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Abstract

Agricultural robots which perceive and understand the field situation enable new, more
ecological and sustainable precision agriculture processes. Especially in organic or veg-
etable crops weed is a major cost source, both through yield loss and when weed control
is performed. However, plant classification and position estimation in such high value
crops is especially challenging in early growth stage since the crop is typically still small,
close-to-crop weed plants of all sizes appear and severe overlap of plants is present.

This thesis presents a new plant classification system and a novel plant position estimation
pipeline to enable precision agriculture with field robots. Additionally, a camera system
and a vegetation segmentation method are developed. The combined system is finally
integrated into a field robot and evaluated in a commercial organic carrot farm.

The novel plant classification system is able to distinguish two or more plant classes in
vegetation segmented field images without the need for error-prone plant or leaf segmen-
tation. Feature extraction and supervised classification of overlapping image patches allow
the pipeline to handle overlap of plants and irregular shaped leaves. The newly introduced
smoothing and interpolation steps compensate the loss of spatial output precision of pre-
viously known cell-based methods and ensure a full per-pixel labeled plant classification
output image.

The presented plant position estimation pipeline applies a sliding window-based classi-
fication approach combined with non-maximum suppression to determine plant stem
positions. The pipeline solves the generic problem of determining the position of both
crop and weed plants in images only. No additional data such as GPS or crop row infor-
mation is required. The proposed solution has the advantage that it is applicable to real
world field images and not only controlled lab or greenhouse setups. The output plant
position estimates are not only suitable for weed control, but also for crop counting and
other precision agriculture tasks.

In experiments with the custom built field robot the applicability of the presented methods
is proven. In combination with a weed regulation module and the Bonirob field robot,
single plant organic weed control in commercial carrot farms is demonstrated.

Keywords: Computer Vision, Machine Learning, Agriculture, Robotics, Plant Classifica-
tion, Plant Position Estimation, Weed Control
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Kurzfassung

Agrarroboter, welche die Feldsituation verstehen, erméglichen umweltfreundlichere und
nachhaltigere Prizisionslandwirtschaft. Insbesondere beim Anbau von Bio- oder hoch-
wertigen Nahrungsmitteln ist Unkraut ein Hauptkostentreiber, sowohl durch Ernteeinbu-
Ben als auch durch die Kosten der Unkrautregulierung. Jedoch gerade bei hochwertigen
Nahrungsmitteln ist eine automatische Klassifikation und Positionsschitzung in frithem
Wachstumsstadium herausfordernd: Nutzpflanzen sind typischerweise noch klein, Un-
kraut tritt in allen Gréfen und direkt neben Nutzpflanzen auf. Dariiber hinaus kann starke
Uberlappung von Pflanzen oder Pflanzenteilen vorliegen.

Diese Arbeit stellt ein neues Pflanzenklassifikationssystem und eine neue Methode zur
Pflanzenpositionsschitzung vor. Ziel ist Prazisionslandwirtschaft mit Feldrobotern zu
ermoglichen. Zusitzlich werden ein Kamerasystem und eine Methode zur Vegetations-
segmentierung entwickelt. AbschlieBend wird das Gesamtsystem in einen Feldroboter
integriert und in einer kommerziellen Bio-Karottenfarm evaluiert.

Das entwickelte Pflanzenklassifikationssystem kann zwei oder mehr Pflanzenarten in
vegetationssegmentierten Bildern unterscheiden; die fehleranfdllige und in verwandten
Arbeiten oft benétigte Pflanzen- oder Blattsegmentierung ist hier nicht erforderlich. Merk-
malsextraktion und tiberwachte Klassifikation erfolgt auf tiberlappenden Bildausschnitten.
Dies erlaubt dem System die Verarbeitung von Uberlappungen und von Bléttern mit un-
regelméliger Form. Die neuen Glidttungs- und Interpolationsschritte verhindern den
Prézisionsverlust bereits bekannter zellbasierter Methoden und stellen gleichzeitig die
Ausgabe eines kompletten Pflanzenklassifikationsbildes sicher.

Die entworfene Methode zur Schitzung von Pflanzenpositionen nutzt ein Klassifikations-
verfahren auf Bildausschnitten mit Nichtmaxima-Unterdriickung. Das System 16st das
generische Problem, die Position von Unkraut und Nutzpflanze zu bestimmen. Es werden
auller dem Bild keine zusétzlichen Informationen wie GPS oder Ort der Pflanzenreihe
bendotigt. Die entwickelte Losung hat den Vorteil, dass sie auf Feldbilder anwendbar ist
und nicht nur in kontrollierten Labor- oder Gewdchshausumgebungen funktioniert. Die
Positionsausgabe ist tiber Unkrautregulierung hinaus auch fiir das Zdhlen von Pflanzen
und andere Methoden der Prézisionslandwirtschaft anwendbar.

Versuche mit dem entsprechend gebauten Feldroboter Bonirob zeigen die Anwendbarkeit
des Systems. In Kombination mit einem Unkrautregulierungswerkzeug wird die Regulie-
rung einzelner Unkréuter in einer Bio-Karottenfarm erfolgreich demonstriert.

Stichworte: Bildverarbeitung, Maschinelles Lernen, Landwirtschaft, Robotik, Pflanzen-
klassifikation, Pflanzenpositionsschitzung, Unkrautregulierung

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

216.73.216.60, am 24.01.2026, 03:58:09. © nhak.
m

mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186870100

1 Introduction

Agriculture throughout the world faces major challenges: The need for food keeps growing,
arable land is limited and excessive use of chemicals or fertilizer severely impacts the
environment. Additionally, new technologies like biofuel or construction with renewable
resources put additional pressure on agriculture and forestry around the world. Recent
developments in automation, computer science and robotics are promising technologies
to cope with these challenges and mitigate negative effects on the environment and
climate.

Since more than 30 years precision agriculture techniques for improved farm management
have been researched [1]: In precision agriculture variation in the farming process is
actively managed with the goal of optimizing the output of the process. For example in
site specific management (SSM) fields are not treated homogeneously, rather the process
is adjusted to the specific need at the currently treated location in the field [2]. Such site
specific management techniques were developed for fertilization, watering, sowing and
selective weed control.

Field robots combine advances in information technology, robotics and agriculture to
enable high precision farming [3, 4]. For example drones or ground-based robots can
generate weed maps [5] and fertilization or weed control processes can be adjusted with
high precision for single plants.

Especially in organic vegetable farming of crops such as carrots or onions, severe weed
infestation can occur because no chemical herbicides are permitted. Moreover, weed
control is required in the early crop growth stages to avoid substantial yield loss [6]. The
state of the art in so-called close-to-crop weed control for organic vegetable farming is
still manual weed removal by field workers. The weed control task is very tedious, costly
and time consuming [7].

The incentive for automating weed control with field robots is manifold and goes beyond
organic farming or cost optimization: Excessive use of chemicals for weed treatment threat-
ens the environment and an increase in weeds with resistance against known herbicides [8]
questions current farming practices. Additionally, stricter environmental protection legis-
lation enforces farmers to use smaller quantities of chemical herbicides [9] or fertilizers
and increases the trend towards novel solutions for the weed problem.

Precision weed control projects share with other activities for intelligent farm management
and precision agriculture a requirement for detailed information about the farming process
[10]. Such information includes climate, current weather and soil conditions (for example
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moisture content and fertility), seed and plant properties (for example species, size, health),
data about the agricultural machine and treatment process and many others. An increase
in available data enables more automatic, environmentally friendly, cost-effective and
organic production of crops and vegetables [11].

Of special interest for precision agriculture is data about individual plants including the
type of each plant and its position in the field. A variety of data acquisition methods
can be used to collect such information [12]: From manual gathering of measurements,
sensors placed at fixed locations in the field, airborne or satellite-based sensing or fully
automated data retrieval onboard of ground-based tractors or robots, many sensing con-
cepts have been applied. With airborne or satellite-based sensing large scale imagery can
be acquired easily at the cost of reduced resolution [13], whereas ground-based tractor
or robot mounted image sensors can deliver high resolution data about single plants or
small field patches [14, 15].

Therefore, automated ground-based vision sensors are an especially promising technology
to capture these important high resolution measurements in the field and to enable smart
precision agriculture projects.

1.1 Scope

This thesis considers automatic acquisition and processing of field images with machine
vision to extract information about plants with the goal of enabling novel smart farming
applications like weed control in organic farming.

A first goal is to develop and deploy a suitable camera system which needs to be adapted
to both the agricultural task as well as how it is deployed to the field.

Second, the objective for the computer vision system is to remove all non-vegetation pixels
(for example soil in the background) and then to extract detailed plant related information:
On the one hand, this comprises the plant classification task, where plants are classified
into individual species or categories like crop and weed. On the other hand, this includes
the task of determining the position of a plant in the field.

Approaching these tasks, it has to be considered that in so far unsolved precision agriculture
tasks like weed control in organic crops, plants are typically small when weed treatment
has to be applied: The plants are still in early growth stage (0 cm to 5cm in diameter)
and parts of plants such as the stem can be as small as 2 mm. Thus, the images must
be captured with high resolution sensors. An additional challenge arises because both
crop and weed plants have the same size since typically before the crop germinates the
complete field is weeded completely for example mechanically or with flame weeders.

Third, the acquisition and extraction of information should happen in an automated
manner: Automatic machine vision algorithms are applied to extract the plant properties
without human supervision during application in the field.
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1.2 Related Work

Fourth, to realize smart farming applications the camera and machine vision system
must be compatible to be deployed with an autonomous field robot. When the sensing
and computer vision system is combined with for example a weed regulation module,
automatic organic weed control can be realized.

1.2 Related Work

The application of computer vision and machine learning to agricultural problems is an
active research field: In the following the state of the art for plant classification, plant
detection and position estimation is reviewed. A detailed analysis and in depth discussion
of related work follows in the individual chapters of the thesis.

Plant Classification The classification of plants or leaves with camera sensors and
machine vision has been studied on different levels.

Leaf classification has been researched in constrained scenarios where an image of a
single flattened leaf is classified [16, 17, 18, 19, 20]. Some groups developed smartphone
applications for leaf classification [21, 22]. Few work has focused on in the field leaf
recognition [23, 24, 25].

Ground based plant classification with camera sensors can be divided into three major
approaches: First, plant segmentation based methods try to initially segment the field
image into blobs that represent single plants and then derive a plant classification de-
cision per blob [26, 27, 28, 29, 30]. These approaches have problems when plants grow
close together and overlap. Second, methods that detect the crop row and then use this
information to locate weeds were developed [31, 32, 33, 5, 34]. Such row-based methods
are not well suited for intra-row weed control where also weed plants within the crop
row must be treated. Third, cell-based methods avoid segmentation and tessellate the
whole image into non overlapping cells. The classification decision is then output per cell
[35, 36, 37, 38, 39]. This inherently reduces the output precision because the decision is
limited to whether a cell contains weed or not.

Besides these major directions also other methods have been used to discriminate plants:
For example remote sensing [40] and hyperspectral sensing [41, 42, 43] or methods based
on crop seed mapping with GPS sensors [44, 45, 46] which enable the system to relocate
crops in the field at later stages. Weed control is not the only application for such machine
vision pipelines. Also defects on vegetables and fruits [47], diseases on flowers [48] can be
detected and robotic harvesting of individual crops can be implemented [49]. Additionally,
other agricultural metrics like plant height, nitrogen content, etc. can be derived from
images using machine vision [50, 51, 52].

The existing work on plant classification lacks the ability to robustly process field images
where plants are of different sizes, overlap heavily and crop plants mix with as well as grow
close to weed plants. Furthermore, the plant segmentation and cell-based methods —
which better cope with these situations — have the disadvantage that no complete plant
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classification image is obtained and therefore single plant weed removal or phenotyping
applications are not possible.

Plant Detection and Position Estimation The detection of plants and the estimation
of their growing position in fields is an important property for high precision agriculture
projects and has been studied from different perspectives.

On a coarse level, row detection methods can be applied to detect the positions of the
crop row in fields [29, 53, 54, 55]. Additional processing steps are required to detect the
position of a plant along the crop row.

Furthermore, the centroid or center of a segmented plant can be determined, post-
processed and used as plant position estimate [31, 56, 57, 58, 59]. These methods require
a good initial segmentation of plants, situations with overlap make position estimation
difficult and result in errors with these methods.

Moreover, technologies other than 2D image processing are applicable: External georefer-
encing can be used to re-detect the plant position in the field [60] using plant mapping.
High precision RTK GPS positions of the seeds are recorded during sowing and using
the recorded coordinates plants can be located later in the field [44, 45, 61, 46]. RTK GPS
methods have improved, but the required sub-centimeter accuracies are not reachable
yet and additional errors from seed displacement can not be corrected by seed mapping
approaches.

Finally, 3D sensing and processing has been applied to the problem [62, 63, 64, 65, 66, 67].
However, these methods require special equipment (for example stereo or time-of-flight
3D cameras) and are tailored towards specific use cases.

The few existing work on plant detection and position estimation lack the ability to estimate
the position of both crop and weed plants in outdoor field images. Most methods only work
with large plants and additionally produce insufficient results when plants overlap because
error-prone plant segmentation is performed. Seed mapping-based approaches are not
applicable to precision agriculture tasks like weed control because the plant position map
does not contain weed positions.

With precise knowledge of both the plant class and position, plant specific treatment can
be realized. This includes plant specific weed control, selective watering or fertilizing,
thinning of crops and pruning of parts of plants.

1.3 Contributions of the Thesis

This thesis develops a new machine vision approach to plant classification and plant
position estimation for agricultural robots. The complete machine vision system must
be suited for integration into field robots. Additionally, it must be applicable to different
precision agriculture projects where information like plant class, plant position or other
plant related metrics are required.
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1.3 Contributions of the Thesis

In contrast to previous studies which mostly focus on large crops such as corn or sugarbeet,
the goal of this thesis is to solve these vision tasks in early stages of vegetable farming. The
field situation is challenging since crop plants are very small while weed plants occur in
different sizes. Simply moving the camera closer is not a solution. Moreover, plants grow
close together (intra-row distance of approximately 1-2 cm) and overlap between plants
occurs. The envisioned precision agriculture approaches require high precision per-pixel
plant classification and sub-centimeter accurate plant position estimation. Otherwise,
plants cannot be classified and treated individually and for example precision weed control
is not possible.

The properties of the novel plant classification approach which fulfills these challenging
requirements are as follows:

¢ The developed plant classification system works in real world field situations of
commercial carrot farms: Inter- and intra-row weed is discriminated from crop,
weed that grows close-to-crop as well as overlap of plants are successfully handled.

The method for plant classification requires no prior plant or leaf segmentation: Ex-
traction of shape and statistical features is performed on overlapping image patches.
Then for each patch a plant classification score is determined using a supervised clas-
sification algorithm and associated to the keypoint where the patch was extracted.

The classification results per keypoint are spatially smoothed using a Conditional
Random Field (CRF) and interpolated to full image resolution via nearest-neighbor
interpolation. The system outputs a crop/weed estimate for all vegetation pix-
els in the image. The precision loss of cell-based methods that classify large non-
overlapping cells (see related work) is avoided. This novel divide and conquer ap-
proach enables the system to handle overlap of plants and region where leaf or plant
segmentation algorithms struggle (for example irregular shaped leaves).

Additionally, the classification system can be trained to discriminate more than two
classes: For example a crop and multiple specific weed classes can be defined; this
enables applications where for example occurrences of a special weed need to be
monitored or this weed needs to be treated with a specific method.

The new method for plant detection and sub-centimeter accurate position estimation in
multispectral field images has the following properties:

* Plant position estimation is formulated as a detection problem. A modified sliding
window is applied and each image patch representing the local neighborhood in
the image is classified whether it displays a stem or non-stem region. The resulting
stem scores are smoothed and processed with non-maximum suppression to yield
the estimated plant stem positions.

During pipeline training a special procedure is conducted to generate stem an non
stem patches. The characteristic appearance of the plant stem region is described
with novel statistical and geometric features. The feature representation and labels
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are used to train a classifier which is able to discriminate between patches displaying
a stem or no stem.

Only downward looking multispectral images of plants are processed, no additional
information (like for example row location or all crop positions) is required. The
stem detection process is not based on pre-segmented plant regions or pixel-based
classification.

The novel plant position estimation pipeline copes well with real world field situ-
ations, where plants overlap. It detects both crop and weed plants and therefore
enables to precision agriculture tasks like single plant weed control.

After the evaluation of the individual pipelines, the estimated plant positions are merged
with the plant classification image. This combined system has the following properties:

By combining the plant classification image and estimated plant positions, crop and
weed plant positions in the field are determined. Now, single plant weed treatment
can be realized: For estimated plant positions where the plant classification predicts
weed as plant class, a treatment with a weed removal tool is scheduled. Detected
crops are skipped and therefore preserved.

Finally, the developed pipelines and camera system are validated in a field robot
in a publicly funded project: The field robot Bonirob V2 is built and equipped with
the combined system developed here as well as a mechanical weed control module.
Using this setup crop/weed discrimination and weed control are demonstrated in a
commercial organic carrot farm in a fully automated manner.

Parts of this thesis have been published in papers [68], [69], [70] and a book chapter [71].
Furthermore, the results of the thesis have been successfully applied in a publicly funded
project. In that context additional papers were co-authored: [72], [73], [74], and [75].

Additionally, a dataset of field images with intra-row and close-to-crop weed infestation
was made publicly available (https://github.com/cwfid/dataset) to the research com-
munity with the publication [70]. The dataset includes images, ground truth crop/weed
annotations as well as results from a plant classifier.

1.4

Structure of the Thesis

This thesis is structured as follows:

Chapter 2 introduces fundamental computer vision and machine learning principles.

This includes the definition of features, feature extraction, classification and regres-
sion. Additionally, the Random Forest classification algorithm which is used in the
thesis is presented. These concepts are used throughout the thesis and are applied
and extended for plant classification and detection with field robots.
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Chapter 3 focuses on the acquisition of field images which are best suited for plant and
stem classification. A multispectral camera setup which delivers color and near-
infrared (NIR) images is derived from requirements after comparison of available
sensing principles. The second part of the chapter presents the developed vegetation
segmentation method based on the Normalized Difference Vegetation Index (NDVI)
and an improved filtering and thresholding scheme. After vegetation segmentation
all background non-biomass pixels are masked.

Chapter 4 presents the developed plant classification system. The system processes the
multispectral vegetation segmented field images to produce plant classification
information. The novel plant classification system extracts features from overlap-
ping patches, then applies a supervised Random Forest classifier, smoothing with
a Conditional Random Field and interpolation to yield an estimated plant class
value is assigned to each vegetation pixel. This full plant classification image is a
suitable input to the introduced precision agriculture methods like plant specific
weed control.

Chapter 5 develops the plant stem detection and position estimation process. The input
to the plant position estimation system are only the vegetation segmented field
images from Chapter 3. The system uses a novel feature extraction and classification
scheme together with filtering and non-maximum suppression to output estimated
plant positions. The stem detection and position estimation processes are plant
type independent and produce estimated positions for all plants (both crop and
weed). The plant stem position output allows plant specific precision agriculture.

Chapter 6 presents experimental results and a discussion. First, the acquisition of the
datasets using a custom built field robot and their properties are introduced. Second,
the plant classification method from Chapter 4 and the stem detection and position
estimation method from Chapter 5 are analyzed given the datasets and their results
are discussed. Finally, the combined system for plant classification and position
estimation is presented and evaluated in a robotic single plant weed control task.
This concludes the discussion with the farmer’s perspective.

Chapter 7 summarizes the thesis and presents conclusions.

Figure 1.1 displays the structure of the thesis in a graphical form. It displays the image
acquisition, vegetation segmentation, plant classification and position estimation modules
together with example images and the data flow between the steps. Evaluation of results
and discussion is performed for each pipeline separately and furthermore for the combined
system. Finally, the output for single plant weed control is depicted with the developed
and built field robot.
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Chapter 3.1 Multispectral Field Image Acquisition
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Figure 1.1: Visual structure of the thesis: Image acquisition and vegetation segmentation
are the first steps. Plant classification and plant position estimation run in parallel. The
evaluation and discussion is performed for each pipeline as well as for a combination. The
combined output is applied with a field robot to implement single plant weed control.
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2 Background: Computer Vision and
Machine Learning

As stated in the introductory chapter the aim of this thesis is to automate perception and
classification tasks in the agricultural domain. Today these tasks are still carried out by
workers using human visual perception and cognition.

Over decades the study of the human visual system together with progress in mathematics,
electronics and computer science led to the development of the field of computer vision.
It comprises methods and algorithms which allow computers to acquire and process
visual information. During the same time, machine learning evolved where machines are
programmed with the goal to enable them to “learn”.

Combining computer vision and machine learning techniques to solve perception and
reasoning tasks is an active research field with a manifold of applications in the real world,
the aim of this thesis included.

In the following, this chapter introduces fundamental computer vision concepts as well as
machine learning techniques that are of relevance for this thesis.

2.1 Computer Vision

Computer vision is a field in computer science which studies methods and algorithms
that allow computers to acquire and process visual information. It is a very active and
broad field of research with many subtopics and applications in the real world.

Computer vision algorithms and their application are omnipresent: They are applied
in factories where computers analyze products for defects and control robotic arms. In
agriculture and food production computer vision helps guide tractors across fields, to
sort and grade produce and to detect diseases. In cars computer vision algorithms detect
possible accidents and issue emergency braking signals, they detect sleepy drivers and in
the future will play a major role in autonomous driving. Last but not least, consumers rely
on computer vision techniques; for example when using smartphone applications like bar
code and QR-code readers, when they acquire and process images and videos, or upload
them to image processing applications on the internet.

The discussion in the remainder of this section starts with image acquisition and repre-
sentation, then low-level techniques, feature extraction and high-level techniques are
introduced.
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2.1.1 Digital Image Acquisition and Representation

A basic building block of computer vision systems is the acquisition and representation
of image or video data. Optical image sensors or digitization equipment can be used to
capture image data. Alternatively, images can be read from digital sources like storage
media or the internet.

To work with image data, computers must be able to represent the visual data in a format
which can be easily stored and processed: The most common representation for digital
images is a spatially discretized data structure which can be expressed as a two dimensional
array (matrix). Each element in the matrix comprises a pixel in the image and for each
pixel a scalar (p) or vector (p) is stored to encode the intensity or color information.

A common notation for an image (I) is the representation with a row-major /-by- w matrix.
The parameter & defines the height and the parameter w the width of the image in pixels.
A single pixels p, , is addressed in the image matrix at coordinates u, v, where the origin
of the u, v-axes is in the top left corner of the image (see Figure 2.1).

» U

d P P2 0 Do

| Puo Py P22 0 Pow
E— : : . :

Pni Prn2 0 Pnw

Figure 2.1: Coordinates in image space and matrix representation.

Additionally, color must be represented in the image. The most basic notation is a grayscale
image where each pixel p encodes a single brightness value. Typically, a single Byte is used
to encode 256 different brightness values from black (0) to white (255).

To represent color, a so-called color space is used. For digital images the Red, Green
and Blue (RGB) additive color space is common. It encodes color using a vector with
three entries: p,, =[r, g, b] where r, g and b encode the intensity of red, green and blue
respectively. Other color spaces exist and can be used depending on the acquisition device
and the specific application: For example the Cyan, Magenta, Yellow and Black (CMYK)
subtractive color space (mainly used in the printing industry) or the HSL color space which
represents Hue, Saturation and Lightness (HSL) with 3 values.

So far only colors of the visual spectrum are represented. However, some applications can
use information from the near-infrared (NIR) or ultra-violet (UV) part of the spectrum.
Therefore extended color representations can be defined: In addition to the RGB channels,
an image is then composed of 4 or more channels. Such images are called multispectral,
for example an RGB plus NIR image with 4 channels. If this concept is extended further
and many channels are used such images are called hyperspectral.
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In addition to color information also depth information (distance from sensor) can be
acquired and stored for each pixel: Such images can be produced by stereo camera systems
or cameras with time-of-flight sensors. The resulting images with depth information are
sometimes called 2.5D images, because the u, v coordinates are discrete (arranged as
defined by the fixed image grid) and therefore no occlusions in 3D space can be represented.
For example only the front side of a cube can be modeled.

Full 3D data on the contrary can represent depth occlusions. Such full 3D data consisting
of a list of points in 3D space (represented for example by metric x, y, z coordinates) and
optionally additional data (for example a vector describing color or surface normals) are
called point clouds. Special algorithms and methods form the separate field of point cloud
data processing which is beyond the scope of this study.

2.1.2 Preprocessing / Low-level Techniques

Once a digital image or image sequence is available, low-level techniques can be applied
to improve image quality or to preprocess the image in various aspects.

Color correction is a frequently applied low-level step. All color vectors in the image
undergo a certain transformation to for example enhance contrast, remove overexposure,
to adjust white balance or to transform a color image into a grayscale image.

A special low-level color processing step is the removal of the Bayer pattern. Digital color
cameras often just sense one color (using a color filter) for each physical pixel. An array of
four pixels with red, green, green and blue color filters (called Bayer pattern) is used [76],
then interpolation yields four full RGB pixel values from the four single color pixel values
which the camera physically captures.

Cropping, scaling, resizing, rotation or distortion correction are other low-level steps
which can be applied to images to improve the image, cut out the area of interest or to
reduce distortion effects of the lens through camera calibration [77].

Another common preprocessing step is filtering: For example noise reduction filters,
smoothing with Gaussian filters or sharpening of images. Low or high pass filters can be
applied to find edges or continuous areas. Filters are commonly realized by convolving a
filter kernel over the image.

Segmentation can be used to split an image into multiple objects/regions [78]. This is
for example applied during the production of videos which are filmed in front of green
screen. Using segmentation algorithms which mask the green pixels, the background
can be replaced by for example a landscape view. Simple approaches utilize pixel-wise
grayscale/color thresholds [79] or edge information. More complex algorithms apply
for example graphs [80] or contours and textures [81] to segment the image.

Most preprocessing techniques operate on single pixels, a window of pixels (filtering with
high or low pass filters) or the whole image. The output of the preprocessing steps is again
an image with potentially a different color space, resolution, segmented parts, etc.

11
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2.1.3 Features and Feature Extraction

Feature extraction is a basic building block of many computer vision algorithms. The
idea behind feature extraction is to generate a representation for data (for example an
image or an object contained in an image) which describes the original data using a more
abstract representation with less redundancy. Therefore, feature extraction can be seen as
dimensionality reduction technique.

A desired property for a feature representation is that the derived feature retains the
relevant aspect of the original data point. Often invariance to transformation in the
original dimension (for example rotation of an object in the image) is a desired property
of a feature description.

Examples for features which can be applied to any data are Principal Component Analysis
(PCA) [82], kernel PCA, the calculation of histograms or the usage of embeddings (i.e.
projections which retain a notion of distance) [83].

In the image domain many well-known and established features and feature detectors exist.
Basic local features are blobs, edges, corners or regions in the image [84]. Additionally,
there exist features which describe directions of edges or gradients [85]. Contour based
features describe shapes of objects for example using snakes or contours.

Furthermore, the location in the image can also be leveraged as feature, because objects
might occur predominantly in specific parts of the image or in a specific relation to other
objects in images.

The transformations to which the image features should be invariant include but are not
limited to the choice of camera system, changes in viewpoint, focal length, illumination.
Additionally invariance to change of scale, rotation and translation of the image and
projective changes are desired properties of features for computer vision tasks.

