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ϕmax - Umformgrad
ϕvG - Grenzumformgrad
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XI

Abstract

Companies within different industries have to face several key challenges, among which
the demand for shortening the time-to-market whilst decreasing costs and the strong in-
diviuality and dynamic of globalized markets are highlighted. In order to overcome those
challenges companies not only have to optimize their products but also the underlying
product development and manufacturing processes. The objective from engineering design
point of view is the exchange of design-relevant manufacturing knowlegde between both
disciplines as early as possible. Especially for newly emerging manufacturing technologies
common knowledge acquisition methods to assist such knowledge exchange processes fail.

This thesis proposes an approach for a self-learning engineering assistance system (re-
ferred to as Slassy) for the automatic acquisition of design-relevant manufacturing know-
ledge. Such knowledge is represented in terms of so-called metamodels. In the context of
this thesis a metamodel is capable of predicting manufacturing process related parameter
such as forming force, equivalent plastic strain, sheet thinning (and thickening) or forming
tool cavity filling. The prediction depends on design related parameters such as lengths,
widths, heights or angles of geometric design features. Design features that are considered
in this work are for example toothings, straps or tapets. The self-learning process incorpo-
rated in Slassy’s knowledge acquisition component is based on two core items: the robust
optimization and performance estimation of different metamodels and a two-step inference
mechanism. The former is referred to as ROPE process and ensures that the prediction
quality of all metamodels is robust and reliably estimated. It facilitates methods from the
field of knowledge discovery in databases (KDD). The latter enables Slassy to chose the
most suitable metamodel, that is, the prediction quality of the chosen metamodel is signi-
ficantly better than the remaining. This metamodel is incorporated in Slassy’s knowledge
base. Hence, Slassy can assist design engineers during the analysis of design concepts in
terms of design-for-manufacture, an important aspect in the field of design for X (DfX).

The emerging manufacturing technology sheet-bulk metal forming (SBMF) creates the
background for the concluding use case. Data from an exemplary SMBF process develop-
ment is analysed by means of KDD methods and a set of metamodels is derived with
the developed ROPE process. The selection of the most suitable metamodel by the pro-
totypically implemented Slassy is comprehended. Afterwards the prediction of relevant
manufacturing process parameters with Slassy is shwon. By enabling the prediction of
these process parameters the number of time-consuming iterations between product and
manufacturing process developement can be reduced.
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1

1 Einleitung

Produzierende Unternehmen unterschiedlicher Industriebranchen (z. B. Maschinen- und
Anlagenbau, Automotive, Luftfahrt) werden von drei wesentlichen Trends geleitet. Dies
sind die fortschreitende Globalisierung der Märkte, der steigende Innovations- und Kos-
tendruck sowie eine stärkere Individualität und Dynamik der weltweiten Absatzregionen.
Schuh et al. gehen davon aus, dass dieser Trend bestehen bleiben und sich weiter ver-
stärken wird [SGS+07]. Die Unternehmen reagieren auf diese Trends und haben erkannt,
dass nicht nur die Produkte, sondern auch die Produktentstehungsprozesse optimiert wer-
den müssen. Bild 1 zeigt das Zusammenspiel der Bereiche „Entwicklung und Konstruktion“
sowie „Fertigung und Montage“, die hier exemplarisch aus dem Produktentstehungsprozess
herausgegriffen wurden.

3D-CAD Produktmodelle
Stücklisten
Anforderungen an Toleranzen
und Materialauswahl

konstruktionsrelevantes 
Fertigungswissen
Unterstützung bei 
Toleranzmanagement
Fertigungskostenabschätzung

wahlwah

evantes

en

onstruktionsreleeva

Bild 1: Zusammenspiel der Bereiche „Entwicklung und Konstruktion“ sowie „Fertigung
und Montage“ im Produktentstehungsprozess.

Von den skizzierten Trends sind die Entwicklungs- und Konstruktionsabteilungen, in de-
nen die Kernprozesse aller ingenieursmäßigen Planungstätigkeiten ablaufen und die in den
frühen Phasen des Produktentstehungsprozesses aktiv sind, in besonders hohem Maße be-
troffen. Hintergrund ist, dass diese Abteilungen auf der einen Seite 60 bis 80 % der variablen
Produktselbstkosten festlegen, auf der anderen Seite jedoch nur ca. 5 % dieser Kosten ver-
ursachen [EM13; VDM01]. Die Ingenieure und Konstrukteure bewegen sich dabei stets
im sogenannten „Magischen Dreieck“ aus Entwicklungskosten, Produktqualität und Ent-
wicklungszeit [HKL+15]. Unterstützung erfahren sie im Allgemeinen durch Methoden und
Werkzeuge der rechnerunterstützten Produktentwicklung [Vaj09; Lin09].
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2 1 Einleitung

Mit Blick auf die späteren Phasen des Produktentstehungsprozesses tritt die Fertigung in
den Vordergrund. In dieser Phase werden zwar rund ein Drittel der entstehenden Kosten
verursacht, jedoch weniger als zehn Prozent festgelegt [EM13; VDM01]. Optimierungen im
Bereich der Fertigung ergeben sich zum einen durch neue organisatorische Konzepte (z. B.
Kanban [Eve02], SIT [KS11] oder Lean Production [SW03]), zum anderen durch die Neu-
oder Weiterentwicklung von Fertigungstechnologien, sowohl in den Unternehmen, als auch
in Forschungseinrichtungen1. Durch die Entwicklung neuartiger Fertigungsprozesse sorgt
das produzierende Gewerbe für eine stetige Reduzierung der zur Produktion von Gütern
notwendigen Ressourcen [BJS+11; ES05].

Neue Fertigungsverfahren müssen jedoch auch klar erkennbare Vorteile für die Entwicklung
und Konstruktion in Form von erweiterten oder neuen Gestaltungsmöglichkeiten, engeren
Toleranzfeldern bei mindestens gleichen Kosten oder höheren Oberflächengüten bieten.
Den Herausforderungen die sich durch die hohe Kostenverantwortung auf der einen Seite
(Konstruktion) und der hohen Kostenverursachung (Fertigung) auf der anderen Seite erge-
ben kann u. a. mit Methoden des fertigungsgerechten Konstruierens (FGK, engl. Design for
Manufacture (DfM)) begegnet werden. Ziel ist eine möglichst enge Verzahnung der beiden
Bereiche und ein frühzeitiger Austausch sowie eine Bereitstellung von konstruktionsrele-
vantem Fertigungswissen, das die Konstrukteure zu Design for Manufacture Analysen ihrer
Entwürfe befähigt. Frühzeitig meint hier sowohl früh im Konstruktionsprozess als auch früh
in der Fertigungsprozessentwicklung (s. Bild 1).

… Konzipieren Entwerfen Ausarbeiten …

… Prozess-
planung

Prozess-
entwicklung

Prozess-
validierung …

Prozessentwicklung

Produktentwicklung

Bereitstellung von konstruktionsrelevantem Fertigungswissen

IST-ZustandZiel

Bild 2: Je früher Wissensaustausch zwischen Produkt- und Prozessentwicklung erfolgt,
desto besser für den gesamten Produktentstehungsprozess.

Austausch und Bereitstellung von Wissen im Unternehmen sind klassische Aufgabenge-
biete des Wissensmanagements [Non07]. Dass diese Domäne immer mehr an Bedeutung
gewinnt, wird u. a. durch die Forderung nach aktivem Wissensmanagement in der neuen
Version der Norm ISO 9001:2015 deutlich [Hin15; NBS16]. Aktivitäten des Wissensma-
nagements im Umfeld der Produktentwicklung werden unter der Bezeichnung „Wissens-
basiertes Konstruieren“ (KBE, engl. Knowledge Based Engineering) zusammengefasst. In
diesen Kontext ordnet sich auch die Problemstellung der vorliegenden Arbeit ein.

1 Als Beispiel sei hier der Sonderforschungsbereich Transregio 73 (SFB/TR 73) genannt. Kapitel 3 enthält
weitere Ausführungen.
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1.1 Problemstellung 3

1.1 Problemstellung

Wissensbasiertes Konstruieren (KBE, engl. Knowledge Based Engineering) bezeichnet
im Allgemeinen die gedankliche Durchdringung eines Konstruktionsprozesses, so dass
dieser, zumindest teilweise, rechnerunterstützt umgesetzt werden kann [Rud98]. KBE-
Anwendungen weisen im industriellen Umfeld ein breites Spektrum auf und reichen von ein-
fachen, CAD-internen Makros über angepasste Lösungen auf Basis von KBE-Modulen bis
hin zu kundenspezifischen Produktkonfiguratoren und Design Automation Anwendungen
[VDI15]. Im akademischen Umfeld der Produktentwicklung liegt der Fokus der Forschungs-
arbeiten auf wissensbasierten Konstruktions- bzw. Assistenzsystemen. Beispiele hierzu wer-
den in Abschnitt 2.2 dargestellt.

Die Entwicklung, der Betrieb und die Benutzung wissensbasierter (Assistenz)systeme wer-
den unter der Bezeichnung „Knowledge Engineering“ (KE) zusammengefasst und ist als
Prozess zu verstehen, mit dem Ziel, Problemlösungswissen von einer Wissensquelle in
eine Anwendungssoftware zu überführen [SBF98; Sto01]. Die bisher entwickelten KE-
Prozessmodelle (z. B. Semma, MOKA, CommonKADS, MIKE) unterscheiden sich in den
grundlegenden Konzepten teilweise sehr, zeigen jedoch in einem Aspekt hohe Übereinstim-
mung: Die Wissensakquise wird als der wichtigste und zugleich kritischste Schritt angese-
hen. Feigenbaum spricht hier von einem „Flaschenhals“ [Fei81]. Die Wissensakquisition,
deren Details im Abschnitt 2.1.4 behandelt werden, kann direkt, indirekt oder automa-
tisch erfolgen. Direkte und indirekte Verfahren sind an menschliche Wissensquellen (z. B.
Experten, Fachkräfte) gebunden, während automatische Verfahren bisher aus verfügbaren
Texten (z. B. Fachbücher, Normen, Tabellenwerke) Wissen extrahieren. Ein „textverstehen-
des“ Programm erfasst ohne Einwirken des Nutzers den Text, analysiert diesen linguistisch
und formalisiert ihn in Form von Fakten und Regeln [SK97].

Vor dem Hintergrund der einleitend erwähnten, notwendigen frühen und engen Verzahnung
zwischen der Produktentwicklung bzw. Konstruktion und der Fertigung muss ein wis-
sensbasiertes Assistenzsystem den Konstrukteur bei DfM-Analysen seiner Gestaltentwürfe
unterstützen. Bisher entwickelte Konstruktions- oder Assistenzsysteme nutzen erfolgreich
direkte oder indirekte Wissensakquisitionsmethoden und decken in Form von Insellösungen
etablierte Fertigungsverfahren wie beispielsweise Drehen, Blechbiegen, Tiefziehen, Druck-
und Spritzguss sowie Punktschweißen ab (s. Abschnitt 2.2.3). Eine problematische Situati-
on ergibt sich jedoch, wenn für neue Fertigungstechnologien oder neuartige Kombinationen
von bestehenden Verfahren wissensbasierte DfM-Analysewerkzeuge entwickelt werden sol-
len. Während bei etablierten Verfahren menschliche und textuelle Wissensquellen vorhan-
den sind, fehlt es bei neuen Prozessen besonders in den frühen Entwicklungsphasen sowohl
an ausreichendem, formalisierbarem und sicherem Expertenwissen über den Prozess als
auch an textbasierten oder tabellarischen Wissensquellen. Fällt es Experten i. d. R. schwer,
bereits für Sachverhalte, in denen sie über langjährige Erfahrung verfügen, ihr Erfahrungs-
wissen zu formalisieren, so wird dieser Umstand bei neuen Wissensfeldern noch verschärft.
Direkte bzw. indirekte Methoden können für die Akquisition von konstruktionsrelevantem
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4 1 Einleitung

Fertigungswissen vor diesem Hintergrund in frühen Phasen des Produktentstehungspro-
zesses nicht eingesetzt werden und automatische Methoden rücken in den Fokus.

Die Arbeiten im Bereich der automatischen Wissensakquisition werden im Allgemeinen
unter dem Begriff „Knowledge Discovery in Databases“ (KDD, Wissensentdeckung in Da-
tenbanken) zusammengefasst [SK97; Her97; ES00]. Im Rahmen von KDD-Prozessen (s. Ab-
schnitt 2.4) werden Methoden und Werkzeuge aus unterschiedlichen Wissensdomänen wie
Data-Mining, maschinelles Lernen und Inferenzstatistik genutzt, um aus Datenbeständen
Informationen bzw. Wissen zu extrahieren [CPSK07]. Eine effektive Nutzung von KDD
im Umfeld der Konstruktionstechnik setzt voraus, dass dem Nutzer, sprich dem Konstruk-
teur, diese zugrundeliegenden Theorien und Methoden bekannt sind. Ist dies nicht der
Fall und setzt er entsprechende Software ohne Hintergrundwissen ein, kann es zu falschen
Ergebnissen, Fehlinterpretationen oder Abwehrhaltungen gegenüber der Benutzung von so-
genannten „Black-Box“ Programmen kommen. Durch die Nutzung von KDD-Technologien
rücken neben den etablierten Wissensquellen auch Datenquellen in den Vordergrund, von
denen es entlang des Produktentstehungsprozesses unzählige gibt: Tabellen mit Anforde-
rungen, Sammlungen an Konzeptlösungen, Protokolle, Stücklisten sowie unterschiedliche
CAD-, Simulations- und Werkstoffdaten.

Die Lösung dieser Problemstellungen ist von enormer Bedeutung, denn Technologien wie
KDD können im Produktentstehungsprozess enorm viel Optimierungspotential erschließen
(s. [Sch14b; Har14]) und sind zudem eine Voraussetzung für die Realisierung der Industrie
4.0 Strategie des BMBF [Bau14; TAN15]. Die skizzierten Problemstellungen und Hinter-
gründe sind bei der im Folgenden entwickelten Zielsetzung zu berücksichtigen.

1.2 Zielsetzungen und Aufbau der Arbeit

Für die Lösung der beschriebenen Problemstellung setzt sich diese Arbeit zum Hauptziel,
ein wissensbasiertes Assistenzsystem zu entwickeln, das in der Lage ist, mit Methoden
der automatischen Wissensakquisition konstruktionsrelevantes Fertigungswissen zu erhe-
ben und für Design for Manufacture Analysen zur Verfügung zu stellen.

Wesentliche Randbedingungen ergeben sich aus der Problemstellung, dass sich das jeweilige
Fertigungsverfahren in einer frühen Entwicklungsphase befindet. Außerdem sollen die Per-
sonen der Zielgruppe, zum Beispiel Betriebsmittelkonstrukteure und Fertigungsingenieure,
mit den Details zu KDD-Prozessen, -Methoden und -Werkzeugen nicht zusätzlich belastet
werden. Das Assistenzsystem muss in der Lage sein, unabhängig vom Nutzer verlässliches
Wissen selbstständig zu akquirieren und zu bewerten. Diese zentrale Eigenschaft, die es
von bisherigen Assistenzsystemen abgrenzt, wird im weiteren Verlauf der Arbeit als Selbst-
lernfähigkeit bezeichnet. Damit wird ein Beitrag zur Weiterentwicklung wissensbasierter
Systeme im Bereich der Konstruktionstechnik geleistet und die Problematik des Flaschen-
halses „Wissensakquisition“, der in bisherigen Systemen zur „Alterung“ der Wissensbasis
führte, entschärft.
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1.2 Zielsetzungen und Aufbau der Arbeit 5

Zu Beginn erfolgt eine Analyse des Einsatzkontextes „Konstruktion“ des Assistenzsystems
mit einem Fokus auf den Aspekt Wissen und dessen Bedeutung für die Produktentwick-
lung. Insbesondere die Wissensstrukturierung und die Wissensakquisition werden dabei
genauer betrachtet. Das in der vorliegenden Arbeit zu entwickelnde selbstlernende As-
sistenzsystem basiert auf der Technologie der wissensbasierten Systeme, deren Grundla-
gen darzustellen und wichtige Begriffe voneinander abzugrenzen sind. Weiterhin werden
Beispiele für wissensbasierte Assistenzsysteme aus der jüngeren Forschungsgeschichte vor-
gestellt, die entweder einen starken Design for Manufacture Bezug aufweisen oder sich
insbesondere dem Problem der Wissensakquisition widmen. Ob sich diese Ansätze für die
Lösung der vorliegenden Problemstellung eignen, wird anschließend im Kapitel 4 beurteilt.
Der Aspekt der Fertigungsgerechtheit im Kontext des Design for X wird ebenfalls in einem
eigenen Abschnitt behandelt. Das Ziel ist zum einen die Abgrenzung des konstruktionsrele-
vanten Fertigungswissens zu anderen Wissensarten und die Erarbeitung bisheriger Ansätze
zur Beurteilung der Fertigungsgerechtheit. Hier stehen sowohl die geometriebasierten De-
sign for Manufacture Analysen als auch die Rechnerunterstützung durch Simulation im
Fokus. Abschließend werden die Grundlagen der Wissensentdeckung in Datenbanken zu-
sammengefasst, soweit sie als notwendiges Hintergrundwissen relevant sind. Ausgangspunkt
ist das weit verbreitete KDD-Prozessmodell nach Fayyad [FPSS96]. Das Kapitel schließt
mit der Darstellung bisheriger KDD-Anwendungen im Kontext der Produktentstehung.

Kernpunkt der Zielsetzung ist die Akquisition von Design for Manufacture relevantem
Wissen über Fertigungsprozesse in frühen Entwicklungsstadien. Als exemplarischer Pro-
zess wird die Blechmassivumformung genutzt, die im Kapitel 3 sowohl aus der Sicht der
Fertigung als auch der Konstruktionstechnik dargestellt wird. Da mit der Erforschung
der Blechmassivumformung u. a. das Ziel verfolgt wird, bestehende Fertigungsprozesse für
komplexe Nebenformelemente zu ersetzen, wurde ein Katalog an Nebenformelementen ent-
wickelt, mit dessen Hilfe das Substitutionspotential der Blechmassivumformung qualitativ
beurteilt werden soll. Ausgehend von den erarbeiteten Grundlagen (Kapitel 2) und der
Darstellung der Blechmassivumformung (Kapitel 3) erfolgt eine Ableitung des Handlungs-
bedarfs und die Formulierung von Anforderungen an ein selbstlernendes Assistenzsystem.

Der Entwicklung des Selbstlernprozesses wird ein eigenes Kapitel gewidmet. Zunächst wird
der Frage nachgegangen, was unter Selbstlernen zu verstehen ist und welche Theorien aus
anderen Wissenschaftsdomänen zur Beantwortung dieser Frage beitragen können. Daraus
wird der Selbstlernprozess abgeleitet und mit den geeigneten KDD-Methoden zunächst
als allgemeingültiges Konzept entwickelt. Die konkrete Umsetzung des Selbstlernprozesses
erfolgt im Rahmen der Implementierung des Assistenzsystems, das mit Synthese- bzw.
Analysetool und einem Produkt- und Prozessdatenmodell an das Konzept des Konstruk-
tionssystems mfk (s. Abschnitt 2.2.3) anknüpft. Ein Anwendungsbeispiel auf Basis einer
typischen Prozesskombination der Blechmassivumformung (Tiefziehen und Fließpressen
von Blechronden) beschreibt die nicht sichtbaren Abläufe während der automatischen Wis-
sensakquisition. Zudem wird auch die generelle Benutzung des Assistenzsystems zur Syn-
these und Design for Manufacture Analyse blechmassivumgeformter Bauteile dargestellt.
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6 2 Wissenschaftliche Grundlagen und Stand der Forschung

2 Wissenschaftliche Grundlagen und
Stand der Forschung

Im folgenden Kapitel erfolgt eine Analyse des Umfelds der Konstruktion, die den Einsatz-
kontext des zu entwickelnden Assistenzsystems darstellt. Besonders der Aspekt des Wissens
wird dabei genauer untersucht und dargestellt. Das Feld der wissensbasierten Konstruktion,
mit den wissensbasierten Systemen als bekannteste Technologie, wird am Anschluss daran
vorgestellt. Bekannte und aktuelle Beispiele für wissensbasierte Assistenzsysteme werden
präsentiert und v. a. hinsichtlich der eingesetzten Wissensakquisitionsmethoden analysiert.
Eine Prüfung inwiefern im Rahmen der vorliegenden Arbeit auf den Entwicklungen dieser
Systeme aufgebaut werden kann, erfolgt im Kapitel 4. Das zu entwickelnde Assistenzsys-
tem soll Bauteile hinsichtlich eines fertigungsgerechten Gestaltentwurfs analysieren. Daher
wird der Begriff „Fertigungsgerechtheit“ in einem eigenen Abschnitt behandelt und seine
Bedeutung im Kontext des Design for X (DfX) hervorgehoben. Die Darstellung ausgewähl-
ter, bestehender Design for Manufacture Lösungen rundet den Abschnitt ab. Zur Lösung
der skizzierten Aufgabenstellung wird der Technologie der Wissensentdeckung in Daten-
banken (engl. knowledge discovery in databases (KDD)) hohes Potential beigemessen. Zu
KDD existieren in der Literatur verschiedene Vorgehensmodelle, von denen das nach Fa-
yyad im Detail vorgestellt wird. Im Vergleich zur Konstruktionstechnik ist KDD noch ein
relativ junges Forschungsfeld, dennoch lassen sich in der Literatur bereits erste Anwen-
dungen von KDD im Produktentstehungprozess finden. Diese werden umrissen, um das
generelle Potential von KDD zu betonen und ein objektives Bild vom Stand der Forschung
zu präsentieren. In jedem der folgenden Abschnitt erfolgt zudem an geeigneter Stelle eine
Klärung oder Einführung wichtiger Fachbegriffe, sofern diese für den späteren Verlauf der
Arbeit relevant sind.

2.1 Konstruieren als wissensintensive Tätigkeit

Die Erkenntnis, dass fundiertes Ingenieurswissen notwendig für das Durchlaufen des me-
thodischen Konstruktionsprozess ist, lässt sich in der Literatur bereits in den frühen 1940er
Jahren finden. Wögerbauer sieht diese Notwendigkeit insbesondere dadurch verstärkt,
dass sich „Anforderungen, Baustoffe und Herstellverfahren weiter entwickeln und [immer]
mehr Menschen sich über konstruktive Fragen verständigen müssen“ [Wög42]. Dieser Sicht-
weise schließt sich Volk an und betont dabei, dass Konstruieren neben Wissen auch Kön-
nen, Phantasie und Einschätzungsvermögen erfordert [Vol41]. Über ein halbes Jahrhundert
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2.1 Konstruieren als wissensintensive Tätigkeit 7

später betont Richter, dass Wissen im Kampf um Wettbewerbsfähigkeit weitaus wich-
tiger geworden ist als bspw. hohe Produktionskapazitäten und schnelle Fertigungslinien
[RV95]. Aufgrund dieser Bedeutung und der Tatsache, dass Konstruktionswissen im Rah-
men der vorliegenden Arbeit eine zentrale Rolle einnimmt, wird seine Bedeutung für den
Konstruktionsprozess in den folgenden Abschnitten näher betrachtet.

