwischen biologischen Prozessen und sozialen Vorgéngen griindlich
untersucht wird.*

38 Turing (wie Anm. 19).
39 Stach (wie Anm. 8).
40 Siefkes (wie Anm. 10).

196 Technikgeschichte Bd. #1(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

Auch in der Theoretischen Informatik hat sich Turing nicht unumstritten
durchgesetzt. In den meisten Lehrbiichern werden Turingmaschinen als ele-
mentares Modell des Computers eingefiihrt, obwohl das filirs Programmie-
ren wenig hilfreich ist, weil sie ganz anders arbeiten. In der Strukturellen
Komplexitétstheorie werden Turingmaschinen als Berechnungsmodell be-
nutzt, weil sie fiir die genaue Analyse von Problemen und fiir Beweise am
flexibelsten und bequemsten sind; deswegen hatte Turing selbst sie einge-
fiihrt. In der Theorie der Formalen Sprachen hat man jahrzehntelang mit
Turingmaschinen gearbeitet, weil man unter Chomskys linguistischem Ein-
fluss Computerprogramme als Folgen von Symbolen und nicht als (Folgen
von) Formeln bzw. Termen ansah. In der Theorie effizienter Algorithmen
dagegen werden statt Turingmaschinen Registermaschinen benutzt. Man kann
sie als liber beliebigen Datenstrukturen arbeitend ansehen, so wie man das
heute in der Softwarespezifikation mit realen Computern macht. Register-
maschinen liefern daher realistischere Ergebnisse fiir die Analyse als Tu-
ringmaschinen. Mathematisch gesehen sind beide Modelle gleichwertig, weil
man sie wechselseitig simulieren kann. Nur die Aufwinde variieren, je nach-
dem, wie viel man in die Datenstruktur der Registermaschine hineinsteckt.

Heute scheint die Unterscheidung zwischen ,,numerischen* und ,,logisti-
schen Computern, zwischen Zahl- und Symbolverarbeitung iiberholt. Wir
manipulieren beim Programmieren nicht nur Zahlen oder Symbole, sondern
beliebige ,,Daten”, und modellieren Probleme in ,,Datenstrukturen®. In der
Objektorientierten Programmierung werden daraus beliebige Systeme von
,Objekten®, die miteinander kommunizieren und agieren wie Lebewesen.
Im Netz treiben solche Objekte als ,,Agenten® ihr Spiel. Auf dem Bildschirm
lassen sich solche Welten graphisch darstellen und manipulieren. Bilder sind
suggestiv. Deswegen meinen wir — Entwickler wie Benutzer —, auf dem Bild-
schirm die Wirklichkeit zu haben.*' Technik und Formalismen liefern so
machtige Werkzeuge fiirs Programmieren, dass die Maschine und die Sym-
bole dabei verschwinden. Wir hybridisieren, ohne es zu merken. Das erleich-
tert die Arbeit ungemein. Je bequemer aber Programmieren wird, je weniger
wir uns durch Technik oder Formalismen eingeengt fiihlen, desto leichter
verfallen wir dem alten Irrglauben, Probleme durch blofes Programmieren
,l0sen®, dass heifit zum Verschwinden bringen zu kdnnen. Weil uns die neuen
Objekte der Programmierung so natiirlich vorkommen, scheint Software-
entwicklung per se menschengerecht zu sein.

Von Neumann oder Turing?
Computer sind im Wesentlichen nach wie vor die Maschinen, die von Neu-
mann 1945 beschrieben hat. Sie kdnnen aber Symbole manipulieren, also

41 Ein schones Beispiel sind manche Beitrdge zur ,,virtuellen Lehre”; vgl. z.B. Schinzel,
Britta, Jorg Busse u. Dirk Siefkes: Bildung und Computer. Themenschwerpunkt FIfF-
Kommunikation 1/01, Berlin 2001.

Technikgeschichte Bd. 71(2004) H.3 197

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Dirk Siefkes

sind sie intelligent*> und konnen alles.** Aber wie soll das zusammenhéngen?
Wie eh und je befordern sich mathematische und technische Entwicklung
wechselseitig, und ,frither® und ,spéter‘ sind kaum zu benennen. Fasziniert
von Maschinen im menschlichen Alltag sah Turing* das Maschinelle in den
kalkiilisierten Berechnungen der Logiker und realisierte das, was er sah, in
einer formalen Maschine. Dass diese Maschinen universell sind, bewies er,
indem er sie kodierte und ihren eigenen Kode manipulieren lieB3. Inspiriert
von den schematisierten Vorgingen in Rechenbiiros sah von Neumann® das
Maschinelle in den numerischen Berechnungen der Mathematiker, Physiker
und Chemiker und verbesserte und abstrahierte mit dem, was er sah, die
schon existierenden realen Maschinen. Dass seine Maschinen alles konnen,
begriindete er zundchst* mit einer Analogie zum menschlichen Gehirn und
erst spater*’ mit Bezug auf Turing, in dem er reale Maschinen durch formale
Beschreibungen ersetzte und sie ihren eigenen Kode manipulieren lie, so
dass sie sich selbst reproduzieren und so entwickeln kdnnen. Motiviert von
seinen Erfahrungen mit kode-brechenden realen Maschinen arbeitete Turing
zur gleichen Zeit an der Entwicklung von Computern. Dass sie zur Intelli-
genz erziehbar seien, begriindete er mit den erstaunlichen Fahigkeiten der
von-Neumann-Maschinen. Die heutigen Vorstellungen von Wissenschaftlern
oder Politikern, von Technikverehrern oder -verdchtern, dariiber, was Com-
puter konnen und nicht konnen, haben ihren Ursprung in diesen alten Ver-
strickungen von Mythos und Wirklichkeit, von technischen Fakten und for-
malen Theorien und menschlichen Visionen.