Most advanced feature extraction techniques for image processing can be decomposed
into a two step process:

1. In the keypoint detection step, the area of interest is selected: This can be a point, a
segmented object, a point with a neighborhood, a bounding box, etc. In the literature
also the term interest point is used as synonym for keypoint.

2. The descriptor extraction step derives the numerical description — called feature
vector — which describes the area of interest in a descriptive form which at best is
invariant to transformation and has no redundancy.

An example for a well known state of the art feature is the Scale Invariant Feature Transform
(SIFT) [86]. Given an image, the keypoint detection selects points (maxima in a linear scale
space) in the image and calculates scale and orientation information for each keypoint.
Using a keypoint with its orientation and scale information, the descriptor is calculated
which describes the local image region around the keypoint. SIFT features are invariant
to scale and shift transformations as well as rotation in the image plane. Variants have
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been proposed to make SIFT also invariant to full affine transformation including larger
changes of viewpoint [87] or to improve the extraction speed [88].

2.1.4 High-level Computer Vision

High-level computer vision algorithms solve high-level tasks like detection, reconstruction
or classification using image data as information source. Most high-level algorithms are
complex combinations of several building blocks and are highly task dependent. In the
following a few generic high-level tasks are described:

An example for a generic high-level computer vision task is detection and tracking of
objects in images [89]. For example cars and pedestrians are to be detected in a stream of
images captured by a driving car and then using subsequent images a trajectory of the
objects is estimated.

Another example is a Visual Simultaneous Localization And Mapping (VSLAM) [90, 91].
Using camera images feature points are extracted and their position in 3D space is esti-
mated. Then using subsequent images the motion of the camera is estimated together
with a map (for example all 3D feature points) of the environment.

Overall, a large variety of such high-level computer vision problems exits. The goal of this
thesis is to develop classification and detection methods for agricultural images which are
introduced in depth in Chapters 4 and 5.

Many computer vision techniques also apply learning methods which allow the computer
vision system to learn form data using machine learning — which is introduced in the
next section.

2.2 Machine Learning

Machine learning is a discipline in computer science that studies principles and algorithms
which are able to learn from data. The learning process involves the deduction of a model
from the input data the algorithm was given. Subsequently, this model can be used to infer
decisions or make predictions given new data samples the model has not seen before.

In addition to the study of algorithm which are capable of training models based on
data and subsequently making predictions, important parts of machine learning are data
handling for training and testing, preprocessing and evaluation of results using suitable
metrics. All these aspects are introduced in the remainder of this section.

2.2.1 Training and Application

Generally, machine learning processes can be divided into different stages: During the first
stage called training, the algorithm is presented with data and constructs a model. Second,
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during the optional test phase, the model is tested to estimate how well it performs on data
which has not been used during training. Third, in the application phase, the previously
trained model is used to predict information for new input data.

Dataand Labels Data is very important for machine learning: On the one hand, training
data is required in order to allow the algorithm to build its model. On the other hand,
test data is required to evaluate how the trained machine learned model performs. For
most machine learning approaches, the data must be labeled. The term label implies that
for each instance of data (for example a temperature measurement) a label (for example
‘winter’ or ‘summer’) is available. The type of the label can be a categorical values, a
continuous value or complex types like a list of values. Section 2.2.2 below introduces
advanced machine learning modes where no or partially labeled data is sufficient.

The data on which the machine learned model is applied normally does not have labels, the
algorithm is used to estimate a label. The estimated labels are the output of the machine
learning process.

Cross-validation A common approach of combined training and testing while using
labeled data as efficiently as possible is cross-validation [92]: In n-fold cross-validation
the labeled data is split into n folds. Then a single fold is used as test data while all other
folds are used for training. This is repeated until every fold has been used as test data once.
The n classifiers are evaluated on the respective test data sets. To achieve an aggregated
score, the classification scores of each fold are aggregated by summing before classification
metrics are calculated (see below).

Cross-validation increases training time compared to a simple split of the data in test
and training set. With cross-validation however all data is used during training and thus
generally better performance and therefore for example better parameter selection can be
achieved.

When a suitable machine learning algorithm and its parameters are found for example
using cross-validation, the whole labeled dataset can be used to train a final model. This
model can then be applied in the application phase.

Notation In the following, a notation is defined which is used throughout the thesis for
machine learning models and the data items involved.

Input data is expressed as matrix X where rows represent single data instances. Such a
row is also called feature vector f. The elements f; of the feature vector f are individual
features (numerical or categorical). The labels are expressed as vector I where the label
l; corresponds to the i-th data instance (i-th row in matrix X). Additionally, the symbol
g shall denote ground truth labels which are for example used during training or when
evaluating the output labels [ to judge the performance of the machine learning model
(see upcoming Section 2.2.4).

The training and application process can now be written with this notation:

Ftrain (Xlrainv 8, ¢) — Model (21)
Fapplication (Xapplication' MOdel) —1 (22)
14
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The functions F,;n, and Fyypicaion are algorithm specific functions. All parameters of the
machine learning algorithm are expressed by ¢ in Equation (2.1). The estimated labels I
are the desired output after processing the application data X ppiication-

Some classifiers are not only able to estimate the most likely class label /, but also supply
a certainty score vector s for each classified data instance. The score vector contains a
relative score for each of the possible classes. In the following we always assume that each
score vector s is normalized, i.e. > s; =1.

2.2.2 Learning Modes

Depending on the availability of labeled data, machine learning problems can be dis-
criminated into three major modes: Supervised learning, unsupervised learning and
semi-supervised learning.

In supervised learning, all data instances which are used during training are labeled with
ground truth labels. A typical use case is classification where the labels are categories
forming the different classes the classifier must discriminate.

Unsupervised learning covers the use case where all data instances are unlabeled. The
application of machine learning in such problems can be for example clustering. In
clustering the algorithm tries to group the instances according to a distance measure in
feature space which allows grouping of instances.

Semi-supervised learning approaches can work with partially labeled training data: When
only a fraction of the data is labeled, the semi-supervised algorithms make use of the unla-
beled instances during training. This approach can have benefits compared to discarding
unlabeled data and applying a standard supervised approach.

In addition to these three basic learning modes further specialized machine learning
techniques exist: Reinforcement learning [93] covers the learning of policies given either a
positive or negative reward for each data instance. Active learning [94] can actively select
training instances which should be labeled to train a classifier while minimizing the total
amount of labels required. Transfer learning [95] can utilize data from a different domain
to improve model training in another similar domain.

The machine learning community is an active research field and new learning modes
evolve, however, supervised and unsupervised learning remain the most important and
most widely applied approaches.

2.2.3 Classification and Regression
Classical machine learning tasks can be discriminated into the two broad categories of

classification and regression [96]. Classification problems try to classify data instances
into different categories whereas regression problems try to infer a continuous variable.
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The goal of classification is to associate data instances to different categorical labels. For ex-
ample the classification of patients into the two classes infected or non-infected given the
output of a blood test. The output of classification tasks is a categorical variable from a
set of predefined options. Besides simple binary classification tasks (the category to be
estimated consists of two different options/labels), in so-called multi-class classification
tasks the output category consists of 3 or more options.

The aim of regression is to estimate a continuous quantity. For example the price of a
house given its size and construction year. The output of regression tasks is a continuous
variable or vector (multidimensional regression).

Many machine learning algorithms can perform both classification and regression when
implemented accordingly. Before concrete algorithms are discussed, first the the next
section studies the how machine learning processes can be evaluated.

2.2.4 Evaluation of Machine Learning Processes

An important aspect of machine learning research is the evaluation of machine learned
models and the optimization thereof. The datasets analyzed are often large and manual
inspection of each estimated instance of data is not feasible.

The performance of the classification can be analyzed by using metrics and ground truth
data. A metric compares the estimated values / from Equation (2.2) with the ground
truth values g from Equation (2.1) and yields a performance value. In addition to metrics
graphical tools like the Receiver Operating Characteristic can be applied.

Confusion Matrix Basic metrics are the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn). These metrics can be arranged in a confusion
matrix (see Figure 2.2) which also explains how the values are calculated by comparing
ground truth and estimated values. For multi-class classification the confusion matrix is
augmented with more rows and columns.

Prediction
True False
T True False
el positive Negative
Ground
Truth
False False True
Positive Negative

Figure 2.2: Layout of a general confusion matrix.
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Classification Metrics The widely-used classification performance metrics average ac-
curacy, precision, recall and F1-score are derived from the basic classification measures.
For binary classification these metrics are defined as follows:

tp+1tn
average accuraCy = ———————— 2.3)
tp+fn+fp+tn
- p 2.4)
recision = .
b tp+1p
t
recall = — (2.5)
tp+fn
2-precision - recall
Fl-score= ———F———— (2.6)

precision + recall

To evaluate multi-class classification similar metrics can be defined. The multi-class
average accuracy metric is defined as the average of the per class average accuracies:

N

1 Z tp i +tn; 2.7)
average accurac : =—" S — .
g Y multi—class N tp,- +fni +fpi +tni

i=1

When constructing the metrics precision, recall and F1-score, different forms of averaging
can be used in the multi-class case: In macro averaging [97] (indicated by subscript M in
the formulas) averaging is done over the per class scores. The symbol N denotes the total
number of classes and the index i € (1, N) indexes a specific class.

N

. 1 tp;
precision,,; = —- E —_— (2.8)
MON “~tp; +1p;
1 & tp;
Ny=—-» —— 2.9
recalv =Yy ;tpi+fn,- @9)

2. precision,, - recally,
precision,, +recall,

Fl-score), = (2.10)

In addition to macro averaging, also micro averaging can be applied (indicated by subscript
winthe formulas). There the average is built over all samples and not the per class weighted
average.
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N
Zi:l p;

precision, = —7——— (2.11)
2,‘:1 tpi +fpi
N
. tp;
recall, = Nz:’zilp’ (2.12)
> tp;+in;
2 - precision,, - recall
Fl-score, = P L “ (2.13)

precision,, +recall,

The advantage of macro averaging is that all classes are treated equally even when the
number of data instances for one class is very small. When micro averaging is used in that
case, a poor or good performance of the small class is under weighted in the metric.

ROC Curve Ifthe output of a classifier is a continuous confidence estimate (for example
score vector s) in the range from 0 to 1, a decision threshold is selected to derive the
final label. The threshold can be chosen freely and has an impact on the performance. A
so-called Receiver Operating Characteristic (ROC) [98] curve plots the true positive rate
over the false positive rate for all decision thresholds, see Figure 2.3. The closer the ROC
curve extends towards the upper left corner, the better the classification results are. A
random classification choice yields a diagonal curve.
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Figure 2.3: Exemplary Receiver Operating Characteristic (ROC) curve.

In order to evaluate multi-class classification problems with ROC curves aggregation is
necessary. In an N-class problem N one vs. all ROC curves can be plotted: To create the
ROC curve for class i, a binary ROC curve is created by comparing class i against a pseudo
class built by aggregating all other classes. Another option is to plot one vs. one ROC curves.
This however results in N2— N curves and their interpretation in more difficult.
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2.2.5 Machine Learning Algorithms

Well known machine algorithms which support both classification and regression tasks
are for example Support Vector Machines (SVM) [99], Boosting classifiers like AdaBoost
[100, 101], Neural Networks [102, 103, 104], Decision Trees [105] or Random Forests [106].

All machine learning algorithms have individual weaknesses and benefits and the choice
of algorithm is application dependent. In the following the SVM, Decision Trees and the
Random Forest algorithm are introduced in detail.

Support Vector Machine The SVM performs classification or regression by applying a
hyperplane to separate the data instances into two classes (positive and negative). The
selection of the hyperplane is done such that the distance of the nearest training data
points (called support vectors) from the hyperplane is as large as possible [99]. Therefore,
the SVM is also called a maximum margin classifier.

In its most basic form the SVM is a linear algorithm which is able to process linearly
separable data. Using the so-called kernel trick [107] the data instances are transformed
into a higher dimensional space where they are separated using a hyperplane. In the
original feature space the projected hyperplane forms the desired non-linear decision
boundary which separates the training data. Since not in all cases a linear separation even
in higher dimensional space can be achieved, SVMs were extended to for example soft
margin variants. There, some outliers on the wrong side of the hyperplane are accepted to
avoid overfitting the classifier to noisy data.

A drawback of SVMs is that by construction they only supports two classes. For more
classes for example multiple binary classifiers must be trained. Furthermore, individual
features must be normalized to similar magnitude to avoid prioritizing some features.

Decision Trees Decision trees are a well known machine learning algorithm for classifi-
cation and regression. A decision tree is built using binary decision nodes and leaf nodes
which are arranged in a tree structure. A decision node is defined by a binary true/false
decision. Depending on the comparison result, the binary tree is either followed to left
or right child node in if — then — else fashion. After a series of decision nodes a leaf node
is reached. Leaf nodes represent the result of the decision (a single class value in the
classification case) and once a leaf node is reached the leaf node’s result is returned.

In most implementations the binary decision equals an axis-aligned partitioning in feature
space: A single feature f; of the feature vector f is compared to a threshold. The specific
nature of the binary decision can be adapted to the use case or data: Variants with linear
splits or more complex decisions have been proposed. However they introduce more
complexity and often the simple single feature criterion is chosen.

Figure 2.4 displays an example decision tree with 3 decision nodes, 4 leaf nodes and in
total 2 different output classes (crop or weed).

The training of such a decision tree can follow different rules. The most relevant step of
the decision tree training process is how the splitting criterium of each decision node is
determined.
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false true

falsi/\:rue falsi/\irue

( Weed ] [ Crop ] [ Crop ] [ Weed ]

Figure 2.4: Simple binary decision tree. The square boxes represent decision nodes, where
one feature is checked against a threshold and a true/false decision is made. The terminal
nodes are also called leaf nodes and represent the decision output of the tree (in this
example weed or crop).

During training of a splitting node the input is the current list of feature vector and label
tuples [( £, 1)]. The output of the training step is a binary splitting criterion (selected feature
and threshold) plus a list of feature vector and label tuples for the left branch [(f, [)];.; and
the right branch [(f, [)] igy:- From thereon, splits are performed recursively until all the
labels in the list are pure, i.e. all / belong to just one class. Then splitting is stopped and a
terminal node with class [ is inserted.

The process of selecting the binary splitting criterion consists of selecting a feature and a
threshold. First, all features are considered as possible splitting criteria. Second, for each
feature all possible thresholds which results in different splits are possible candidates. All
possible thresholds can be determined by sorting the selected feature values in the current
data and taking all unique values as possible thresholds. Now, a cost function is required
to select the best splitting criterion from all these possible splits.

A cost function which is often chosen to judge splitting quality is the Gini impurity: It
quantifies how pure a given split into two lists is. The Gini impurity is calculated as follows.
Consider again a problem with N classes with i indexing these classesi =1,..., N and alist
of labels ! for which the impurity is to be calculated. For each class the relative occurrence
of labels p; in the list of labels [ is calculated: p =[p,,..., px]- Then the Gini impurity is
calculated:

N
Gp)=1-> p? (2.14)

i=1

For example in a two class setting for a pure list of labels with p =[0, 1] the Gini impurity
is 0. For a completely mixed list of labels with p =[0.5,0.5] the Gini impurity is 0.5. For
all other label distributions the Gini impurity is in-between these values. Therefore splits
with lower Gini impurity are preferred when constructing the decision tree.

Now back to the selection process of the splitting criterium of a decision node: All possible
splits are evaluated by calculating the cost consisting of the sum of the Gini impurity
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for both the left and right list of labels ([/],e and [/] ;4. The splitting criterion with the
lowest cost is chosen. From thereon splitting is recursively performed on the left and right
branches until all splits result in pure terminal nodes.

Decision trees however tend to overfit the training data they are trained with. Many
extensions have been proposed to improve decision trees by for example pruning [108]
or not training trees to fully pure leaf nodes. The most promising concept however is the
Random Forest which is introduced in the next paragraphs.

The Random Forest Algorithm The Random Forest algorithm is an established and
widely used machine learning method which extends on decision trees and was initially
proposed by Breiman [106]. Random Forests use multiple decision trees to form a so-called
forest. They have been applied successfully in many domains including machine vision
[109, 110], bioinformatics [111], remote sensing [112], robotics [113] and others [114].

Random Forests are a class of algorithms which train multiple tree like classifiers while
applying randomness to modify the training set and/or tree training approach. The original
Random Forest algorithm by Breiman trains an ensemble of modified decision trees
making use of randomness for feature selection and through bagging [106]. This yields
best results when compared with other methods of randomness which can be applied
[115].

The first component which utilizes randomness is random feature selection during training.
During splitting node training only a random subset of features is considered. Then the
splitting node is constructed by selecting the most discriminative feature from the subset
using for example the Gini impurity. Bagging is an ensemble method where a set of
classifiers is trained using smaller bootstrapped training sets. In Breiman’s Random Forest
algorithm random sampling with replacement is performed to create the bootstrapped
training sets for each tree. Bagging is the second component in Random Forests which
applies randomness.

The output of each tree is a vote for a specific class, these votes are then aggregated to an
overall majority vote. If classifier scores are desired the votes are collected into a score
vector s. Each tree votes for a specific class and the respective score s; is incremented.
The score vector (sometimes also called vote vector) is typically normalized to sum to 1. It
can then be used to plot a ROC curve and to determine an optimal use case dependent
threshold that yields the final estimated class.

A major advantage of Random Forests is the availability of out-of-bag errors. During
construction of the bootstrapped training data sample several training data instances are
not sampled. These instances create the out-of-bag data which can be used as test data
for this specific tree. This allows an evaluation of the trees performance without a special
test set. The out-of-bag errors can be aggregated over the whole forest to get an overall
estimate which performs comparable to cross-validation [116]. The out-of-bag error can
be evaluated continuously and used as criterium when training of additional trees can be
stopped. Figure 2.5 gives a graphical overview of the training process of a Random Forest
and the out-of-bag error estimation.
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Figure 2.5: Training of a Random Forest and out-of-bag error calculation.

The Random Forest classifier’s strengths are that only few parameters need to be ad-
justed [117] and a major benefit over plain decision trees is that Random Forests mitigate
overfitting [106]. Additionally, the algorithm can be easily parallelized which allows high
performance implementations on multi-core processors, adapted to GPUs or coded for
special purpose hardware such as ASICs or FPGAs [118].

The main parameters of a Random Forest are

¢ the number of decision trees which are grown during training. In practice a high
number of trees should be trained as more trees improve classification accuracy.
The concrete number is often selected by analyzing at the out-of-bag error and
choosing a number of trees where the out-of-bag error starts to converge towards its
minimum.

¢ the number of features which are considered at each splitting node. Typically, this
parameter is set to [‘/ nfeamresj.

the depth until which the trees are trained. This is expressed in the minimal number
of data instances which are stored in each leaf node. Typically, trees are trained until
all leaf nodes are pure and trees are not pruned.

Additionally, there exist variations of Random Forests which can be chosen: For example
the specificimplementation of a decision tree and which kind of splitting function it applies
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internally can differ. There exist decision trees which apply a single axis aligned split, other
apply linear or quadratic functions to partition the feature space [119]. In practice axis
aligned splits (i.e. using one feature as criterion to split the data into left and right) are
used almost exclusively in all implementations. Furthermore, since its introduction as
supervised algorithm many variants were proposed: For example cascaded forests [120]
or Random Forests with online training [121].

For the remainder of the thesis the Random Forest algorithm is selected since it naturally
supports multiple classes, outputs class certainty scores, is easy to interpret and has few
parameters to tune.

2.3 Summary

This chapter introduces computer vision and machine learning techniques which are
relevant for the remainder of the thesis:

¢ The field of computer vision is presented: The acquisition and representation of
digital images, low-level techniques, features and feature extraction as well as high-
level computer vision are explained.

» Principal concepts of machine learning are introduced: Training and application
phase, classification and regression as well as the evaluation of machine learning is
discussed. Finally, machine learning algorithms are introduced and SVMs, decisions
trees and the Random Forest algorithm are explained in detail.

23

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

3 Multispectral Image Acquisition
and Vegetation Segmentation

This chapter introduces the image acquisition methodology and the developed vegeta-
tion segmentation method. For plant classification a multispectral sensing approach is
developed. The specific camera setup capable of producing such images is introduced.

Additionally, an important preprocessing step is robust removal of background pixels in
the field images. Using the multispectral input image a robust approach is developed
and the masked field images will be used for all further processing steps in this thesis.
Figure 3.1 displays an example image.

Figure 3.1: Sample image (color channel, left) and result of vegetation segmentation (right).
These images are produced by the camera system and segmentation method which are
discussed in this chapter.

A dataset which is acquired with the multispectral camera setup and segmented using the
developed vegetation segmentation approach is also made available to the public. It is
published online in conjunction with the publication [70].

3.1 Multispectral Field Image Acquisition

This section introduces the benefits of multispectral images when field images are analyzed
with computer vision. Additionally, a camera setup which can deliver such images is
selected and described in detail.
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3.1 Multispectral Field Image Acquisition

In the following a close-range sensing scenario is assumed, where images of a field are
captured with ground-based vehicles (see Section 6.1.1 for a discussion about field robots
and a specific robot developed for the task addressed here). Remote sensing on the other
hand is a very established domain where images are shot from airborne or spaceborne
platforms. The ground resolution such systems can achieve is a lot coarser compared
to ground-based system. For this reason and because after the image analysis a direct
intervention on the ground is envisioned the focus here lies on ground based sensing.

Furthermore, without restriction of generality, the camera is considered to be mounted
orthogonal to the ground plane. Different mounting angels are possible and do not in-
validate the findings of this chapter. However, the orthogonality assumption makes it
easier to describe parameters such as the distance to the ground plane or the mean image
resolution at ground plane distance.

3.1.1 Red-Edge Property of Plants
Plants exhibit a very distinct reflection property when their reflectances in the red and

near-infrared (wavelength larger than 0.7 um) bands are compared. Figure 3.2 displays
the reflectance of a plant vs. soil in the visible and near-infrared wavelengths.
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Figure 3.2: Reflectance plot of green grass and brown soil. The raw data for the plot
stems from the ASTER database [122] (samples “grass” and “87P3665” for soil). Vegetation
exhibits the red-edge property which is characterized by a steep increase of reflectance
between the red and near-infrared bands.

Green plants absorb energy in the red band and utilize this energy in the photosynthesis
process. In the near-infrared band most of the energy is reflected by the plant. The high
reflectance is not present by chance, rather it functions as protection against overheating
and cell damage which would be the result of absorption of the energy in wavebands not
suitable for photosynthesis.
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This distinct steep increase of reflectance between the red and the near-infrared band is
characteristic for plants with active photosynthesis and also called the red-edge property.
Other objects in field images like soil, stones, dead leaves etc. do not exhibit this reflectance
behavior. Especially the reflectance of soil is flat in the red-edge region (see Figure 3.2).

The red-edge behavior of plants is suitable for discrimination of soil and plants. Therefore
in the following a multispectral camera setup is derived which also contains a near-infrared
channel in addition to the normal red, green and blue channels of standard color cam-
eras.

3.1.2 Methods for Multispectral Image Acquisition

A variety of imaging methods or special imaging sensors can be employed to capture a
multispectral image. The following major approaches exist:

Multiple Cameras Inamultiple camera setup, a normal RGB camera is used together with
anear-infrared camera [123, 124]. The two cameras must be rigidly mounted close to
each other in order for both cameras to view the same scene. A pixel-wise registration
of both images is possible in general, however in situations with occlusion such a
mapping cannot be found for all pixels in the images. Downing et al. extend this
to an array of 25 cell phone cameras to capture hyperspectral images, but do not
present a working system yet [125].

Spinning Filter Wheel A spinning filter wheel is placed in front of the camera which is
sensitive in all desired wavelengths [126, 127]. The filter wheel is sectioned into
different areas which are bandpass filters for the different channels (for example red,
green, blue and near-infrared). The camera captures multiple timely synchronized
images (one for each filter in the wheel) which are combined into the multispectral
image. When stationary scenes are captured (for example paintings in museums)
the filters can also be swapped manually, instead of being arranged on a wheel [128].

Tunable Filters Tunable filters are optical elements for which the filtering function can be
tuned electronically [129, 130]. Special filters exist which can be tuned to bandpass
only red or near-infrared light. Such a filter can be placed in front of a camera which
is sensitive in all wavelengths: Multiple images are then captured while the optical
filter is tuned to bandpass only the desired wavelength band.

Interleaved Illumination of Scene This method is similar to the filter wheel setup. In-
stead of a passive setup with filters, the scene must be shaded and is artificially
illuminated. The illumination is performed with light sources of different wave-
lengths and is synchronized to camera exposure times [131, 132]. Then each light
source is activated for one frame and when for each wavelength a frame is recorded,
all frames are combined into a single multispectral image.

Beam Splitting Setup Beam splitting cameras split the light coming through a single lens
with a beam splitter [133, 134]. Then each beam hits a separate image sensor. Setups
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with two or three sensors with separate bandpass filters are common. Each image
sensor is designed to capture a different part of the spectrum.

Special Filter Pattern Customized Bayer-like filter patterns can be created where one
near-infrared filter is placed in the pattern grid. For example a R, G, B, NIR square
pattern can be used to captured near-infrared in addition to the visible channels
[135]. However, de-bayering becomes more difficult and NIR information is only
directly available for one fourth of all pixels.

In the following four suitable approaches are compared: 1) multiple cameras, 2) filter-
based setups (both spinning filter wheels and tunable filters), 3) interleaved illumination
and 4) beam splitting setup. The special Bayer pattern setup is neglected because these
system are currently not commercially available.

These possible camera setups differ greatly in theoretical and practical properties: Cost,
image viewpoint, acquisition timing, moving parts, complexity of sensor rig, commercial
availability, robustness of sensor setup for outdoor use, etc. Table 3.1 compares the four
major approaches in regard to these parameters.

The evaluation indicates that the beam splitting setup has the most promising properties
for the desired use case. The beam splitting setup allows capturing of a multispectral image
(RGB and NIR) in a time synchronized manner from the same viewpoint with the same
field of view. Additionally, the setup comprises only a single camera body and single lens,
but no other parts (filter, multiple cameras) which must be rigidly mounted and secured
for outdoor use. A drawback of the beam splitting setup is the cost of such cameras. All
in all, the beam splitting setup is selected and a concrete system is presented in the next
section.

3.1.3 Beam Splitting Multispectral Camera System

The selected camera setup is a beam splitting camera with a separate color and an near-
infrared channel. The camera manufacturer Jai produces such a camera called Jai AD-
130GE [136]. Figure 3.3a displays the sensing principle with the beam splitter and Fig-
ure 3.3b shows the compact housing.

The camera contains two images sensors which are aligned to the optical path to have the
same field of view. The first sensor is a common RGB color sensor with a Bayer pattern,
the second is a monochrome near-infrared sensor (no Bayer pattern). With a suitable lens
this setup allows to capture two images at the same time of the same scene, the first being
anormal color image and the second a monochrome near-infrared image.

Figure 3.4 depicts the spectral sensitivity of the JAI camera’s different channels. The
sensitivity of the near-infrared channels is overall lower than the color channels. This
property has to be considered when setting up the camera system and for example the red
and near-infrared channel’s values are further processed by computer vision algorithms.
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Lens Mount Beam Splitting Prism
! 13 RGB Channel
o CCD Sensor
NIR Channel
CCD Sensor
(a) Sensing principle (b) Camera body

Figure 3.3: Multispectral sensing system: The Jai AD130-GE camera (b) outputs a color
and near-infrared image (a). Internally this is realized using a beam splitting prism and
two separate imagers. Image (a) is own work based on [136].