2.1.1 Der Konstruktionsprozess und X-gerechtes Konstruieren

Nach Koller [Kol13] beinhaltet die Tätigkeit des Konstruierens alle Synthese- und Ana-
lyseschritte, die notwendig sind, um auf der Basis einer definierten Aufgabenstellung die
zu einem bestimmten Zeitpunkt bestmögliche Lösung zu beschreiben. Die bestmögliche
Lösung ist dabei eine genügend zuverlässige, wirtschaftlich realisierbare und sonstigen Be-
dingungen genügende Lösung. Weber [Web05] beschreibt die Syntheseschritte zum einen
als qualitative Definition relevanter Merkmale (Entwicklung und Auswahl von Prinziplö-
sungen, qualitative Gestaltung) und zum anderen als quantitative Festlegung der Merk-
malausprägungen (Dimensionierung). Während der Analyse wird das Produktverhalten,
das sich durch die Merkmalausprägungen ergibt, untersucht. Dies geschieht anhand des
virtuellen Produkts durch Simulationen und Berechnungen oder anhand physikalischer
Prototypen durch Versuche [Lut11].

Das Entwickeln wird im Allgemeinen als ein Unternehmensprozess angesehen, der unmit-
telbar zum Wert des Produktes beiträgt. Damit eine ausreichende Wertschöpfung sicher-
gestellt ist, sollte dieser Prozess möglichst strukturiert durchlaufen werden. Hierzu kön-
nen Firmen auf allgemeingültige Vorgehensmodelle zurückgreifen. Pahl et al. [PBFG07],
Lindemann [Lin09], Krehmer [Kre12], die VDI 2221 [VDI93] oder die VDI 2206 [VDI04b]
präsentieren entsprechende Ansätze. Auch wenn unterschiedliche Bezeichnungen genutzt
werden, so gliedern alle Ansätze den Produktentstehungsprozess (PEP) in Teilprozesse,
in denen die Ausführung einzelner Arbeitsschritte verlangt wird. Nach jedem erfolgreich
durchlaufenem Arbeitsschritt steht den Produktentwicklern ein Arbeitsergebnis zur Ver-
fügung. Je nach Teilprozess und Aufgabenstellung werden die Arbeitsschritte vollständig,
teilweise und sogar mehrmals durchlaufen, falls das jeweilige Arbeitsergebnis nicht den
Anforderungen genügt.

Die Vorgehensweise nach VDI 2221 ist insbesondere im Maschinenbau anerkannt und wird
detaillierter betrachtet (s. Bild 3). Sie zeigt in sieben Phasen einen branchenunabhängigen
Ansatz zur methodischen Entwicklung von Produkten auf. Durch eine gesonderte Ausein-
andersetzung mit den Möglichkeiten der modernen, IT-unterstützten Konstruktion ist eine
Abgrenzung gegenüber anderen Produktentwicklungsprozessbeschreibungen festzustellen.
Ergänzend sind für eine detaillierte Darstellung der einzelnen Arbeitsschritte die Richtlini-
en VDI 2222 [VDI97] für die Schritte 1 bis 3 sowie die VDI 2223 [VDI04a] für die Schritte
4 bis 7 heranzuziehen.

Im Zusammenhang mit der Problemstellung der vorliegenden Arbeit ist der Vorgang des
Gestaltens von zentraler Bedeutung. Der Gestaltungsprozess ist Bestandteil des übergeord-
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1
• Klären und Präzisieren der Aufgabenstellung
• Ergebnis: Anforderungsliste

2
• Ermitteln von Funktionen und deren Strukturen
• Ergebnis: Funktionsstruktur

3
• Suchen nach Lösungsprinzipien und -strukturen
• Ergebnis: Prinzipielle Lösung

4
•Gliedern in realisierbare Module
•Ergebnis: Modulare Strukturen

5
•Gestalten der maßgebenden Module
•Ergebnis: Vorentwürfe

6
•Gestalten des gesamten Produktes
•Ergebnis Gesamtentwurf

7
•Erstellen der Ausführungs- und Nutzungsangaben
•Ergebnis: ProduktdokumentationIte
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Bild 3: Die sieben Arbeitsschritte beim Entwickeln und Konstruieren nach [VDI93]

neten Entwurfsprozesses und umfasst alle Tätigkeiten, bei denen der Konstrukteur Gestalt-
und Werkstoffeigenschaften von Gestaltungselementen festlegt. Gestaltungselemente i. S. d.
VDI 2223 sind Elemente von technischen Produkten wie Einzelteilflächen, Formelemente,
Einzelteile und Teileverbände [VDI04a]. Diese Elemente werden durch den Konstrukteur
in der technischen Zeichnung und der Stückliste, bzw. im virtuellen Produktmodell do-
kumentiert. Das Gestalten erfolgt immer hinsichtlich zuvor definierter Funktionen und
Anforderungen. Die Anforderungen wiederum resultieren aus dem gesamten Lebenszyklus
des Produkts und sind zahlreich, vielfältig, teilweise widersprüchlich oder auch voneinander
abhängig [Wög42; PBFG07].

Zur Lösung dieser Problematik und zur Unterstützung der Produktentwickler wurden in
der Vergangenheit zahlreiche Methoden, Strategien und Werkzeuge entwickelt, die unter
dem Begriff Design for X (Design for X (DfX)) zusammenzufassen sind [Hub95; Hua96].
Das X ist als Platzhalter anzusehen und repräsentiert Einflussfaktoren durch die Anfor-
derungen bestimmt werden [MW00]. Diese sog. Dispositionen stammen entweder aus den
Phasen des Produktlebenszyklus (z. B. Fertigung2, Montage, Nutzung, Recycling) oder
können Produkteigenschaften wie Kosten entsprechen [SAKR05]. Hubka [Hub95] ver-

2 Das Design for Manufacture wird im Abschnitt 2.3 ausführlicher beschrieben.
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steht unter DfX ein System, in dem das Wissen darüber, wie gewünschte Eigenschaften
eines Produktes im Gestaltungsprozess zu erreichen sind, in geeigneter Form bereitgestellt
wird. Der Anwender dieses Wissenssystems ist der Konstrukteur. Auch für Tichem [Tic97]
verbergen sich hinter DfX die Abhängigkeiten zwischen den Produktparametern, die der
Konstrukteur gestalten kann und den erwünschten (wie unerwünschten) Produkteigen-
schaften im Produktlebenszyklus. Das Wissen, das diese Abhängigkeiten beschreibt, nennt
er DfX-Wissen.

Es wird deutlich, dass der Konstruktionsprozess durch eine ständige Wissensverarbeitung
und -erzeugung gekennzeichnet ist. Aufgrund dieser Bedeutung wird der Begriff Wissen
und seine Rolle im Konstruktionsprozess im folgenden Abschnitt genauer betrachtet.

2.1.2 Wissen und seine Rolle im Konstruktionsprozess

In der alltäglichen Sprache sind Begriffe wie Wissen, Daten und Informationen nicht klar
abgegrenzt, sondern werden vermischt oder sogar synonym verwendet. Auch zwischen ver-
schiedenen wissenschaftlichen Disziplinen gibt es teilweise keine übereinstimmende Auffas-
sung zu diesem Thema, was laut Schmaltz et al. [SH03] u. a. an den unterschiedlichen
Sichtweisen auf den Aspekt Wissen liegt. Eine Betrachtung aus dem Blickwinkel der Kon-
struktion verlangt demnach einige Begriffsklärungen.

Zeichen

Daten

Information

Wissen

+Syntax

+Semantik

+Vernetzung

„²“ „N“ „2“ „B“ „/“ „m“ „3“ „:“

„Die Streckgrenze Re für S235JR beträgt 235 N/mm².“

„Der aktuelle Lastfall verursacht eine Biegespannung  
σb von 270 N/mm²“

„Die Biegespannung übersteigt die Streckgrenze, das Bauteil wird im 
Betrieb versagen. Es muss ein anderes Material gewählt oder die 
Geometrie angepasst werden.“

Bild 4: Ein Beispiel zur Erklärung der Taxonomie des Wissens, nach Probst [PRR03]

Probst et al. [PRR03] liefern die bislang bekannteste Taxonomie zur Abgrenzung der
Begriffe Daten, Information und Wissen (s. Abbildung 4). Auf der untersten Stufe stehen
eine Reihe von Zeichen (bspw. Zahlen, Buchstaben), diese werden durch Ordnungsregeln in
Daten umgewandelt und bestehen aus Zeichen oder einer Zeichenfolge. Durch Angabe des
Kontextes oder einer Bedeutung werden die Daten zu Informationen. Die nächste Ebene
Wissen entsteht durch die Vernetzung der Informationen und Eingliederung von individu-
ellen Erfahrungen und Erwartungen. Allen Begriffshierarchien gemein ist die Feststellung,
dass Wissen immer in Bezug bzw. Verbindung zu Personen steht und äußerst vielfältige
Ausprägungen zeigt (s. Bild 5).
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10 2 Wissenschaftliche Grundlagen und Stand der Forschung

Sander et al. [SKH00] stellen fest, dass ein Konstrukteur, der das Ziel der erfolgreichen
Bewältigung einer Konstruktionsaufgabe verfolgt, in der Lage sein muss, Handlungen (Fes-
tigkeitsberechnung, Getriebeauslegung, usw.) auszuführen. Dazu benötigt er Werkzeuge
(Papier, Bleistift, CAD-System, CAE-System, usw.) und Wissen. Dieses Konstruktions-
wissen versetzt den Konstrukteur in die Lage, seine Handlungen auszuführen (Was?) und
seine Werkzeuge effektiv und effizient zu nutzen (Wie?). Auch Spur et al. [SK97] stim-
men darin überein, dass konstruktionsrelevantes Wissen an die Tätigkeiten gebunden ist,
die der Konstrukteur ausführen muss bzw. diese ermöglicht (z. B. Berechnen und Gestal-
ten). Für Feldhusen et al. [FG13] ist Konstruktionswissen eine notwendige Vorausset-
zung um Produktfeatures, sogenannte “vorgedachte Produktelemente”, richtig anwenden
zu können. Es umfasst alle Daten und Informationen über die Elemente selbst, die Re-
geln ihrer Kombinierbarkeit sowie deren Anwendungskontext. Dabei werden die jeweiligen
Rahmenbedingungen der einzelnen Lebensabschnitte des Produkts berücksichtigt. Hier ist
deutlich der Bezug zum DfX zu erkennen (siehe Abschnitt 2.1.1). Für Pahl und Beitz
[PBFG07] muss ein Konstrukteur über ein breites Konstruktionswissen und unterschied-
lichste Fähigkeiten verfügen, damit er der Vielfalt seiner Aufgaben und den Zielen im
Konstruktionsprozess gerecht werden kann. Für besondere Probleme werden Spezialisten
mit Fachwissen herangezogen. Koller et al. [KB90] bezeichnen sowohl das Wissen als
Konstruktionswissen, das für eine erfolgreiche Durchführung des Konstruktionsprozesses
vorausgesetzt wird, als auch jenes, das während des Konstruierens erworben wird.

Anforderungen

Fertigungs-
wissen

Normteile

Berechnungs-
wissen

Recycling-
wissen

Kosten-
abschätzung

bewährte
Lösungen

Werkstoff-
wissen

Bild 5: Bedeutung des Konstruktionswissens im Produktentwicklungsprozess

Wie die Ausführungen zeigen, sind die Interpretationsmöglichkeiten des Begriffs Konstruk-
tionswissen äußerst vielfältig. Damit es jedoch mit Hilfe von Wissensverarbeitungsmetho-
den im Rahmen der wissensbasierten Konstruktion (siehe Abschnitt 2.2.1) zur rechnerun-
terstützten Abbildung des Konstruktionsprozesses genutzt werden kann, ist es zunächst
zweckmäßig zu strukturieren. Der folgende Abschnitt diskutiert daher Ansätze zur Wis-
sensstrukturierung und betrachtet insbesondere den Aspekt des fertigungsrelevanten Kon-
struktionswissens.
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2.1.3 Strukturierung des Konstruktionswissens

Koller et al. [KB90] stellten bereits in den frühen neunziger Jahren ein Gliederungs-
konzept für Konstruktionswissen vor. Sie teilen es in verfahrensbedingtes und aufgabenbe-
dingtes Wissen auf. Ersteres lässt der Bezeichnung nach den Schluss zu, dass es sich um
Fertigungswissen handelt. Das verfahrensbedingte Konstruktionswissen beschreibt jedoch
vielmehr, wie beim Konstruieren vorzugehen ist, also wann welches Wissen benötigt wird.
Ebenso zählt Wissen dazu, wie eine Aufgabe strukturiert, d. h. in Teilaufgaben zerlegt
werden kann. Da Koller et al. an dieser Stelle keinen Bezug zur Fertigung und dem
damit verbundenem Wissen herstellen, scheidet dieser Teil ihres Gliederungskonzeptes als
Referenz für die vorliegende Arbeit aus. Etwas ausführlicher ist das aufgabenbedingte Kon-
struktionswissen gegliedert, das sowohl aufgabenspezifisches Wissen beinhaltet, als auch
alle Grundlagen, die ein Ingenieur beherrschen oder nachschlagen kann. Wissensobjekte
dieser Art werden durch je drei inhaltliche und formale, voneinander unabhängige Para-
meter klassifiziert (s. Tabelle 1). Die inhaltlichen Parameter sollen bei der Beantwortung
von für die Konstruktion wichtigen Fragen helfen:

- Wo ist das Wissen in der Produktgeschichte zu verorten?
- Welchen Bezug hat das Wissen zur Produkthierarchie?
- Wie ist das Wissen in den Entwicklungsprozess einzuordnen?

Tabelle 1: Wissensstrukturierung nach Koller [KB90]
Parameter Attributgruppe Attribut

in
ha

ltl
ic

he
Pa

ra
m

et
er

te
xt

tt
t

Produktgeschichte Konstruktionsphase Funktion, physikalisches Prinzip,
Struktur, Gestalt, quantitative Größen

Lebensphasen Herstellung, Verkauf, Gebrauch,
Beseitigung

Produkthierarchie allgemein Ingenieurbereich, Unternehmen,
Produktgruppe

produktspezifisch Produkt, Teilsystem, Teilkörper, Fläche,
Linie, Punkt

Entwicklungsprozess
Basiswissen

Vorgaben aus der Aufgabe
Resultat Ergebnis, Zwischenergebnis

fo
rm

al
e

od
er

äu
ße

re
Pa

ra
m

et
er

te
xt

Darstellungsart
Text ungeordnet, Fakt, Regel, semantisches

Netz usw.

Bild Zeichnung, Foto, gut-schlecht
Darstellung

Diagramm Balkendiagramm, Darst. mathemat.
Funktion

Wissensquelle niedergeschriebenes Wissen Aufgabenstellung, Lehrbuch, Zeitschrift
nicht niedergeschriebenes Wissen Erfahrung, fremdes Wissen

Wahrheitswert

auf jeden Fall richtig
wahrscheinlich richtig

möglicherweise unrichtig
wahrscheinlich unrichtig
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In diesem Gliederungssystem kann jedem Wissen eine Kombination von Attributen dieser
sechs Parameter zugeordnet werden, jedoch ist nicht jede Parameterkombination gleichzei-
tig auch Wissen. Die Attributgruppen dürfen nicht beliebig kombiniert werden, wodurch
das Konzept an Flexibilität einbüßt. Wissen in Form einer Regel zur gussgerechten Gestal-
tung von Kanten zählt nach Koller et al. zu Basiswissen und ist nicht veränderbar. Um
bestehendes Fertigungswissen über “ausgereifte” Verfahren in Wissensbasen zu hinterlegen,
mag dies hilfreich sein. Für Fertigungsverfahren, die sich in einem frühen Entwicklungssta-
dium befinden und bei denen in kurzer Zeit neue grundlegende Erkenntnisse erlangt und
alte verworfen werden, ist dieses Gliederungskonzept nicht anwendbar.

Aus der Problemstellung heraus, dass bis dato entwickelte Strukturierungsansätze keine
Struktur bieten, die gleichermaßen passend für jedes entwicklungsspezifische Problem ist,
führt Storath eine Referenzhierarchie ein, die dieser Problematik begegnet [Sto96]. Im
Mittelpunkt stehen verschiedene Sichtweisen auf eine Wissensbasis, die in einer Sammlung,
wie sie in Bild 6 dargestellt ist, zusammengefasst sind. Der Nutzer wählt zur Wissensstruk-
turierung für ein vorliegendes Problemfeld die Merkmalgruppe aus, die die Referenzhier-
archie bestimmt. Zum Beispiel sind DfX-Gerechtheiten essenziell für jeden Konstruktions-
prozess. Zur Abstimmung der Wissensstruktur auf ein konstruktionsspezifisches Problem
werden weitere Merkmalgruppen ausgewählt, um beispielsweise den Ursprung einer DfX-
Gerechtheit (z. B. Produktmontage) zu definieren.

Storath stellt außerdem fest, dass bei der Klassifizierung von Wissen zwei getrennte
Aspekte zu betrachten sind. Zum einen Wissen für Analyseaufgaben, wie beispielsweise
die Bestimmung einer Lagerlebensdauer, sowie Vorschriften über die korrekte Anwendung
des Wissens. Er entspricht damit der anerkannten Unterteilung zwischen Fach- und Steue-
rungswissen [GB88], aufgaben- und verfahrensbedingtem [KB90] oder problemlösungsun-
abhängigem und -abhängigem Wissen [MKRS93].

Weiterhin stellen Roth et al. fest, dass bestehende Modelle zur Wissensstrukturierung
nicht aufzeigen können, welches Wissen in welchem Schritt der Produktentwicklung (s. Ab-
schnitt 2.1.1) vorherrscht [RBW10b]. Auch die Beziehungen und Abhängigkeiten zwischen
den einzelnen Wissenstypen sind nicht hinreichend genau beschreibbar. Aus diesem Grund
führen Roth et al. eine Terminologie aus fünf Strukturparametern ein, mit der Wis-
sensobjekte im Produktentwicklungsprozess konsistent beschrieben werden können. Der
Wissenstyp beschreibt den thematischen Bereich innerhalb des PEP, den ein Wissensob-
jekt abbildet, bspw. Fachwissen, Produktwissen oder Methodenwissen. Insgesamt kann auf
14 verschiedene Wissenstypen zurückgegriffen werden. Hervorzuheben ist der Versuch, die
Bedeutung von Wissenstypen für die unterschiedlichen Phasen des PEP zu definieren. Der
Strukturparameter Wissensart befasst sich mit der Vielzahl an charakteristischen Beson-
derheiten eines Wissenstyps, ob es sich beispielsweise um implizites, explizites, kollektives
oder externes Wissen handelt. Mit der Wissensform wird zum Ausdruck gebracht, wie
das Wissen vorliegt, zum Beispiel als Text, Formel, Regel oder Bild. Unter Wissensort
wird der Ursprung des Wissens wie Personen, Datenbanken oder Abteilungen erfasst. Zu
guter Letzt wird mit der Wissensqualität eine Bewertung des Wissens hinsichtlich dessen
Richtigkeit für einen bestimmten Geschäftsprozess ermöglicht.
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Bild 6: Wisssensstrukturierung nach Storath [Sto96]

Für die vorliegende Arbeit ist der Begriff des fertigungsrelevanten Konstruktionswissens
von enormer Bedeutung. Es ist im Umfeld der Konstruktion verortet und dient dort der
Beurteilung von Fertigbarkeit bzw. Fertigungsgerechtheit durch den Konstrukteur. Nach
Hubka sind die Quellen dieses Wissens die mechanische Technologie, Werkstofflehre und
Fertigungstechnik [Hub90]. Wird konstruktionsrelevantes Fertigungswissen dem Konstruk-
teur zum richtigen Zeitpunkt und in geeigneter Form zur Verfügung gestellt, kann er, wie
in Bild 7 dargestellt, feststellen, ob sein derzeitiger Gestaltentwurf durch ein bestimm-
tes Verfahren realisiert werden kann (Analyse). Bei nicht gegebener Fertigbarkeit versetzt
es den Konstrukteur außerdem in die Lage, die Gestalt derart anzupassen (Synthese),
dass das Bauteil realisiert werden kann. Weiterhin kann er alternative Produktkonzepte,
die einen wesentlichen Einfluss auf die Fertigungsstrategie haben, analysieren, bewerten
und je nach Anforderungserfüllung ein Konzept wählen, das im „magischen Dreieck“ Zeit-
Kosten-Qualität [EM13] ein Optimum darstellt [War01].

Vom konstruktionsrelevanten Fertigungswissen hebt sich aus Sicht des Autors das „rei-
ne“ Fertigungswissen ab, das in den Bereichen Arbeitsplanung und Fertigung zu verorten
ist. Dort repräsentiert es z. B. in expliziter Form Regeln zur Schnittwertbestimmung bei
Fräsprozessen oder dient der Bestimmung von Arbeitsgangfolgen im Werkzeug- und For-
menbau [Jur04; Sch10]. In impliziter Form steht es dem CNC-Programmierer u. a für die
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Analyse

Synthese

Konzeptvergleich

?

Bild 7: Fertigungsrelevantes Konstruktionswissen kann gleichermaßen zur Analyse, Syn-
these und zum Konzeptvergleich genutzt werden (im Bild für Feinguss)

adäquate Abstufung des Fräswerkzeugdurchmessers und der Eckradien sowie zur Fest-
legung der Bearbeitungsstrategie zur Verfügung [DSW08]. Diese Zusammenhänge liegen
losgelöst von der Konstruktion vor und sind primär nur für die Fertigung selbst relevant.
Weitere Aspekte sind die Bedienung von Fertigungsmaschinen, Sicherheitsrichtlinien, not-
wendige Kühlschmierstoffe oder Einsatzrandbedingungen der Werkzeuge. In der Fertigung
erhobenes Wissen, das Aspekte beinhaltet die direkt durch die Konstruktion beeinflusst
werden, muss jedoch unverzüglich dorthin zurück gespielt werden und wird somit in ferti-
gungsrelevantes Konstruktionswissen transformiert.

2.1.4 Akquisition von Konstruktionswissen

Der Prozess der Wissensakquisition ist als Teil eines übergeordneten Wissensmanagements
zu verstehen, dessen Grundlagen durch Nonaka und Takeuchi gelegt wurden [NT95].
Ihr SECI-Modell beschreibt die ständige Umwandlung zwischen explizitem und implizitem
Wissen in einer Organisation. In den sequenziellen Teilprozessen Sozialisation (implizit zu
implizit), Externalisierung (implizit zu explizit), Kombination (explizit zu explizit, engl.
Combination) und Internalisierung (explizit zu implizit) wird Wissen in einer Firma spi-
ralförmig von personengebundenem Wissen auf höhere Stufen wie Teams oder Gruppen
gehoben und im gesamten Unternehmen verteilt [NT12].

Ziel der Wissensakquisition ist die Formalisierung von Wissen, also dessen Überführung in
eine rechnerverarbeitbare Repräsentationsform. Auch die Aufgabe der Verbesserung und
Wartung einer bestehenden Wissensbasis kommt der Wissensakquisition zu [SK97]. Als
Wissensquelle dienen u. a. Experten, Fachbücher, Normen oder elektronischen Dokumente.
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2.1 Konstruieren als wissensintensive Tätigkeit 15

Die Darstellung der Phasen, die während der Wissensakquisition zu durchlaufen sind, ist
in der Literatur nicht einheitlich. Tabelle 2 fasst eine Vielzahl von Ansätzen zusammen,
die entweder einen zwei- oder einen dreistufigen Prozess postulieren.

