
Knowl. Org. 42(2015)No.8

H. Albrechtsen. This is Not Domain Analysis

557

This is Not Domain Analysis†

Hanne Albrechtsen

Copenhagen University, Royal School of Library and Information Science,
Birketinget 6 Copenhagen dk2300 S, Denmark

<hanne.albrechtsen@hum.ku.dk>

Hanne Albrechtsen is Director of the Institute of Knowledge Sharing (IKS), Copenhagen. She is a part-time
lecturer at Copenhagen University and senior scientist at IKS. She holds a doctorate in computer science from
Aalborg University, and an MLIS from the Royal School of Librarianship, Copenhagen, Denmark. She is past
president of the International Society for Knowledge Organization. Current research areas include knowledge
management, domain analysis, entrepreneurship, cognitive work analysis and HCI.

Albrechtsen, Hanne. This is Not Domain Analysis. Knowledge Organization. 42(8), 557-561. 15 references.

Abstract: The article is about the origins of domain analysis for knowledge organisation. Domain analysis has
become an established notion in information science and it covers the field quite broadly. Yet from the outset,
the aim was to present a methodological alternative to the information processing paradigm in information sci-
ence, which was especially focused on developing models for information retrieval and automatic indexing. Despite, or perhaps, because
of the wide-spread use of the term “domain analysis” in information science education and research, there are varied understandings of
its history and meaning. The aim of this contribution is to bring domain analysis back to the original roots of classifying in the world, and
to bring a first definition of a modern of domain analysis as a method of inclusion, heterogeneity and wholeness.

Received: 4 November 2015; Accepted 11 November 2015

Keywords: domain analysis, software development, classification research

† I am indebted to the late professor of social science Susan Leigh Star for inspiring the title and perspectives on the origin of domain analy-
sis. I would like to thank Professor John Law, Open University London, for supervising my research on “method” and discourse analysis
during 1998-2000. I am grateful to my colleague Professor Birger Hjørland for joint further development of domain analysis as a theory for
information science. I would also like to thank my fellow researchers in the PRACTITIONER for initiating me into the reality of software
development, and in particular Ms. Lene Olsen, project manager at CRI. Finally, I am grateful to Professor María J. López-Huertas for
commenting on early drafts of this article, and to doctoral student Matthew Kelly, for valuable comments and language editing.

1.0 Introduction: The journey begins

In June 1992, I prepared the thesis “Domain Analysis for
Classification of Software,” in connection with the infor-
mation science program at the Royal School of Library
and Information Science, Denmark. Since the spring of
1987, I had been working as a research engineer at Com-
puter Resources International (CRI), a medium-sized engi-
neering company based in Birkeroed, Denmark. CRI was
involved in international research, in particular for the
European Strategic Program on Research in Information
Technology (ESPRIT). Quite a few of the ESPRIT pro-
jects involved problems that are at the core of information
science, including knowledge organization in particular.
During my affiliation with CRI, I contributed to several

ESPRIT projects, in particular to the PRACTITIONER
project (P1094, 1987-1991).

PRACTITIONER was concerned with new approaches
to software development, based on software reuse. The re-
search on software reuse was carried out in collaboration
teams of researchers from many fields and many Euro-
pean countries, for instance computer science, computa-
tional linguistics, anthropology and software engineering.
The research was not constrained by any particular meth-
odology. The floor was open to many ways of doing
things. Knowledge sharing amongst the European project
teams, and in the local teams was essential.