Now a complete camera setup is constructed (camera body with a lens) and the resulting
properties are presented in Table 3.2. The choice of lens and mean distance to ground is
application dependent.

Table 3.2: Parameters and properties of camera system.

Parameter Value

Camera Model JAT AD-130GE
Image Resolution 1296 x 966 px

Lens Fujinon TF15-DA-8
Focal Length 15 mm

F-number 4

Mean Distance to Ground (d) 450 mm

Ground Resolution ~8.95 px/mm
Field of View X (at Distance d) ~ 145 mm

Field of View Y (at Distance d) ~108 mm

The values presented here are optimized for robot mounted acquisition of field images.
The mean distance to ground (d) is defined to 450 mm and the focal length of the lens to
15 mm. This results in a resolution at ground level of approximately 8.95 px/mm. Such
a high resolution is required in the application context where small fragments of plants
which are smaller than 1 mm must be clearly visible in the image.

Throughout the thesis images from this camera system are used. Figure 3.1 displays an
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Figure 3.4: Spectral properties of Jai camera: The sensitivity of the CCD sensors in the
different bands is plotted. The sensitivity in the NIR spectrum is lower than in the visible
wavelengths. Own plot based on data from [136].

example image (left) in a field scenario which was acquired with this camera. In order
to reduce the effect of the environment (wind, direct sunlight, etc.) the area around the
camera system is shaded and halogen light is installed.

In general the methods developed are not restricted to images from this exact setup.
The methods work with any multispectral image with color and near-infrared channel
of suitable quality. This includes for example that no displacement between color and
near-infrared channel should be present.

3.2 Vegetation Segmentation

In many agricultural image processing tasks only the plants are of relevance and thus a
segmentation between the vegetation pixels and the background is desired. The process
of performing such a discrimination between vegetation and background is thus called
vegetation segmentation.

The output of vegetation segmentation is a pixel mask, which masks all pixels that do not
belong to vegetation. Sometimes the opposite result is desired: When the mask is inverted,
only background or soil pixels are retained in the image. For example when soil properties
are of interest and soil pixels are analyzed with computer vision, vegetation segmentation
is also performed for the inverse result.

Vegetation segmented images can be used for different purposes besides computer vision,
for example for visualization and manual visual inspection. In this thesis vegetation
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segmented images are the input for the plant classification and detection processes that
are introduced in Chapter 4 and Chapter 5.

In the remainder of this section related work and the developed method for vegetation
segmentation are discussed.

3.2.1 Related Work

Research on vegetation segmentation is an established, but active domain: Due to recent
improvements in camera technology, different field or environment conditions and differ-
ent requirements regarding the desired output, novel vegetation segmentation approaches
are continuously presented. However, in most publications vegetation segmentation is
considered a preprocessing step and is only briefly discussed. The vegetation segmen-
tation approaches thus are often presented for special use cases and for special camera
equipment.

In the following vegetation segmentation methods are reviewed and grouped according to
the applied input data (for example color images vs. hyperspectral data) and the segmen-
tation method which is applied (for example color-based thresholding vs. classification-
based methods).

A first group of approaches relies on color images from cameras or video image streams.
The vegetation segmentation is then performed using color indices and thresholding
[137, 26, 23, 138, 139, 140, 141] or clustering-based on a color model [140]. Here the focus
lies on methods using only RGB images — in the upcoming Section 3.2.2 the extension to
vegetation indices for multispectral images is introduced together with the well-known
Normalized Difference Vegetation Index (NDVI).

Woebbecke et al. introduce the Excess Green Index (ExG) approach for vegetation seg-
mentation [137]. The approach works for color images by computing the ExG index for
each pixel according to the formula:

ExG=2G—R—-B (3.1
The segmentation in vegetation and background is then performed by thresholding of

the ExG values. Pixel with intensity values below the threshold are background, pixel
with intensities above the threshold are vegetation.

Many variants of the ExG index by Woebbeke et al. were proposed, for example the
Excess Red Index (ExR), which is defined as follows:

ExR=2R—-G—-B (3.2)

Neto et al. present a leaf segmentation approach where in a preprocessing step back-
ground pixels in the images are removed through a combination of the ExG and ExR

31

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

3 Multispectral Image Acquisition and Vegetation Segmentation

indices [23]. The difference image ExG —ExR is processed with connected component
analysis (to cope with multiple leaves or leaf fragments) and then further processed
with their additional leaflet segmentation approach (which is beyond vegetation seg-
mentation).

Perez et al. apply the Normalized Difference Index (NDI) [26] to segment vegetation
from background.

G—R

NDI=—— 3.3)

G+R
Meyer & Neto compare the already presented vegetation indices and propose a zero
threshold version of ExG —ExR [138]. Zero threshold means selecting 0 as threshold
parameter (independent of the image data). However, for the other methods they
compare against they apply a data driven method to select the threshold; i.e. in the
end all three methods do not require a hand tuned threshold. In their experiments the
ExG—ExR method performs slightly better than NDI or other indices.

The approach by Bai et al. applies k-means clustering to detect vegetation in color
images [140]. The RGB images are converted to LAB color space before processing. Their
approach features an offline stage for color model and parameter estimation (given hand
labeled images) and an online segmentation stage where new images are processed. For
images with rice and cotton plants they report results 0of 88.1 % and 91.7 % segmentation
accuracy.

Additionally, RGB thresholding-based methods are presented for a variety of special use
cases: for example leaf extraction [139] and with focus on shadow resistance [141].

A group of approaches achieves the segmentation between vegetation and background in
color images with classification-based methods [142, 143, 144, 145, 146, 147].

The work by Zheng et al. discriminates vegetation through mean-shift and neural net-
work classifiers applied to color features extracted from the RGB and HSI channels
[142] . For a 100 image sample dataset acquired in field conditions they report a mean
misclassification error of 4.2 %. In the follow up paper [143] mean shift segmentation is
combined with the fisher linear discriminant which improves the segmentation accu-
racy compared to the earlier paper, especially in regions with shadows. In both papers
the authors point out that the computation time for their approach is significantly too
long for real time applications.

Guo et al. present a method for vegetation segmentation in RGB images which is based
on decision trees and additional noise reduction filters [144]. They split the images
into blocks of 5 x 5 pixels and extract 18 color features. In experiments with wheat
images, segmentation accuracies of 75.6 % to 87.0 % are achieved and ExG or ExG —ExR
methods are outperformed. They conclude that the error rate is still too high for practical
application and further improvement is necessary.

Keller et al. compare different machine learned methods with a HSV thresholding based
approach for vegetation segmentation and soybean leaf area coverage estimation [145].
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In their experiments the HSV thresholding approach outperforms the Random Forest
and neural network based approaches.

Additionally, other machine learning methods were used for vegetation segmentation:
Campos et al. introduce bag of words classification [146] and Romeo et al. apply fuzzy
logic [147] for vegetation segmentation.

Besides these major approaches several other methods were proposed for vegetation
segmentation:

Suzuki et al. use a hyperspectral line camera and the NDVI approach (ratio between
read and near-infrared, see Section 3.2.2 below) to segment vegetation from background
[148]. The threshold was determined manually and kept fixed. The drawback of such
camera systems is that they only capture a slitimage (one line) and must be moved to get
a full field image. Thus non static scenes and shaking motion of the camera introduce
distortion into the image.

Marchant et al. apply a special image sensor which delivers red, green and near-infrared
information[149]. Then they use aratio of near-infrared and green to segment vegetation
from soil.

Additionally, Nguyen et al. apply an active lighting 3D camera system (color camera
combined with active 3D time of flight camera by PMD) for vegetation segmentation
of images with bushes and grass [150]. Their approach utilizes the 3D structure of the
leaves and branches in addition to color information. Results indicate a true positive
rate of 91 % for outdoor experiments with a small field robot. It is however not discussed
whether the approach works for downward looking images in crop fields.

In summary many vegetation segmentation approaches were developed. Most utilize color
cameras and a combination of color information and either thresholding or classification-
based methods. The majority of approaches is tailored towards a specific field application.
In the following a vegetation segmentation method is developed, which makes use of a
multispectral camera system.

3.2.2 Normalized Difference Vegetation Index

Vegetation indices were developed within the remote sensing community for vegetation
detection with spectrometers from air or space borne systems [151]. The basic approach
of a vegetation index is to exploit the distinctive reflectance properties of vegetation in
different bands (wavelength) for the discrimination from soil and other objects such as
stones. A multitude of vegetation indices exist for a variety of sensing systems on the one
hand and different purposes and applications on the other hand (for example vegetation
detection or water and nutrient content estimation in leaves).

A well-known and widely used vegetation index for multispectral images with color and
near-infrared information is the Normalized Difference Vegetation Index (NDVI) [152]. The
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NDVI is calculated from the reflectance in the red (Ry) and near-infrared (Ry;z) band
according to the NDVI formula (Equation (3.4)).

Rnir— Ry
Wovi=——— (3.4
Ryir + Ry
The specific wavelengths at which the reflectances are measured differ, sometimes narrow-
band measurements are taken very close to the red edge, other approaches use measure-
ments further from the red edge with wider bands.

Equation (3.4) can only be used directly when the sensor measures reflectance values
of the objects it perceives. However, cameras do not measure reflectance, but deliver
an intensity value. This intensity measurement depends not only on the reflectance of
the object, but also on the ambient illumination, the camera’s optical path and image
Sensor.

Therefore the NDVI formula is adapted to images: An NDVI image Iypy; is calculated from
the input channels Iy and Iy.

INIR_IR) (3.5)

1 =M
NovE (INIR+IR

The operators — and + operate on each pixel of the images separately. The function M()
maps the NDVI values, which are in the range [—1; 1], back to monochrome image values
in range [0, 1]. The assumption is that the input monochrome images (I and Iy) are also
expressed as floating point images in range [0, 1].

To improve the NDVI image for images from the introduced JAI multispectral camera,
the systematic difference in intensity between the red and near-infrared channel can be
compensated: As depicted in Figure 3.4 the sensitivity in the near-infrared channel is
lower than the sensitivity in the red channel. Additionally, the optical system (lens and
additional filters) as well as a difference in illumination in the red and the near-infrared
band create this intensity difference.

The NDVI formula in Equation (3.5) is modified and a parameter x which scales the
intensities in the near-infrared image is proposed. The parameter k can be hand tuned or
estimated from data. More details on how to chose « is given below.

(3.6

K- Inr— I
Inpvi :M(i

K- Iym+ I

Figure 3.5 displays a sample red and near-infrared image together with the NDVI image
derived according to Equation (3.6). For better readability the monochrome NDVI image
(c) is also printed in the jet color map (small values blue, large values red).

In the following, the parameter « is derived from an image showing only soil. The value
for k is chosen such that the NDVI values of all soil pixels average to 0.
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(c) NDVI image (d) NDVI image in jet colormap

Figure 3.5: Near-infrared image (a), red image (b) and composed NDVI image in
monochrome (c) and jet (d) color map.

3.2.3 Segmentation and Filtering

The separation of vegetation and soil is achieved by thresholding the NDVI image to
calculate a soil mask.

Figure 3.6 displays the NDVI values of the example image Figure 3.5 (c). Two peaks are
visible in the histogram: the high peak at an NDVI value of approximately —0.1 stems from
the background pixels and the lower peak at an NDVI value of approximately 0.4 stems
from the biomass pixels.

Threshold-based Segmentation The NDVI image is well suited for this background
masking operation using a threshold because soil pixels have lower NDVI values than
vegetation pixels. This soil mask is subsequently applied to the NDVI image to mask pixels
that belong to the background and do not display plants.

The threshold which is used to generate the background mask is calculated using Otsu’s
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Figure 3.6: Histogram plot of NDVI values from example image Figure 3.5 (c). The NDVI
values expose a bimodal distribution. It is composed of a large peak (background soil
pixels) and a smaller peak (biomass).

method [79]. This method calculates an optimal threshold under the assumption that the
input data is a bimodal distribution.

The threshold is selected to minimize the within class variance 0. Otsu shows that
minimizing the within class variance is equal to maximizing the between class variance
0% which can be calculated more easily:

02 = wo(1) wy(t) [po(t)—pa(1)]° 3.7)

First, a normalized histogram of the data is calculated where p; is the normalized count of
pixels with an intensity which falls into bin i of the histogram and L is the number of bins.
Without loss of generality, a bin is created for each of the 256 intensity values in an 8 Bit
image. Now the weights w(t)

t
w(t)=>_p; 3.8)
i=1
L
w\(6)=Y_p; (3.9)
t+1
and class means u(t)
t .
Lp;
()= (3.10)
Ho Z wo(t)
L .
Lpi
()= (3.11)
H Z w,(1)
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can be computed for a selected threshold ¢ and the p; values from the histogram. Then
the optimal threshold ¢, is selected:

Losu = ATgmax oy () (3.12)
t

Mask Generation The mask I, is derived by applying the threshold ¢, to all pixels
pPnpvi in the image Iypy; according to Equation (3.13).

. (3.13)
0, otherwise

_ {L if pnovi > fotsu
Pmask =
An improvement can be achieved along the borders of plants when the NDVI image Iypyr
is smoothed slightly with a Gaussian blur kernel before the thresholding Equation (3.13) is
applied.

Mask Improvement To further improve the background mask, small blobs are removed
from the mask. For all blobs in the mask the area of the blob is calculated; if the area is
below a threshold ¢, the blob is deleted from the mask.

Such a filtering approach helps to suppress blobs which are too small to be considered
a plant or leaf fragment. The minimum size of such fragments can be easily set a priori
by defining the minimum size of objects in mm?; then this is converted into pixels given
the camera setup properties and the projective formulas. Example cases for which this
filtering step is helpful are small stones or objects, specular reflections and tiny vegetation
or wood fragments.

Additionally, image regions where the intensity in the NIR image is below a threshold ¢,;,
are added to the mask such that they are removed from the final image. This improves the
mask especially in areas at plant centers where shadows change the intensity value of the
red channel.

The output of the background removal step is a background soil mask image I, This
mask is applied to the NDVI image and the resulting masked NDVI image Iypyimasked €201
be used for further processing with machine vision.

Figure 3.7 displays the example NDVI image and masked NDVI image side by side. Addi-
tionally, the mask after Otsu’s thresholding (b) is displayed together with the final mask (c).
It can be seen that the mask improvement process removes the small blobs present in the
intermediate mask as well as a few pixels at plant centers where shadows are present.

Parameter Selection The parameters introduced in this section depend on the camera
system being used. For the Jai camera which is used throughout the thesis the following
parameterization is chosen: The smoothing kernel width is set to 3, the blob size parameter
farea 1S S€t t0 300 pX, the NIR pixel threshold ¢, to 25 %.

37

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

3 Multispectral Image Acquisition and Vegetation Segmentation

(a) NDVI image (b) Intermediate mask after Otsu’s threshold

(c) Final mask after improvement (d) Masked NDVI image

Figure 3.7: NDVI image, intermediate mask, improved mask and final masked NDVI image
where all soil pixels are masked with white color.

Throughout the experimentation the threshold ¢, is not calculated for each image sep-
arately, rather a single pre-determined threshold is used for a complete dataset. This
improves the segmentation for example for images with no vegetation.

This fixed threshold for a dataset or recording session is determined once using one or
more images where a substantial amount of vegetation is present (for example the image
in Figure 3.7 is well suited) to not violate the bimodal assumption of Otsu’s method.

3.3 Summary

This chapter introduces and derives a field image acquisition setup together with a suit-
able high-performance vegetation segmentation method. In summary the following is
achieved:
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3.3 Summary

¢ A camera setup comprising a multispectral camera and a suitable lens is derived to
deliver field images with four color channels (red, green, blue and near-infrared).

The camera system is able to deliver the multispectral images in one shot at frame
rates of 1 to 30 Hz which allows capturing the field images with a continuously
moving robot platform.

The developed vegetation segmentation method based on the NDVI (Normalized Dif-
ference Vegetation Index) is able to derive a vegetation mask from the multispectral
images.

The effectiveness of this method is proven by visual inspection and by the high
performance results obtained in the depended tasks (see results of Chapters 4 and 5).

¢ An image dataset with multispectral images and vegetation segmentation masks is
published in conjunction with [70].

The resulting field images are multispectral images with a vegetation segmentation mask.
The segmented images are an ideal data format for field image analysis, for example data
visualization, manual inspection or processing with automatic image analysis algorithms.
Also within this thesis this data format is the common input data for the plant classification
and position estimation tasks, which are developed in the next chapters.
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This chapter introduces a novel plant classification system for plant discrimination in field
images. The objective is to process field images which display different plant species and
to classify the plants for example into crop and different weed species (see for example
Figure 4.1). The desired output is a plant classification image where the estimated plant
class is available for every vegetation pixel in the image and the different classes are
distinguished through color coding.

Figure 4.1: Input field image (left) and resulting plant classification (right). The plant class
is color coded where green denotes the crop class while red and blue denote different
weed classes. At the border the system does not output a classification, thus it is plotted in
darker gray.

The plant classification approach must be able to cope with the specific situation of out-
door crop/vegetable farming: In general, crops are grown in one or multiple rows, weeds
however will occur close-to-crop and both between crop rows (inter-row weeds) and inside
the crop row (intra-row weeds), see Figure 4.2 for an illustration of the situations. Addi-
tionally, overlap between plants occurs, including inter- and intra-class overlap. Figure 4.1
displays all of these situations: For example in the bottom row, a carrot plant (green) grows
between three weed plants (red and blue) and all plants overlap.

In contrast to related work a new approach is developed that enables plant classification
in such challenging situations with overlap and close-to-crop weeds: Prior segmentation
into individual plants or leaves is not required. Instead, crop and weed are discriminated
based on features that are extracted from image patches. The patches are generated
from the image using a sparse sliding window approach. Neighboring image patches
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Figure 4.2: Plants are mostly cultivated in rows. In such row-based field setups weeds
can be classified to be located inter-row or intra-row. The figure depicts one crop row
(gray background); in a field setup the next crop rows would be directly located above and
below the depicted inter-row zones (white background). Additionally, overlap between
weed/weed and crop/weed is present.

overlap because the patch size is significantly larger than the spacing of the grid. For
classification, a supervised machine learning algorithm (Random Forest) is applied and
estimates crop and weed scores for each patch location. Subsequent smoothing using
a Conditional Random Field and nearest neighbor interpolation yield the final full scale
plant classification image.

The plant classification system comprises several processing stages: The major processing
steps run online during classification of new images. Two additional offline steps are
developed to generate annotated training data and perform classifier training.

In the following sections, first related work is discussed, then all processing steps are
described in detail. Intermediate results for every processing step are shown and the pa-
rameter selection is done. The evaluation of results with multiple datasets and discussion
is conducted in Chapter 6.

4.1 Related Work

Plant and leaf classification with computer vision techniques has been studied before on
different levels. Figure 4.3 provides a graphical overview of the four main approaches:
Leaf-based classification, plant-based classification, row-based methods and cell-based
methods.
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— LeafImages — Plant Images
Plant/Blob-Based Row-Based Cell-Based
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Single Leaf in Image Segmented Plant Blobs  Crop Rows Detected ~ Image Split into Cells

Figure 4.3: Visual illustration of plant/leaf classification approaches in related work: Single
leaf in image, segmented blobs, crop row detection and cell-based methods. The crop
plant is displayed in light green in the plant images. All four approaches are reviewed in
detail in the following sections.

4.1.1 Classification of Leaves in Images

A lot of methods were developed for the classification of leaves with machine vision.
Most work focuses on the use case where a single leaf is captured under controlled image
acquisition conditions: For example a flat leaf is placed on a uniform background in front
of a camera. Most methods apply properties like color, shape and texture to classify leaves
from different species [16, 17, 18, 19, 20].

Du et al. classify leaves based on morphological features [16] [17]. The features include
shape features (aspect ratio, area of convex hull, circularity, etc.) as well as the invariant
Hu moments [153]. On their 20 species dataset they achieve classification accuracies
between 68 % and 91 % using a modified hypersphere classifier or nearest neighbor
classification.

Liu et al. propose a leaf classification method which uses a wavelet method [18]. The used
features for classification are statistics which are calculated from the wavelet coefficients.
They apply a kernel SVM for classification and report 95 % recognition accuracy on their
15 species dataset.

Beghin et al. present a method for classification based on the contour signature of the
leaf and texture [19]. The contour signatures (distance to the leaf center for N clockwise
contour pixels) and the texture histograms (histogram of oriented Sobel gradients)
are compared using Jeffry divergence and an incremental classification approach is
applied. The system is evaluated usingleaf data of 18 species and achieves a classification
performance of 81.1 % on their dataset.

Mouine et al. propose an automatic approach for leaf species identification [20]. The
classification is based on the leaf contour (shape context feature [154]) and the arrange-
ment leaf salient points (harris corners). Their system obtains classification scores of
58 % and 61 % on the ImageCLEF 2012 [155] plant identification task.

Recently, these technologies were integrated into mobile devices like smartphones [21, 22].
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This enables classification of leaves in the field and requires methods that can run on
mobile devices with consumer grade camera and computation hardware.

Kumar et al. present a smartphone application which can be used to classify leaves of
trees from the Northeastern United States [21]. The app for iOS mobile devices uses
features that represent the curvature of the leaf contour in multiple scales to discrimi-
nate leaves from 184 different trees. On the test data they are able to identify the leaf
correctly within the top 5 matches with 96.8 %. They do not report results for the direct
identification result where a single class is estimated for the query leaf.

The ApLeaf application by Zhau et al. is an Android app for leaf identification [22]. After
capturing an image, the leaf is segmented from the background, the stem is removed
using tophat filtering and features are extracted. The app returns the top matches from
a database of leaf images from the French Mediterranean Area (ImageCLEF 2012). They
use color statistics, wavelets and pyramid HOG features and evaluate the performance
with ROC curves.

Only few work focuses on field-based leaf extraction and classification.

Komi et al. simulate a field setting by placing multiple leaves on a tray with soil. However,
the leaves are mostly flat and do not overlap [24]. They use the same shape and texture
descriptors as [27] and added eccentricity and a hyperspectral reflectance value vector.
They calculate these features for all blobs in the image and classify them into 6 leaf
species using linear discriminant analysis (LDA). They report 90.3 % identification rate
for their non-overlapping full leaves test data. The effects of challenging field situations
like overlap and images of non-flat leaves are not addressed.

Neto et al. propose a leaf extraction method to segment individual leaves from plant
canopies in field images with complicated backgrounds [23]. The approach uses color
and connected component analysis with fuzzy clustering and a genetic algorithm to
separate leaves. The approach is successful for convex leaves; however the authors
conclude that more research is required for concave and pinnate leaves (like these of
carrot and chamomile plants). Their color and connected component features are not
discriminative for these complex leaf shapes and they suggest evaluating shape and
texture features.

Slaugther et al. utilize a spectrometer with a spot size of 3 mm to classify the leaf at which
the spot is pointed [25]. 21 wavebands are used as features and stepwise discriminant
analysis is applied for plant distinction. Experiments are performed with lettuce plants in
California and they report an overall crop/weed classification accuracy of 90 %. The spot
size of a few mm renders this approach useful only for select measurements. Systematic
classification of all plants in a field scenario is unrealistic with a 3 mm spot size. The
authors do not mention any extension towards hyperspectral cameras which could
mitigate this drawback at the substantial cost of requiring an expensive hyperspectral
camera.

These field-based studies all address special scenarios like exposed leaves on known
background, only support convex leaf shapes or require special spectrometer equipment.
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These methods are not suited for large scale classification of leaves for weed treatment in
commercial field scenarios.

4.1.2 Classification of Plants in Images

A second set of methods focuses on classification of plants and not just single leaves. For
field-based plant classification different sensing setups are possible. First, airborne or
spaceborne sensing systems can be applied for remote sensing [40]. Second, close-range
sensing can be applied with ground-based machinery like tractors or robots.

The motivation for high precision plant classification on a per plant basis is site-specific
treatment or single plant weed control [2] with ground-based vehicles. To be able to
distinguish single plants, a high spatial resolution is required. Therefore, the following
review of related work focuses on methods with ground-based sensing which can deliver
such high resolution plant classification results.

Ground-based plant classification with camera-like sensors can be divided into three major
approaches: Plant/blob-based methods, row-based methods and cell-based methods.
These will now be reviewed in detail:

Plant/Blob-based Methods Several methods process the field image into segmented
blobs or plants and then subsequently classify each blob/plant based on features that are
extracted from each blob [26, 27, 28, 29, 30]. Good segmentation into single plant blobs
is a requirement for good classification results; especially overlap and partial plants are
challenging situations.

Hemming & Rath present a weed detection system which is integrated into a robotic
weed control system [27]. For each blob, shape and color features are extracted and used
for weed discrimination. For their experiments in greenhouses and fields, classification
accuracies with a wide span from 51 % to 95 % are achieved by their method. The plant
segmentation step is identified as error source which reduces the system performance.

Astrand & Baerveldt developed a similar robot for plant classification [29]. The system
also classifies segmented plants with similar features. They achieve classification ac-
curacies between 86 % to 97 % when applying the system to plants with approximately
5cm in diameter. However, the plant segmentation step was done manually; for the
fully automated system they estimate a degradation of the performance of up to -15 %.

Blasco et al. developed a robotic weed control application with a plant classification
approach to detect weeds in lettuce fields [28] which is integrated into a field robot.
The paper describes the image acquisition and treatment system which is integrated
into a robot in detail. The vision system detects the weed plant blobs based only on
thresholding in RGB color space. With large lettuce plants (approximately 10 cm in
diameter) they were able to locate 99 % of lettuces and 84 % of weeds correctly (which
according to the picture are easy to discriminate by color).
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Perez et al. apply color information to segment background from biomass and to extract
vegetation blobs [26]. Subsequently shape features (area, major axis, moments and
derived values) are applied to the segmented blobs. Then the discrimination is per-
formed by using Bayes rule or k-nearest neighbor classification. On the 32 test images
the performance of both approaches is nearly identical with true positive rates of 79 %
to 89 %. The dataset is however very small and they conclude that further research is
required because of overlap between plants and the large size variation of weeds.

Zheng et al. perform corn vs. weed classification in perspective outdoor RGB images
[30]. After background removal using ExG, blobs containing vegetation are extracted
and color index features calculated by averaging over all pixels in the blob. A one class
SVM approach is implemented and results in high accuracies above 90 %. Such high
accuracies are achieved since the field situation is simple: Corn plants are large, weed
density is low and plants do not overlap in the presented images.

These plant or blob methods all face problems, when the blob segmentation is flawed,
for example in situations with plant overlap or when plants are difficult to segment from
the background. Especially in outdoor fields and when vegetables are cultivated such
situations occur and are a challenge for all blob-based methods.

Row-based Methods Another approach to plant classification in agriculture are row-
based methods [31, 32, 33, 5, 34]. Most crops are cultivated in rows, where crop plants are
sown in straight parallel lines: weed plants on the contrary occur everywhere. Row-based
methods utilize the row information to classify plants into weeds (growing in between
rows) and crops (growing in the detected row).

Onyango & Marchant propose a system based on color and morphology to differentiate
between crop (cauliflower) and weed [31] in advanced growth stages. In addition to
the color and shape information they make use of the cauliflower planting grid as crop
prior information which is modeled as a bivariate Gaussian distribution. For their 12
test images they achieve classification rates of 82 % to 96 %.