Tabelle 2: Verschiedenen Ansätze zur Beschreibung des Wissensakquisitionsprozesses
AutorIn Phase I Phase II Phase III

Borndorf [BE97] Wissenserhebung Wissensinterpretation Wissensoperationalisierung
Buchanan [BBB+83] Wissenstransfer Wissenstransformation —
Buttenbruch [BF89] Wissenserhebung Wissensanalyse —
Diaper [Dia89] Wissenserhebung Wissensrepräsentation Wissensimplementierung
Frick [Fri98] Wissenserhebung Wissensanalyse Wissensmodellierung
Göbler [Göb92] Wissenserhebung Wissensinterpretation Wissensoperationalisierung
Hoppe [Hop92] Wissenserhebung Wissensanalyse Wissensoperationalisierung
Karbach [Kar88] Wissenserhebung Wissensabbildung —
Kratzer [Kra14] Wissenserhebung Wissensanalyse Wissensrepräsentation
Lenz [Len91] Wissenserhebung Wissensanalyse Wissensmodellierung
Minor [Mir06] Wissenserschließung Wissensintegration —
Puppe [Pup91] Wissensidentifikation Wissensformalisierung Wissenswartung
Schmidt [Sch95] Wissenserhebung Wissensinterpretation Wissensformalisierung
Schneider [Sch94] Wissenserhebung Wissensstrukturierung Wissensimplementierung
Spur et al. [SK97] Wissenserhebung Wissensformalisierung —
Suhm [Suh93] Wissensentnahme Wissenstransformation Wissensübertragung
Wartzack [War01] Wissenserhebung Wissensinterpretation —

In jedem Fall stellt die Wissensakquisition den zeit- und arbeitsaufwendigsten Teilprozess
des Knowledge Engineerings (KE) dar. Bereits Feigenbaum [Fei81] bezeichnete sie als
„the most critical bottleneck problem“. An dieser Darstellung hat sich über die Jahrzehnte
nichts geändert, wie den Arbeiten von Cremers [Cre91], Kurbel [Kur92] und Beierle
[BKI08] zu entnehmen ist. Die Kategorisierung von Akquisitionsmethoden orientiert sich
vor allem am Zusammenwirken von Wissensquelle, Wissensbasis und ggf. dem sogenannten
Wissensingenieur. Grundsätzlich lassen sich drei Methodengruppen identifizieren, die in
Bild 8 dargestellt sind und im Folgenden beschrieben werden.

Direkte Wissensakquisition

Diese Form der Wissensakquisition liegt vor, wenn der Experte sein Wissen über ein Ak-
quisitionstool direkt an das Assistenzsystem übergibt. Häufig wird einem solchen Akquisi-
tionstool die Eigenschaft intelligent beigemessen, da es in der Lage sein muss die Sprache
des Experten zu nutzen [Pup91]. Die Akquisitionskomponente tritt dabei mit dem Spezia-
listen in einen Dialog und ermöglicht ihm die Eingabe von Fakten und Lösungsstrategien,
wobei eine graphische Fakteneingabe anzustreben ist [BG89]. Das System muss zusätz-
lich die Aufgabe der Übersetzung des eingegebenen Wissens und der internen Darstellung
übernehmen [SK97]. Es darf ihn nicht bei der Formalisierung seines Wissens durch die Ver-
wendung von Ausdrucksmitteln aus anderen Domänen behindern, wie etwa der künstlichen
Intelligenz (KI). Alternativ verfügt der Experte selbst über ein ausreichendes Verständ-
nis für die Wissensstruktur des Assistenzsystems. Von der Verwendung direkter Methoden
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Indirekte
Wissensakquisition

Direkte
Wissensakquisition

Automatische
Wissensakquisition

DatenExperte

WissensakquisitionstoolWissensingenieur Wissensakquisitionstool

Wissensbasis

Experte

Bild 8: Methoden der Wissensakquisition lassen sich nach [SK97; Kur92] in indirekte, di-
rekte und automatische Ansätze einteilen

wird bei der erstmaligen Entwicklung eines wissensbasierten Systems abgeraten, im Zuge
der laufenden Pflege und Erweiterung der Wissensbasis beim späteren Einsatz des Systems
können sie aber unter Umständen sinnvoll sein [Kur92].

Indirekte Wissensakquisition

Das wesentliche Merkmal der indirekten Wissensakquisition ist der Einsatz eines Spezia-
listen, der die Aufgabe hat, das personengebundene Wissen der Experten zu erheben, zu
formalisieren und in die Wissensbasis zu integrieren. Aufgrund dieser Tatsache hat sich
die Bezeichnung Wissensingenieur (engl. knowledge engineer) durchgesetzt [Sto01]. Wis-
sen gelangt somit indirekt vom Experten über den Wissensingenieur zum Assistenzsys-
tem. Weitere Aufgaben eines Wissensingenieurs sind nach [KL90] der gesamte Planungs-
, Entwicklungs- und Betriebsprozess eines Assistenzsystems. Hierzu gehören Vorstudien
(z. B. Machbarkeitsstudien), die Auswahl von geeigneten Werkzeugen sowie die Integration
in die IT-Landschaft des Unternehmens und die Weiterentwicklung des Wissensmanage-
mentsystems einschließlich sämtlicher KBE-Projekte. Nach Bimazubute müssen Wissen-
singenieure eine möglichst breite Ausbildung und eine umfassende Allgemeinbildung auf-
weisen [Bim05]. Nützlich sind weiterhin Kenntnisse in den Informations- und Kommunika-
tionswissenschaften sowie in den Humanwissenschaften. Zudem müssen Wissensingenieure
auch über grundlegendes Wissen der Psychologie, Logik, Systemanalyse und Linguistik
verfügen sowie geeignete Methoden aus der empirischen Sozialforschung beherrschen.
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Automatische Wissensakquisition

Ansätze zur automatischen Wissensakquisition verzichten gänzlich auf Experten oder Wis-
sensingenieure. Das wissensbasierte System „lernt“, indem es Problemstellungen löst und
dadurch seine Wissensbasis automatisch erweitert. Andere (induktive) Ansätze gehen da-
von aus, dass dem System Problemstellungen und die dazugehörigen Lösungen zugeführt
werden und es daraufhin seine Wissensbasis aufbaut oder modifiziert [BB99; Kon90]. Eine
weitere wichtige Form ist das Extrahieren von Wissen aus textuellen Quellen wie z. B. aus
Texten und Büchern. Ein textverstehendes Programm erfasst dabei den Text ohne Eingriff
des Menschen, analysiert diesen linguistisch und formalisiert Wissen in Form von Fakten
und Regeln. Die automatische Wissensakquisition galt zu Beginn der Expertensystemära
noch „weitgehend [als] Zukunftsmusik“ [Kur92]. Spur und Krause [SK97] verlagern den
Schwerpunkt der automatischen Wissensakquisition inhaltlich in die Nähe zum maschi-
nellen Lernen. Methoden des Data-Mining und der Wissensentdeckung in Datenbanken
(Knowledge Discovery in Databases, KDD, siehe Abschnitt 2.4) können, sofern sie zielfüh-
rend eingesetzt werden, den Prozess der Wissensakquisition verbessern [BKI08].

Diskussion der drei Verfahren

Die Identifikation und die Verfügbarkeit der Wissensquellen sind methodenübergreifende
Problemfelder bei der Akquisition von Konstruktionswissen. Der Erfolg bei der Erhebung
von personengebundenem Wissen (direkt und indirekt) hängt in besonderem Maße von der
Bereitschaft der Experten ab, sich als Wissensquelle zu offenbaren. Sind sich Mitarbeiter
der Qualität ihres Wissens nicht bewusst oder ängstigen sie sich vor Ideenraub und davor
austauschbar zu werden, so kann es bei der Erhebung des Wissens zu Schwierigkeiten kom-
men [VDI09b]. Wissensingenieure sehen sich mit der Herausforderung konfrontiert, dass
nur ein begrenzter Teil des menschlichen Wissens als aktives Wissen jederzeit abrufbar
ist. Der größte Teil ist unbewusst und kann nur situationsbedingt abgerufen werden. Dies
betrifft insbesondere Wissensteile, die nicht durch einen bewussten Lernprozess, sondern
durch Erfahrung erworben wurden [Dia89]. Dengel [Den94] stellt fest, dass es gerade
Experten schwer fällt ihr Wissen und ihren Umgang damit auszudrücken. Die hieraus her-
vorgehende Problematik der Verbalisierbarkeit und Formalisierbarkeit von Wissen führt
zu einer unvollständigen und inkonsistenten Wissensakquisition. Dies kann vor allem bei
der indirekten Wissensakquisition Verständnisprobleme zwischen Wissensingenieur und
Experte hervorrufen, ein typisches Problem beim Informationsaustausch wie Wartzack
[War01] zeigt. Die Rolle der Wissensingenieure als Vermittler zwischen Experte und wis-
sensbasiertem System ist nicht nur aus Zeit- und Kostengründen kritisch zu sehen. Durch
den „Umweg“ über den Wissensingenieur kann es zu Verlust von Expertenwissen kommen.
Diese Gefahr ist insbesondere dann gegeben, wenn der Wissensingenieur nicht über ausrei-
chend Kenntnisse der Expertendomäne verfügt [SG87]. Bei Betrachtung der automatischen
Wissensakquisition ist festzustellen, dass neben den notwendigen IT-Werkzeugen und -
Spezialisten auch geeignete Daten zur Verfügung stehen müssen. Gerade bei praxisnahen
Anwendungen sind diese mitunter unvollständig, fehlerhaft und über diverse Speicheror-
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18 2 Wissenschaftliche Grundlagen und Stand der Forschung

te verteilt [Ott04; HLW06]. Ein ganzheitliches EDM/PDM-Konzept kann diesem Problem
begegnen, indem Daten über Produkte und Produktentstehungsprozesse konsistent gespei-
chert, verwaltet und für alle relevanten Organisationseinheiten bereitgestellt werden (siehe
[Vaj09]). Neben den notwendigen Wissens- bzw. Datenquellen sind eine klare Zielsetzung,
ein methodisches Vorgehen sowie die Integration von Hintergrundwissen aus den Bereichen
Mathematik und maschinellem Lernen erforderlich, um verlässliches Wissens zu akquirie-
ren. Tabelle 3 fasst die Beurteilung der Akquisitionsmethoden hinsichtlich der wichtigsten
Kriterien zusammen.

Tabelle 3: Vergleich von Wissensakquisitionsmethoden nach [RBW10a]
Kriterium Direkt Indirekt Automatisch
Identifikation und Verfügbarkeit
der Wissensquelle
Fehlerfreie und interpretierbare
Formalisierung des Wissens
Reduzierung von Störungen durch
Menschen im Akquisitionsprozess
Reduzierung von
Zeitbedarf und Kosten
Symbolbedeutung:

ungeeignet kaum geeignet teilweise geeignet geeignet

2.2 Wissensbasierte Systeme in der Produktentwicklung

Damit das im Akquisitionsprozess gewonnene Wissen genutzt werden kann, muss es dem
Anwender „zur rechten Zeit am rechten Ort in der rechten Menge und in der rechten
Form“ vorliegen [Sto95]. Im Abschnitt 2.1.2 wurde bereits die Bedeutung des Wissens für
den Produktentwicklungsprozess erläutert. Wird die Forderung von Storath aus Sicht des
Produktentwicklers interpretiert, so handelt es sich beispielsweise bei der Zeit um einen
bestimmten Schritt im Produktentwicklungsprozess und der Ort entspricht der jeweiligen
Arbeitsumgebung des Entwicklers (z. B. CAD-, CAE- oder PDM-System). Lösungen zur
Bereitstellung von Wissen in diesem Sinne sind vielfältig [Her10; Sto96; Man06; Göb92].
Storath nennt Vorgehensweisen ohne Rechnerunterstützung (kooperativ, informal, for-
mal, s. Bild 9), hebt jedoch hervor, dass diese bezüglich Art der Bereitstellung, Informa-
tionssuche und -dichte sowie Interpretationsaufwand den rechnerunterstützten Ansätzen
unterlegen sind. Diese modernen Ansätze der Wissensbereitstellung werden unter der Be-
zeichnung wissensbasierte Systeme (WBS) zusammengefasst.

Die folgenden Abschnitte analysieren die Einsatzmöglichkeiten wissensbasierter Systeme
im Bereich der Produktentwicklung. Sie sind nach Rude [Rud98] in den Themenkomplex
wissensbasiertes Konstruieren (Knowledge-based Engineering (KBE)) einzuordnen. Nach
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einer Einführung in die Thematik KBE im Abschnitt 2.2.1 wird die Technologie der WBS
im Abschnitt 2.2.2 näher erläutert und es werden Beispiele aus dem Stand der Forschung
vorgestellt. Ein Hauptaugenmerk bei der Darstellung liegt auf der Durchführung der Wis-
sensakquisition in den einzelnen Systemen.

Experte

Ingenieur

Fachbücher,
Patente,
Richtlinien

E-Mail,
Telefongespräch,

Webmeeting

Konstruktionskataloge,
Regelsammlungen,
Tabellenwerke

informal formalkooperativ

„Formalisierte““ Aufbereitung
der Informationen

„Quasi-Anwesenheit“ des
Experten

Konventionelle
Bereitstellung

Bild 9: Methoden zur Wissensbereitstellung nach [Sto96]

2.2.1 Wissensbasiertes Konstruieren

Die Bezeichnung wissensbasiertes Konstruieren kann von Fachfremden als irreführende
Tautologie missverstanden werden, erscheint doch ein Konstruieren ohne Wissen grund-
sätzlich als unmöglich. Nach Rude umfasst KBE jedoch die „gedankliche Durchdringung“
des Produktentstehungsprozesses und dessen anschließende (teilweise) Abbildung im Rech-
ner [Rud98]. Im Fokus von KBE-Anwendungen stehen Routinetätigkeiten, die den Kon-
strukteur eher selten vor unerwartete Probleme stellen, jedoch als langwierig und somit als
zeit- und kostenintensiv gelten [Ska07; SVLBG15]. Von diesen Tätigkeiten soll der Kon-
strukteur entlastet werden, denn sie haben nach Stokes [Sto01] einen Zeitanteil von etwa
80 % am gesamten Konstruktionsprozess. Eng damit verbunden ist die langwierige Suche
nach Informationen, die der Konstrukteur beispielsweise zur Beurteilung von Gestaltent-
würfen im Sinn des DfX benötigt [Sto96].

Die Ursprünge von KBE in seiner heutigen Form gehen bis in die frühen 1980er Jah-
re zurück, als erstmalig AI- und KE-Methoden im CAD-Bereich angewandt wurden
[CL07; DLK08]. Je nach Autor werden in der KBE-Definition unterschiedliche Schwer-
punkte gesetzt. In der Beschreibung von La Rocca [La 12] werden die unterschiedlichen
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Wissensmanagement

• Arbeitsgruppen
• Rechnergestützte Kollaboration
• Dokumentenmanagementsystem
• Data-Mining
• „Lessons-learnt“ Sammlungen

Wissensbasiertes Konstruieren

• Wissensbasierte Systeme
• CAD-System Integration
• Systeme zur Software-

revisionskontrolle

Knowledge
Engineering

• Workflowintegration und
Automatisierungsysteme

• Selbstständige Agentensoftware
• Datenbanken

Problemidentifizierung

KBE Entwicklung

Wissenserhebung,
-formalisierung

Anwendungs-
implementierung

Bild 10: Gegenüberstellung der Domänen KBE, KE und Wissensmanagement [La 12]

Stakeholder einer KBE-Anwendung sehr differenziert betrachtet. Dazu zählen die Unter-
nehmensleitung bzw. Personen des gehobenen Managements (z. B. Entwicklungsleiter),
Wissensingenieure, Konstrukteure, Produktentwickler sowie Wissensmanager. La Rocca
zeigt ein pragmatisches Verständnis für KBE, da der Einsatz von Spezialsoftware zur Wis-
senserfassung und -wiederverwendung im Mittelpunkt steht. Das Hauptziel von KBE ist
seiner Lesart nach die Automatisierung sich wiederholender, monotoner Tätigkeiten beim
Konstruieren [La 11]. Wie in Bild 10 zu erkennen, ordnet La Rocca das wissensbasierte
Konstruieren in ein Gesamtkonzept mit Knowledge Management und Knowledge Enginee-
ring auf den übergeordneten Ebenen ein. Dabei ist festzuhalten, dass eine scharfe Abgren-
zung zwischen den Disziplinen mitunter schwierig ist, denn ihre Ziele und die angewandten
Wissenstechnologien überschneiden und bedingen sich teilweise. Beim Wissensmanagement
liegt das Hauptaugenmerk auf dem strategischen Ziel das Unternehmenswissen effizient und
effektiv zu nutzen, ohne dass einzelne Unternehmensbereiche ausgeklammert oder stärker
betont werden. Das Knowledge Engineering wirkt gezielt an operativen Unternehmenspro-
zessen mit, indem es die Akquise von Wissen sowie dessen rechnerbasierte Abbildung,
Bereitstellung und Nutzung zum Ziel hat. Das wissensbasierte Konstruieren hat letzlich
die Entwicklung von Anwendersoftware im Umfeld der Produktentwicklung zum Ziel.

Vajna et al. sehen im KBE die natürliche und logische Fortführung der rechnerun-
terstützten Produktentwicklung (CAx) [Vaj09]. Wissensbasiertes CAD ist somit die an-
spruchsvollste, aber auch mächtigste Form der 3D-Produktmodellierung (s. Bild 11).
Ein spezielles wissensbasiertes System wird seinem Verständnis nach nicht eingesetzt,
stattdessen erfolgt die Wissensbereitstellung direkt durch das CAx-System. Ausprägun-
gen von KBE sind nach Vajna die wissensbasierte Parametrik, erweiterte Features,
„intelligente“ Komponentenkataloge sowie wissensbasierte Produktkonfigurierer. Bei der
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Bild 11: Übersicht der 3D-Modellierungsgrundlagen und deren Einflüsse auf die „Ge-
schwindkigkeit“ beim Konstruieren nach [Vaj09; VDI09a; SK97]

wissensbasierten Parametrik wird Wissen in Form von Konstruktions- und Konfigurati-
onsregeln zur Geometriebestimmung direkt im Produktmodell (adaptiver Ansatz) oder in
einem externen Speicherort (generativer Ansatz) eingesetzt. Erweiterte Features enthal-
ten nicht nur die Geometrie eines Produktes, sondern auch Wissen mit dem die Funktion
und weitere Eigenschaften modelliert werden können. „Intelligente“ Komponentenkataloge
unterstützen die Angebots- und Auftragsbearbeitung umfassend, inklusive Produktaus-
wahl, Angebotserstellung und Bereitstellung von CAD-Daten für die Firmenkunden. Wis-
sensbasierte Produktkonfigurierer grenzen sich hierzu vor allem dadurch ab, dass die zur
Kombination notwendigen Regeln direkt enthalten sind und ein Produkt widerspruchsfrei
konfiguriert werden kann [Bre99a].

Die präziseste Beschreibung für KBE lässt aus Sicht des Autors bei Rude finden, der in
seiner Definition von der Prämisse ausgeht, dass der komplette Konstruktionsprozess für
ein Produkt bekannt und verstanden („durchdrungen“) ist [Rud98]. Die rechnergestützte
Abbildung des Produktentwicklungsprozesses ist dann nur als Verifizierung dieses Ver-
ständnisses zu sehen. Damit hebt sich Rude von anderen Definitionen für KBE ab. Die
Begrenztheit des menschlichen Vermögens, Informationen aufzunehmen und zu verarbei-
ten, die zukunftssichere Ausbildung junger Ingenieure, die Erhaltung von Entwicklungs-
wissen sowie die Beherrschung komplexer Produktentwicklungsprozesse multidisziplinärer
Produkte sind für Rude die Hauptargumente für eine wissensbasierte Konstruktion. Für
ihn grenzt sich KBE klar von erfahrungsbasiertem Vorgehen ab, da es eine formalisierbare
Konstruktionstheorie benötigt, wohingegen letzteres nur von einer hinreichend hohen An-
zahl an praktischen Beispielen abhängt. Für die Repräsentation von Wissen im Rechner
stehen verschiedene Methoden zur Verfügung, von denen die vier häufigsten im Folgen-
den kurz erläutert werden. Bild 12 zeigt zudem anhand von Beispielen den Aufbau dieser
Repräsentationsarten.
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frame_instanz BOLZEN_III
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Material mat=C45E

frame_instanz BOLZEN_II
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Material mat=C15R
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Material mat=S355
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Bild 12: Darstellung häufig verwendeter Wissensrepräsentationsarten am Beispiel einer
Bolzenverbindung.

Regeln bestehen aus einem Bedingungsteil (Wenn. . .) und einem Aktionsteil (Dann . . .).
Nach [War01] geht der Problemkontext in den Bedingungsteil der Regel mit ein. Regeln
entsprechen im Grunde der Denk- und Problemlösungsstrategie von Menschen. Erfahrungs-
wissen in Form von Regeln auszudrücken fällt Experten daher meist sehr leicht. Regelnetz-
werke können eine komplexe Struktur annehmen, wodurch die Aktualisierung des Wissens
erschwert wird. [BKI14]

Frames (engl. Klasse) entsprechen einem „Karteikartensystem“ zur Repräsentation ähnli-
cher und sich wiederholender Objekte. Deskriptive Attribute (z. B. Durchmesser, Länge,
Material) sind als leere Platzhalter vorhanden und je nach Instanz werden ihnen die ent-
sprechenden Werte zur eindeutigen Identifikation zugewiesen. Klassen eignen sich vor allem
aufgrund der Möglichkeit prozedurale Berechnungen an Frames koppeln zu können sehr
gut zur Integration von Software in technische Anwendungen. [Pup90; Haa95]

Constraints beschreiben mathematische Zusammenhänge zwischen Parametern oder Kenn-
größen von Objekten (z. B. F = m · a). Geometrische Constraints werden eingesetzt, um
Elemente wie Punkte, Geraden oder Kreise eindeutig zueinander zu positionieren. Inge-
nieursconstraints beschreiben Konstruktionswissen, beispielsweise für die Berechnung von
Maschinenelementen. Constraints können ungerichtete Zusammenhänge beschreiben, so
dass in vielen technischen Anwendungsfällen nach einer Variable aufgelöst werden kann.
[Rud98; SK97]
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Semantische Netze beschreiben die Relationen zwischen Objekten auf Basis markierter,
gerichteter Graphen. In einem solchen Graph entspricht ein Knoten dem repräsentierten
Objekt (z. B. Bolzen) und eine Kante der Relation zu einem anderen Objekt (z. B. steckt in).
Neben physischen Gegenständen können auch Ereignisse oder Situationen abgebildet und
deklarative oder prozedurale Informationen gespeichert werden. [Rud98; SK97]

2.2.2 Die Technologie der wissensbasierten Systeme

Die Anfänge der Wissensbereitstellung durch Maschinen können laut Stokes bis in die
Mitte des 19. Jahrhunderts zurückverfolgt werden [Sto01]. Der Ingenieur Charles Bab-
bage konstruierte eine Differenzmaschine3, mit der es möglich war für eine Vielzahl
von Artilleriegeschützen die notwendigen Feuerleitbefehle (Abschussrichtung und -winkel)
schnell zu berechnen. Das Wissen erfahrener Kanoniere konnte somit erstmals außerhalb
ihrer Köpfe „maschinenverarbeitbar“ abgelegt werden.

Von dieser eher populärwissenschaftlichen Auffassung unterscheiden sich moderne wissens-
basierte Systeme grundlegend. Sie sind als Teilgebiet der „künstlichen Intelligenz“ (KI)
(siehe [MMR06; Ert13]) in der Informatik verortet [BKI14]. Ziel der künstlichen Intelli-
genz ist die Nachbildung der kognitiven Leistung des Menschen im Rechner.