The research manager at CRI formulated a strategy to
create sixth generation computing. There was no fixed
idea of what that would be—except that the sixth genera-

https://doi.org/10.5771/0943-7444-2015-8-557 - am 13.01.2026, 10:28:19. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2015-8-557
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 42(2015)No.8

H. Albrechtsen. This is Not Domain Analysis

558

tion would be conceptually more advanced than the fifth
generation computing, which focused heavily on artificial
intelligence (AI) and intelligent information technology
(IT) systems. The group was expected to explore that vi-
sion through project investigations of software design
and applications for various domains. In order to follow
the idea of working from the domains towards the sys-
tem design, researchers from many professional fields
were involved. Likewise, the groups reflected an even
gender representation. That was quite an innovative style
of thinking considering the breakneck pace that research
was conducted in during the late 1980s; engineering and
computer science were moving ahead quickly with the
conceptual developments in the artificial intelligence (AI)
and expert systems. The vision was that new AI devel-
opments and concepts would migrate into industrial de-
velopments like intelligent banking, medical informatics,
automatic translation, and automatic indexing. The main
fields driving the development were mathematics, com-
puter science and engineering. The research was highly
specialized. The development of tools and prototypes
emerged in closed laboratory environments. It was a
world of secrets, funded by billions of US dollars or
European Currency Units (ECUs). It was also a world of
causal reasoning and intense planning. Yet the research
manager at CRI painted a different path of development
through unconventional entrepreneurial thinking (Saras-
vaty 2009). Because of confidentiality provisions there
were intense restrictions on communicating details about
the work in CRI’s IT research laboratory during the first
few years.

Special areas of interest at CRI concerned how classi-
fication can support software development and reuse.
The research investigations led to contacts and collabora-
tion with experts in classification and indexing and re-
lated fields. In 1990, Dr. Ingetraut Dahlberg founded a
new professional society for the field: the International
Society for Knowledge Organization (ISKO). ISKO’s
first international conference took place in Darmstadt in
1990. The conference provided a first opportunity to pre-
sent the work done in the PRACTITIONER project and
to build community with colleagues in the field (Al-
brechtsen 1990). Quite a few presentations of PRAC-
TIONER have been given at software engineering con-
ferences and in associated journals (eg., Mili et al. 1994),
or in technical reports, such as those delivered to the
European Economic Community (EEC) (e.g., Sedwell et
al. 1988) and later to the European Union. The work
done prior to the development of “domain analysis” was
at the same time highly multi-disciplinary and collabora-
tive.

2.0 Software concepts and domains

PRACTITIONER (P1094, 1988-1992) developed the no-
tion of “software concepts” as a main unit of analysis for
developing tools for software reuse. “Software concepts”
covered a range of standard representational models for
system development, including data models and object
modeling, as well as descriptions and maps of software
components for medium-sized or large software systems.
The research in the software reuse field was and is quite
comprehensive (for an overview, see Albrechtsen 1992;
Mili et al. 1994; Frakes and Kang 2004). The main factors
driving this research were the growing demands for large-
scale systems in the military sector and the public sector.
The large number of failed IT systems also meant that
there was an obvious need for system development; in ad-
dition to this there was a need to rein in development
costs—the programmers, to a large degree, ruled the land.
The code (software programs) was often largely incompre-
hensible to teams outside of the development teams, and
despite standardization and documentation, there were still
problems getting big and complex systems built. The over-
all dream was, metaphorically, an industrial one: a software
factory, where existing software and models could be
linked and put to life instead of being taken away to a
software cemetery and laid to rest. This was, regrettably,
the state of affairs at the time PRACTITIONER set out
with ideas for solutions and prototype tools.

Software reuse research started out as a highly com-
petitive field. It unfolded within various disciplinary set-
tings, typically within software engineering and computer
science (Frakes and Kang 2004; Prieto-Diaz 1991). From
the point of view of classification research, Prieto-Diaz’s
approach is especially interesting because its main theo-
retical basis is Ranganathan’s theory of faceted classifica-
tion. Prieto-Diaz developed a faceted scheme for classifi-
cation of software components and introduced the term
“domain analysis” for the analytic-synthetic approach that
he suggested.