Gee et al. estimate crop rows in perspective color images using the Hough transform [32].
Subsequently, blobs are extracted and classified into crop and weed based on the row
information. They conclude that the Hough-based method works well when a precise
vegetation segmentation is available. The blob-based method only allows detection of
inter-row weeds and they propose to evaluate spectral based classification of the blobs
to also be able to detect weed growing inside the row. Performance is estimated for soy
and corn crops in different scenarios and classification performances of 89 % to 96 %
for crops and of 74 % to 91 % for weeds are achieved.

De Rainville et al. develop a crop/weed classification system using morphological analy-
sis of weed in crop rows [33]. Color images are first segmented into a vegetation image,
then crop rows are detected using the Hough transform. Subsequently, blobs are identi-
fied and described with morphological features (for example area, compactness, mayor
axis, connectivity). Then a naive Bayes classifier is combined with a Gaussian mixture
model to discriminate crops and weeds. Thus the distribution of weeds inside and
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outside the crop row is modeled and used as additional information.

Pena et al. apply unmanned aerial vehicle based sensing for weed mapping [5]. They
apply the NDVI segmentation, crop row identification and discriminate weed and crop
based on the row structure. The final weed map is output as coarse row aligned cells.

Additionally, publications exist which just focus on row detection (using different meth-
ods like Hough lines, vanishing points, frequency analysis and others) and use the row
information for steering and robot guidance [53, 156, 54]. More recent methods can also
cope with curved rows and model row extraction with fitting polynomials [55].

The disadvantages of row-based methods is that often intra-row weeds are not detected
and treated. In high value crops like vegetables there is a high intra-row weed pressure
and those weeds must be detected and treated to avoid yield losses.

Cell-based Methods To avoid the plant or row segmentation step in field image sce-
narios, cell-based methods were developed [35, 36, 38, 37]. The image is split into large
non-overlapping cells through tessellation. Then all processing steps and the classification
decision are made for each cell (for example whether the cell contains weed or not). The
output is restricted to a per cell output; for example a cell can be determined to be weed
infested and as a result herbicide will be applied to the cell.

The method by Aitkenhead et al. splits each image into 16 coarse cells (4 rows and 4
columns per image) where each cell covers approximately 4 cm by 3 cm of the growing
tray. [35]. The crop/weed decision is derived per cell using self-organizing neural
networks. In experiments with specifically sown plants in a greenhouse this approach
achieves approximately 75 % classification accuracy.

Tellaeche et al. developed a cell-based machine vision system for post-emergence her-
bicide application [36]. The field images from a frontal downward looking camera are
perspectively corrected and aligned to rows. Then, each cell is classified whether it
contains weed or not and a Bayesian classifier determines weather cells are sprayed or
not.

In another more recent paper Tellaeche et al. [37] expanded their system and apply a
kernel SVM to two weed coverage features extracted from each cell. The weed coverage
features are derived from the distribution of vegetation pixels in each cell with the
knowledge that each cell spans the area between two crops rows. In the scenario where
a special weed (avena sterilis, which looks very similar to crops) has to be detected they
report classification accuracies of 66 % to 85 %.

Nejati et al. present a robot-based system which uses cell-based classification to detect
small weed in corn fields [38]. They tessellate the image into small cells (approximately
12-15 cells per corn plant) and analyze each cell using Fast Fourier Transform (FFT) and
leaf edge density. They report classification accuracies of 92 % for experiments with their
80 image dataset of corn plants. A novel idea of Nejati et al. is the use of smaller cells
and a heuristic filtering (they call this a cell-by-cell check) where miss-classifications
inside a region that otherwise consistently is classified as for example crop are removed.
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4.1 Related Work

One drawback of all cell-based approaches is a reduction of the spatial precision. The
decision result is not available on a pixel or plant level, only on a coarse cell level. Such a
cell-based output is well suited for herbicide applications where regions are either sprayed
or not sprayed. For high precision phenotyping application where individual plant-related
results (for example single plant weed control, plant counting, leaf area measurement) are
desired cell-based methods are not directly applicable.

Other Methods Also other techniques can be used to classify plants in fields: Multi- and
hyperspectral imaging [41, 42, 43] and remote sensing [40]. Furthermore, Strothmann et al.
apply a novel multispectral 3D sensing method and perform pixel-wise plant classification
with grid aggregation; the output is similar to the cell-based methods discussed above
[39].

Finally, also non-computer vision approaches with for example RTK GPS were proposed
for plant classification [44, 45, 46]. The basic idea is to create a high precision seed map
while sowing and then using the seed map and RTK GPS to relocate the crops during weed
treatment. This works only well for larger plants, as the precisions of RTK GPS is typically
in the 2/4 cm range under ideal conditions.

Besides the plant classification application these methods can also be modified and ap-
plied to other task in agriculture. For example defects on vegetables can be determined
with machine vision [47] and flowers can be analyzed with the goal of determining whether
single plants have diseases [48]. Also robotic harvesting of small crop such as sugar snap
peas [49]is under development and benefits from computer vision for crop classification.

In addition, the plant species is not the only measure that is of interest to farmers [50].
Metrics like the number of plants per square meter, the height of plants, nitrogen or water
content, etc. can be derived from images using machine vision [51, 52].

4.1.3 Summary of Related Work

The study of related work shows that plant classification has been studied on different
levels, but also indicates that plant classification in outdoor fields with close-to-crop weeds
is challenging and an open research question.

Simple leaf-based methods work well for species recognition of single leaves but not in
field scenarios. Plant-based methods work well when single plants are visible in images.
Blob-based methods as well as row-based methods struggle with plant overlap and close-
to-crop weeds. Additionally, cell and plant-based methods have the disadvantage that
only for discrete cell or pre-segmented plants a classification result is obtained. A variety of
other methods for example rely on complex and expensive hyperspectral sensing, remote
sensing or use GPS-based methods which rely on mapping crop plants and therefore
cannot produce a full plant classification image.

The new approach presented in this thesis closes the gap of plant classification for chal-
lenging outdoor fields with presence of differently sized plants, overlap and close-to-crop
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weeds. The developed method avoids segmentation into plants or leaves which was
determined a major problem in the literature. Although working without plant/leaf seg-
mentation, the drawbacks of cell or row-based methods are avoided. Through smoothing
and interpolation the system is still able to return a consistent per-pixel crop/weed classi-
fication result in full input image resolution.

4.2 Novel Plant Classification Pipeline

To solve the task a plant classification pipeline using improved computer vision and ma-
chine learning techniques is developed: The novel plant classification pipeline processes
input images (vegetation segmented multispectral images) into plant classification images
where each pixel of an image is classified into different plant classes.

The plant classification pipeline comprises five online and two offline steps which are
displayed graphically in Figure 4.4. The online steps perform the following computations:
First, patches are extracted from the images. Then, features are derived from each patch
and stored in a database (DB). Third, using a pre-trained supervised classifier for each
patch the plant class is estimated. Finally, smoothing and interpolation are the final two
online steps which generate a smooth full plant classification image. The goal of the two
offline stages is the generation of labeled training data (using a label tool and a human
expert) as well as the training of the classifier.

Another important characteristic of a classification system is the number and choice of
different classes. A common approach to plant classification is the discrimination into
two classes: crop and weed. However, in order to be as general as possible, more than two
classes are supported by the plant classification pipeline. For example it is desirable to
perform multi-class plant classification and not only binary crop/weed discrimination.
This enables phenotyping applications or the detection of specific weeds in the field. The
exact choice of plant classes is application specific and the plant classification pipeline
can be configured to use two or more classes as needed.

Throughout this chapter without loss of generality three plant classes are considered. The
carrot plants which are cultivated on the field are the first plant class called crop. The weed
plants are split into two classes for the following reason: Chamomile plants have leaves
with a similar pinnate contour and shape as the carrot plants. Therefore, chamomile
plants form a separate weed class named chamomile. Finally, all other weed plants form
the weed class.

In the following sections the processing steps which are applied to new images (online
steps, left part in Figure 4.4) are introduced.
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Input: Vegetation Segmented NDVI Image
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Figure 4.4: Processing steps of the plant classification system. The pipeline processes the
segmented NDVI images into a color coded plant classification image. The processing
steps comprise an online (left) and offline (right) stage. All processing steps are introduced
in detail in the remainder of the chapter.

4.2.1 Patch Extraction

Compared to earlier work where the input image is either segmented into plants or split
into cells, a new patch-based approach for plant classification is proposed. The input to
this first stage in the plant classification pipeline (see Figure 4.4) is an image with only
plant pixels; for example acquired and preprocessed with a system which is presented in
Chapter 3. The patch extraction step splits the image into overlapping patches.

The motivation to split the image into patches is to divide and conquer: Instead of pro-
cessing the complete image which contains multiple, possibly overlapping objects, the
image is split into smaller patches. The classification task is done on patch level and later
in the processing pipeline (Section 4.2.4) these classification results on patch level will be
fused to a full classification result for the whole image.

The patch extraction step is visualized in Figure 4.5 and realized as follows: The individ-
ual image patches are extracted from the image using a sliding window approach with
additional filtering; in the following this method is called a sparse sliding window. The
additional filtering step consists of a decision based on the window content whether to
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extract the patch or not. For plant classification, the filtering step rejects window positions
where no biomass is located at the window center pixel.
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Figure 4.5: Patch extraction is performed using a sliding window scheme. If the patch
center (orange dot) displays biomass, a patch is extracted. Three exemplary patches are
highlighted and a cross marks the corresponding keypoint for each patch.

In addition to the image patch content the position of the center pixel of the patch in the
complete image is saved. This position is expressed in image coordinates (u, v) and called
keypoint (see Section 2.1.3 for definition) of the patch. Later, all calculations based on the
image patch are related to this keypoint, which describes the patch location in the original
input image.

The important parameters of the patch extraction step are
¢ the size of the patch: wy;,,
¢ the stride between adjacent window positions: wqiqe
¢ and the filtering function to reject window positions without plants.

The patch size must be chosen according to the camera setup and the size of the plants so
that a patch contains a part of a plant/leaf. The stride is set to a value smaller than the patch
size to ensure that the neighboring patches overlap. Without loss of generality the stride
and patch size are equal in horizontal and vertical direction. A simple filtering function is
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chosen for the plant classification pipeline which leverages the biomass segmentation: A
window is rejected if the center pixel does not contain vegetation.

The output of the patch extraction step is a list of N tuples (P;, k;) where P; denotes a patch
and k; a keypoint. The keypoint k; is given in image coordinates (u;, v;).

(P, ;)] with k;=(u;,v;) and i=1,...,N 4.1)

Figure 4.6 displays the example patches which are marked in Figure 4.5.

(a) Crop (b) Weed (c) Chamomile

Figure 4.6: The figure displays the three example patches from Figure 4.5. The colored
borders of the patches denote the plant class type which is also given in the sub captions.

The sparse sliding window method is a key contribution: Compared to other approaches
on the one hand the error-prone segmentation into plants is avoided and on the other
hand compared to cell-based methods the output is much denser (because of the overlap).
The experimental results section will show that such a patch-based representation is useful
to classify plants in field images.

The following processing steps now operate on the image patches. A final processing step
will convert the per patch classification results back to a full classification image where a
estimated plant class is output for each biomass pixel (see Section 4.2.4).

4.2.2 Feature Extraction

The goal of the feature extraction step is to find a characteristic representation that is useful
to discriminate different plant species also under variation of the plant (size, overlap with
other plants, orientation of leaves, etc.) and image acquisition conditions. During feature
extraction the content of all image patches P; is described with a numeric feature vector
fi- The feature vector f consists of up to K extracted features f = f;, ..., fx.

The features developed for the plant classification task on the one hand exploit the shape
of the (partial) plant/leaf that is contained in the image patch. On the other hand, the
intensities in the patch are exploited by deriving several statistics from all patch pixels
displaying plants.

Table 4.1 summarizes the 15 specific features that are extracted from each patch. The
first seven features f; to f; are shape and contour features which are extracted from a
binary version of the image patch (biomass vs. soil). Similar features have been used
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Table 4.1: Features extracted from patches for plant classification.

fi Description

f Perimeter (Length of Contour)

f Area (Number of Pixels Covered by Biomass)

f3 Compactness (Area / Perimeter?)

fi Solidity (Area / Area of Convex Hull)

fs Convexity (Perimeter / Perimeter of Convex Hull)
fs Length of Skeleton

fz Length of Skeleton / Perimeter

fs Minimum of Biomass Pixel Intensities

fo Maximum of Biomass Pixel Intensities

fro Range of Biomass Pixel Intensities

Jun Mean of Biomass Pixel Intensities

fiz Median of Biomass Pixel Intensities

fis Standard Deviation of Biomass Pixel Intensities
fia Kurtosis of Biomass Pixel Intensities

fis Skewness of Biomass Pixel Intensities

in previous work; however there they were applied to whole plants or leaves and not to
cropped patches [27, 17]. The skeleton-based features f; and f, are added to the well
known shape features for this use case. The next eight features f3 to fi5 are statistics
(minimum, maximum, mean, standard deviation, skewness, etc.) of the intensities of the
plant pixels in the image patch. The motivation for such features lies in the observation
that weed and crop plants look dissimilar in the NDVI grayscale image.

The features can also be evaluated on how much they contribute to the plant classification
task. The feature importance in Figure 4.7 is generated using a Random Forest classifier and
by determining the mean decrease of average accuracy. This mean decrease is calculated
on the out-of-bag data for each feature separately when its features values are randomly
permuted [157]. It can be concluded that the feature f; contributes the most while feature
f1o0 is the least relevant. For this feature importance evaluation the complete dataset A is
used which will be introduced in Section 6.1.

4.2.3 Classification

The task of the classification step is to discriminate the image patches into the different
plant classes. For this task machine learning is used to derive a model from training data
that allows automatic separation of the different plant classes in new images (see also
Section 2.2.3 where classification and machine learning are introduced).

To be able to represent more than one weed class, a multi-class classifier and a supervised
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Figure 4.7: Feature importance of the plant classification features for dataset A. The fea-
ture importance (y-axis) is the mean decrease in accuracy when f; is permuted during
calculation of the out-of-bag error.

training scheme are selected. In this work the Random Forest classifier (see Section 2.2.5)
is chosen, because it supports multiple classes, is fast to train (computation time and
regarding number of training samples required) and able to estimate class certainty scores
in addition to the most certain label during classification of unseen samples. The training
of the Random Forest algorithm for plant classification is one of the offline steps and is
explained in Section 4.3.2.

The developed plant classification system is not restricted to using a Random Forest
classifier: Any supervised classification algorithm that supports multiple classes and class
probability estimates can be applied as a replacement for the Random Forest classifier.

The output of the classification step are a plant class estimate / and a class certainty score
vector s (as defined in Section 2.2.1) for each image patch. Figure 4.8 displays the output of
the classification step visually: For each image patch the classification result is represented
by a colored dot. The color of the dot visualizes the estimated plant class /. In the following,
green is chosen for carrot, blue for chamomile and red for all other weeds. The size of the
dot indicates the certainty level for this class according to the score vector s.

In region A in Figure 4.8, all keypoints are voting for the plant class weed and the classifier
has a high certainty. In region B (which displays two crop plants which have overgrown)
the classifications are not as certain and several outliers exist. The classifiers estimate
varies for different patches which are nearby. This variation in estimated plant class for
patches which are nearby is not desired. If the plant classification is taken as input for a
weed treatment system, the goal is to have a smooth classification where larger areas are
consistent with as few changes of plant type as possible.

During the classification step, all patches are classified independently of each other. This
can lead to spatial inconsistencies (different plant classes for neighboring patches) which
for example occur in difficult areas where plants overlap or grow close together. The next
step will address this and generate a spatially consistent plant classification.
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[ Carrot [ GeneralWeed [ Chamomile

Figure 4.8: Output of the plant classification step: At each keypoint the estimated plant
class [ is visualized by a color coded dot (see legend). Additionally, the size of the dot
indicates the certainty of the estimated plant class according to the score vector s. The
marked regions A and B are discussed in the text.

4.2.4 Smoothing of Classifications at Keypoints

The classifier provides a plant class score s and most probable class ! for every keypoint.
Instead of directly taking the most likely class / as estimated plant type for the keypoint
the smoothing procedure yields a more consistent plant classification.

Individual keypoints are not completely uncorrelated, rather some keypoint pairs are
neighbors in the image. This information is used in the smoothing process: Neighboring
keypoints most likely belong to the same class because plants are larger than patches and
form continuous objects.

A generic framework which allows the combination of evidence and neighborhood infor-
mation is the Conditional Random Field (CRF) framework. CRFs are undirected proba-
bilistic graphical models which can take context into account to return the desired more
consistent classification [158].

To implement a CRE the problem is formulated as energy function which is subsequently
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minimized during inference. The inputs to the CRF are the estimated score vectors s; for
each keypoint k;. Additionally, the neighborhood relationship for each keypoint and its
eight neighbors is used as a priori information. In the following we call one combination
of labels [; for all keypoints k; a labeling L. The goal of the smoothing step is to derive the
smoothed labeling I, which is composed of the smoothed labels i; for all keypoints.

The energy function E(L) defined in Equation (4.2) is the CRF model for the plant classifi-
cation case; it is the weighted combination of a data term D, and a neighborhood term
V(l,, 1)

E(L)=Y_D,(L,)+A- > V(1) 4.2)

peK pP.geN

Here, p and g are abbreviations for keypoints. K is the set of all keypoints k; in the
image. N defines the neighborhood set; p, g are contained in N if these keypoints are
neighbors. The neighborhood of a keypoint is defined here by the 8 neighbors (up, down
and diagonally) of a keypoint.

The data term (Equation 4.3) is based on the estimated class certainty s, and depends on
the currently assumed label I, at keypoint p. The term s,(I,) is the component of the score
for the estimated class lp. Because the score is normalized and sums to 1, the certainty
score (higher is better) is transformed into a penalty by subtraction from 1 (lower is better)
and forms the data term:

D,(1,)=1=s,(1,) (4.3)

The neighborhood term (Equation 4.4) is calculated for two neighboring keypoints p and
q based on the currently selected labels [, and [, at these keypoints:

V(l,,1,)=min[|1,—1,],1] 4.4)

The discontinuity cost defined by the neighborhood term in Equation (4.4) calculates
the integer difference of the integer label classes truncated to at most 1 to only penalize
different labels, but not to prefer any class over another. Because the sliding window does
not extract patches where no biomass is located at the patch center, a keypoint might have
fewer neighbors.

Improved Neighborhood Term The plant classification use case has two special cases
which are not considered in the smoothing model so far:

First, background is not modeled as separate class and thus some keypoints for example
at plant borders or on pinnate shaped leaves are missing. Especially, for pinnate leaves,
keypoints can easily have connectivities which are lower than 8. This might result in less
optimal smoothing in these areas.
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Second, the neighborhood term does not consider whether the connection between two
keypoints (imagine a virtual line between two keypoints) spans only across biomass or
whether it includes background pixels.

The first case (border keypoints having fewer neighbors) is improved for pinnate leaves or
for plant gaps through an extended neighborhood. The standard 8-connected neighbor-
hood \V is extended to the neighborhood N'*. There missing neighbors are replaced by
neighbors in the next row according to Figure 4.9.

1
" B B N E N :
[ ] LI :
; | é 1 Extend
L] LI 1 E—
[ ] [ | :
" E RN :
1
1
Plant Center & Full Grid : Plant Border & Missing Points Plant Border & Missing Points
Normal Neighborhood 1 Normal Neighborhood Extended Neighborhood

Figure 4.9: Scheme how the neighborhood N is extended to A/*. This is especially useful
to ensure better connectivity at the edges of pinnate leaves, where background is present
and keypoints are missing.

The effect of the neighborhood extensions scheme is a better connectivity at the leaf border
and in areas where plants or parts of plants overlap. Figure 4.10 gives a real world example
where the neighborhood extension is plotted before (Figure 4.10a) and after extension
(Figure 4.10b).

(a) Normal neighborhood A (b) Extended neighborhood N'*.

Figure 4.10: Real world example showing the neighborhood extension scheme.

The second case which can be improved in the neighborhood term is to introduce a so-
called biomass factor. This factor considers the number of background vs. biomass pixels

56

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

4.2 Novel Plant Classification Pipeline

along the connection between two keypoints (virtual line between two keypoints). The
goal is to avoid over-penalizing the neighborhood of two keypoints with different labels
when background (non-biomass) pixels are present along the direct connection.

The biomass factor B, , represents the fraction of biomass pixels along the direct line of
pixels between the keypoints p and g:

__ #plant pixels

= 4.5
#total pixels (4-5)

P.q

Using the biomass factor the neighborhood term in Equation (4.2) is extended: The new
discontinuity cost is defined as B, , - V(I,, ;). This new discontinuity cost is no longer
binary (either 0 or 1), but now it spans the interval [0, 1]. If no plant pixels are present it
takes the value 0 which results in no penalty if the labels of the associated keypoints are
different. If all pixels are vegetation it takes the value 1 and behaves like the initial case
defined above in Equation (4.4). For biomass factors between 0 and 1 a linear penalization
occurs if different labels are present.

Figure 4.11 displays an example image where the biomass factor is visualized through
colored neighborhood connections. It can be observed that connections spanning from
one plant to another and also connections along pinnate leaves are weighed down since
the biomass factor is lower than 1 for these connections.

L om - o m—m = & .
i IXBECDEDON. 2 i :J Biomass
BN 57' : by Factor B,
e F 4 1.0
0.0

Figure 4.11: Visualization of the biomass factor. Each neighborhood connection is color
coded to express the biomass factor value according to the legend on the right.

Final Energy Function Bringing both the new discontinuity cost with biomass factor
and the extended neighborhood together yields the final CRF energy term:

E'(L)=>_D,(l,)+ A+ > By V(1) 4.6)
pek P.geEN+
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The energy function E*(L) from Equation (4.6) is minimized and the smoothed labeling L
is determined and returned as result of the smoothing step.

L =argmin E*(L) 4.7
L

Minimizing such energy functions can be done using different algorithms like efficient
belief propagation [159] or the graph cut algorithm [160, 161], for which also a sped up
variant exists [162]. Multi label graph cuts are used in the following to minimize the energy
function. The relevant parameters of the smoothing step are the balancing parameter A.

Carrot [ GeneralWeed [ Chamomile

Figure 4.12: The output of the smoothing step for the same image as Figure 4.8: The
smoothed version is plotted and the dots are now all of the same size and indicate the
result after minimization of the CRE The marked regions refer back to Figure 4.8 and are
explained in the text.

The result of the smoothing process is a consistent labeling. When region B is compared
in Figure 4.8 with the results after smoothing in Figure 4.12 it can be seen clearly that
the correct crop class has propagated throughout region B. The inconsistencies are no
longer present in Region B. Unfortunately, regions which were consistently not correctly
classified before smoothing also are misclassified after smoothing (for example the plant
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center right next to region A). Region A is already consistent before smoothing and is not
changed in Figure 4.12.

All in all, the output of the smoothing step is a plant classification where for each patch a
plant class is estimated. The smoothing step helps to make the individual classifications
spatially more consistent and to avoid rapidly changing labels next to each other.

4.2.5 Interpolation of per Keypoint Results to Full Resolution

After the smoothing step, the estimated plant class is available for each keypoint/patch.
Compared to the input image, this estimation is still only available for a fraction of the
plant pixels. The goal of this step is to yield an estimated plant class for every plant pixel
in the image.

The deduction of a full frame plant classification image is implemented as nearest neighbor
interpolation. The plant class for each vegetation pixel is copied from the nearest keypoint.
Background pixels are not considered in the interpolation step. Due to the patch extraction
process no patches are available at the image borders (only full patches are extracted).
The final plant classification image has no output at these border pixels.

Figure 4.13 displays the result of the interpolation step for the sample image (from Fig-
ure 4.12). Using the nearest neighbor interpolation a full plant classification image is
achieved, where a plant classification is available for each vegetation pixel.

(a) Smoothed classification (b) Interpolation result

Figure 4.13: Interpolation to full image: The image (a) on the left is the smoothed image
from Figure 4.12. On the right in (b) the result of the nearest neighbor interpolation on
vegetation pixels can be seen. For color legend see Figure 4.12.

The interpolation step would not be necessary, when a patch would be extracted for each

single biomass pixel. This would result in a very large number of patches and calculations
which would render the plant classification pipeline very slow. To avoid this while retaining
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aplant classification output for each vegetation pixel the patches are sampled from a sparse
grid and then the interpolation brings the output back to full image resolution.

4.2.6 Summary Online Steps

The plant classification pipeline comprises 5 major online steps: Patch extraction, feature
extraction, classification, smoothing and interpolation to plant classification image. The
abstraction from a full image to overlapping patches, their classification and the final
conversion back to a full image are the key idea of the system.

A full plant classification image is the output of the five online stages. Figure 4.13b displays
an example output image after complete processing with the new plant classification
pipeline.

Based on this plant classification image, plant class specific robotic weeding can be realized.
In addition, the plant classification image can be used as input for additional phenotyping
steps [50]: Metrics like plant count, crop/weed coverage, weed infestation ratio and others
can be derived.

4.3 Offline Pipeline Training Steps

The online plant classification process is accompanied by several offline steps. The offline
pipeline includes acquisition of ground truth plant classification data and training of the
classifier. These steps reuse several building blocks of the online pipeline as depicted in
Figure 4.4.

4.3.1 Ground Truth Data Acquisition

The ground truth data for plant classification is generated manually. The field images are
presented to one or more experts and each user is asked to mark and classify the plants in
the image. Figure 4.14 displays a screenshot of the web-based labeling tool which is based
on the open source LabelMe tool [163]. The images that are displayed to the user are the
masked NDVI images.

The user then labels the image by drawing polygons and by assigning a single plant class
to the polygon. The label of the polygon is assigned to all plant pixels that are enclosed by
the polygon. Background non-vegetation pixels that are contained in the polygon (white
in Figure 4.14) are not assigned any class by the labeling process and remain background
pixels.

During labeling also the number of plant classes is defined. The user can define as many
plant classes as he wishes during labeling. When the pipeline reads the labeled data, the
number of classes is propagated and set for all further processing steps implicitly.
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Figure 4.14: The customized web interface used for labeling: The user annotates the
images with polygons to define plant contours and sets the plant class per polygon.

As depicted in Figure 4.14 not all pixels in the image must be labeled. For example regions
with heavy overlap or at the boundary of the image might be difficult to be labeled correctly
and can be ignored at the user’s choice. Plant pixels that are enclosed by multiple polygons
with different classes are reset to the unlabeled class; this situation can occur when two
plants grow together and the labeling polygons intersect.

Figure 4.15 displays the results of the labeling process: Once the user has marked the plant
with polygons in the labeling tool, the polygons are combined with the vegetation mask
and projected onto the NIR image for visualization and verification.

Here it also becomes clear, that the proposed labeling process is a great support for the
expert user. By automatically removing background pixels from the images before labeling
is started, the user must not do this manually. Instead of labeling the exact plant contour
or assigning the label to all plant pixels with a brush like tool, the user can coarsely label
the plant with a rough polygon. Background pixels are automatically ignored. The user is
guided to pay most attention to regions with plants growing close together where precise
labeling is required.

All labeled images are then stored (with the polygon labels and vegetation mask) in the
plant classification database. The database can then be queried for labeled data for the
various training, verification or visualization purposes.
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(a) Polygon labels from labeling tool (b) Labels and mask applied to NIR image

Figure 4.15: Resulting labels for an example image. The polygons which were defined
by the user are displayed on the left. When the label polygons are combined with the
vegetation mask and are subsequently projected onto the NIR image the labels can be
easily verified (right).

