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A B S T R AC T

This dissertation deals with machine learning techniques for inverse dynamics of human
motion. Inverse dynamics refers to the derivation of acting forces and moments from the
motion of a kinematic model. More precisely, the objective is to estimate joint torques,
ground reaction forces and ground reaction moments at both feet based on the three-
dimensional input motion of a skeletal model. Of particular interest are the joint torques,
also specified as net joint moments, since they correspond to the total effect of all forces
on the joints. In the context of biomechanical investigations, they represent a common
measure of the load on joints.

Traditional approaches formulate the problem as an optimization that incorporates the
equation of motion (EOM) of a physical model of the human body. The EOM is either
used in a forward or an inverse sense which implies either integration or differentiation of
kinematics. Both processes are prone to error propagation and complicate the convergence
of the optimization algorithms built on the formulation. Furthermore, the EOM belonging
to a multi-body system, such as the modeled human body, gives rise to a highly non-linear
and non-convex objective function which is notoriously hard to optimize. Last but not least,
conventional methods generally rely on measured external reaction forces and moments,
which severely limits the motions that can be analyzed due to the laboratory environment
required.

Given these limitations, data-driven machine learning techniques open up tremendous
opportunities by enabling fast and noise-resistant data analysis. This thesis investigates
the applicability of such methods to inverse dynamics of human motion and addresses the
design of suitable regression models. The proposed methods are able to predict underlying
joint torques and exterior forces with high precision (on gait sequences: relative root mean
squared errors of 7.0 %, 16.1 % and 11.9 % for reaction forces, reaction moments and joint
moments which correspond to Pearson’s correlation coefficients of 0.91, 0.83 and 0.82),
while reducing computation times by two orders of magnitude compared to traditional
optimization.

A general feature of human motion data is the discontinuity at contact phase transitions,
e. g. at the moment the foot touches the ground. By changing the number of contact points
of the human model to its environment, the set of dynamic equations is fundamentally
altered to the extent that external influences are allowed or forbidden at the corresponding
points. Motivated by this property, a multi-stage regression approach is presented. The
method initially identifies the current gait phase and limits the inference of joint torques
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as well as contact forces to the resulting sub-space. This way, the regression of unrealistic
non-zero forces during swing phases is significantly reduced compared to a model that
estimates the forces without knowledge of the contact state.

Current problems of machine learning methods for solving inverse dynamics are a lack
of suitable datasets and that the compliance with the EOM is not guaranteed for the
predictions. Both issues are addressed by a self-supervised learning method presented in
this thesis. The approach allows cycle consistent training of an artificial neural network
with pure motion data, i. e. without any ground truth forces and moments. Instead of
minimizing a direct loss on the target forces, the model solves an initial value problem
based on predicted forces and minimizes the distance between the resulting simulation and
the input motion. This is realized by implementing a differentiable forward dynamics loss
layer that allows backward flow of gradients and can be integrated into the training of the
neural network. In addition, the model includes a corresponding inverse dynamics layer
that evaluates the estimated contact forces decoupled from predicted joint torques. Thus,
the model not only allows training on readily available motion data, but also constrains the
predicted variables using both dynamic directions for optimal satisfaction of the EOM. The
neural network maintains stable performance even with small labeled datasets consisting
of dynamics data of only two or three subjects by learning generalization capability on
larger unlabeled motion sets. Furthermore, the method enables self-supervised transfer
learning to different motion types, movement speeds and skeleton characteristics.

The presented learning-based inverse dynamics approaches are evaluated using a self-
recorded dataset of walking and running sequences performed by 22 subjects as well as a
public dynamics dataset [39] and gait sequences from the well-known CMU database [18].
The self-recorded dataset is available to the research community.
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K U R Z FA S S U N G

Diese Dissertation beschäftigt sich mit maschinellen Lernverfahren für die inverse Dynamik
der menschlichen Bewegung. Unter inverser Dynamik versteht man die Ableitung von
wirkenden Kräften und Momenten aus der Bewegung eines kinematischen Modells. Genauer
gesagt geht es um die Abschätzung von Gelenkmomenten, Bodenreaktionskräften und
Bodenreaktionsmomenten an beiden Füßen basierend auf der dreidimensionalen Eingangs-
bewegung eines Skelettmodells. Von besonderem Interesse sind die Gelenkmomente, die
auch als Netto-Gelenkmomente bezeichnet werden, da sie der Gesamtwirkung aller Kräfte
an den Gelenken entsprechen. Im Rahmen biomechanischer Untersuchungen stellen sie ein
gängiges Maß für die Bean-spruchung von Gelenken dar.

Traditionelle Ansätze formulieren das Problem als eine Optimierung, die die Bewegungs-
gleichung (Equation of Motion, EOM) eines physikalischen Modells des menschlichen
Körpers einbezieht. Die EOM wird entweder in einem vorwärts gerichteten oder einem
inversen Sinn verwendet, was entweder eine Integration oder eine Differenzierung der
Kinematik impliziert. Beide Verfahren sind anfällig für Fehlerfortpflanzung und erschw-
eren die Konvergenz des Optimierungsalgorithmus. Darüber hinaus führt die zu einem
Mehrkörpersystem, wie dem modellierten menschlichen Körper, gehörende EOM, zu einer
hochgradig nichtlinearen und nichtkonvexen Zielfunktion, die schwer zu optimieren ist.
Zudem stützen sich konventionelle Methoden in der Regel auf gemessene externe Reaktion-
skräfte und -momente, was die zu analysierenden Bewegungen aufgrund der erforderlichen
Laborumgebung stark einschränkt.

Angesichts dieser Einschränkungen eröffnen datengesteuerte maschinelle Lernverfahren
enorme Möglichkeiten, da sie generell eine schnelle und rauschresistente Datenanalyse
erlauben. Diese Arbeit untersucht die Anwendbarkeit solcher Methoden auf die inverse
Dynamik der menschlichen Bewegung und beschäftigt sich mit dem Entwurf geeigneter
Regressionsmodelle. Die vorgeschlagenen Methoden sind in der Lage, die zugrundeliegen-
den Gelenkmomente und äußeren Kräfte mit hoher Genauigkeit (bei Gangsequenzen:
relative mittlere quadratische Fehler von 7,0 %, 16,1 % und 11,9 % für Reaktionskräfte,
Reaktionsmomente und Gelenkmomente, was Pearson’s Korrelationskoeffizienten von 0,91,
0,83 und 0,82 entspricht) vorherzusagen und gleichzeitig die Berechnungszeiten um zwei
Größenordnungen im Vergleich zur traditionellen Optimierung zu reduzieren.

Ein allgemeines Merkmal menschlicher Bewegungsdaten ist die Diskontinuität an Kontak-
tphasenübergängen, z.B. im Moment der Bodenberührung des Fußes. Durch Veränderung
der Anzahl der Kontaktpunkte des menschlichen Modells zu seiner Umgebung wird der
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Satz der dynamischen Gleichungen grundlegend verändert, und zwar in dem Sinn, dass
äußere Einflüsse an den entsprechenden Punkten erlaubt oder verboten werden. Motiviert
durch diese Eigenschaft, wird ein mehrstufiger Regressionsansatz vorgestellt. Das Verfahren
identifiziert zunächst die aktuelle Gangphase und beschränkt die Inferenz von Gelenkmo-
menten und Kontaktkräften auf den resultierenden Unterraum. Auf diese Weise wird
die Regression unrealistischer endlicher Kräfte während der Schwungphasen im Vergleich
zu einem Modell, das die Kräfte ohne Kenntnis des Kontaktzustandes schätzt, deutlich
reduziert.

Aktuelle Probleme von maschinellen Lernmethoden zur Lösung der inversen Dynamik
sind ein Mangel an geeigneten Datensätzen und dass die Einhaltung der EOM durch die
vorhergesagten Größen nicht garantiert ist. Beide Probleme werden durch ein in dieser
Arbeit vorgestelltes selbst-überwachtes Lernverfahren adressiert. Der Ansatz erlaubt ein
zykluskonsistentes Training eines künstlichen neuronalen Netzes mit reinen Bewegungs-
daten, d.h. ohne jegliche Ground-Truth-Kräfte und -Momente. Anstatt einen direkten
Verlust auf die Zielkräfte zu minimieren, löst das Modell ein Anfangswertproblem basierend
auf den vorhergesagten Kräften und minimiert den Abstand zwischen der resultierenden
Simulation und der Eingangsbewegung. Dies wird durch die Implementierung einer dif-
ferenzierbaren vorwärtsdynamischen Verlustschicht realisiert, die einen Rückwärtsfluss von
Gradienten erlaubt und in das Training des neuronalen Netzes integriert werden kann.
Zusätzlich enthält das Modell eine entsprechende Schicht für die inverse Dynamik, die die
geschätzten Kontaktkräfte entkoppelt von den vorhergesagten Gelenkmomenten auswertet.
Somit ermöglicht das Modell nicht nur das Training auf leicht verfügbaren Bewegungsdaten,
sondern beschränkt auch die vorhergesagten Variablen unter Verwendung beider dynamis-
cher Richtungen zur optimalen Erfüllung der EOM. Das neuronale Netzwerk behält seine
stabile Leistung auch bei kleinen gelabelten Datensätzen, die aus Dynamikdaten von nur
2 bis 3 Probanden bestehen, indem es die Fähigkeit zu generalisieren auf größeren nicht
gelabelten Bewegungsdatensätzen lernt. Darüber hinaus ermöglicht die Methode selbst-
überwachtes Transferlernen unbekannter Bewegungstypen, Bewegungsgeschwindigkeiten
und abweichender Skelettmerkmale.

Die vorgestellten lernbasierten inversen Dynamikansätze werden anhand eines selbst
aufgezeichneten Datensatzes von Geh- und Laufsequenzen, die von 22 Probanden ausgeführt
wurden, sowie eines öffentlichen Dynamikdatensatzes [39] und Gangsequenzen aus der
bekannten CMU-Datenbank [18] evaluiert. Der selbst aufgezeichnete Datensatz steht der
Forschungsgemeinschaft zur Verfügung.
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1
I N T RO D U C T I O N

The human locomotor system is a complex construction consisting of the skeleton, the
nervous system, muscles, tendons and ligaments. Its proper functioning enables us to
move in and interact with our environment. It thus represents a basic human need. The
study of the locomotor system is subject of biomechanics. It is the foundation of numerous
research fields, significant to the quality of human life, like diagnostics of diseases and
locomotor disorders, development of rehabilitation techniques and prosthetics, optimization
and observation of work spaces and movement patterns. In the course of these studies
researchers require measures to quantify healthiness and effectiveness of movement. One
common choice are the net joint moments which unite the effect of all forces acting on the
linkage of body segments, e. g. muscle activation forces, tension of ligaments and bone-on-
bone forces. These net moments form a first approximation to the stress at skeletal joints
and can be used to calculate the expended metabolic energy. They yield a foundation for
assessing human motion. Joint moments cannot be measured in a non-invasive way, but
can be estimated through inverse dynamics analysis.

1.1 applications and challenges of inverse dynamics

In the research of neurological disorders inverse dynamics plays an important role. The
analysis of joint moments facilitates early diagnosis in diabetes-induced peripheral neuropa-
thy [123], it helps to asses the risk of falling for patients suffering from Parkinson’s disease
[109] and to understand the pathological mechanics in cerebral palsy to offer optimal
treatment [41]. These are just a few examples of the broad applicability of inverse dynamics
analysis in the medical sector. Many of the related studies focus on the gait pattern of
patients, since walking is the most natural form of movement. The human gait is a periodic
movement consisting of multiple gait phases as depicted in Figure 1. Regarding one foot,
the gait period can be divided into load response, single support, pre-swing and swing
phase. Load response and pre-swing are also called double support phases. The associated
ground reaction forces and joint moments exhibit a periodic pattern with progressions
that are typical of the current phase. Example curve progressions can be seen in Figure 2.
The rehabilitation of a normal gait pattern that has been affected by disease or injury is at
the forefront of physical therapy. This is also the case in prosthesis design and alignment.
Here, inverse dynamics can be used to estimate the load at the prosthetic device and the
expended energy during its movement [159].
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introduction

Figure 1: Regular gait period. Heel-strike (HS) and toe-off (TO) are marked by dashed vertical
lines. The representation of the person was generated using SMPL, a learned model of
human body shape and posture [84].

Inverse dynamics analysis is also of great use in the field of sports science where joint
moments are considered in order to evaluate relevant movement sequences: In weight lifting
the correlation between lower limb moments and resulting bar velocities and accelerations
is investigated to find the most important factors for improving performance [63]. Knee
moments during bodyweight squats are analyzed to determine the optimal stance and
lower the risk of harmful overloading of the joints. The effect of trunk lean on ball velocities
and upper extremity joint moments during pitching is studied in order to investigate the
cause of frequently occurring injury [1].

Just as performance in sports can be assessed by joint moments, so can posture and
movement in the workplace, which is a relevant topic for the general population. Inverse
dynamics enables researchers to evaluate the effect of sitting postures [71] or workspace
restrictions [42] on the load at spine joints. In summary, the application possibility of
inverse dynamics is broad and not restricted to the mentioned examples. The method is
relevant for numerous further research and industrial fields, such as computer graphics
(synthesis of movement and games) and robotics (optimal trajectory planning), which will
not be discussed in detail.

Now we will touch on the method itself: The desired joint moments are calculated
inversely from the motion of a physical model and the exterior forces using a system of
equations that describe the dynamics of a physical model, the equations of motion (EOM).
When the human body is in contact with the ground, its weight transmits a force to the
ground. Conversely, because of Newton’s third law, a force is transmitted from the ground
to the body called the ground reaction force (GRF). In many relevant scenarios, like gait
analysis, this force represents the only external force, apart from gravity. In fact, the GRF
alone already yields significant information for the analysis of movement [156, 158].
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1.1 applications and challenges of inverse dynamics

Figure 2: Typical force and moment progressions during one period of human gait. The left hand
side shows vertical ground reaction forces and the right hand side shows net ankle
moments in the sagittal plane1. The grey areas mark double support.

The clinical standard procedure of inverse dynamics is to inversely calculate the joint
moments from the GRF vector, its center of pressure (COP), the geometry of the skeleton
and the recorded motion of the body. For this purpose a person’s movement has to be
recorded by a motion capture system and the GRF and COP have to be measured with
force plates, which restricts the method to a laboratory setup and necessitates expensive
measurement systems. The straight-forward inverse dynamics approach is to consider
all body parts in a free body diagram. The sum of all acting forces accounts for the
observed linear and angular acceleration of the body’s center of mass. This is expressed in
Newton-Euler equations for each body. If the exterior influence is known, these equations
yield the joint forces and moments passed to the adjacent body segment. This way, forces
and moments are propagated along the kinematic chain representing the human body. The
process can be done in a bottom-up or top-down procedure starting at any end-point of
the kinematic chain where the exterior influence is known. If there exists only one contact
point to the environment, e. g. the ground, the corresponding contact force and moment
as well as the joint moments are fully defined by the kinematics and inertial properties of
the model. In the case of multiple contact points, the system of dynamical equations is
overdetermined and an infinite number of solutions exists. With regards to locomotion this
is always the case during double support, when both feet are in contact with the ground.
A problem of this propagation approach is that measurement errors accumulate along
the kinematic chain, so that the accuracy of the resulting joint moments is depending on
the placement of the joint in the chain. Furthermore, motion capture uncertainties are
propagated with the squared capture rate to the accelerations, which makes them quite
error-prone.

1 The moment vector is orthogonal to the plane spanned by the direction of movement and the vertical.
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The inverse dynamics problem can also be solved by optimization. In this case, the EOM
are rearranged to output the generalized forces which are composed of the joint moments
and forces acting on the global coordinates of the model. The latter are zero in reality.
This way, the uncertainty of the joint moments is equally distributed. The according
optimization problem is formulated as follows: The kinematics are optimized and kept
close to the observation. At each step, the EOM are solved for the generalized forces and
the non-physical global actuation of the model is forbidden by constraints or minimized
by regularization. The remaining components are the sought-after joint moments [160].
The approach is referred to as inverse dynamics optimization. Alternative optimization
approaches used to determine net joint moments are forward dynamics optimization and
predictive dynamics optimization [161]. The latter will be described in more detail in
Chapter 4.

1.2 learning inverse dynamics

Although the described methods for dynamics optimization are well established, they also
entail some considerable problems: First of all, the computational cost is high including
calculation of complex equations at every single iteration. Furthermore, the methods depend
on measured contact forces due to the ambiguity of exterior and interior forces during the
double support of the model. This fact limits the application to laboratory use and severely
restricts the movements studied, since test subjects must hit stationary force plates that
record the ground interaction. Alternative measurement approaches, like pressure insoles
[37, 38], often only provide a rough approximation of the three-dimensional force vector
and include new challenges, e. g. impairment of normal movement due to interfering bulky
inlays. Apart from necessary expensive laboratory equipment, the optimization routine
itself includes several challenges as well: The convergence behavior and the final result are
very sensitive to the initialization of the optimization and to the weighting of multiple
included objectives. This is owed to the non-convexity of the problem, but also to model
inaccuracies and measurement noise which lead to a necessary violation of the modeled
EOM.

Machine learning techniques offer a promising alternative to the optimization of human
dynamics and are not or less affected by the addressed challenges above. In such a framework
the connection between a motion pattern and the underlying forces is learned on the basis
of a training set of dynamical data [59, 64, 171]. This way, a new movement pattern can be
assessed using the knowledge gained in the training phase; i. e. unobservable joint moments
(and contact forces) are directly inferred from the motion data. Compared to traditional
inverse dynamics techniques, machine learning is characterized by some advantageous
features, like fast prediction times, robustness against measurement inaccuracies and
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1.2 learning inverse dynamics

independence from complex dynamical models and expensive sensors. In contrast to a
dynamical calculation or optimization, a data-driven model does not require the full
kinematics as input. Therefore, the method can also be applied to reconstructed motions
from sensor or image data that typically do not include the position and orientation of
the person in a global frame. Once a regression model has been trained, it can be directly
applied without recording of contact forces or tedious optimization.

A computationally efficient and robust analysis of the forces acting on the human
musculoskeletal system holds many opportunities, especially with regards to nowadays ever
growing vision-based applications. For example, widely used fitness apps could be equipped
with video-based software that allows to check the correctness of performed exercises. This
would prevent injuries and undesirable stresses caused by incorrect movement patterns. The
same principle could be applied in workplace monitoring to detect and alert to unhealthy
postures. Likewise, rehabilitation programs could benefit from autonomous monitoring of
progress by patients at home. These are just a few examples demonstrating the diverse
prospects of learning-based motion analysis. To implement this vision algorithms must
solve several subtasks. Humans have to be recognized in videos and joint trajectories have
to be estimated. The use of deep neural networks has led to tremendous progress in recent
years in solving these problems [22, 68, 82, 90, 93, 100, 149]. The remaining step to allow
a fully learning-based analysis of the dynamics is the prediction of contact forces and joint
moments from motion, which is subject of this thesis. To this end, several well-known
regression methods are applied to inverse dynamics learning and contrasted to each other.
The focus, however, is on artificial neural networks, because of their success on related
problems of human motion analysis, as mentioned above, and their versatility and good
scaling behavior. Neural networks are capable to automatically extract useful features
from raw input data and their training and inference can be implemented efficiently using
multicore processing [126].

Learning of human dynamics especially with multilayer neural networks that include
many weights to be tuned requires large datasets. The necessary data consists of kinematics
(3D motion of a kinematic model), exterior GRF, the corresponding COP or ground reaction
moment (GRM) and the driving joint torques. Unfortunately, corresponding datasets
are few and often very restricted in terms of size and included motion types. When
training a model on datasets with too little variability, there is a high risk of overfitting to
dataset specific features. A common approach to address this issue is the technique of data
augmentation. Existing data points are artificially changed and multiplied to generate new
points. In the case of image data, this is typically achieved using transformations like color
modifications, rotations and mirroring. Considering human dynamics data, augmentation
is bound to be more complex since it has to comply with the physical context between
motion, forces and moments. One possible method is the use of a physics engine to
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simulate dynamics (here the motion of a human model) based on randomly sampled input
parameters [122]. A newer approach to deal with lacking training data is the so-called
self-supervision. Rather than artificially increasing the amount of data, self-supervision
enables training on unlabeled data, e. g. by defining auxiliary tasks to learn a meaningful
embedding of the input data in the feature space or by defining auxiliary loss functions that
are independent of labels or unique correspondences between data points. In the considered
problem this corresponds to training networks purely using motion data without the need
for GRF/M or joint torque information by use of multiple physics-based loss layers. The
realization of self-supervision for learning of inverse dynamics is a major contribution of
the present thesis.

Another approach that can be helpful when dealing with missing training data is transfer
learning. Here, a distinction is made between a source and a target domain (consisting of
data or features and their marginal probability distribution). Typically, a model exists
that performs a prediction task in the source domain, and the goal is to transfer it to the
target domain of interest in such a way that the model’s predictive ability in the target
domain benefits from the knowledge gained in the source domain. Thus, transfer learning
can be used to generate powerful models despite limited data availability. This objective is
also pursued in the present work. The realized self-supervised learning allows the extension
and transfer of models to different locomotion types and dataset characteristics without
the need for fully labeled data of the target domain.

1.3 contributions

The goal of this work is the realization of learning-based inverse dynamics, i. e. the combined
regression of GRF/M and net joint moments from human motion data. The focus is on
analyzing locomotion, such as walking and running, and to investigate the applicability
of machine learning models to these fundamental forms of movement. Influenced by the
scarcity of suitable dynamics datasets, the contributions of this thesis include

a) Generation of a dynamics dataset, encompassing human gait and running at various
speeds, and which is made available to the community2.

b) Supervised learning of inverse dynamics using different machine learning methods
such as artificial neural networks, random forests, ridge regression and support vector
machines.

c) Self-supervised learning of inverse dynamics using artificial neural networks

2 http://www.tnt.uni-hannover.de/datasets/HumanLocomot.zip
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1.3 contributions

a) Dataset Generation

The necessary dynamics dataset to realize machine learning of inverse dynamics was
recorded in the laboratory at the Institute for Information Processing (TNT). This
included 3D motion capture and force plate measurements yielding the GRF/M. A
predictive dynamics optimization is customized to the characteristics of the recorded data
and used to estimate the net joint moments. For this purpose, a physical model of the
human body is designed and equations of motion are formulated. In contrast to inverse and
forward dynamics optimization, the predictive dynamics approach optimizes all relevant
quantities and is able to correct for model and measurement inaccuracies to some extent.

b) Supervised Inverse Dynamics Learning

Several learning-based methods are proposed and applied to the considered problem. In
particular, end-to-end trainable models are compared to a multi-stage approach. The
periodicity of gait, shown in Figure 1, brings a clear structure to the data, which has
been exploited in the design of this method. The contact state of the kinematic chain,
representing the human skeleton, already contains important information for the estimation
of the underlying forces. Therefore, the multi-stage method includes a classification of
gait phases and regresses GRF/M and joint torques using the resulting data subset. To
facilitate this classification, suitable features are extracted from the raw motion input,
namely, the absolute velocities of feet points.

In order to include the inverse dynamics regression into vision or sensor-based motion
analysis, the proposed methods have to be applicable to reconstructed motions. This data
generally lacks global information about the position and orientation of the human model.
Accordingly, the proposed methods are designed to operate only on local coordinates,
i. e. joint angles and angular velocities: The multi-stage method is extended by an initial
regression of the global coordinates to be able to calculate foot velocities. The end-to-end
regressions can be easily trained using the corresponding subset of the input data.

In summary, the contributions of this part of the thesis are:

• Supervised learning of inverse dynamics is realized.

• A multi-stage approach is proposed and compared to end-to-end learnable methods.

c) Self-Supervised Inverse Dynamics Learning

In order to address the lack of public datasets that include human dynamics, this thesis
proposes inverse dynamics learning with self-supervision. To this end, a cycle-consistent
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training scheme operating on pure motion data is introduced using two novel differentiable
neural network layers that calculate a loss without requiring force or moment training data.
One loss layer, termed forward layer, integrates the EOM of a physical model to generate
a simulated motion based on the neural network output (predicted forces and moments).
The neural network and subsequent forward layer realize a cycle from motions to forces
and back allowing the use of a cycle-consistent loss. In addition, the model includes an
inverse layer that penalizes GRF/M which do not match the observed accelerations. In
contrast to the forward dynamics layer, it considers the ground reaction independently
from joint torques, which supports decoupled control of both variables during training. The
introduced model is applied in a semi-supervised setting that alternates between training
with and without force and moment ground truth. This way, the effect of extending a
labeled training set by means of self-supervision and the accompanying increase in data
variability is investigated.

The contributions of this part can be summarized as follows:

• Self-supervised cycle-consistent learning of inverse dynamics is introduced using a
differentiable forward dynamics layer.

• An additional differentiable inverse dynamics layer is included to decouple the
training of GRF/M and joint torques.

1.4 structure of the thesis

The thesis is structured in the following way (visualized in Figure 3):

Chapter 2: Overview of related work. The problem is placed in its scientific context by
description of relevant state-of-the-art methods. The review is structured into traditional
inverse dynamics, learning-based inverse dynamics and related work addressing motion
analysis with self-supervision.

Chapter 3: A presentation of the theoretical background. First, the modeling of hu-
man motion divided into kinematics and dynamics is described including the mathematical
foundation to parameterize rigid motion and the acting forces and torques. Subsequently,
used machine learning algorithms are presented.

Chapter 4: Data recording and necessary pre-processing steps. The recorded dataset
including 3D motion capture and force plate measurements is presented as well as general
parameters that predefine the skeletal human model. The estimation of net joint moments
by predictive dynamics optimization is described in detail.
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1.4 structure of the thesis

Chapter 5: Supervised learning of inverse dynamics for human motion. Two approaches
are compared: end-to-end trainable models and multi-stage regression consisting of root
regression, contact feature extraction, gait phase classification and control regression.

Chapter 6: Dynamics Net, a self-supervised artificial neural network for inverse dy-
namics. Two differentiable neural network layers to calculate loss functions independent
from force and moment data enable cycle-consistent training. One of them implements
a forward dynamics step to generate a simulated motion, while the other executes a
bottom-up inverse dynamics step to control the matching between motion and ground
reaction.

Chapter 7: The results are summarized and discussed. Furthermore, the advantages
but also the limitations of the methods are emphasized indicating perspectives for future
research.

9
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Figure 3: Structure of the dissertation.
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1.5 publications

The following list includes all publications released during the time at the Institute for
Information Processing in the field of human motion analysis.

[169] Petrissa Zell und Bodo Rosenhahn. "A physics-based statistical model for human
gait analysis." In: German Conference on Pattern Recognition (GCPR). Oct. 2015.

Physics-based modeling is a powerful tool for human gait analysis and synthe-
sis. Unfortunately, its application suffers from high computational cost regarding
the solution of optimization problems and uncertainty in the choice of a suitable
objective energy function and model parametrization. Our approach circumvents
these problems by learning model parameters based on a training set of walking
sequences. We propose a combined representation of motion parameters and physical
parameters to infer missing data without the need for tedious optimization. Both
a k-nearest-neighbour approach and asymmetrical principal component analysis
are used to deduce ground reaction forces and joint torques directly from an input
motion. We evaluate our methods by comparing with an iterative optimization-based
method and demonstrate the robustness of our algorithm by reducing the input
joint information. With decreasing input information the combined statistical model
regression increasingly outperforms the iterative optimization-based method.

[173] Petrissa Zell, Bastian Wandt and Bodo Rosenhahn. "Joint 3D Human Motion
Capture and Physical Analysis from Monocular Videos." In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops. July 2017.

Motion analysis is often restricted to a laboratory setup with multiple cameras
and force sensors which requires expensive equipment and knowledgeable operators.
Therefore it lacks in simplicity and flexibility. We propose an algorithm combining
monocular 3D pose estimation with physics-based modeling to introduce a statistical
framework for fast and robust 3D motion analysis from 2D video data. We use a
factorization approach to learn 3D motion coefficients and join them with physical
parameters, that describe the dynamic of a mass-spring-model. Our approach does
neither require additional force measurement nor torque optimization and only uses
a single camera while allowing to estimate unobservable torques in the human body.
We show that our algorithm improves the monocular 3D reconstruction by enforcing
plausible human motion and resolving the ambiguity of camera and object motion.
The performance is evaluated on different motions and multiple test data sets as
well as on challenging outdoor sequences.
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[170] Petrissa Zell and Bodo Rosenhahn. "Learning-Based Inverse Dynamics of Human
Motion." In: The IEEE International Conference on Computer Vision (ICCV) Work-
shops. Oct. 2017, pp. 842-850.

In this work we propose a learning-based algorithm for the inverse dynamics problem
of human motion. Our method uses Random Forest regression to predict joint
torques and ground reaction forces from motion patterns. For this purpose we extend
temporally incomplete force plate data via a direct Random Forest regression from
motion parameters to force vectors. Based on the resulting completed data we
estimate underlying joint torques using a modified physics-based predictive dynamics
approach. The optimization results for model states and controls act as predictors
and responses for the final Random Forest regression from motion to joint torques
and ground reaction forces. The evaluation of our method includes a comparison to
state-of-the-art results and to measured force plate data and a demonstration of the
robust performance under influence of noisy and occluded input.