Despite the rich choices of knowledge organization
methods and systems that we explored in PRACTITIO-
NER, a comprehensive theory for classification of soft-
ware did not exist. The multiplicity in the field during the
1980s and 1980s is typical of a new research field, with
many different disciplines and interests contributing. By
adding to that the influence of multidisciplinarity, with all
of the attendant methodological, paradigmatic and classi-
ficatory concerns that influence and cross boundaries, it
is not difficult to see how chaos may well be imminent.
Fortunately, close collaboration, and continuous knowl-
edge sharing amongst the researchers and developers,
helped to obviate such a situation occurring. Despite this,
situations of uncertainty prevailed. I recall once instance

https://doi.org/10.5771/0943-7444-2015-8-557 - am 13.01.2026, 10:28:19. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2015-8-557
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 42(2015)No.8

H. Albrechtsen. This is Not Domain Analysis

559

where our project manager at CRI discovered that two
separate and very different prototypes were under devel-
opment, contrary to the contract and agreement regard-
ing prototype development in PRACTITIONER. The
project groups and managers discussed the situation, and
agreed that two prototypes would be better than one. The
situation was, at the outset, a competitive one with the
question being asked: “which prototype would qualify as
the “real” project outcome?” The result was, however, a
significant innovation in terms of new tools for software
development and reuse (Mili et al. 1994).

Overall, the project groups at CRI experimented with
many approaches to knowledge organization, from fac-
eted classification to computational linguistics and auto-
matic indexing and term extraction for thesauri.

Yet the proposition at this point is: We did not do
domain analysis.

While the projects were domain-specific: software de-
velopment for diverse work domains ranging from librar-
ies to the space industry and medical informatics and ro-
botics, we also developed knowledge organization sys-
tems (KOSs) for specific domains like software. Still, it
needs to be highlighted that the development of knowl-
edge organization systems for specific domains is not, in
and of itself, a domain analysis.

3.0 Where are the domains?

My second proposition is that there is no ready-to-hand
domain “out there” to be discovered and colonized by a
domain analyst for the design of a knowledge organiza-
tion system, which will then make it possible for the
knowledge organizer to “rule the land.” There is no all-
knowing analyst. The domain is not a kingdom, nor is it a
republic. On the contrary, for the design of a KOS, the
domain is, in the terminology of Schmidt and Wagner
(2004, #) a “field of work” for several interested parties

(for instance, professional organizations, libraries or KOS
researchers) that are concerned with the development of
specific knowledge fields or tools. As a “field of work”
the domain is constructed in and through the process of
planning, design and construction of a particular KOS. I
am aware of the apparent constructivist agenda underly-
ing this statement, but in alignment with Schmidt and
Wagner, this is a pragmatic view of design.

My work on domain analysis for classification of soft-
ware explores the knowledge domains of software devel-
opment and reuse from different perspectives and knowl-
edge interests in computing disciplines—in a narrow
sense— as well as more broadly, in the humanities and
social sciences. There was no predefined itinerary for the
journey. At the outset, it was not possible to set out a de-
tailed plan. Figure 1 represents a map of the actual jour-
ney into the domain of software reuse, as presented in
Albrechtsen 1992a and Albrechtsen 1992b.

The mission took off from a bibliometric island from
where I could view the publications on software reuse, in
relation to the disciplines and topics involved (step 1 in
figure 1). The results led to a new step: a focus on the
state-of-the-art for software reuse in the most important
disciplines involved: computer science and software engi-
neering (step 2 in figure 1). In particular for computer
science the study identified quite diverse paradigms or
knowledge interests, from a technical interest that sought
to create perfect and fail-safe tools to a more liberating
interest that involved creating IT tools that would set free
creativity in individuals and groups (step 3 in figure 1).
That last knowledge interest was not mainstream for
software development in 1992, with the exception of
Scandinavian schools of software development and the
developing field of computer supported cooperative
work (CSCW). As my research focused on classification
the question now became: “what kinds of KOS tools and
theory would be relevant to developing a method for

Figure 1. Main Points of the Journey into Domain Analysis for Software Reuse.

