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Formelzeichen 

a Risslänge 
A Fläche 
b Halbmesser der Kontaktfläche 
d Durchmesser 
daußen Außendurchmesser 
dc Kritische Ritzspurbreite 
dinnen Innendurchmesser 

https://doi.org/10.51202/9783186440013-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 13:03:29. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186440013-I


Formelzeichen XII 

E Elastizitätsmodul 
E Teilchenenergie 
e Volumendehnung (Summe der Dehnungen in alle drei Raumrichtungen) 
EAr Argon-Ionenenergie 
EIT Eindringmodul 
EMo Energie von Molybdänteilchen 
ES Elastizitätsmodul der Schicht 
ES Energie von Schwefelteilchen 
ESu Elastizitätsmodul des Substrats 
F, F* Kraft 
Fa Axialkraft 
FN Normalkraft 
FR Reibungskraft 
FZ Zentripetalkraft 
g Faktor zur Berücksichtigung der Körper- und Rissgeometrie 
G Energiefreisetzungsrate 
Gc Kritische Energiefreisetzungsrate 
GD Gebrauchsdauer 
GI Energiefreisetzungsrate für den Rissöffnungsmodus I 
H Härte 
H0 Kritische Härte für das Einsetzen der Versetzungsbewegung  

(Werkstoffkonstante) 
HIT Eindringhärte 
K Spannungsintensitätsfaktor 
K Proportionalitätsfaktor zwischen Volumendehnung e und dem Verhältnis 
 aus der Teilchendichte verzerrter Atome n und der  (Gesamt-) Teilchen-
 dichte N 
k Verschleißkoeffizient 
k Variable zur Zusammenfassung mehrerer Konstanten (Abschnitt 5.3.5) 
k Erweiterungsfaktor 
Kc Bruchzähigkeit (kritischer Spannungsintensitätsfaktor) 
KH Korngrenzenwiderstand (Werkstoffkonstante) 
KI Spannungsintensitätsfaktor für den Rissöffnungsmodus I 
KV Reibenergie-Verschleiß-Faktor 
Lc Kritische Last 
MK Kreiselmoment 
MS Bohrmoment 
MS Molare Masse der Schichtatome 
n Teilchendichte der von der Verzerrung betroffenen Atome  

(Atome im Ungleichgewichtszustand) 
n Stichprobenumfang 
n Überrollungen 
N Teilchenzahl 
N Teilchendichte (Atomanzahl pro Volumeneinheit) 
NA Avogadro-Konstante (6,022... · 1023 mol-1) 
p Pressung 
p0 Maximale Hertzsche Pressung 
pAr Argon-Prozessdruck 
Q Molare Energie (Energie pro Stoffmenge) 
q Elektrische Ladung 
r Weg in radialer Richtung 
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Formelzeichen XIII 

R2 Determinationskoeffizient 
rF Relative Luftfeuchtigkeit 
rKugel Kugeldurchmesser 
RS Spezifische Gaskonstante 
s Weg 
s Standardabweichung 
t Zeit 
T Temperatur 
tkrit(95%) Kritischer t-Wert für ein Signifikanzniveau von α = 0,05 
TM Schmelztemperatur 
tS Schichtdicke 
TSu Substrattemperatur 
tSu Dicke des Substrats 
v Geschwindigkeit 
vG Gleitgeschwindigkeit 
Vp Nutzbares Schmierstoffvolumen 
WSR Summenreibenergie 
WV Verschleißvolumen 
x Weg in x-Richtung 
z Weg in z-Richtung 
μ Reibungszahl 
α Ausgangs-Berührungswinkel 
α Signifikanzniveau (oder Irrtumswahrscheinlichkeit) 
α0 Betriebs-Berührungswinkel 
αS Ausdehungskoeffizient der Schicht 
αSu Ausdehungskoeffizient des Substrats 
β Winkel des transportierten Teilchens (zur Oberflächennormalen des  
 Targets) 
β0 Winkel des gesputterten Teilchens beim Verlassen des Targets (zur Ober-

flächennormalen des Targets) 
δ Faktor zur Berücksichtigung der Kohäsionsenergie bei der Eigenspan-