[174] Petrissa Zell, Bastian Wandt and Bodo Rosenhahn. "Physics-based Models for Human
Gait Analysis." In: Handbook of Human Motion. Cham: Springer International
Publishing, 2018, pp. 267-292.

This chapter deals with fundamental methods as well as current research on physics-
based human gait analysis. We present valuable concepts that allow efficient modeling
of the kinematics and the dynamics of the human body. The resulting physical model
can be included in an optimization-based framework. In this context, we show how
forward dynamics optimization can be used to determine the producing forces of
gait patterns. To present a current subject of research, we provide a description of a
2D physics-based statistical model for human gait analysis that exploits parameter
learning to estimate unobservable joint torques and external forces directly from
motion input. The robustness of this algorithm with respect to occluded joint
trajectories is shown in a short experiment. Furthermore, we present a method that
uses the former techniques for video-based gait analysis by combining them with
a nonrigid structure from motion approach. To examine the applicability of this
method, a brief evaluation of the performance regarding joint torque and ground
reaction force estimation is provided.

[171] Petrissa Zell and Bodo Rosenhahn. "Learning inverse dynamics for human locomotion
analysis." In: Neural Computing and Applications 32.15 (2020), pp. 11729-11743.

In this work, learning-based inverse dynamics algorithms are proposed for the
analysis of human motion. Immeasurable joint torques and exterior contact forces are
directly estimated from motions by machine learning techniques including deep neural
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networks, random forests and Ridge regression. A multistage subclass approach is
introduced. The method recovers occluded motion data and generates meaningful
features, as well as gait phase labels to restrict and facilitate the regression of forces
and moments. In contrast to the state-of-the-art inverse dynamics optimization, the
learning-based methods are independent of ground reaction force measurements and
the global position and orientation of the human body. These properties make the
application to reconstructed poses from videos or inertial measurements possible,
creating fast and simple access to the underlying dynamics of recorded human
motions. The performance of the proposed methods is evaluated on a self-recorded
data set including walking and running motions and on a publicly available gait
data set by Fukuchi et al. (PeerJ 6:e4640, 2018). Furthermore, the applicability to
reconstructed gait sequences taken from the well-known CMU database (Human
motion capture database, 2014. http://mocap.cs.cmu.edu/) is investigated. Finally,
the method is tested as a tool to detect abnormal torque distributions in gait, based
on a reconstructed 3D motion of a limping subject.

[172] Petrissa Zell, Bodo Rosenhahn and Bastian Wandt. "Weakly-supervised Learn-
ing of Human Dynamics." In: European Conference on Computer Vision (ECCV).
Aug. 2020.

This paper proposes a weakly-supervised learning framework for dynamics estimation
from human motion. Although there are many solutions to capture pure human
motion readily available, their data is not sufficient to analyze quality and efficiency
of movements. Instead, the forces and moments driving human motion (the dynamics)
need to be considered. Since recording dynamics is a laborious task that requires
expensive sensors and complex, time-consuming optimization, dynamics data sets
are small compared to human motion data sets and are rarely made public. The
proposed approach takes advantage of easily obtainable motion data which enables
weakly-supervised learning on small dynamics sets and weakly-supervised domain
transfer. Our method includes novel neural network (NN) layers for forward and
inverse dynamics during end-to-end training. On this basis, a cyclic loss between
pure motion data can be minimized, i. e. no ground truth forces and moments are
required during training. The proposed method achieves state-of-the-art results in
terms of ground reaction force, ground reaction moment and joint torque regression
and is able to maintain good performance on substantially reduced sets.

[150] Bastian Wandt, Marco Rudolph, Petrissa Zell, Helge Rhodin and Bodo Rosenhahn.
"CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the Wild."
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Jun. 2021.
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Human pose estimation from single images is a challenging problem in computer
vision that requires large amounts of labeled training data to be solved accurately.
Unfortunately, for many human activities (e. g.outdoor sports) such training data
does not exist and is hard or even impossible to acquire with traditional motion
capture systems. We propose a self-supervised approach that learns a single image
3D pose estimator from unlabeled multi-view data. To this end, we exploit multi-view
consistency constraints to disentangle the observed 2D pose into the underlying 3D
pose and camera rotation. In contrast to most existing methods, we do not require
calibrated cameras and can therefore learn from moving cameras. Nevertheless, in the
case of a static camera setup, we present an optional extension to include constant
relative camera rotations over multiple views into our framework. Key to the success
are new, unbiased reconstruction objectives that mix information across views and
training samples. The proposed approach is evaluated on two benchmark datasets
(Human3.6M and MPII-INF-3DHP) and on the in-the-wild SkiPose dataset.
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2
R E L AT E D WO R K

This chapter addresses the current state of the art regarding inverse dynamics of human
motion. The description will be split into traditional physics-based inverse dynamics
analysis (2.1), learning-based methods for inverse dynamics (2.2) and related problems and
machine learning with reduced supervision in the broader field of human motion analysis
(2.3).

2.1 inverse dynamics by physical simulation

The study of human movement has a very long tradition in human history. As a form
of art it already appears in the classical antiquity and resurfaces throughout the epochs
reflecting the ever-present interest in understanding the way animals and in particular
humans move. The invention of chronophotography in the late 19th century allowed to
visualize even fast motion sequences and thus paved the way for the evolution of human
motion analysis. The technique was used in a famous experiment by Eadweard Muybridge
in 1878. He proofed the existence of a flight phase in a horse’s gallop by inspecting an
image sequence taken by 12 cameras which recorded in rapid succession. This kind of serial
recording is considered a predecessor of moving pictures. In the same manner Muybridge
studied human movement like walking downstairs, boxing and the gait of children. His
work is considered influential on the emergence of biomechanics as an independent research
field [65].

In many of the following biomechanical studies physical models were needed to describe
the human body and perform inverse dynamics analysis. Physical human models can
be classified into three categories: skeletal, musculoskeletal and neuromusculoskeletal
models. In skeletal models, which are used in this thesis, no muscle activation and muscle
contraction dynamics are considered. They consist of multiple rigid bodies linked by joints.
The effect of the muscle and tendon forces at the linkage is approximated by net joint
moments that produce the motion of the rigid body system [31]. Each body segment is
associated with inertial parameters, like mass, location of center of gravity and moment of
inertia. Average values of these parameters in the population and their relation to body
dimensions were determined by extensive studies using different techniques from cadaver
studies to immersion methods and measurement of reaction force displacements [29]. As a
founding father of modern biomechanics, David A. Winter provides a fundamental overview
in Biomechanics and Motor Control of Human Movement [157].
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Figure 4: Schematic visualization of explicit dynamics formulations.

Based on the dynamics of a skeletal model, the inverse dynamics problem can be
solved using different formulations. In general, a distinction is made between explicit and
implicit formulations. In explicit dynamics, the dynamical equations are either integrated
or differentiated referred to as forward and inverse approaches, respectively1. Figure 4
illustrates the corresponding procedures. Implicit formulations, on the other hand, use the
dynamical equations indirectly as constraints of an optimization problem. The predictive
dynamics approach used in Chapter 4 falls into this category. Based on a specific problem
formulation, different solution methods are possible. Here one distinguishes between
non-optimization and optimization approaches. In the following the different problem
formulations and solving methods will be presented in more detail.

2.1.1 Inverse Approaches

The traditional inverse approach is a non-optimization approach that directly solves the
equations of motion for the joint torques [38, 92]. It is referred to as Newton-Euler method,
since the dynamics of each body segment are expressed by Newton-Euler equations. In
the case of single support, the number of unknown variables is identical to the number
of equations and a unique solution exists. For double support, the partitioning of the
external forces and moments between the contact points is unknown, so that additional
measurement of contact forces is necessary to directly solve the system of equations.
Conventionally, the solution of the problem is done in a sequential manner propagating
joint forces and moments along the kinematic chain. The direct calculation of joint torques
is quick and straightforward, however, the uncertainties introduced by multiple error
sources are directly propagated to the joint torques as well. Common sources of error are
capturing uncertainties and differentiation of motion states, measurement inaccuracies of
contact forces and model approximation. The propagated errors often lead to unrealistic
torque profiles [121].

1 There also exist mixed approaches that aim to benefit from the advantages of both, forward and inverse
dynamics.
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2.1 inverse dynamics by physical simulation

If the ground reaction is measured over the whole gait period separately for each foot,
e. g. with multiple force plates or using pressure insoles, and used as additional input to
the captured kinematics, the system of dynamical equations becomes overdetermined even
for double support. In other words, a bottom-up inverse dynamics algorithm, starting at
both feet with the corresponding external forces and moments, would yield a residual
force and moment at the last segment (e. g. the head). This residual is a measure for
the discrepancy between kinematics and contact dynamics and for the accuracy of the
resulting joint torques [32]. It is equivalent to non-existent external actuation of the end
segment. The goal of inverse optimization approaches, in general, is to reduce residual
forces and moments. This is achieved by adapting the kinematics, the exterior forces, the
anthropometric model parameters or a combination of the above [16, 25, 66, 70, 119].

2.1.2 Forward Approaches

Forward approaches use the joint torques as input and integrate the dynamical equations
to generate a simulated motion. In order to apply a forward approach to the inverse
dynamics problem, the forward step is included in an optimization routine. The joint
torques are the optimization variables and the deviation of the simulated motion from
the motion capture data yields the objective. A general challenge of forward dynamics
optimization is the stabilization of the simulation. On top of the method dependent
truncation error of numerical integration, joint torque uncertainties are passed on to the
poses multiplied by the squared integration time. This is due to the twofold integration
of the equations of motion (2nd order differential equations). Researchers apply different
schemes to control and stabilize the simulation, namely full actuation, under-actuation
and kinematic constraints [32].

Full actuation controls all degrees of freedom (DOF) of the model including non-physical
actuation of the global coordinates [97]. These global forces and moments are equivalent
to the residuals of the inverse approach described earlier. Fully-actuated control is often
combined with a minimization of the non-physical actuation as in the residual reduction
algorithm of OpenSim [25]. Here, residual reduction is used prior to the forward dynamics
step and only adjusts the kinematics of the HAT (head, arms and torso) to reduce the
discrepancy between ground reaction and motion.

In under-actuated control, the number of actuators is less than the DOF of the system.
Joint torques only exist for actual joint coordinates, i. e. global root coordinates are not
actuated explicitly. Instead, the missing control is achieved implicitly by modelling the
ground contact [79, 97, 140]. A corresponding foot-contact model uses damped spring
forces and Coulomb friction to determine the vertical and horizontal forces as well as a
geometric model to distribute the pressure and determine the COP [127].
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Instead of modeling the contact forces, they can be included implicitly in the form of
algebraic constraints on the equations of motion [15, 34]. Then the system is fully-actuated,
but additional constraint equations must be applied alternatingly switching between stance
and swing phases. This requires a detection of impact and handling of the associated
discontinuity to avoid numerical instabilities due to exploding accelerations.

To improve the stability of forward dynamics, feedback-control approaches have been
developed predominantly in robotics research. In these methods, the joint torques are
adjusted according to the current deviation of the simulated motion from the target motion.
An example of such a feedback-controller is computed torque control [94]. This method uses
the inverse dynamics torques as input for the forward step and adjusts them according
to the feedback-error. A feedback-controller realized by means of optimization is model
predictive control [67]. It considers a temporal prediction horizon starting at the current
time and uses an internal dynamical model to predict the output, in our case the motion.
In order to track trajectories, an objective function is defined on the prediction horizon
and the next control values are determined by optimization. The procedure allows for
online execution. These feedback-control approaches can be classified as mixed models
that adopt both forward and inverse dynamics.

2.1.3 Implicit Approaches

Optimal control methods are among the implicit approaches [30, 101, 107]. The goal of
these methods is to find optimal movement trajectories together with the acting controls
that minimize some form of performance measure, like the expended energy/effort. Instead
of explicitly solving or integrating the EOM, they are used implicitly in terms of constraints
of the optimization routine [144]. Predictive dynamics by Xiang et al. [161] is an example
of such a method. The approach optimizes the kinematics as well as the joint torques
while EOM are treated as equality constraints. The optimization procedure used in this
thesis to generate joint torque training data (cf. Chapter 4) is motivated by this method.
In the implementation by Xiang et al., a performance measure, such as the dynamic effort,
is minimized while subjected to a number of constraints. In addition to the EOM, the
constraints include joint limits, torque limits, ground penetration, dynamic balance, etc..

2.2 learning-based inverse dynamics

In the previous section, traditional physics-based methods for the inverse dynamics
problem have been described. In general, these approaches are characterized by complex
modeling and relatively long computation times. As discussed above, further challenges are
measurement and model discrepancies and stabilization of the dynamical system during
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2.2 learning-based inverse dynamics

forward integration. Alternatively, researchers propose learning-based methods to achieve
a higher level of robustness.

First the works that are most closely related to the present thesis are considered.
The corresponding methods predict joint torques and/or ground reactions from skeletal
kinematics during human locomotion [59, 103, 118]. Johnson et al. [59] use sparse coding
to encode joint angle and corresponding joint torque data and map between the sets
using ridge regression and neural networks. However, the achieved torque errors in the
order of 60 Nm are considered too large by the authors to compete with a traditional
inverse dynamics analysis. In addition, the dataset including gait data of a single subject
does not allow for evaluation of inter-subject generalization. Oh et al. [103] propose a
hybrid-approach that calculates GRF/M by inverse dynamics during the single support
and predicts the distribution to both feet during double support using an artificial neural
network. Based on the estimated GRF/M, inverse dynamics yields the corresponding joint
moments.

A data-driven optimization method by Lv et al. [85] pursues the same objective, i. e. the
estimation of joint torques without measurement of GRF/M. The optimization includes a
model of the prior probability of contact states to establish appropriate exterior forces
and moments. The prior is estimated by a local Gaussian mixture model of the principal
component scores of neighbouring data samples. The neighbourhood is defined by a k-
nearest neighbour algorithm based on the kinematics of the current frame. In Chapters
5 and 6 the results of this data-driven optimization are used for comparison with the
learning-based methods proposed in this work.

Further related works can be found in the field of robotics, e. g. learning optimal control
of humanoid motion, exoskeletons and industrial robots. These works either consider a
different model (a non humanoid robot [81, 130]), a different motion type (e. g. elbow
movements [76]) or focus on synthesis of motion without explicit evaluation of joint torques
[118]. For example, a work by Liu et al. [81] addresses learning-based inverse dynamics
for industrial robots. The proposed deep neural network model includes an LSTM-layer
(long short-term memory) to model temporal connectivity of the data. The method is
evaluated using a robot arm with six DOF. This number is very small in comparison to
skeletal human models. Other related works aim to achieve stable gait of robots [56, 153] or
animated characters [23, 110, 111, 166] using genetic algorithms and (deep) reinforcement
learning. Here, the policy learned by the reinforcement agent represents the motor control
of the system, e. g. actuating torques or the activation of musculotendo units [112]. The
main objective is to generate stable movement through balance conditions and motion
imitation by keyframes rather than subtle stylistic movement traits of the individual
characters. Deep reinforcement learning (based on deep neural networks) is also gaining a
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foothold in the control of complex musculoskeletal models [73] since it allows learning of
policies in high dimensional control and action spaces [133].

There exist further related learning methods that use different input and/or investigate
different motion types. Joint torques are estimated based on signals from sensors like
inertial measurement units (IMU), force plates and electromyography [3, 78, 136, 164].
For example, Yang et al. [164] developed a smart shoe that is equipped with gyroscope,
accelerometer and magnetometer to estimate 3D motion and allows for mobile learning-
based inverse dynamics analysis. The authors propose a dependent Gaussian process
algorithm that utilizes correlations between kinematics and dynamics and predicts the
joint torques based on the sensor signals. The model is trained using data from motion
capture and force plates in addition to the sensor output. In contrast to the present thesis,
training and evaluation is performed using trials of the same subject. A work by Lim et
al. [78] investigates learning of inverse dynamics based on a single IMU located at the
lower back of a subject. The method exploits the dynamical relationship between the
center of mass of the whole body and the lower extremities. Several segment angles, joint
torques and the GRF are predicted from the IMU data by an artificial neural network.
The method achieves fair results given the low dimensional input. Further works consider
inverse dynamics learning for specific motion types other than gait, e. g. arm and hand
movements [35, 132, 154], vertical jumps [83] and rapid side-stepping [60].

Related problems from gait analysis that have been addressed using machine learning
include estimation of muscle activation [114, 115, 165], classification of gait changes due
to age [4, 5, 40], fall detection [102], person identification by gait pattern [99] and many
more that will not be discussed in detail.

2.3 decreasing supervision

Many of the aforementioned approaches to learning-based inverse dynamics are trained and
evaluated on comparatively small datasets, since the data acquisition and the necessary pre-
processing of the dynamics data is very complex and time-consuming [59, 78, 164]. Such a
lack of training data can be addressed by reducing the supervision of the learning algorithm,
which is subject of many recent publications in machine learning research. Several new
techniques and terms have emerged in this context: weak supervision, self-supervision,
semi-supervision, distant supervision, few-shot, one-shot and zero-shot learning. It should
be noted that these terms are sometimes used ambiguously and are difficult to divide
clearly in the literature. Here, only the approaches, closely related to this work will be
discussed.

Weak supervision means that an existing model is used to generate weak labels for
otherwise unlabeled data points. A model trained on a large but weakly labeled set can
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show significantly improved performance compared to a model trained on a small dataset
with ground truth labels [167]. The model that yields weak supervision is either trained
on a small dataset of the same type or solves a different task but can be exploited to
create the required labels. In the field of human motion analysis, weak supervision is
applied to facilitate problems like monocular motion capture [21, 52, 53, 149, 177], action
recognition [108, 152, 176] and motion prediction from single images [61]. The last example
is somewhat closer to the problem at hand, since a temporal connection is learned on top
of single poses and shapes.

In semi-supervised learning, the dataset is split into a usually small portion with labels
and a larger portion without labels. The objective is to leverage the unlabeled data to
produce a model that performs better than a fully supervised baseline trained using only
the small labeled set [104]. This problem presents a realistic scenario where only a small
dataset is available and additional data points can be obtained in a simple manner, but
are too costly to label. In the present thesis, a semi-supervised learning task is realized in
Chapter 6 by artificially reducing the number of sequences that include target GRF/M and
joint torques and using the physics-based layers to enable training on the unlabeled part of
the data. In human motion analysis, semi-supervised learning is applied e. g. for 3D human
pose estimation [96] person identification based on gait [75, 77] and action recognition
[117, 131]. For example, it is possible to personalize an existing action classifier based on
the signal recorded during use of a wearable sensor without explicit labeling effort. For this
purpose, a proxy label approach is applied where the original model generates labels for
data points selected according to an information-theoretic criterion. The new data samples
are then included in a subject-specific set and used to create a personalized classifier [131].
This proxy labeling is closely related to the weak supervised learning methods described
above, but here the weak labels are used to extend an existing set of strong labels.

Another way to circumvent the need for large labeled datasets is self-supervised learning.
This term generally refers to the generation of a supervisory signal in the absence of
labeled training data. Corresponding methods can be roughly divided into those that use
an auxiliary task (for which labels can be easily generated) to learn data representations
that facilitate the original task [10, 44, 113] and those that use an auxiliary loss function
which does not depend on labeled data at all [21, 149, 150, 168]. The self-supervised
approach of the present thesis belongs to the latter category. In the following, selected
works of this type will be presented.

Zanfir et al. [168] propose a semantic body part alignment loss for self-supervised 3D
pose and shape reconstruction. Together with normalizing flow based kinematic priors the
loss can be used either in deep learning or direct optimization. Self-supervised training of
3D pose lifting networks has been realized by inclusion of a reprojection loss that enforces
self-consistency in the 2D regime [21, 149]. In combination with a discriminator feedback
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related work

this allows for training without 2D-3D correspondences. The approach uses a form of
cycle-consistency which is an increasingly popular concept in deep learning and has been
largely promoted by cycle-consistent adversarial networks [178]. A related self-supervised
approach is proposed by Bhatnagar et al. [7] to learn 3D point correspondences for fitting
a 3D human model to 3D surface scans. A cycle is implemented by a network that, given
an input scan, predicts the point correspondences on the human model (in canonical shape
and pose) and a forward map parameterized by the human model.

With respect to the original problem of learning-based inverse dynamics, cycle-consistent
loss functions can be designed by implementing subsequent inverse and forward dynamics.
The idea, which is also followed in the present work, is to learn the inverse step and utilize
a differentiable physics-engine for forward simulation. Differentiable physics-engines are
predominantly used in robotics [24, 143, 151], fluid dynamics [124] and reinforcement
learning [6]. For a more general application in deep learning, Chen et al. propose Neural
ordinary differential equations [20] as a new type of neural network whose output is
computed by a black box differential equation solver. The backpropagation through
arbitrary ordinary differential equations solvers is described allowing for integration in
larger end-to-end trainable models.

In the present thesis the self-supervised training procedure is not only applied to improve
the fitting of models despite small training sets, but also to realize transfer learning (more
precisely domain adaption or expansion) to a target domain lacking recorded forces.
The transfer is realized by means of weight sharing and fine-tuning the model to the
unlabeled target domain. Since the exact problem of transferring the prediction of forces
and moments across different human motion data has not been investigated by other works,
listed here are some publications that address related tasks in the broader field of human
motion analysis. A popular use case is to leverage simulated labeled data, which can be
easily generated in large quantities, as the source domain and transfer the knowledge
to real-world data representing the target domain. This approach is used in 3D pose
estimation [28, 89], e. g. using adversarial training with a gradient reversal layer [43] to
achieve domain invariant feature representation. In the context of human gait analysis,
transfer learning based on pre-trained models is used, e. g. to support biometric person
identification directly from videos without needing additional feature extraction [54] and
across motion types transferring from gait to squats [146]. For the purpose of pathological
gait classification across multiple pathologies, a transfer learning approach [145] uses a
pre-trained convolutional neural network and fine-tunes the model to extract optimal
features for the classification task. This way, extensive unlabeled image data is leveraged
to achieve better generalizability in different domains of pathology.
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3
F U N DA M E N TA L S

3.1 rigid body motion

Due to the stiffness of skeletal bones, the human body can be well modelled as a system
of rigid bodies representing body parts like head, torso and limbs. In order to describe
the motion of the entire system, the motions of the individual body parts need to be
considered. To this end, a parameterization of their position and orientation in space is
required. This section deals with an according representation for translations and rotations
and introduces the notion of homogeneous transformations.

3.1.1 Representation of Position

The position of a point p in Cartesian space is always defined with respect to a reference
coordinate frame i using the point coordinates pi ∈ R3. The frame is indicated with
a superscript. In addition to points, that represent locations in space, we operate with
vectors - sometimes called free vectors - that define a direction and magnitude and are not
constrained to originate at a specific point [134]. In the context of this thesis, vectors are
used, for instance, to specify displacements, velocities and forces. While a vector does not
change under coordinate transformation, meaning that its direction and magnitude stay
the same, its coordinate representation is depending on the reference frame. Therefore, vi

denotes a vector coordinate representation with respect to frame i (cf. Figure 5).

xi

vi
x

vi
y

v

yi

zi

Figure 5: A vector v and its x and y coordinates vi
x and vi

y in frame i. To keep the drawing clear,
the z coordinate vi

z is not shown.
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z0 = z1

x0
x1

y0

y1
θ

θ

cos θ
sin θ

x0

x1

y0

y1

Figure 6: Basic rotation around the z-axis. The left side illustrates the 3D view and the right
side shows the axis projection by trigonometric functions.

Algebraic equations, like the EOM of a rigid body or a system of rigid bodies, are only
valid if their components, i. e. points and vectors, are represented in the same reference
frame. For vectors, the reference frames only need to have parallel axes, since their location
in space is not defined. For a rigid body system, properties like center of mass and moment
of inertia of individual bodies are defined in a local coordinate frame connected to the
respective body. In consequence, one requires coordinate transformations between different
reference frames to formulate dynamical equations for rigid body systems.

3.1.2 Representation of Orientation

In order to represent orientation, we attach coordinate frames to rigid bodies and consider
the rotation between them. For a rotation between two coordinate frames denoted by
0 and 1 with orthonormal basis (x0,y0, z0) and (x1,y1, z1), respectively, the rotation
matrix from frame 1 to frame 0 can be defined by the representation of (x1,y1, z1) with
respect to (x0,y0, z0):

R0
1 =

[
x0

1,y0
1, z0

1
]

. (1)

Since the coordinate axes are unit vectors, this representation can be formulated by
projecting (x1,y1, z1) onto (x0,y0, z0) using dot products:

R0
1 =


x1 ·x0 y1 ·x0 z1 ·x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0

 . (2)

24

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


3.1 rigid body motion

As an example basic rotations around the coordinate axes (of the reference frame) by an
angle θ are presented here. The projected axes are given by trigonometric functions as
shown in Figure 6. The resulting rotation matrices are

Rx(θ) =


1 0 0
0 cos θ − sin θ

0 sin θ cos θ

 , (3)

Ry(θ) =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 , (4)

Rz(θ) =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (5)

Formally, rotations constitute the special orthogonal group of order n defined by

SO(n) =
{
R ∈ Rn×n : RRT = 1 , detR = 1

}
. (6)

The dynamics considered in this work take place in three dimensional space, so that
R ∈ SO(3). In order to mathematically describe the human body as a system of rigid
bodies, the following concepts and properties of rotations are useful.

The transformation of point coordinates p0 from frame 0 to a rotated frame 1 is
performed by

p1 = R1
0p

0 . (7)

The same concept applies for the consideration of rigid bodies. If a rigid body B is
transformed from coordinate frame 0 to coordinate frame 1 by the rotation R1

0, then the
set of N points {p0

i }B with i = 1, . . . , N on B is transformed to {p1
i = R1

0p
0
i }B in the

same manner.
In a general sense, rotation matrices represent basis transformations. Therefore, they

can also be applied to convert linear transformation matrices from one reference frame
to another. Let A be a general linear transformation defined in reference frame 0, then
the according transformation B with respect to the rotated frame 1 is calculated by the
similarity transformation

B = (R0
1)

−1AR0
1 . (8)
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This concept will be needed for the transformation of the inertia matrix from a moving
coordinate frame, attached to the body, to the fixed, global frame in Section 3.3.

Another fundamental and advantageous property of rotation matrices is the simple
way in which a series of rotations can be expressed. Two rotations R0

1 and R1
2 that

are performed consecutively result in the overall rotation R0
2 = R0

1R
1
2. In general, this

composition of rotation matrices can be written as the product

R0
n =

n∏
i=1

Ri−1
i . (9)

Note that the rotations are always defined with respect to the current frame, which is a
necessary condition for this equation to hold. Every subsequent rotation is post-multiplied,
whereas a following rotation about fixed axes needs to be pre-multiplied. The order cannot
be changed, since the matrix multiplication is not commutative.

3.1.3 Homogeneous Transformations

The described representations for position and orientation build the basis to formally
introduce the term rigid motion which is a motion that preserves relative distances and
orientations. A rigid motion in 3D is an ordered pair (t,R) consisting of a translation
t ∈ R3 and a rotation R ∈ SO(3). It is an element of the special Euclidean group of order
3: SE(3) = R3 × SO(3). A rigid motion (t0,R1

0), specified with respect to coordinate
frame 0 and including a rotation to coordinate frame 1, is applied to the coordinate vector
p0 by

p1 = R1
0p

0 + t0 . (10)

This operation is referred to as a rigid transformation.
A composition of multiple rigid transformations of this form would lead to long equa-

tions. This can be avoided using a matrix notation which is provided by the concept of
homogeneous transformations that operate on homogeneous coordinates. Homogeneous
coordinates allow representing of affine transformations and, more generally, perspective
transformations by matrices [95]. A rigid motion is an affine transformation consisting of
rotation and translation and can be expressed as homogeneous transformation matrix

H =


R t

0 0 0 1

 , R ∈ SO(3) , t ∈ R3 . (11)
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3.2 kinematics of a rigid body system

Since H is simply a different representation of a rigid motion, it is valid to write H ∈ SE(3).
In the context of this thesis, the term homogeneous transformation always refers to a
matrix as defined in Eq. (11).

A homogeneous transformation H1
0 transforming from reference frame 0 to reference

frame 1 is applied to the homogeneous coordinates P 0 = [p0, 1]T by

P 1 = H1
0P

0 . (12)

Multiple homogeneous transformations can be composed in the same manner as rotations.
Every following rigid motion, referring to the current coordinate frame, is post-multiplied.
This leads to the composition rule

H0
n =

n∏
i=1

H i−1
i . (13)

A successive transformation that is executed with respect to fixed axes needs to be
pre-multiplied.

3.2 kinematics of a rigid body system

The previous section dealt with the representation of rigid motion for individual bodies. In
order to model the motion of an entire human skeleton, we need to consider a multibody
system consisting of rigid parts that are interconnected by joints with varying degrees of
freedom. To describe the kinematics and the dynamics of such a system, we require

• a geometric model that specifies body dimensions, locations of joints on the bodies
and the linkage (topology) between system parts.