(This model was presented in Albrechtsen 1992a and 1992b, and it was subsequently used for
instruction of KOS design at the Royal School of Library and Information Science, Copen-
hagen and Aalborg)

https://doi.org/10.5771/0943-7444-2015-8-557 - am 13.01.2026, 10:28:19. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2015-8-557
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 42(2015)No.8

H. Albrechtsen. This is Not Domain Analysis

560

classification of software?” The journey continued to
classification theory and to the use of faceted classifica-
tion for the “domain” of software (step 4). Prieto-Diaz’s
work (1991) was an important inspiration. Prieto-Diaz
applied and translated Ranganathan’s generic model of
facet analysis and classification for what he termed “do-
main analysis,” as a systematic methodological approach
for knowledge organization. The meeting with Diaz’s
work is the first encounter with an important computer
science theory that integrates system development with
an important theory developed in library and information
science: Ranganathan’s theory of faceted classification.

I chose the model of faceted classification for classifi-
cation of software because of its flexibility and openness
to concepts and with a view toward the dynamic devel-
opments then occurring in the fields of computer science
and software engineering. The next key destination of
discovery became therefore the concept of “facet” and
understandings of “facet” in information science (step 4
in figure 1). This phase proved to be a rather complex
part of the journey, presumably because facet analysis
was my specialty at the time. I realized that in order to
complete the journey I would have to construct a facet
classification scheme for software (see Figure 2).

(For a detailed introduction to each facet, see Albrecht-
sen 1992a, 33-52). The resulting scheme was a prototype
that included the key aspects investigated (step 5 in figure
1). The scheme was finally put to a walkthrough evaluation
for two very different software concepts: The Book House
tool for indexing fiction novels, and the word processor
program Word Perfect’s “Save” function (Step 6 in figure
1). The conclusions from these modest first tests were not
that the analysis approach was proven right or wrong. The
aim was to invite the new method into the reality of a pro-
spective user.

4.0 Here are the domains: concluding remarks.

Domain analysis has become an established concept in in-
formation science and it covers the field quite broadly.
Domain analysis was scaled up from the KOS journey on
software reuse to a comprehensive methodological frame-
work in information science by Hjørland and Albrechtsen
(1995). From the outset, the aim was to present a meth-
odological alternative to the information processing para-
digm in information science, which was concerned with
developing models for information retrieval (IR) and
automatic indexing. Despite, or perhaps, because of the
widespread use of the term “domain analysis” in IS educa-
tion and research, there are varied understandings and ac-
counts of its history and meaning. Domain analysis ap-
pears to have acquired interpretive flexibility (in the termi-
nology of SCOT, Social Construction of Technology).
The growing amount of variations in meanings and use
might indicate a certain strength of the concept to prevail
across interpretations and uses, almost like a boundary ob-
ject (in the terminology of Star 2010). At the same time,
that could also indicate the implicit view that “anything
goes” in domain analysis—or pluralism, in a philosophical
sense. Lopez-Huertas’s article (2015) on interdisciplinarity
and domain analysis is a highly relevant case in point: if
domain analysis is restricted to scientific knowledge do-
mains or professions like psychology and medicine, then
how can we develop domain analysis for multidisciplinary
fields like women’s studies and IT systems development?

The approach to domain analysis for classification of
software was presented and discussed at international
conferences and in journals during 1992-1993 (e.g., Al-
brechtsen 1992b; 1993). In hindsight, I realize that the
first research on domain analysis for classification of
software built on an implicit thesis that software devel-

Figure 2. Main Facets of Prototype KOS for Software Reuse.

https://doi.org/10.5771/0943-7444-2015-8-557 - am 13.01.2026, 10:28:19. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2015-8-557
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Knowl. Org. 42(2015)No.8

H. Albrechtsen. This is Not Domain Analysis

561

opment is, or can be, a kind of knowledge creation. That
system development is fundamentally a translation
amongst diverse interests and parties.