Architektur wissensbasierter Systeme

Ein wissensbasiertes System besteht prinzipiell, wie in Bild 13 dargestellt, aus mehreren
Komponenten, deren Kern die Wissensbasis und die Wissensverarbeitungskomponente bil-
den. Diese Aufteilung spiegelt in ihrer Struktur auch die funktionale Trennung von Fachwis-
sen und den Problemlösungsstrategien (Wissensverarbeitung) wider, wie sie beispielsweise
von Kurbel [Kur92] gefordert wird. Die Dialogkomponente kann in das wissensbasierte
System integriert sein oder durch ein externes System (z. B. CAD) angekoppelt werden.
Erklärungs- und Wissensakquisitionskomponenten sind nach [SK97] oft nicht direkter Be-
standteil des wissensbasierten Systems.

In der Wissensbasis ist das gesamte, dem wissensbasierten System zur Verfügung stehen-
den Wissen gespeichert. Ein modularer Aufbau sorgt für die Trennung des Wissens in
begrenzte Anwendungsfelder [War01]. Je nach Herkunft des Wissens wird in bereichsbezo-
genes Expertenwissen, fallspezifisches Benutzerwissen sowie Zwischen- und Endergebnisse
der Wissensverarbeitung unterschieden [Pup90]. Neben dem Wissen selbst sind auch Re-
geln und/oder Prozeduren gespeichert, welche die korrekte Anwendung des Wissens sicher-
stellen [SK97]. Das Wissen kann weiterhin in exakte, unvollständige, vage und unsichere
Wissensarten untergliedert werden. Andere Ansätze zur Strukturierung der Wissensbasis
wurden im Abschnitt 2.1.3 erläutert.
3 Mechanisches Rechenwerk zur Auswertung polynomialer Funktionen und Interpolation von Tabellenein-

trägen
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Experte Benutzer
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Inferenz-
strategie

Ablauf-
steuerung

Bild 13: Prinzipieller Aufbau eines wissensbasierten Systems nach [SK97]

Die Wissensverarbeitungskomponente, oder auch Problemlösungs- bzw. Inferenzkomponen-
te, bildet die Schnittstelle zwischen der Wissensbasis und den Modulen, die direkt mit
dem Anwender kommunizieren. In der Darstellung nach [SK97] sind in der Wissensverar-
beitungskomponente Inferenzstrategien und die Ablaufsteuerung aktiv. Erstere verwendet
systematische Ableitungsverfahren zur Problemlösung, um von gegebenen Prämissen zu
Schlussfolgerungen zu gelangen. Letztere bestimmt die Reihenfolge des Schlussfolgerungs-
prozesses.

Die Dialogkomponente steuert die Kommunikation zwischen wissensbasiertem System und
Benutzer. Sie ermöglicht die Eingabe von Daten durch den Anwender und steuert die
Ausgabe von Ergebnissen, Ratschlägen oder Auskünften. Daten können hierbei im Dialog
mit dem Benutzer gewonnen oder aus einer Datei eingelesen werden.

Die Erklärungskomponente stellt die Vorgehensweise des Systems sowohl für Benutzer als
auch für den Experten nachvollziehbar dar. Mit ihrer Hilfe kann der Experte Fehler in der
Wissensbasis im Rahmen von Testszenarien erkennen. Für den Benutzer bietet sich die
Möglichkeit, das Systemverhalten sowie den Lösungsweg zu verstehen. Die vom System
gelieferten Erklärungen und Begründungen müssen dabei für den Benutzer verständlich
formuliert werden. Dessen Vorwissen ist bei der Erklärung zu berücksichtigen.

Über die Wissensakquisitionskomponente erfolgt der Aufbau der Wissensbasis. Je nach
Akquisitionsmethode (siehe Abschnitt 2.1.4) ermöglicht sie dem Experten (direkt) sein
Wissen in das wissensbasierte System einzugeben oder zu aktualisieren. Die Wissensak-
quistionskomponente übernimmt dabei die Aufgabe der Strukturierung, Konsistenzprüfung
und Protokollierung. Wird die Wissensakquisition durch einen Wissensingenieur durchge-
führt, übernimmt er die Wissensstrukturierung und -eingabe.
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Abgrenzung wichtiger Begriffe

In der Literatur finden sich neben dem Begriff des wissensbasierten Systems häufig die Be-
zeichnungen Expertensystem und Assistenzsystem. Da die vorliegende Arbeit in den Bereich
der Konstruktionstechnik einzuordnen ist, sind auch die in den 1990er Jahren entwickelten
Konstruktionssysteme von Bedeutung, die einen enormen Technologievorsprung gegenüber
den damaligen kommerziellen CAD-Systemen bedeuteten. Die Taxonomie der genannten
Begriffe, die im Folgenden kurz diskutiert wird, ist in Bild 14 dargestellt.

Verarbeitung 
natürlicher Sprache

Bilderkennung und
-verarbeitung

Robotik,
Simulationssysteme

Expertensysteme

Assistenz-
systeme

Konstruktions-
systeme

Wissensbasierte Systeme

Künstliche Intelligenz (KI)

Bild 14: Taxonomie wichtiger Begriffe nach [Wat86]

Eine Abgrenzung zwischen wissensbasiertem System und Expertensystem lässt sich in der
einschlägigen Literatur nur bei [Pup90] finden. Nach Puppe ist ein Expertensystem eine
spezielle Ausprägung eines wissensbasierten Systems, bei dem das Wissen letztlich vom
Experten stammt. Im weiteren Verlauf der Arbeit spielt dieser Unterschied nur eine unter-
geordnete Rolle, daher werden beide Begriffe synonym verwendet. Beierle et al. merken
an, dass nach dem Puppe’schen Kriterium viele der derzeit existierenden wissensbasierten
Systeme Expertensysteme sind [BKI08].

Auch die Familie der Assistenzsysteme wird von Puppe beschrieben. Hierbei handelt es
sich um eine Gruppe von interaktiven Expertensystemen, die eine beratende, kritisierende
oder vorschlagende Funktion übernehmen. Das System soll keine Ergebnisse generieren,
sondern problembezogen Wissen vermitteln. Es wendet sich an sachkundige Benutzer, die
ein Problem prinzipiell eigenständig lösen können. Sie tragen als Nebeneffekt aber zur
Weiterqualifizierung des Benutzers bei und können daher auch zur Aus- und Weiterbil-
dung eingesetzt werden. Nach Storath sind Assistenzsysteme die Verwirklichung der
Ziele von wissensbasierten Systemen der zweiten Generation [Sto96]. Er zieht Parallelen
zu menschlichen Assistenten die zunächst den Wortschatz ihrer Chefs beherrschen müssen
bevor sie (pro)aktiv den Problemlösungsprozess mitgestalten und den Vorgesetzten assis-
tieren können. Für rechnerunterstützte Assistenzsysteme in der Produktentwicklung leitet
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sich daraus ab, dass das System zunächst die Elemente der Konstrukteursprache (Name
und Bedeutung konstruktiver Elemente) beherrschen muss.

Solche Konstruktionssysteme (engl. KBE system) zeichnen sich nach [Ver07] dadurch aus,
dass die Komponenten eines wissensbasierten Systems zumindest mit einer Benutzer-
schnittstelle zur geometrischen Produktmodellierung ergänzt werden. [Rud98] liefert an
dieser Stelle eine sehr präzise Beschreibung. Sobald aufgrund des hinterlegten Konstruk-
tionswissens mehr Information erzeugt als durch den Konstrukteur eingegeben wurde, im
äußersten Fall das wissensbasierte System alle Tätigkeiten des Konstrukteurs unterstützt,
spricht Rude von einem wissensbasiertem Konstruktionssystem. Konstruktionssysteme un-
terscheiden sich nach [Bac97] von „klassischen“ CAD-Systemen v. a. dadurch, dass der
Benutzer in Konstruktionssystemen auf semantisch-hochwertige Objekte aus seinem Kon-
struktionsumfeld wie Passfedernuten, Gusswände oder komplexe Lagersitze zurückgreifen
kann. Außerdem verfügt jedes Konstruktionssystem über ein eigenes Produktmodell, in
dem neben geometrischen auch funktionale, technologische und organisatorische Informa-
tionen gespeichert werden. Wird der Grundgedanke eines Konstruktionssystems konse-
quent wie bei Finkenwirth umgesetzt und dient das CAD-System lediglich zur Realisie-
rung des Konstruktionsdialogs und Darstellung der Ergebnisse, so ist das Produktmodell
des CAD-Systems für das Konstruktionssystem „bedeutungslos“ [Fin90].

Eine sehr umfassende Definition findet sich bei Kratzer [Kra14], wonach es sich bei einem
Konstruktionssystem in jedem Fall um ein Softwaresystem handelt, dessen Ausführung zu-
nächst unabhängig von der Anbindung anderer IT-Bausteine (z. B. CAD-System, wissens-
basiertes System, Datenbanken) ist. Dieses System untersucht einen CAD-Entwurf unter
Einbeziehung der Aspekte Gestaltung, Auslegung und Nachrechnung und ist in der Lage,
bei der Produktsynthese Lösungsvorschläge umzusetzen. Hierzu nutzt es Konstruktions-
und Konfigurationsregeln sowie Berechnungsformeln, die in einer Wissensbasis hinterlegt
sind. Der Konstrukteur wird im Idealfall ständig mit aktuellem Wissen aus anderen Ab-
schnitten des Produktentstehungsprozesses versorgt. Im Hinblick auf die verschiedenen
Phasen des Produktentstehungsprozesses ist die Definition von Kratzer dahingehend zu
erweitern, dass ein Konstruktionssystem seine Arbeitsergebnisse (z. B. CAD-Modelle) so
zur Verfügung stellt, dass sie in allen nachfolgenden Phasen optimal genutzt werden können
(z. B. Simulation, Arbeitsvorbereitung).

Um einen Überblick zum gegenwärtigen Stand der Forschung zum Einsatz wissensbasierter
Systeme in der Produktentwicklung zu vermitteln, werden im Folgenden einige Forschungs-
systeme vorgestellt.

2.2.3 Beispiele wissensbasierter Konstruktionssysteme

Die Erforschung von Konstruktionssystemen lässt sich im deutschsprachigen Raum bis
in die späten 1980er Jahre zurückverfolgen [Nei90]. Über die Entwicklungshistorie hin-
weg werden Systeme der ersten bzw. zweiten Generation unterschieden, wobei eindeutige
und konsistente Kriterien schwer auszumachen sind. [Kra14] bezeichnet diese als klassi-
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sche bzw. agentenbasierte Konstruktionssysteme. Seine Unterscheidung basiert auf der
Betrachtung der Aspekte Wissensakquise (direkte Kodierung vs. methodischer Akquisiti-
onsprozess), Wissensbasis (monolithisch, unverteilt vs. modular, multirepräsentativ) und
Rollenverständnis (keine Rollen vs. dedizierte Rollen) bei der Systementwicklung. Funkat
et al. sehen in der direkten Kodierung des Wissens über Regeleditoren ein markantes
Merkmal wissensbasierter Systeme der ersten Generation, gleichzeitig jedoch auch eine ih-
rer größten Schwächen [FF03]. Zur Überwindung dieses Nachteils verfolgen wissensbasierte
Systeme der zweiten Generation u. a. einen methodischen Modellierungsansatz während der
Wissensakquise. Außerdem wird bei derartigen Systemen strickt zwischen Wissensreprä-
sentation und -verarbeitung getrennt.

Im Rahmen dieser Arbeit wurden verschiedene wissensbasierte Konstruktionssystem aus
dem Stand der Forschung analysiert. Ein Schwerpunkt der Analyse lag auf der Durchfüh-
rung der Wissensakquisition in den Phasen Systementwicklung und -wartung. Alle unter-
suchten Systeme können an dieser Stelle nicht im Detail diskutiert werden. Ausgewählte
Systeme werden aufgrund ihrer bedeutsamen Forschungshistorie (KSmfk) und wegen ihres
alternativen Grundkonzeptes (ProKon) im Folgenden vorgestellt. Weiterhin wird ein drit-
ter, beachtenswerter Ansatz beschrieben, der das Ziel einer automatisierten Akquise von
Fertigungswissen im Werkzeug- und Formenbau verfolgt.

Das Konstruktionssystem mfk

Die ersten Überlegungen zum KSmfk wurden 1988 von Meerkamm et al. am Lehrstuhl
für Konstruktionstechnik der Universität Erlangen-Nürnberg präsentiert [MF88]. Finken-
wirth formuliert als Ziele die verarbeitungsgerechte Dokumentation von Konstruktions-
ergebnissen sowie die Unterstützung beim Suchen und Beurteilen konstruktiver Lösungen
[Fin90]. Er entwickelt das Grundkonzept des KSmfk, das durch die rechnerunterstützte Ab-
bildung einer Konstruktionsmethodik den gesamten Konstruktionsprozess unterstützt. Die
Grobstruktur des KSmfk beinhaltet in den ersten Entwicklungsstufen einen Syntheseteil
mit Konstruktionsmodulen, die für bestimmte konstruktive Aufgaben Funktionen in Form
konstruktiver Elemente bereitstellen. Die daraus erzeugten Produktmodelle können im Ana-
lyseteil unter Berücksichtigung von Konstruktionswissen aus der Wissensbasis beurteilt
werden. Ein kommerzielles CAD-System wird dann nur noch zur 2D/3D-Visualisierung
bzw. zur Kommunikation mit dem Anwender benötigt. Um das Konstruktionssystem mit
produktspezifischen konstruktiven Elementen aus allen Konstruktionsphasen zu erweitern,
hat Bachschuster den von [Web92] geforderten Merkmaleditor entwickelt. Dieser er-
möglicht dem Anwender neue Konstruktionselemente sowie die zugehörige Semantik da-
teibasiert und ohne Eingriff in den Programmcode in das KSmfk zu integrieren [Bac97]. Die
ursprüngliche Grobstruktur von Finkenwirth wurde im Laufe der Jahre somit sukzessive
um verschiedene Module bis zur in Abbildung 15 gezeigten KSmfk-Architektur erweitert.

Der Aspekt der Wissensakquisition zum Aufbau und/oder zur Pflege der Wissensbasis wird
in den einzelnen Arbeiten zum KSmfk unterschiedlich dargestellt. Finkenwirth [Fin90]
unterscheidet bei der Wissensdokumentation, die an dieser Stelle mit Wissensakquisition
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Bild 15: Konzeptionelle Architektur des Konstruktionssystems mfk unter Berücksichtigung
der Arbeiten von [Fin90; Bac97] und [War01]

gleichgesetzt wird, Faktenwissen und Konstruktionsregeln. Ersteres kann entweder expli-
zit im Code des KSmfk als Formel programmiert sein oder in Form von tabellarischen
Dateien bereitgestellt werden. Da keine genaueren Angaben in der Literatur zu finden
sind, muss angenommen werden, dass bei Finkenwirth die explizite Programmierung
des Faktenwissens durch den Softwarentwickler erfolgt, nachdem dieser sich in das Fach-
gebiet eingearbeitet hat. Er nimmt somit die Rolle eines Wissensingenieurs ein (indirekte
Akquise). Der Aufbau von Dateien, bspw. mit Werkstoffinformationen, kann durch den
Experten selbst erfolgen (direkte Akquise), sofern der Dateiaufbau einer nachvollziehbaren
Struktur folgt. Konstruktionsregeln müssen auch durch den im Programmieren ungeübten
Konstrukteur definierbar sein. Daher schlägt Finkenwirth vor, dass sowohl Bedingungs-
als auch Aktionsteil einer Regel nur unter Verwendung von UND-Verknüpfungen und oh-
ne Bezug zu anderen Regeln formuliert werden dürfen. Durch diese Unabhängigkeit der
Regeln untereinander erreicht Finkenwirth, dass jede Regel im Bedarfsfall ohne Konse-
quenzen für andere Regeln durch den Konstruktionsexperten (direkte Akquise) geändert
werden kann.

Krause [Kra92] fokussiert in seiner Arbeit auf die Akquise von quasi-statischem und dy-
namischem Wissen. Statisches Wissen bedarf keiner Wissensakquisition im eigentlichen
Sinn, da es nicht verändert werden muss. Als Beispiel dienen Werkstoffkennwerte, die kei-
nen Änderungen unterliegen. Dem quasi-statischem Wissen sind unternehmensabhängige
Fakten über Maschinen, Werkzeuge, Normteile oder Kataloge für Prinziplösungen zugeord-
net. Die Aufgabe des Aufbaus und der Aktualisierung der Wissensbasis fällt nach Krause
der jeweiligen Fachabteilung zu. Die Ausführungen von Krause lassen auf ein (manuelles)
direktes und/oder indirektes Vorgehen bei der Wissensakquise schließen. Er hebt hervor,
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dass die Konstrukteure nicht selbst neue Prinziplösungen oder Wissen zur Maschinenele-
menteberechnung in das KSmfk eintragen dürfen, da es sonst zu „Wildwuchs“ kommt.
Dynamisches Wissen wird nach Krause für Dimensionierungs- und Auswahlberechnung
sowie zur Nachrechnung benötigt. Die bei der Dimensionierungs- und Auswahlberechnung
getroffenen Entscheidungen des Konstrukteurs in Bezug auf die Prinziplösungen werden in
der Wissensbasis abgespeichert.

Das KSmfk erfasst hierzu, wie oft eine Prinziplösung bei einer gegebenen Belastung zur
Auswahl stand und wie häufig diese ausgewählt wurde. Der Konstrukteur kann zusätz-
lich Gewichtungen für Montage- oder Fertigungsaufwand vergeben. Nach einem zu de-
finierenden Zeitraum werden Eintragungen automatisch in der Wissensbasis deaktiviert,
so dass eine Anpassung an die sich verändernden Bedingungen im Betrieb erfolgt. Mit
den Informationen über Häufigkeit einer gewählten Lösung, den Gewichtungen und den
Anmerkungen des Experten kann ein unerfahrener Konstrukteur bei der Durchführung
der Dimensionierungs- und Auswahlberechnung nachvollziehen, welche Lösung aller Wahr-
scheinlichkeit nach geeignet ist. Da das System zwar „automatisch“ die gewählten Prinzi-
plösungen zählt, der Experte aber dennoch die ausschlaggebenden Informationen manuell
eingeben muss, liegt auch im Fall des dynamischen Wissens bei Krause eine direkte Ak-
quise vor.

Bachschuster [Bac97] integriert in den Analyseteil des KSmfk ein Expertensystemtool4
mit eigener graphischer Benutzeroberfläche und verschiedenen Regeleditoren zur Eingabe
des Wissens. Neue Analysen, die mit Hilfe der Akquisitionskomponente des Tools erstellt
werden, werden automatisch erkannt und in die Benutzeroberfläche des Konstruktions-
systems integriert. Die Durchführung der Wissensakquisition erfolgt durch Konstrukteure
(direkte Akquise), die im Umgang mit dem Expertensystem geschult werden müssen.

Die Akquisition von Konstruktionswissen für DfX-Analysen erfolgt bei Wartzack [War01]
zum einen für den Aufbau eines initialen Wissensbestandes und zum anderen zur Pflege
der vorliegenden Wissensbasen. Der erstmalige Aufbau dieser Wissensbasen stützt sich auf
Interviews mit Fachabteilungen sowie Literaturrecherchen in verschiedenen Bereichen des
DfX. An die 200 Gestaltungsregeln wurden analysiert, formalisiert und durch den Sys-
tementwickler in das KSmfk eingebracht (indirekte Wissensakquise). Als Beispiel für die
dynamische Pflege der Wissensbasen führt Wartzack die Rückführung von Wissen über
Prozessstörungen aus der Montage in die Konstruktion an. Die Ursache der Störung eines
Montageprozesses wird an die Konstruktion zurück geleitet, wo sie durch den Konstrukteur
in die Wissensbasis eingetragen wird (direkte Akquise), um bei gleichartigen Aufgaben-
stellungen frühzeitig ähnliche Fehler vermeiden zu können. Um diese Ursache definieren
zu können, ist allerdings Erfahrungswissen erforderlich, das idealerweise von den Ferti-
gungsexperten mit der Störungsmeldung angegeben wird. Da Erfahrungswissen zumeist
in impliziter Form (siehe Abschnitt 2.1.2) vorliegt, greift Wartzack für die Wissensin-
terpretation auf die Methode der Heuristic Classification (siehe [Cla85; SBF98]) zurück.
Diese Problemlösungsmethode dokumentiert den gesamten Problemlösevorgang und macht
4 Bachschuster und später auch Wartzack verwenden NEXPERT OBJECT, eine neutrale

Expertensystem-Shell die an nutzerspezifische Anforderungen angepasst werden kann.
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ihn transparent, verlangt aber eine gewisse Erfahrung vom Anwender. Dieser Anwender
könnte ein Wissensingenieur sein (indirekte Akquise), der die Heuristic Classification regel-
mäßig anwendet. Der Wissensingenieur übernimmt bei Wartzack zudem die Aufgaben
eine Verbindung zwischen dem Expertensystemtool und den Wissensbasen des KSmfk her-
zustellen und den Inferenzmechanismus zur Wissensverarbeitung während der Analysen
zu definieren.

Abschließend ist festzustellen, dass bei den (Weiter-)Entwicklungen des Konstruktionssys-
tems mfk über die Jahre hinweg nur direkte und indirekte Wissensakquisitionsmethoden
zur Anwendung kamen.