• a formalism to describe the mutual influence of connected bodies in consideration of
the constraints introduced by the joint linkage.

In other words, a parameterization is needed to derive the position and orientation of each
body given the position and orientation of the remaining bodies and the configuration of
all joints. A corresponding parameterization yields the Denavit-Hartenberg convention
[26]. For a clear description of this convention, the representation of the model topology
as a kinematic tree and accompanying notation details are the subject of the next section.

3.2.1 Kinematic Trees

The geometry and topology of a skeletal model can be described in terms of a kinematic tree
in accordance with graph theory. The term kinematic tree indicates that the connectivity
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graph of the multibody system is a topological tree - free of loops - which is a legitimate
approximation for the human skeleton.

To allow an unambiguous description, a distinction between joints and links is made.
The term joint denotes a skeletal joint that may have more than one degree of freedom
(DOF), whereas a link refers to a building block of the kinematic tree generated by a set
of Denavit-Hartenberg parameters as described below. Each link accounts for one DOF.

The linkage of the considered model can be fully described using prismatic and revolute
links. Both types have only one DOF. While prismatic links allow a translation along the
link axis, revolute links allow a rotation about it. These link types are sufficient to create
the whole kinematic tree, since all joints with higher DOF, such as free joints (6 DOF)
and spherical joints (3 DOF), can be modelled as a sequence of revolute and prismatic
links with connections of zero length in between.

The base frame of the kinematic tree is called root frame and indexed with 0. The
associated link DOF is indexed with 1. It is the first of 3 translational DOF modelled as
prismatic links to specify the global position of the model. Subsequently, three rotational
DOF, modelled as revolute links, define the global orientation. The coordinate frame
attached to a link is always labeled with a decremented index: frame i− 1 specifies the
rigid motion of link i.

The whole tree can be subdivided into kinematic chains without further split-up,
e. g. representing the human extremities. The set of all link indices of the kinematic tree is
denoted by T and the set of link indices belonging to a kinematic chain is specified by
C ⊆ T . In order to describe the topology of the kinematic tree, several further quantities
have to be defined: For each link j (except for the root), the predecessor is the link that
is positioned immediately prior to link j in the associated kinematic chain C with j ∈ C.
The link directly following link j in C is termed child of j. The subset of links on the path
from the root to link j, excluding j, is called support set κ(j) of j. This is also expressed
by the phrase: Link k supports link j if k ∈ κ(j). The set of links belonging to the subtree
starting at link j (with inclusion of j) is called subtree set µ(j). In order to describe the
part of a kinematic chain between two links i and j, the term subchain set of (i, j) is used
and denoted by ν(i, j). Here, the first bounding link is included in the set, whereas the
second bounding link is excluded: i ∈ ν(i, j), j /∈ ν(i, j).

3.2.2 The Denavit-Hartenberg Convention

In 1955 Jacques Denavit and Richard Hartenberg introduced a formalism to parameterize
a kinematic chain using only four parameters for each link. The formalism attaches
coordinate frames to each link of the chain and the Denavit-Hartenberg parameters specify
the transformation between successive link frames [2]. In general, it requires six degrees
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3.2 kinematics of a rigid body system

xj−1 yj−1

zj−1

zj

yj
xj

dj

θj

aj αj

Figure 7: Denavit-Hartenberg transformation from frame j − 1 to frame j.

of freedom to define the transformation between two coordinate frames. Under certain
restrictions, however, it is possible to use fewer parameters. Denavit and Hartenberg
use only four parameters to specify the transformation that is invoked by common joint
types like revolute and prismatic joints. The necessary conditions for the existence and
uniqueness of the resulting transformation are listed at the end of this section.

The Denavit-Hartenberg parameters for the transformation Hj−1
j between link frame

oj−1 and link frame oj are denoted by [θj , dj , αj , aj ] and comprise two rotational and two
translational DOF. The coordinate frame j − 1 can be mapped to frame j by the following
consecutive operations: a rotation around the zj−1-axis by the angle θj , a translation
along the zj−1-axis by the distance dj , a rotation around the new xj-axis by the angle αj

and a translation along the xj-axis by the distance aj . An example of these operations is
illustrated in Figure 7.

Representing the listed operations as homogeneous transformations and using the
composition rule of Eq. (12) results in the total transformation matrix for link j:

Hj−1
j = Hz(θj , dj)Hx(αj , aj) (14)

=

Rz(θj) djez

01×3 1


Rx(αj) ajex

01×3 1

 (15)

=

Rj−1
j tj−1

j

01×3 1

 . (16)

Here, Rx and Rz are the basic rotations around the x- and z-axis presented in Eq. (3) and
(5). The translations are performed along unit vectors ex = [1, 0, 0]T and ez = [0, 0, 1]T .
As a rigid motion, Hj−1

j can be separated into a pure rotation Rj−1
j and a pure translation

tj−1
j equivalent to Eq. (11).
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To obtain the position and orientation of each link j with respect to the root frame, the
transformations of all links belonging to the support set κ(j) have to be composed:

H0
j =

∏
i∈κ(j)

H i−1
i . (17)

Here, a simplified notation is used assuming that all link indices belonging to the considered
kinematic chain increase incrementally. This notation will be used in the following sections
as well. In the same manner, the rigid motion of a body of the multibody system can be
derived given the transformations of its supporting links. In this case, j denotes the link
frame attached to the center of mass of the body.

For a general understanding, it is useful to draw the connection to Euler angles [33]. The
described parameterization of three consecutive revolute links is equivalent to Euler angles
that specify rotations about the current rotating coordinate frame axes. Correspondingly,
every spherical joint of the skeletal model is exposed to singularities similar to Euler angles.
The implications of singularities for the formulation of dynamical equations and a way of
analysing them will be discussed in Section 3.2.3.

Finally, it is worth addressing the topic of existence and uniqueness of Denavit-
Hartenberg transformations. In contrast to general rigid motions, only four parameters
instead of six are used to define the transformation. This fact naturally restricts the set of
representable rigid motions. However, it is possible to formulate assumptions concerning
the four Denavit-Hartenberg parameters to guarantee the existence of a unique solution.
For a transformation from frame j to frame j − 1 these assumptions are:

1. The axes zj−1 and xj are perpendicular.

2. The axes zj−1 and xj intersect each other.

A corresponding proof of the existence can be found in [134].

3.2.3 Velocity and Acceleration Kinematics

This section addresses the kinematics of the multiybody system in terms of velocity and
acceleration. In the previous section, a representation of a kinematic tree by a set of link
parameters (Denavit-Hartenberg parameters) was introduced. In general, this set can
be divided into fixed parameters that specify constant model dimensions and a set of
independent coordinates that describe the motion of the model. The latter are referred to
as generalized coordinates q in accordance with Lagrangian mechanics. Each generalized
coordinate is related to the z-axis of a link in the kinematic tree defining either the
translation direction or the axis of rotation. The number of generalized coordinates is
equal to the DOF of the rigid body system: q ∈ Rd.
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3.2 kinematics of a rigid body system

center of mass

revolute link axes for joint DOF

revolute link axes for global orientation

prismatic link axes for global position

skeletal joint

Figure 8: Kinematic tree of the human model with link axes represented by arrows.

Figure 8 shows the skeletal model used in this work to approximate the human locomotor
system. The skeletal joints of the model are purely rotational. Therefore, the generalized
coordinates are composed of six global coordinates describing the position and the ori-
entation of the pelvis (the first body of the kinematic tree) and a number of rotational
DOF modelled as revolute links. The corresponding link axes are depicted as arrows in
the figure. The Denavit-Hartenberg convention yields transformations between q and the
position and orientation of any link in world coordinates. For the formulation of EOM, the
transformation from q to those frames attached to the center of mass of body parts is of
particular interest. Consistent with robotics terminology, these frames are often referred
to as end-effector frames indicating that their rigid motion is sought-for. The partial
derivatives of the transformation rule (from q to the rigid motion of end-effectors) with
respect to the individual components of q build the Jacobian T . This matrix transforms
from q̇ to the so called body velocity vector ξ ∈ R6N composed of the linear and angular
velocities of each body in the kinematic tree:

ξ := [v1, . . . ,vN ,ω1, . . .ωN ]T = T q̇ . (18)

Here, N is the number of bodies in the kinematic tree, vi is the linear velocity of body i and
ωi the related angular velocity. The connection between generalized and body velocity is
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v

q̇3

q̇1

q̇2

ω

rigid body

joint with 3 DOF

Figure 9: Example of the body velocity ξ = [vT ,ωT ]T induced by the generalized velocity
q̇ = [q̇1, q̇2, q̇3]T . The depicted joint has 3 rotational DOF.

exemplified in Figure 9. Temporal differentiation of Eq. (18) leads to the body acceleration
vector

ξ̇ =
d

dt
[T (q(t))q̇(t)]

= T q̈ +
∂

∂q
(T q̇) q̇ .

(19)

The second term of Eq. (19) is denoted by ζ and is sometimes referred to as convective
acceleration in the literature. To abbreviate following derivations, it is written in matrix
form as

ζ(q, q̇) = ∂

∂q
(T q̇) q̇

= G(q, q̇)q̇ .
(20)

In the further course of this section, the Jacobian T will be presented based on the
introduced representation by Denavit-Hartenberg parameters. Based on this, the convective
acceleration matrix G will be derived. For this purpose, the special case of a kinematic chain
consisting purely of prismatic and revolute links is considered. To lay the foundation for the
derivation of G, skew symmetric matrices are introduced and the temporal differentiation
of rigid motion is described in the following subsections.

Skew Symmetric Matrices

A square matrix S is called skew symmetric, if

S +ST = 0 . (21)

In terms of the matrix entries, this is equivalent to

sij = −sji . (22)
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3.2 kinematics of a rigid body system

The set of 3× 3 skew symmetric matrices is denoted by so(3). Based on Eq. (22), the
matrix S(ω) ∈ so(3) can be defined as

S(a) =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (23)

with ω ∈ R3.
There are several properties of a skew-symmetric matrix S ∈ so(3) that are of importance

for the derivation of the Jacobian and the convective acceleration matrix:

1. Relation to cross-product: For ω, r ∈ R3

S(ω)r = ω× r . (24)

2. Similarity transformation: For R ∈ SO(3) and ω ∈ R3

RS(ω)RT = S(Rω) . (25)

3. Derivative of a rotation matrix: For a rotation R(θ) ∈ SO(3), depending on a single
variable θ, the derivative is calculated by

dR(θ)

dθ
= SR(θ) . (26)

This relation can be specified for a rotation Rz,θ ∈ SO(3) around an arbitrary axis
z by angle θ:

dRz,θ
dθ

= S(z)Rz,θ . (27)

Temporal Differentiation of Rigid Motion

Let ω(t) be the time dependent angular velocity of a rotating frame. The corresponding
rotation matrix R(t) can be differentiated with respect to time using the concept of skew
symmetric matrices:

Ṙ(t) = S(ω(t))R(t) . (28)

Since ω is a free vector, it may be expressed in arbitrary coordinates by multiplication
with a corresponding rotation matrix. Furthermore, it may be a composition of multiple
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fundamentals

angular velocities that can be summed if they are represented in the same coordinates.
Therefore, the temporal differentiation of the total rotation of an end-effector frame n can
be written as

Ṙ0
n = S(ω0

n)R
0
n (29)

with

ω0
n = ω0

1 +
∑
i>1

i∈κ(n)

R0
i−1ω

i−1
i . (30)

Here, ωi−1
i denotes the angular velocity caused by the rotation Ri−1

i around axis zi and
expressed in frame i− 1. The time dependencies are left out for better readability.

To find an expression for linear velocities represented in the moving frame n, the time-
dependent homogeneous transformation needs to be considered. It consists of rotation
R0

n(t) and translation t0
n(t). Point coordinates pn in the moving frame are transformed

as

p0(t) = R0
n(t)p

n + t0
n(t) . (31)

Temporal differentiation of this equation leads to the linear velocity

v0
n = S(ω0

n)R
0
np

n + ṫ0
n (32)

= ω0
n × r0 + ṫ0

n (33)

with r0 = R0
np

n. The second line is derived using Eq. (24).

The Jacobian and the Convective Acceleration Matrix

The presented relations build the basis for a geometric derivation of the Jacobian T that
fulfills Eq. (18). Such a derivation can be found in [134]. Here, merely the result will
be presented to focus on the derivation of the convective acceleration matrix G. This
derivation is hardly ever found in the literature and is conducted using assumptions specific
to the present model.
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3.2 kinematics of a rigid body system

zj

zj−1

dj

θj+1

ωn

vn

prismatic link

revolute link

end-effector

tn−1 − tj−1

tn−1 − tj

Figure 10: Kinematic subchain with a prismatic and a revolute link that influence the end-
effector’s rotational velocity ωn and linear velocity vn. The positions of the link
frames are denoted by tj−1 and tj and the end-effector frame is located at tn−1. The
prismatic link causes a translation dj along axis zj−1 and the revolute link can be
rotated by the angle θj+1 around zj . The dotted lines indicate the continuation of
the kinematic chain.

The Jacobian of the considered kinematic chain is composed of a linear and an angular
part with

vn =
∑

j

Tvnj q̇j , (34)

ωn =
∑

j

Tωnj q̇j . (35)

Tvnj and Tωnj are 3× 1-dimensional column vectors that describe the influence of link
coordinate qj on the end-effector link n with associated frame n− 1. Every considered
end-effector frame is attached to the center of mass of a rigid body of the multibody system.
During dynamics simulation these frames will be effected by modelled forces and moments.
The Jacobian components are calculated from the Denavit-Hartenberg transformation
matrices (cf. Section 3.2.2) using

Tvnj =


zj−1 j pri.

zj−1 × (tn−1 − tj−1) j rev.
, (36)

Tωnj =


0 j pri.

zj−1 j rev.
(37)

with link j ∈ κ(n) and zj−1 denoting the z-axis of the respective link frame and tj−1 its
origin [134]. The axes and translation vectors are represented in world coordinates, but for
better readability the corresponding superscript is omitted. The abbreviations pri. and
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rev. stand for prismatic and revolute links. An example of a kinematic chain is depicted in
Figure 10 to visualize the used notation.

Similar to the Jacobian, the matrix G is composed of a linear and an angular part:
G = [Gv,Gω]T . In the following, the acceleration components

Gvnj =
∂

∂qj
(Tvn q̇) , (38)

Gωnj =
∂

∂qj
(Tωn q̇) (39)

of end-effector n, caused by a change of link j, will be derived. For clarity, the cases of
prismatic and revolute links are treated separately. The results are summarized at the end
of this section in Eq. (62).

Starting with the linear case the corresponding part of G is

Gvnj =
∂

∂qj

 ∑
i∈κ(n)
i pri.

zi−1ḋi +
∑

i∈κ(n)
i rev.

zi−1 × (tn−1 − ti−1)θ̇i

 . (40)

Note, that the supporting links i can either be prismatic or revolute regardless of the
nature of link j. For all following considerations link j has to support link n in order for
the derivative to be unequal zero: j ∈ κ(n). First, let j be prismatic; i. e. the generalized
coordinate qj is equal to the Denavit-Hartenberg parameter dj (cf. Figure 7). Due to
the fact that the coordinates of free vectors are translationally invariant, ∂

∂dj
zi−1 = 0.

Therefore, Eq. (40) simplifies to

Gvnj ,pri. =
∑

i∈κ(n)
i rev.

zi−1 ×
∂

∂dj
(tn−1 − ti−1)θ̇i . (41)

The remaining term is only unequal zero, if link j lies on the path between link i− 1
and end-effector n, i. e. j ∈ ν(i, n). Otherwise (tn−1 − ti−1) is constant. This case does
not occur for the considered human model, since all skeletal joints are modelled as a
combination of revolute links. The only prismatic links are placed at the beginning of the
kinematic chain to describe the global position of the model. Thus, Eq. (41) can be further
simplified to

Gvnj ,pri. = 0 . (42)
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3.2 kinematics of a rigid body system

In the case that j is revolute, the first term of Eq. (40) can be dropped for the same
reason described above: The topology of the model does not include revolute links in the
support chain of prismatic links. The remaining component for a revolute link j is

Gvnj ,rev. =
∂

∂θj

∑
i∈κ(n)
i rev.

zi−1 × (tn−1 − ti−1)θ̇i (43)

=
∂

∂θj

∑
i∈κ(n)
i rev.

R0
i−1ez × (tn−1 − ti−1)θ̇i (44)

with ez = [0, 0, 1]T . Now the generalized coordinate qj is equivalent to the Denavit-
Hartenberg angle θj . Applying the chain rule for derivatives results in

Gvnj ,rev. =
∑

i∈κ(n)
i rev.

[
∂R0

i−1
∂θj

ez × (tn−1 − ti−1)θ̇i

+zi−1 ×
∂(tn−1 − ti−1)

∂θj
θ̇i

]
(45)

=: χ1 +χ2 . (46)

For further simplification, the two terms of Eq. (45) are considered separately and denoted
by χ1 and χ2, respectively. The first term is only unequal zero, if link i is part of the
subtree set of link j written as i ∈ µ(j). Only then the rotation R0

i−1 depends on θj .
Together with the requirement that i ∈ κ(n) this is synonymous with i ∈ ν(j, n). Simply
put, if link i comes after link j and before link n, it lies on the subchain between j and n.
Hence, the first term becomes

χ1 =
∑

i∈ν(j,n)
i rev.

∂R0
i−1

∂θj
ez × (tn−1 − ti−1)θ̇i . (47)

In order to draw a connection between the angle θj and the orientation of frame i− 1, the
rotation matrix R0

i−1 can be decomposed into the individual rotations occurring along the
subchain between j and i:

R0
i−1 = R0

j

∏
k∈ν(j+1,i)

Rk−1
k . (48)
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This is possible because link j supports link i. The derivative of this rotation with respect
to θj is

∂R0
i−1

∂θj
=

∂R0
j

∂θj

∏
k∈ν(j+1,i)

Rk−1
k

= S(zj−1)R
0
j

∏
k∈ν(j+1,i)

Rk−1
k

= S(zj−1)R
0
i−1 . (49)

Only the leading rotation has to be differentiated, since the rotations starting at link j + 1
do not change with varying θj being represented with respect to the current link coordinate
frame. The second line is calculated using Eq. (27) and in the last line, the decomposition
of Eq. (48) is reversed. Inserting the result into Eq. (47) and applying Eq. (24) yields

χ1 =
∑

i∈ν(j,n)
i rev.

S(zj−1)R
0
i−1ez × (tn−1 − ti−1)θ̇i

=
∑

i∈ν(j,n)
i rev.

zj−1 × [zi−1 × (tn−1 − ti−1)] θ̇i . (50)

The second term χ2 of Eq. (45) is only different from zero if the translation (tn−1 − ti−1)

depends on θj . This is the case, if link j lies between the links i and n, so that i also
supports j: i ∈ κ(j). Hence, the term can be rewritten as

χ2 =
∑

i∈κ(n)∩κ(j)
i rev.

zi−1 ×
∂(tn−1 − ti−1)

∂θj
θ̇i . (51)

Given the specified order of links, it is sufficient to calculate ∂tn−1
∂θj

. Using Eq. (10), the
translation can be expressed in terms of coordinate frames j − 1 and j as

tn−1 = R0
jt

j
n−1 +R0

j−1t
j−1
j + tj−1 . (52)

The derivative of this equation with respect to θj is

∂tn−1
∂θj

=
∂R0

j

∂θj
tj
n−1 +R0

j−1
∂tj−1

j

∂θj

= S(zj−1)R
0
jt

j
n−1 +S(zj−1)R

0
j−1t

j−1
j (53)

= S(zj−1)
(
R0

jt
j
n−1 +R0

j−1t
j−1
j

)
= S(zj−1) (tn−1 − tj−1) . (54)
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3.2 kinematics of a rigid body system

The second term of Eq. (53) is derived using the Denavit-Hartenberg representation
tj−1
j = [aj cos θj , aj sin θj , dj ]T :

R0
j−1

∂tj−1
j

∂θj
= R0

j−1[−aj sin θj , aj cos θj , 0]T

= R0
j−1S(ez)t

j−1
j

= R0
j−1S(ez)(R

0
j−1)

TR0
j−1t

j−1
j

= S(R0
j−1ez)R

0
j−1t

j−1
j

= S(zj−1)R
0
j−1t

j−1
j (55)

Inserting Eq. (54) into Eq. (51) and applying Eq. (24) yields

χ2 =
∑

i∈κ(n)∩κ(j)
i rev.

zi−1 ×S(zj−1)(tn−1 − tj−1)θ̇i

=
∑

i∈κ(n)∩κ(j)
i rev.

zi−1 × [zj−1 × (tn−1 − tj−1)] θ̇i . (56)

Finally, the sum of χ1 and χ2, noted in Eq. (50) and Eq. (56), results in the sought-after
acceleration component

Gvnj ,rev. =
∑

i∈ν(j,n)
i rev.

zj−1 × [zi−1 × (tn−1 − ti−1)] θ̇i

+
∑

i∈κ(n)∩κ(j)
i rev.

zi−1 × [zj−1 × (tn−1 − tj−1)] θ̇i . (57)

Following a similar approach, the angular part of G can be derived. Based on the Jacobian
components of Eq. (37), the acceleration component is

Gωnj =
∂

∂qj

∑
i∈Sn
i rev.

zi−1θ̇i . (58)

As before, we distinguish between prismatic and revolute links. If j is prismatic, the term
vanishes due to ∂

∂dj
zi−1 = 0. Thus, we get

Gωnj ,pri. = 0 . (59)
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If j is revolute, Eq. (58) can be written as

Gωnj ,rev. =
∂

∂θj

∑
i∈Sn
i rev.

zi−1θ̇i

=
∑

i∈Sn
i rev.

∂R0
i−1

∂θj
ez θ̇i

=
∑

i∈ν(j,n)
i rev.

S(zj−1)R
0
i−1ez θ̇i . (60)

The rotation R0
i−1 is partially differentiated according to Eq. (49). Using Eq. (24) we get

the final result

Gωnj ,rev. = zj−1 ×
∑

i∈ν(j,n)
i rev.

zi−1θ̇i . (61)

To summarize, the derived formulas for the convective acceleration matrix are

Gvnj ,pri. = 0 ,
Gωnj ,pri. = 0 ,
Gvnj ,rev. =

∑
i∈ν(j,n)

i rev.

zj−1 × [zi−1 × (tn−1 − ti−1)] θ̇i

+
∑

i∈κ(n)∩κ(j)
i rev.

zi−1 × [zj−1 × (tn−1 − tj−1)] θ̇i ,

Gωnj ,rev. =zj−1 ×
∑

i∈ν(j,n)
i rev.

zi−1θ̇i .

(62)

It can be seen that all prismatic components vanish which is consistent with the constraints
of the considered multibody system. The convective acceleration represents the part of
the acceleration caused by skeletal constraints. Since the used model is only constrained
by revolute links, only the corresponding components of G are unequal zero.

Singularities of the Jacobian

A singularity is a joint configuration q at which the Jacobian T (q) is rank deficient, i. e. the
number of independent rows or columns is smaller than the maximum number reached
at different configurations. At a singularity one or several of the following circumstances
applies:

1. Specific directions of motion are not possible starting from a singularity.
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3.3 dynamics of a rigid body system

2. A finite change in end-effector velocity is associated with an infinite change in joint
velocity q̇.

3. A finite change of end-effector forces and moments can only be realized by infinite
change of joint moments.

4. Near singularities there may not exist a unique solution to the inverse kinematics
problem.

The described effects of singularities emphasize the importance of their investigation. In
order to analyze the occurrence of singularities of T , the matrix is considered in parts Tc,
representing subchains of the kinematic tree. If Tc is a square matrix, a singularity can be
identified using

det(Tc) = 0 . (63)

In the present model, the number of rotational links per skeletal joint is k <= 3. Let
k = 3 and the link indices i = 1, 2, 3, w.l.o.g.. According to Eq. (36) and Eq. (37), the
linear and angular parts of the Jacobian are

Tcv =
[
z0 × (tn−1 − t0) z1 × (tn−1 − t1) z2 × (tn−1 − t2)

]
,

Tcω =
[
z0 z1 z2

]
. (64)

Since the link origins coincide, the translations are set to tn−1 − t0 = tn−1 − t1 =

tn−1 − t2 = t′:

Tcv =
[
z0 × t′ z1 × t′ z2 × t′

]
,

Tcω =
[
z0 z1 z2

]
. (65)

Both matrices are rank deficient, if two link axes are collinear. This result is in corre-
spondence with the singularities of Euler angles [33]. The de facto loss of one DOF at
the singularity is also called gimbal lock. Due to the nature of the considered locomotion
movements including only joint angles smaller than π/2 the gimbal lock does not affect
the calculation and optimization of kinematics and dynamics in this work.

3.3 dynamics of a rigid body system

A dynamical consideration of a system of rigid bodies deals with the evaluation of an
EOM for this system. The equation yields the interrelationship between the motion of
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the system and the active forces. It can either be used to predict motion trajectories on
the basis of applied forces or to find underlying forces based on the observed motion.
These two procedures are termed forward and inverse dynamics, respectively. This section
addresses the formulation of EOM for constrained rigid body systems using the so-called
TMT-method [125].

3.3.1 TMT-Method

The TMT-method offers a practical approach to formulating EOM for multibody systems
combining concepts of Newtonian and Lagrangian mechanics. The name of the method
is inspired by matrix multiplications in the resulting EOM, as will become clear below.
In order to describe a multibody system using the Newton-Euler equations, they have to
be extended to differential algebraic equations to incorporate kinematic constraints. The
solution of these equations using numerical integration, however, is a complex process that
requires the initial states to match the constraints and involves either a transformation to
ordinary differential equations or large-scale numerical solvers [120]. In contrast to that, the
Euler-Lagrange equation considers kinetic and potential energy of the system and the EOM
is derived for a minimum set of independent generalized coordinates. For this purpose,
however, all arising energies have to be identified and their derivatives have to be calculated
which can cause tremendous computational effort when dealing with complex models. To
avoid the disadvantages and exploit the benefits of both concepts, the TMT-method uses
a force approach similar to Newton-Euler, but incorporates the kinematic constraints in a
transformation T ∈ R6N×d from independent generalized velocities q̇ ∈ Rd to mutually
dependent body velocities ξ ∈ R6N . This transformation is the Jacobian introduced in
Section 3.2.3.

The representation of body velocities ξ and accelerations ξ̇ in terms of generalized
coordinates q has been introduced in Eq. (18) and Eq. (19), respectively. To allow for a
better understanding of the following derivation the definition is repeated here:

ξ = [v1, . . . ,vN ,ω1, . . .ωN ]T = T q̇ , (66)

ξ̇ = T q̈ +
∂

∂q
(T q̇) q̇ . (67)

The starting point of the TMT-method is Newton’s law

Mξ̇− f = 0 . (68)

The force f is the sum of all conservative and non-conservative forces acting on the system.
The inertia matrix M ∈ R6N×6N is of diagonal shape. Every linear component of ξ̇ is
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3.3 dynamics of a rigid body system

multiplied with the mass value mi ∈ R and every rotational component with the tensor of
inertia Ii ∈ R3×3 of the corresponding rigid body i in the kinematic tree:

M = diag(m1, m1, m1, . . . , mN , mN , mN , I1, . . . , IN ) . (69)

Every tensor of inertia needs to be transformed from the moving end-effector frame n,
attached to body i, to the world frame by means of similarity transformation according to
Eq. (8):

Ii = R0
nI

n
i (R

0
n)

T . (70)

The further derivation of the method is based on the principle of virtual work which
allows for the formulation of EOM for a multibody system under constraints. The principle
states that the virtual work performed by the forces effecting a mechanical system is
zero for all virtual displacements from static equilibrium [147]. The TMT-method uses
an alternative approach by applying virtual velocities that satisfy the system constraints
and considering the virtual work rate which is required to be zero as well [116]. The dot
product of Eq. (68) with the virtual body velocitiy δξ yields the virtual work rate of the
system:

δξT
(
Mξ̇− f

)
= 0 (71)

⇔ (T δq̇)T
(
Mξ̇− f

)
= 0 . (72)

In Eq. (72), the virtual body velocities are expressed as a function of virtual generalized
velocities δq̇ using the transformation of Eq. (66). Since δq̇ are independent (representing
the DOF of the system), the vanishing dot product of Eq. (72) is equivalent to the vector
equation

T T
(
Mξ̇− f

)
= 0 . (73)

Substituting the body acceleration of Eq. (67) in Eq. (73) and rearranging yields the EOM

T TMTq̈ = T T (f −Mζ) (74)

where ζ is the convective acceleration introduced in Eq. (20).
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Defining the reduced1 inertia matrix M = T TMT and the reduced force F =

T T (f −Mζ), the EOM can be written in brief terms as

Mq̈ = F . (75)

The composition of the reduced inertia matrix is responsible for the naming of the method.
In the considered case of a skeletal model, the total force f consists of joint torques τ ,

which represent the generalized forces, a combined contact force and moment vector fc

and the gravitational force Mg. While the joint torques directly effect the generalized
coordinates, the remaining forces are applied to the centers of mass of the individual
bodies and therefore need to be represented in terms of body coordinates. The resulting
EOM is

Mq̈ = τ + T T (fc +M (g− ζ)) . (76)

The vector fc ∈ R6N is composed of three dimensional contact forces fci and three
dimensional contact moments mci for all bodies i = 1, . . . , N of the model:

fc =



fc1
...

fcN

mc1
...

mcN


. (77)

The application of the contact forces and joint moments is exemplified in Figure 11.
The gravitational acceleration vector g contains g = −9.81 m/s2 at all components
corresponding to vertical linear accelerations. All other components are equal to zero.