4.3.2 Classifier Training

The second offline step is the training of the classification algorithm, which performs
the distinction between the different plant classes in the online part of the pipeline (Sec-
tion 4.2.3).

Using the labeled data a Random Forest classifier is trained in supervised mode. The
training process is a two step process, where first labeled data is created from the database
and in the second step the Random Forest is trained.

First, all images for which ground truth labels are available in the database are run through
the patch and feature extraction process (as presented in Section 4.2.1 and 4.2.2). The
resulting feature vectors f for all patches are paired with the ground truth labels g as
follows: The keypoint of each patch is used to look up the ground truth label in the database.
All feature vectors for which no ground truth exists are discarded at this stage. For quicker
retrieval in possible future classification runs, [ f] and [g] are cached in the database.

Second, during the training step the database is queried for all labeled training data (feature
vectors f with paired ground truth labels g). Using these feature vector and label pairs
a Random Forest classifier is trained. The resulting classifier is stored and can then be
applied in the classification pipeline.

Depending on the results, the users can choose to repeat the training steps and the training
data can be augmented with new labeled images to for example adjust the classifier to a
new field situation. Additionally, a classifier can be trained only on a subset of the ground
truth labeled images to support for example tuning of parameters with cross-validation.
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4.4 Evaluation Criteria

In order to evaluate the plant classification pipeline, suitable evaluation criteria are re-
quired. Both a qualitative and a quantitative approach using performance metrics is
defined.

The plant classification pipeline performs a classification task: The algorithm classifies
image patches which are extracted at keypoint locations in the input image. The classifier
outputs a classification score s; for each keypoint k;. Using the score vectors a receiver
operator characteristic curve is plotted as defined in Section 2.2.4.

An evaluation on keypoint level, as done for the ROC curve, depends on the location
and count of the keypoints. To be able to compare results of experiments with different
numbers of keypoints (this happens for example when the patch size is changed), classifi-
cation metrics are calculated on the interpolated plant classification image. These metrics
then do not depend on the number and location of keypoints. They are implemented to
compare each estimated vegetation pixel in the classified image to the ground truth image.
Background non biomass pixel which are masked by the vegetation segmentation method
in Section 3.2 are ignored. This avoids a bias for images with a lot of background pixels.

First, classification metrics are calculated before the smoothing process. The unsmoothed
estimated labels [ at each keypoint are interpolated to a full image of interpolated labels
linterp (using the presented interpolation processes while skipping smoothing). Using
the classification metrics introduced in Section 2.2.4 all ground truth labels g are now
compared to the corresponding l;,.r, for all vegetation pixels. All metrics derived from
comparing the unsmoothed data to ground truth are annotated with the keywords before
smoothing.

Second, a final analysis is possible when the full smoothed and interpolated plant classifi-
cation image is considered: The ground truth labels g are compared to all corresponding
smoothed and interpolated plant classification labels interp fOT all vegetation pixels in the
image. These metrics are the main output of the pipeline and are annotated with the
keywords after smoothing.

In addition to these quantitative evaluation metrics, also qualitative evaluation using
visual inspection is performed. The evaluation and discussion of the plant classification
pipeline is performed in Chapter 6.

4.5 Parameter Selection

Now the complete plant classification pipeline has been presented. The goal of this section
is to analyze which parametrization gives best results. The analysis of the pipeline with
regard to the overall classification performance on different datasets is performed in
Chapter 6 in detail.

63

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

4 Plant Classification

Each pipeline run is performed using 5-fold cross-validation. To evaluate the performance
of the pipeline the average accuracy measurement is chosen and evaluated on dataset A.
The full plant classification image is used to calculate the metrics by comparing each
ground truth labeled pixel to the estimated smoothed and interpolated plant class. The
metric average accuracy and the dataset A are introduced and discussed in detail in
Chapter 6. The focus of this section is to determine how the best parameterization can be
determined and to understand the influence of each parameter.

4.5.1 Patch Size and Patch Stride

The main parameters of the patch extraction step are the patch size wg;,, and the patch
stride wgiq. between neighboring patches. In the following the impact of the patch size
and patch stride on the classification performance is analyzed.

Figure 4.16 displays the average classification accuracy for different patch sizes wg,, (20 px
to 160 px) and strides wgiq. (10 px to 40 px) before and after the smoothing step (see
Section 4.2.4).
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Figure 4.16: Average classification accuracy before (a) and after (b) smoothing for varying
patch sizes wg;,, and patch strides wgiqe.

The following trends can be observed:

1. With growing patch size the performance of the plant classification system before
smoothing increases. Growing patch sizes result in more context being available
in each patch, thus the classifier has more information to distinguish the different
patches.
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2. When the stride is increased, the performance generally drops. This is clearly the
case for stride sizes larger than 20 px, for the stride sizes 10 px and 15 px there is no
trend visible and the performance is roughly equal with the stride size 10 px.

3. The influence of stride size is largely independent from the choice of patch size. Both
parameters can be individually chosen.

A comparison of the results before smoothing (Figure 4.16a) with the results after smooth-
ing (Figure 4.16b) indicates that in general smoothing improves the classification accuracy.
Very large or small patch strides do not benefit from smoothing as much as patch strides
of 10 px or 15 px. Additionally, a performance maximum at patch sizes of around 80 px
is visible, after that size the performance starts to drop slightly (but it is still significantly
better than without smoothing).

Figure 4.17 displays the patch count for all of the patch stride and size combinations from
Figure 4.16.
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Figure 4.17: Number of patches depending on patch size and patch stride.

The declining number of patches for growing patch sizes and strides has two impacts:
1. The higher the number of patches, the higher the computational load.

2. The smaller the number of patches the less data a classifier has to learn from, espe-
cially when cross-validation and bagging (as in a Random Forest) happens.

Therefore, the patch size and stride should be chosen to achieve best performance while
keeping the number of patches at a reasonable level.

Finally the following parameterization is chosen which balances the two requirements of
enough training data and best performance:

¢ The default patch size wy,, is set to 80 px.

¢ The default patch stride wg;q. is set to 10 px.
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This achieves best performance while retaining more than 110 000 patches for the 150 im-
ages, which is enough data for most classification algorithms.

4.5.2 Smoothing Parameters

The impact of choosing the smoothing parameter A is displayed in Figure 4.18. It can be
seen that when setting the parameter A = 0 the same performance as without smooth-
ing is achieved. This indicates that although inference using the CRF is performed, the
performance — as expected — neither increases nor decreases.

0.92

0.9

0.88

0.86

0.84

Average Accuracy

0.82 — After Smoothing
- - - Before Smoothing

0'80 02 04 06 08 1 12 14 16 18 2

Smoothing Parameter A

Figure 4.18: Average accuracy of the plant classification result depending on the choice of
smoothing parameter A.

The optimal parameter for A is 1.2 while it can be noted that the plateau around the
optimum is flat and not a sharp peak. This indicates that the smoothing process is robust
regarding the concrete choice of A.

4.5.3 Classifier Parameters

The classifier is one major component of the system. Machine learning algorithms also
have parameters which need to be set depending on the data and application. Therefore,
in the following the Random Forest classifier is analyzed in detail for the plant classification
task.

A Random Forest classifier provides the internal out-of-bag error according to Section 2.2.5
as measure of classification performance. To determine the best parameterization for the
Random Forest for the plant classification pipeline, a classifier is trained on the full dataset
and its out-of-bag error is used to judge the performance of a specific parameterization.
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The lower the out-of-bag error, the better the classifier. All experiments are repeated 3
times and the average out-of-bag and average training time are reported.

Number of trees The main parameter of a Random Forest is the number of trees which
are grown. Figure 4.19 shows that the out-of-bag error of the classifier decreases with an
increasing number of trees which are trained.
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Figure 4.19: Out-of-bag error of the Random Forest classifier (left axis) depending on the
number of trees it was used to train. Additionally, the right axis displays the time taken to
train the classifier.

Additionally, the training time when using a single CPU core is plotted (right axis in Fig-
ure 4.19). It can be observed that the training time increases linearly with the number of
grown trees. The out-of-bag error decreases sharply between 1 and 20 trained trees and
then the error levels off and only decreases marginally. Training more than 100 trees results
in only a minor improvement of performance while encountering the linear increase in
training time.

Therefore, in the following the default number of trees is set to 100 to achieve a good
out-of-bag error while not spending too much time on training.

Size of Leaf Nodes Figure 4.20 displays the out-of-bag error when varying the minimal
size of a leaf node in the tree. It can be observed that with higher minimal leaf node sizes
the error increases and the training time only decreases slightly.

The increase in out-of-bag error does not justify small savings in training time, thus the
minimal leaf node size is set to 1. This results in fully trained trees with just a single pure
label being stored in each leaf node.

Number of Features considered per Split Another important parameter is the number
of features which are considered during each split when the classification tree is trained.
Figure 4.21 displays the resulting out-of-bag error and training time when the parameter
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Figure 4.20: Out-of-bag error of the Random Forest classifier (left axis) depending on the
leaf node size (minimum number of samples in each leaf). Additionally, the right axis
displays the time taken to train the classifier. Note: The scales of the axes are kept in sync
with Figure 4.19 to allow easy comparison.
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Figure 4.21: Out-of-bag error of the Random Forest classifier (left axis) depending on the
number of features considered per split. Note: The scales of the axes are kept in sync with
Figure 4.19 to allow easy comparison.

is varied. Here values of 1 to 15 are possible since the plant classification system extracts
15 features.

It can be concluded that the error is nearly flat for 4 to 9 features considered at each split
while the training time increases in a monotone fashion. The recommended default value
for a Random Forest is defined as the square root of number of features in the literature,
here this would equal +15 = 3.87. Finally, the parameter number of features considered
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per split is set to 4. This is right in the area where the out-of-bag error is minimal, close to
the default value and the training time is also kept as low as possible.

4.6

Summary

This chapter introduces a novel plant classification method for field images:

The plant classification system is able to classify two or more plant classes in field
images without the need for a plant or leaf segmentation.

Feature extraction and classification are performed on overlapping image patches.
This approach enables the pipeline to handle overlap of plants and irregular shaped
leaves.

The patch extraction at a sparse grid improves the runtime performance compared
to full classification of all plant pixels. The newly introduced smoothing step com-
pensates the loss of spatial output precision of previously known cell-based methods.
The presented pipeline outputs a smoothed full plant classification image.

Training of the system is done offline by an expert user. The classifier is then applied
in the online phase.

Quantitative results and an evaluation of applying the novel plant classification system on
two challenging field datasets is presented and discussed in Chapter 6.
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An important property of a plant is its location in the field which can be described by the
plant’s stem position. Accurate detection of the position of a plant (Figure 5.1) enables
precision plant treatment tasks including single plant weeding, grasping or fertilization.

Figure 5.1: Field image with marked plant stem positions (left) and precision grasping of
single plants based on stem position information (right).

The precision agriculture trend is continuously evolving due to ecological and economical
reasons. This trend has the effect that farming tasks are developed where individual
plants are treated compared to the previously applied methodology where whole fields or
complete rows of plants are treated homogeneously.

Once agriculture tasks focus on single plants, the plant stem position is one of the most
important features of a plant. It describes the center of a plant’s activity and is the connec-
tion point of a plant’s leaves and the root system. Therefore, the plant stem is the main
attack point for single plant weed control. Treatment of plants at their stem is the most
effective method for mechanical weed control [73] and other precision agriculture tasks.

This chapter presents a novel method for plant stem position estimation: The goal is a
solution to the general plant position estimation task, where the stem positions of all
plants (i.e. both crop and weed) in the image must be determined.

In the following the plant stem detection problem is analyzed in a very broad scenario:
The required input data only consists of multispectral images from a downward looking
camera. Prior segmentation into individual plants or leaves is not reliably feasible in
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outdoor field environments (see Section 3.2). Therefore, plant or leaf segmentation is
not a precondition for the new detection pipeline. This will allow the application of this
system to real word field situations with many plant species and overlap between plants.
Compared to constrained scenarios like greenhouses, in the field the plant position cannot
be determined based on scene information like fixed field structures or detection of the
pot position.

The presented objective of using only limited input data and not imposing additional
constrains on the field scene is challenging. However, this ensures that the developed
system is a generic solution that can be applied to a wide range of real world challenges in
precision agriculture. This distinguishes the system from other approaches presented so
far that heavily depend on special scenes or use additional information like GPS [46] or
row context [54].

Throughout the chapter the plant position is defined to be the location where the plant
stem emerges from the soil. Given the mounting position of the camera within the vehi-
cle (extrinsic calibration) the plant position can be calculated in the robot frame (main
coordinate frame of the robot). Using this position information, a treatment tool like the
custom built gripper shown in the right picture in Figure 5.1 can be controlled to reach
the plant position. Additionally, when the robots position is tracked over time or when
the robots position is determined with external sensing like GPS or a localization system
(SLAM) the plant position can be expressed in a fixed coordinate frame (for example a
field coordinate frame or GPS coordinates.)

For the discussion in this chapter the term plant position is defined to specify the image
coordinates u, v of the plant stem in the current 2D image. All further positions (derived
from various transformations to different coordinate frames) is application specific and
not in scope of this chapter.

In the following sections first related work is discussed, then the individual processing
steps of the newly developed method are introduced in detail.

5.1 Related Work

The detection of plants and the estimation of their precise location has been studied from
different perspectives: Some projects focus on the detection of plants or leaves in situation
like homes or experimental setups; however these situations are substantially different
from the agricultural use case of natural outdoor field environments.

In the following, the focus lies on work done in the agricultural domain with many plants
growing in outdoor field or greenhouse farming applications. Depending on the sensing
mode (2D image, 3D data, external sensing with for example GPS) and the information
processing mode several approaches have been developed.

Row Detection Based Methods Row detection methods have been applied to detect the
positions of row crops in fields [29, 53, 54]. The applied methods are mostly binarization
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of the image and then either Hough transform related methods or filtering and fitting of
row lines or polynomials [55] to previously extracted row center candidate points.

Some work has focused on even more constrained scenarios where the underlying spatial
arrangement of the plants is to a large extent known in advance (for example when crops
grow in a regular grid).

Segaard and Olsen developed a computer vision system to detect crop rows in perspec-
tive field images [53]. The position of the crop row is calculated without segmentation,
rather they use weighted linear regression on center of gravity calculation of image slices.
This method only returns row position but not positions of individual plants.

The robotic system developed by Astrand and Baerveldt applies a camera to guide a
robot along a row of plants using Hough transform with 2 cm accuracy [29]. Based on
the row they determine individual plants using a classification system based on color
and shape features (crop with diameter of approximately 5 cm) but do not report plant
detection results.

The automatic row detection approach from Jiang et al. proposes a computer vision
pipeline which applies a multi region of interest approach to find crop rows based on
candidate center points [54]. They claim that this approach is superior to Hough based
methods and report a row detection rate of 93 % for images with 640 x 480 px.

These methods are not applicable in our use case: In the field the spatial distribution of all
plants is not known, especially also the position of the irregularly appearing weed plants
has to be estimated.

Plant Segmentation Based Methods To achieve a more precise plant position estimate,
plant segmentation based methods were developed. The main idea is to segment the image
into plants or leaves and then derive a plant position estimate from the segmentation
[31, 56, 57, 58, 59]. The challenges for these approaches are the segmentation accuracy
with high weed infestation or overlap between plants.

Kiani & Jafari segment field images into individual plants and derive the centroid position
of each plant [58]. Their experiments with corn show that the centroid is a good estimate
of the crop stem location. They attribute their good performance to the very different
appearance of crop and weed when they performed their analysis. An evaluation of the
stem detection accuracy for weed plants is missing in the paper.

Midtiby et al. perform leaf segmentation and then determine plant stem candidates by
searching from the leaf tip [57]. The information of multiple leaves is fused to determine
an estimate for the plant stem emerging point. Their system correctly identifies 90 % of
plant stem emerging points correctly with a detection threshold of 2.0 cm.

Onyango & Marchant work with images of plants that are growing in a regular grid
[31]. Their work focuses on crop/weed segmentation. However they estimate the plant
position by calculating the centroid of the segmented plants or based on the soil pixels
between plants and knowledge of the plant spacing. The studied crop is cauliflower
with little overlap between adjacent plants (different growth stages are studied). They
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do not report plant position performance scores and only do visual analysis of output
images.

Huang & Lee present a vision-guided grasping system for phalaenopsis plantlets. Their
experiments are however done in an artificial lab environment where plants are taken
out of the soil and placed on a black background [56]. After segmentation of single
plantlets through thresholding, the plantlet skeleton is calculated by thinning the binary
segmentation mask. Then junction points of the skeleton are used to separate the
plantlet into leaves and root. Finally, the grasping point is selected in the middle of
the root and its 3D position is derived using stereo vision. A successful pickup rate of
78.2 % is achieved in an experiment with 348 plantlets. However, in field experiments
this approach cannot be applied because the root is not visible when the plant is still
growing in the soil.

Hunt et al. strive to estimate the position and area of ryegrass plants artificially planted
in PVCrings arranged in a grid [59]. In the field of view of the camera an additional color
calibration pattern is located. To determine the plant position, first vegetation pixels are
selected through color calibration and thresholding. Second, edge detection is applied
to the vegetation pixels and based on the detected edge lines plant centers are estimated
(ryegrass has long leaves growing outwards). If this method does not yield any result, the
PVCring is detected in the image. This method is not applicable to naturally growing
plants and does not handle large overlap between plants.

Furthermore, approaches which process side view image were proposed to find for ex-
ample fruit or vegetables growing on large plants. Yamamoto et al. process side view
images of plants [164]. They apply classification trees on 2D RGB color images to detect
tomato fruits as blobs in the image. These methods are however not applicable to the
desired use case of downward looking images.

This line of work relies on a prior segmentation of the image into plants or leaves. For in
field situations this can be very challenging and errors from the segmentation process
have a large impact on position estimation performance. Additionally, all papers have
worked with large plants and scenarios with few weed plants present. In our challenging
scenario with small crop plants and high weed infestation crop/weed segmentation does
not work well (see Section 4.1) and a different approach is required.

Georeferencing Based Methods In addition to the image-based methods for plant po-
sition estimation GPS-based methods have been developed: High precision RTK GPS
has been a driver in automation and field management in agriculture. With RTK GPS a
positioning precision in the centimeter accuracy range can be achieved. This is used for
automated vehicle guidance, yield mapping, etc. and can also be applied to plant position
estimation [44, 45, 60]. The basic idea is to map the location of seeds during sowing and to
use this global position information to find the plants in the field during later processing
steps [61, 46]

Ehsani et al. equipped a four row planter with an RTK GPS unit and generated seed
maps during and report deviation between the seed map and seed positions in the field
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of 3.0cm to 3.8 cm [44].

Griepentrog et al. attached an RTK GPS receiver onto a precision seeder [45]. In field
experiments they were able to generate seed maps with 1.6 cm to 4.3 cm accuracy (de-
pending on vehicle speed and seed spacing) and conclude that this is precise enough
for vehicle guidance and potentially single plant precision agriculture.

Norremark et al. use a similar approach to map seeds with RTK GPS when sowing sugar
beet [60]. In addition to GPS data they used a tilt sensor and filtering to generate the
field map offline. They show that 95 % of the seeds emerged up to 3.73 cm from the seed
map when sowing with vehicle speed of 5.3 km/h. The follow-up work by Nerremark
et al. presents a full GPS based plant mapping and detection system combined with a
cycloid hoe which performs weeding [61]. The hoe has multiple fins and when the plant
map indicates an upcoming crop area, the hoe is configured to avoid this space.

Sun et al. retrofitted a vegetable crop transplanter with RTK GPS and additional sensors
to map transplanting crops to a field [46]. Then the position error of measured and real
transplanted plants was analyzed. They report a mean plant position error of 2 cm with
a 95 % error of 5.1 cm.

These georeferencing methods require expensive RTK GPS equipment and are limited by
the positioning and sowing precision. They do not account for seed movement during
sowing and can not cope with seeds that do not germinate. The largest restriction of
these methods is however, that they cannot be used to detect the position plants that
were not sown and mapped, which includes all weed plants! Additionally, the typically
reported errors for crop plants are 2 cm to 5 cm and thus too high for the targeted precision
agriculture tasks for high value crops.

A special approach is presented by Raja et al. and follows the same idea to re-detect the
crop position in the field [165]. However, they do not apply seed mapping, they mark the
crop plant while planting. They propose different methods and for example use paint
(transplanted crop such as salad), plastic markers or genetically modify the seed such that
the crop has fluorescent properties and can be re-detected with special camera equipment.
This method has similar drawbacks as the georeferencing approaches and is not applicable
to desired use case.

3D Sensing Based Methods Additionally, 3D sensing and processing has been applied
to the problem [62, 63, 64, 65, 66, 67]. Some approaches process side view depth or stereo
images of plants to detect stem and leaves. Others apply a lidar scanner instead of a camera
to record a 3D pointcloud and then perform plant detection.

Nakarmi & Tang use side-view depth images to measure inter-plant spacing (stem to
stem) in corn fields [63]. After preprocessing the side view images using filters and
morphological operations, the side view stem skeleton is used to determine the plant
position. They achieve 1.7 cm root mean squared error. The plants are very large and the
stem fills almost the complete side view image, therefore the method is not applicable
to downward looking images or small plants.
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Weiss & Biber present a plant detection and mapping system using the FX6 3D LIDAR
sensor [62]. Plants are identified in the 3D point cloud by removing ground pixels
and clustering points according to a crop row model. The system does improve the
plant position estimation by tracking the plant 3D points from scan to scan until they
disappear from the field of view. They report position accuracies for plant detection of
3 cmin laboratory and 3.5 cm in field experiments with paper corn plant replicas.

Dey et al. developed a method to classify side-view images in vineyards into grapes,
leaves and stems [64]. First, they fuse multiple images into a 3D view, then they apply
saliency feature extraction, classification and smoothing of the reconstructed 3D points
to extract grape wines, branches and leaves.

Bac et al. detect the stem of sweet-pepper plants using the support wire for the plants
as visual cue [66]. However, their use case is different because a side view is used and
the stem is located for the purpose of harvesting and not for locating point where the
plant is growing out of the soil.

Alenya et al. added a time-of-flight 3D camera to a robotic arm with a plant prober [65].
Then they used the 3D image data to extract suitable probing points on leaves of potted
plants using surface modeling and graph based segmentation. Their approach however
requires the robot to first move to a far away position to acquire and image, then a close
up position to refine the segmentation. Additionally, the approach was shown for potted
plants with large broad leaves, required good leaf contours which must be visible in the
3D image and the leaves must not move during image acquisition and probing.

Kusumam et al. present a 3D image processing pipeline to segment broccoli heads from
two down looking pointclouds [67]. Using 3D features, KNN and SVM classifiers are
applied with temporal smoothing to segment the 3D points belonging to the broccoli
plant. Since the stem is not visible, this approach does not deliver a precise position
and it is unclear if it is applicable to small plants with pinnate leaves where the applied
3D camera struggles. Furthermore, processing time is 5-6 s per image.

These methods rely on 3D sensing technologies and are are not applicable to 2D single-
view camera images. The already presented methods mostly utilize side views of large
plants and have limited precision. Furthermore, the 3D acquisition technologies in the
discussed studies have low spatial resolution. This renders these methods not suitable for
small crop plants and single plant weed control.

5.1.1 Summary of Related Work

The review of related work shows that plant position estimation research can be divided
into four major approaches. First, row-based methods detect the crop row in the field
using different computer vision techniques and then try to locate crops in the row. This is
however not applicable if the spatial arrangement of crops is not known and cannot be
used to detect positions of weed plants reliably. Second, plant segmentation can be applied
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to obtain an estimate of a plant’s position in the field. This only works for large plants
without overlap and requires plant segmentation approaches, which is error-prone in field
situations. Third, georeferencing methods were presented for plant position estimation
by recording a plant’s position while sowing or transplanting. These methods do not work
for weed plants at all since they are not sown neither planted. Additionally, the precision
of the georeferencing plant position estimation methods produces errors in centimeter
range. Finally, newer approaches leverage 3D sensing of side views of plants to estimate
their position. Such approaches require special sensors and still have limited precision.

The newly developed plant detection and position estimation pipeline of this thesis over-
comes these limitations and is able to process single view 2D images of small overlapping
plants (both crop and weed) in outdoor fields. The approach is able to deliver plant po-
sition detection with the desired precision of less than 0.75 cm deviation from ground
truth (see Section 6.3). The proposed method neither requires row information nor a plant
segmentation. Additionally, the position of all plants is estimated, the restriction to only
produce position estimates for crops of for example the georeferencing methods does not

apply.

5.2 Novel Plant Position Estimation Pipeline

In the following a novel plant position estimation pipeline is developed and evaluated
using real world datasets. The plant position estimation system comprises an online
and offline process which both apply different computer vision and machine learning
techniques. Figure 5.2 gives a detailed overview of the different processing steps from the
input data to the plant stem detection result.

The online stage processes unseen images with the goal of detecting plant stems: A sliding
window is applied and each image patch is classified whether it displays a stem or non-
stem region. From these classification scores, postprocessing steps estimate the plant
stem positions.

The offline training process with human interaction creates a ground truth database, which
is used to train the machine learning part of the system. Some processing steps from the
online part are reused, however for example the patch extraction step is conducted in a
slightly modified manner.

In the following the pipeline is discussed in detail. First, the online steps, then the offline
steps are described in detail.

5.2.1 Patch Extraction during Online Phase

Stem detection and position estimation calculations are performed on small image patches,
which are extracted from the field image where the soil background is masked (see Sec-
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Input: Vegetation Segmented NDVI Image

e
l bp Label Acquisition \
| PatchExtraction (Online) | | | Patch Extra;ion (Training) |
\ Feature Ettraction | “, \ Feature Ettraction |
i
\ Classification \«—%{ Classiﬁef Training |

!

‘ Stem Position Estimation

Offline Steps

Figure 5.2: Processing steps of the plant position estimation approach. The pipeline
processes the segmented NDVI images into plant stem positions. The processing steps
comprise an online (left) and offline (right) stage. All processing steps are introduced in
detail in the remainder of the chapter.

tion 3.2). The image patches are generated by applying a sparse sliding window to the
image.

The exact methodology of patch extraction differs between the online application phase
and the offline training phase. In the following, the patch extraction step is explained in
detail for the online phase when new unseen images are processed. Figure 5.3 displays this
graphically. The specific adjustments for the offline training phase are described below in
Section 5.3.2.

When a new image is run through the trained pipeline, a sparse sliding window approach
is applied: At every window position where biomass is located at the window center, an
image patch is extracted. Once the patches are extracted, all patches and their patch
position are forwarded to the next step in the processing pipeline. The center of a window
position where a patch is extracted is called keypoint.

Figure 5.4 displays several exemplary patches extracted from the real world dataset where

the ground truth label is represented by a colored border (green denotes patches from a
stem region, red denotes patches from non-stem regions).
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Figure 5.3: Patch extraction process during online phase: Patches are extracted using a
sliding window approach. In the image all keypoint positions where a patch is extracted

are visualized with a yellow dot.
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Figure 5.4: Example patches extracted for plant stem position estimation: The examples in
the top row are positive stem patches whereas patches in the bottom row display non-stem
regions. The black + indicates the keypoint of the patch.