nungsberechnung nach Windischmann (Abschnitt 5.3.5) 
ΔT Temperaturdifferenz 
Δσth Änderung thermischer Eigenspannungen 
θ Auftreffwinkel (zur Oberflächennormalen des Targets) 
θ Beugungswinkel 
ν Querdehnzahl 
νS Querdehnzahl der Schicht 
νSu Querdehnzahl des Substrats 
π Kreiszahl (π = 3,1415926…) 
ρ Dichte 
ρS Dichte der Schicht 
σ (Normal-)Spannung 
σ0 Eigenspannung 
σ0°, σ45°, … Richtungsabhängige Spannung 
σc Kritische Spannung 
σi Intrinsische Eigenspannungen 
σI, σII Hauptspannung 
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Formelzeichen XIV 

σi,Druck Intrinsische Druckeigenspannungen 
σn Nennspannung 
σr Normalspannung in radialer Richtung 
σth Thermische Eigenspannungen 
σv Vergleichsspannung 
σx Normalspannung in x-Richtung 
σz Normalspannung in z-Richtung 
τ Schubspannung 
τmax Maximale Schubspannung 
Φ Teilchenfluss(-dichte) 
ΦMo Teilchenfluss(-dichte) von Molybdänteilchen 
ΦS Teilchenfluss(-dichte) von Schwefelteilchen 
ωB Winkelgeschwindigkeit des Wälzkörpers um die Bohrachse 
ωK Winkelgeschwindigkeit des Käfigs 
ωR Winkelgeschwindigkeit des Wälzkörpers um die Rollachse 
ωres Resultierende Winkelgeschwindigkeit 
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Kurzfassung XV 

Kurzfassung 
Der Schlüssel zu leistungsstarken, trockenlaufenden Gleit- und Wälzlagerungen sind 
innovative Festschmierstoffsysteme. Dünne Schichten aus Molybdändisulfid (MoS2) 
kommen zur reibungsarmen Trennung gegeneinander bewegter Kontaktflächen zwar 
häufig zum Einsatz, allerdings verhalten sie sich äußerst sensibel gegenüber den Umge-
bungsbedingungen. So ist das tribologische Verhalten von MoS2 im Vakuum zwar aus-
gezeichnet, unter der oxidativen Wirkung hoher Feuchtigkeits- und Sauerstoffkonzent-
rationen in normaler Luft verschleißt es dagegen sehr stark. Dieses bislang unbewältigte 
Problem führt in Anwendungen, in denen Komponenten über den gesamten Produktle-
benszyklus sowohl im Vakuum als auch in Luft betrieben werden, zu erheblichen Her-
ausforderungen bei der funktionssicheren Auslegung. Es gilt dies durch Weiterentwick-
lung des Werkstoffs zu bewältigen. 

Das hieraus abgeleitete Ziel der Arbeit ist ein leistungsstarkes, vakuumfähiges und zu-
gleich feuchteresistentes MoS2-Festschmierstoffsystem. Die systematische Prozessana-
lyse und der daraus abgeleitete Beitrag zum nachhaltigen Systemverständnis des tribo-
logischen Schichtverhaltens und dessen Verknüpfung mit der Mikrostruktur und den 
Herstellungsbedingungen bilden den wissenschaftlichen Kern der Arbeit. Es wird ange-
strebt, den Nutzen der so entwickelten Schichten durch Übertrag in eine konkrete tech-
nische Anwendung zu bestätigen.  

Die Arbeit gliedert sich in einen simulativen und einen experimentellen Teil. Durch eine 
zweistufige Monte-Carlo-Simulation des Zerstäubungs- und des Transportvorgangs von 
Beschichtungsteilchen werden im ersten Teil Effekte der Prozessparameter auf die In-
tensität des schichtbildenden Teilchenstroms analysiert, um damit das Potential ver-
schiedener Parametereinstellungen für das Wachstum verschleißbeständiger MoS2-
Schichten zu bewerten. Im anschließenden experimentellen Teil erfolgt die Schich-
tabscheidung durch physikalische Gasphasenabscheidung. Zur Erhöhung der Ver-
schleiß- und Feuchteresistenz wird die Schichtstruktur zum einen durch Prozessparame-
tereinstellungen beim Kathodenzerstäuben und zum anderen durch die Dotierung mit 
Fremdmetallen modifiziert. Die Validierung erfolgt unter reiner Gleitbewegung im 
Stift-Scheibe-Modellversuch und unter Wälzbewegung im Bauteilversuch mit Axial-
Rillenkugellagern.  