3.4 machine learning

This chapter deals with fundamental concepts of machine learning and introduces algo-
rithms used to realize learning-based inverse dynamics estimation. Following the introduc-
tion of the necessary terminology, the chapter includes a presentation of support vector
machines, ridge regression, random forests and neural networks.

1 The term reduced refers to the reduction to a minimal set of independent generalized coordinates.
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joint torque /
moment τk contact force fc1

contact moment mc1

Figure 11: Skeletal model with contact force fc1 , contact moment mc1 and the sagittal knee
moment τk as an example for a joint torque component.

3.4.1 Terminology and General Concepts

In machine learning we distinguish between supervised and unsupervised learning. In
supervised learning the model function is fitted using a training set of annotated data. In
contrast, unsupervised learning is applied to data without annotations. In this thesis two
basic approaches of machine learning are used, namely classification and regression. Both
tasks are part of supervised learning.

A classifier is defined as a function fc : Rm →N,x 7→ y. The vector x is either a raw
datum or a feature vector that has been extracted from the datum prior to the classification.
The number y denotes the class, the datum is assigned to. While classification assigns a
class label (an integer) to the feature vector, a regression function fr maps to a vector of
real numbers y of the target data type, such that fr : Rm → Rn,x 7→ y. In this work, for
instance, the designed regression functions map from motion features to force and moment
features.
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3.4.2 Support Vector Machines

A support vector machine (SVM) is a classification method that finds a hyperplane in the
feature space, which separates the classes from each other. A hyperplane is given by

g(x) = wTx+ w0 = 0 (78)

with the normal vector w and the position w0 [8]. If w is of unit length, then w0 is the
distance between the plane and the coordinate origin. Let {xi} with i = 1, . . . , N be
the training feature vectors belonging to two classes S1 and S2. The classes are linearly
separable if a hyperplane can be found that fully separates the sets. Such a hyperplane,
however, is not unique. The algorithm chooses a hyperplane by maximizing the margins
to both classes, so that the risk of misclassifying unseen data is minimized. The distance
of a point x to the hyperplane is

z =
|g(x)|
‖w‖

. (79)

By scaling the parameters w and w0, the value of g(x) can be set to 1 and -1 at the
nearest points belonging to S1 and S2, respectively. This way, the total margin is 2

‖w‖ and
the following conditions hold:

wTx+ w0 ≥ 1 , ∀x ∈ S1 ,
wTx+ w0 ≤ −1 , ∀x ∈ S2 .

(80)

To determine the hyperplane parameters, the maximization of the margin 2
‖w‖ is imple-

mented as the equivalent quadratic optimization task

min
w,w0

{1
2‖w‖

2
}

s.t. yi(w
Txi + w0) ≥ 1 , i = 1, . . . , N

yi = sgn(wTxi + w0)

(81)

with yi ∈ {−1, 1} indicating the class of the training feature vectors. The resulting classifier
has the same form

fc(x) = sgn(wTx+ w0) . (82)

An example of two-dimensional linearly separable data points classified using an SVM is
illustrated in Figure 12.
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S1

S2
w

w0

g(x)

Figure 12: Two sets S1 and S2 separated by the hyperplane g(x). The data points lying on the
margin (dashed lines) represent the support vectors used to determine the hyperplane
parameters w and w0.

The case of linearly separable classes is highly improbable in real-world scenarios, due
to outliers or naturally overlapping classes. Therefore, an extension of the algorithm allows
for a violation of the conditions in Eq. (80). This is realized by introducing slack variables
ξi ≥ 0 that are equal to the respective constraint violation. The new optimization task is

min
w,w0,ξ

1
2‖w‖

2 + C
N∑

i=1
ξi


s.t. yi(w

Txi + w0) ≥ 1− ξi , i = 1, . . . , N .
(83)

The positive constant C is used to balance both terms.
In practise, an SVM solves the dual-problem of the presented optimization problem.

The dual form can be derived using Lagrange multipliers λ and Karush-Kuhn-Tucker
conditions [141]. The resulting problem is

max
λ


N∑

i=1
λi −

1
2
∑
i,j

λiλjyiyjx
T
i xj


s.t. 0 ≤ λi ≤ C , i = 1, . . . , N and

N∑
i=1

λiyi = 0 .
(84)

The parameter w of the optimal hyperplane is a linear combination of all Ns ≤ N feature
vectors with Lagrange multipliers λi 6= 0:

w =
Ns∑
i=1

λiyixi . (85)

These feature vectors are called support vectors and reside either on the parallel hyperplanes
wTx+ w0 = ±1 or within the margin (if ξi > 0). The Lagrange multipliers of all points
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lying within the margin take the maximum value λi = C and thus maximally influence
the solution.

A further extension to the SVM is based on the idea to map the data to a higher
dimensional space where a linear separation is more likely. Let φ : Rd1 → Rd2 , x 7→ φ(x)

be a mapping from dimension d1 to dimension d2. Since the objective of Eq. (84) contains
feature vectors only in terms of dot products, a kernel trick can be applied: The mapping
is efficiently included into the optimization problem using a kernel function

k(x,y) = φ(x)T φ(y) (86)

that calculates the dot product in the higher dimensional space without explicit transfor-
mation to d2. The resulting hyperplane normal w =

∑Ns
i=1 λiyiφ(xi) yields a classifier of

the form

fc(x) = sgn(wT φ(x) + w0) = sgn
Ns∑

i=1
λiyik(xi,xi) + w0

 . (87)

The objective function of an SVM’s optimization problem is convex in both, w and w0,
which enables an efficient solution, e. g. by sub-gradient decent [141]. Furthermore, the
linear separation of classes is less prone to overfitting, than more complex methods. Due
to these properties, the SVM represents a frequently used classifier. In this work, it is
one of the applied methods to classify gait phases as part of the multi-stage regression
approach that is subject of Chapter 5.

3.4.3 Ridge Regression

A basic regression method applied in this work is linear regression with Tikhonov regular-
ization also called ridge regression [57]. It produces a linear function

y = xTw (88)

that maps a feature vector x to the regression value y by solving a linear least squares
problem of the form

min
w

{
‖y−Xw‖22 + α‖w‖22

}
. (89)

Here, y are the targets, X are the features arranged in a matrix and w are the estimation
coefficients that define the regression function. The L2-regularization of the coefficients
penalizes large values of w and allows an analytical solution of the linear least squares
problem despite multicollinear variables in X. The factor α ≥ 0 adjusts its strength. Unlike
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the ordinary least squares estimator, the ridge estimator eliminates multicollinearity by
adding a scaled unit matrix αI to guarantee the existence of the inverse in

(XTX + αI)w = XTy

⇒ w = (XTX + αI)−1XTy .
(90)

This formulation is called normal equation and yields a one-step analytical solution of
the problem with minimal squared error. A further approach is to solve the optimization
problem in Eq. (89) using gradient descent which is computationally advantageous if X is
very large.

3.4.4 Random Forests

A random forest (RF) [12] is an ensemble method for classification and regression that
combines the predictions of multiple base estimators, in this case, decision trees. Prior to
the description of the RF as an ensemble, the principle and construction of the individual
decision trees is presented.

Decision Trees

A decision tree is a nonlinear classifier that reaches a decision by successively excluding
possible classes. Most commonly, decision trees are implemented as binary trees, whose
nodes split the feature space into hyperrectangles using threshold functions as illustrated
in Figure 13. For example, the range of values of feature xi is split by xi ≤ α ∈ R. The
application of a decision tree to a feature vector can be illustrated as the propagation of
the vector through the tree. At each node the corresponding decision function determines
the direction of further propagation. The terminal node, also called leave, assigns a class
or a real number (in the case of regression) to the feature vector.

For the construction of a decision tree, various methods have been developed. One
popular algorithm is CART (Classification and Regression Trees) by Breiman et al. [13].
The algorithm generates binary trees by choosing the feature and threshold at each node to
achieve maximal information gain. The target variables can be numerical allowing for the
construction of regression trees. Mathematically expressed, CART recursively partitions
a set Q = {(x(i), yi)}mi=1 consisting of training vectors x(i) ∈ Rn and target variables yi

into disjoint subsets Qleft and Qright. The partition is done using a split tuple θ = (j, t)

consisting of feature index j and threshold t. The resulting subsets are

Qleft(θ) = {(x(i), yi)|x
(i)
j ≤ t}mi=1 , (91)

Qright(θ) = Q\Qleft(θ) . (92)
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xj ≤ t xj > t

θ1 = (j, t)

θ2 Split 1

Split 2

x1

x2

Figure 13: Example of a decision tree that classifies two-dimensional data into two classes. The
tree structure is shown in the left and the feature space with resulting decision
boundaries on the right.

For each partition, the goal is to reduce the impurity in the subsets. Depending on the
task, i. e. classification or regression, different impurity functions H() are deployed to
calculate the weighted impurity of the split

G(Q, θ) =
mleft

m
H(Qleft(θ)) +

mright
m

H(Qright(θ)) . (93)

Here, mleft and mright are the respective sample numbers in the subsets. The split θ is
determined by

min
θ

G(Q, θ) (94)

and the partitioning is recursively continued until a stopping criterion is reached. Common
stopping criteria are the maximum tree depth and the minimum number of samples in the
leave nodes. Possible impurity functions for the construction of a classification tree are
Entropy and Gini-Index :

HEntropy(Q) = −
∑
k

pk log(pk) , (95)

HGini(Q) =
∑
k

pk(1− pk) . (96)

The probability pk that a sample of Q belongs to class k is approximated by the proportion
of samples with the respective label:

pk =
1
m

m∑
i=1

Ik(yi) , Ik(y) =


1 y = k

0 y 6= k

. (97)
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For a regression tree, typical impurity functions are the mean squared error (MSE) and
the mean absolute error (MAE) of the target values yi with respect to the mean and the
median of all target values in Q:

HMSE(Q) =
1
m

m∑
i=1

(yi − ȳ)2 , ȳ =
1
m

m∑
i=1

yi , (98)

HMAE(Q) =
1
m

m∑
i=1
|yi −median

i=1,...,m
(yi)| . (99)

A further element of CART is minimal cost-complexity pruning. Post-pruning of trees is
an important step to avoid overfitting. Unnecessary subtrees that result from noise in the
dataset are retrospectively cut. In minimal cost-complexity pruning, the cost-complexity
measure of a tree T is given by

Rα(T ) = R(T ) + α|T | . (100)

The measure contains the misclassification rate R(T ) of the tree and a parameter α ≥ 0
that includes the complexity in terms of the number of leaves |T |. Minimization of Rα(T )

yields the subtree with minimal cost-complexity.

Combining Base Estimators

Ensemble methods can be roughly separated into averaging methods (e. g. bagging) that
average over the predictions of independently constructed base estimators and boosting
methods that built every additional estimator with regard to the bias of the entire ensemble.

In this work, bagging [11] is used to build an RF consisting of diverse decision trees. The
RF prediction is the average of the individual tree predictions. Bagging incorporates two
sources of randomness: random subsets of data and random subsets of features. For the
construction of each tree, a random subset of the training set is chosen with replacement.
This way, the effect of outliers and inaccurate training samples is reduced. The second
source of randomness concerns the splitting of nodes. During the construction of trees, a
random subset of features is used to find the best split at each node.

Both sources of randomness support the diversity of trees and lead to an ensemble
estimator with reduced variance, i. e. reduced sensitivity to small changes in the training
set. The decrease in variance is often combined with a slight increase of the bias which is the
difference between the expectation value of the model and the true value. In general, this
increase is negligible compared to the reduced variance resulting in a superior estimator.

An RF estimator provides a number of advantages compared to other estimators:

• Features of variable nature can be processed.

51

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


fundamentals

σ(·)...
...

weights
inputs

bias

sum activation

output
yΣ

w1

w2

wn

x1

x2

xn

b

function

Figure 14: Schematic of an artificial neuron receiving n input signals and generating an output
signal y according to Eq. (101).

• No data normalization is necessary to regulate the feature space.

• The processing of data is transparent.

• Parallel processing of decision trees allows for short training and application times.

In contrast to neural networks, however, an RF is less suited to extract features from data
automatically (especially for large data types like images) and is unable to extrapolate
data that falls outside of the space spanned by the training set.

3.4.5 Neural Networks

An artificial neural network (NN) imitates the information processing in the nervous
system of animals. In consistence with a biological neural network, the model consists
of interconnected neurons that receive, process and relay signals in order to derive some
meaningful output. The idea of NNs was first introduced in 1943 by Warren McCulloch
and Walter Pitts [91] but did not become part of practical research until the 1980 s due
to the simple lack of computational power. Since then, NNs have substantially gained
importance in machine learning problems. Nowadays, NNs dominate the research field of
machine learning, both in terms of performance and frequency of application. In particular,
the success of convolutional NNs in image processing has accelerated the research field
tremendously [55, 58, 69, 129, 138, 139]. The pool of different NN types, designed for
different purposes, is constantly growing. Here, only the type relevant to this work, a fully
connected feed-forward NN, will be presented. In the following, a mathematical description
of such a model will be given starting with the working principle of a single neuron.

Figure 14 shows a neuron with n inputs and one output. Let x ∈ Rn be the input signal.
Then the output y is calculated by

y = σ

∑
k

wkxk + b

 (101)
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Input layer Output layerHidden layers

... ... ... ...

...

x1

x2

xn

aL
1

aL
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Figure 15: Schematic of a fully connected feed-forward NN with three hidden layers.

with the weight vector w ∈ Rn, the bias b and the activation function σ(). The output y

is also referred to as activation of the neuron. Typical activation functions are described
in Section 3.4.5.

When individual neurons are composed to an NN, they are arranged in layers. In
traditional feed-forward NNs, connections only exist between neurons of two consecutive
layers. Figure 15 illustrates a feed-forward NN with an input layer, a number of hidden
layers and an output layer. To describe the activation al

j at neuron j of layer l, Eq. (101)
is rewritten as

al
j = σ

∑
k

wl
jkal−1

k + bl
j

 . (102)

Now, the sum is executed over all neurons k in layer l− 1. For the following derivations it
is helpful to indicate the weighted sum (the input of σ) by its own variable

zl
j =

∑
k

wl
jkal−1

k + bl
j . (103)

While the number of hidden layers and the number of neurons in each hidden layer are
flexible design choices, the size of the outer layers is determined by the dimension of the
input and output data. NNs can be used for classification as well as regression problems.
In principle, only the output layer has to be adapted accordingly.

Error Backpropagation

Training an NN means optimizing the network parameters, e. g. weights and biases, with
regard to a loss function that is supposed to be minimal. The optimization is performed
using a gradient descent method, most commonly stochastic gradient descent (SGD) [9],
Adam [62] or related methods. For this purpose, the gradients of the network parameters
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with respect to the loss are required. The calculation of these gradients is subject of error
backpropagation or simply backpropagation.

Let C : Rd → R be a loss function that rates the output aL ∈ Rd of the last layer L by
assigning a real number C(aL). The goal of backpropagation is the calculation of ∂C

∂wl
jk

and
∂C
∂bl

j
for all layers, neurons and connections. Application of the chain rule for derivatives

yields

∂C

∂wl
jk

=
∂C

∂zl
j

∂zl
j

∂wl
jk

, (104)

∂C

∂bl
j

=
∂C

∂zl
j

∂zl
j

∂bl
j

. (105)

The first derivative in Eq. (104) and Eq. (105) is given its own variable

δl
j =

∂C

∂zl
j

(106)

and is referred to as activation error of neuron j in layer l. If neuron j is not part of the
output layer L, the activation error δl

j can only be computed indirectly by propagating
the errors δL

j of the output layer backwards through the network. This is achieved using
the following equations:

δL
j =

∂C

∂aL
j

σ′(zL
j ) , (107)

δl
j =

∑
k

wl+1
kj δl+1

k σ′(zl
j) . (108)

In Eq. (108), the index k indicates neurons in the subsequent layer l + 1. A complete
derivation of these inference rules is given in [48]. Insertion of δl

j into Eq. (104) and
Eq. (105) and partial differentiation of the weighted sum zl

j (defined in Eq. (103)) yields
the sought-after gradients:

∂C

∂wl
jk

= al−1
k δl

j , (109)

∂C

∂bl
j

= δl
j . (110)
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In order to realize a gradient descent algorithm, an update rule for the network parameters
is required. Based on the calculated gradients, the weights and biases are changed by

∆wl
jk = −ηal−1

k δl
j ,

∆bl
j = −ηδl

j .
(111)

The learning rate η additionally scales the parameter change. A slightly more sophisticated
update rule involves the momentum of earlier updates to avoid local minima. For instance,
the update at step t + 1 can be calculated using

∆wl
jk(t + 1) = −(1− α)ηal−1

k δl
j + α∆wl

jk(t) ,
∆bl

j(t + 1) = −(1− α)ηδl
j + α∆bl

j(t)
(112)

with 0 < α < 1. Based on the described concepts, a typical learning algorithm for neural
networks can be summarized by the following steps:

1. Input of a training sample x: The related input layer activations are set to a1 = x.

2. Feedforward: The activations of each layer l = 2, . . . , L are computed according to
Eq. (102).

3. Output error: The activation error of the last layer is calculated using Eq. (107).

4. Backpropagation: The activation errors of each neuron in the layers l = L− 1, . . . , 2
are inferred using Eq. (108).

5. Gradient descent: For all layers l = 2, . . . , L the weights and biases are changed
according to a given update rule similar to Eq. (111).

Activation Functions

The output zl
j of Eq. (103) is a linear combination of the neuron activations of the previous

layer. Without an additional non-linearity, introduced by the activation function σ, the
neural network would only learn linear mappings. There exist various activation functions
that are commonly used in deep learning. Depending on the target task, the network
topology and the position in the network, different characteristics are required. In general,
however, these functions are monotonously increasing [48]. In the following some common
activation functions will be briefly described.

The logistic function is a continuously differentiable sigmoidal function with values
in the range between zero and one:

σlog(z) =
1

1 + e−z
. (113)
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Sigmoidal functions were the most common choice of activation up until 2011. Thereafter,
they were mainly replaced by ReLu activations that proofed beneficial for the training of
increasingly deep networks. The sigmoidal shape can lead to saturation of activations and
vanishing gradients. To avoid this behaviour, networks with sigmoidal activation were often
pre-trained without supervision in order to find a suitable initialization for supervised
training. In the case of the logistic function, the non-zero mean is a further disadvantage,
since the lower saturation regime hinders the flow of gradients around zero. This becomes
problematic in the early stages of training that predominantly rely on biases and push
activations towards zero [45].

In recent research, the logistic function is mainly used in the output layer of binary
classifiers, since it produces activations between zero and one that are used to represent
probabilities of class affiliation. Furthermore, the sigmoidal shape of the curve pushes
activations towards the saturation areas near zero and one and thus supports a clear
classification.

The hyperbolic tangent tanh(z) is similar to the logistic function in terms of shape,
but is zero-centered. This poses an advantage from an optimization point of view, since it
allows modelling of negative inputs and activations can easily change back from zero.

The ReLU (rectified linear unit) is a piecewise linear function defined as

σrec(z) = max(0, z) . (114)

It is motivated by biological measurements that indicate sparse brain activity and one-sided
activation of neurons. Deep NNs with ReLU activations have been shown to converge to
an equally good minimum with and without unsupervised pre-training [46]. The resulting
model can be understood as a composition of linear models represented by the active subset
of neurons. These linear functions allow for an easy calculation of gradients. Furthermore
the one-sided activation naturally results in sparse models which are more robust towards
small input changes than dense models, because less neurons are effected by them. The
hard deactivation of neurons can also be considered a disadvantage. Due to the zero
gradient in the negative regime, it is likely that once neurons are deactivated, they remain
in this state throughout the rest of the training process. This phenomenon is referred to
as the dying ReLU problem and makes whole network branches redundant. Therefore, the
use of ReLU activations requires larger networks in general. A further problem is that
the unconstrained positive values of the linear function can lead to large gradients and
ultimately cause numerical problems. This is called exploding gradients.
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The leaky ReLU is a variant of the ReLU designed to avoid the dying ReLU problem.
It has a small positive slope in the negative region and thus enables a gradual return of
the neuron to an active state. The leaky ReLU is defined by

σrec(z) =


0.01 z z < 0

z z ≥ 0
. (115)

The softmax is a continuously differentiable activation function that maps outputs zk

to the interval [0, 1] with all activations adding to one:

σsoftm(z)k =
exp zk∑n

i=1 exp zi
, k = 1, . . . , n . (116)

Consequently, softmax can be used to model probability distributions and is usually applied
in the last layer of a multinomial classification2 network.

Loss Functions

The loss function of an NN has a similar purpose as the objective function in optimization.
It measures the error of the network output and is minimized during the training process.
Depending on the category of the problem, i. e. regression or classification, different
functions are used. The default choice for a regression network arises from the objective of
maximum likelihood estimation and is the mean squared error (MSE). Assuming Gaussian
target distribution, minimizing the MSE is equivalent to maximizing the likelihood,
i. e. both approaches yield the same model parameters [48]. The MSE is defined as

MSE(aL, t) = ‖aL − t‖22 (117)

with the last layer output aL and the targets t. Note that in the case of a regression
network, the activation function of the last layer should be linear in order to receive
unrestricted output values. Due to squaring, the error of a variable that is naturally more
distributed is amplified in relation to its absolute value. Since it is common to normalize
the input and output data, this does not have an irregular effect in general. However, if the
model has to predict unscaled values the mean squared logarithmic error is an appropriate
alternative. Another possible loss function for regression networks is the mean absolute
error (MAE) which is convenient for data with frequent outliers.

For classification networks, the default loss function is the cross entropy (CE) loss [98].
Similar to the MSE, the CE is motivated by a maximum likelihood perspective. In a
classification problem with multiple classes but only one label (assigned simultaneously),

2 A multinomial classification includes three or more classes.
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the target is a one-hot vector t that has only one component equal to one while the rest
are zero. To approximate this behavior, the activations of the last layer are processed
with a softmax function (cf. Eq. (116)) resulting in probability values pi for each class i.
Maximizing the likelihood of the observations is equivalent to minimizing the negative
log-likelihood

L = −
∑

i

ti log(pi) = − log(pj) , tj = 1 . (118)

Interpreting the output vector p and the target vector t as discrete probability distributions
over the random variable x leads to the equivalence with the CE

H(x) = −
∑

i

ti(x) log pi(x) . (119)

In information theory, the CE represents the expected number of bits required to encode
a message x with the suboptimal encoding scheme based on the probability distribution
p(x) when the actual distribution is t(x).

With respect to the integration of loss functions, it should generally be noted that the
implementation of backpropagation requires at least an approximate differentiation of all
included functions, such as losses and activations (as well as other common features like
pooling and normalization layers). To avoid manual implementation of the derivative of
each contained function, current deep learning frameworks include automatic differentiation
procedures. These methods build a computational graph that decomposes functions into
basic operations and stores all required quantities, such as intermediate results, derivatives
and (depending on the mode) operations, to enable the application of the chain rule for
differentiation [49].

3.4.6 Generalization

A key issue in training machine learning models is their ability to generalize to unknown
data, i. e. we are interested in the prediction error of the model on previously unseen data
rather than the training data. This is expressed by the generalization error [98]

e(f ) =
∫

X

∫
Y

L(f (x),y)p(x,y)dxdy (120)

that calculates the expected loss L (or another performance measure) of the model function
f by integration over all possible inputs x ∈ X and outputs y ∈ Y weighted by their joint
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probability distribution p(x,y). Since the latter is generally unknown, the expected loss
is usually estimated by the empirical error

en(f ) =
1
n

n∑
i=1

L(f (xi),yi) (121)

on a test set of sample size n. One speaks of a generalizing function if lim
n→∞en(f )− e(f ) = 0.

A closely related issue is the overfitting of models to noise that is specific to the training
set. This occurs if the model complexity is too large compared to the sample size. An
arbitrarily flexible model can theoretically fit the training data perfectly, but will perform
poorly on unseen test data. The generalization error will be high. Thus, the generalization
error can be used to detect overfitting. The established procedure is to split a dataset into
training, validation and test set. The training set is used to fit the model, the test set
allows empirical estimation of the generalization error and the validation set is necessary
to estimate the generalization error on unseen data during the training process in order to
optimize hyper parameters of the learning algorithm. The validation set must be different
from the test set, since tuning the hyper parameters is also an adjustment of the model. If
several of these dataset splits are used, the process is called cross-validation.

For random forests, important hyper parameters are, for example, the number of trees
and the maximum depth of trees. With regards to neural networks, it is crucial to stop
the optimization, before the model starts to overfit, i. e. before the loss on the validation
set increases. Further fundamental hyper parameters are the optimization algorithm, the
learning rate and the network architecture. For example, an architecture with a smaller
number of neurons in hidden layers than in the input and output layer is beneficial to avoid
overfitting. Such an architecture is often referred to as a bottle-neck. It enforces the encoding
of information into a relatively small feature vector, so that an informative representation
is learned. Further successful methods that support generalization are random training
data augmentation to increase the sample number, regularization of model complexity
(e. g. weight regularization using an L2-norm) and specific to neural networks, the use of
drop-out, where a number of neuron activations is randomly ignored in each calculation
step [135]. In the context of hyper parameter search, it is worth mentioning that in recent
years the research field of automated machine learning has been established with the goal
to automate hyper parameter tuning [80, 142]. Corresponding techniques, however, are
not used in this work.

3.4.7 Transfer Learning

In the case where the available dataset is too small (or even unlabeled) and a different
but related dataset (usually larger and including labels) exists, transfer learning provides
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a way to exploit the knowledge gained from the related set to facilitate the application
to the data of interest. Transfer learning, in general terms, means adapting a model to
different data domains or tasks. A domain D consists of a feature space X and a marginal
probability distribution P (X) with X = (x1, . . . , xn), xi ∈ X :

D = {X , P (X)} . (122)

Associated with a domain, a task is defined by

T = {Y , f(x)} = {Y , P (Y |X)} . (123)

It is composed of label space Y and predictive function f : X → Y which can also
be represented by a conditional probability distribution P (Y |X) (taking the statistical
viewpoint). Formally, the objective of transfer learning is to learn the conditional probability
distribution P (Yt|Xt) (or the predictive function ft(Xt)) belonging to a target task Tt

in the target domain Dt based on a given source task Ts in the source domain Ds [106].
Here, both domains and associated tasks differ in at least one of the following aspects: the
feature spaces, the label spaces, the marginal probability distributions or the conditional
probability distributions. These possibilities give rise to different scenarios that ask for
different transfer learning approaches. In the literature, a common high-level categorisation
uses the terms homogeneous transfer (same feature spaces Xy = Xt) and heterogeneous
transfer (different feature spaces Xy 6= Xt) [155].

The transfer learning problems addressed in this work can be categorized as homogeneous
transfer learning. For example, a transfer from walking motions to running motions does
not change the feature or label space: Motions and forces are represented by vectors in
Rn and Rm, respectively, and the dimensions n and m do not change when transferring
between motion types. The marginal probability distribution of the features (motion
parameters), however, changes significantly, e. g. including higher velocities for running
than for walking. The conditional probability distributions, representing the predictive
functions that map from motion to forces, are determined by the underlying physics and
thus are expected to stay the same or to be closely related in the least.

Basic approaches of homogeneous transfer learning are instance-based, feature-based
and parameter-based. In instance-based transfer, the marginal probability distribution
of the source domain is adjusted to the target domain by reweighting or resampling of
source data points which are close to the target domain. Feature-based transfer uses a
transformation that aligns the domains, reducing the gap between the feature spaces3

or the marginal probability distributions. Finally, in parameter-based transfer, weights
are shared between models of the source and target domain. This approach is mainly

3 Feature-based transfer learning techniques can also facilitate heterogeneous transfer.
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applied to deep neural networks by pre-training on source domain data and fine-tuning to
the target domain [155]. The transfer learning performed in this thesis follows the same
approach with the fine-tuning realized by means of self-supervised learning.
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4
H U M A N M O T I O N DATA S E T

A learning-based approach to inverse dynamics of human motion requires suitable dynamics
datasets. These datasets include the 3D motion of a kinematic model, parameters to describe
the geometry and inertia of the model, the contact forces, their point of application and
the net joint moments. The following sections describe the recording of kinematics and
contact forces using marker-based motion capture and force plates. In Section 4.3 the
approximation of inertial model parameters is presented. The estimation of interior joint
torques by means of optimization techniques is subject of Section 4.4. Details of the
recorded dataset are summarized in Section 4.5 and the generation of the final data points
used for the training of machine learning models is presented in Section 4.6.