5.2.2 Feature Extraction

The feature extraction step has the goal to define a suitable numerical representation
which is useful to discriminate patches displaying the stem region from patches displaying
other parts of plants. For plant position estimation 12 features are developed and defined
in Table 5.1.

The feature vector f comprises 8 statistical and 4 geometrical features. The statistical
features describe the appearance of the stem patch: The minimum, maximum, range,
median, mean, standard deviation, skewness and kurtosis of biomass pixels in the NDVI
image patch is determined. These features are similar to the plant classification features
and make use of the different appearance of the NDVI patches if they display the stem
region or not (as shown in Figure 5.4).

The geometrical features comprise the distance of the center of gravity (of biomass pixels
in the patch) from the patch center, the mean and standard deviation of the distance of
every biomass pixel from the center of gravity and area of biomass in patch. The first three
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Table 5.1: List of features for plant stem position estimation.

fi Description

f Minimum of Biomass Pixel Intensities

> Maximum of Biomass Pixel Intensities

f3 Range of Biomass Pixel Intensities

fa Mean of Biomass Pixel Intensities

fs Median of Biomass Pixel Intensities

fs Standard Deviation of Biomass Pixel Intensities

fz Kurtosis of Biomass Pixel Intensities

fs Skewness of Biomass Pixel Intensities

fo Distance of Center of Gravity (COG) from Patch Center

Jro Mean of Distances from COG to all Biomass Pixels in Patch
fu Standard Deviation of Distances from COG to all Biomass Pixels in Patch
frz Area of Biomass in Patch

geometrical features describe how the biomass pixels are distributed around the center of
gravity and the area describes the amount of biomass located in a patch.

Figure 5.5 displays the feature importance for each feature. The mean decrease of average
accuracy is selected as feature importance measure and calculated on a fully trained Ran-
dom Forest [157]. For each feature, the feature importance value is calculated separately
by evaluating the average accuracy drop on the out-of-bag data when the respective fea-
tures values are randomly permuted. For this evaluation dataset B is used which will be
introduced in Section 6.1. It can be concluded that the features f;, f; and f; contribute
the most while feature fi, is the least relevant.

Feature Importance

b & K K K i k h fo fu f

Figure 5.5: Feature importance of the plant position estimation features on dataset B. The
feature importance (y-axis) is the mean decrease in accuracy when f; is permuted during
calculation of the out-of-bag error.
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5.2.3 Classification

The classification step comprises the discrimination of patches displaying the stem region
from patches displaying other parts of plants. During application of the pipeline an already
trained Random Forest is used (see Section 5.3.3 regarding classifier training). All feature
vectors (describing the patches to be classified) are fed into the Random Forest and the
normalized score vectors s =(so, ;) with >_s; =1 are output. Then only the score value s,
of the position class is taken and called stem score s.

The result of the classification step is a list of stem score values s (0 to 1) for all patches in
the image. The scores can be plotted at the corresponding keypoints superimposed onto
the image; see Figure 5.6 for such an exemplary stem certainty plot. These stem score
values s in the stem map are used to derive the stem position in the next step.

Figure 5.6: Stem certainty map in color code from red (i.e. no stem, s = 0) to green (i.e.
stem, s = 1). The scores are plotted at the corresponding keypoints.

5.2.4 Stem Position Estimation

The goal of the stem position estimation step is to postprocess the stem certainty map and
to derive discrete stem positions. Key steps in this process are filtering of the stem certainty
scores and non-maximum suppression to generate estimated plant stem positions.

For these filtering and non-maximum suppression steps, first a stem score matrix § is
constructed from the list of stem score values s. The stem score matrix has as many
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elements as there are window positions from which the patches were extracted. Using the
sliding window arrangement it is possible to calculate the exact keypoint for each element
of the matrix S, which can be used for plotting or generation of the final stem detections.

Stem Certainty Filtering The stem certainty matrix § is filtered with a Gaussian ker-
nel to smooth the individual stem certainty values. This step introduces the parameter
Ksmoom Which is the radius of the smoothing kernel (described in Section 5.5.3). The result
of smoothing the scores can be seen in Figure 5.7. The filtering step results in a more
smooth classification which improves the effectiveness of the following non-maximum
suppression step.

nanEn
il

Figure 5.7: Filtered stem certainty map in color code from red (no stem) to green (stem).
The image is the same as in Figure 5.6.

Non-Maximum Suppression From this smoothed stem certainty matrix S, discrete
stem position are derived using non-maximum suppression. The goal is to not take
each local maximum from the stem certainty matrix, but to suppress maxima which are
close together. This follows the idea that in the real world plant stem centers are not
infinitesimally small and/or very close together.

The result of non-maximum suppression can be seen in Figure 5.8 which displays the
same image from Figure 5.7 where instead of plotting the certainty the estimated stem
positions (u, v) are visualized.

The non-maximum suppression step applies a square suppression kernel of size ko max-
The kernel only responds with 1 if the center pixel of the windows corresponds to the max-
imum value of all values in the window. Otherwise 0 is returned. The kernel is convolved
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Figure 5.8: Visualization of the estimated stem positions (green stars) after non-maximum
suppression. Ground truth stem positions are marked with blue pluses.

over the smoothed stem certainty map $. The resulting binary stem detection matrix
is then converted into stem positions by transforming each entry in the matrix which
corresponds to 1 into image coordinates u, v.

5.3 Training Phase

The training phase comprises all steps which are necessary to train the classifier. This
comprises data acquisition and ground truth labeling, preprocessing of the labeled images
into feature vectors and finally the training step of the classifier.

5.3.1 Ground Truth Data Acquisition

An important pre-requisite for supervised machine learning is the availability of ground
truth labeled data. For the stem detection algorithm the ground truth stem positions are
acquired manually by a human expert. Additionally, the class of the plant can be defined
as meta data when a plant position is defined.

The data is collected by presenting the human a segmented image (soil pixels masked to
white) in a web-based interface. The user then marks the stem center points graphically.
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Figure 5.9 displays one screenshot of the labeling process. The web interface is based on
the LabelMe tool from Russel et al. [163].

You are: o than |

5 N o
. ¥ e

o ok

q

& o

Figure 5.9: Labeling tool used to acquire ground truth data. A user marks the plant stem
positions in the image with the mouse and places a marker (arrow). Additionally, a class
can be associated to each marker. For broadleaved plants the stem is easier to detect than
for carrot plants with pinnate leaves: There, the two elongated true leaves are a good hint
to find the plant stem.

5.3.2 Patch Extraction during Training Phase

During training, patches are not just extracted using the sparse sliding window pattern with
a fixed stride between adjacent patch positions. The labeled ground truth stem positions
are taken into account to sample positive (stem region) and negative (non-stem region)
patches. Figure 5.10 explains the patch extraction step for the training phase visually.

The plant position ground truth is available as discrete pixel position for each plant center
and not as a full image or mask. Therefore, the sparse sliding window patch extraction
process is suppressed in proximity of a ground truth stem position to form a border. A
parameter dy,,q.r defines the square border region by using the Chebyshev distance metric.
All patches extracted this way do not display plant centers and thus form the set of negative
training examples (red boxes in Figure 5.10).
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Figure 5.10: Patch extraction process during training phase: Negative (non-stem) patches
are extracted at the grid locations marked by the red box. At and around the manually
labeled ground truth stem position (dark green star) positive patches are sampled. These
positions are marked by green stars.

Positive training examples are extracted around the plant stem positions. In a simple
approach one could only sample at the ground truth stem position, however this leads
to very few positive samples compared to many negative (non-stem) samples. Therefore
and to also account for slightly imprecise ground truth stem positions additional positive
patches are sampled in the proximity of the ground truth stem label.

The details on how the positive patches are sampled is visualized in Figure 5.11. First,
the parameter d,,, defines the maximum Chebyshev distance in pixels between an ad-
ditional keypoint for s positive patch and the ground truth stem position. Second, the
parameter d., defines the step size in pixels in which patches are sampled within d,,,
both horizontally and vertically.

dborder

* Ground Truth Stem Position
I | |

Figure 5.11: Details on how additional positive patches are sampled in the proximity of
the ground truth stem using the parameters d ., and dgp. In the example d,,,, =4 and
dgep =2 is selected. Note that dp,qer is normally selected much larger compared t0 d 44
to ensure that positive and negative patches do not overlap.

J Additional Keypoint Positions
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The patch extraction step during the offline training phase introduces the following pa-
rameters:

1. The patch size wy;,, and stride wy;q.- Without loss of generality, a square patch and
an equal stride in horizontal and vertical direction are assumed. Additionally, the
patch size and stride are kept at the same values during the online and offline phase.

2. The length dy,,q.r defines a square border (Chebyshev distance) around a ground
truth stem position in which no negative patches are sampled.

3. The sampling pattern of additional positive patches which are sampled around
each ground truth stem position are determined by the distances d . and d., as
explained above.

5.3.3 Classifier Training

During classifier training, the feature extraction step is performed (as specified in the
section above) on labeled images. Then all extracted feature vectors with ground truth
labels (stem or non-stem region) are used to train a classifier. Here a Random Forest is
trained, see Section 2.2.5 for details on the Random Forest algorithm. The classifier is then
saved and can be used in the online application phase to classify new unseen patches into
the desired stem or non-stem classes.

5.4 Evaluation Criteria

A key step of any machine learning system is a well defined evaluation procedure with
suitable ground truth data and relevant metrics. The developed stem detection pipeline
performs a detection task: The algorithm estimates stem points represented by image
coordinates p = (up, v,). Ground truth data is available and encoded as ground truth stem
point g = (ug, v,).

Given that the data type (for both the detected and ground truth stem) is a point in the
two dimensional space, an euclidean distance based error metric is chosen. The indices
u and v determine the image coordinates for either the detected point p or the ground
truth point g.

E()Mf)=|1tf—g|=\/(up—ug)2+(vp—vg)2 (5.1)

The quality of a plant stem detection is then evaluated by setting a detection threshold 7,
which defines the acceptable euclidean distance between the ground truth and detected
stem location. If a point satisfies Equation (5.2) the detection is considered to be correct.

Elp,g)<ry (5.2)

85

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

5 Plant Position Estimation

The next step is the assignment of the detected plant stem positions to ground truth
positions. Each assignment shall fulfill Equation (5.2) and we strive to find the optimal
assignment of detected and ground truth positions. This is known as optimal assignment
problem and can be solved with the Hungarian Method [166]. All entries in the cost matrix
for which Equation (5.2) is not satisfied are set to infinity to avoid an assignment in this
case. The result of the assignment step is a list of assignment tuples (p, g) which fulfill the
stem detection threshold 7.

After assignment of detections to ground truth positions, valid assignments are counted
as hits. Additionally, ground truth positions without assigned detections are counted
as misses and detections without assigned ground truth positions are counted as false
alarms:

Hit Stem detection valid. Fulfills stem detection criterium in Equation (5.2).
Miss No detected stem position could be assigned to a ground truth stem position.
False Alarm No ground truth position could be assigned to this detected stem position.

Using the hits, misses and false alarms, a confusion matrix Figure 5.12 is created. The
confusion matrix only has three entries which are filled with hits, misses and false alarms.
The entry for true negatives is set to zero because it does not exist for the detection task.

Prediction
True False
True Positive False Negative
True
Hit Miss
Ground
Truth
False Positive True Negative
False
False Alarm -

Figure 5.12: Confusion matrix for stem detection. Hit, miss and false alarm map to true
positive, false negative and false positive respectively. True negatives do not exists due to
the nature of the detection task.

From the confusion matrix the following detection metrics are derived: precision, recall
and F1-score according to Equations (2.4) to (2.6).

In addition to quantitative evaluation visual inspection can be applied as a qualitative
evaluation technique. For example the segmented field image is plotted in Figure 5.13
with detected and ground truth stems together with information which detections are
hits, misses or false alarms. This visual representation is a good measure to evaluate the
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performance of the system and to detect issues, when for example the stem of specific
plants cannot be reliably detected.

4=
4

+

lcm

Estimated Stem = Hit Ground Truth Stem 4+ Missed Ground Truth Stem

Figure 5.13: Visual inspection of the plant stem position estimation. Green stars mark
detected stems, blue pluses ground truth locations for which a detection was found and
red pluses make missed ground truth plant stems.

These three sets of evaluation metrics are used to evaluate the plant position estimation
pipeline in Chapter 6.

5.5 Parameter Selection

The goal of this section is to study the influence of the different parameters and to deter-
mine the parametrization which gives best results. The analysis of the pipeline with regard
to the overall stem detection performance on different datasets is performed in Chapter 6
in detail.
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To evaluate and determine parameters with best performance the F1-score metric is
chosen. It balances precision and recall and thus forces a parameterization which strives
for a good detection rate (many and precise hits) while not allowing too many false alarms.
If not specified otherwise the results are generated using 5-fold cross-validation.

Here dataset A is used and the stem detection threshold 7 is set to 68 px which equals
approximately 7.5mm. Both the dataset and selection of y are introduced in depth in
Chapter 6. If not specified otherwise the default parameterization as given in the section
above is used to produce the results. The focus of this section is to understand the influence
of each parameter and how the best parameterization can be determined.

5.5.1 Patch Size and Patch Stride

The plant position estimation pipeline applies a sliding window to extract patches. The
two main parameters are the patch size wy;,, and patch stride w4, (the amount of pixels
the window is moved between subsequent patches). Figures 5.14 and 5.15 show the impact
of varying the patch size and patch stride.

0.85

0.8
—— Precision
075 —— Recall
. —— F1-Score

0.7

20 30 40 50 60 70 80
Patch Size wy,, (pX)

Figure 5.14: Variation of the patch size parameter wy;,,.

The plant position estimation performance F1-score metric exhibits a clear maximum at a
patch size wg;,, of 40 px. When analyzing the patch stride parameter it can be observed
that a patch stride wg;q. of 10 px delivers the best F1-score.

The choice of patch size and patch stride has a great impact on all further processing steps
as it influences the number of patches which are extracted. Therefore, the variation of
patch size and stride are also analyzed again when both are varied together in Figure 5.16.

This plot supports that the choice of parameterization defined above yields best results.
Large strides hurt the performance more than slightly larger or smaller patch sizes.
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Figure 5.15: Variation of patch stride parameter w;qe.-
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Figure 5.16: Joint variation of patch size wg;,, and patch stride w4, parameters.

5.5.2 Training Patch Extraction Parameters

The patch extraction step during the training phase applied a modified sliding window
approach, where not all positions are sampled equally. Depending on the labeled ground
truth stem position, a border area is placed around each stem position where no negative
samples are extracted using the sliding window. Then inside this region in the proximity
of the ground truth stem positive training examples are sampled. See Figure 5.10 for an
illustration of the scheme.

Border around Ground Truth Stem Positions This border around the ground truth
stem positions introduces the single parameter dy,,q4. Which specifies the distance from
each ground truth stem where no negative patches are extracted. Here, the Chebyshev
distance is utilized to achieve a square border region. Figure 5.17 displays the effect of
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varying the parameter dy,,q., ON plant position estimation performance.
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Border Around Ground Truth Stems dygger (PX)

Figure 5.17: Variation of the parameter dy,,q.: Specifying the border around each ground
truth plant position where no negative patches are sampled.

The choice of this parameter exhibits a maximum F1-score at 35 px. Therefore, the param-
eter border around ground truth stem positions dj,yqe, is set to 35 px.

Training Patch Extraction Parameters The locations where positive patches are sam-
pled in proximity of the ground truth stem position are defined by additional parameters.
First, a patch is extracted right at the ground truth position. Second, additional patches are
extracted in a grid in the proximity of the labeled ground truth stem position. All details
on how and why patches are sampled this way are given above in Section 5.3.2.

The sampling step size d ., together with a maximum Chebyshev distance d . (maximum
distance between additional positive patch positions and the ground truth stem position)
define the locations of additional extraction points as visualized above in Figure 5.11.
These two parameters are jointly varied in Figure 5.18 while analyzing the resulting plant
position estimation F1-score metric.

From the figure, it becomes clear that a larger maximum distance d,,,, is beneficial for
maximizing the F1-score. The sampling step d., influences how fast the maximum
F1-score is achieved.

In order to not extract too many patches while achieving a high F1-score a sampling step
size d e, of 2 px and a maximum Chebyshev distance to ground truth stems d ., 0f 12 px
are chosen.

Lowering the step or increasing the sampling window creates much more patches and
does not improve the score. This is explainable since sampling with a small step yields
many patches which look similar. Increasing the sampling window will create positive
patches which are extracted further away from the ground truth stem position which is
not beneficial for training a classifier which is supposed to detect the stem region only.
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Figure 5.18: Joint variation of the sampling step d ., and the maximum Chebyshev dis-
tance d ., where positive patches are extracted in the proximity of ground truth stems.

5.5.3 Stem Position Estimation Parameters

The stem position estimation part of the pipeline comprises the two steps of smoothing the
classifier output with a Gaussian kernel and subsequent non-maximum suppression.

Smoothing Parameter The smoothing parameter determines the size of the circular
smoothing kernel kg, Which is applied to the stem certainty matrix §. Figure 5.19
displays the influence of this parameter on the plant stem position estimation F1-score.
The analysis exhibits a clear maximum F1-score when setting the smoothing kernel size
ksmoolh to3.

1
0.8
0.6 —— Precision
—— Recall
0.4 —— F1-Score
0.2
0

1 3 5 7 9 11 13 15 17 19 21
Smoothing Kernel Size kqpoom

Figure 5.19: Influence on plant stem detection metrics for different sizes of the smoothing
kernel kg ooth-
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Non-maximum Suppression Parameter The second parameter which influences the
stem detection is the square non-maximum suppression kernel size k,, may. Figure 5.20
displays the performance of the plant stem position estimation pipeline for different
non-maximum suppression kernel sizes.

—— Precision
—— Recall
—— F1-Score

1 3 5 7 9 11 13 15 17 19
Non-maximum Kernel Size knon max

Figure 5.20: Variation of the non-maximum suppression kernel size k;; max-

The plot indicated that a clear maximum for the F1-score exists for a non-maximum
suppression kernel size kyon_may Of 15.

A broad plateau in F1-score is achieved for the chosen non-maximum suppression kernel
size. When this plot is studied further it can be noted that ko, m.x is well suited to balance
between precision and recall if desired. The whole spectrum from a recall of approximately
1.0 to a precision of up to 0.8 can be reached by varying the kernel size.

5.5.4 Classifier Parameters

The plant stem detection system also applies a classification step with a supervised Ran-
dom Forest algorithm. Therefore, similar to the plant classification pipeline the Random
Forest’s parameters are tuned.

However, in this case the final output of the plant detection pipeline is not suitable to tune
these parameters. The classification is applied as internal step of the detection pipeline
and the classifier’s output is processed with non-maximum suppression. Therefore, in
order to tune the classifier the out-of-bag error of the Random Forest is used instead of a
plant position estimation metric.

All data in this section is generated by training a classifier on the full dataset while calcu-
lating the out-of-bag error according to Section 2.2.5.
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Number of trees  First, Figure 5.21 analyzes the out-of-bag error when the number of
trees grown is increased. The training time on a single CPU core is plotted additionally as
right axis.

—4 120
0.14 : : . : e z
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= /" —
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- £
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: “ g
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Number of Trees Trained

Figure 5.21: Out-of-bag error when the number of trees grown is increased (left axis). The
right axis plots the training time spent to train the Random Forest classifier.

It can be observed that the out-of-bag error sharply decreases between 1 and 60 trained
trees. Then the error continues to drop only slowly. The training time increases linearly in
relation to the number of trees trained. The chosen number of trees of 120 is a balance
between a good out-of-bag error and low training time. If lower training times are desired,
the number of tree trained can be reduced at only marginal loss of performance.

Size of Leaf Nodes The minimal size of a leaf node in the tree is another parameter of
the Random Forest which can be tuned. Figure 5.22 displays the out-of-bag error when
this parameter is varied. Increasing the minimal leaf node size increases the out-of-bag
error while the training time slightly decreases.

Therefore, the minimal leaf node size is set to the default value of 1 which implies that
a single label is associated with each leaf node. A slight decrease in training time is not
worth the reduction of performance.

Number of Features considered per Split Figure 5.23 displays the out-of-bag error and
training time when the number of features which are considered during each split is varied.
The range for this parameter spans 1 to 12 because the plant position estimation pipeline
applies 12 features.

The out-of-bag error is minimal in the range of 3 to 5. Since the training time increases
with higher numbers of features considered, lower numbers are preferred. Therefore the
final Random Forest parameter number of features considered at each split is set to 3. This
is close to the default parameter of v12 = 3.46
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Figure 5.22: Out-of-bag error of the Random Forest classifier (left axis) depending on the
final node size in each tree’s leaf node. Additionally, the right axis displays the time taken
to train the classifier. Note: The scales of the axes are kept in sync with Figure 5.21 to allow
easy comparison.
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Figure 5.23: Out-of-bag error of the Random Forest classifier (left axis) depending on the
number of features considered per split and training time of classifier (right axis). Note:
The scales of the axes are kept in sync with Figure 5.21 to allow easy comparison.
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5.6 Summary

5.6

Summary

The novel methods for plant position estimation developed in this chapter are:

Plant position estimation is formulated as a detection problem. A sliding window-
based classification approach is combined with non-maximum suppression to de-
termine plant stem positions.

Only downward looking images of plants are processed, additional information from
for example GPS or row segmentation is not required. Still, the pipeline is able to
estimate the position of both crop and weed plants.

The stem detection method does not require error-prone segmentation of plants or
plant structures like for example leaves or veins to derive the stem position. Instead,
the local appearance of the plant stem region is used to train a classifier which is
able to detect the stem in unseen test images.

The proposed solution has the advantage that it is applicable to real world field
images, where plants grow close together and overlap. The novel plant position
estimation pipeline copes well with these field situations, works for all plant types
and thus enables precision agriculture tasks like single plant weed control.

The next Chapter 6 consists of a thorough evaluation of the plant classification system
(from Chapter 4) and the plant position estimation system presented in this Chapter.
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This chapter provides the evaluation of the presented novel methods of Chapter 4 and
Chapter 5 together with a discussion of the results.

First, the construction of a field robot and data recording of two new real world datasets
are presented. Second, the plant and stem detection pipelines are evaluated on these
datasets. This is followed by the discussion of the performance of the developed methods
and the applicability of the plant classification and the stem detection pipeline to solve
the precision agriculture tasks defined in the objectives of this thesis.

6.1 Data Acquisition Robot and Dataset Properties

In order to evaluate the new plant classification and position estimation methods appro-
priate data is required. Because of a lack of publicly available datasets two new reference
datasets were recorded. In order to acquire data in a realistic and systematic manner, a
field robot was built and equipped with a camera system for the recording of the datasets.
Additionally, to foster research in this domain, one dataset was made publicly available in
conjunction with a publication [70].

The construction of the field robot is described in the first part of this section, the recording
and properties of the datasets are introduced in the second part of this section.

6.1.1 Field Robot for Data Acquisition

The so-called Bonirob is a multi-purpose field robot concept [167] which was developed
for precision agriculture. The robot by itself does not implement a specific agricultural
function, rather if features a utility bay where application modules (called apps) can be
mounted.

During the research for this thesis a novel version of the Bonirob was developed with
partners in the publicly funded project RemoteFarming.1 [72]. The Bonirob V2 field robot
(Figure 6.1) is used throughout the experiments to acquire the necessary field image data.
Additionally, the platform is used as demonstrator platform for the weed control process.

The Bonirob is a mobile robot with four wheels and omni-directional drive. All four
wheels can be individually steered and are actuated (8 electrical drives). Additionally,
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Figure 6.1: Two Bonirob V2 robots in a field: The robot has free space inside which can
be used to mount an app module (right robot). The sensing and plant classification and
position estimation system developed in this thesis is mounted in the left robot.

the wheels are mounted to legs (orange in Figure 6.1) which enable adjustment of the
track width of each individual wheel. This allows the robot to navigate in tight spaces
and many field setups where the driving rows are differently spaced. The robot features
a hybrid propulsion system: It is powered by a gasoline generator and batteries which
allows environmentally friendly operation in green houses and also long outdoor runs.
Bonirob is equipped with an onboard navigation system that enables the robot to navigate
in fields [168]. The main operation mode is row-based navigation where the robot uses
onboard sensors only (3D laserscanner, wheel odometry and an inertial measurement
unit) to detect the field layout [169]. Additionally, external information like field maps or
GPS/RTK GPS can be used to guide the robot in fields without detectable borders or to
save information from the sensors with precise geo-referenced data.

The app implements the sensing, treatment or both functions. This modular design
enables the reuse of the platform for different purposes throughout the year. Furthermore,
this eases development of new robotic applications because only the app itself needs to
be constructed, the generic navigation capabilities and robotic platform can be directly
reused.

For plant classification and position estimation for single plant weed control a specific
app is constructed for the Bonirob V2 as depicted in Figure 6.2.

The app comprises the newly developed camera system for plant classification and stem
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Figure 6.2: Simplified side view CAD drawing of the Bonirob V2 field robot for the Remote-
Farming.1 use case: It features a camera for plant classification and position estimation as
well as a delta robot with a mechanical weed treatment module.

detection as presented in Chapter 3 and contains a robotic manipulator for weed control
[75]. The manipulator is a delta robot which is able to quickly move using a visual servoing
camera to weed positions which are given by the plant classification and stem detection
system (Chapters 4 and 5). At the tool center point of the delta robot a mechanical stamping
toolis mounted. The tubular stamping tool [74]is able to push single weeds into the ground
which is an effective method to regulate small weed plants in a mechanical and organical
way. Possible alternative methods to treat single weed plants are for example use of small
tines [170] or droplet based ultra precision spraying [171]. They are compatible with the
robot and the developed plant classification and position estimation system.

Figure 6.3 shows in detail how the constructed app with vision system looks like. The Jai
camera system is mounted together with an artificial illumination which lights up the
viewing area of the Jai camera. Additionally, the black curtain around the app bay is visible
which is applied to avoid effects from wind and direct sunlight. In the left part of the image
the delta robot with the weeding tool can be seen.

An additional challenge arises because the Jai plant classification camera’s field of view
is different from the working area of the robotic manipulator and the field of view of the
visual servoing camera. This is done on purpose: The robot arm and tool shall not block
the Jai camera’s field of view which allows the robot to operate continuously. All plant
classifications and stem detections are associated to the time when the image is taken.
Using the ego motion of the vehicle and the image timestamp, all plant positions are
transformed into the robot end effector frame and refined using visual servoing such that
the robot manipulator is able to position the weeding tool reliably at plant stem positions
and keep it still while the weeding process is running.

The plant classification and stem detection system presented in this thesis is not restricted
to be used with this field robot. Any platform (tractor, robot, drone, ...) and even hand-
held image acquisition setups are possible. The field robot-based setup is used in the
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Jai Camera

Light Sources

Shading

Weeding Tool with
Visual Servoing Camera

Test Plants

Figure 6.3: View into the app of Bonirob developed for organic weed control. The devel-
oped Jai camera system, shading and artificial light are visible.

experiments to achieve constant acquisition conditions that match the possible weed
regulation process as closely as possible.

This Bonirob V2 field robot was used to both collect data for the evaluation of the plant
classification and stem detection pipelines developed in this thesis and was used to demon-
strate the whole system in a field trial. The robot was able to capture images, classify and
detect the weed plants position and then to regulate the weeds using the tube stamp in
experiments conducted within the publicly funded project RemoteFarming.1.