Das agentenbasierte Konstruktionssystem ProKon

ProKon (Proaktive Unterstützung von Konstruktionsprozessen durch Softwareagentensys-
teme) ist eine Gemeinschaftsentwicklung des Instituts für Konstruktionstechnik und Tech-
nisches Design (IKTD) und dem Institut für Automatisierungs- und Softwaretechnik (IAS)
der Universität Stuttgart. Das System stellt für den Benutzer einerseits ein aktives Nach-
schlagewerk für Konstruktionswissen dar, auf der anderen Seite überprüft es selbstständig
die CAD-Produktmodelle während des Konstruktionsvorgangs auf Inkonsistenzen bezüg-
lich nicht erfüllter Anforderungen [KBR10]. ProKon unterscheidet sich als agentenbasiertes
System in Struktur und Wissensverarbeitung von klassischen wissensbasierten Systemen
(siehe Abschnitt 2.2.2). Im Bereich der Informatik bezeichnet ein Agent eine Softwareein-
heit, die autonom ein bestimmtes Ziel verfolgt und dabei sowohl mit seiner Umgebung
als auch mit anderen Agenten interagiert [GUW04]. Agenten treten jedoch nie einzeln,
sondern nur im Verbund als Agentensystem auf. Im Konstruktionssystem Prokon sind
neun unterschiedliche Agententypen im Basissystem (s. Bild 16) verankert [Kra14]. Wie
viele einzelne Agenten letztlich im System aktiv sind, hängt von der Anwendung ab, also
ob bspw. die Konstruktion einer Getriebewelle oder eines kompletten Zahnradgetriebes
durch ProKon überwacht wird. Neben dem Basissystem zählt ein Wissensintegrations-
system zum ProKon-Kernsystem. Beide haben Zugriff auf eine zentrale Wissensbasis, die
Wissen enthält, das für mehrere Agenten relevant ist (z. B. Materialkennwerte). Daneben
verfügt jeder Agent über eine eigene gekapselte Wissensbasis zur Zielverfolgung. Somit
besitzt das ProKon-System eine verteilte Wissensbasis. Die Interaktion mit dem Kon-
strukteur wird über je eine graphische Benutzeroberfläche (GUI) für das Basissystem und
für das Wissensintegrationssystem sichergestellt. Wie auch andere Konstruktionssysteme
nutzt ProKon ein kommerzielles CAD-System zur Visualisierung des Produktmodells über
die CAD-GUI. Anders als beim KSmfk wird das CAD-Datenmodell als digitales Produkt-
modell genutzt. Die Kommunikation zwischen CAD und dem ProKon-Kernsystem erfolgt
über eine JT-Schnittstelle5. Das Basissystem greift auf die Berechnungslogik von KISSsoft
zu, um standardisierte und normgerechte Berechnungen auszuführen [KRBG11a]. Dieser
Ansatz eines externen, kommerziellen „Berechnungspakets“ zur Dimensionierungsberech-
5 Proprietäres Format zum Austausch von 3D-CAD-Daten, das als besonders kompakt gilt und auch

Objekt- und Metadaten (z. B. Toleranzangaben) unterstützt [ISO12].
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nung findet sich auch bei Krause, der die Anforderung stellt, dass dieses Programm ohne
Dialog im Batch-Betrieb lauffähig sein muss [Kra92].
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Bild 16: Architektur des agentenbasierten Systems ProKon nach [Kra14]

Die Wissensakquisition bei ProKon teilt sich in die Phasen Wissenserhebung, -analyse und
-repräsentation (siehe Tabelle 2). Zur Wissenserhebung greift Kratzer auf die Methode
des Exzerpierens für explizites Wissen zurück [Kra14]. Die Erhebung impliziten Exper-
tenwissens spielte im ProKon Projekt mangels Experten nur eine untergeordnete Rolle,
jedoch hält sich Kratzer an den Vorschlag von Hua [Hua08], halbstrukturierte Inter-
views durchzuführen. Da die Durchführung solcher Interviews in den Aufgabenbereich des
Wissensingenieurs fällt (siehe Abschnitt 2.1.4), liegt in diesem Fall indirekte Wissensakqui-
se vor. Ist das anwendungsspezifische ProKon-System implementiert, kann beispielsweise
das Inkrafttreten oder die Änderung einer Norm die Anpassung der zentralen oder einer
agentenspezifischen Wissensbasis erfordern. Diese Aufgabe sieht Kratzer beim Konstruk-
teur. Hierfür wurde das ProKon-Wissensintegrationssystem entwickelt, das sich auf zwei
Prinzipien stützt, nämlich dem Prinzip des fallbasierten Kreislaufs sowie dem Prinzip der
Initialisierung [KRBG11b]. Ersteres ist eine adaptierte Form des fallbasierten Schließens (s.
[Rud98]) und kontrolliert den Wissensbasiszugriff durch den Konstrukteur, die Verarbei-
tung semi-formaler Wissensobjekte (z. B. Texte, Skizzen) und Konsistenzprüfungen. Das
Prinzip der Initialisierung regelt nach der Modifikation der ProKon-Wissensbasis die Neu-
ordnung des gesamten Systems. Abschließend ist festzustellen, dass beim ProKon-System
direkte und indirekte Wissensakquisitionsmethoden zum Einsatz kommen.
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Ein automatisiert lernendes CAD/CAM-System

Die Arbeiten von Schneider am Lehrstuhl für Fertigungslehre der Technischen Universi-
tät Chemnitz sind im Bereich der Arbeitsvorbereitung des Werkzeug- und Formenbaus zu
verorten. Dennoch findet sich in [Sch10] ein beachtenswertes Konzept zur automatisierten
Wissensakquisition von erfahrungsbasiertem Fertigungswissen innerhalb des Produktent-
stehungsprozesses, dem die Konstruktion bzw. die Produktentwicklung nach [FG13] zuge-
ordnet werden können. Fertigungswissen umfasst im Kontext der Arbeit von Schneider
Erfahrungswissen der NC-Werkstattprogrammierer und ist die Grundlage für eine effiziente
CAD/CAM-gestützte Fertigungsplanung (Computer-aided Manufacturing - CAM). Bei der
NC-Programmierung im direkten Maschinenumfeld (werkstattorientierte Programmierung
– WOP) verwendet der Facharbeiter ein grafisch-interaktives CAM-System und erzeugt
bzw. optimiert die NC-Programme selbstständig [Eve02]. Somit wird enorm wertvolles,
individuelles Erfahrungswissen zur Sicherstellung der Prozesssicherheit und Effizienz bei
der NC-Bearbeitung erzeugt [DSW08]. Schneider geht davon aus, dass dieses Wissen in
den textbasierten NC-Codedatensätzen der Maschinensteuerungen enthalten ist. Um es zu
erheben und zur Standardisierung der Prozessplanung zu nutzen, entwickelt er das in Bild
17 gezeigte Vorgehensmodell mit den vier Hauptschritten Datenbeschaffung, Analyse der
Wissensdomäne, automatisierte Wissensakquisition und Standardisierung.

Für die Datenbeschaffung stehen unstrukturierte, textbasierte Dateien in Form von Werk-
zeuglisten und Bearbeitungsparametern zur Verfügung. Schneider entwickelt eine auf
regulären Ausdrücken basierende Methodik, die eine vom Format der Quelldatei unab-
hängige, automatische Konvertierung unstrukturierter Textinformationen ermöglicht. Nach
einer notwendigen Datenaufbereitung zur Beseitigung inhaltlicher Fehlstellen stehen unge-
fähr 24.000 Datenobjekte (NC-Programme) als Trainingsdaten zur Verfügung.

Die Analyse der Wissensdomäne hat das Ziel die zu den Trainingsdaten assoziierbaren
Wissensbedarfe, unter Berücksichtigung des besonderen Umfelds der werkstattorientierten
NC-Programmierung, zu identifizieren. Das Ergebnis der Analyse ist die formale Beschrei-
bung der Wissensziele, also die Definition der bekannten Eingangs- und der unbekannten
Ausgangsinformationen.

Zwischen beiden Objekten, deckt der KDD-Algorithmus während der automatisierten
Wissensakquisition unbekannte Zusammenhänge auf. Als Lernverfahren nutzt Schnei-
der Markov-Ketten und multivariate Entscheidungsbäume. Diese erfüllen seine Prämis-
se, dass die explizite Darstellung der gefundenen Zusammenhänge in Form von Regeln
durch den Menschen leicht interpretiert und gleichzeitig durch rechnergestützte Systeme
effizient verarbeitet werden können. Markov-Ketten (siehe [Bré99b; Mür14]) werden bei
Schneider eingesetzt, um anhand der Attribute Durchmesser und Eckradius eines aktu-
ellen Werkzeugs (z. B. Schruppfräser) diese Attribute für ein unbekanntes, nachfolgendes
Werkzeug (z. B. Schlichtfräser) vorherzusagen. Multivariate Entscheidungsbäume, wie der
EM-Algorithmus (Expectation-Maximization-Algorithmus, siehe [DLR77]), werden zur ex-
pliziten Abbildung der Zusammenhänge zwischen den Attributen Bearbeitungssituation,
Werkzeug und Schnittwerten genutzt.
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Bild 17: Das Vorgehensmodell nach Schneider zur automatisierten Akquisition von NC-
Fertigungswissen [Sch10].

Abschließend ist eine Standardisierung notwendig, da die Trainingsdaten auf den manuell
programmierten NC-Datensätzen vieler Facharbeiter basieren und Schneider eine enorm
hohe Varianz und Vielfältigkeit im erhobenen Wissen erwartet. Zur Selektion standardi-
sierbarer Planungsentscheidungen in Bezug auf Fräsprozessattribute nutzt Schneider für
Attribute mit diskretem Wertebereich (z. B. Frässtrategie6 oder Werkzeugaufnahme) die
Lorenzkurve bzw. den Gini-Index [FKPT07]. Somit identifiziert er Prozesskonfiguratio-
nen die von den Experten je nach Kontext besonders häufig gewählt und als „Standard“
betrachtet werden. Zur Identifikation häufig verwendeter kontinuierlicher Attribute (z. B.
Ausspannlänge, Vorschub, Drehzahl) werden die Quartilsabstände innerhalb der jeweiligen
Attributsnormalverteilung berechnet.

6 Die Frässtrategien können den typischen Phasen der Bearbeitung von Freiformgeometrien Schruppen
und Schlichten zugeordnet werden.
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2.3 Analyse von Bauteilentwürfen hinsichtlich
Fertigungsgerechtheit

Aufgabe des im Rahmen dieser Arbeit zu entwickelnden selbstlernenden Assistenzsystems
ist die Unterstützung des Konstrukteurs bei der Analyse von Bauteilentwürfen hinsichtlich
deren Fertigungsgerechtheit bezogen auf die Blechmassivumformung. Daher sind die Ziele
der folgenden Abschnitte die Auseinandersetzung mit dem Begriff Fertigungsgerechtheit im
Kontext des Design for X und die Darstellung existierender Methoden und Werkzeuge die
der Analyse der Fertigungsgerechtheit von Gestaltentwürfen dienen. Eine Betrachtung des
Aspekts Fertigungsgerechtheit im Kontext der Blechmassivumformung erfolgt in Kapitel 3.

2.3.1 Fertigungsgerechtheit im Kontext des Design for X

Jeder Fertigungsprozess stellt spezifische Anforderungen an die Konstruktionsabteilung,
damit ein Bauteil den anwendungstechnischen Erfordernissen entspricht und gleichzeitig
wirtschaftlich hergestellt werden kann. Gerade der Aspekt der Wirtschaftlichkeit grenzt die
unterschiedlichen Bedeutungen der Begriffe Fertigbarkeit und Fertigungsgerechtheit vonein-
ander ab. Für Wartzack ist die Fertigungsgerechtheit bzw. das fertigungsgerechte Kon-
struieren (engl. Design for Manufacture) einer der komplexesten Themenbereiche des DfX
[War01] (s. Bild 18).

Jeder Fertigungsprozess besteht aus einer bestimmten Anzahl an Teilprozessen und Ak-
teuren, die, sowohl zusammen als auch im einzelnen, enorme Auswirkungen auf die Pro-
duktkosten und -qualität sowie auf die gesamte Produktivität haben. Erschwerend kom-
men Abhängigkeiten zwischen den einzelnen Teilaspekten hinzu, was dazu führt, dass eine
Entscheidung, die nur einen Gesichtspunkt betrifft, dennoch Auswirkungen auf andere
Aspekte ausübt. Ziel des Design for Manufacture ist, ein Verständnis für die komplexen
Wechselwirkungen zu entwickeln und dieses Wissen zur Minimierung von Fertigungskosten
und -zeit bei gleichzeitiger Berücksichtigung fertigungsabhängiger Qualitätsmerkmale zu
nutzen [Sto91]. Wie unterschiedlich das Verständnis für Design for Manufacture in Unter-
nehmen ausgeprägt sein kann, haben Mottonen et al. untersucht. Während im klassischen
Maschinen- und Anlagenbau vor allem die Fertigungsvorbereitung und -durchführung im
Fokus stehen [AHL92], umfasst Design for Manufacture im I&K-Sektor7 das design for
board assembly, design for final assembly, design for testing und das design for packaging
[MHB+09].

Der Literatur können zur Umsetzung von Design for Manufacture unterschiedliche Maß-
nahmen entnommen werden. Tichem schlägt zunächst die Auswahl einer bestimmten Fer-
tigungsprozesskette vor, um in einem zweiten Schritt die Bauteilgestalt in Bezug auf das
gewählte Verfahren zu optimieren [Tic97]. Er hebt außerdem hervor, dass beim Design for
Manufacture Ansatz sowohl die Produktstruktur als auch jedes Einzelteil mit seinen Ma-
terialeigenschaften, Abmaßen, Toleranzen und Oberflächengüten Berücksichtigung findet.
7 Informations- und Kommnukationstechnik
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Bild 18: Fertigungsgerechtes Konstruieren im Kontext des Design for X.

Eine ähnliche Beschreibung, allerdings mit einem anderen Blick auf die Optimierung, findet
sich bei van Vliet [van01]. Er schlägt eine Definition für Design for Manufacture vor, die
das Durchlaufen von drei Schritten beinhaltet:

1. Auswahl der besten Kombination aus Material, Geometrie und Fertigungsverfahren
für jedes Einzelteil unter Berücksichtigung der an das Produkt gestellten funktionel-
len Anforderungen.

2. Fortlaufende Analyse der Fertigbarkeit während des gesamten Konstruktionsprozes-
ses durch Verifikation und Quantifizierung.

3. „Optimierung“ der Fertigungsgerechtheit aller Einzelteile, um die Fertigung zu ge-
währleisten, zu verbessern oder zu vereinfachen.

Van Vliet sieht insbesondere bei der Quantifizierung und der „Optimierung“ enormen
Forschungsbedarf, da aus seiner Sicht keine Methode zur objektiven „Berechnung“ der Fer-
tigbarkeit existiert. Dies ist wiederum eine Voraussetzung für die „Optimierung“, die er
deshalb in Anführungszeichen setzt, weil aus mathematischer Sicht keine optimale Fertig-
barkeit existiert [van01].

Für die Design for Manufacture Unterstützung des Produktentwicklers wurden, je nach Fer-
tigungsverfahren, bereits zu Beginn des 20. Jahrhunderts erste Methoden entwickelt. Nach
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Tichem lassen sich diese in die Bereiche Konstruktionsrichtlinien, stand-alone Werkzeu-
ge, CAD-integrierte Systeme sowie rechnerunterstützte Prozessplanung (Computer Aided
Process Planning, CAPP) einordnen [Tic97]. In den folgenden Abschnitten werden charak-
teristische Beispiele dieser Gruppen vorgestellt. Der Übersicht halber erfolgt eine Auftei-
lung in die Abschnitte geometriebasierte Analysen und rechnerunterstützte Prozessplanung.
Abschließend wird der Bereich wissensbasierte Ansätze in einem eigenen Abschnitt behan-
delt. Die Gruppe der stand-alone Werkzeuge wird nicht im Detail betrachtet, da hier die
Herstellkostenberechnung im Fokus steht. Dieser Aspekt ist bei industriellen Anwendungen
von enormer Bedeutung, wird jedoch in dieser Arbeit nicht berücksichtigt.

2.3.2 Geometriebasierte Design for Manufacture Analysen

Zu den geometriebasierten Design for Manufacture Analysemöglichkeiten zählen im Folgen-
den Konstruktionsrichtlinien sowie die CAD-integrierten Systeme. Konstruktionsrichtlinien
oder -regeln zur fertigungsgerechten Gestaltung lassen sich entsprechend der Fertigungs-
verfahren nach DIN 8580 klassifizieren [DIN03] (s. Bild 19). Sie sind ebenso vielfältig wie
Herstellungsverfahren existieren, daher werden an dieser Stelle nur einzelne Beispiele her-
ausgegriffen.
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Bild 19: Einteilung der Fertigungsverfahren nach DIN 8580 [DIN03].

Mit Blick auf das Urformen stammen die bekanntesten Konstruktionsrichtlinien von Aloys
Heuver, der sich intensiv mit dem Gießen von Stahl beschäftigte. Die nach ihm benann-
te Heuvers’sche Kreismethode zur Bestimmung und Korrektur von Gussquerschnitten hat
seit ihrer Einführung in den 1920er Jahren [Heu29] nicht an Bedeutung verloren und fin-
det sich noch heute im Lehrplan technischer Studiengänge [Mee07; War15]. Ausgangspunkt
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der Heuvers’schen Kreismethode ist, dass der Speiser für das Nachspeisen des Gussstückes
notwendig ist und daher richtig bemessen und angeordnet werden muss. Das Material im
Speiser darf erst erstarren, wenn das Gussstück bereits fest ist. Eine einfache Wanddicken-
und Speiserbemessung ist mit der Kreismethode nach Heuvers möglich. Das sogenannte
Einkreisen der Gussstückquerschnitte beginnt im Bereich der minimalen Wanddicke und
wird in Richtung des Speisers fortgeführt. Die Konstruktionsregel lautet, dass die Kreisflä-
chen sich um den materialabhängigen Heuversfaktor kH bis zum Speiser vergrößern sollen.

Neben der Heuvers’schen Kreismethode sind auch auf gut/schlecht bzw. günstig/ungünstig
Beispielen basierende Richtlinien im urformgerechten Konstruieren verbreitet [Rot94;
FG13]. Diese bieten den Vorteil der Verständlichkeit und Verallgemeinerbarkeit, denn die
Anwendung von Konstruktionsregeln wie etwa das Vorsehen von Entformungsschrägen
oder das Vermeiden von Hinterschneidungen ist nicht nur auf Stahl- oder Grauguss be-
grenzt. Auch für Umformprozesse existieren Konstruktionsrichtlinien und -regeln die ein-
schlägigen Fachbüchern entnommen werden können, wie z. B. [Kug09; Tsc05]. Der Zugriff
auf die Wissensinhalte erfolgt beispielsweise wie bei Roth über Tabellen, die neben den
ausformulierten Regeln auch den technologischen Hintergrund sowie ungünstig/günstig
Beispiele angeben [Rot94] (s. Bild 20).
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Bild 20: Beispiel einer Konstruktionsrichtlinie zum umformgerechten Konstruieren nach
[Rot94].

Andere Konstruktionsrichtlinien basieren auf der Berechnung materialabhängiger Kenn-
werte wie dem Grenzziehverhältnis βmax bei dem die Grenze der Ziehfähigkeit eines Ble-
ches durch den gerade noch nicht eintretenden Bodenreißer erreicht ist [Kug09]. Da das
Grenzziehverhältnis nur durch Versuchsreihen ausreichend genau und nur werkstoffspe-
zifisch ermittelt werden kann, ist die Entwicklung umfangreicher, auf βmax basierender
Richtliniensammlungen sehr zeit- und kostenintensiv. In jedem Fall ist die Erarbeitung
von Konstruktionsrichtlinien mit enormen Aufwand verbunden. Sie repräsentieren Exper-
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tenwissen, dessen Aneignung (und Bestätigung) viel Zeit und Geld in Anspruch nimmt,
gleichzeitig aber eine enorm hohe Sicherheit (Verlässlichkeit) aufweist. Nicht selten ver-
bleibt das relevante Wissen aus Wettbewerbsgründen lange in den Firmen bis es über
DIN-Normen oder VDI-Richtlinien Dritten zur Verfügung gestellt wird.

CAD-integrierte Systeme und Ansätze können als Fortführung von Konstruktionsrichtli-
nien verstanden werden. Dies wurde erst durch die formalen Methoden zur Geometriere-
präsentation8 möglich. Sowohl bei der Geometriesynthese als auch der -analyse gewähr-
leisten CAD-integrierte Ansätze eine Design for Manufacture Unterstützung des Kon-
strukteurs. An dieser Stelle sei insbesondere die Features-Technologie erwähnt, die auf
Forschungs- und Entwicklungsarbeiten aus den 70er Jahren des 20. Jahrhunderts zurück
geht [Gra76; CD88; Sha91]. Features als CAD-Gestaltkomplex dienen nicht nur der be-
schleunigten Erzeugung häufig auftretender Standardgeometrien. Ihr Nutzen zeigt sich vor
allem durch die Zuweisung von Semantik und Design for X Wissen, das in einem wissens-
basiertem System verarbeitet werden kann. Beim Ansatz nach Wartzack et al. wird
beim Start einer Analyse hinsichtlich eines DfX-Aspektes (z. B. spritzgussgerechte Bauteil-
gestaltung) im Produktmodell nach relevanten Featureinformationen (z. B. Informationen
über Gussaugen, Versteifungsrippen, Entformungsschrägen) gesucht und diese im wissens-
basierten System verarbeitet [WM00]. Generell kann eine Vielzahl an CAx-Werkzeugen
die geometrischen und semantischen Informationen direkt weiterverarbeiten, wie bspw. in
den Arbeiten von [UA92; Haa95; War99; KW+15] gezeigt wird. Beim featurebasierten Mo-
dellieren wählt der Konstrukteur aus einer sogenannten Featurebibliothek ein gewünschtes
Feature aus und platziert es auf der Basis parametrischer Bezüge im CAD-Modell. Das
zur Dimensionierung notwendige Wissen (bspw. Durchmesser einer Bolzenbohrung, Größe
einer Wellennut) kann im Feature selbst hinterlegt sein. Die Verwendung von Features
unterstützt eine fertigungsgerechte Produktsynthese dergestalt, dass der Konstrukteur in
seiner Auswahl auf Features beschränkt ist, für die sicher ein Standardwerkzeug existiert,
bspw. für Senkbohrungen oder Bohrungen eines Passungssystems (siehe [Fis11]). Auch
für das Urformen (z. B. Gussauge, Rippe mit Entformungsschrägen) oder das Umformen
(z. B. Biegelasche, Falz) können Features mit definierter fertigungsgerechter Gestalt und
entsprechender Semantik bereitgestellt werden.

Verschiedene Ansätze zur featureunabhängigen, geometriebasierten Design for Manufac-
ture Analyse stellt Wartzack in seiner Arbeit vor [War01]. Für die Verfahren Tiefzie-
hen, Druckguss, Spritzguss und Punktschweißen stellt er in seinem Assistenzsystem Ana-
lysewerkzeuge zur Untersuchung der fertigungsgerechten Gestaltung beliebig komplexer
Bauteilgeometrien zur Verfügung. Bei einem tiefgezogenen Bauteil werden Höhe und In-
nendurchmesser des Napfes über die B-Rep Datenstruktur und den darin gespeicherten
Flächen, Konturelementen, Kanten und Punkten ermittelt. Der Anwender muss lediglich
die Tiefziehrichtung vorgeben und das System berechnet die Tiefziehverhältnisse aller Bau-
teilflächen und vergleicht sie anschließend mit den im Produktmodell gespeicherten, mate-
rialabhängigen Grenzziehverhältnis. Druck- und spritzgussgerechte Analysen basieren auf
der Ermittlung von Materialanhäufungen, Wandstärkensprüngen und Hinterschneidungen.
8 Details zu Repräsentationsformen wie B-Rep oder CSG können u. a. [Vaj09] entnommen werden.
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Im Gegensatz zu Räse [Räs91], der in seiner Arbeit einen sehr rechenintensiven volu-
menabhängigen Ansatz verfolgt, berechnet Wartzack zunächst für jede Teilfläche einen
Analysepunkt aus allen die Teilfläche umgebenden Kanten. Aus der Werkzeugschließrich-
tungsachse und den durch die Analysepunkte führenden Normalenvektoren der Teilflächen,
werden Schnittpunkte mit anderen Teilflächen berechnet. Die Erkennung von Hinterschnei-
dungen beispielsweise erfolgt durch Prüfung jedes Flächenelements auf seine Sichtbarkeit in
Richtung der Hauptentformungsrichtung. Die punktschweißgerechte Gestaltung einer Bau-
gruppe erfordert eine ausreichende Zugänglichkeit der Schweißzange. Dies wird überprüft,
indem von den im CAD-Assembly definierten Schweißpunkten ein Bündel an geometrischen
Strahlen in verschiedene Raumrichtungen erzeugt wird. Trifft ein Strahl auf ein anderes
Bauteil so wird diese Entfernung ermittelt und das Expertensystem entscheidet über die
Zugänglichkeit eines definierten Werkzeugs.