4.1 motion capture and kinematic optimization

In marker-based motion capture, retro-reflective markers are attached to the body of the
subject and their motion is recorded and reconstructed in 3D using multiple calibrated
infrared cameras. The used system is a Vicon T-series motion capture system consisting
of 8 infrared cameras. The left of Figure 16 shows a subject whose gait pattern is recorded
in the lab. The capture rate was set to 100 Hz. The data recording is performed with the
Vicon Nexus 2 software. To facilitate the post-processing in Vicon Blade 3, the standard
marker set configuration of this software was used [47]. Post-processing in Vicon Blade 3
includes manual label correction of wrongly assigned markers, skeleton kinematic fitting
and filtering. The output is a skeletal model with 66 DOF.

In this work, a skeletal model with lower DOF is chosen in order to facilitate the use
of machine learning algorithms by effectively limiting the input as well as the output
parameter space. In general, a smaller parameter space enables training with fewer examples
and accelerates the process. A full body model is used for an initial kinematic fit to the
Vicon model. It has 38 DOF and 14 rigid bodies. The full body model builds a framework
for the definition of a more simple model consisting only of legs and one torso segment
which represents the center of mass of the upper body. The simplified model has 24 DOF
and 8 rigid bodies. Both models are depicted in Figure 16 on the right
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Figure 16: Left: Capture setup - the subject wears a suit with attached retro-reflective markers
and walks over the force plates. The motion of the markers is recorded by 8 infrared
cameras. Right: Skeletal models - the blue arrows represent joint DOF and the green
arrows global translation and rotation. The simplified model on the right has one
torso segment that approximates the kinematics and inertia of the entire upper body
on the left.

The kinematics q(t) of the full body model are fitted to the joint trajectories of the
Vicon skeleton using constrained optimization. At each frame, the joint positions

p(q) =


tj1
...

tjM

 ∈ R3M (124)

are constrained to be equal to the target positions pvicon. Here, (j1, . . . , jM ) are the indices
of the kinematic link frames that coincide with the positions of the skeletal joints, tji are
the translations of the corresponding Denavit-Hartenberg transformations (cf. Eq. (17))
and M is the number of joints.

In general, the joint positions are insufficient for a unique identification of all joint angles.
If an end-effector position can be produced by the summed rotation around multiple joint
axes, an equal distribution of rotation around the contributing axes is assumed. This
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is achieved by minimizing squared joint angles. Therefore, for each frame, the following
optimization problem is solved:

min


d∑
i=7

q2
i


s.t. p(q) = pvicon .

(125)

Here, d denotes the total number of generalized coordinates specifying the model con-
figuration. The sum starts with index 7 excluding the 6 global DOF. The indication of
the frame t is omitted for readability. The optimization is performed using Sequential
Quadratic Programming [36]. To derive the simplified model from the full body kinematics,
the center of mass pub of the upper body (ub) is calculated by

pub =

∑
i∈ub mipi∑

i∈ub mi
(126)

and the two remaining torso DOF are optimized in the same manner.

4.2 force plate measurements

For measurement of contact forces, two AMTI force plates are included in the motion
capture system and synchronized to the cameras using an MX Giganet output synchroniza-
tion signal [47]. The plates are embedded in the ground and record the ground reaction
force, the plate moment and the center of pressure on the plate. The capture rate is 10
times higher than the frame rate of the visual system, i. e. 1000 Hz.

The force plates measure three force components (fx, fy, fz) and three moment com-
ponents (mx, my, mz) with respect to the plate coordinate system. The measurement is
realized with strain gauges that are attached to load cells at the four corners of each plate.
The origin of the plate coordinate system is positioned at the center of the plate at a
distance z0 below the surface. The parameter z0 is supplied in a calibration file. The plate
moments can be calculated from the applied force components and the point of application
(x, y) by

mx = −fyz0 + fzy + tx

my = fxz0 − fzx + ty

mz = −fxy + fyx + tz

(127)
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with the torsional torque components (tx, ty, tz). Generally only tz is unequal zero, so that

mx = −fyz0 + fzy

my = fxz0 − fzx

mz = −fxy + fyx + tz .
(128)

Rearranging of these equations yields the central location of force application on the plate

y = (mx + fyz0)/fz

x = (−my + fxz0)/fz .
(129)

The point rCOP = (x, y, 0)T is also referred to as center of pressure (COP) on the force
plate. The moment effecting the center of mass of a model’s foot is denoted by mr and
is referred to as ground reaction moment (GRM). It can be calculated using the cross
product of the vector pointing from the foot center of mass rfoot to rCOP and the ground
reaction force (GRF) fr = [fx, fy, fz]T :

mr = (rCOP − rfoot)× fr + [0, 0, tz]
T . (130)

The described forces and moments present two equivalent ways of modelling ground
interaction: Either we apply the GRF fr at the center of pressure rCOP and additionally
apply the torsional torque tz to the foot segment, or we apply fr at the center of mass rfoot

and the total GRM mr to the foot segment. The latter approach is chosen in this work,
because it does not require modelling of additional contact points at the foot segments.

4.3 estimation of inertial properties

To describe the dynamics of the rigid body system, inertial properties of the individual
bodies are needed. Since this work focuses on the learning of the overall connection
between motion and forces, rather than the precise description of a body’s shape, a simple
and computationally efficient approach is chosen. Each segment is modelled as a simple
geometrical body with constant density, such as ellipsoids and cylinders. The dimensions
of these geometrical bodies are determined using the subject specific segment lengths
l and a set of relative scale factors s to approximate the remaining dimensions of the
shapes. While l is determined from the joint positions p of the skeletal kinematics, the
scale factors are average values taken from surface body scans of the participating subjects.
Therefore, s are dataset specific parameters. Further necessary parameters are the relative
distances c of the centers of mass from the root of the segment with respect to the total
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segment length and relative segment masses m normalized to the total body mass. Both,
c and m, are set to literature values [157]. The used geometrical shapes are illustrated in
Figure 17. Based on the shape and the specific segment parameters a tensor of inertia can
be calculated for each rigid body. The components Ix, Iy and Iz correspond to rotations
around the x, y and z axis through the centroid of the body.

(a) Triaxial ellipsoid:
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5
(
r2

y + r2
z

)
Iy =

m

5
(
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x + r2
z

)
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m

5
(
r2

x + r2
y

) (131)

(b) Semi ellipsoid:
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5 −
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(132)

(c) Elliptical cylinder:
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4 +
r2

z

12

)
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4
(
r2

x + r2
y

)
(133)

The used geometrical models and parameters for every rigid body are listed in Table 1. The
table also includes calculation rules for rx, ry and rz, since these depend on the considered
segment. The relative center of mass distance c is used to determine the position tn−1

of the end-effector frame n located at the center of mass. This position is required to
calculate the Jacobian T (cf. Eq. (36)). The multiplication T TM of the inertia matrix
by the Jacobian leads to a shift of the moments of inertia consistent with the parallel
axis theorem [51]. Therefore, in the EOM specified in Eq. (74), the inertia is related to a
rotation around the actual pivot.

To verify this statement a simple example can be considered: A body with mass m and
tensor of inertia Ic (related to a rotation around its center of mass) is rotating around

66

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


4.3 estimation of inertial properties

axis z with rotational velocity q̇. There is no additional translation, so that the distance
r between rotation axis and the body’s center of mass is constant. Furthermore, the
rotation axis remains fixed at z = [0, 0, 1]T . The position of the center of mass can be
parameterized using polar coordinates:

r =


r cos q

r sin q

0

 . (134)

According to Eq. (36) and (37), the Jacobian transformation between generalized velocity
q̇ (of the rotation around z) and body velocity ξ is

ξ =

 ṙ
ω

 = T q̇ =

z × r

z

 q̇ (135)

with the rotational velocity ω = q̇z. Based on this tranformation, a torque effecting the
generalized coordinate q can be expressed as

τ = T TMξ̇

=

z × r

z


T mI3×3 03×3

03×3 Ic


 r̈

q̈z


= (z × r)T mr̈+ zTIcq̈z .

(136)

Using the polar coordinate representation of the position vector from Eq. (134), the first
term can be transformed as follows:

(z × r)T r̈ =


−r sin q

r cos q

0


T −rq̇2 cos q− rq̈ sin q

−rq̇2 sin q + rq̈ cos q


= r2(q̇2 sin q cos q + q̈ sin q2 − q̇2 cos q sin q + q̈ cos q2)

= r2q̈(sin q2 + cos q2)

= r2q̈ .

(137)

Inserting this result into Eq. (136) yields

τ = (mr2 + Ic33)q̈ . (138)
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Table 1: Geometric parameters and relative mass values specifying inertial properties of each
body segment. The relative center of mass positions c and the relative masses m are
literature values [157].

name (shape) l rx ry rz sx sy sz c m

Head (a) lhe sxlhe/2 sxlhe/2 szlhe/2 0.735 0.875 1.25 1 0.081
Thorax (c) lth , lsh lsh/2 sy(lab + lth)/2 lth - 0.673 - 0.82 0.216
Abdomen (c) lab lpe/2 sy(lab + lth)/2 lab - 0.673 - 0.44 0.139
Upper arm (c) lua sxlua/2 sylua/2 lua 0.32 0.32 - 0.436 0.028
Forearm (c) lfa sxlfa/2 sylfa/2 lfa 0.253 0.253 - 0.682 0.022
Upper body (c) lub lpe/2 sylub/2 lub - 0.673 - 0.626 0.536
Pelvis (c) lpe lpe/2 sylpe/2 szlpe - 0.236 0.2 0 0.142
Thigh (c) lt sxlt/2 sylt/2 lt 0.376 0.376 - 0.433 0.1
Shank (c) ls sxls/2 syls/2 ls 0.296 0.296 - 0.433 0.047
Foot (b) lf sxlf /2 sylf /2 lf 0.362 0.257 - 0.5 0.015

Thus, to obtain the moment of inertia around the axis z, the moment of inertia Ic33 around
a parallel axis through the body’s center of gravity is increased by mr2 which is exactly
the Steiner shift of the parallel axis theorem.

Based on the presented geometric models, the only remaining variables are the segment
lengths l. Their adjustment for every subject completely determines the dimensions
of the kinematic tree and its inertial properties. The full body model is described by
l = [lhe, lth, lsh, lab, lua, lfa, lpe, lt, ls, lf ] and the simplified leg model is specified by l =

[lub, lpe, lt, ls, lf ]. The used indices are defined in Table 1.

4.4 optimization of joint torques

The estimation of joint torques is realized by means of optimization. The optimization
procedure is performed using a sliding window across time frames. The sought-after
quantities, e. g. joint torques, are parameterized using polynomial approximations with an
order adapted to the chosen window length. Accordingly, the optimization variables are
polynomial coefficients. After successful optimization of a sequence, i. e. if the optimization
of all windows converged to an objective value smaller than a fixed threshold, smoothing
filters are applied.

Mathematically, the joint moments can be deduced from the EOM. For better readability
of the following description, the equation, that has already been introduced in Section
3.3.1, Eq. (76), is repeated with detailed dependencies:

M(q(t), l)q̈(t) = F(q(t), q̇(t), τ (t),fc(t), l)
= τ (t) + T (q(t), l)T

[
fc(t) +M (l)(g− ζ(q(t), q̇(t), l)

]
.

(139)
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Figure 17: Geometric shapes used to approximate the inertia of the human body segments.

This equation now includes the segment lengths l introduced in the last section. The
contact force vector fc summarizes contact forces and moments of all rigid bodies. In the
case of locomotion analysis, ground contact occurs only for foot segments, so that only
those components are unequal zero. For each foot i the force plate measurement results fr

and mr are inserted into the corresponding components of fc.
The capturing process of 3D motions and the combination with recorded exterior

forces introduces multiple error sources. Especially the capturing of the feet motion is
often affected by inaccurately placed and/or moving markers. The skeletal model itself,
inevitably represents a strong approximation of the real human body. In contrast to that,
the force plate measures the effect of the motion in a more direct way. Therefore, there is
always a discrepancy between the fitted skeletal motion q(t) of Eq. (125) and its supposed
effect, the contact force fc. The applied approach is closely related to predictive dynamics
optimization [161] which addresses this issue by including the EOM as equality constraints
and optimizing all relevant quantities which are the joint torques as well as the contact
forces and the motion states. This way, it is possible to reduce model and measurement
inaccuracies and simultaneously estimate the underlying joint torques. In practice, it is
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beneficial for the convergence of the optimization algorithm to reformulate the equality
constraint as a regularization term, so that a slight violation of the EOM is allowed.

In the following, all relevant quantities are represented as polynomials. The coordinates
q and their derivatives are approximated by

q(t) =
oq∑

i=0
α(i)

q ti

q̇(t) =
oq∑

i=1
iα(i)

q ti−1

q̈(t) =
oq∑

i=2
(i− 1)iα(i)

q ti−2 ,

(140)

the contact forces are modelled using

fc(t) =
ofc∑
i=0

α
(i)
fc

ti . (141)

and the joint torques are parameterized by

τ (t) =

 06×1∑oτ
i=0 α

(i)
τ ti

 . (142)

Here, the first six global components are set to zero. The generalized coordinates and their
1st order derivatives are summarized in the motion state vector x =

[
qT , q̇T

]T
. With this

notation, the optimization problem is formulated as

(ατ ,αfc ,αq) = arg min
{
wpd

[
EEOM, Ex, Ep, Efc , Edτ

]T}
(143)

using a weighted sum over the individual terms

EEOM =
1
T

T∑
t=1
‖M(q(t))q̈(t)−F(x(t),fc(t), τ (t))‖22 ,

Ex =
1
T

T∑
t=1

∥∥∥x(t)−x(m)(t)
∥∥∥2

2
,

Ep =
1
T

T∑
t=1

∥∥∥∥∥∥∥
p(q(t))
ṗ(x(t))

−
p(m)(t)

ṗ(m)(t)


∥∥∥∥∥∥∥

2

2

,

Efc =
1
T

T∑
t=1

∥∥∥fc(t)− f (m)
c (t)

∥∥∥2
2

,

Edτ = ‖τ (1)w − τ (T − δt)w−1‖22 .

(144)
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4.5 data specification

The weights wpd = [1, 20, 10, 1, 1] are heuristically set. The approach is referred to as
predictive dynamics optimization (PDO) in reference to the method by Xiang et al. [161].
Since it is an unconstrained optimization problem, a BFGS Quasi-Newton method [14]
can be applied. The first term Eeom of Eq. (144) measures the deviation from the EOM.
The following two terms, Ex and Ep, control the motion. Here, the target motion states
x(m) result from the kinematic fit of Eq. (125). In addition to this primarily angle-based
view, the global joint positions p(q) and velocities ṗ(x) = Tj(q)q̇ are compared to the
target values. The velocity is calculated using the Jacobian Tj which is related to the
kinematic links localized at the skeletal joints. An objective function that considers the
global coordinates like Ep weights the positions of all joints equally, while an angle-related
objective function like Eq causes a higher deviation of joint positions at the end points of
kinematic chains. Therefore, the combination of both functions yields a more accurate
measure for the proximity of two motions. Additionally, the contact forces are regularized
by Efc and large changes of the joint torques from the previous window w − 1 to the
current window w are penalized by Edτ . Here, δt is the overlap between windows.

In order to avoid unrealistic interpolation of the abrupt contact dynamics, the window
size is set to 3 frames which is the minimal value that still allows the calculation of
acceleration. The overlap is set to 2 frames. With this choice, constant forces, torques
and accelerations are sufficient, so that ofc = oτ = 0 and oq = 2. After optimization,
the results are concatenated and the values during overlapping time frames are averaged.
This way, changes in value are possible at any frame despite constant forces during the
individual windows. Some example results are shown in Figure 18, including sagittal knee
angles, vertical GRF, medio-lateral GRM and sagittal ankle torques (from left to right).
Each row corresponds to one sequence.

4.5 data specification

The recorded dataset encompasses 185 walking and 66 running sequences executed by
22 healthy subjects. The associated demographic information is provided in Table 2. All
subjects volunteered to participate in the study and signed an informed consent form. The
study is part of the “Individualized Implant Placement” project funded by the European
Research Council (ERC-2013-PoC) and was approved by the ethics commission of the
Hannover Medical School (MHH). Natural movements were achieved by instructing the
subjects to walk and run at different speeds without paying attention to the force plates.
Invalid trials with incorrect foot placement on the plates were sorted out afterwards. In
order to increase and balance the dataset, augmentation is performed by mirroring the
kinematics and dynamics at the sagittal plane doubling the number of sequences.
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Figure 18: Predictive dynamics dataset examples. The figure includes sagittal knee angles, vertical
GRF, medio-lateral GRM and sagittal ankle torques (from left to right). The plots of
a row belong to one sequence of the set.
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4.6 generation of training data points

Table 2: Demographic table of participating subjects.

subject ID gender height weight BMI

1 f 1.69 65.5 23
2 m 1.88 74.4 21
3 m 1.71 61.8 21
4 m 1.81 79.3 24
5 f 1.71 66.6 23
6 m 1.85 74.5 22
7 m 1.86 96.6 28
8 m 1.67 83.8 30
9 m 1.85 95.8 28
10 m 1.84 68.8 20
11 m 1.81 67.9 21
12 m 1.75 81.4 27
13 m 1.72 79.4 27
14 f 1.70 68.0 24
15 m 1.94 88.8 24
16 m 1.80 72.4 22
17 m 1.78 93.5 30
18 m 1.86 68.3 20
19 m 1.80 83.5 26
20 m 1.80 68.3 21
21 m 1.79 69.9 22
22 f 1.73 55.7 19

4.6 generation of training data points

The training of the learning-based algorithms requires datasets consisting of 3D motions,
GRF/M and joint torques. For this purpose, the PDO results of the laboratory data
(cf. Section 4.4) and a public dataset by Fukuchi et al. [39] are used. The latter consists
of 308 pre-processed sequences of level ground and treadmill walking executed by 44
subjects. The data provided includes joint angles, joint moments and GRF. For the sake
of readability, the predicitive dynamics set will be referred to as PD-set and the public
dataset as Fukuchi-set in the following.

The PD-set yields sequential data of generalized coordinates q(t) and subject specific
length parameters l which fully describe the kinematics. Furthermore, it includes the
GRF/M fc(t) and the joint torques τ (t), whereas the Fukuchi-set only provides pre-
processed joint angles, GRF and joint torques. In both cases, the goal is a regression
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of the underlying forces and moments, also referred to as control, based on the motion
parameters. The following description uses the notation for the PD-set. The adaptation
for the application to the Fukuchi-set is straight forward by replacing the complete motion
states x(t) with the provided joint angles and the GRF/M with the GRF.

Similar to the optimization method presented above, the learning-based approaches
operate on sliding windows with polynomial approximations. Since the modelled dynamics
are independent of the translation of the root joint and the global orientation around
the vertical axis, all windows are aligned in terms of the these coordinates. The initial
translation is shifted to zero by q1...3(t) = q1...3(t)− q1...3(0). Furthermore, the orientation
around the vertical axis is roughly aligned by determining the average value of each motion
sequence prior to the split into windows and by rotating all global quantities correspondingly,
in particular, the contact forces and moments. After alignment, the input motion states
x(t) are parameterized using the coefficients αx by

x(t) =
ox∑

i=0
α(i)

x ti (145)

with polynomial order ox and t = t0, . . . tw−1 corresponding to w frames. In the case of 3D
pose reconstruction results as input data, global translation and orientation information
might not be available. This leaves the joint angles and angular velocities which are
indicated by x̂ = [q7, . . . , qd, q̇7, . . . , q̇d]

T . They are approximated by

x̂(t) =
ox∑

i=0
α
(i)
x̂ ti . (146)

Note that the approximations of x(t) and x̂(t) in Eq. (145) and Eq. (146), respectively,
violate the differential relation between q and q̇. However, this is not important for the
success of the regression. Similar to the motion states, the control vector

u(t) =

fc(t)

τ (t)

 (147)

is approximated by

u(t) =
ou∑

i=0
α(i)

u ti (148)

using the coefficients αu.
Based on these representations, the tasks examined in Chapter 5 and Chapter 6 are to

predict αu from αx or from αx̂. All data points are shifted to the respective mean value
of the training set and normalized to its standard deviation. The tuning of relevant hyper
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data split training IDs validation IDs test IDs

1 5, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22 1, 2, 3, 13 4, 6, 12, 15
walk 2 1, 2, 4, 6, 8, 9, 12, 14, 16, 17, 18, 21, 22 3, 10, 11, 13 5, 15, 19, 20

3 1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 19 5, 18, 21, 22 8, 10, 17, 20

1 3, 4, 8, 9, 10, 11, 12, 13, 14 2, 6, 7 5, 15, 16
run 2 2, 5, 6, 8, 9, 10, 13, 14, 15 3, 7, 16 4, 11, 12

3 4, 7, 8, 9, 10, 11, 12, 13, 16 2, 3, 6 5, 14, 15

Table 3: Split of the PD-set into training, validation and test sets according to subject IDs. The
validation sets are used to adjust hyper parameters and the test sets are used to evaluate
the performance of the regression methods.

parameters and the quantitative evaluation of the proposed methods is performed using
the PD-set. For this purpose three different splits into training, validation and test set are
examined. The dataset is randomly split according to the subject IDs as listed in Table
3. Different splits are used for walking and running data, due to the smaller size of the
running set.

75

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


5
S U P E RV I S E D L E A R N I N G O F I N V E R S E DY N A M I C S

In this chapter, supervised learning of human dynamics is presented. The application of
machine learning to inverse dynamics is motivated by the tremendous success of artificial
neural networks in related problems such as 2D and 3D human pose estimation [19, 50,
90, 137, 162]. The regression of acting forces and moments from an observed motion
represents the next natural step toward a complete learning-based analysis of human
motion. As previously described, the goal is to estimate external forces and moments as
well as joint torques from a kinematic representation of an input motion, as illustrated in
Figure 19. In contrast to traditional model-based approaches, e. g. using inverse or forward
dynamics formulations and solving by optimization, machine learning techniques include
the following advantages1:

1. Robustness against noisy kinematic input, i. e. smoothing of outliers.

2. Applicability to incomplete or dimensionality reduced input representations.

3. Automatic extraction/selection of relevant features.

4. Low computation time of the application.

Motivated by these properties, several supervised regression methods for estimating
dynamics in human locomotion are presented here. Parts of this chapter are based on
previous publications [170, 171]. The proposed methods predict forces and moments during
the full gait cycle using 3D motion data of multiple subjects. They can be divided into end-
to-end regressions and multi-stage methods that are motivated by the limited amount of
training data and the frequent criticism of neural networks for their lack of interpretability.
The latter method performs a classification on a set of handcrafted features to identify
the current motion phase and then infers the GRF/M and joint torques in the sub space
corresponding to the class label. The gait phases are viewed as sub categories of the
primary class, the motion type (e.g. walking). For both, the end-to-end regression and the
multi-stage method, different algorithms are tested including artificial neural networks,
random forests and ridge regression. The quantitative comparison is conducted based on
the datasets presented in Chapter 4.

The proposed methods are designed to perform without information about the global
position and orientation of the human body. This property makes them applicable to

1 The mentioned properties are model-dependent and do not apply to all machine learning methods without
restrictions.
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results of 3D pose reconstruction algorithms. The application to reconstructed 3D motions
is demonstrated using results generated by a structure from motion approach [148]. The
motions were reconstructed from 2D gait patterns of the CMU database [18].

An obvious disadvantage of learning the dynamics from a training set is the dependency
on the available data. The application of the resulting models is limited to data that lies
within the parameter space of the learned dynamics, e. g. in terms of body and motion
type. But exactly this property can be exploited for the detection of abnormal motion
patterns, i. e. motions that are atypical with respect to the used training dataset. This is
shown by means of an asymmetrical gait pattern which was reconstructed from inertial
sensor data [88].

The contributions of this chapter can be summarized as follows:

1. Learning-based methods for solving the inverse dynamics problem of human motion.

2. A multi-stage approach including regression of missing motion input, gait phase
classification, contact feature extraction and control regression is presented.

3. The multi-stage methods and the end-to-end regressions are quantitatively evaluated
for walking and running sequences and compared to data-driven inverse dynamics
optimization.

4. The applicability of the proposed methods to reconstructed motions from the CMU
database is investigated.

5. Abnormal gait detection is exemplified using a sequence reconstructed in 3D from
IMU data.

In the following Section 5.1 the proposed methods are described. In Section 5.2 the
experimental evaluation is presented and Section 5.3 discusses the main results and
concludes this chapter.

5.1 methodology

To realize supervised learning of the inverse dynamics problem at hand, the models
must match the available data scope and data properties. The data is characterized by its
sequential nature, high correlations between motions of the same subject, varying parameter
scales, and a nonlinear mapping (given by the EOM) to be learned. To facilitate the
regression problem, especially in view of the comparably small training sets, a polynomial
approximation of the input and output parameters is used to capture temporal context
in advance. As described in Chapter 4, control parameters αu will be regressed from
motion parameters αx (or αx̂ that exclude global information). These parameter vectors
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Figure 19: Illustration of the regression task. The GRF/M and the joint torques effecting the
modelled human body are predicted by a machine learning (ML) model based on the
skeletal kinematics during short temporal windows. The human shapes were generated
using SMPL [84].

encode the controls u(t), consisting of joint torques and GRF/M, and the motion states
x(t) which contain the generalized coordinates and their first derivatives. Each parameter
vector describes a short temporal window of the associated curve. Therefore, the trained
regression models are applied to a motion sequence by dividing it into corresponding
windows with overlapping frames. The overlap reduces the change of successive input and
output parameter pairs and allows finer discretization than given by the used window
length.

Varying distributions of individual components are compensated by subtracting the mean
and normalizing to the standard deviation. This is done in addition to the normalization
of forces and moments using the subject’s mass as described in Section 4.3 which is
necessary to allow cross-subject predictions. Further measures that help not to overfit on
person-specific details include the use of a simplified skeletal model, the split into training,
validation and test set according to subject identification and the consideration of small
temporal windows.

A main feature of the data is introduced by the ground contact or more precisely by
the lack thereof. While motion states and joint torques are progressing smoothly over
the course of a gait period, the GRF/M are characterized by sudden changes and are
frequently identical with zero. This type of behavior is difficult to learn within a regression
task, because it requires the output of absolute zeros. This fact motivates the use of a
multi-stage approach including a classification of the contact state which narrows down the
regression to the relevant subset and greatly facilitates the output of vanishing forces. In
this sense, the method uses prior knowledge about the data which is a reasonable approach
given the typically small dataset sizes. In the following sections, the regression methods
are described in detail.
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5.1.1 End-to-End Regression

As a baseline, a direct regression of control coefficients αu from motion coefficients αx̂ is
investigated. The implemented methods are a neural network (NN), a random forest (RF)
and a linear ridge regression. Their operating principles have been presented in Chapter 3.

The RF is generated by bagging of decision trees. The number of trees and the minimal
number of examples in the leaves are determined for each training set separately by
comparing the performance on the corresponding validation set (specified in Table 3) using
grid search. The same validation procedure is applied to the ridge regression, in order to
identify the weighting parameter of the regularization term.

The NN is a fully connected feed-forward network. Here, the determined hyper parameters
include the architecture, the activation function, the batch size and the number of epochs.
The considered networks have 1 to 3 hidden layers with sizes between 50 and 200 neurons.
The training of the NN is done using the Adam optimization algorithm [62]. The three
approaches are termed as end-to-end regressions.

5.1.2 Multi-Stage Regression

The multi-stage approach consists of inference of the missing global information, feature
extraction, classification and finally regression of control coefficients. The individual steps
are now described separately:

1. Root Regression. If the root coordinates, i. e. the global orientation and the linear
and angular velocities of the root joint2, are not available as input, they are estimated
by regression methods. The missing coordinates of the root joint αroot are inferred
from the partial parameterization αx̂ by a mapping

αroot = froot(αx̂) . (149)

The global information is needed for the calculation of additional contact features,
as will be described subsequently. For the root regression the same methods as for
the end-to-end regression are applied and compared. The root coefficients αroot are
inserted into αx and the full states x(t) can be obtained using Eq. (145).

2. Contact Feature Extraction: In the second step, additional features that are
supposed to predominantly characterize the contact state of the model are calculated.
These features are the absolute velocities vc of the joints at the model’s feet, more

2 The global position at the initial frame is not included, since it has been set to zero to align the data
points.
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precisely at ankle and toe joints. The three dimensional linear velocity vi of each foot
joint position i = 1, 2, 3, 4 (left ankle, left toe, right ankle and right toe) is computed
using the corresponding submatrix Tvi (including only the rows that transform to
linear velocities) of the Jacobian. Then the L2-norms are determined and averaged
over the time span of the window to obtain vc:

vi(t) = Tvi(q(t))q̇(t) ,

vc =
1
T

∑
t=1

[
‖v1(t)‖2 ‖v2(t)‖2 ‖v3(t)‖2 ‖v4(t)‖2

]
.

