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This work addresses the development of a novel method for bone pose estimation that is both,
non-invasive and accurate. The main principal is to palpate three prominent bone protuber-
ances using pressure sensor planes attached to the skin. Bone profuberances are approximated
by three ellipsoids that are rigidly attached together. The general formulation of the constraint
equations is presented and, as a solufion approach, an optimization cost function is proposed
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Notation

In this thesis, general vectors are assumed to be decomposed in the target frame. For
other decompositions, the notation f’[j is used, where 7 denotes the frame with respect

to which the motion is measured, j the target frame and k the frame of decomposition.

Furthermore, ‘R; denotes the rotation matrix transforming coordinates with respect to

frame K; into coordinates with respect to frame K;.
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Abstract

The knowledge about skeletal kinematics is essential in many biomechanical and med-
ical applications. However, an accurate, non-invasive and radiation-free method for
bone motion tracking is still an open issue. This thesis addresses the development of
a novel method for bone pose estimation that is both, non-invasive and accurate. The
main principal is to palpate three prominent bone protuberances using pressure sensor
planes attached to the skin. Bone protuberances are approximated by three ellipsoids
that are rigidly attached together.

At first, the geometrical problem of the planar case is analyzed, where ellipsoids be-
come ellipses and sensor planes become lines. After deriving the constraint equations
describing the mathematical model of the system, Grobner bases are used to find the
number of possible solutions for two different numerically defined configurations of the
lines and the ellipses. As a result, a maximum number of 32 different real solutions
for the symmetrical and a maximum number of 64 different complex and real solutions
for the general case are obtained. However, using the example of the symmetric case,
it can be shown that the solution variety can be significantly reduced. From the 32
real solutions only three solutions are physically plausible, taking into account that

pressure points are generated by an ellipse arc facing the lines.

This work also presents the general formulation of the constraint equations for the three
dimensional case. As a solution approach, an optimization cost function is proposed
including the squared minimal distances between sensors and ellipsoids allowing bone
pose tracking that is insensitive toward input errors. Furthermore, a dual fluoroscopy
validation of the method for three basic movements of the shank: flexion/extension,
abduction/adduction and internal rotation is presented. It is shown that by pressure
sensor palpation, bone tracking precisions of 0.5 mm to 1.0 mm and 0.3° to 0.6° can be
attained with respect to dual fluoroscopy manual registration, thus, reaching the same

order of magnitude as state of the art model based tracking techniques.

Finally, this thesis regards the limiting case where ellipsoids become points allowing the
introduction of an automatable procedure approximating the rigid body bone geometry
based on data from a previously performed bone pose measurement. Thereby, it is
possible to fully circumvent radiation exposure that might be necessary to extract
ellipsoid parameters from e. g. a computed tomography scan. Results indicate that
deviations to the ellipsoid-approximated bone model are in the submillimeter range

and may thus be negligible for many applications.
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