The journey in the early days of domain analysis was a
modest one. In Haraway’s terms I was a modest witness
and participant of KOS research in the light of AI and
expert systems. My colleagues and I never developed 6th
generation computing. However, we developed new ways
of working with science and development, in multidisci-
plinary teams and groups, based on entrepreneurship and
knowledge sharing. I never found the promised land of
“domain.” Domain analysis is a method. Following Law
(2004), I believe it is important to point to how a method
not only describes realities, but also is intimately involved
in creating them. “Domains” are not terrains out there,
waiting to be described and analysed by the initiated few.
Fundamentally, we may all create them.

References

Albrechtsen, Hanne. 1993. “Subject Analysis and Index-

ing: from Automated Indexing to Domain Analysis.”
The Indexer 8 no. 4: 219-24.

Albrechtsen, Hanne. 1992a. “Domain Analysis for Classifi-
cation of Software.” Thesis. Royal School of Library
and Information Science. Available at Researchgate or
from the author (e-mail:

 hanne.albrechtsen@hum.ku.dk).
Albrechtsen, Hanne. 1992b. “Domain Analysis for Classifi-

cation of Software.” In ASIS '92: Proceedings of the 55th
ASIS annual meeting, 29. Medford (New Jersey): Ameri-
can Society for Information Science and Learned In-
formation, pp. 2948-63.

Albrechtsen, Hanne. 1991. “PRESS: a Thesaurus Based
Information System for Software Reuse.” In Classifica-
tion Research for Knowledge Representation and Organisation:
Proceedings of the 5th International Study Conference on Clas-
sification Resea (FID), ed. Nancy J. Williamson and Mi-
chelle Hudon. Amsterdam: Elsevier, pp. 137-49.

Albrechtsen, Hanne. 1990. “Software concepts: Knowl-
edge Organisation and the Human Interface.” In Tools
for Knowledge Organization and the Human Interface: Proceed-
ings, 1st International ISKO-Conference, Darmstadt, 14-17
August 1990, ed. Robert Fugmann. Advances in knowl-
edge organization 2. Frankfurt: INDEKS Verlag, pp.
48-63.

Frakes, William B. and Kyo Kang. 2005. “Software Reuse
Research: Status and Future.” IEEE Transactions on
Software Engineering 31: 529-36.

Hjorland, Birger and Hanne Albrechtsen. 1995. “Toward a
New Horizon in Information Science: Domain Analy-
sis.” Journal of the American Society for Information Science 46:
400-426

Law, John. 2004 After Method: Mess in Social Science Research.
1st ed. International Library of sociology. London:
Routledge.

López-Huertas, María J. 2015. “Domain Analysis of In-
terdisciplinary Knowledge Domains.” Knowledge Or-
ganization 42: 570-80.

Mili, Hafed et al. 1994. ”Practitioner and SoftClass: A
Comparative Study of Two Software Reuse Research
Projects.” Journal of Systems Software 25:147-70.

Prieto-Diaz, Ruben. 1991. “Implementing Faceted Classi-
fication for Software Reuse.” Communications of the
ACM 34 no. 5: 88-97.

Sarasvathy, Sara.D. 2009. Effectuation: Elements of Entrepre-
neurial Expertise. Northampton (MA): Edward Elgar
Publishing.

Schmidt, Kjeld and Ina Wagner. 2004. “Ordering Sys-
tems: Coordinative Practices and Artifacts in Architec-
tural Design and Planning.” Computer Supported Coopera-
tive Work (CSCW) 13: 349-408.

Sedwell, Ian, Ulla Kaaber and Hanne Albrechtsen. 1988.
The Linguistic Analysis of Unix On-Line Documenta-
tion, Unrestricted, P1094-BrU-WPC4-Working Paper-
8814 (Technical Report).

Star, Susan Leigh. 2010. “This is not a Boundary Object.”
Science, Technology & Human Values 35: 601-17.

https://doi.org/10.5771/0943-7444-2015-8-557 - am 13.01.2026, 10:28:19. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-2015-8-557
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