(150)

The modified feature vector is

θ =
[
αT

x vc

]
. (151)

3. Gait Phase Classification: In the third part, a class label c is assigned to the
considered feature vector. Each motion type is divided into several phases and a
classification task is performed based on θ:

lc = fphase(θ) . (152)

A walking cycle is divided into double support left, single support left, double support
right and single support right and a running cycle is divided into support left, flight
left, support right and flight right3. The methods implementing fphase are a support
vector classifier with a radial basis function kernel, an RF and an NN. In the case of
the support vector machine (SVM) and the RF, class weighting is applied according
to the reciprocal sample numbers to balance the classifiers. In RF, the weights
adjust the impurity score used to find training set splits in favour of the minority
classes. The SVM is modified by multiplying the softness parameter of class specific
margins with the corresponding weights. Both approaches reduce the penalty for
false positives of minority classes. The NN on the other hand, receives a training set
in which the underrepresented classes are oversampled.

4. Control Regression: The final part of the proposed approach is the regression of
control coefficients αu from αx̂ given a class label lc. One model fu,lc for each class
lc is trained using the respective subset of motion coefficients as predictors and the
subset of control coefficients as responses resulting in

αu = fu,lc(αx̂) . (153)

3 In case of double support and flight, the designations left and right indicate the leading foot.
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polynomial fit

αx̂

root regression
αx contact feature

θ = (αx,vc)

c

control polynomial repr.αu
u(t)

calculation

motion phase
classificationEq. (146)

Eq. (148)regression

x̂(t)

αx̂

Figure 20: Schematic illustration of the multi-stage regression method. The process steps in
the colored boxes are implemented by different learning methods. The dashed arrow
represents a version of the method investigated within the context of an ablation
study (cf. Table 8).

Only if the global coordinates are given from the beginning, they are used as input
here. The control regression is not performed on estimated αx, but on the original
αx̂, to avoid the multiplication of uncertainties. The task is solved with the same
three regression methods as before.

The actual temporal progressions of joint torques and GRF/M can be computed from αu

using the polynomial approximation in Eq. (148). The method is referred to as multi-stage
regression and the related process is shown in Figure 20.

5.2 experimental evaluation

In this section the proposed learning-based inverse dynamics methods are evaluated. For
quantitative evaluation, the recorded laboratory data is used in the form of the PD-set
(cf. Section 4.6). The performance of the regression algorithms is evaluated using the
following error measures. Predicted quantities g(t) at discrete times t are compared to the
target values h(t) in terms of relative root mean squared error (rRMSE) ε:

ε =
RMSE

1
N

∑N
i=1(max hi −min hi)

, (154)

RMSE =

√√√√ 1
T

T∑
t=1

(g(t)− h(t))2 . (155)

The rRMSE is normalized to the average range of the target value in the training set with
N samples. In contrast to the root mean squared error (RMSE), the relative measure
normalizes the deviation of components according to their average range in the training set.
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Thus, components with generally small absolute values are relevant as well. The rRMSE is
applied to predicted GRF, GRM, joint torques and the concatenated vector of controls u.
Furthermore, RMSE values and Pearson’s correlation coefficients

ρ =

∑
t(g(t)− ḡ)(h(t)− h̄)√∑

t(g(t)− ḡ)2
√∑

t(h(t)− h̄)2
, ḡ =

1
T

T∑
t=1

g(t) , (156)

for the main comparison of the different methods are given in Appendix A.1.
Several algorithms for the end-to-end regression and for individual steps of the multi-

stage method, i.e. for the root regression, the gait phase classification and the control
regression are compared. The influence of the gait phase classification and the use of
additional contact features is investigated in an ablation study. In addition, the end-to-end
regression methods are contrasted using the Fukuchi-set. This set is only used for the
end-to-end approach, because the contact features vc cannot be calculated based on the
provided data.

Furthermore, the performance on reconstructed gait motions taken from the CMU
database is investigated qualitatively. On this dataset, a quantitative evaluation is not
possible due to the lack of GRF/M and a consequential lack of joint torques. In a final
experiment the application of the learning-based approach is tested as a tool for the
detection of abnormal gait based on inertial measurements.

5.2.1 Predictive Dynamics Dataset

The proposed methods are evaluated on the laboratory data using the test sets, listed in
Table 3. For this first experiment, the entire kinematics are used as input, i. e. also the
global root orientation. The difference between predicted and target curves (predictive
dynamics optimization results) is quantified using the rRMSE presented in Eq (154).
Table 4 lists rRMSEs εfr , εmr , ετ and εu of the GRF, GRM, joint torques and all controls
u. The collective measure εu is included to assess the overall performance of a method.
The presented learning-based algorithms are compared to a data-driven inverse dynamics
approach [85] as well. This method incorporates physical modeling into a maximum a
posteriori framework. Implementation details can be found in Appendix A.2. In the case
of the end-to-end and multi-stage regressions, only the best performing implementations
are listed in Table 4. In addition to the rRMSE, the table also includes mean per frame
computation times.

The proposed regression methods achieve lower error values than the data-driven opti-
mization, while reducing computation times by two orders of magnitude. The computation
times include the initial optimization of motion coefficients αx. The values are obtained
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Table 4: Comparison between the presented regression methods and a data-driven optimization
[85]. The table shows rRMSE values of predicted GRF/M, joint torques and the entire
controls u. The last column lists computation times per frame. Standard deviations are
indicated in parentheses.

data method εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓ comp. time [s]

walk
[85] 12.8 (5.5) 18.6 (6.3) 16.4 (5.0) 16.1 (4.6) 3.246 (0.265)

end-to-end 8.7 (3.0) 16.1 (6.1) 13.3 (3.6) 12.9 (3.3) 0.049 (0.003)
multi-stage 7.4 (4.2) 17.7 (5.6) 12.1 (4.2) 12.3 (4.0) 0.061 (0.011)

run
[85] 17.2 (4.2) 18.4 (5.7) 19.7 (3.8) 19.0 (3.7) 3.368 (0.300)

end-to-end 12.6 (4.0) 14.4 (4.8) 14.8 (3.2) 14.3 (3.0) 0.048 (0.002)
multi-stage 13.1 (4.4) 14.7 (5.3) 14.6 (2.9) 14.3 (3.0) 0.084 (0.013)

using unoptimized python code without parallelization, run on an Intel(R) processor with
3.50 GHz. On the walking data, the multi-stage approach outperforms the end-to-end
regression with respect to the overall prediction capability measured by εu. However, a
clear drop in performance of the regression methods can be observed for the GRM. This
is due to a high variability of the vertical and the anterior-posterior components which
fluctuate around zero. These components are small compared to the medio-lateral moment
and are strongly influenced by the quality of the inverse kinematics result, in particular the
estimated position of foot joints relative to the COP of the GRF. Unlike the running set,
the walking set is composed of data from two recording sessions in which different inverse
kinematics methods were used. This results in two modes that are particularly pronounced
in the GRM and affect their regression because the model must either learn to distinguish
between the two modes based on subtle differences in the motion representation or perform
some kind of averaging between them. The first scenario is not desirable, as it represents a
form of overfitting. However, it is unlikely due to the low complexity of the models. On the
running data, the overall performance of end-to-end and multi-stage regression is similar.

To illustrate the mean performance of the different methods, Figure 21 shows multi-stage
regression results for walking and running. The figure showcases the major joint torques
active in human locomotion (sagittal ankle, knee and hip torques) as well as vertical
and anterior-posterior GRF and medio-lateral GRM. These are the components with the
largest absolute values of the entire control parameters. It can be seen that the multi-stage
model can reliably predict control values during frames without ground contact due to the
additional gait phase classification. Better agreement between the distribution of targets
and estimates is obtained when ridge regression is used to infer controls in a given class
(cf. walking) than when RF is used instead (cf. running). The RF appears to predominantly
approximate the average values of the set instead of the features of the individual data
points.
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walking

running

Figure 21: Averaged predicted GRF/M and joint torque components. The figure shows multi-
stage results generated without global coordinates as input. The top rows display
results for walking with RF root regression, NN gait phase classification and ridge
control regression. The estimates for running (bottom) were produced with ridge
root regression, RF classification and RF control regression. The bold line represents
mean predictions and the dashed lines the related standard deviation. The grey area
illustrates mean ± standard deviation of the ground truth.
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Table 5: End-to-end control regression results. The table shows rRMSE values of predicted
GRF/M and joint torques for a regression with and without global root coordinates as
input.

data input method εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓

walk

Ridge 10.5 (2.9) 18.8 (5.7) 14.7 (4.6) 14.7 (4.0)
αx RF 8.7 (3.0) 16.1 (6.1) 13.3 (3.6) 12.9 (3.3)

NN 9.5 (3.1) 18.2 (5.0) 12.8 (3.3) 13.2 (3.1)
Ridge 10.6 (3.0) 18.7 (6.2) 15.0 (4.7) 14.8 (4.2)

αx̂ RF 8.7 (2.9) 16.4 (6.1) 13.3 (3.6) 13.0 (3.3)
NN 9.6 (2.9) 17.7 (5.3) 13.0 (3.4) 13.2 (3.2)

run

Ridge 18.8 (5.3) 24.8 (7.0) 20.8 (5.7) 21.2 (5.1)
αx RF 12.6 (4.0) 14.4 (4.8) 14.8 (3.2) 14.3 (3.0)

NN 14.4 (3.8) 20.1 (6.0) 15.3 (3.1) 16.1 (3.3)
Ridge 18.7 (5.1) 25.2 (7.1) 21.6 (5.6) 21.7 (4.9)

αx̂ RF 12.8 (4.1) 14.3 (4.8) 14.8 (3.2) 14.3 (3.0)
NN 15.3 (4.4) 19.0 (5.8) 17.6 (4.4) 17.4 (3.7)

Note that for walking, the curves do not span over a full gait period, since the experiments
have been done using the optimized input motion states which were generated by PDO.
For this algorithm complete force plate information is required. However, the given lab
setup only included two force plates, resulting in valid information for one single support,
one double support and a second single support. Thus, a second double support is missing
to form a full gait period.

Figure 22 shows example regression results for walking and running, generated using
the best multi-stage methods for each data type. The chosen sequences have error values
close to the mean of the respective data type and regression method.

Comparison of Different Implementations

In the following, different implementations of the proposed methods are evaluated. Table
5 shows end-to-end regression results based on complete kinematic input αx and partial
input αx̂. The multi-stage regression results for walking and running are summarized in
Table 6. Here, only the best performing combinations of methods (in terms of εu) are
shown together with average performances. For walking, the best performing end-to-end
regression method is an RF with εu = 12.9 %. The best multi-stage approach achieves
εu = 12.3 % using an RF as classifier and a ridge regression to estimate the controls. These
are the results including global root coordinates as input. If the global information is
left out, the corresponding values are εu = 13.0 % for end-to-end and εu = 12.2 % for
multi-stage. In the latter case, this performance is achieved by an RF root regression, an
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slow walking

fast walking

running

Figure 22: Examples of predicted GRF/M and joint torques. The figure shows multi-stage results
using an RF root regression, an NN classification and a ridge control regression for
walking and a ridge root regression, an RF classification and an RF control regression
for running. The control rRMSEs are εu = 12.1 %, 12.3 %, 14.3 % (top to bottom).
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Table 6: Multi-stage regression results. The table shows rRMSEs of the estimated GRF/M and
joint torques. The upper part lists the results given complete input αx and the lower
part lists the results with incomplete input αx̂ (missing global information). Averaging
over methods is indicated by the character Ø.

walking

input root reg. class. control reg. εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓

αx

- RF Ridge 7.4 (4.2) 17.7 (5.6) 12.1 (4.2) 12.3 (4.0)
- SVM Ø 8.3 (4.0) 16.8 (7.0) 12.8 (4.4) 12.7 (4.4)
- RF Ø 8.2 (3.4) 16.6 (5.7) 12.7 (3.8) 12.6 (3.5)
- NN Ø 8.2 (3.4) 16.6 (5.7) 12.7 (3.7) 12.6 (3.5)
- Ø Ridge 7.5 (4.5) 17.9 (6.7) 12.2 (4.7) 12.4 (4.6)
- Ø RF 8.3 (3.2) 15.8 (6.3) 13.2 (3.9) 12.7 (3.6)
- Ø NN 8.9 (2.8) 16.3 (5.2) 12.8 (3.2) 12.8 (3.1)

αx̂

RF NN Ridge 7.5 (4.0) 17.4 (6.2) 12.1 (4.3) 12.2 (4.2)
Ridge Ø Ø 8.6 (3.7) 16.8 (6.7) 13.2 (4.3) 13.0 (4.1)

RF Ø Ø 8.5 (3.7) 16.8 (6.7) 13.2 (4.3) 13.0 (4.1)
NN Ø Ø 8.5 (3.7) 16.8 (6.7) 13.2 (4.3) 13.0 (4.1)
Ø SVM Ø 8.6 (4.0) 16.9 (7.5) 13.2 (4.8) 13.0 (4.7)
Ø RF Ø 8.5 (3.5) 16.8 (6.3) 13.2 (4.0) 13.0 (3.8)
Ø NN Ø 8.5 (3.5) 16.8 (6.3) 13.2 (4.1) 13.0 (3.8)
Ø Ø Ridge 7.5 (4.1) 17.7 (7.4) 12.2 (4.8) 12.3 (4.8)
Ø Ø RF 8.4 (3.3) 16.1 (6.4) 13.4 (4.3) 13.0 (4.0)
Ø Ø NN 9.7 (3.2) 16.7 (6.2) 13.9 (3.5) 13.6 (3.3)

running

αx

- RF RF 13.1 (4.4) 14.7 (5.3) 14.6 (2.9) 14.3 (3.0)
- SVM Ø 14.6 (4.6) 18.9 (7.9) 16.6 (4.8) 16.7 (4.5)
- RF Ø 13.9 (4.6) 18.2 (7.5) 16.1 (4.8) 16.1 (4.5)
- NN Ø 14.2 (4.8) 18.6 (7.8) 16.4 (4.8) 16.4 (4.6)
- Ø Ridge 14.9 (4.6) 23.5 (8.5) 17.0 (5.8) 17.9 (5.5)
- Ø RF 13.3 (4.4) 14.8 (5.2) 14.8 (2.9) 14.5 (3.0)
- Ø NN 14.6 (4.9) 17.4 (6.2) 17.4 (4.8) 16.8 (4.0)

αx̂

Ridge RF RF 13.4 (4.4) 14.8 (5.4) 14.6 (2.9) 14.4 (3.0)
Ridge Ø Ø 14.7 (5.1) 19.5 (9.0) 16.3 (4.6) 16.6 (4.8)

RF Ø Ø 15.1 (5.1) 20.1 (9.3) 16.7 (4.6) 17.1 (4.9)
NN Ø Ø 14.9 (5.1) 19.8 (9.2) 16.5 (4.6) 16.9 (4.9)
Ø SVM Ø 15.4 (5.0) 20.4 (9.5) 16.9 (4.6) 17.3 (4.9)
Ø RF Ø 14.4 (5.1) 19.1 (8.8) 16.1 (4.6) 16.3 (4.8)
Ø NN Ø 14.9 (5.1) 19.9 (9.2) 16.5 (4.6) 16.9 (4.9)
Ø Ø Ridge 16.4 (5.1) 27.0 (10.3) 17.9 (5.8) 19.4 (6.0)
Ø Ø RF 13.6 (4.3) 15.0 (5.3) 14.9 (2.9) 14.7 (3.0)
Ø Ø NN 14.7 (5.4) 17.5 (6.2) 16.7 (4.2) 16.5 (4.0)
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Table 7: Gait phase classification results for running. The upper part lists the results based on
complete input information and the lower part the results without global root coordinates.
In the latter case, the values are averaged over the three tested root regression methods.
The class labels lc = 0, 1, 2, 3 represent double support left, single support left, double
support right and single support right.

precision ↑ recall ↑
root reg. class. lc = 0 lc = 1 lc = 2 lc = 3 lc = 0 lc = 1 lc = 2 lc = 3

- SVM 0.83 0.84 0.79 0.81 0.37 0.96 0.42 0.97
- RF 0.90 0.90 0.88 0.87 0.60 0.97 0.67 0.97
- NN 0.84 0.86 0.84 0.82 0.44 0.96 0.52 0.97
Ø SVM 0.63 0.80 0.72 0.77 0.20 0.98 0.21 0.98
Ø RF 0.89 0.90 0.88 0.87 0.60 0.97 0.68 0.97
Ø NN 0.85 0.84 0.84 0.81 0.38 0.97 0.41 0.97

NN classification and a ridge control regression. Looking at the averaged results, we can
see that the choice of root regression method has no influence on the outcome in the case
of walking. For the gait phase classification, the RF and the NN give the best results and
the final control regression is best implemented using a ridge regression.

A more detailed evaluation of gait phase classification based on accuracy and recall
scores is presented in Table 7. The upper part includes values for classification based on the
complete input and the lower part includes the averaged values with prior root regression.
It can be seen that the RF outperforms the other classification methods. In particular,
the recall of the double support classes c0 and c2 is significantly higher, allowing for an
accurate control regression during these frames as well.

In contrast to the results of the walking set, the results for running show a clear
superiority of the RF, both, for the end-to-end regression and as control regressor in the
multi-stage approach. Similar to the walking dataset, the RF as phase classifier is still the
best choice and different root regression methods only slightly influence the performance.
The ridge regression is not suited as control regressor for this motion type probably due
to a larger variability of the data. In general, the errors of the model approximation are
amplified by the larger accelerations during running, resulting in a higher uncertainty of
the predictive dynamics ground truth compared to walking. This feature combined with
the smaller size of the training sets most likely causes the superiority of the RF. The
theory will be further explored in an experiment presented in Chapter 6 in which the size
of the training set is gradually reduced.

To investigate the influence of the gait phase classification and the contact features,
a variant of the method that executes the classification on the pure motion coefficient
(without vc) is tested for the walking data. The associated process flow is shown in Figure
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Table 8: Ablation study for walking. The multi-stage approach is evaluated without calculation
of contact features and compared to the end-to-end and standard multi-stage approach.
The upper part lists the results with global input coordinates and the lower part lists
the corresponding results without the global information.

vc root reg. class. control reg. εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓

yes - RF Ridge 7.4 (4.2) 17.7 (5.6) 12.1 (4.2) 12.3 (4.0)
no - RF Ridge 7.5 (4.2) 17.8 (5.5) 12.3 (4.3) 12.4 (4.0)
no - - RF 8.7 (3.0) 16.1 (6.1) 13.3 (3.6) 12.9 (3.3)

yes RF NN Ridge 7.5 (4.0) 17.4 (6.2) 12.1 (4.3) 12.2 (4.2)
no - RF Ridge 7.6 (4.0) 17.6 (6.2) 12.3 (4.3) 12.4 (4.2)
no - - RF 8.7 (2.9) 16.4 (6.1) 13.3 (3.6) 13.0 (3.3)

Table 9: Evaluation of the end-to-end regressions using the public dataset by Fukuchi et al. [39].
The table lists rRMSEs of the predicted GRF and joint torques.

control reg. εfr [%] ↓ ετ [%] ↓
Ridge 13.7 (2.7) 16.1 (3.1)
RF 8.8 (2.8) 12.5 (3.2)
NN 9.6 (2.3) 13.9 (3.0)

20 by the dashed arrow. The results of this version are compared to the end-to-end and
the standard multi-stage approach in Table 8. The influence of the gait phase classification
dominates compared to the inclusion of the contact feature.

5.2.2 Public Dataset

The public dataset by Fukuchi et al. [39] includes 44 subjects performing level ground
and treadmill walking at various gait speeds. The set encompasses 308 pre-processed
sequences with kinematics and dynamics, i. e. joint angles, joint torques and GRF. This
data is averaged over several gait cycles. The joint angles are treated as input states and
the joint torques and GRF as output controls. After division into 3-frame windows and
polynomial fit, the end-to-end regressions are applied to the resulting coefficients and
analyzed regarding rRMSE of joint torques and GRF. Due to the larger size of this dataset,
a 5-fold cross-validation can be used. The results are listed in Table 9 and predicted curves
are shown in Figure 23. The comparison of the methods yields a similar rating as for the
PD-set: The RF outperforms the other regression methods, especially ridge regression,
whose linear mapping seems to be insufficient for the end-to-end regression task.
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Figure 23: Mean predicted GRF and joint torque curves of the Fukuchi-set [39] using an NN
end-to-end regression.

5.2.3 Application to Reconstructed Motions

In this Section the proposed methods are tested on reconstructed 3D motion states
from 2D joint positions and IMU data. In a first experiment, 19 walking sequences of
different subjects taken from the CMU database are considered. The 3D motion states
were reconstructed using a non-rigid structure from motion approach by Wandt et al. [148]
based on 2D joint positions. Mean regression results are depicted in Figure 24. The figure
compares RF end-to-end regression results to multi-stage results implemented with an RF
gait phase classification and a ridge control regression. In general, the estimates of the
RF are closer to the laboratory data. Both methods are able to produce realistic curve
progressions for GRF/M, ankle and hip torques. The multi-stage predictions of the sagittal
knee moments, however, deviate significantly from the laboratory data. It should be noted
that the distribution of the PD-set is used only as an indication of forces and moments of
the same type of motion.

In a second experiment the proposed method is tested as a detector for abnormal
gait patterns. The considered sequence is an IMU-based 3D reconstruction result [88].
The recorded movement displays a strong asymmetry: The right leg is kept very stiff,
especially at the knee joint, and is dragged behind so to speak. Figure 25 shows frames
of the animated regression results together with the corresponding image frames. The
abnormality of the gait pattern is analyzed by means of the distribution of mean absolute
torques among the limb joints. The torques are averaged over single support phases and
depicted in Figure 26. The left side shows the comparison for the left leg and the right
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Figure 24: Predicted GRF/M and joint torque components of the reconstructed sequences [148]
from the CMU database [18]. The mean predictions are shown as red (multi-stage
with RF class. and ridge control reg.) and blue (RF end-to-end reg.) lines. Since there
are no ground truth forces included in the CMU data, the distribution of slow walks
from the PD-set is used as a reference for realistic profiles (grey area).

side the same comparison for the right leg. The results of the considered sequence are
compared to the torque distributions of the PD-set, more precisely, to the predictive
dynamics results (target) and the predictions using the multi-stage and the end-to-end
approach, respectively. For better comparison, all torque values are normalized to the
target values of the PD-set of the left leg (depicted in the left graph on the very left). The
torques related to the examined gait sequence exhibit a clear asymmetry between the left
and the right leg and thus can be classified as abnormal. Note that the used regression was
trained exclusively on healthy, symmetric gait data, which is also reflected in the equality
of the graphs in Figure 26. Nevertheless, asymmetric joint moments could be predicted, in
part, due to the independent consideration of short time windows.

5.3 discussion

The comparison between end-to-end regressions and multi-stage approaches shows that
the inference of controls is supported by a prior classification into gait phases. This
conclusion can be drawn from the quantitative evaluation on the PD-set of walking.
With the additional information of the contact state, the multi-stage methods achieve
satisfying results and outperform the end-to-end regressions as well as the data-driven
optimization method. Applied to 3D reconstructions, that generally lack global coordinates,
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Figure 25: Images and animation frames, generated with SMPL [84], of the asymmetric gait
sequence reconstructed based on IMU data [88]. The GRF is illustrated as a green
arrow and the joint torques as red spheres. The arrow length and the sphere radii are
proportional to the respective predicted values.

the root regression allows for a calculation of global contact features like the foot velocity
which further supports the classification of gait phases during walking. The gait phase
classification achieves the best results with the RF. This superior performance is probably
caused by the higher recall of double support classes, enabling an accurate prediction of
the related controls. It can be assumed that the RF can better handle the imbalance of the
dataset than the SVM and the NN. In terms of control regressor, the RF yields consistently
good results, while the ridge regression dominates on the walking set but fails on the
running set. This outcome can most likely be explained by the different dataset sizes. For
the small running set (15 subjects performing 132 trials, incl. augmentation, divided into a
total of 7156 window samples), the RF clearly outperforms the other tested models in all
tasks. Here, the difference between an end-to-end RF and a multi-stage method consisting
exclusively of RFs is insignificant. This can be explained by the operating principle of
decision trees which in itself performs a cascade of classifications, so that the primary gait
phase classification is redundant.

For the walking set, the regression of controls, in particular of GRF and joint torques,
is well implemented by a linear ridge regression if the parameters are constrained to a
gait phase subset. This implies that, given a contact state, the mapping between the
considered motion and force parameters is approximately linear for this dataset. In the
case of the GRF, this is easy to understand, since the inverse dynamics calculation is
linearly depending on the acceleration of the model’s center of mass. The center of mass
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Figure 26: Comparison of mean absolute torques during single support phases. The plot shows
sagittal hip, knee and ankle torques of the left leg (left graph) and the right leg (right
graph). The analyzed sets are (from left to right) the ground truth of the test lab
data, predictions of the test lab data by multi-stage and end-to-end methods and
the predictions for the asymmetric gait. Torques are normalized to the corresponding
ground truth component of the left leg (indicated by the black circles).

in turn can be approximated by the root of the model whose coordinates and derivatives
are included in the input motion parameterization, resulting in an overall linear mapping.
Regarding the estimation of joint torques, the high performance of the linear model is
surprising since the associated EOM contains nonlinearities in all summands. However,
for the comparatively small forces acting during walking movements, these nonlinear
effects appear to be negligible. Compared to this, running is a more dynamic form of
movement, which contains higher velocities and accelerations, and thus the non-linear
relation becomes more apparent. In addition, the errors caused by measurement noise
and model simplifications are amplified by the higher values. Therefore, the RF and NN
significantly outperform the ridge regression on this dataset.

The end-to-end regressions perform well on the public dataset. Both, the RF and the
NN can reliably predict the joint torques and GRF. In contrast to the experiments on the
PD-set, the full available motion information was used and the kinematics and dynamics
were averaged over several gait periods for each subject prior to regression.

The drop in performance of the multi-stage approach (with ridge control regression)
tested on the CMU dataset is due to the inability to bridge the domain gap between the
training and the test set. The test set differs from the training set in terms of increased
noise caused by prior 3D reconstruction and in terms of average skeletal posture. The
latter is an inherent difference found in the 3D poses of both datasets and is probably
caused by pre-processing steps, such as marker placement and inverse kinematics as well as
the 3D reconstruction. The end-to-end approach implemented by RF predicts curves that
are closer to the laboratory data. This is due to the fact that the RF does not extrapolate,
so that input deviations caused by the domain gap do not lead to unexpected results.
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However, since ground truth forces do not exist for the CMU reconstructions, it remains
questionable how close these estimates are to the true forces and moments.

The abnormal gait detection results demonstrate how learning-based inverse dynamics
could be utilized to achieve gait analysis in the wild. The deviation of the torque distribution
could be used to give a first indication of the evoking impairment. The conducted analysis
is only based on the measurement of six IMUs by [88]. Therefore, it could offer a fast and
practical procedure to aid in diagnostics.

Although the proposed multi-stage approach as well as some of the end-to-end regression
methods yield promising results for the considered PD-set, the performance naturally
decreases when the models are confronted with a significant domain gap, as is the case
for the 3D reconstructions of the CMU data. In order to improve the generalizability
of the regression methods, a larger and broader dataset in terms of motion styles and
subject characteristics would be necessary. But as addressed before, dynamic datasets
are few and usually restricted to a small number of subjects. Recent research in artificial
intelligence investigates the use of self-supervision to make up for a lack of training
data. The corresponding approaches involve sophisticated loss functions that guide the
optimization of neural networks without the need for excessive training data, as described
in Section 2.3. The following chapter presents the realization of self-supervised neural
network training using physics-based loss layers. In contrast to the multi-stage approach,
described in this chapter, the following method will consist of a single neural network
trainable in a practical end-to-end manner with and without joint torque and GRF/M
data.
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6
S E L F - S U P E RV I S I O N B Y DY N A M I C S - B A S E D L AY E R S

This chapter presents self-supervised learning for inverse dynamics of human motion. It
is based on an earlier publication from which some text passages and images were taken
[172]. As addressed above, the complexity of the recording and pre-processing of human
dynamics data leads to a lack of suitably large datasets. This represents a limiting factor
for the application of machine learning models in inverse dynamics of human motion.
Suitable sets should include multiple subjects and various motion types in order to allow
training and testing of generalizable models. In the broader field of machine learning, the
problem of missing labeled training data has led to an increasing number of approaches
being proposed that use few or weakly labeled data points or even no labeled data at
all. Two major categories in this context are semi-supervised and self-supervised learning,
as described in Chapter 2. The method presented in this chapter has aspects of both
categories, as will become clear after the presentation of the model itself.

The proposed approach is called Dynamics Network: A neural network that predicts
control coefficients based on motion coefficients, similar to the previous end-to-end ap-
proaches, is extended by two physics-based loss layers, the forward layer and the inverse
layer. The network together with the forward layer realizes a full dynamics cycle, as
depicted in Figure 27. As before, the inverse dynamics step is implemented as a learnable
model, a neural network, that regresses the GRF/M and the joint torques from motion.
Based on this prediction and the initial kinematic state of the human model, a simulated
motion is generated by integration of the EOM. This step is implemented by the forward
layer. The simulated motion can be compared to the input motion in terms of a cyclic
loss that is completely independent from measured forces and moments. In addition to
this cycle, the inverse layer enables a separate consideration of GRF/M. It executes a
bottom-up inverse dynamics calculation starting at the model’s feet and ending at the
upper-most segment, the end-effector. If the predicted GRF/M perfectly match the input
accelerations, the residual force and moment at the end-effector are equal zero. Accordingly,
the associated loss function contains the squared values of the residuals. Including both
physics-based layers into the model allows for a decoupled control of GRF/M and joint
torques during training. The combined loss utilizes the two major approaches to dynamics.
Thus, it determines whether the predicted control results from the observed motion and,
conversely, whether the observed motion results from the predicted control.