2.3.3 Rechnerunterstützung durch Prozesssimulation

Der rechnerunterstützten Prozessplanung (engl. Computer-aided Process Planing, CAPP)
kommt eine Schlüsselfunktion im Produktentstehungsprozess zu, da sie als Bindeglied zwi-
schen Konstruktion und Fertigung anzusehen ist [SK97]. Ziel ist die Erzeugung formaler,
auftragsneutraler, sequentieller und detaillierter Pläne, in denen der gesamte Fertigungs-
prozess abgebildet ist und anhand derer er optimiert werden kann. Als ein Teilbereich wird
im Folgenden die Simulation einzelner Fertigungsprozesse herausgegriffen, um die Möglich-
keiten des Rechnereinsatzes darzustellen. Hierbei steht die Umformsimulation im Fokus,
da in dieser Arbeit die Blechmassivumformung den Einsatzkontext des zu entwickelnden
Assistenzsystem bildet. Ziel dieses Abschnitts ist weniger eine Einführung in die Theo-
rie der FE-basierten Umformsimulation, hierzu wird u. a. auf [Lan93] [DB10] und [Tsc05]
verwiesen. Vielmehr sollen das generelle Vorgehen und die Möglichkeiten der Design for
Manufacture Unterstützung skizziert werden.

Die Umformsimulation hat sich sowohl im Bereich der Blech- als auch der Massivum-
formung etabliert. Sie ermöglicht es, Fehler und Probleme bei der Umformung, wie zum
Beispiel Falten, Bodenreißer oder Mikrorisse im Gefüge, bereits frühzeitig am Computer
zu erkennen. Dies hilft die Zahl der notwendigen physischen Prototypenwerkzeuge zu re-
duzieren und Kosten zu sparen. Die gängige Vorgehensweise bei FE-basierten Umformpro-
zessanalysen entspricht, wie in Bild 21 gezeigt, im Wesentlichen den bekannten Prinzipien
des Preprocessing, Solving und Postprocessing (siehe [GMS07; Vaj09; DB10]).

Beim Preprocessing wird ein FEM-Modell des Fertigungsprozesses erzeugt. Bei Um-
formsimulationen müssen dazu Geometrien, Materialeigenschaften, Rand- und Anfangs-
bedingungen sowie die Modelldiskretisierung festgelegt werden. Die Geometrien wer-
den üblicherweise aus einem CAD-Modell importiert. Zwar verfügen die meisten FEM-
Simulationsprogramme über Funktionen zur Erstellung von Geometrien, jedoch sind in
der Regel bereits CAD-Modelle von Betriebsmittelkonsteuren vorhanden. Die Randbedin-
gungen spezifizieren den Prozess genauer. Typische festzulegende Rand- und Anfangsbe-
dingungen bei Umformsimulationen sind z. B. die Eigenschaften des Werkzeugs und der
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Bild 21: FEM-Simulationsprozess in der Umformtechnik entsprechend [DB10].

Umformmaschine (z. B. Vorschub, Kinetik, Temperatur). Weiterhin müssen die Reibung
zwischen den Kontaktpartnern, der Wärmeübergang in der Wirkfuge zwischen Werkzeug
und Werkstück sowie die Wärmeabstrahlung an die Umgebung berücksichtigt werden. Die
Diskretisierung betrifft die Geometrien. Bei der Diskretisierung werden Starrkörper, die
in erster Näherung undeformierbare Geometrien (z. B. Umformwerkzeuge) repräsentieren,
mit einem Oberflächennetz und deformierbare Geometrien mit Volumennetzen versehen.
Das gesamte FEM-Modell wird in ein Gleichungssystem für die unbekannten Zustandsva-
riablen überführt.

Beim Processing wird das zuvor erstellte Gleichungssystem gelöst (engl. solving) und die
benötigten Größen wie z. B. Verschiebungen, Verzerrungen, Spannungen, Energien usw.
ermittelt. Bei Umformsimulationen müssen typischerweise große Verzerrungen abgebildet
werden, weshalb derartige Problemstellungen als nichtliniear anzusehen sind [Vaj09]. Die
Lösung derartiger Gleichungssysteme kann durch direkte Iterationsverfahren oder Verfah-
ren nach Newton-Raphson geschehen (siehe [BB09; JL13]). Das Lösen der Gleichungen
läuft automatisch ab und erfordert in der Regel keinen Eingriff des Anwenders.

Der letzte Schritt bei FEM-Simulationen ist das Postprocessing. In diesem Schritt werden
die Ergebnisse der Simulationen ausgewertet. Dabei müssen die Ergebnisse auf Plausibi-
lität geprüft werden, weil die Festlegung der Randbedingungen und die Diskretisierung
ein hohes Fehlerpotential mit sich bringen. Idealerweise kann eine Simulation mit einem
Versuch verifiziert werden. Sind große Unterschiede zwischen Versuchs- und Simulationser-
gebnisse vorhanden, muss das Modell im Preprocessing angepasst werden. Hinsichtlich der
Design for Manufacture Unterstützung durch Umformsimulationen lässt sich das Vorgehen
nach dem derzeitigem Stand der Technik eher mit dem „try-and-error“ Prinzip beschrei-
ben. Sofern sich aus dem Ergebnis der Simulation ableiten lässt, dass bestimmte Kriterien
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nicht erfüllt sind (z. B. zu hohe Werkzeugbelastungen, zu hohe Umformkräfte, unzureichen-
de Kavitätsfüllung) muss eine Bauteilform als nicht-fertigungsgerecht eingestuft werden.
Prozessingenieur und Konstrukteur diskutieren anschließend über mögliche Änderungs-
maßnahmen, um zu einem stabilen, die Qualitätsanforderungen erfüllenden Prozess zu
gelangen. Verfügt der Umformtechniker über ausreichendes Erfahrungswissen, so wird er
sowohl dem Konstrukteur Hinweise für eine Änderung der Bauteilgestalt geben als auch
Prozessrandbedingungen (z. B. Reibung, Umformstufen) anpassen können.

Der gesamte Simulationsprozess kann zudem durch die Methodik der statistischen Ver-
suchsplanung (engl. Design of Experiment, DoE) unterstützt werden. Ziel ist die systema-
tische Identifikation der relevanten, unabhängigen Systemgrößen (z. B. Werkzeuggeometrie,
tribologische Verhältnisse in der Wirkfuge Werkzeug-Werkstück) sowie die quantitative Be-
schreibung ihres Einflusses auf abhängige Größen (z. B. Werkzeugbeanspruchung, Lebens-
dauer, Bauteilqualität). Grundlagen zur statistischen Versuchsplanung und zur Erstellung
sowie Auswertung von Versuchsplänen sind der einschlägigen Literatur zu entnehmen (z. B.
[Fis35; Mat05; SvH10]).

2.4 Wissensentdeckung in Datenbanken - KDD

Der Einsatz von Datenbanken ermöglicht seit den 1960er Jahren die Verwaltung und Be-
reitstellung umfangreicher Datenmengen. Gleichzeitig können mit Methoden der Statistik
und der Rechnerunterstützung beim maschinellen Lernen diesen großen Datenmengen ef-
fizient ausgewertet und Informationen sowie Wissen extrahiert werden. An der Schnitt-
stelle zwischen Datenbereitstellung auf der einen und Datenauswertung durch Statistik
und maschinelles Lernen auf der anderen Seite hat sich zu Beginn der 1990er Jahre das
Forschungsfeld der Wissensentdeckung in Datenbanken (engl. Knowledge Discovery in Da-
tabases, KDD) entwickelt (s. Bild 22) [FPSS96].

Datenbank-
technologie

Statistik Maschinelles
Lernen

KDD

Bild 22: Knowledge Discovery in Databases als Schnittmenge der Datenbanktechnologie,
der Statistik und des maschinellen Lernens.

In der anwendungsorientierten Literatur wird KDD teilweise mit dem Begriff des Data-
Minings gleichgesetzt [AN00; Ott04]. Die vorliegende Arbeit folgt jedoch der Lesart von
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[PS91] und Fayyad et al. [FPSS96], wonach KDD den gesamten Prozess von der Roh-
datensammlung bis hin zur Extraktion und Verteilung des relevanten Wissens bezeichnet.
Data-Mining hat hier einen eher technologischen Charakter und umfasst in diesem Pro-
zess die Anwendung von Algorithmen und Methoden aus den Bereichen Statistik, Mus-
tererkennung und maschinelles Lernen. Der KDD Prozess nach Fayyad et al. mit dem
integrierten Schritt des Data-Minings ist Gegenstand der folgenden Abschnitte. Beispiele
für die erfolgreiche Anwendung von KDD im Kontext des Produktentstehungsprozesses
werden im Abschnitt 2.5 behandelt.

2.4.1 Der KDD Prozess nach Fayyad

KDD beschreibt einen nichttrivialen mehrstufigen Prozess (s. Bild 23), in dem ein Da-
tenanalytiker das Ziel verfolgt, neues, nützliches und interessantes Wissen in großen Da-
tenmengen zu finden und in nachvollziehbarer Form dem Anwender bereitzustellen. Die
kursiv hervorgehobenen Adjektive sind mitunter sehr kontextabhängig und müssen daher
kurz erläutert werden.

in

out Wissen

Rohdaten

Zieldaten

Vorverarbeitet
Daten

Transformierte
Daten

Muster und
ModelleAuswahl

Vorver-
arbeitung

Transformation

Data-Mining

Interpretation /
Evaluation

Teilprozessschritte

Zwischenergebnisse

Bild 23: Der KDD-Prozess mit den einzelnen Prozessschritten und Zwischenergebnissen
nach [FPSS96]

Nichttrivial ist dieser Prozess weil beispielsweise passende Such- und Schlussfolgerungsal-
gorithmen angewandt werden müssen. Hierin liegt ein wichtiger Unterschied zu einfachen
Datenbankabfragen oder reinen statistischen Auswertungen, bei denen z. B. für einen be-
kannten Systemparameter lediglich der Mittelwert aus einer Versuchsreihe berechnet wird
[AN00]. Fayyad et al. beschreiben den KDD Prozess zudem als in hohem Maße inter-
disziplinär und nur bewältigbar, wenn neben Experten aus Informatik, Mathematik oder
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maschinellem Lernen auch die Domänenexperten miteinbezogen werden, die letztendlich
vom Wissen profitieren sollen. In einem industriellen Unternehmen können dies die Mitar-
beitenden aus dem Vertrieb, dem Controlling, der Fertigung oder der Produktentwicklung
sein. Ein KDD Prozessmanager kann in diesem Sinne der in Abschnitt 2.1.4 beschriebenen
Rolle des Wissensingenieur gleichgesetzt werden.

Das durch KDD erhobene Wissen umfasst meist implizite und bis dato unbekannte Zu-
sammenhänge. Die Ergebnisse des Data-Mining Schritts beinhalten in der Regel viele In-
formationen und Modelle, die miteinander verglichen werden müssen, um das plausibelste
zu finden. Außerdem ist ein Vergleich mit bereits bekanntem oder gespeichertem Wissen
notwendig. Was nützliches oder interessantes Wissen ausmacht, hängt von der jeweiligen
Anwendungsdomäne ab. Im betriebswirtschaftlichen Kontext wird Wissen über den Ge-
winn, die Kosten oder Kundenkennzahlen von Interesse sein. In der Produktionstechnik
werden die Zusammenhänge zwischen Einfluss- und Ergebnisgrößen eines Fertigungsprozes-
ses von Interesse sein. Ein Beispiel ist die Auswirkung der Menge an Heiz- und Kühlmitteln
sowie Sauerstoff auf den Herstellungsprozess von Rohstahl in einem Konverter [Sch14b].
Bei KDD Prozessen mit wissenschaftlichem Hintergrund kommen zumeist qualitative Kri-
terien wie Genauigkeit auf der einen und Allgemeingültigkeit auf der anderen Seite zum
Einsatz.

Die Sicherstellung der Nachvollziehbarkeit der Ergebnisse beeinflusst in hohem Maße de-
ren nachhaltige Berücksichtigung in der Anwendungsdomäne. Für den Benutzer müssen
Wert und Nutzen des KDD Projektes erkennbar sein. Die gefundenen Information sind
anschaulich sowie mit möglichst geringem Aufwand zugänglich zu machen.

2.4.2 Darstellung der KDD-Prozessschritte

Einarbeitung und Datenbeschaffung

Zu Beginn eines KDD Prozesses wird relevantes Hintergrundwissen über die Anwendungs-
domäne und ein Verständnis für die Problem-und Aufgabenstellung aufgebaut. Selten ge-
hören alle Teilnehmenden eines KDD Projektes dem gleichen Fachbereich an und Miss-
verständnissen oder Fehlinterpretationen muss vorgebeugt werden. Der Aufgabenstellung
entsprechend muss den insgesamt zur Verfügung stehenden Datenquellen ein Grunddaten-
satz entnommen werden. Hierzu werden die Daten abhängig von den durchzuführenden
Analysen ausgewählt. Dabei können Methoden des Online Analytical Processing (OLAP)
eingesetzt werden, um durch Variablen- oder Fallselektion einen problemadäquaten Da-
tensatz zu erzeugen [Pyl99; TSK10]. Zur Gewinnung analysierbarer Daten können unter-
schiedliche Quellen in den einzelnen Unternehmensbereichen in Betracht gezogen werden
[HKMW01]:

- Produktion (z. B. Maschinenparameter, Einsatzplanungsdaten, Auslastungen)
- Qualitätsmanagement (z. B. Protokolle, Kundenbeschwerden, Änderungsanträge)
- Vertrieb (z. B. Absatzzahlen, Kundenstammdaten, Marktentwicklungen)
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- Produktentwicklung (z. B. Experimente, PDM-Datensätze, Prüfstandsdaten, Echt-
zeitmessungen)

Bei vielen Daten-Mining Verfahren ist die Grundvoraussetzung, dass die zu analysieren-
den Daten in einer vollständig ausgefüllten Datentabelle, der sogenannten „Flat Table“
vorliegen. Die Spalten beschreiben üblicherweise die Eingangsgrößen (Attribute) und Aus-
gangsgrößen (Label) des Systems und die N Zeilen entsprechen den Ausprägungen zu
bestimmten Abtastzeiten oder vorher definierten Versuchsdurchführungen (Instanzen, Tu-
pel). Häufig liegen die Daten verteilt vor (z. B. Prozessdatenbank, PDM-System, lokale
Verzeichnisse) und müssen auf einer Plattform physisch zusammengeführt und in einer
kohärenten Flat Table zusammengefasst werden.

Datenvorbereitung

Die Daten müssen vorverarbeitet und bereinigt werden, um einen möglichst auswertungs-
fähigen Datensatz zu generieren. Zu den häufigsten Schritten gehören nach [TSK10] z. B.
die Eliminierung fehlender Werte und die Datenreduktion. Ein Großteil der Data-Mining
Algorithmen kann keine Fehlstellen verarbeiten, daher müssen diese Lücken gefüllt oder die
entsprechenden Tupel entfernt werden. Die Verwendung des Mittelwerts oder des Medians
aller bekannten Einträge des entsprechenden Attributs ist die schnellste Möglichkeit eine
Fehlstelle zu füllen, allerdings verzerrt dies die Daten. Empfohlen wird daher, den wahr-
scheinlichsten Wert anzunehmen. Dieser lässt sich zum Beispiel mit einem Bayes-Schätzer
(siehe [Koc00]) bewerkstelligen.

Die Datenreduktion hat das Ziel große Datensätze zu verkleinern, ohne dabei den Infor-
mationsgehalt zu reduzieren. Zu den effektivsten Methoden zählen die Dimensionsreduzie-
rung (z. B. Attributselektion, Hauptkomponentenanalyse) und die Datenkompression (z. B.
String-Kompression) [HKP12]. Die Datenkompression verfolgt das Ziel einen verkleinerten
Datensatz auf Basis der Originaldaten zu erzeugen. Sie wird im weiteren Verlauf nicht
näher betrachtet.

Bei der Dimensionsreduzierung wird die Anzahl A der „zufälligen“ Eingangsgrößen (At-
tribute) im Datensatz reduziert und nur die relevanten Attribute berücksichtigt. Zufällig
bedeutet hier, dass trotz variierender Werte kein signifikanter Einfluss auf die Zielgröße
(Label) zu erkennen ist. Die Attributselektion kann in Form einer schrittweisen Vorwärts-
oder Rückwärtsselektion erfolgen. Die Vorwärtsselektion beginnt mit einer leeren Attri-
butmenge und erhöht sie iterativ unter Beobachtung der Modellperformanz (s. Tabelle 4)
auf die ursprüngliche Menge A. Dann wird unter den restlichen Attributen wieder eines
ausgewählt und dem vorhandenen Set hinzugefügt. Dieser Vorgang wird so lange wieder-
holt, bis sich keine Verbesserung der Performanz mehr einstellt. Die Rückwärtsselektion
arbeitet nach dem gleichen Schema, beginnt jedoch mit der maximalen Attributmenge A

und reduziert diese dann iterativ. [NKNW96; LM98]

Die Hauptkomponentenanalyse nähert eine bestimmte Anzahl A von variierenden Attribu-
ten durch eine geringere Anzahl l möglichst aussagekräftiger Linearkombinationen dieser
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Attribute an. Anders als die Attributselektion, bei der mindestens eine Teilmenge der At-
tribute aus A im Datensatz D verbleibt, kombiniert die Hauptkomponentenanalyse die
„Essenz“ der Attribute durch die Bildung eines alternativen, kleineren Sets an Variablen.
Die Hauptkomponentenanalyse kann für geordnete und ungeordnete Attribute gleicherma-
ßen angewandt werden. Ebenso ist auch die Verarbeitung kleiner oder verzerrter Datensätze
möglich. [FHT96; HKP12]

Data-Mining

Der Schritt des Data-Minings umfasst bei Fayyad et al. die Festlegung der Data-Mining
Aufgabenstellung, die Auswahl eines entsprechenden Data-Mining Algorithmus und des-
sen Anwendung auf den vorbereiteten Datensatz [FPSS96]. Die Aufgabenstellung wird
im Wesentlichen von den Zielen des KDD Projektes beeinflusst. Es muss geklärt werden,
welchem Zweck die gefundenen Zusammenhänge dienen und in welcher Form sie repräsen-
tiert werden sollen. Abhängig davon ist eine Data-Mining Methode entsprechend Bild 24
auszuwählen.

Data-Mining 
Methoden

Unüberwachtes
Lernen

VisualisierungText
MiningClusteringAnomalie-

erkennung

Überwachtes 
Lernen

KlassifikationRegression

Prognose Beschreibung

Bild 24: Eingruppierung der Data-Mining Methoden nach [TSK10; FPSS96].

Ziel von Prognosemethoden ist die Vorhersage eines Ergebnisattributs basierend auf
den zu einem Eingabevektor zusammengefassten Werten von Eingangsattributen. Die da-
zu erzeugten Modelle werden gelernt bzw. trainiert, wobei der Trainingsprozess häufig
„überwacht“ wird. Dies verhindert eine Unter- bzw. Überanpassung des Modells. Bei den
beschreibenden Methoden ist die Identifikation von Mustern in den Daten das Ziel. So
können unbekannte Zusammenhänge wie Trends, Gruppierungen diskreter Werte (Clus-
ter), Korrelationen oder Anomalien aufgedeckt werden. Eine Überwachung des Prozesses
wie bei den Prognosemethoden findet nicht statt.

Die Regression hat das Ziel, ein Label mit numerischem, reellem Wert vorherzusagen.
Die Ergebnisse mehrerer Vorhersagen können entsprechend einer Ordinalskala in Relation
zueinander gebracht werden. Die Regression findet vielfach Anwendung in der Messdaten-
auswertung zur Interpolation zwischen Messpunkten oder zur Vorhersage einer Prozessgrö-
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ße in der chemischen Industrie. Eine gängige Unterscheidung betrifft zudem die Annahme
bezüglich eines linearen oder nicht-linearen Systemverhaltens. [CPSK07]

Bei einer Klassifikation ist das zu prognostizierende Label dadurch gekennzeichnet, dass
es in mindestens zwei diskreten Ausprägungen vorliegt. Die Ordnung der Klassen hat dabei
keine Bedeutung. Charakteristische Beispiele sind die Klassen sicher und risikoreich bei
Finanzgeschäften, der Einsatz eines der Medikamente A, B und C oder eben fertigungsge-
recht oder nicht fertigbar in der Produktionstechnik.

Bei den Algorithmen der Anomalieerkennung (auch Ausreißererkennung) ist das Ziel,
Datentupel zu erkennen, deren Charakteristiken signifikant vom Rest der Daten abwei-
chen. Die besondere Herausforderung besteht darin zu verhindern, dass normale Objekte
fälschlicherweise als „anormal“ gekennzeichnet werden. Eine hohe Aufdeckungsrate und
eine möglichst geringe Fehlalarmrate kennzeichnen gute Algorithmen. Typische Anwen-
dung sind das Aufdecken von Kreditkartenbetrug, Netzwerkinfiltrierungen oder andere
Fehlfunktionen in einem komplexen, schwer zu überwachenden System. [TSK10]

Beim Clustering wird im Gegensatz zu den bisher beschriebenen Methoden kein Klassen-
label zur Analyse herangezogen. Daher eignen sich Cluster-Algorithmen besonders dann,
wenn noch gar keine möglichen Klassen bekannt sind und der Anwender erste Hinwei-
se benötigt. Die Gruppierung erfolgt nach dem Prinzip der maximalen Gleichheit inner-
halb einer Gruppe und der minimalen Ähnlichkeit zwischen den Gruppen. Cluster können
beispielsweise im Marketing unterschiedliche Kundengruppen beschreiben, denen sich ein
Unternehmen zuvor noch nicht bewusst war. [HKP12]

Das Text-Mining, die Suche nach Mustern in Texten, wird der Vollständigkeit halber ge-
nannt, gilt streng genommen jedoch als eigenes, interdisziplinäres Forschungsfeld [FD95].
Die wichtigsten Schnittmengen besitzt es mit den Bereichen des Information Retrieval,
dem maschinellen Lernen, der Statistik und insbesondere der linguistischen Informatik.
Ein zentraler Unterschied zum Data-Mining besteht in der wesentlich geringeren Struktu-
rierung von Textdaten. Beim Text Mining werden daher die Primärdaten zunächst stärker
strukturiert, um sie mit Verfahren des Data-Mining zu erschließen [HNP05]. Text Mining
gilt als relativ junges Forschungsgebiet, sein aktueller Stand ist vergleichbar mit dem des
maschinellen Lernens in der Mitte der 1980er Jahre [WEH11].

Die verschiedenen Methoden der Visualisierung sollen dem Anwender helfen auch kom-
plexe Zusammenhänge in den Daten bildhaft darstellbar und für Berichte, Bewertungen
und Managementaufgaben nutzbar zu machen. Für die Abbildung multidimensionaler Da-
ten, wie sie in relationalen Datenbanken vorkommen, können pixelorientierte Techniken,
geometrische Projektionen, hierarchische oder graphenbasierte Methoden genutzt werden.
[TSK10; FGW02]

Ist die Data-Mining Aufgabenstellung geklärt und sind die entsprechenden Algorithmen
ausgewählt, werden diese auf die vorbereiteten Datensätze angewandt. Hierzu stehen dem
Anwender diverse kommerzielle und frei verfügbare Programme zur Verfügung, die teilweise
gängige Prozessmodelle bei der Modellierung berücksichtigen.
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Evaluation, Interpretation und Nutzung

Nach der Analyse des Datensatzes sind die gefundenen Zusammenhänge und Muster zu
evaluieren. Im Folgenden wird lediglich die Evaluation von Prognosemethoden für Regres-
sionsprobleme beschrieben, da unüberwachte Verfahren (s. Abb. 24) und Klassifikation in
dieser Arbeit keine Anwendung finden. Der Anwender benötigt mindestens ein Gütemaß,
um eine Aussage über die Qualität der gefundenen Prognosemodelle treffen zu können.
Hier muss unterschieden werden zwischen den Gütekriterien selbst und dem Vorgehen, wie
diese zu bestimmen sind.