Bei den erzeugten Schichten mit der höchsten Verschleißbeständigkeit korrespondieren 
die Verschleißkoeffizienten in Luft nahezu mit denen im Vakuum. Die hierfür verant-
wortliche kompakte Mikrostruktur bildet sich unter der verdichtenden Wirkung hoch-
energetischer Partikelströme bei der Herstellung. Niedriger Prozessdruck und geringer 
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Kurzfassung XVI 

Abstand zwischen Beschichtungsquelle und Substrat sind dafür die maßgeblichen Vo-
raussetzungen. Weitere Faktoren für die Leistungsfähigkeit der Schichten sind hohe 
Druckeigenspannungen, ein geringer Schwefelanteil und ein hohes Verhältnis zwischen 
der Schichthärte und dem Schicht-Eindringmodul (H/E-Verhältnis). Die Bauteilversu-
che zeigen, dass die Gebrauchsdauer trockenlaufender Axial-Rillenkugellager mit einer 
solchen strukturmodifizierten MoS2-Schicht die bislang aus der Literatur bekannten 
Werte bei vergleichbaren Randbedingungen deutlich übersteigt.  

Insgesamt konnte zum einen das angestrebte Ziel einer leistungsfähigen, verschleiß- und 
feuchteresistenten MoS2-Schicht umgesetzt werden. Zum anderen ermöglicht das in der 
Arbeit geschaffene Systemverständnis des Herstellungsprozesses zukünftigen For-
schungs- und Entwicklungsprojekten eine systematische und zielgerichtete Synthese 
dieser Schichten. 
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Abstract XVII 

Abstract 
The key to high-performance dry-running sliding and rolling bearings are innovative 
solid lubricants. Although thin solid lubricant coatings of molybdenum disulfide (MoS2) 
are often employed to ensure low friction between moving surfaces, their performance 
is very sensitive to varying environmental conditions. While MoS2 provides outstanding 
tribological performance in vacuum, the wear of MoS2 in air is extremely high. There-
fore it is difficult to achieve the functionality of mechanical components which are ex-
posed to both environmental conditions throughout the entire product lifecycle. As a 
consequence, there is a substantial need for the further development of this material.  

The derived objective of this work is a powerful vacuum-capable and moisture resistant 
MoS2 solid lubricant system. The sustainable understanding of the coating behavior and 
its link to the microstructure and the required manufacturing conditions constitutes the 
main scientific challenge. It is further aimed to confirm the benefit of the developed 
coatings by transferring them into an industrial application. 

The thesis consists of a simulative and an experimental part. In the simulative part, ef-
fects of the process parameters on the intensity of the particle flux are analyzed by a 
two-step Monte Carlo simulation of particle sputtering and transport. The calculation 
results enable assessing the potential of different parameter settings for the creation of 
high wear resistant MoS2 coatings. Within the experimental part, coatings are deposited 
by physical vapor deposition. To increase the wear and moisture resistance, the coating 
structures are modified by metal doping and by adjusting the parameters of the sputter-
ing process. The validation is carried out under pure sliding using pin-on-disc-testing 
and under rolling motion using component tests with thrust ball bearings. 

Coatings with highest performance show wear coefficients in air that almost correspond 
to those in vacuum. These highly wear resistant coatings are characterized by dense 
microstructures, high compressive residual stresses, low sulfur contents and high ratios 
between hardness and indentation modulus (H/E-ratio). Essential requirements to 
achieve such coatings are high energy particle fluxes during manufacturing which can 
be obtained by low process pressures and low target-substrate-distances. Compared to 
literature, the service life of dry-running thrust ball bearings could be significantly ex-
tended by equipping them with the developed MoS2-coatings.  

On the one hand, the aim of a powerful wear- and moisture-resistant MoS2 coating has 
been successfully developed. On the other hand, the gained scientific understanding of 
the manufacturing process enables a targeted synthesis of wear resistant MoS2-coatings.
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