6.1.2 Recorded Field Image Datasets

For evaluation of the proposed plant classification and stem detection pipelines suitable
training and test data is required. Therefore, the built Bonirob V2 field robot and the
camera system developed in Chapter 3 were used to acquire field datasets in challenging
outdoor organic farming conditions.

Unfortunately, no public datasets with annotations were available in the plant classification
and stem detection domain. Public datasets play an important role for many tasks in
computer vision [172, 173, 174, 175], machine learning [176] or robotics [177, 178, 179].
Some datasets were proposed in the agricultural domain for example in leaf recognition
[180, 181, 182] and phenotyping of leaves of potted plants [183]. The lack of datasets for
plant classification and/or stem detection in the field inhibits research. Every group works
with their own data and comparison of results is difficult if not infeasible.

The goal of the dataset acquisition is to generate a real world dataset for plant classification
and position estimation in the very challenging organic vegetable farming domain. For
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crops like carrots, weed control must be carried out already for the first time in early growth
stages where crop plants are smaller than 1 cm in diameter. Weed plants of any size can
occur depending on when the farmer regulates weeds. Here, two datasets were acquired
in different field locations and at different growing times.

Figure 6.4 displays the carrot field where dataset A was acquired. Carrots are grown on
small dams to give the plants enough space to form nice carrots. The field shown here
utilizes a single carrot row per dam growing system. Dataset B is acquired on a similar
farm, however there two carrot rows are located next to each other on each dam.

Figure 6.4: Overview image (left) of the carrot field where dataset A was acquired. Detailed
view of one carrot dam with a lot of weed plants (right).

Field Layouts Figure 6.5 displays the field layouts of the two fields where the dataset
recording took place. The images were captured in batches of 10 non-overlapping images
each. The first batch contains 20 images to get more images from the start of the row so
approaches which process data incrementally have a larger starting batch to process. The
other batches are spread out along the field to capture different conditions which might
occur. The difference in single crop row (dataset A) and dual crop row (dataset B) growing
system can also be seen in the schematic field view.

Dataset Location and Recording Properties Table 6.1 summarizes the location, date
and robot parameters where the datasets where acquired. Additionally, the average crop
and weed sizes are given. These number are approximate because the diameter of crops
and weeds varies throughout the field.

Dataset Overview and Challenges Figures 6.6 and 6.7 show example pictures of the two
datasets. It can be observed that both crop and weed plants are much smaller in dataset A
and that they are much more regularly sized. In dataset B most weed plants are very big
compared to the crops, but also some small weed plants are present. The crop is planted
in two rows.
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(b) Field layout of dataset B

Figure 6.5: Schematic visualization of field layouts for datasets A and B.

Table 6.1: Acquisition and field conditions of datasets A and B.

Dataset A Dataset B
Location Gehrde, Germany Lippstadt, Germany
Date June 6, 2013 June 12, 2013
Camera JAI AD-130GE JAI AD-130GE
Robot Bonirob v2 Bonirob v2
Driving Speed 4.5cm/s 4.5cm/s
Crop Carrots Carrots
Cultivation System Single Row on Dam Dual Row on Dam
Avg. Crop Diameter 1-2cm 1-4cm
Avg. Crop Spacing 2-3cm 2-3cm
Avg. Weed Diameter 1-6cm 1-10cm

The datasets contain challenging images with close-to-crop weed plants (for example in
images A004 and B03) and lots of overlap between plants (for example in images A059,
B003, B030 and B088). Additionally, the field situation changes along the row and images
with few or many plants are present (compare for example images B018 and B030). Finally,
the occurrence of plants in different sizes can be seen very well (in images of dataset B).

Plant Types Carrot plants in very early growth stages are the main crop to be classified.
Figure 6.8a displays a collected set of carrot plants. First, the elongated seed leaves (first
leaves that grow after germination, lat: cotyledon) are a distinct feature (see for example
lower row, upper left carrot plant). The foliage leaves feature a distinct pattern and are
pinnate shaped (they separate into smaller leaves in a tree-like structure).

Typical weeds encountered in the carrot fields are different species of broad leaf weeds;
see Figure 6.8c. They feature roundish leaves and are less challenging to discriminate from
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(a) RGB Image (b) NIR Image (c) NDVI Segmented

Figure 6.6: Sample images from dataset A. Depending on the location in the field many or
few plants are present.
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(a) RGB Image (b) NIR Image (c) NDVI Segmented

Figure 6.7: Sample images from dataset B. Compared to dataset A the weed plants are
much larger while the crop plants span different sizes.
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carrots compared to species like chamomile.

Chamomile plants are a very common weed with leaves which looks similar to carrots;
see Figure 6.8b. The foliage leaves of both carrot and chamomile are pinnate shaped and
difficult to discriminate. Therefore, all chamomile plants were labeled as a separated
class. Without loss of generality the plant classification pipeline is tested with these three
classes.

(a) Carrot (b) Chamomile (c) General Weed

Figure 6.8: Sample segmented NDVI images for the three classes: Crop, chamomile and
weed. All plants occur in smaller/larger variants in the datasets.

Ground Truth Labels The two field datasets are labeled with ground truth information:
On the one hand, the labels consist of plant classification labels. Polygons are drawn
to describe pixels belonging to the three different plant classes carrot, chamomile and
general weed (see Section 4.3.1 for details). On the other hand, plant stem detection labels
are added as points which mark centers of plants (see Section 5.3.1 for details). Table 6.2
summarizes the number of plant classification and plant position labels in the datasets.

Published Dataset For field-based plant classification to our knowledge no dataset was
available to the public. Thus during the research for this thesis, a dataset with 60 images
was recorded in the same field as dataset A and labeled with ground truth annotations
(vegetation mask and crop/weed labels). It is called Crop Weed Field Image Dataset (CW-
FID) and is published online (https://github.com/cwfid/dataset). An accompanying
paper [70] explains the dataset, discusses relevant image processing and classification
tasks together with suitable evaluation metrics.
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Table 6.2: Ground truth labels for the datasets A and B.

Dataset A Dataset B
Dataset Properties
Number of Images 150 110
Growing System Single Row Dual Row
Plant Classification Labels
Labeled Crop Regions 412 746
Labeled Weed Regions 613 799
Thereof Chamomile Regions 157 87
Thereof General Weed Regions 456 712
Total Labeled Plant Regions 1025 1545
Plant Position Labels
Labeled Crop Stems 473 840
Labeled Weed Stems 698 790
Total Labeled Plant Stems 1171 1630

In the following, these two datasets are used to test and evaluate the developed plant
classification and plant position estimation pipelines. Additionally, also results for the
CWFID dataset are reported.

6.2 Evaluation and Discussion of the Plant Classification
Method

In this section the plant classification system which is presented in Chapter 4 is evaluated
and discussed. After a description of the evaluation method, the plant classification results
are first studied visually and are then evaluated using suitable metrics. Finally, the plant
classification results are discussed.

The evaluation of the plant classification pipeline applies leave one out cross-validation.
Each image is selected as test image exactly once, all other images are used as training
data to train a classifier for this test image. The test image passes through all processing
steps of the pipeline and the output is a plant class label for each vegetation pixel in the
image. The final metrics are calculated by summing all per-pixel results of all images and
then by applying classification metrics (see Section 2.2.4).

One important aspect of the plant classification system is the choice of parameterization.
In the following, the parameterization is chosen according to the parameter selection
procedure introduced in Section 4.5 for dataset A. For dataset B the same methodology
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is applied; the resulting plots are presented in Appendix A.2. Table 6.3 summarizes the
chosen parameterizations for the two datasets A and B.

Table 6.3: Selected parameters for the plant classification pipeline when it is applied to
datasets A and B. The parameters are determined as described in Section 4.5.

Dataset A Dataset B

General Parameters

Patch Size wygy, 80 px 60 px

Patch Stride wgige 10 px 10 px
Smoothing Parameter

Smoothing Parameter A 1.2 0.6
Random Forest Parameters

Number of Trees 100 100

Leaf Node Size 1 1

Number of Features Considered at each Split 4 4

The main difference in parametrization occurs for the patch size and the smoothing
parameter A. This can be explained by the different plant sizes as visualized in Figures 6.6
and 6.7: Dataset A contains a lot of chamomile plants which are significantly larger than
the carrot plants, therefore the larger image patch helps to distinguish these from the
crop and weed. The patch stride and Random Forest parameters do not differ for the two
datasets. When going to a new field the parameterization can be chosen according how
similar the situation is to dataset A or dataset B.

6.2.1 Results

Using the determined parameterization the plant classification pipeline is applied to the
two datasets using leave one out cross-validation.

Visual Analysis of Plant Classification Output Figure 6.9 shows the input NIR image
(column a), the color coded expert labeled ground (column b) and the color coded plant
classification of the new pipeline (column c) side by side for images from dataset A. Fig-
ure 6.10 shows result images from dataset B. In addition each image is numbered; these
numbers are used to refer to these images in the following analysis.

Allin all, it can be observed that the system is able to classify the images into the three plant
classes with high accuracy and uses all classes (crop, chamomile and weed). This works
both for situations where only single plants are present and also in complex scenarios.

The system is able to distinguish overlapping plants and is not only returning a single
plant class for large image blobs formed by grown together plants. This can be seen in
images A059 and B003 where a lot of plants grow over and next to each other.
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(a) NIR Image (b) Ground Truth (c) Plant Classification
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Figure 6.9: Plant classification results for dataset A.
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Figure 6.10: Plant classification results for dataset B.
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6.2 Evaluation and Discussion of the Plant Classification Method

When analyzing the smoothness of the plant classification, it can be seen that the plant
classification system is able to return consistent estimates for connected plant areas
(for example images A004, A147 and B030): As desired, the plant class is not changing
frequently between different estimated classes for adjacent pixels. This is especially visible
for large plants for example in Figure 6.10 image B030.

The method is not perfect and some misclassifications occur: There exist few areas where
the classifier misclassifies small parts of plants for example when a thin leaf crosses a large
plant. Such a case can be seen in image A147 in the lower left part of the large chamomile
plant.

Additionally, tiny long branch structures are occasionally classified into a wrong class
because such branches occur for example both in the general weed and chamomile class
and are therefore difficult to distinguish. In image A095 in the top middle a very elongated
weed plant which crawls along the soil can be seen. In image B030 in the lower right a
chamomile plant overlaps a crop and is misclassified as crop. The distinction between
crop and chamomile is especially difficult for dataset B since only few chamomile plants
are present in the whole dataset (see Table 6.2) and therefore training data for chamomile
is limited.

Finally, the approach of not using a plant segmentation but the developed patch-based
approach can split plants into multiple regions. Such a rare case happens in image B079.
The chamomile plant in the top left area is split into a center and two outstretching areas.
The center is misclassified as crop due to its appearance being very similar to a carrot.
Such undesired splits in isolated plants only occur rarely and are heavily outweighed by
situations where overlap occurs and is correctly treated by the pipeline.

Visual Analysis of Smoothing The smoothing step is a crucial component of the devel-
oped plant classification pipeline. Its impact can be seen in Figure 6.11, where in the left
column (a) the classification results at each keypoint before smoothing and in the right
column (b) after smoothing are plotted.

The smoothing process significantly improves the consistency of the plant classification
output. Areas where the estimated plant class changes frequently are smoothed and
large areas of the same plant class are achieved. This is in line with the assumption that
plants are much larger than the stride of the patch extraction process and that a plant type
has exactly one label. Using the smoothed plant classification image the interpolation
method presented in Section 4.2.5 produces the full plant classification output which is
also visualized in Figures 6.9 and 6.10.

6.2.2 Evaluation

The goal of this section is to go beyond visual inspection and to quantitatively evaluate
the plant classification performance. First, an analysis using ROC curves is performed to
analyze the classifiers ability to separate the different plant types. Second, classification
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(a) Before Smoothing (b) After Smoothing

T T

[ Carrot [ GeneralWeed [ Chamomile

Figure 6.11: Plant classification label before (left) and after (right) smoothing plotted in
color code at each keypoint for images from datasets A and B.

metrics according to Section 4.4 are applied to all vegetation pixels to quantify the effect
of smoothing and to get final metrics for the overall plant classification task.

ROC Curve Analysis  Using the score vectors s, which is output by the Random Forest
classifier before the smoothing step, a ROC curve is generated according to the definition
and explanation in Section 2.2.4.

Figures 6.12a and 6.13a show ROC curves after leave one out cross-validation over all
images for datasets A and B. In addition to the 3-class ROC curves, also a variant of the
plant classification system with two classes is evaluated. Here, the labeled data is reduced
to binary labels (crop vs. weed) and then the pipeline is run. These 2-class ROC curves are
plotted on the right side in Figures 6.12b and 6.13b.

For dataset A the three ROC curves are well aligned and indicate equal classification
performance for the three classes chamomile, crop and weed. When the dataset is reduced
to a two class problem performance is roughly equal.
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Figure 6.12: One vs. all ROC curves for plant classification on dataset A. The left curve (a)
shows the classification result for 3 classes, the right curve (b) shows the classification
result for 2 classes where chamomile and weed are united into a single class called all
weed. All results are before smoothing as described in the text.
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Figure 6.13: One vs. all ROC curves for plant classification on dataset B. The left curve (a)
shows the classification result for 3 classes, the right curve (b) shows the classification
result for 2 classes where chamomile and weed are united into a single class called all
weed. All results are before smoothing as described in the text.

111

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

6 Experimental Results and Discussion

When dataset B is analyzed, it can be observed that the distinction of chamomile from
the other classes is difficult. Causes for this are: First, the dataset B contains a lot less
data for chamomile than for crop and weed. Furthermore, the chamomile plants are thin
and pinnate shaped and therefore do not produce many patches. Second, the chamomile
plants in dataset B are relatively small (compared to dataset A) and are of similar size as
the crop which makes distinction between the two difficult (even for a human). When
dataset B is reduced to a two class problem, the ROC curves for crop and weed both
improve to very high levels.

The ROC analysis is performed on unsmoothed data since classifications scores are re-
quired. The smoothing process increases the performance additionally and is analyzed in
the following.

Smoothing The smoothing procedure is a crucial step in the plant classification pipeline.
It improves performance by introducing spatial smoothness as shown in Figure 6.11 above.
Here, the influence of smoothing on the whole dataset is analyzed and quantified.

Once the smoothing step is applied, the plant classification scores s are transformed into
smoothed plant class labels . For these only a single point of a ROC curve could be plotted
and another type of evaluation is conducted: The average accuracy, precision, recall and
F1-score are determined before and after smoothing for all biomass pixels in each image.
Table 6.4 shows these plant classification performance metrics before and after smoothing
on the datasets A and B.

Table 6.4: Improvement through smoothing on datasets A and B.

Accuracy Precision Recall F1-score

Dataset A
No Smoothing 87.3% 78.8% 78.3 % 78.5%
After Smoothing 91.4 % 86.2 % 84.4% 85.3%
Improvement +4.1pp +7.4pp +6.1 pp +6.7 pp

Dataset B
No Smoothing 95.4 % 81.1% 66.8 % 73.2%
After Smoothing 96.7 % 93.6 % 66.3 % 77.6%
Improvement +1.4pp +12.6 pp -0.5pp +4.4pp
Average Improvement +2.8 pp +10.0 pp +2.8 pp +5.6 pp

The quantitative evaluation clearly proves, that smoothing improves the plant classification
results in both datasets.

Additionally, a benefit beyond the pure improvement in classification metrics is, that the
smoothing step makes the estimate more homogeneous as it inhibits misclassifications
for single patches in or around a large homogeneously classified area. This is beneficial
when the plant classification output is used for example for weed control.
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Classification Metrics Finally, the overall plant classification performance of the devel-
oped pipeline is analyzed with metrics. It shall be noted again that all metric calculations
are performed for vegetation pixels only and background is ignored (see Section 4.4 for all
details). Table 6.5 summarizes these metrics for each class and in total for the datasets A
and B.

Table 6.5: Final plant classification results for datasets A and B measured with classification
metrics average accuracy, precision, recall and F1-score after smoothing.

(a) Plant classification results after smoothing for dataset A.

Dataset A Average Accuracy Precision Recall F1-score
Per Class
Carrot 91.8% 82.8% 87.3% 85.0%
Chamomile 92.4% 86.2 % 73.8% 79.5%
Other Weed 90.0 % 89.6 % 92.0% 90.8 %
Overall 91.4% 86.2 % 84.4% 85.3 %

(b) Plant classification results after smoothing for dataset B.

Dataset B Average Accuracy Precision Recall F1-score
Per Class
Carrot 95.6 % 89.4 % 91.3% 90.4 %
Chamomile 97.9% 94.7 % 8.6% 15.7%
Other Weed 96.7 % 96.8 % 98.9% 97.8%
Overall 96.7 % 93.6 % 66.3 % 77.6%

On both datasets high average accuracies of 91.4 % and 96.7 % are achieved which proves
the performance of the plant classification system quantitatively. The precision values
(which rate how correct the assignment to a class is) of 86.2 % and 93.6 % show that the
system is able to produce accurate estimates.

The recall, which defines how many instances of a class which are present in the training
data were correctly classified, is in the same range as the precision for dataset A. For
dataset B the per class recall for the chamomile class is low. Here the same explanation as
given above applies; the dataset contains few training examples and the chamomile plants
look very similar to the crop plants. Note that also for dataset B the overall recall is 66.3 %
and that the individual per class recalls for crop and weed classes are above 90 %. The
F1-score is calculated from precision and recall as defined in Section 2.2.4 and supports
the previous judgment.

Allin all, the evaluation of the plant classification system on the two datasets A and B using
metrics yields the same conclusions as visual inspection.
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Cross-Evaluation So far the evaluation is performed on the two datasets separately.
Now, a cross-evaluation is performed where the pipeline is trained on one dataset and
then applied to the other. This simulates the use case where a farmer trains the plant
classification system once and then applies it to different fields.

Table 6.6 presents the cross-evaluation results for the plant classification pipeline. The first
row of each subtable displays the plant classification metrics when parameterization is
done on one dataset and the pipeline is applied to images from the other dataset. In both
cases (dataset B — dataset A and dataset A — dataset B) the results are lower compared to
the case when the pipeline is trained and applied to the same dataset.

Table 6.6: Cross-evaluation plant classification results after smoothing. In subtable (a) the
first row A — B presents results of the pipeline parameterized and trained on dataset A
applied to dataset B. In the second row A+10 — B~ results for parameterization on dataset A
and training on dataset A plus the first 10 images of dataset B applied to remainder of
dataset B are given. For the rows in subtable (b) the same methodology applies.

(a) Cross-evaluation dataset B — dataset A.

Average Accuracy Precision Recall F1-score
B—A 79.1 % 69.4 % 57.1% 62.6 %
B+10 — A~ 88.2 % 77.8% 80.4 % 79.1%

(b) Cross-evaluation dataset A — dataset B.

Average Accuracy Precision Recall F1-score
A—B 93.4 % 71.2% 68.4 % 69.8 %
A+10—> B~ 96.1 % 79.8 % 62.8 % 70.3 %

The second row in each subtable Table 6.6a and 6.6b presents a case where 10 additional
images from the target dataset are labeled. In the real world this is the use case where the
farmer spends a short time to label for example 10 images of the target field and performs
aretraining (one click) before applying the plant classification system. These additional
10 images allow the plant classification system to perform substantially better in both
cross-evaluation cases. Compared to Table 6.5 only a slight drop in performance occurs.
Average accuracy drops only slightly by 3.2 pp or 0.6 pp. The F1-score drops 6.2 pp or 7.3 pp
but stays at a good level above 70 % for both cross-evaluations.

Crop Weed Field Image Dataset  Finally, the pipeline is applied to the Crop Weed Field

Image Dataset (CWFID) dataset published in conjunction with [70]. The results are sum-
marized in Appendix A.1 and agree with the results achieved for datasets A and B.
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6.2.3 Discussion

The contribution is a new plant classification system which is applied to the task of
crop/weed discrimination in commercial crop fields. The system processes multispectral
images from a camera and does not require additional input. It can be applied on a moving
field robot like the Bonirob introduced above and processes images in real time.

Two datasets from two different organic carrot farms are used to evaluate the system in
the previous section. The evaluation comes to the conclusion that the plant classification
pipeline is able to process these datasets with high accuracy: 91.4 % and 96.7 % are achieved
for dataset A and dataset B respectively.

The system successfully resolves complex situations present in the dataset: For example
dataset A contains very small plants and difficult areas where many plants grow close
together. The second field dataset B features a much larger variety of plant size (especially
very large weed patches) and overlap between all plant types is present. Additionally,
the weed chamomile — which is labeled as separate class — poses an additional challenge:
Chamomile looks similar to carrot plants and is difficult to discriminate.

Both of the two main approaches in related work do not handle these challenges present
in fields with crop in early growth stage well:

First, plant- and leaf-based methods struggle when plants overlap. These methods apply
prior plant/leaf segmentation which is error-prone for overlapping plants and an unsolved
challenge. This results in the classification performance to significantly decrease when
overlap is present as discussed in Section 4.1.

Second, cell-based methods suffer from reduced output resolution. They only estimate
a single plant class label for an entire cell spanning hundreds of pixels and potentially
multiple plants. This is not desired and not enough to solve the task of plant classification
for single plant weed control.

The newly developed plant classification pipeline overcomes these limitations because it
neither requires a plant/leaf segmentation nor does it output only coarse per cell classifi-
cation results. Complex situations like close-to-crop weeds and overlap between plants
(especially intra-class overlap) are successfully tackled by applying the patch-based feature
extraction and classification steps. Since no prior leaf or plant segmentation is performed,
segmentation errors cannot influence the classification result. The system generically
handles field situations with and without overlap and there is no special functionality to
cope with overlap.

The novel smoothing scheme is an additional key contribution. It ensures smooth classifi-
cation results and avoids rapidly changing plant class estimates.

In order to not limit the plant classification output to a per patch result, the interpolation
step ensures the generation of a full plant classification output image. For each vegetation
pixel a plant class is estimated. This is a significant improvement over cell-based methods
presented in related work.
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The evaluation shows that overlap between different classes of plants is detected with high
accuracy. One limitation is however, that multiple overlapping plants of the same class
(intra-class overlap) are not separated into different plant regions. In the output label
image they get represented by one connected component of the same plant class.

This is no drawback for the goal of the thesis. The targeted application is precision weed
control and in that use case overlap between different classes (inter-class overlap) is
required to be discriminated properly. Precision agriculture metrics (for example weed
coverage) are not influenced since they operate on the individual pixels in the classification
image.

The cross-evaluation proves that the plant classification system is also able to generalize be-
yond the specific dataset used to train the system. This is a major strength of the presented
approach since it allows practical application by farmers: Full relabeling, parameterization
and retraining of the system for a new field is not required and the farmer can apply an
existing classifier on a new field. If a small amount of labeling in the new field is acceptable,
the results can be further improved. The drop compared to full training is limited to a
maximum of 7.3 pp Fl-score and 3.2 pp average accuracy when cross-evaluating with
datasets A and B. Such additional labeling can be for example performed in field with
a smartphone application or if the application is data acquisition for phenotyping such
additional labeling can also be performed offline as postprocessing step.

The output of the system is a plant classification image that can be used for precision
weed control with a field robot. Additionally, the pixel labels can be used to calculate weed
coverage or the crop/weed area ratio metrics that help farmers when applying precision
agriculture techniques on their fields.

All evaluations and results are presented for the more challenging three class task. The
special weed chamomile which looks similar to the carrot crop is labeled as separate third
class. The goal is to show that this pipeline is more versatile than pure crop/weed dis-
crimination and still returns high quality plant classification images. For pure crop/weed
classification a two class classification would be sufficient and the ROC analysis indicates
that using the pipeline with two classes results in even better classification accuracies.

Plant classification was defined as objective for this thesis and the developed pipeline
fulfills the defined requirements: It is able to process small plants in early growth stage
(0 cm to 5 cm in diameter), works with high resolution field capable sensors and as derived
in the evaluation copes with overlap and challenging field conditions.

Moreover, the following two objectives are fulfilled as well: The plant classification system
performs without human supervision when it processes new images and runs in real time
on a CPU. The plant classification system generalizes beyond the concrete dataset it is
trained on and can be applied to similar data from other fields or seasons. All in all, this
allows plant classification with a field robot and enables automatic organic weed control
when combined with a proper weeding tool.
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6.3 Evaluation and Discussion of the Plant Position
Estimation Method

The goal of this section is to apply the new plant position estimation pipeline developed
in Chapter 5 to challenging real world datasets, to evaluate and to discuss these results.
To generate plant position estimates, the pipeline is applied to the two datasets A and B
using 5-fold cross-validation.

An important aspect of the plant position estimation system is the choice of parame-
terization. The methodology presented in Section 5.5 is applied to determine the best
parameterization for each dataset. The parameter selection plots for dataset A are pre-
sented in Section 5.5 and for dataset B they can be found in Appendix A.3. Table 6.7
summarizes these parameterizations for the datasets A and B.

Table 6.7: Selected parameters for plant position estimation on datasets A and B.

DatasetA  Dataset B

General Parameters
Patch Size wyg,, 40 px 50 px
Patch Stride wige 10 px 8px
Training Patch Extraction Parameters
Border around Ground Truth Stems d,oqer 35 px 40 px
Maximum Chebyshev Distance to Stem d ,,,, 12 px 9 px
Sampling Step d ., 2 px 2 px
Position Estimation Parameters
Smoothing Kernel Size koot 3 3
Non-maximum Suppression Kernel Size ko, max 15 15

Random Forest Parameters

Number of Trees 120 120
Leaf Node Size 1 1
Number of Features Considered at each Split 3 3

The optimized parameterizations of the plant position estimation pipeline only differ
slightly between the two datasets. The patch size is 10 px larger for dataset B which
can be explained with the larger plant size in dataset B. A larger patch size is beneficial
to capture the appearance of the stem region of the larger plants. The training patch
extraction parameters are nearly the same and the difference in d,,,, has minimal effect
on performance as shown in the respective plots in Figures 5.18 and A.7. The border
parameter dy,,q.; is roughly proportional to the patch size which makes sense to ensure
stem and non stem patches do not overlap. The position estimation and Random Forest
parameters do not depend on the dataset and are equal for both datasets A and B.
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Interestingly, when comparing the patch size for plant classification and position estima-
tion, dataset B requires a smaller patch size for plant classification and a larger patch size
for position estimation. This is not a contradiction and an explanation to this could be to
larger size and bigger homogeneity of plant appearance present in dataset B compared to
dataset A. Larger plants require less context for plant classification compared to the many
pinnate chamomile plants present in dataset A. The larger plants in dataset B also have a
bigger stem region for which more context helps precise position estimation.

One additional position estimation parameter motivated by the organic farming use case
is the stem detection threshold y. It determines how far the detected position can deviate
from the ground truth position to be still considered valid. The organic weed control
process presented above is the considered use case for the pipeline. The tube stamp
weeding tool developed (see Section 6.1.1) is now considered to define the stem detection
threshold y. The diameter of the tool is 10 mm and it is considered efficient 1.5 times its
radius. Together with the average pixel resolution of 8.95 px/mm (see Table 3.2) at nominal
object distance, the stem detection threshold 7 is set to 68 px. In metric scale this equals
7.5 mm.

6.3.1 Results

The novel plant position estimation pipeline is now applied to all images in a dataset using
5-fold cross-validation and the defined parameterization. After processing all images,
detected plant stem positions are available for each image. They can now be analyzed
visually and compared with the ground truth stem positions.