The proposed Dynamics Network is used to realize semi-supervised and completely
self-supervised learning. The term semi-supervision means in this context that the number
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Figure 27: Dynamics Network realizes a cycle consisting of inverse and forward dynamics. The
learnable part is represented by a neural network and the forward dynamics simulation
is included in a differentiable loss layer.

of labeled training samples (including GRF/M and joint torques) is reduced and extended
by unlabeled pure motion samples. While the labeled samples are assessed by means of a
standard mean squared error (MSE), the additional motion samples are evaluated by the
physics-based loss layers. A gradual reduction of the number of labeled samples shows the
benefit of the dataset extension and the proposed loss layers: In contrast to a supervised
baseline, the Dynamics Network yields stable results with substantially reduced labeled
training set (20 % of the originally included subjects) and can still predict realistic GRF
even under complete self-supervision, i. e. without seeing any force data during training. In
this case, however, a binary contact loss is necessary to penalize invalid non-zero reaction
forces. The generation of contact labels is less complex and expansive compared to a
measurement of GRF/M. Automatic gait event detection based on kinematic data for
normal walking and running is a largely solved problem [27, 72, 87, 105, 175]. With the
application of deep learning and semi-automatic generation of contact labels, ground
contact detection is also achieved for arbitrary movement [128, 179].

Furthermore, Dynamics Network is used to realize self-supervised transfer learning
between different walking speeds, different motion types (walking and running) and
between datasets with varying skeletal characteristics (PD-set and 3D reconstructed CMU
sequences). These experiments show how the self-supervision can be leveraged to bridge
domain gaps possible in real world scenarios.

Apart from the built-in dynamics layers, the neural network has a modified input layer
that distinguishes it from the end-to-end neural network of Chapter 5. It receives a larger
input vector including joint and center of gravity trajectories in addition to the motion
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states x. Since these representations are redundant, an L1 loss is applied to the weights of
the input layer, promoting sparse linkage. Thus, the model is given the freedom to find an
optimal mapping from a more variable input space to the control parameters, while the
resulting model size is moderated by the L1 loss. This modification significantly improves
the performance of the neural network especially on the more challenging running data.
The corresponding evaluation is presented in Section 6.3.4. The resulting network without
physics-based loss layers acts as a new baseline in the following.

Finally, this chapter presents a noise experiment that is used to demonstrate the
robustness of the proposed Dynamics Network to perturbed motion input signals. Although
the network layers introduce dynamics calculations into the training, the models are just
as robust as conventional neural networks possessing the same noise-canceling behaviour.
In summary, the contributions presented in this chapter are:

1. A new baseline neural network that profits from a variable, high-dimensional input
motion parameterization in combination with a L1 loss penalizing dense input layer
connection.

2. A novel forward dynamics layer that numerically integrates the equations of motion
and evaluates the deviation of the simulation from the input motion.

3. A novel inverse dynamics layer that propagates reaction forces and moments along
the kinematic chain to measure the correspondence between segment accelerations
and GRF/M.

4. Since the dynamics layers allow for training on pure motion information, this capacity
is used to realize semi-supervised learning and self-supervised domain transfer.

5. The robustness of the proposed model is evaluated with respect to noisy motion
input.

6.1 datasets

The Dynamics Network is evaluated using the self-recorded predictive dynamics dataset
(PD-set) described in Chapter 4 and already used for the quantitative evaluation of the
supervised methods of Chapter 5. In contrast to the previous methods, the physics-based
layers allow the use of pure motion samples. Therefore, the kinematics of frames that were
discarded during the generation of the PD-set, due to non-existent GRF/M information
or insufficient convergence of the optimization algorithm, can now be included. The
motion states off all sequences and time windows constitute the motion set. It includes
kinematics x(t), xs(t) and xj(t) represented by the polynomial coefficients αx, αxs and
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αxj , respectively, as well as subject specific segment lengths l. The additional kinematic
representations are the positions and velocities of centers of mass, denoted by xs, and of
joints, denoted by xj .

The output of the predictive dynamics optimization is referred to as the force set which,
additionally to the kinematic information, contains GRF/M and joint torques represented
by the associated coefficients αu. Because of the restrictions introduced by the localized
force plate measurements, only a fraction of the whole recorded data contains GRF/M,
so that the force set is approximately half the size of the motion set regarding sample
numbers. Furthermore, a contact set is defined which contains the same information as
the motion set and additionally includes binary information about the ground contact,
i. e. which foot is in contact with the ground. The presented datasets are used in different
training modes that represent various levels of supervision. In each case, the used data is
shifted to the mean value and normalized by division with the standard deviation.

6.2 dynamics network

The structure of Dynamics Network is presented in Figure 28. A fully connected neural
network executes the inverse dynamics task from motion to joint torques and GRF/M.
More precisely, it realizes a function fnet() from an input vector θ = [αx,αxs ,αxj , l]
(consisting of motion coefficients and segment lengths) to the control coefficients αu:

αu = fnet(θ) . (157)

In contrast to the prior methods, the input vector includes coefficients αxs for segment
center of mass positions and velocities and coefficients αxj for joint positions and velocities
on top of the generalized coordinates. The representations of x, xs and xj are redundant
regarding the definition of kinematics, but contain information that facilitates the inference
of forces. For example, a mapping from the motion of the centers of gravity to GRF is
considerably less complex than a mapping from joint angle kinematics to GRF. In order
to reduce the redundancy a L1 loss is applied to the weights of the input layer, which
favors sparse linkage. In Section 6.3.4 it is shown that a network with this input structure
performs better than, both, a network that only uses generalized motion states and a
network that receives all motion coefficients without L1 penalization. Following the input
layer, the network consists of two fully connected layers of 200 neurons for walking and
120 neurons for running (to account for the smaller number of training examples). Leaky-
ReLu activations [86] are used in the hidden layers. The described network, trained in
a supervised manner using the MSE of forces and moments, acts as a baseline in this
chapter.
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NNmotion

motion
Forward
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forward loss
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layer
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ground reaction residual force
& moment
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Figure 28: Schematic structure of Dynamics Network. The output of the neural network is
processed using forward and inverse layer to achieve training independent from
GRF/M and joint torque data. The contact loss can be additionally applied to the
GRF/M to penalize invalid external forces.

The integration of EOM is implemented as a differentiable function and referred to
as the forward layer. It yields simulated motion states based on the network output. A
detailed description is given in Section 6.2.1. The combination of network and the forward
layer build a cycle which enables the minimization of a loss between kinematic states.
The additional inverse layer evaluates the consistency of the input accelerations with the
predicted GRF/M by calculating force and moment transfer along the kinematic chain.
The residuals at the last segment yield the corresponding loss. A complete description
follows in Section 6.2.2.

Furthermore, the network can be trained in a supervised manner, using an MSE

LMSE =
∥∥∥αu −αtrue

u

∥∥∥2
2

(158)

of the predicted control coefficients referred to as MSE loss. This loss will be used in a
baseline network that is trained completely supervised and for semi-supervised training of
Dynamics Network, which includes labeled examples as well. To gradually reduce the level
of supervision, a contact loss is implemented, that penalizes GRF/M during time frames
with no ground contact. This loss only requires binary information instead of full ground
reactions. It is described in Section 6.2.3.

In summary, the method operates with four different loss functions that can be activated
separately or in combination depending on the nature of the current training sample. On
this basis, different training modes are defined in Section 6.2.4. These modes implement
various levels of supervision and work with different subsets of the data. First, however,
the dynamics layers will be presented in detail.

99

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


self-supervision by dynamics-based layers

6.2.1 Forward Layer

In this section, the forward dynamics simulation and the implementation as a neural
network layer is described. A simple skeletal model and a basic numerical integration
technique are chosen in order to maintain relatively low computational complexity. This is
necessary to facilitate the integration in neural network training. The skeletal leg model
has already been presented in Chapter 4. As before, the EOM is formulated by means of
the TMT-method and results in

M(q(t), l)q̈(t) = F(q(t), q̇(t), τ (t),fc(t), l) . (159)

It can be rewritten as a 1st order differential equation for the state vector x(t) =

[q(t), q̇(t)]:

ẋ(t) =

 q̇(t)

M(q(t))+F(x(t))

 =: f (x(t)) , (160)

with the Moore-Penrose inverse (·)+. For the sake of clarity, only the dependence on
coordinates q and states x is indicated here. Starting at the initial state x0 = x(t0), the
forward dynamics solution at time t is

x(t) = x0 +
∫ t

t0
f (x(t))dt′ . (161)

This initial value problem can be solved by numerical integration. During this process, an
acceleration, force or moment error propagates with the squared integration time. In order
to reduce this high sensitivity for neural network training, a damping factor is applied to
f (x). The damping starts at a threshold value which is based on the standard deviation
σẋ of the absolute velocities and accelerations |ẋ(t)| contained in the training set and on
their maximum value mẋ in the current input sample. Each component fj of Eq. (160) is
damped by

dj(x) = dmin + (1− dmin) exp
{
−max

(
|fj(x)| −mẋ,j − kσẋ,j

kσẋ,j
, 0
)}

. (162)

If the absolute value |fj | exceeds the threshold mẋ,j + kσẋ,j , the value of dj starts to
decrease from 1 to dmin with exponential progression. The vector d is included into the
EOM by a Hadamard product:

ẋ(t) = f (x(t))� d(x(t)) . (163)
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The factor k in Eq. (162) controls the slope of the curve and the threshold for the decrease
from one. In simple terms, it extends the range of acceptable velocities/accelerations to k

times the standard deviation. The value is set to k = 10. The minimum value indicates the
maximum amount of damping. To obtain non-vanishing derivatives, a value of dmin = 0.2
is selected. These settings result in stable simulations that can still be optimized during
training.

In order to keep the computation time as low as possible, Euler’s method with constant
step size ∆t is chosen for numerical integration. In the following, the discrete time points
are specified by the indexing (·)t and the composition of discrete signals of several frames is
denoted by (·)i...j = [(·)i, (·)i+1, . . . , (·)j−1, (·)j ]. With this notation, the function realized
by the forward layer can be written as

x1...n = FD(x0, l,fc0...n−1 , τ0...n−1,mẋ) . (164)

It executes n = T − 1 = (window size− 1) Euler steps

xt = xt−1 + ∆t
[
f (xt−1)� d(xt−1)

]
. (165)

Based on the resulting states, the forward loss is defined as

Lforward =
1
n

n∑
t=1

(∥∥∥xt −xtrue
t

∥∥∥2
2
+ w ‖d(xt−1)− 1‖22

)
(166)

with an additional term to penalize damping vectors with components smaller than one
and a weighting factor w = 100.

For the backpropagation during training, the partial derivatives ∂Lforward
∂αu

of the loss with
respect to the neural network output αu need to be known. This can be achieved either by
automatic differentiation, which is commonly included in deep learning frameworks, or by
explicit computation using sensitivity analysis as described below. Automatic procedures
allow differentiation of non-continuous functions, like the maximum function used in
Eq. 162, by treating them piecewise analytically [74].

An explicit calculation of the partial derivatives for the forward layer is based on the
application of the chain rule yielding

∂Lforward
∂αu

=
n∑

t=1

∂Lforward
∂xt

∂xt

∂u

∂u

∂αu
. (167)

The derivation of the first factor and the last factor of this expression is straightforward.
The second factor ∂xt

∂u includes the gradients of simulated states. For its calculation, the
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EOM in Eq. (163) is partially differentiated by the controls u, resulting in a second
differential equation,

∂ẋ(t)

∂u
=

d

dt

∂x(t)

∂u
=

∂

∂u

[
f (x(t))� d(x(t))

]
(168)

for the matrix ∂x
∂u . Numerical integration of this differential equation supplies the desired

partial derivatives for the backpropagation through the forward layer.
Therefore, the forward pass through the forward layer involves numerical integration of

Eq. (163) and Eq. (168) with storage of the intermediate results ∂xt
∂u . During the backward

pass, the gradient of the loss is calculated by substituting the stored factors into the chain
rule of Eq. (167).

6.2.2 Inverse Layer

The inverse layer receives the input motion, which is also fed into the network, and the
predicted GRF/M. It propagates forces and moments along the chains of the kinematic
tree in a bottom-up manner. For this purpose, each segment is considered in a free-body
diagram where the sum of all acting forces and moments must explain the observed linear
and angular accelerations of the segment. Thus, successively, the forces/moments at the
proximal joint can be determined from the previously calculated forces/moments at the
distal joint. In this process, the GRF/M are applied to the centers of gravity of the model’s
feet. The formulas result from the Newton-Euler equation [33]. For segment s the force Fp

acting on the proximal joint is given by

Fp = ms(as − g)−Fd (169)

with the distal force Fd, the segment mass ms, the segment acceleration as and the
gravitational acceleration g. The moment Mp exerted at the proximal joint can be
calculated in a similar way:

Mp = Isαs +ωs × (Isωs)−Md −
∑

j=p,d
rj ×Fj (170)

where Md denotes the distal moment, Is is the tensor of inertia for the considered segment
and ωs and αs are its angular velocity and acceleration. The cross products account for
the moments resulting from the forces acting on the joints. Here, rj is the lever arm from
the center of mass of the segment to the position of joint j.

Repeated application of these equations finally yields a residual force Fres and a residual
moment Mres which remain at the end of the kinematic tree, the center of mass of the
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upper body. To summarize, the inverse layer realizes a function ID() from input motion
and predicted GRF/M to residual forces and moments:

(Fres1...n ,Mres1...n) = ID(x1...n, l,fc1...n) . (171)

If the accelerations of the input motion perfectly match the GRF/M, these residuals are
zero. Accordingly, the inverse loss is defined as

Linverse =
1
n

n∑
t=1

(
|Frest‖22 + ‖Mrest‖22

)
. (172)

The calculation of gradients for the inverse layer is straight forward, since there is no
dependence between the residuals of different time points:

∂Linverse
∂αu

=
2
n

n∑
t=1

(
F T

rest

∂Frest

∂fct

+MT
rest

∂Mrest

∂fct

)
∂fct

∂αu
. (173)

6.2.3 Contact Loss

The dynamics layers, described above, ensure that the predicted forces together with the
input motion fulfill the model EOM. However, this alone is not sufficient for realistic
predictions because there is no automatic contact detection to constrain GRF/M. In order
to warrant valid GRF/M that are only greater than zero if ground contact exists, a contact
loss is introduced. This loss function only requires binary information about the contact
state at each foot. This kind of label is a lot easier to acquire than full 3D GRF/M, e. g. by
estimation from kinematic features like foot velocities and knee angle curve progressions
[105, 163].

Let ci,t ∈ {0, 1} be the contact state of foot i at time frame t with ci,t = 0 if the foot
touches the ground and ci,t = 1 otherwise. The counterintuitive definition is chosen to
allow a simple formulation of the contact loss as

Lcontact =
1
n

2∑
i=1

n∑
t=1
‖ci,tfci,t‖

2
2 . (174)

The function penalizes contact forces and moments during swing/flight phases.

6.2.4 Training Modes

As described above, the model allows the use of various loss functions. During training of
the network, the application of the MSE loss, the forward loss and the inverse loss is done

103

https://doi.org/10.51202/9783186877109 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:55:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186877109


self-supervision by dynamics-based layers

alternatingly. The L1 loss of the input layer is added to all three alternating functions,
in contrast to the contact loss, which is only added to the forward and inverse loss. To
balance the effect of the different loss functions, weight factors are dynamically adapted.
The forward loss is used as a reference and all remaining losses Li are multiplied by weights
resulting from the respective average ratio Lforward/Li during the last epoch.

Network parameters are optimized using SGD [9] with the momentum set to zero and a
batch size of one. These settings were chosen to account for the sensitivity of the forward
simulation and their suitability was confirmed by validation. Further stabilizing measures
are the damping already presented in Section 6.2.1 and gradient clipping. The initial
learning rate is set to 10−2 if only the MSE loss is used and to 10−3 if the physics-based
layers are included. It is reduced by 0.1 every 4th epoch. Moreover, during optimization of
the forward loss, the learning rate of the output layer that generates GRF/M is 0.1 times
smaller than the learning rate of the joint torque output layer. This distinction is made to
counteract the tendency of the model to primarily adjust the GRF/M in order to produce
balanced simulated motions, a behavior, in part caused by the normalization parameters
from the training data. The multiplication with larger standard deviations amplifies the
value of exterior forces and the non-zero mean introduces a corresponding bias. By reducing
the related learning rate, the forward layer is mainly used to optimize joint torques while
GRF/M are predominantly controlled by the inverse layer in combination with the contact
loss.

Based on the general training scheme presented above, the following individual training
modes and resulting models are defined:

1. Baseline: The network is optimized using the MSE loss and the L1 loss to encourage
a sparse input layer connection. The model is trained on the force set.

2. F-net: This model extends the baseline by including the forward loss and applying
it to samples of the unlabeled motion set. The corresponding training mode is
categorized as semi-supervised.

3. cFI-net: This model is trained using all presented loss functions either in a semi-
supervised or a completely self-supervised manner, i. e. with or without inclusion of
the MSE loss.

6.3 experimental evaluation

In this section, the proposed methods are evaluated regarding their capability to learn
exterior GRF/M and interior joint torques from motion. In particular, semi-supervised
learning on small labeled training sets, completely self-supervised learning and domain
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Table 10: Quantitative evaluation of supervised dynamics learning for the gait dataset. The table
shows rRMSE values εfr , εmr , ετ and εu related to the GRF, GRM, the joint torques
and the whole controls u as well as the EOM error eEOM.

motion method εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓ eEOM [Nm/kg] ↓
Lv et al. [85] 12.8 (5.5) 18.6 (6.3) 16.4 (5.0) 16.1 (4.6) 0.258 (0.144)
Multi-stage 7.4 (4.2) 17.7 (5.6) 12.1 (4.2) 12.3 (4.0) 0.128 (0.040)

walk Baseline net 7.8 (2.0) 16.1 (4.5) 12.3 (3.1) 12.2 (2.6) 0.116 (0.029)
F-net 7.6 (2.1) 17.7 (5.3) 11.9 (3.1) 12.2 (3.0) 0.108 (0.030)
cFI-net 7.0 (1.9) 16.9 (4.7) 11.9 (3.0) 11.9 (2.7) 0.099 (0.024)
Lv et al. [85] 17.2 (4.2) 18.4 (5.7) 19.7 (3.8) 19.0 (3.7) 0.433 (0.153)
Multi-stage 13.1 (4.4) 14.7 (5.3) 14.6 (2.9) 14.3 (3.0) 0.241 (0.030)

run Baseline net 10.5 (3.6) 14.2 (4.2) 13.0 (2.1) 12.7 (2.0) 0.250 (0.031)
F-net 12.2 (3.1) 19.3 (5.8) 14.2 (3.2) 14.8 (3.3) 0.251 (0.036)
cFI-net 10.9 (2.9) 16.9 (5.1) 13.5 (2.8) 13.7 (2.9) 0.231 (0.032)

transfer are investigated. To quantify performance, the error measures introduced in 6.3
and dataset splits (into training, validation, and test sets) listed in Table 3 are used (similar
to the evaluation of the previous chapter). In addition, the violation of the EOM by the
estimated controls ut with t = 1, . . . , T is assessed by the error measure

eEOM =
1
T

T∑
t=1
‖Mq̈true

t −F(xtrue
t ,ut)‖2 (175)

which is closely related to the energy function EEOM used in the predictive dynamics
optimization formulation of Eq. (143).

6.3.1 Comparison in the Supervised Setting

The proposed models are compared to the supervised learning methods presented in
the previous chapter, more precisely, to the data-driven optimization [85] and the best
performing multi-stage approach. In this experiment F-net and cFI-net are trained with
both labeled and unlabeled data, i. e. alternating between supervised learning on the force
set and self-supervised learning on the motion set. Table 10 lists the corresponding results
including the violation of EOM in terms of eEOM.

For walking, even when the complete available labeled data is used to train the networks
in a supervised manner, the addition of the forward and inverse loss improves the overall
performance (cf. εu of all controls). In the case of running, the proposed baseline network
yields the lowest rRMSEs of the predicted components. In contrast to the supervised
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methods of Chapter 5, the baseline network receives a high-dimensional, redundant motion
input and additionally optimizes the L1 loss of the input layer weights which significantly
boosts the performance. In terms of EOM compliance, the inclusion of both dynamics layers
in the training (cFI net) provides a significant improvement over the other approaches
for both motion types: The EOM error eEOM is reduced by 15 % for walking and 8 % for
running compared to the baseline network.

6.3.2 Semi-Supervision with Small Labeled Datasets

One benefit of the proposed Dynamics Networks, F-net and cFI-net, is to realize learning
of human locomotion dynamics on small datasets with lower risk of overfitting to the
training examples. The models introduced in Section 6.2.4 are now compared to each other
regarding their capability to operate on a training set with decreasing number of labeled
data points from the force set. The reduction of the force set is subject-wise: If a subject
ID is excluded, this applies to all movement trials performed by this subject. The models
F-net and cFI-net can be trained in a semi-supervised manner using training sets that are
composed of examples from the force set and the motion set (as well as the contact set in
the case of cFI-net). The motion and contact training sets are always included to their
full extend, so that the dynamics-based models receive data of all subjects included in
the original training set while the fully supervised baseline network and the multi-stage
method only receive data from the reduced set of subjects. This way, the effect of the
higher training data variability and the benefit of the dynamics layers are evaluated. For a
fair comparison, the multi-stage method is implemented using only RF for all steps, since
it can handle small training sets better than the other models that were tested in Chapter
5.

Figure 29 shows the performance drop with decreasing size of the included force set in
terms of rRMSE values of all controls u and of GRF, GRM and joint torques separately.
The x-axes display the fractions of the used force set related to the original training set
regarding number of subjects. For example, a fraction of 0.2 refers to the inclusion of 3
of 13 subjects for walking and 2 of 9 subjects for running. A corresponding visualization
of the mean regressed GRF/M and joint torque curves at this force set fraction can be
seen in Figure 30. The upper part shows the results for walking and the lower part the
results for running. To assess the validity of the estimated components with respect to the
physical model, Figure 31 compares the violation of the EOM. The plots include a ground
truth value which refers to the window-wise PDO results.

In the case of walking, the Dynamics Networks consistently outperform the baseline
network and the multi-stage approach regarding the combined consideration of all controls.
Especially cFI-net yields very stable results and can predict the GRF with high accuracy
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walking

running

Figure 29: Reduction of the labeled training set. The figure includes rRMSEs of all controls and
of joint torques, GRF and GRM separately. The error measures are plotted against
the proportion of subjects still contained in the labeled training set in relation to the
original number.
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walking

running

Figure 30: Average estimated control curves for walking (top rows) and running (bottom rows).
The used model is cFI-net trained with 20 % of the force set. The grey area shows the
distribution of the ground truth test set. The black line indicates the mean regression
results and the dashed lines the related standard deviation.
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walking running

Figure 31: The EOM error eEOM that results when estimated controls and input motion states
are inserted into the EOM. The regression results are compared to the window-wise
predictive dynamics optimization results as ground truth.

even under substantial reduction of the force set. Note that the multi-stage method used
for comparison includes RF gait phase classification and RF control regression, since the
best method under complete supervision (given a complete force set) uses Ridge control
regression which is not suitable for such small training sets. For running, the performance
evaluation is less clear. The RF multi-stage approach is still the leading method regarding
the stability of the average rRMSE among all control components. It yields the lowest
errors at the smallest force set sizes. However, there exists a range (between fractions of
0.4 to 0.8), where cFI-net produces slightly better estimates and in terms of GRF it clearly
outperforms the other methods.

With respect to EOM error (cf. Figure 31), cFI-net, which incorporates an inverse
dynamics analysis into the training process, is the superior method for both types of
movement. F-net, on the other hand, which uses only the forward layer, improves the
satisfaction of EOM (compared to the baseline) on the walking data but not on the running
data.

6.3.3 Domain Adaptation

In addition to the stable performance on small datasets, the applicability to data that
systematically deviates from the training data is of interest. Such a scenario is subject of
domain adaptation where the training set represents the source domain and the deviating
test set the target domain. The two domains may differ in terms of the input/feature space,
the output space and/or the related marginal probability distributions of the data. The
difference is generally referred to as domain gap.

The independence of the proposed model from exhaustive dynamic data provides tremen-
dous opportunities for bridging domain gaps that would otherwise require cumbersome
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data recording and pre-processing. In this section, the Dynamics Network is applied to
realize self-supervised domain expansion and transfer. The considered domain gaps include
different walking speeds, different movement types and the deviation of 3D reconstructed
motions from the kinematic characteristics of the PD-set.

Domain Expansion to Different Walking Speeds

During the recording of the walking data, the subjects were asked to walk slowly at first
and then quickly, which resulted in the dataset being roughly divided into two classes. This
circumstance is now used to evaluate domain expansion. The data at one speed level acts
as source domain and is learned with supervision, while the other speed level represents
the target domain and is included by self-supervision. Similar to the previous experiment,
the different loss functions are applied alternately during training: Samples of the source
domain are evaluated using the MSE loss and samples of the target domain are processed
by the physics-based loss layers. In this way, the model is expanded to cover the dynamics
of the target domain without requiring ground truth of forces and moments.

The domain expansion is implemented using cFI-net for both directions, i. e. from slow
walking to fast walking and the other way around. The resulting models are evaluated
on, both, the target domain and the source domain and compared to the related baseline
networks that are only trained with the MSE loss. The additional evaluation on the source
domain is performed to check if the performance is degraded by the inclusion of the target
samples. The results are listed in Table 11.

In both directions, the self-supervised inclusion of samples from the target domain
clearly improves performance in this domain and thus helps to bridge the domain gap.
Considering the evaluation in the source domain, an expansion from slow walking to
fast walking leads to a slight loss of performance. In the inverse direction, however, the
expansion to slow walking even improves the predictions on the fast walking test sequences
compared to the baseline exclusively trained on this domain. This difference might be
due to the smaller size of the fast walking subset and the fact that it contains less double
support frames since walking at a higher speed leads to larger steps and makes it difficult
to hit both force plates in succession. Therefore, the model can still benefit from the
extension to the comparatively information-rich dataset of slow walking.

An exemplary, visual comparison is given in Figure 32. The left-hand side depicts
an example of slow walking and the right-hand side an example of fast walking. The
individual plots contain the predictions of the baseline network trained on the other
domain, respectively, and the predictions of cFI-net that realizes domain expansion by
self-supervision. The corresponding control rRMSE values achieved with cFI-net are
εu = 13.0 % for the slow walk and εu = 19.5 % for the fast walk.
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Table 11: Domain extension results of slow and fast walking in terms of rRMSE εfr , εmr , ετ

and εu for predicted GRF/M, joint torques and all control parameters combined. In
addition, the violation of EOM is listed in terms of eEOM.

εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓ eEOM [Nm
kg ] ↓

test domain: slow walk
superv. slow 7.3 (1.6) 16.6 (3.8) 12.2 (2.5) 12.1 (2.1) 0.246 (0.092)
superv. slow + 7.9 (2.0) 16.3 (5.4) 12.7 (2.8) 12.5 (2.7) 0.248 (0.084)

self-superv. fast
superv. fast 11.3 (2.4) 18.5 (4.1) 15.0 (2.5) 15.0 (2.1) 0.289 (0.077)
superv. fast + 7.7 (1.8) 17.9 (4.3) 13.4 (2.8) 13.2 (2.4) 0.242 (0.081)

self-superv. slow

test domain: fast walk
superv. fast 9.2 (1.9) 13.8 (5.1) 15.5 (3.2) 13.9 (2.7) 0.509 (0.063)
superv. fast + 7.5 (1.8) 13.9 (4.6) 14.5 (3.1) 13.0 (2.7) 0.478 (0.064)

self-superv. slow
superv. slow 10.0 (1.9) 16.1 (5.4) 16.2 (3.3) 14.9 (3.0) 0.532 (0.066)
superv. slow + 8.6 (2.2) 14.2 (5.1) 15.3 (3.0) 13.7 (2.7) 0.488 (0.059)

self-superv. fast

Complete Self-Supervision and Transfer to New Movement Types

Technically, the training of cFI-net can be done completely self-supervised without the
force set. Then the model relies entirely on the dynamics layers in combination with the
contact loss. The latter, however, is crucial in order to enforce single support, since both
layers consistently assume EOM for double support without explicit modelling of dynamic
contact (such as initial contact detection and activation of contact constraints or reaction
and friction forces). Furthermore, the normalization scheme has to be adapted due to
the lack of ground truth forces and moments. Instead of normalizing all controls to the
statistics of the training set, only the largest control component, the vertical GRF, is
normalized by Fy ← (Fy − 5)/5. This way the interval [0, 10] is mapped to [−1, 1]. The
value of 10 is close to the normalized reaction force at rest which corresponds to the
gravitational acceleration 9.81 N/kg. This training mode is referred to as from scratch in
Table 12.