Ein einfaches Vorgehen ist das sogenannte Holdout Verfahren [WEH11]. Hierbei wird der
gesamte zur Verfügung stehende Datensatz zufällig in einen Trainings- und einen Testda-
tensatz unterteilt (Sampling). Der Data-Mining Algorithmus analysiert nach dem Sampling
nur den Trainingsdatensatz und erzeugt auf diesem reduzierten Teildatensatz ein Progno-
semodell. Für die Datentupel im Testdatensatz werden mit Hilfe dieses Prognosemodells
die jeweiligen Testlabel berechnet und mit den realen Labelwerten im Testdatensatz vergli-
chen. Auf dieser Basis kommt ein pessimistischer Schätzwert der Modellperformanz (s. u.)
zustande. Das Verhältnis von Trainings- und Testdatensatz beträgt üblicherweise zwischen
2 : 1 und 3 : 1 [HKP12]. Zur Reduzierung der Varianz des Performanzkennwerts wird ei-
ne k-fache Wiederholung des Verfahrens mit anschließender Mittelwertbildung aus den
einzelnen Performanzen empfohlen (wiederholtes, zufälliges Sampling) [DGB07; Smy96].
Dieses Monte-Carlo Sampling eignet sich jedoch nur für hochdimensionale Datensätze mit
A ≥ 750 Attributen bzw. N ≥ 300 Datensätzen [MSP05].

Für kleinere Datensätze hat sich die Kreuzvalidierung als geeigneter erwiesen [Sto74]. Hier-
bei wird der Datensatz D zufällig in k annähernd gleich große Teildatensätze D1, D2, ... , Dk

aufgeteilt. Das Trainieren und Testen des Prognosemodells wird nun k mal wiederholt, wo-
bei in jeder Iteration i der Teildatensatz Di als Testdatensatz und die verbleibenden k − 1
Datensätze als Trainingsdatensatz genutzt werden. Aus den ermittelten k einzelnen Per-
formanzkennwerten wird anschließend ein Mittelwert berechnet. Anders als beim Holdout
oder beim Monte-Carlo Sampling ist jedes Tupel gleich oft (k − 1)-mal im Trainingsda-
tensatz und einmal im Testdatensatz vertreten. Bild 25 beschreibt das Vorgehen bei der
Kreuzvalidierung für k = 5. Ein Wert der sich als Kompromiss zwischen verlässlicher Per-
formanzberechnung und Rechendauer erwiesen hat ist k = 10 [BS92].

Spezielle Formen der Kreuzvalidierung sind die Leave-One-Out Kreuzvalidierung und das
0.632-Bootstrap-Verfahren. Bei der Leave-One-Out Kreuzvalidierung wird mit k = N jedes
Datentupel einmal als Testdatentupel verwendet, während der verbleibende Datensatz zum
Trainieren genutzt wird. Witten empfiehlt sie für kleine Datensätze [WEH11], denn bei
sehr großen Datensätzen verlängert sich die Rechenzeit enorm und der Performanzkennwert
unterliegt nach [Koh95] einer hohen Streuung. Das 0.632-Bootstrap-Verfahren eignet sich
ebenfalls für kleinere Datensätze und basiert auf dem Prinzip „Ziehen mit Zurücklegen“.
Für ein Datentupel, das dem Trainingsdatensatz bereits einmal zugeordnet wurde, besteht
anschließend die Chance, dass es ein weiteres Mal in den Trainingsdatensatz aufgenommen
wird. Die verbleibenden Datentupel werden dem Testdatensatz zugeordnet [HKP12]. Die
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Gesamter Datensatz 
(100%, Q0.0-1.0)

Trainingsdaten
(verbleibende 80%)

1. Testdatensatz 
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2. Testdatensatz 
(Q0.2-0.4) 3. Testdatensatz 

(Q0.4-0.6)

4. Testdatensatz 
(Q0.6-0.8)

5. Testdatensatz 
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Kreuzvalidierung

RMSE: Wurzel des mittleren Fehlerquadrats 
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: Mit dem Modell der Trainingsdaten vorhergesagter Wert der Zielgröße;

Qa-b: Quantil des Gesamtdatensatzes
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Trainingsdaten
Trainingsdaten

Trainingsdaten

Trainingsdaten

Bild 25: Das Verfahren der Kreuzvalidierung für k = 5.

Bezeichnung 0.632 leitet sich aus der Wahrscheinlichkeit 1
N

ab, dass ein Tupel ausgelost
bzw. 1 − 1

N
, dass es nicht gelost wird. Da N -mal aus dem N -großen Datensatz gezogen

wird, ergibt sich mit der Euler’schen Zahl e

P =
(

1 − 1
N

)N

≈ e−1 = 0, 368 (2.1)

die Wahrscheinlichkeit P, dass ein Tupel nicht dem Trainingsdatensatz zugeordnet wird,
bzw. 1 − 0, 368 = 0, 632, dass dieser Fall eintritt [B+03; Joh01].

Die Berechnung der Gütekriterien erfolgt bei jedem Vorgehen entsprechend den Formeln
aus Tabelle 4. Da es sich, bis auf den CoP, dabei um berechnete Abweichungen handelt,
liegt eine hohe Güte bei niedrigen Fehlerwerten vor. pi entspricht den auf Basis des je-
weiligen Trainingsdatensatzes vorhergesagten (engl. predicted) Werten des Labels, ai den
tatsächlichen (engl. actual) Labelwerten und a dem Mittelwert des Labels im Trainings-
datensatz. Es muss an dieser Stelle erwähnt werden, dass jedes Gütekriterium nur eine
Schätzung der Modellperformanz darstellt, da das finale Modell nach der Validierung mit
allen Datentupel trainiert wird.

Eine pauschale Empfehlung welches Kriterium bei der Interpretation verwendet werden
soll, ist in der Literatur nicht zu finden. Vielmehr wird auf die unterschiedlichen Eigen-
schaften und den notwendigen Vergleich mit dem Data-Mining Ziel hingewiesen [WEH11].
Dennoch lässt sich feststellen, dass quadratische Kriterien, sowie deren Wurzeln, große
Abweichungen stärker gewichten als absolute Kennzahlen. Einige Werte besitzt zudem die
gleiche Dimension wie das Label, was deren Interpretation erleichtert. Relative Kennzahlen
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Tabelle 4: Gütekriterien zur Beurteilung von Regressionsmethoden nach [WEH11].
Kriterium Berechnung (engl. Abkürzung)

Mittleres Fehlerquadrat MSE = 1
N

∑N
i=1(pi − ai)2

Wurzel des mittleren Fehlerquadrats RMSE =
√

1
N

∑N
i=1(pi − ai)2

Relativer quadratischer Fehler RelSE = ∑N
i=1

(pi−ai)2

(pi−a)2

Wurzel des rel. quadratischen Fehlers RRelSE =
√∑N

i=1
(pi−ai)2

(pi−a)2

Relativer absoluter Fehler RelAE = ∑N
i=1

|pi−ai|
|pi−a|

Mittlerer absoluter Fehler MAE = 1
N

∑N
i=1(|pi − ai|)

Coefficient of Prognosis
([MW08; MW11])

COP = 1 − SSP red
E

SST
= 1 −

∑N

i=1 (pi−ai)2∑N

i=1 (ai−a)2

sind in der Lage die subjektive, „gefühlte“ oder erwartetet Vorhersagbarkeit eines Lables
zu objektivieren. Angenommen das Label im Trainingsdatensatz zeigt eine geringe Streu-
ung, dann wird der Datenanalytiker eine gute Vorhersagbarkeit erwarten. Die tatsächliche
Performanz hängt jedoch auch sehr stark vom eingesetzten Algorithmus und der Daten-
qualität ab.

Zum Abschluss eines KDD Prozesses muss das erhobene Wissen in seiner jeweiligen Form
gesichert und zur Verfügung gestellt werden. Je nach Anforderung kann dies durch die
Erstellung und Verteilung eines einfachen Reports geschehen [She00]. Denkbar ist aber auch
die Skalierung eines prototypischen Data-Mining Prozesses und dessen Implementierung
im gesamten Unternehmen zur ständigen Überwachung der internen Datenbanken (z. B.
PDM- oder ERP-System) [Ott04].

2.5 Einsatz von KDD im Produktentstehungsprozess

Die KDD Technologie hat seit dem Beginn ihrer Entwicklung schrittweise unterschiedlichste
Anwendungsfelder erschlossen und zu signifikanten Verbesserungen beigetragen [CFPS99;
LK01; SBM+12]. Die folgenden Abschnitte stellen KDD-basierte Ansätze aus dem Stand
der Forschung entlang des Produktentstehungsprozesses vor.

2.5.1 KDD in der Anforderungsanalyse

Das Erarbeiten der Produktanforderungen stellt einen der ersten Schritte im Produkt-
entwicklungsprozess dar, wobei Anforderungen bei neuen Produkten durch Markt- und
Zielgruppenanalysen oder Interviews mit Kunden erhoben werden [FG13] können. Für
abgeleitete Versionen oder Varianten eines bestehenden Produktes kann es zielführend
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sein, Änderungsanträge (engl. Engineering Change Order, ECO) zu analysieren und die
Änderungsgründe in Form geänderter oder neuer Anforderungen zu erfassen [Lin09]. Die
manuelle Analyse von ECOs ist jedoch mit sehr hohem Zeit- und Kostenaufwand verbun-
den.

Dieser Problemstellung widmen sich die Arbeiten von Sharafi [Sha13] sowie Elezi et
al. [ESM+11]. In einer umfangreichen empirischen Studie werden 53.000 ECO analysiert
und hinsichtlich der unterschiedlichen Änderungsgründe kategorisiert. Die Analyse der
ECO Daten erfolgt mit Methoden des Text-Minings. Nach statistischen Untersuchungen
hinsichtlich Auswirkung, Anzahl und Länge der notwendigen Iterationen zur Erfüllung ei-
nes ECO wird der gesamte Datensatz, N≈ 1.244.010 Einträge für 53.000 ECOs, in das
Data-Mining Tool RapidminerTM geladen. Bild 26 zeigt den gesamten KDD-Prozess von
[ESM+11] inklusive des geschachtelten Text-Mining Schritts. Zu Beginn erfolgt eine Vorfil-
terung hinsichtlich der relevanten ECO die iterativ mehr als einmal durchgeführt werden
mussten. Zur Verarbeitung durch Text-Mining Algorithmen werden Dateneinträge, denen
der Typ nominal oder numerisch zugeordnet ist, in den Datentyp String umgewandelt. In
diesen Strings werden Umlaute bereinigt, Groß- in Kleinbuchstaben umgewandelt und der
Text für das eigentliche Text-Mining gebildet.

Datenimport ECO & WP
Datenfilterung

Datenvorverarbeitung

Ergebnisfilterung
Text Mining

Lorem ipsum d olor sit amet ,
consetetur sadipscin g elit r, se d
diam nonumy eirmod t empo r
invidunt ut labor e et dolor e
magna aliquy am e rat, sed dia m
voluptua. At ve ro eos e t
accusam et justo du o dolor es
et ea re bum. Stet clita kas d
gubergr en, no sea takimat a
sanctus es t Lo rem ipsum dolo r
sit amet. Lo rem ipsum dolor s it
amet, co nsetetu r sadipscin g
elitr, sed diam nonu my eirmo d
tempor invid unt ut la bore e t
dolore magna aliqu

u o dol
Stet clita kas

o sea takimat a
o rem ipsum dolo r
em ipsum dolor s it
tetu r sadipscin g

nonu my eirmo d
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Bild 26: Text-Mining Prozess zur Analyse von ECOs nach [ESM+11].

Eine Tokenisierung teilt den gesamten Text in sogenannte Tokens auf. Dabei handelt es
sich um Einheiten auf der Wortebene, in selten Fällen auch um Sätze oder Satzfragmente
[Nor12; MM04]. Auch wenn die Aufteilung in einzelne Wörter zunächst simpel erscheint, so
lassen sich aus der Häufigkeitsverteilung von Tokens bereits wertvolle Rückschlüsse auf die
Art des Textes ziehen [HNP05], bspw. wenn viele Fachbegriffe einer bestimmten Domäne
darin vorkommen. Von den gefundenen Tokens werden alle mit weniger als drei Buchsta-
ben entfernt, da sie als nicht ausschlaggebend für die Kategorisierung der ECOs angesehen
werden. Zudem wurde in einem vorherigen Schritt eine Liste an Wörtern erstellt, die für
die Analyse von Elezi et al. [ESM+11] nicht relevant sind. Ein Filter entfernt auch
diese Tokens. Ein weiterer wichtiger Schritt ist das sogenannte Stemming. Hierbei werden
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verschiedene morphologische Ausprägungen eines Tokens (Wort) auf ihren gemeinsamen
Wortstamm zurückgeführt [HK14]. Zum Beispiel wird aus den Token Häuser und Hauses
der Stamm Haus. Anschließend werden aus den Stems N-Gramme mit N = 2 gebildet,
wobei ein N-Gramm N aufeinanderfolgende Tokens zusammenfasst. Zu diesen 2-Grammen
existiert eine Liste an speziellen Kombinationen die auf die Zurückweisung einer erarbei-
teten Lösung und somit zu einer erneuten Iteration für einen ECO schließen lässt. Diese
Kombinationen werden jedoch nicht weiter behandelt, da sie vermutlich wichtiges Firmen-
wissen darstellen.

Wie bereits im Abschnitt 2.4.2 zu Text-Mining dargestellt, folgt dieser Textvorverarbei-
tung ein Data-Mining Schritt, um die relevanten Muster in den Daten zu finden. Elezi
et al. prüfen hierzu verschiedene Ansätze (z. B. Clusteranalysen, Ontologieerzeugung,
Schlüsselwortsuche), kommen jedoch zu dem Schluss, dass in ihrem Fall nur eine manuelle
Klassifizierung zu akzeptablen Ergebnissen führt. Abschließend werden sechs Kategorien
von Gründen identifiziert, die in der Vergangenheit zu iterativen Änderungen geführt ha-
ben. In einer weiteren Kategorie werden nicht näher begründete ECOs zusammengefasst
(s. Bild 27).
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Bild 27: Von Elezi et al. identifizierte Kategorien für die Zurückweisung von geänderten
Konzepten nach einem Änderungsantrag (ECO) [ESM+11].

2.5.2 Wissensbasierte Schichtentwicklung

Die Zuordnung von tribologischen Schichtsystemen in den Produktentstehungsprozess er-
scheint zunächst irreführend, galt die Tribologie lange als eigenständiges Forschungsgebiet
[Dow98]. Im Kontext einer modernen, interdisziplinären Ingenieurswissenschaft wird ihre
Bedeutung heute jedoch weiter gefasst [CGH+10]. Beschichtungen zur gezielten Einstel-
lung von Oberflächeneigenschaften und Produktverhalten werden heutzutage als „Maschi-
nenelemente“ ähnlich zu Schrauben, Bolzen oder Kupplungen angesehen [Het14; Tre09].
Aufgrund der komplexen Mechanismen und Wechselwirkungen im tribologischen System
ist die frühzeitige Analyse des Reibungs- und Verschleißverhaltens durch Experimente mit
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hohem Aufwand verbunden. Schulz verfolgt in seiner Arbeit einen wissensbasierten An-
satz zur Vorhersage des Reibverhaltens im tribologischen System Nocke/Tassenstößel und
erhebt das relevante Wissen durch Data-Mining aus tribologischen, physikalischen, mecha-
nischen und chemischen Analysedaten [Sch13].

In den Analysedaten werden die Attribute der Beschichtung, verwendeter Schmieröle so-
wie der Versuchsbedingungen am Tribometer erfasst. Insgesamt 52 Attribute, verteilt auf
497 Einzelmessungen werden in einer Datenmatrix kombiniert. In diesem Datensatz sind
in einem ersten Vorprozess fehlende Attributwerte durch den jeweiligen Attributmittel-
wert zu ersetzen, nominale Attribute in numerische umzuwandeln und alle Daten durch
z-Transformation zu normieren. Anschließend erfolgt eine Hauptkomponentenanalyse zur
Reduzierung der Attributanzahl.

In den Arbeiten von Schulz liegt eine Prognoseproblemstellung zur Vorhersage eines nu-
merischen Labels (Reibzahl μ) vor. Daher entscheidet er sich für den Einsatz sogenannter
künstlicher neuronaler Netze9 (KNN) [SBM+12]. Zunächst wird die Netztopologie, die An-
zahl der versteckten Schichten und der enthaltenen Neuronen, hinsichtlich eines niedrigen
und wenig streuenden Vorhersagefehlers optimiert. In dieser Topologie wird der Informati-
onsgehalt der Daten durch eine integrierte Gitteroptimierung gleichmäßig über das KNN
verteilt. Die Gitteroptimierung variiert die für das Training des KNN relevanten Parame-
ter wie Lernrate, Trainingszyklen, Momentum und Decay in vorher festgelegten Bereichen
und wählt die Parameterkombination aus, die zum geringsten Vorhersagefehler führt. Die
von Schulz erzielten Ergebnisse sind zufriedenstellend hinsichtlich der erreichten Vorher-
sagefehler (s. Tabelle 5).
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Bild 28: Darstellung eines künstlichen neuronalen Netzes wie es in [Sch13] zum Einsatz
kommt.

Ein kurzer Vergleich von KNN mit anderen Data-Mining Algorithmen unterstützt die Ar-
gumentation von Schulz, dass ein KNN für seine Problemstellung die passendste Model-
lierungsmethode darstellt (s. Bild 29). Dies ist für das von ihm skizzierte praxisnahe Umfeld
eines Automobilzulieferers eine pragmatische Annahme. Eine detaillierte, statistische Un-
9 Nähere Informationen zu KNN und deren Funktionsweise können bspw. [KBK+13] entnommen werden.
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Tabelle 5: Ergebnisse von Schulz [Sch13].
Validierungsmethode RMSE abs. Fehler rel. Fehler Korr.-koeff.
Kreuzvalidierung mit
Originaldatensatz
(k = 10)

0, 017 ± 0, 003 0, 014 ± 0, 003 16, 33% ± 3, 41% 0, 734 ± 0, 133

Hold-Out Verfahren mit
Originaldatensatz 0, 015 ± 0, 000 0, 012 ± 0, 010 17, 11% ± ±25, 63% 0, 784 ± 0, 000

Hold-Out Verfahren mit
neuen Daten 0, 012 ± 0, 000 0, 01 ± 0, 006 11, 96% ± 6, 75% 0, 9 ± 0, 00

tersuchung der Vorhersagegüten verschiedener Modelle würde hier Klarheit schaffen, wird
jedoch nicht durchgeführt.
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Bild 29: Per Kreuzvalidierung ermittelte Fehlerkennwerte für verschiedene Regressionsme-
thoden in [Sch13]

2.5.3 Stochastische Analysen in der Feinschneid-Methodenplanung

Hitz identifiziert in seiner Arbeit Herausforderungen, die sich insbesondere durch die Pro-
zessintegration von Feinschneid- und Umformoperationen auf der einen und der mangeln-
den Rechnerunterstützung beim Prozessbeginn der Methodenplanung auf der anderen Seite
ergeben [HMH10]. Der Methodenplaner (Prozessingenieur) muss sich zum großen Teil auf
heuristisches Erfahrungswissen, ergänzt um formales Wissen aus Fachbüchern oder Über-
schlagsrechnungen, verlassen. Das Ziel, eine fehlerfreie und iterationsarme Auslegung von
Werkzeugen zur Realisierung metallischer Werkstücke zu erreichen, wird somit aufgrund
der komplexer werdenden Teilegeometrie zunehmend schwieriger.

Das von Hitz entwickelte Planungssystem unterstützt den Methodenplaner bei der Ausle-
gung seiner Fertigungsprozesse. Dazu nutzt es Kriging Modelle, die in der Lage sind virtu-
elles Fertigungswissen zu konservieren [Hit12] und sich in einem Vergleich mit anderen Re-
gressionsmethoden (Lineare Regression, Response Surface Methode, künstliche neuronale
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Netzwerke) als vorteilhafter erwiesen haben. Kriging stammt ursprünglich aus der Geo-
statistik und ermöglicht für Bereiche ohne Stichprobe eine Vorhersage der Zielgröße durch
Interpolation umliegender Messwerte [OW15]. Hitz wählt den Ansatz eines Expertensys-
tems und erweitert das enthaltene, formalisierte Expertenwissen durch virtuelles Wissen,
wodurch ein hybrides Planungssystem zur Auslegung von Feinschneid-Umformprozessen
entsteht (s. Bild 30).

Experte
FEM-Simulation

FEM-Analyse über
gesamten Designraum

Entwurfsregeln,
Materialdatenbank

Prozessbedingungen

Wissensbank

Experte
Methodenplanung

Wissensingenieur

Wissenserwerb

Expertensystem

Entwurf 
des

Methodenplans

Folgerungssystem

Virtuelles Wissen,
Prüfung der Umformbarkeit,
Optimale Prozessparameter

Regressionsmodelle
Methodenplan

anpassen

Benutzer

Ein-Ausgabe System,
Methodenplan,

Resultate FEM Analyse

Benutzeroberfläche

Bild 30: Konzept des hybriden Planungssystems METAPlaner nach [Hit12].

Der Aufbau des Planungssystem METAPlaner entspricht einem dreistufigen Prozess aus
den Teilschritten wissensbasierte Auslegung, virtueller Tryout und Regressionsmodellie-
rung. Während der wissensbasierten Auslegung erfasst und strukturiert ein Wissensin-
genieur das Expertenwissen des Unternehmens über Formfeatures, die den verschiedenen
Feinschneid-Umformprozessen zugeordnet sind. Ziel ist die Konservierung von empirischem
und analytischem Wissen, um nachfolgende Methodenplanungen zu unterstützen. Die Me-
thodenpläne können als Zeichnungen oder mittels gekoppelter CAD-Modelle dem Benutzer
bereitgestellt werden. Im virtuellen Tryout erfolgt die Untersuchung des Systemverhaltens
mittels rechnerbasierter Werkzeuge. Der FEM-Experte erstellt, unter Verwendung der In-
formationen aus der wissensbasierten Auslegung, ein FEM-Modell des Prozesses und ana-
lysiert das System innerhalb des vom Methodenplaner definierten Wertebereichs. In der
Regressionsmodellierung werden die Ergebnisse des virtuellen Tryouts in den Krigingmo-
dellen abgelegt. Sie bilden einen Wissensspeicher, der es erlaubt, Voraussagen über neue
Designs zu treffen, die nicht im virtuellen Tryout oder der wissensbasierten Auslegung
untersucht wurden. [Hit12]
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3 Die Blechmassivumformung als
Anwendungskontext für das
selbstlernende Assistenzsystem

Das folgende Kapitel hat das Ziel, dem Leser die Blechmassivumformung als Anwen-
dungskontext des selbstlernenden Assistenzsystems näher zu bringen. Dazu erfolgt eine
Betrachtung sowohl aus Sicht der Fertigungstechnik als auch der Konstruktion. Die Syn-
these aus beiden Blickwinkeln bildet die Katalogisierung von Nebenformelementen für den
Prozess der Blechmassivumformung. Dieser Katalog trägt zum einen zur Systematisierung
der Blechmassivumformung bei und unterstützt zum anderen bei der Abschätzung ihres
Potentials zur Substituierung oder Erweiterung bestehender Verfahren.