Figures 6.14 and 6.15 display the plant stem position estimation results for datasets A
and B respectively. The masked NIR image is augmented with detected and ground truth
stem positions.

Green stars visualize the detected stem positions which are the output of the final non-
maximum suppression step. Additionally, the ground truth stem positions are visualized
while taking into account the following two cases:

1. Ground truth stem position to which a detected position is associated are visualized
with a blue plus. These correctly detected ground truth stem position meet the stem
detection threshold y from Equation (5.2). In addition to the blue plus indicating
a correctly detected ground truth position, a red line connects this ground truth
position to the corresponding detected stem position.

2. Missed ground truth stem positions are visualized with a red plus. For these no
detected stem position which satisfies the stem detection threshold y could be
associated. Therefore, these ground truth positions are not connected to a detection
with aline.

The set of false alarms, i.e. additional invalid detections, can be identified because these
green stars do not have a red line connecting them to a ground truth position.
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Figure 6.14: Plant position estimation results for dataset A. Green stars mark detected
plant positions. Blue pluses mark ground truth stem positions for which a detection is
present. Red pluses mark ground truth stem positions which were missed (and for which
no detected stem is present).
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9 Estimated Stem =+ Hit Ground Truth Stem <+ Missed Ground Truth Stem

Figure 6.15: Plant position estimation results for dataset B. The symbols are explained in
the legend below the image and in the caption of Figure 6.14 in detail.
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When the images are analyzed the difficulty of the plant stem detection task can be ob-
served. The plant stem region varies a lot even for carrot plants. The majority of stems is
detected both in datasets A and B. Misses happen more often in dataset B than in dataset A.
One reason for this is the greater density and variance in size of plants in dataset B. The
larger a plant, the more leaves are present in different configurations close to the stem
compared to early growth stages.

The visual analysis suggests that in both datasets false alarms happen more often than
misses. For example in image A121 it can be observed that along the large leaves of the
chamomile plant (lower right) multiple false alarms happen. The area where tiny leaf parts
branch of left and right of the main pinnate leaf look very similar to the carrot plant stem
area. Additionally, when overlap is present additional false alarms are trigged: For example
in image A051 in the lower part of the image lots of plants grow together. Such overlap
does however not always produce false alarms, the three plants growing in A126 close to
the top right corner overlap but their stems are correctly detected without additional false
alarms.

From the images of dataset B it can be concluded that the stem detection pipeline copes
well with plants of different size. Especially, in image B030 and B088 plants of very different
growth stage are present and correctly handled.

Allin all, the plant position estimation pipeline is able to estimate the stem region correctly
for the majority of plants. Misses happen occasionally but more false alarms are present.
For the mechanical weeding process false alarms are not as harmful as misses. The false
alarms trigger an additional weed removal action; if this action is fast this does not degrade
the weeding performance, it only might slow down the overall process.

6.3.2 Evaluation

The previous section presents the plant position estimation pipeline results visually. Now,
a quantitative evaluation using the plant stem detection evaluation metrics and ground
truth annotations follows.

Throughout the evaluation, detected and ground truth plant stem positions are categorized
into hits, misses and false alarms using the stem detection threshold y. The threshold
y describes how far an estimate is allowed to deviate from the ground truth to still be
counted as valid according to Equation (5.2).

Plant Position Estimation Confusion Matrix Using the hits, misses and false alarms
the plant position performance can be evaluated with a confusion matrix. In Figure 5.12
the confusion matrices are plotted for the three thresholds 7.5 mm, 10 mm and 20 mm for
datasets A and B.

The 7.5mm threshold is the main threshold motivated by the agricultural process of
mechanical weed control process described above in Section 6.1.1, the other thresholds
allow more deviation and are useful for plant counting or other precision agriculture
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Figure 6.16: Plant position confusion matrices for datasets A and B with different plant
position estimation thresholds y. FA abbreviates false alarms.

processes. The confusion matrix analysis supports the previous statement that more false
alarms (FN) are present than misses (FP). The majority of plant stem regions are correctly
detected as hit (TP) for both datasets A and B. Additionally, the data in the confusion
matrices is given for the crop and weed classes. It can be observed that false alarms
happen more often for the weed class.

Plant Position Estimation Plot Instead of a confusion matrix, the hit, miss and false
alarm counts can be used to calculate the plant position estimation metrics precision,
recall and F1-score (see Section 5.4). Figure 6.17 plots these metrics for different plant
stem detection thresholds y from 0 to 20 mm.

From the figures it is clear that as expected with growing threshold all performance metrics
grow. For thresholds between 0 and 5 mm performance grows fast, above 15 mm the
performance grows slower and begins to saturate.

Plant Position Estimation Metrics In addition to plotting, Table 6.8 gives the plant
positions estimation metrics in percent for selected thresholds starting with 7.5 mm. The
plant position estimation pipeline achieves F1-scores for datasets A and B of 78.6 % and
75.8 % respectively for the selected threshold y of 7.5 mm. For larger thresholds all metrics
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6.3 Evaluation and Discussion of the Plant Position Estimation Method

1 1
0.8 : g : 0.8
0.6 : 0.6
0.4 : 0.4
—— Precision —— Precision
0.2 — Recall 0.2 : : —— Recall
—— F1-Score —— F1-Score
0 0
0 5 75 10 15 20 0 5 75 10 15 20
Stem Detection Threshold y (mm) Stem Detection Threshold y (mm)
(a) Metrics for Dataset A. (b) Metrics for Dataset B.

Figure 6.17: Plant stem detection metrics precision, recall and F1-score plotted for varying
values of the threshold y for datasets A and B. As expected, the performance grows for
larger thresholds.

improve for all datasets.

From the table it becomes clear that both precision and recall are approximately equal.
This is achieved because maximization of the F1-score is the objective in the parameter
selection procedure explained in Section 5.5. If on the one hand a higher recall is desired,
parameters can be selected such that the hit vs. miss ratio improves. If on the other hand,
false alarms should be avoided, parameters which maximize recall can be selected. Since
this depends highly on the application, the balanced case is chosen here and good results
for precision and recall are achieved.

Similar to the evaluation of the plant classification pipeline also for the plant position
estimation a cross-evaluation is performed: The pipeline is parameterized and trained
on dataset A and then applied to dataset B which results in a drop in F1-score of 9.8 pp.
For the reverse case (dataset B — dataset A) a drop in F1-score of 7.7 pp is measured. The
drop can be explained by the large difference in plant stem appearance in the two datasets.
Defining additional plant position ground truth is a much easier task (a single mouse click)
compared to labeling plant contours in the plant classification case. For full performance
additional labeling of plant centers can be performed when the pipeline is applied to new
fields with novel plant appearance.

6.3.3 Discussion

The novel plant stem detection and position estimation pipeline is a contribution towards
precision agriculture and robotic mechanical weed control in commercial crop fields.
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6 Experimental Results and Discussion

Table 6.8: Evaluation of the plant position estimation pipeline with metrics for datasets A
and B. The metrics are evaluated for different thresholds y; the 7.5 mm threshold for the
carrot use case is printed in bold.

(a) Plant position estimation results for Dataset A.

Threshold 7 Average Accuracy Precision Recall F1-score
r=7.5mm 64.7 % 75.8% 81.6% 78.6 %
Y =10mm 67.8% 779 % 83.9% 80.8 %
Y =15mm 72.5% 81.1% 87.3% 84.1 %
y=20mm 75.0% 82.7% 89.0% 85.7%

(b) Plant position estimation results for Dataset B.

Threshold 7 Average Accuracy Precision Recall F1-score
7=7.5mm 61.0 % 72.5% 79.3% 75.8%
y=10mm 65.6 % 75.9 % 82.9% 79.2%
y=15mm 69.6 % 78.6 % 85.9% 82.1%
Y =20mm 72.2% 80.3 % 87.7% 83.8%

Using vegetation segmented multispectral images as only input, the pixel positions of
plant stems in the image are estimated. The output is a list of estimated plant stems for
each image. The system runs on a CPU in real time and can be applied on field robots.

Using the two challenging datasets A and B recorded in commercial carrot farms the
system is evaluated. The system achieves a stem detection F1-score of 78.6 % and 75.8 %
respectively which is well suited for weed control with the current mechanical tool. The
selected threshold of 7.5 mm is very strict; it allows weed control in organic farming with a
mechanical weed control tool. If the larger tool and therefore larger threshold of 20 mm is
selected performance improves to 85.7 % and 83.8 % respectively.

Compared to related work the system has three clear advantages: First, the presented
pipeline does not require a plant or leaf segmentation. Related methods perform such
a segmentation as preprocessing step and then derive the plant stem using centroid or
related methods. As previously discussed plant/leaf segmentation is error-prone in the
field situation encountered here with overlap and a vast variety of plant sizes. Second, the
pipeline is able to estimate the plant stem of all plants in the field. Related methods which
apply crop row extraction and use the row estimate as input are only able to determine
the crop positions. Similarly, crop mapping based approaches map the crop position and
are therefore only able to report crop positions. Third, the approach only utilizes images
and does not rely on additional sensing methodologies like GPS or 3D data.
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6.4 Combined System for Weed Control

The evaluation with plant position estimation metrics proves the high performance of
the system. However, some of the labeled stems are missed. Misses happen for example
when overlap is present or when plant stem predictions are too close together and the
non-maximum suppression rejects one of the stems. Furthermore, an error case is that
additional false alarms happen. This can occur for example for chamomile and carrot
plants: Both species have pinnate leaves and some leaf areas (especially where small leaf
parts branch of the main leaf) look similar to plant stem regions. Also, overlap between
plants can create patches that look similar to stems in the top-down view.

The cross-evaluation indicates that the plant position estimation pipeline generalizes
beyond the dataset, however a drop of performance occurs. This drop is between 7.7 pp
and 9.8 pp in the F1-score metric depending on the datasets. Additional labeling is easy
and possible in real time since defining a position estimate is a single click on the computer
or touch on a smartphone. The farmer can decide based on the field situation (current vs.
training field) if the pipeline is applied as it is, or if he wants to define additional labels for
maximum performance.

The newly introduced pipeline overcomes the limitations of related work by design and is
able to output plant position estimates for all plants from images only. The plant stem
position estimation system handles complex field images with plants of different types,
sizes and with intra- and inter-class overlap. The system is trained with stem labels only
and predicts stems for all plant types. There is no need to train the system for specific
plant classes separately.

The evaluation in challenging field conditions with data recorded with a field robot indi-
cates the applicability of the pipeline to the mechanical weed control task. Furthermore,
the plant position estimates can be utilized for additional precision agriculture tasks such
as plant counting, plant mapping, single plant fertilization and pruning.

The presented plant position estimation pipeline fulfills the objective of this thesis to deter-
mine the position of a plant in the field for plants in early growth stage. The performance is
shown for so far unsolved challenging real world carrot field images with plants which vary
in size (both crops and weeds can be tiny or large) and with intra- and inter-class overlap
being present. Additionally, the objective to work automatically in the field without human
input and the ability to work in field robots in real time is accomplished.

6.4 Combined System for Weed Control

The plant classification and position estimation pipelines can be combined to realize single
plant weed control. Therefore, the image is processed in parallel with the two pipelines
and the results are combined to calculate weed treatment positions. An overview of this
approach is displayed in Figure 6.18.

Since plant position estimates are calculated for all plants in the image (both crop and
weed), they need to be combined with the estimated plant classification. This is done by
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6 Experimental Results and Discussion

‘ Plant Classification ‘ ‘ Plant Position Estimation

Plant Plant
Class } ' Position
Data

Image m@‘

Determine Weed Treatment Positions
Activate Plant Positions Located in Areas Classified as Weed (Blue or Red)

@ Estimated Weed
— Activate Treatment

Y Estimated Crop
— Do not Treat

Send Weed Treatment Positions to Weeding Tool

Figure 6.18: Combination of the plant classification and position estimation systems to
realize single plant weed control.

looking up the plant class of each stem detection in the plant classification image. If a
plant position belongs to a weed class, it is marked as active and the position is send to
the weed control module such that the weed is treated. This can be seen in the lower part
of Figure 6.18. If the plant position belongs to the crop class, the position is not activated
and no treatment is performed.

To evaluate the combined system from a farmer’s perspective the following approach is
taken:

1. The farmer desires to treat as much weed as possible: For each ground truth weed
plant position it is now evaluated (with the stem detection threshold y) whether the
weed plant was detected and activated or not. Ground truth positions for which
an activated plant position is associated are counted as successfully treated. This
number is now compared to the total amount of weed plants in the dataset to define
the fraction of successfully treated weed plants.

2. Crop plants shall be protected and not treated: The same calculation as for weed is
done and the amount of wrongly treated crop plants is calculated using the position
estimation threshold y and the activated positions associated to a crop ground truth.

This task is challenging since to achieve successful weed treatment both the plant classifi-
cation must be successful (detect the correct plant class for the plant) and additionally the
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6.4 Combined System for Weed Control

plant position estimation must detect a plant stem close to the ground truth labeled stem
(since the stem detection threshold 7y is only 7.5 mm). Failure of either pipeline results in
untreated weed or loss of crop which both are not desirable.

False alarms, which are additional plant position estimates not satisfying the plant position
threshold 7, do not affect these metrics since the weeding tool is only effective if it reaches
the plant stem. Such additional treatments only slow down the weeding process with
additional weeding tool executions.

Table 6.9 displays the results of the combined system on the datasets A and B as well as
the sum over both datasets.

Table 6.9: Evaluation of the combined system for stem threshold y = 7.5 mm.

Treatment Count Treatment Percent

Dataset A
Weed Treated 559 of 698 80.1%
Crop Treated 79 of 473 16.7 %
Dataset B
Weed Treated 570 of 790 72.2%
Crop Treated 49 of 840 5.8%
Sum of Datasets A and B
Weed Treated 1129 of 1488 75.8%
Crop Treated 128 0f 1313 9.7%

It can be concluded that for datasets A and B the combined system successfully treats
75.8 % of weeds and accidentally removes 9.7 % of crop plants. In dataset A where many
chamomile plants occur and the distinction between crop and chamomile is difficult the
number of lost crop is higher; at the same time the ratio of treated weed is also higher. In
dataset B crop and weed is well distinguished and only 5.8 % of crop is lost. However, due
to the high variance in weed size and appearance as well as much overlap, more weed
plants are missed.

This combined evaluation of the plant position estimation and classification pipeline con-
cludes the experiments and presents results from a farmer’s perspective: A farmer is able
to utilize the system to treat weed effectively with only minimal loss of crop. Additionally,
the overall performance on crop yield is further increased beyond the presented numbers:
Typically multiple weeding runs are performed in the first weeks after germination and
additionally more crop than necessary is sown to compensate for loss of crop due to
natural and weeding effects.
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6 Experimental Results and Discussion

6.5 Summary

This chapter presents the field robot built and datasets recorded for the evaluation of the
plant classification system presented in Chapter 4 and plant position estimation pipeline
developed in Chapter 5. Furthermore, it provides results and a thorough evaluation of
both systems using the field data and the selected evaluation metrics.

The discussion of the presented novel pipelines and the combined system indicates that
the objectives for this thesis are solved: The plant classification pipeline is able to process
the vegetation segmented multispectral field images into full resolution plant classifica-
tion images. For each pixel a predicted plant class is available. Using the plant position
estimation system, plant positions for all plants (both crop and weed) are predicted in
the image. The combined system is able to perform the task the farmer is most interested
in: Single plant weed control. The system achieves the desired high weed treatment rates
with only minimal loss of crop.

The methods cope well with the so far unsolved challenges in commercial organic carrot
farms of generally small plants in the cm range, overlap between plants and a high variabil-
ity of the plants appearance. The developed image acquisition, plant classification and
stem estimation systems run on CPU in real time and can be applied on a moving robot to
close the perceive-plan-act loop. This allows the realization of precision agriculture and
especially the envisioned single plant weed control task.
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7 Conclusion

Ensuring sustainable agriculture to feed a growing world population is a large ongoing
worldwide challenge. Combining robotic capabilities with precision agriculture are a
promising approach to make agricultural production more ecological, to increase produc-
tivity or improve cost. Especially in organic vegetable farming, weed control is essential to
avoid yield losses of more than 50 % and the challenging task of intra-row weed control is
still mostly performed manually.

This thesis develops a computer vision system for application in an agricultural robot
which is able to detect and classify plants in the field: It applies machine learning to
discriminate crop in challenging plant growing conditions with high levels of plant overlap
and the presence of weeds of different sizes inside and outside the crop row. Additionally,
a plant stem detection and position estimation method extracts the position of plants in
the field with high precision.

Experiments with the custom built field robot Bonirob are carried out in commercial
organic carrot farms. Several datasets with carrot crops in early growth stage are acquired
with the field robot. In this stage, close-to-crop and intra-row weeds are present which
are a challenge for the plant classification and weeding job. The dataset images are used
to evaluate the proposed methods and to prove their performance and applicability to
real world precision agricultural tasks. As no datasets in this challenging domain were
publicly available, a dataset with plant class and vegetation segmentation annotations
was published together with a paper.

The developed computer vision system comprises three major components: Image ac-
quisition and vegetation segmentation, plant classification as well as plant detection and
position estimation. As presented in the evaluation chapter these approaches fulfill the
goals and research questions outlined in the introduction.

Multispectral Image Acquisition and Vegetation Segmentation A beam splitting mul-
tispectral camera setup is selected as best option to capture color and near-infrared images
from a moving agricultural robot in the field. The camera setup delivers both time and
spatially registered multispectral images with frame rates of 1 to 30 Hz. These images are
well suited for the background removal step and the plant related image processing tasks
because they capture the color and near-infrared channels which allows to leverage the
red-edge property (low reflectance in red band and high reflectance in near-infrared band)
of plants.

The developed vegetation segmentation method processes the multispectral images with
a modified Normalized Difference Vegetation Index (NDVI) segmentation approach: Sev-
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7 Conclusion

eral pre- and postprocessing steps ensure that different brightness levels of the RGB vs.
NIR channel are corrected and that small segmentation artifacts and shadow effects are
removed by filtering and blob size thresholding. The output of the vegetation segmenta-
tion step is a segmentation mask which covers all background (i.e. non vegetation) pixels.
Using this mask, a masked NDVI image is created which is used in the following plant
classification and position estimation pipelines.

Plant Classification The novel plant classification system processes the vegetation
segmented NDVI images into full plant classification images. Each vegetation pixel in the
output image is assigned to one of the different plant classes. The method is more generic
than a crop/weed discrimination approach since it supports more than two plant classes.
The system applies a two stage approach: During offline training human expert labeled
ground truth is used to train the system in supervised mode. In the online application
phase the system fully autonomously estimates the plant classification image for previously
unseen images. The developed method supports real world field situations where crops
and weeds are of difference sizes, grow close together and all types of plants overlap.

The plant classification pipeline does neither require nor apply segmentation into leaves or
plants. It avoids this major source of error in previous systems and rather utilizes a divide
and conquer approach: First, overlapping patches are extracted at sparsely distributed
keypoints. Then, from each patch features are extracted (contour and shape features
as well as NDVI value statistics) and a trained Random Forest classifier estimates plant
classification scores for each patch. Second, the scores are smoothed using a Conditional
Random Field (CRF) to yield more spatially smooth plant classification estimates. This step
builds on the assumption that keypoints which are close together most likely belong to
the same plant and therefore most likely have the same plant class. The CRF formulation
is used to combine this smoothness term with a data term which is derived from the
classifier scores. The output of the smoothing step is a smoothed categorical plant class
label for each keypoint. Finally, the plant classification results which are until now only
calculated per keypoints are interpolated back to full image resolution with the goal that
for all vegetation pixels an estimated plant class is available.

This concludes the divide and conquer strategy and allows classification of challenging
image regions with irregular shaped leaves as well as overlap where the plant segmentation
based approaches are prone to fail. Additionally, the novel approach overcomes the loss of
output precision of related work which only split the image into different regions (so-called
cell-based methods) and just classify whether a cell belongs to the class plant or weed or
background.

Visual inspection of the results shows the effectiveness of the pipeline which is able to
produce plant classification images of high quality. The evaluation with ROC curves and
classification metrics proves the performance quantitatively: Average accuracies of 91.4 %
and 96.7 % are achieved by the plant classification system.

The plant classification image which is the output of the plant classification system can
be directly used to treat weed patches with for example precision spraying of herbicide.
Furthermore, the system’s output can be used to address other agricultural tasks like plant

130

216.73.216.60, am 24.01.2026, 03:58:09. © Lrheberrechtlich geschitzter Inhal 2
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186870100

phenotyping: For example crop mapping and crop/weed coverage ratio calculations can
be realized.

Plant Detection and Position Estimation The task of determining the position of a
plant in the field is solved by a newly developed plant detection and position estimation
pipeline. The vegetation segmented NDVI images are the only input data, the output of
the system are detected plant positions.

A sliding window-based image patch extraction step yields image patches. The subsequent
classification estimates whether such a patch displays a plant stem region or not. In the
following, a filtering and non-maximum suppression step determines the discrete plant
stem positions encoded as (u, v) pixel coordinates. The Random Forest plant stem classifier
is trained in the offline phase using human expert labeled ground truth stem positions. In
the online phase it can be applied directly without human intervention.

A thorough evaluation with visual inspection, confusion matrices and use of introduced
position estimation metrics highlights the performance of the position estimation system:
For the challenging position estimation threshold of 7.5 mm F1-scores of 78.6 % and 75.8 %
are achieved; for a relaxed threshold of 20 mm the F1-score performance improves to
85.7 % and 83.8 % respectively.

This novel approach to plant position estimation has several key advantages over previous
work: First, the system only requires the vegetation segmented images. Additional infor-
mation leveraged by previous work such as knowledge of the row position/layout or all
crop positions is not required. Second, it is able to produce plant position estimates for all
plants, i.e. crops and weeds. The ability to also detect positions of individual weed plants
allows single plant weed control and is a major improvement over related approaches
with only deliver crop plant positions. Third, the plant detection and position estimation
system does neither require a plant or leaf segmentation nor does it require extraction
of plant structures like branches or leaf veins to derive the stem position. Such plant
structure segmentation might work in simple cases with single plants but results in severe
performance losses when applied to field images with many and overlapping plants.

The output of the plant position estimation step enables single plant precision agriculture
and phenotyping measures such as plant counting.

Combined System and Farmer’s Perspective The combination of both the presented
plant classification and plant position estimation pipelines enables single plant precision
agriculture which takes into account the plant class. For example on the one hand, the
precise position of weed plants is needed in order to precisely target mechanical weeding
tools. On the other hand, the position of crop plants is the required input for further
phenotyping steps where for example plants are counted or single plant measurements
like size or plant area of only crop plants are calculated.

An evaluation of the combined system provides results form a farmer’s perspective. The
estimated plant positions are combined with the plant classification information to derive
treatment position for a weeding tool. The strict stem detection threshold of 7.5 mm is
applied again and then the determined treatment positions are evaluated if they hit a
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desired weed or accidentally remove a crop plant. On the two datasets A and B the system
achieves the high weed treatment rate of 75.8 % with only minimal loss of 9.7 % crop. This
proves the applicability of the combined system to solve the farmer’s task of single plant
mechanical weed control in organic crop farms where today typically still manual labor is
necessary.

Finally, real world tests with the Bonirob field robot were conducted in commercial organic
carrot farms within the publicly funded project RemoteFarming.1. The positions of the
classified weed plants were estimated in real time and sent to a weeding tool. The weeding
tool comprises a visual servoed delta robot with a tube stamp tool attached to the end-
effector. The tube stamp was executed when the tool was positioned over weed plants to
regulate the weed by pushing the plant several centimeters into the ground. Additionally,
the presented approaches were transfered to the Bosch funded startup Deepfield Robotics.
There, this research is used towards weed regulation in for example sugar beet fields.

All in all, the combination of the precise plant position and the plant type enables the
realization of a multitude of precision agriculture tasks: This includes but is not limited
to the presented mechanical weed control process. Hopefully, the use of this research
combined with advanced robotics will enable fleets of intelligent agricultural robots to
bring the world closer to the goal of achieving sustainable, ecological and human-friendly
agricultural production.
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A Additional Results

A.1 Results for the Crop Weed Field Image Dataset

In the following the plant classification results for the published Crop/Weed Field Image
Dataset (CWFID) [70] are provided. This dataset was recorded on the same field as dataset A
but only two classes crop and weed were labeled. For the presented evaluation the pipeline
is parameterized with the same parameters as for dataset A. The concrete parameter values
are given in Table 6.3. First, Figure A.1 displays the ROC curve achieved for the unsmoothed
plant classification.

True Positive Rate

—— Carrot
--- Weed

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure A.1: Plant classification ROC curve for the CWFID dataset (before smoothing).

Second, Table A.1 indicates the positive effect of the smoothing process also for this dataset.
All metrics improve substantially.

Table A.1: Improvement through smoothing on the CWFID dataset.

Accuracy Precision Recall F1-score
No Smoothing 86.9 % 81.7% 78.7% 80.1 %
After Smoothing 90.5% 89.1% 82.0% 85.4%
Improvement +3.6 pp +7.4pp +3.3pp +5.3pp
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A Additional Results

Finally, Table A.2 gives the overall classification metrics after smoothing for the CWFID
dataset.

Table A.2: Final plant classification results (after smoothing) for the CWFID dataset.

CWFID Dataset Accuracy Precision Recall F1-score
Crop 90.5 % 86.9 % 66.8 % 75.5%
Weed 90.5 % 91.3% 97.2% 94.1 %

Overall 90.5 % 89.1 % 82.0% 85.4%

It can be concluded that the presented pipeline improves compared to the published
figures in [70] and that stable performance is achieved.

A.2 Plant Classification Parameter Selection for Dataset B

In the following the parameter selection for dataset B is plotted. The methodology is
explained in Section 4.5 and the selected parameterization is given in Table 6.3.
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Figure A.2: Plant classification metrics for varying patch size wy;,. and patch stride wgy;ge
before and after smoothing for dataset B.
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A.2 Plant Classification Parameter Selection for Dataset B
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Figure A.3: Average accuracy when varying the smoothing parameter A for plant classifi-
cation on dataset B.
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Figure A.4: Out-of-bag error of the Random Forest classifier (left axis) and training time
(right axis) depending on the number of trees trained, leaf node size and number of features
considered per split for plant classification on dataset B.
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A Additional Results

A.3 Plant Position Estimation Parameter Selection for
Dataset B

This section presents the plant position estimation parameter selection for dataset B
according to Section 5.5. The finally chosen parameterization is given in Table 6.7.

- - - Stride wgyige =5 pX
—— Stride wgyige = 8 pX
— Stride wgyige = 10 px
— Stride wgyige = 15 px
—— Stride Wy ge = 20 px
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Figure A.5: Variation of patch size and patch stride for dataset B.
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Figure A.6: Variation of the border around ground truth stems for dataset B.
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A.3 Plant Position Estimation Parameter Selection for Dataset B
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Figure A.7: Joint variation of the sampling step and the maximum distance where positive
patches are extracted for dataset B.
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Figure A.8: Influence on plant stem detection metrics for different sizes of the smoothing
kernel kg, o0n for dataset B.
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Figure A.9: Variation of the non-maximum suppression kernel size for dataset B.
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A Additional Results
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Figure A.10: Dataset B plant position estimation out-of-bag error of the Random Forest
classifier (left axis) and training time (right axis) depending on the number of trees trained,
leaf node size and number of features considered per split.
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