The proposed Dynamics Network also enables self-supervised domain adaptation between
movement types. Here, the transfer between walking and running is considered with ground
truth forces and moments existing for the source domain but not for the target domain.
The ground truth data is used to initialize the network parameters by means of supervised
learning with the MSE loss. The model is then trained using the motion and contact set
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slow walking fast walking

Figure 32: Including target domains by self-supervision. The left side shows example predictions
belonging to a slow walking sequence with εu = 13.0 % and the right side displays the
corresponding curves for a fast walking sequence with εu = 19.5 %. The plots compare
the performance on the target domain with and without self-supervised training.

of the target domain in a self-supervised manner. In this case, the statistics of the source
domain force set are used for normalization. To investigate the effect of the supervised
initialization, one test run uses the source domain only for normalization, but not for
pre-training. In Table 12 the results of self-supervised learning from scratch, with source
domain normalization and with source domain pre-training are compared to each other.
In addition, Figure 33 visualizes the self-supervised transfer results of walking, pre-trained
on running (top rows) and running, pre-trained on walking (bottom rows).

The quantitative evaluation and the visualization show that the proposed self-supervised
model is able to accurately predict GRF. The GRM and consequently the joint torques,
on the other hand, are more challenging to learn without explicit target data. Regarding
the violation of EOM, the results are close to the corresponding values achieved with
supervision. Overall, pre-training and/or normalization using the source domain support
the performance of the neural network compared to completely self-supervised learning
from scratch.
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walking

running

Figure 33: Transfer learning results using cFI-net pre-trained on the source domain and trans-
ferred by self-supervised learning on the target domain. The two top rows show
controls during walking and the two bottom rows the corresponding controls for
running. Grey areas represent the ground truth distribution of the test set and black
lines the average regression results with the dashed lines indicating the area of one
standard deviation.
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Table 12: Domain transfer results for a transfer between walking and running in terms of rRMSE
εfr , εmr , ετ and εu for predicted GRF/M, joint torques and all control parameters
combined. The violation of EOM is listed as in terms of eEOM.

motion scenario εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓ eEOM [Nm
kg ] ↓

from scratch 10.4 (3.4) 27.9 (6.3) 27.1 (4.1) 23.9 (3.8) 0.198 (0.030)
gait norm. of run 9.5 (2.7) 21.7 (6.3) 23.5 (4.3) 20.4 (3.6) 0.151 (0.021)

transfer 11.6 (3.1) 23.6 (5.8) 23.4 (3.6) 21.1 (3.2) 0.188 (0.035)
from scratch 14.0 (4.4) 34.2 (6.7) 30.6 (3.6) 28.0 (3.2) 0.249 (0.023)

run norm. of walk 13.1 (3.5) 27.9 (6.9) 28.8 (3.3) 25.5 (3.2) 0.261 (0.027)
transfer 12.4 (2.3) 28.4 (6.5) 26.5 (4.0) 24.1 (3.5) 0.229 (0.026)

Reconstructed CMU Sequences

In this section, semi-supervised dynamics learning is implemented using the 3D recon-
struction results already introduced in the experimental evaluation of the supervised
methods (cf. 5.2.3). The considered CMU gait sequences were reconstructed by a non-rigid
structure from motion approach [148]. The goal of this experiment is to investigate whether
additional self-supervised training on a subset of the reconstructed movements leads to
more realistic predictions and thus helps to bridge the domain gap between structurally
different kinematics of the same motion type. For this purpose, the model is trained in a
supervised manner on the force set of the laboratory data while 9 of the 18 reconstructed
sequences are included into the training and are processed by the forward and the inverse
layer of cFI-net. The remaining sequences are used for testing. Since there are no ground
truth forces available in this test set, only a qualitative assessment is possible. Although the
datasets include the same type of motion (walking) they have been generated in different
ways resulting in structural differences. First of all, the 3D reconstruction leads to a lack of
global motion, i. e. the root joint of every single pose is aligned. Furthermore, the original
CMU data and the self-recorded set were generated using different pre-processing steps
and inverse kinematics algorithms which may result in differently biased joint positions
and joint angles, respectively.

To make the forward layer applicable to the non-moving root, the global components are
multiplied by zero in the calculation of the forward loss. This way, only the angular joint
motions of simulation and input are compared. Figure 34 shows mean estimated controls
using the baseline network and cFI-net. The ground truth distribution of the PD-set can
be seen in the background in grey. This distribution only includes slow walking sequences,
since they are more similar to the considered CMU gait patterns than the faster walking
motions. However, the distribution shown is not a real ground truth, because it does not
belong to the test set under consideration. It merely provides an indication of the realism
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6.3 experimental evaluation

Figure 34: Application to 3D reconstructions [148] of gait sequences from the CMU dataset [18].
The baseline network is only trained on the force set of the self-recorded walking
motions. Since the dynamics layers of cFI-net allow self-supervised learning with
pure motion samples the model is additionally trained using a subset of the 3D
reconstructions.

of the predictions. It can be seen that the predictions by cFI-net are closer to the values
of the PD-set, in particular at extreme points, resulting in more realistic shapes.

6.3.4 Ablation of Input Structure

This section addresses an ablation study of the input layer to assess the benefit of different
design decisions. In particular, the effect of the larger but redundant kinematic input, the
polynomial approximation of motion and controls and of the L1 loss applied to the input
layer weights are evaluated. The ablation is performed for the supervised setting without
inclusion of the dynamics layers. The following settings are tested:

a) Generalized motion states to controls: u1...n = fnet(x1...n, l).

b) Polynomial approximation: αu = fnet(αx, l).

c) Motion representation including joint and segment positions: αu = fnet(θ).

d) Same motion representation as in c) with additional L1 loss moderating the input
layer weights. This setting is used in the baseline method.
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Table 13: Comparison of different input and output structures of the baseline network (cf. Section
6.3.4) in terms of rRMSE of GRF, GRM, joint torques and all controls u.

motion setting εfr [%] ↓ εmr [%] ↓ ετ [%] ↓ εu [%] ↓

walk

a 10.5 (3.9) 18.7 (5.9) 13.0 (4.1) 13.6 (3.6)
b 9.4 (3.0) 16.8 (5.1) 12.9 (3.3) 13.0 (3.0)
c 8.0 (2.0) 16.1 (4.5) 12.4 (3.0) 12.3 (2.7)
d 7.8 (2.0) 16.1 (4.5) 12.3 (3.1) 12.2 (2.6)

run

a 14.0 (4.0) 17.7 (6.7) 14.9 (2.9) 15.3 (3.4)
b 13.3 (4.6) 18.3 (5.4) 15.3 (2.9) 15.7 (3.2)
c 12.4 (3.6) 16.1 (5.3) 14.4 (3.4) 14.4 (3.4)
d 10.5 (3.6) 14.2 (4.2) 13.0 (2.1) 12.7 (2.0)

The performance of these networks is compared in Table 13. The results clearly show that
the network benefits from a wide, information-rich input parameter space, especially when
combined with the L1 loss that causes sparse linkage of the input layer.

6.3.5 Effect of Noise

In real world applications, the input motion data can be affected by various error sources,
such as measurement noise, detection errors and uncertainties of the lifting approach (if
the 3D motions were reconstructed from 2D keypoint detections). Therefore, in order to
test the robustness of the proposed models against noisy motion input, zero mean Gaussian
noise with increasing standard deviation is added to the generalized coordinates of the
motion training set and the test sequences of the walking data. The resulting rRMSE of the
estimated controls is depicted in Figure 35. In the case of cFI-net, noisy contact detections
are simulated in addition to the coordinate noise. For this purpose, 10 % of the contact
labels are randomly chosen and switched with a probability of 50 %. The plot includes
results of a network that is trained using the raw motion states and controls as inputs
and targets, respectively, without polynomial approximation (setting a) of Section 6.3.4).
This comparison is done to assess the influence of the polynomials which cause a prior
smoothing of the input signal due to the low order.

The experiment shows that the proposed models are very robust to this type of noise,
especially when a linear approximation of the input trajectories is used. Furthermore,
the dynamics layers can operate on noisy kinematic input without losing their positive
influence on the regression results on average.
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Figure 35: Influence of noisy motion input. The left side shows regression errors εu for all control
parameters given kinematic data in training and test set perturbed by white Gaussian
noise with increasing standard deviation. The black circle indicates the measurement
point which is exemplified on the right side of the figure by the sagittal knee angle
(which is part of the input signal) and the regressed vertical GRF.

6.4 discussion

In this section the presented methods of supervised and semi-supervised inverse dynamics
learning are contrasted and main results as well as opportunities and limitations are
discussed. Fully supervised learning was realized by means of different end-to-end regression
models and multi-stage methods presented in Chapter 5. For the implementation of both
approaches, random forests (RFs), artificial neural networks (NNs) and linear ridge
regressions were tested as mappings from motion to control parameters. The multi-stage
approach includes a gait phase classification (realized by an RF, an NN or a support
vector machine (SVM)) to constrain the parameter space to valid contact states prior to
control regression. A further fully supervised method is the baseline network presented in
this chapter. In contrast to the end-to-end NN of Chapter 5, the baseline network has a
larger input layer that receives all motion representations, i. e. generalized motion states
as well as joint and centroid trajectories, and whose weights are penalized with an L1 loss
to encourage sparse linkage. Thus, when training the model a motion input representation,
which is optimal for the posed regression task, can be automatically chosen. Of all presented
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fully supervised methods, the baseline network yields the best results on both motion types.
Compared to the end-to-end NN of Chapter 5, the extended variable input parameter
space has led to an improvement of εu by 7.6 % for walking and considerable 21.1 % for
running. However, when comparing to the best multi-stage method, it is important to
note that the baseline network requires significantly more hyper parameter tuning to reach
the stated performance. For example, the best performing multi-stage approach on the
walking dataset, consisting of RF classification and ridge control regression, only involves
adjustment of the regularization weight of the ridge regression. The hyper parameters of
the RF classification, i. e. number of trees, splitting criterion, minimum number of samples
in a leave, have negligible effect on the performance. In contrast to this, the prediction
capability of the baseline network is noticeably influenced by parameters such as network
depth, width, activation function, optimization algorithm and learning rate. Finally, a
fundamental advantage of all presented end-to-end trainable methods is, of course, the
less complex training process and shorter computation times for the application.

As addressed earlier and also shown by means of the qualitative evaluation on the
reconstructed CMU sequences, the presented supervised methods are limited to motions
that are close to the training data and their prediction capability is strongly depending
on the number of training examples. To facilitate training on pure motion data and thus
increase the usable data pool, self-supervised learning for inverse dynamics was introduced
and referred to as Dynamics Network. Here, a distinction is made between a model that
uses forward dynamics simulation (F-net) and a model that additionally performs an
inverse dynamics calculation including contact states as input (cFI-net). The dynamics
procedures are implemented as neural network loss layers. Both methods improve the
performance regarding prediction error of GRF/M and joint torques compared to the
baseline network (only trained with supervision using an MSE loss) on the walking data.
As a further measure for the validity of prediction results, the satisfaction of the EOM
are considered. This error measure is substantially improved by the proposed Dynamics
Networks.

Overall, the positive effect of the physics-based losses increases with decreasing number
of labeled training examples as demonstrated by a corresponding experiment (cf. 6.3.2).
While the labeled set is reduced, the size of the unlabeled set that is used by the dynamics
layers is kept constant. In general, it can be observed that the error measures describing
the closeness to the measured quantities grow with decreasing labeled training set as
expected. Considered in detail, the results vary for both forms of movement: For walking,
both physics-based models, cFI-net as well as F-net, improve the performance at almost
all force set sizes (F-net performs similar to the baseline using the full labeled training
set). For running, cFI-net outperforms the other methods using force set fractions of 40 %
to 80 % of the total number of subjects. The stronger improvement in the gait dataset
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may be due to the fact that many samples of double support that could not be used in
the supervised training, due to one missing force plate recording, could be reintroduced
with the dynamics layers. Accordingly, the inclusion of the motion set is associated with
a greater gain in information than is the case with the running data. In terms of GRF
rRMSE, cFI-net achieves excellent results even with very few subjects left in the force set
for both motion types.

The GRM are more challenging to learn than the GRF in, both, the supervised and the
semi-supervised setting. This can be explained by the comparatively low quality of motion
capture results at the foot joints, which are strongly influenced by marker placement: The
positions of heel and toe, as endpoints of the kinematic chain, cannot be additionally
constrained by determining rotational axes, as is possible for key points at joints. This
leads to uncertainties in the fitted 3D motion of the feet and thus the placement of the
force application point on the modeled segments. By forming the cross product between
the lever arm and the GRF vector, the distance error is amplified and passed on to the
GRM. This error propagation leads to a higher uncertainty for the measured GRM than
for the GRF, which introduces noise into the training examples and complicates supervised
learning of the GRM. Regarding the semi-supervised procedure incorporating the inverse
layer a similar drop in performance can be observed between prediction of GRF and GRM.
The agreement of the observed motions with Euler’s equations for rotational dynamics
is affected by the approximation of moments of inertia by simple geometric bodies. This
is not the case for linear dynamics described by Newton’s equations. The deviation of
the GRM from the ground truth is passed on to the joint torques via application of the
forward layer. Thus, while GRF estimates supported by the dynamics layers are very
robust to a decrease in labeled training data, the related GRM and joint torque predictions
deteriorate at a similar rate as the baseline estimates.

It is noteworthy that for running, the multi-stage approach with RF classification and
control regression still provides the lowest rRMSE of predicted quantities when the labeled
training set is reduced to 20 % and even to 10 % of the total subjects, corresponding to 3 and
1 subjects, respectively. But in terms of compliance with the EOM, incorporating dynamics
into the training process leads to significantly improved results for this motion type as well.
This outcome is of great interest, since machine learning methods and particularly neural
networks are often criticized for their lack of interpretability regarding extracted features
and their lack of transparency regarding the regression process [17]. The application of the
proposed dynamics loss layers not only improves the model consistency of the predicted
quantities, but also enables the quantification of the deviation: The violation of EOM
eEOM is in fact a variant of the inverse loss function. Therefore, a low error value in the
corresponding criterion is a direct consequence of the training process of cFI-net. The
forward loss, on the other hand, is closely related to eEOM but not synonymous with it,
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although the same EOM are used. The simulation of motion states involves temporal
correlation and error propagation as well as interdependence between GRF/M and joint
moments. In contrast, the inverse loss and the error measure eeom consider the satisfaction
of the EOM for each time point separately. Temporal correlation is introduced only between
three consecutive points by determining the acceleration. In addition, joint torques are
ignored in the inverse layer, so the compatibility of GRF/M with input motion is evaluated
in isolation. This approach, together with the reduction of the learning rate of the GRF/M
output layer during backpropagation of the forward loss leads to a partial decoupling of the
optimization of the output parameters, GRF/M and joint torques. In other words it allows
that the GRF/M represent the actual response to the observed segment accelerations and
that the joint torques are adjusted to produce a motion close to the target motion when
applied in a simulation.

Together with the contact loss, the physics-based layers enable training without any
forces and torques as ground truth. This capacity can be used to increase the variability
of the training set and the generalization capability of the resulting model, as described
above, but also to extend the training set with unlabeled samples of a new domain. In this
way, domain expansion to different walking speeds was performed. The experiment shows
that the Dynamics Network can be adapted to the target domain without significant loss
of performance in the source domain.

A related experiment has been conducted to investigate self-supervised domain transfer
between locomotion types and self-supervised learning from scratch. In contrast to the
previous experiment, the model is fitted to the target domain rather than extended to
cover both domains. This is done due to the larger domain gap between walking and
running. The model generated by transfer learning can estimate the GRF with excellent
accuracy, but the errors of GRM and joint torques increase significantly compared to
supervised learning. However, the EOM are well-satisfied by the estimated quantities (low
eEOM). Overall, the behavior of the models is similar to the experiment of labeled dataset
reduction and can be reasoned in the same way.

The semi-supervised domain expansion to CMU kinematics demonstrates a further use
case of the proposed model. The inclusion of pure motion samples from the target set,
that can be processed by the dynamics layers, helps to bridge the domain gap between
skeleton characteristics. This conclusion can be drawn from a qualitative comparison:
The generated curves without domain expansion are considerably less realistic regarding
absolute values and curve progressions. It is worth addressing that the flat shape of the
estimated vertical GRF is a consequence of the lacking global movement, which is on the
one hand a limit of the proposed self-supervision approach, but which shows, on the other
hand, that the model is able to capture the characteristics of the tested sequences.
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Table 14: Comparison of inverse dynamics methods addressed and proposed in this work. The
table includes (from left to right) Predictive dynamics optimization (PDO), data-driven
optimization by Lv et al. [85], a bagged random forest (RF), the multi-stage approach
(implemented with RF gait phase classification and Ridge control regression), the
baseline neural network (Baseline) and the semi-supervised models F-net and cFI-net.

optimization learning
PDO Lv [85] RF Multi-Stage Baseline F-net cFI-net

generation
self-supervision - - - + +
handling small sets + - - - +
few hyper param. - + + + - - -
fast generation + + + + + - -

application
w/o GRF/M input - + + + + + +
w/o global input - + + + + + -
fast application - - + + + + +

To summarize the proposed methods of supervised and semi-supervised inverse dynamics
learning, Table 14 contrasts all presented approaches listing their conditions, strengths and
weaknesses. The comparison is intended to provide a rough classification and recommen-
dation for use. For simplicity, the individual criteria are labeled with + and - indicating
true and false or strong and weak performance (compared to the average of the included
methods), depending on the category. In some cases, a more detailed rating would have
been possible, but was omitted for clarity.

Limitations

To conclude this chapter, some limitations of the proposed Dynamics Network will be
addressed. One fundamental limitation is that both dynamics layers only constrain the sum
of forces and moments, respectively. In combination with the contact loss, single support
can be enforced. However, the dynamics layers do not solve the double support ambiguity,
i. e. the overdetermination of EOM which is an inherent problem of the equations and can
only be resolved by measurement of GRF/M. This limit is not an issue for running, since
this motion type does not include double support. In the case of walking, the network
converges to the simple solution of modeling a nearly linear progression between the known
data points. Here, this behavior leads to good predictions. For more complex motion types,
that include long periods of double support, possibly with irregular weight shifting, a
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completely self-supervised training of the proposed model will lead to over-smoothing and
false equal distribution of GRF.

Furthermore, for computational efficiency, the skeletal model is kept simple with literature
values for body segment inertial parameters and average scale factors of the dataset.
Therefore, the current implementation of the inverse and the forward layer is only applicable
to subjects with average body types. In principle, a corresponding generalization is possible
but is not investigated in this work.

Generally, learning-based approaches fail when confronted with data that is too abnormal,
i. e. not covered by the training set. This limitation also applies to the proposed learning-
based regressions. In principle, however, the self-supervision allows adaptation to deviating
data independent from force measurements if the used physical model is still appropriate
for the considered motion and double support is frequently interrupted.

Regarding the applicability of the estimated controls in a forward simulation, the usage
of the forward loss will decrease the deviation of simulated motion states from the targets.
However, since the model does not include a feedback control scheme, the controls cannot
be adjusted and thus stable simulations cannot be produced over time. Therefore, a
feedback loop could enhance the training process of the proposed model: During the
validation of each epoch necessary motion state adjustments could be computed to keep
the simulation close to the target motion and the resulting samples could be included
in the motion set during the next epoch. This is an interesting topic for future research
aiming at automatic balance.
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7
C O N C L U S I O N S

In this work, machine learning models for inverse dynamics of human locomotion are
developed and compared. The suitability of the presented learning-based methods for
solving the considered task is investigated with respect to predictive dynamics optimization
results as a gold standard. To quantify the suitability, deviations of model predictions
from this gold standard are considered. This is done not only in a direct sense, but also
indirectly by measuring the violation of the equations of motion. Based on the quantitative
evaluation it can be concluded that regression methods like random forests and artificial
neural networks are able to predict joint torques, contact forces and moments from three
dimensional kinematics with satisfactory accuracy. Compared to predictive dynamics
optimization, computation times are substantially reduced by two orders of magnitude
(from about 3 s to 50 ms per frame).

In developing appropriate regression methods for the inverse dynamics problem, dealing
with small datasets has become a focus of this work due to the lack of appropriate large
public datasets. Several steps were taken to achieve a reliable regression despite limited
data availability. These include, on the one hand, design decisions that allow the use of
comparably small regression models: The input and output parameter spaces are kept
low-dimensional by using a simplified kinematic model that approximates the upper body
with one segment. Moreover, the trajectories of all relevant variables are divided into short
temporal windows and linear fits are performed so that the obtained coefficients can be
used as input and output signals of the regression. On this basis, relatively shallow fully-
connected neural networks, random forests and even linear ridge regression can be applied
to estimate forces and moments from motion as described in Chapter 5. On the other hand,
the space of usable data is increased to pure motion samples by means of self-supervised
learning with differentiable physics-based loss layers which can be incorporated into neural
network training. This approach is subject of Chapter 6. Based on these concepts, fully
supervised and semi-supervised procedures are implemented and evaluated.

supervised learning of inverse dynamics

In human locomotion, alternating ground contact results in non-continuous GRF/M curves
with values equal to zero during the swing/flight phases. This behaviour is difficult to
capture with a regression model and motivated the design of a multi-stage approach
that includes a gait phase classification as well as an optional regression of global root
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coordinates and calculation of additional manually designed contact features. The method
outperforms direct end-to-end regression in terms of prediction quality. It allows the use
of a linear control regression which is faster to train, requires less hyperparameter tuning
than an artificial neural network and is less prone to overfitting.

Different machine learning models were compared to each other regarding their suitability
for the individual tasks of the multi-stage method. The evaluation shows that with moderate
hyper-parameter tuning it is advantageous to use linear ridge regression after gait phase
classification because this model is not as vulnerable to overfitting as a more powerful,
higher-dimensional neural network. Furthermore, on small datasets (like the investigated
running set consisting of 66 sequences of 15 subjects) a random forest yields excellent
results without having to adjust hyper parameters at all.

The proposed learning based inverse dynamics methods (end-to-end as well as multi-
stage approaches) are robust to noisy and incomplete motion representations, which makes
them applicable to motion patterns reconstructed from 2D. Such data is characterized,
among other things, by the lack of global coordinates and increased noise in the joint
trajectories. In the case of the multi-stage approach, an initial estimation of the global
coordinates allows for calculation of absolute foot velocities which in turn support the
classification of contact states.

self-supervision by dynamics-based layers

The proposed Dynamics Network realizes a complete dynamics cycle consisting of a fully-
connected neural network which implements the inverse dynamics step (from kinematics
to exterior forces, moments and acting joint torques) and the forward layer that simulates
a motion based on the network output. This structure enables minimization of a cyclic
loss function depending only on the kinematics. The forward layer solves an initial value
problem, given by the equations of motion and the initial motion state, by means of
numerical integration. For isolating the optimization of the ground reaction predictions
from the estimations of joint torques, an additional inverse layer is proposed which matches
exterior forces and moments to the input motion. In combination with a contact loss the
model can be trained without any ground truth samples of forces and moments. Only
binary labels are still necessary to prevent non-zero exterior forces when there is no contact
to the ground. Thus the model combines forward and inverse dynamics loss functions to
achieve best possible constraining of the neural network output without needing explicit
target forces and moments.

The model maintains stable performance even with very limited labeled training data
(consisting of sequences from only a few subjects) by learning generalization ability from a
larger, more variable unlabeled motion set. This capability is demonstrated by gradually
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reducing the size of the data that includes ground truth forces. With complete reduction,
i. e. entirely self-supervised, the ground reaction forces can still be learned accurately.
However, the related GRM, determined by the inverse layer, differ from the measured
quantities, which is a result of model simplifications and inherent limitations (double
support ambiguity). As a consequence, the joint torques, constrained by the forward layer,
also deviate from the predictive dynamics results. Without consideration of any measured
forces, the training procedure is solely determined by the modelled dynamics which is why
control parameters learned with self-supervision match the input motion in terms of the
satisfaction of the equations of motion.

In addition to self-supervised learning from scratch, domain expansion and transfer
between different walking speeds and motion types (walking and running) is investigated.
The model can be extended to slow and fast walking, respectively, without requiring ground
truth forces and moments of the new domain. In the case of domain transfer, pre-training
as well as normalization using the source domain supports the prediction capability of
the neural network trained with self-supervision on the target domain. Furthermore, self-
supervised domain expansion to data with differing skeletal characteristics is evaluated
qualitatively using the example of 3D reconstructed gait sequences from the CMU database.
The experiment shows that the inclusion of motion samples from the target set into the
self-supervised training helps to bridge the domain gap between the datasets.

future work

As discussed in Section 6.4, a main limitation of the method that interferes with fully
self-supervised learning of GRM and joint torques is the discrepancy between model and
reality. Accordingly, possible future steps that directly tie in with the developed model
are the usage of a more complex foot model including automatic adjustment of dynamics
(i. e. heel strike and toe-off detection and change of the EOM according to the new contact
state) and the inclusion of a motion correction framework prior to the self-supervised
learning. Correcting the input motions for balance and valid ground contact would reduce
motion capture errors that are passed on to the network’s internal dynamics processing.
Such methods, which also obtain 3D reconstruction from image data, already exist [128].
This idea includes an important step towards fully automated motion analysis which is the
combination of inverse dynamics with pose estimation. The presented regression models
are designed to handle incomplete and noisy input and to enable fine-tuning without
force measurement and thus yield a promising foundation for the realization of vision
based dynamics analysis. The implementation of a joint model that simultaneously derives
physically plausible 3D trajectories and accurate joint moments from image data remains
a goal of future research worth striving for.
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conclusions

With regards to a major limitation introduced by the EOM, the double support ambiguity,
it would be interesting to reduce the measured data to this unsolvable subspace, i. e. to
record the GRF distribution among the feet and the associated COP for a broad spectrum
of motions that include double support. Based on such data a model could be trained
specifically for the task of resolving the ambiguity. The derivation of the remaining
variables, the total ground reaction force and the joint torques, is covered by the presented
physics-based loss layers.

Another potential application worth investigating is the self-supervised fine-tuning of a
regression model to subject-specific features. The presented method can be used to fit a
pre-trained model to the motion patterns of a specific person. This is interesting, e. g. for
the monitoring of rehabilitation or workout progress. In this context, adaptation of the
modeled body type should be considered leading to the question whether the body type,
i. e. the mass distribution between the body segments, can also be learned from motion
patterns.
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A
A P P E N D I X

a.1 evaluation based on additional metrics

This appendix lists additional results belonging to the experiments presented in Section 5.2.1
and Section 6.3.1. The performance of all discussed approaches is evaluated by means of
the RMSE and Pearson’s correlations coefficient in Table 15. The tables contain the error
values of predicted GRF fr, GRM mr and joint torques τ compared to the optimization
results. The models evaluated were built using the full labeled training datasets and, in
the case of the self-supervised approaches F-net and cFI-net, also the unlabeled datasets.

a.2 data-driven inverse dynamics optimization

In Chapter 5, the performance of the learning-based inverse dynamics methods is compared
to a data-driven maximum a posteriori approach by [85]. For this purpose the referenced
method is implemented with a few modifications to allow a fair comparison between the
methods. These modifications were made to facilitate the use of the self-recorded data
and the presented physical model. The following description is drawn from a previous
publication [171].

Opposed to [85], the center of pressure on the foot sole and the torsional torque are
modeled using the six dimensional GRM applied to each foot. As a result the state and
control parameters become

z(t) = (q(t), q̇(t),fc(t), τ (t)) (176)

To find z(t) at each frame, the following sum of energy terms is minimized:

E(z(t)) = λ1Ephysical + λ2Eprior + λ3Edata + λ4Esmooth , (177)

with the weights (λ1, λ2, λ3, λ4) = (2, 2, 100, 1). In consistence with the used physical
model, the friction term Efriction is omitted. Instead, friction is captured by the horizontal
components of the measured GRF.

Similar to [85], principle component analysis is used to linearize the local parameter
space at each frame. The local environment is built of the 200 next neighbours of z(t). Only
the scores s of the first n principle components stacked in the matrix K are optimized.
These n components constitute 95 % of the overall variability of the local data. This way
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A.2 data-driven inverse dynamics optimization

the number of optimization variables is drastically reduced. The optimization problem
becomes

min
s
{E(µ+Ks))} , (178)

with the mean µ of the neighbouring parameter vectors.
As indicated before, z is adapted to fit the physical model, which has an immediate

effect on the physical term Ephys. This term describes the deviation of the kinematic state
(q(t), q̇(t), q̈(t)) given by z(t) from the kinematics arising from the acting forces and
torques via the EOM. Similar to the definition used in the predictive dynamics optimization
presented in Eq. (144) the energy term is

Ephysical = ‖Mq̈−F(q, q̇,fc, τ )‖22 . (179)

The changed physical model further necessitates a slight modification of the smoothness
term:

Esmooth = ‖fc(t− 1)− 2fc(t) + fc(t + 1)‖22 . (180)

The remaining energy terms Eprior and Edata can be employed without adaptation.
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