Das heif3t nicht, dass Turing und von Neumann zusammen den Compu-
ter erfunden hétten. In beiden Personen spiegelt und verdichtet sich eine
Vielzahl von Stromungen ganz unterschiedlicher Art. Dass es fiir eine grund-
legende Erfindung mehr braucht als ein oder zwei Genies, zeigt der Ver-
gleich mit Konrad Zuse. Zuse hat seit 1936 technische und formale Ideen
entwickelt und umgesetzt, die denen Turings bzw. von Neumanns ebenbiir-
tig oder liberlegen und teilweise ganz dhnlich waren. Trotzdem ist er prak-
tisch ohne Einfluss geblieben und hat wenig zur Computerentwicklung bei-
getragen. Das hatte viele Griinde: Zuse war ein Einzelgéinger, ein techni-
scher Tiiftler, der Computer ,,aus Faulheit™“*® bauen wollte, aber weder Geld
noch Beziehungen noch eine formale mathematische Ausbildung hatte und
vom Militér abgewiesen wurde. Er hat an dem Projekt bis an sein Lebensen-
de und mit groBem Erfolg gearbeitet; aber seine Arbeiten wurden erst be-

42 Turing (wie Anm. 37).

43 Vgl. Neumann (wie Anm. 28); Turing (wie Anm. 19).
44 Turing (wie Anm. 19).

45 Neumann (wie Anm. 28).

46 Ebd.

47 Neumann (wie Anm. 35).

48 Zuse (wie Anm. 25).

198 Technikgeschichte Bd. #1(2004) H.3

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

Rechnen mit Zahlen oder Rechnen mit Buchstaben

kannt, als die Entwicklung in den USA schon viel weiter war. Von Neumann
war ein weltberithmter Wissenschaftler und Berater der US-Regierung, als
er mit der Computerentwicklung begann. Sein Motiv (Rechenleistung fiir
militdrische Zwecke) war fachlich und politisch hochst anerkannt. Er war
nicht nur ein wissenschaftliches, sondern auch ein kommunikatives Genie
(ein ,,Partylowe*, heif3t es), der in wechselnden Teams mit den unterschied-
lichsten Menschen zusammenarbeitete. Turing war menschlich ebenfalls ein
Einzelginger,* aber als Wissenschaftler geniigend in Beziehungen eingebun-
den und mit Mitteln versehen, um seine Visionen verbreiten und wie be-
sessen verfolgen zu kénnen.>

Wissenschaftliche und technische Erfindungen konnen sich wie alle Neu-
erungen nur durchsetzen, wenn sie in lokalen Zentren Erregungen bilden,
die sich ausbreiten konnen.”! Einzelne Menschen tragen solche Erregungen,
sie nehmen sie auf und geben sie weiter, verdndern sie vielleicht dabei. Das
Zusammentreffen zweier unterschiedlicher mathematischer Sichten — geschult
an logischen Kalkiilen bzw. an numerischen Verfahren — auf Menschen und
Maschinen, die rechnen, hat ein solches Zentrum gebildet. Die Erregung klingt
bis heute nach. Wir verstehen die heutige Aufregung um die Informatik bes-
ser, wenn wir ihr nachgehen.

Anschrift des Verfassers: Prof. Dr. Dirk Siefkes, TU Berlin, Franklinstr. 28/
29, D-10587 Berlin, E-mail: Siefkes@cs.tu-berlin.de.

49 Enzensberger, Hans Magnus: Mausoleum. 37 Balladen aus der Geschichte des Fortschritts,
Frankfurt a.M. 1975, S. 122-123.

50 Hodges (wie Anm. 20).

51 Siefkes, Dirk: Formale Methoden und kleine Systeme. Lernen, leben und arbeiten in for-
malen Umgebungen, Braunschweig, Wiesbaden 1992; ders. et al. 1998 (wie Anm. 6).

Technikgeschichte Bd. 71(2004) H.3 199

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Utheberrechtlich geschitzter Inhaf 3
untersagt, mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

IP 216.73.216.36, am 21.01.2026, 04:17:40. © Inhalt.

mit, for oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/0040-117X-2004-3-185