3.1 Die Blechmassivumformung aus Sicht der
Fertigungstechnologie

Bis vor wenigen Jahren waren Leichtbaubemühungen durch den Einsatz sogenannter
Leichtbauwerkstoffe (z. B. Legierungen auf Aluminium- oder Magnesiumbasis, faserver-
stärkte Kunststoffe) gekennzeichnet [HKS02; Kle99]. Die aus diesen Materialien bestehen-
den Baugruppen mussten häufig in Verbundbauweise entwickelt, aufwändig gefertigt und
montiert werden [Pow00]. Mit Blick auf die Automobilindustrie standen vornehmlich die
Karosserie, Komponenten des Antriebstrangs oder der Lenkung im Fokus [Mal10; CL01].
Heutige Leichtbaubemühungen verfolgen nun mitunter das Ziel, durch den Einsatz höher-
fester und ultrahochfester Stähle die Größe und damit das Gewicht eines einzelnen Werk-
stückes bzw. einer Komponentengruppe zu reduzieren [Sie14; Fri13]. Neu in den Fokus ge-
rückt sind außerdem Bereiche wie Sitzgestelle, Türmodule oder auch Schließeinheiten sowie
darin verbaute Mitnehmer, Rastelemente oder Anschläge. Zudem geht der Trend dahin,
die Bauteilanzahl bei gleichbleibender Systemfunktion zu verringern, was die Entwicklung
und Fertigung funktionsintegrierter Teile erfordert [DL09]. Es kann daher vorkommen, dass
Einzelteile im Zuge der Funktionsintegration eine Gewichtszunahme erfahren, während das
Gesamtprodukt bei diesem Systemleichtbau an Gewicht verliert.

Die hohen Investitionskosten für Umformmaschinen und -werkzeuge rentieren sich im All-
gemeinen nur für sehr große Stückzahlen [Kug09]. Wenn diese Forderung erfüllt ist, bietet
die Umformtechnik diverse Vorteile [Lan84; Kug09]:
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- effiziente Werkstoffausnutzung im Vergleich zu spanenden Verfahren
- hohe Mengenleistungen, hoher Automatisierungsgrad bei kurzen Stückzeiten
- hohe Maß- und Formgenauigkeit innerhalb bestimmter Toleranzen
- beanspruchungsgerechte Einstellung der Bauteileigenschaften

Allerdings stoßen sowohl die Massiv- als auch die Blechumformung an ihre jeweiligen
Verfahrensgrenzen, wenn Präzisionsteile wie in Bild 31 gefertigt werden sollen. Massiv-
umformverfahren zeichnen sich bei präzisen und nacharbeitsfreien Fließpressteilen durch
geschlossene Gesenke (Gratfreiheit) aus. Dadurch wird jedoch der Werkstofffluss aus den
Blechbereichen, die die Formelemente umgeben, drastisch reduziert und eine ausreichende
Formfüllung ist nicht mehr gewährleistet. Zudem wirken in der Umformzone, die relativ
zum Werkzeug einen kleinen Bereich einnimmt, für die Blechumformung untypisch hohe
Beanspruchungen auf Werkstück und Werkzeug. In der Werkzeugauslegung eingeplante
Beanspruchungsreserven werden durch Schwankungen des Halbzeugs (z. B. Anisotropie,
Chargenschwankungen der Blechdicke) sehr schnell erschöpft und das Werkzeug versagt
bzw. das Werkstück erreicht nicht die geforderte Qualität.

Die Erforschung der Blechmassivumformung, die durch den Sonderforschungsbereich/
Transregio 73 (SFB/TR 73) vorangetrieben wird, ist somit die Konsequenz aus moder-
nen Leichtbaubestrebungen und den Grenzen der etablierten Umformverfahren.

Bildquelle: LFT, Uni Erlangen

Bild 31: Blechmassivumgeformte Bauteile mit Nebenformelementen.

Unter Blechmassivumformung wird die Anwendung von Verfahren der Massivumformung
an Blechhalbzeugen mit einer Dicke zwischen 1 bis 5 mm verstanden [GSH+16]. Ziel ist die
Ausformung geometrisch komplexer Nebenformelemente (siehe Abschnitt 3.3). Während
der Umformung treten charakteristische, komplexe Wechselwirkungen zwischen den lokal
eng begrenzten Umformzonen mit hohen und niedrigen 2- und 3-achsigen Spannungs- und
Formänderungszuständen auf [MAB+12]. Zur Erhöhung der Prozessqualität werden häufig
prozessangepasste Halbzeuge verwendet, deren Herstellung ebenfalls durch Prozesse der
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Blechmassivumformung erfolgen kann [PO13]. Bild 32 fasst die Prozessgruppen innerhalb
der Blechmassivumformung zusammen und stellt wichtige Prozesseigenschaften dar.
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Bild 32: Prozessgruppen innerhalb der Blechmassivumformung nach [MAB+12]

Der Einsatz der Blechmassivumformung geht mit der Erreichung unterschiedlicher Zie-
le einher. Aus Sicht Fertigungstechnologen sind hier zunächst verkürzte, aber gleichzeitig
robuste und zuverlässige Prozessketten zu sehen. Mit Fertigungsprozessen des Stands der
Technik wären typische blechmassivumgeformte Bauteile (s. Bild 31) nur in einer aufwändi-
gen Reihe von Fertigungs- und Fügeoperationen (z. B. Laserstralschweißen oder -löten) her-
stellbar. Diese bringen jedoch Nachteile wie thermischen Verzug und nicht-deterministische
Störgrößen (z. B. Temperaturschwankungen, Anfälligkeit für Bodenerschütterungen) mit
sich [Nee15]. Zudem werden Werkstoffe verarbeitet, die die Anforderungen des System-
leichtbaus nur bedingt erfüllen, beispielsweise Bronze- oder Messingsonderlegierungen
[Sch02; Kir07]. Blechmassivumgeformte Bauteile weisen hingegen keine Schweißnähte und
Wärmeeinflusszonen auf, was deren Zuverlässigkeit im Betrieb deutlich erhöht. Da sich
die Blechmassivumformung gegen etablierte Verfahren behaupten muss, ist die Verbesse-
rung der Wirtschaftlichkeit ein weiteres Ziel. Dieses wird zum einen dadurch erreicht, dass
Bauteile einbaufertig hergestellt werden. Einbaufertig bedeutet, dass lediglich Maßnahmen
zur Entfernung von Fertigungshilfsmitteln (z. B. Umformöl) dem Umformprozess folgen
dürfen [Raa06]. Zum anderen müssen die Auslegung und Fertigung der Blechmassivum-
formwerkzeuge selbst erforscht werden. Hierzu zählen auch Oberflächenbehandlungen wie
das Aufbringen von bionischen Mikrostrukturen [Her13] oder tribologischer Dünnschichten
[Het14] sowie das Behandeln durch Schleifen [BHV+15] oder Plasmanitrieren [LBH+12].

Diese und weitere Ziele werden durch das Lösen von Problemstellungen hinsichtlich un-
terschiedlicher, teils in Wechselwirkung stehender Aspekte erreicht. In den letzten Jahren
gehörten hierzu der Materialfluss und seine Steuerung während der Umformung, die Ein-
stellung der Reibung zwischen Werkzeug und Werkstück, die Minimierung von Werkzeug-
belastungen und die numerische Modellierung des gesamten Prozesses auf unterschiedlichen
Skalen. [GSH+16]

Jede gelöste Problemstellung trägt zur Qualifizierung der Blechmassivumformung bei, er-
höht das Spektrum an realisierbaren Nebenformelementen und führt vor allem zu neuen
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Erkenntnissen. Dieser Erkenntnis- und Wissensgewinn ist durch eine hohe Dynamik ge-
kennzeichnet, zu der auch ein umfangreicher Rechnereinsatz beiträgt. Dadurch wird neues
Wissen innerhalb kurzer Zeit – in Relation zur Entwicklungshistorie der Umformtechnik –
generiert. Im Folgenden beschreibt ein Beispiel aus dem SFB/TR 73 , wie unterschiedliche
Ansätze zur Optimierung des Materialflusses und der Formfüllung beitragen.

In [MKS+10] wird festgestellt, dass die Reibverhältnisse bei einem Blechmassivumformpro-
zess einen hohen Einfluss auf die Formfüllung haben. Durch FEM-basierte Umformsimula-
tionen können Merklein et al. zeigen, dass die Formfüllung, beim Quer-Fließpressen der
Verzahnung aus Bild 31 (links unten), verbessert werden kann, wenn der Reibfaktor von
m = 0, 12 auf m = 0, 3 angehoben wird. Die mögliche experimentelle Umsetzung dieses
Ansatzes zeigen wenig später Vierzigmann et al. [VKME12], indem sie die Oberflächen-
rauheit und damit den Reibfaktor von Blechhalbzeugen lokal durch Sandstrahlen erhöhen.
Anhand eines Zapfenpressversuchs können sie die prinzipielle Wirksamkeit dieser Maß-
nahme zur Steuerung des Materialflusses nachweisen. Dem steht allerdings die notwendige
Dauer des Sandstrahlens gegenüber, die mit 25 Sekunden pro Halbzeug sehr lang gewählt
werden muss und dem Ziel der Wirtschaftlichkeit nicht dienlich ist. Einen anderen Ansatz
verfolgt Hense indem er die tribologischen Eigenschaften der Werkzeugoberfläche durch
Fräsen mit induzierten Werkzeugschwingungen lokal einstellt [Hen13]. Die Schwingungen
des Fräswerkzeugs erzeugen Strukturen auf der Werkzeugoberfläche, die während der Um-
formung aufgrund hoher Kontaktnormalspannungen10 teilweise plastisch geglättet werden.
Durch die Glättung können sich Vertiefungen bilden, in denen sich Schmierstoff zur Rei-
bungsreduzierung ansammelt. Über den Anteil dieser geschlossenen Schmiertaschen lassen
sich die Reibverhältnisse in der Wirkfuge Werkzeug-Werkstück beeinflussen [BHH+11]. Ne-
ben der Erhöhung des Reibfaktors ist auch die Verwendung prozessangepaster Halbzeuge
zielführend wie Gröbel et al. zeigen. Durch solche Tailored Blanks, die im Rondenau-
ßenbereich bspw. durch Stauchen, Taumeln oder flexibles Walzen [Ope13] aufgedickt wer-
den können, lässt sich die Formfüllung und damit die Produktqualität ebenfalls steigern
[GHEM15].

3.2 Bedeutung für die Produktentwicklung

Die Produktentwicklung kann von der Flexibilität und Wirtschaftlichkeit der Blechmassi-
vumfomung profitieren, um damit den Forderungen nach kürzeren Produkteinführungszei-
ten und hoher Variantenvielfalt bei geringer interner Varianz entgegenzutreten. Die neuar-
tigen Gestaltungsmöglichkeiten der Blechmassivumformung können zudem die Umsetzung
der aktuellen Leichtbaubestrebungen (s. Abschnitt 3.1) in der Produktentwicklung unter-
stützen. Bild 33 zeigt den Demonstrator des SFB/TR 73 mit Detailansichten typischer
Nebenformelemente.

Damit die time-to-market verkürzt werden kann, muss u. a. auch die Zahl der Ite-
rationen im gesamten Produktentwicklungsprozess auf ein Minimum reduziert werden
10 Nach [LGE+15] werden bis zu 3.000 MPa erreicht.
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Bild 33: Demonstrator des SFB/TR 73 mit vergrößert dargestellten Nebenformelementen.

[Her10; JEWC03]. Mit Blick auf den Aspekt des Design for Manufacture werden viele
Iterationen durch nicht-fertigungsgerechte Bauteilentwürfe verursacht, die von der Ferti-
gungsprozessentwicklung aufgrund zu teurer oder nicht fertigbarer Formfeatures zurück-
gewiesen werden [FG13]. Gerade die Prozesse der Blechmassivumformung zeigen jedoch
eine hohe Sensitivität gegenüber kleinen Geometrieänderungen (z. B. Blechdicke, Neben-
formelementvolumen, Höhe der Verzahnung oben rechts in Abb. 31) [GSH+16; SM11]. Die
zeitnahe Ableitung unterschiedlicher Bauteilentwürfe zur Erfüllung der vom Markt gefor-
derten Variantenvielfalt wird somit erschwert. Zwar kann die Prozessauslegung und die
damit verbundene Design for Manufacture Analyse durch den Einsatz von Umformsimula-
tionswerkzeugen (z. B. Simufact Forming R©) unterstützt werden11, doch dieses mehrmalige
Durchlaufen des CAE-Prozesses, bestehend aus Preprocessing, Solving und Postprocessing
([MG15]), wirkt dem Ziel der Iterationsminimierung entgegen.

Die Ingenieure der Konstruktionsabteilung sind darauf angewiesen, frühzeitig konstrukti-
onsrelevantes Fertigungswissen zur Verfügung zu haben (s. Bild 2, S. 2), das eine schnelle
Design for Manufacture Analyse von Bauteilentwürfen ermöglicht, „up-to-date“ in Bezug
auf die bei der Erforschung der Blechmassivumformung gefundenen Erkenntnisse ist und
die komplexen Wechselwirkungen (s. Abschnitt 3.1) der Blechmassivumformprozesse be-
rücksichtigt.

Aus Gesprächen mit Fertigungsexperten innerhalb des SFB/TR 73 konnte der Schluss ge-
zogen werden, dass allein auf Basis der Geometrie eines blechmassivumgeformten Bau-

11 Zur FE-Modellierung von Blechmassivumformprozessen siehe u. a. [MKS+10; MAB+12; SLV+11].
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teils keine allgemeingültigen Aussagen über dessen Fertigbarkeit getroffen werden können.
Hierin liegt ein wesentlicher Unterschied zu geometriebasierten Analysen bei etablierten
Fertigungsverfahren (s. Abschnitt 2.3.2). Bei der Design for Manufacture Analyse eines
blechmassivumgeformten Bauteils muss die Ausprägung unterschiedlicher, teilweise wech-
selwirkender Parameter geprüft werden, bevor eine fundierte Aussage zur Fertigungsge-
rechtheit getroffen werden kann. Das Ergebnis eines Blechmassivumformprozesses gilt als
akzeptabel, wenn alle für diesen Prozess relevanten Parameter innerhalb zuvor festgelegter
Ober- und/oder Untergrenzen liegen. Welche Parameter als relevant eingestuft werden,
muss in interdisziplinären Gesprächen geklärt und protokolliert werden. Die folgende Liste
beschreibt typische Produkt- und Prozessparameter die in Gesprächen mit Fertigungsex-
perten erhoben wurden:

- vertikale Stößelkraft Fu [kN]: Eine ausreichende (vertikale) Umformkraft ist notwendig,
um im Material die erwünschten Spannungs- und Formänderungszustände zu erzeugen.
In Abhängigkeit von der eingesetzten Umformmaschine existiert jedoch eine technologi-
sche Obergrenze Fu,max.

- horizontale Stößelkraft Fh [kN]: Unsymmetrische Bauteile induzieren seitliche Kräfte auf
den Stößel. Diese verursachen eine Verlagerung des Werkzeugs und damit unzulässige
Form- und Maßabweichungen. Eine maximale horizontale Stößelkraft Fh,max darf nicht
überschritten werden [SKH+13].

- Werkzeugbeanspruchung σv [MPa]: Die Blechmassivumformung zeichnet sich u. a. durch
lokal eng begrenzte aber sehr hohe Werkzeugbeanspruchungen aus. Für manche Blech-
massivumformprozesse (bspw. inkrementelle Umformung) ist dies der limitierende Pro-
zessparameter [GSH+16].

- Umformgrad ϕ [–]: Die dimensionslose, auch als logarithmische Formänderung bezeich-
nete, Kenngröße beschreibt die bleibende geometrische Formveränderung eines Werk-
stücks. Ist der Umformgrad an einer Stelle des Bauteils größer als der Grenzumformgrad
ϕvG des Werkstoffs, kommt es an dieser Stelle zu Werkstoffabrissen, Auffaltungen oder
zum Bruch des Werkstücks.

- Blechausdünnung tΔ,max [mm, %]: Unter der Annahme der Volumenkonstanz führt das
Fließen des Werkstoffs während der Umformung zu lokalen Blechausdünnungen wie in
[SM11; SLV+11] für das Tiefziehen gezeigt. Eine maximale Blechausdünnung tΔ,max darf
nicht überschritten werden, sonst kann das Bauteil im Betrieb versagen.

- Blechaufdickung tΔ,min [mm, %]: Im Falle der prozessangepassten Halbzeuge ist wieder-
um eine Blechaufdickung wünschenswert, um für weitere Umformschritte ausreichend
Werkstoff innerhalb der Umformzone bereitstellen zu können. Ein Mindestmaß tΔ,min

an Blechdickenerhöhung muss überschritten werden.

- Kontaktverhältnis c [%]: Das Kontaktverhältnis zwischen Werkzeugkavität und Werk-
stück nach der Umformung gibt Auskunft über die erreichte Ausformung des Formele-
ments. Das Nebenformelement wurde vollständig ausgefüllt, wenn das Kontaktverhältnis
100 % beträgt.
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Zu beachten ist, dass diese Liste zum einen keinen Anspruch auf Vollständigkeit erhebt,
denn neue blechmassivumgeformte Bauteile erfordern ggf. die Berücksichtigung anderer
Parameter. Zum anderen können an dieser Stelle keine allgemeingültigen Grenzwerte de-
finiert werden. Manche Parameter sind maschinen- (z. B. maximale Umformkraft Fumax),
andere material- (z. B. maximaler Umformgrad ϕmax) oder werkzeugabhängig (z. B. maxi-
male Spannung im Werkzeug σv) [GSH+16; MTB+11]. Die Fertigbarkeit des tiefgezogenen
Napfs mit offenen Mitnehmern (Abb. 31 rechts unten) wird beispielsweise durch Betrach-
tung von Fumax , ϕmax und tΔmax beurteilt. Hingegen werden bei der Ronde mit der fließge-
pressten Außenverzahnung (Abb. 31 links unten) die Ausprägungen von Fumax , ϕmax und
cmax betrachtet. [BSSW15]

3.3 Klassifikation von Nebenformelementen

Die Blechmassivumformung zielt auf die Herstellung von komplexen Funktionsbauteilen
mit Nebenformelementen mittels (kalt-)umformender Verfahren ab [MH16]. Prinzipiell las-
sen sich derartige Bauteile mit existierenden Fertigungsverfahren herstellen, jedoch nur in
aufwendigen, teils unwirtschaftlichen Folgen von umformenden und spanenden Verfahren
sowie Fügeoperationen. Damit eine Etablierung der Blechmassivumformung unterstützt
werden kann, muss es möglich sein, ihr Potential zur Substituierung oder sinnvollen Er-
gänzung bestehender Verfahren qualitativ abzuschätzen. Zu diesem Zweck wurde ein Ord-
nungssystem (Katalog) mit Klassen entwickelt, mit dem Nebenformelemente von Bauteilen
hinsichtlich ihrer geometrischen Relation zum Hauptformelement klassifiziert werden kön-
nen. Von dieser Klassifizierung hängen die einzusetzenden und ggf. zu kombinierenden
Blechmassivumformverfahren (s. Bild 32) ab.

Bild 34: Ein Synchronring eines Fahrzeuggetriebes mit der Sperrverzahnung als exempla-
risches Nebenformelement.

Die Unterscheidung von Hauptformelement und Nebenformelement hat v. a. in der Fer-
tigungstechnik praktische Bedeutung, da die Fertigung von Nebenformelementen oft zu-
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sätzliche Fertigungsschritte, teils auf weiteren Maschinen mit entsprechenden Umspann-
maßnahmen erfordert. In der Literatur sind hingegen wenig eindeutigen Unterscheidungen
von Haupt- und Nebenformelementen verfügbar. Eine Möglichkeit ist das Maß, in welchem
ein Geometrieelement das Aussehen des Werkstücks beeinflusst. Ist zu erkennen, dass sich
das Element mit sein Abmaßen stark von allen anderen abhebt und charakterisiert es
die Gestalt des Bauteils, ist es als Hauptformelement einzuordnen. Nebenformelemente
hingegen sind von geringer Bedeutung für das Aussehen und bewirken lediglich kleinere
Veränderungen an der Grobgestalt [HKR70; Gre95]. Das wichtigste Merkmal für ein Neben-
formelement ist, dass es als Hauptfunktionsträger angesehen werden kann. Das bedeutet,
dass mindestens eine der Berandungsflächen eines Nebenformelements als die Wirkfläche
bezeichnet werden kann, an der die Erfüllung einer Hauptfunktionen eines Bauteils unter
Anwendung eines physikalischen Effekts erzwungen wird [FG13]. Insofern können die Be-
zeichnungen komplexes Nebenformelement und komplexes Funktionsbauteil im Rahmen
dieser Arbeit synonym verwendet werden. Im Falle des in Bild 34 gezeigten Synchronrings
kann als Beispiel die Funktion „Verhindern axialen Durchschaltens“ genannt werden. Bei
der Gangsynchronisation darf die Schiebemuffe erst in den Kupplungskörper des Gangrads
durchschalten, wenn die Drehzahlen beider Körper synchronisiert sind [Kir07]. Vorher ver-
hindern die in axiale Richtung orientierten Dachschrägen der Sperrverzahnung durch einen
Reib- und Formschluss vorzeitiges, axiales Durchschalten der Schiebemuffe.

Bei der Entwicklung des Nebenformelementekatalogs wurden unterschiedliche Anforderun-
gen berücksichtigt. Hinsichtlich der Repräsentation ist die Genauigkeit und der Umfang
des Ordnungssystems am Einsatzzweck zu orientieren. Die Klasseneinteilungen verfügbarer
Ordnungssysteme, wie bspw. von Opitz [Opi66] oder Zimmermann [Zim67], sind teilwei-
se über mehrere Tabellen verteilt, was den Zugriff auf die jeweiligen Systeme erschwert.
Das Ordnungssystem ist derart zu gestalten, dass Bauteile unabhängig vom aktuellen Her-
stellungsprozess und ihrer Funktion klassiert werden können. Zur Beschreibung der For-
melementegeometrien müssen Begriffe verwendet werden, die von Fertigungsingenieuren
und Produktentwicklern gleich interpretiert werden. Dabei und bei der Umsetzung des
Katalogs ist auf eine ausreichende Praxistauglichkeit zu achten.

Die Klassifikation von Nebenformelementen der Blechmassivumformung besteht aus den
Schritten (I) Entwicklung der Klassifizierung und (II) Klassierung der Formelemente. Zu
Beginn werden zur Unterscheidung der Nebenformelemente passende Klassen mit den be-
schreibenden sog. Klassemen12 entworfen. Die Einteilung nach [Zim67] in Positiv- und
Negativformen sowie Öffnungen wird hierfür angepasst und erweitert. Tabelle 6 fasst die
definierten Formelemente mit Beispielen zusammen.

Jede Klasse wird durch weitere Merkmale in Untergruppen unterteilt, mit denen festgelegt
wird, auf welcher Seite des Hauptformelements das Nebenformelement positioniert wird,
zu welcher Grundfläche es referenziert wird und in welcher Größenordnung der Querschnitt
des Nebenformelements im Vergleich zum Blechhalbzeug liegt. Innerhalb der oben genann-
ten Klassen wird bei der Positionierung entsprechend zwischen Nebenformelementen an der

12 Ein Klassem ist ein semantisches Merkmal, mit dem eine Gruppe von Objekten erfasst werden kann.
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Tabelle 6: Übersicht der Klassen für Nebenformelemente der Blechmassivumformung.

Innen- und an der Außenseite des Hauptformelements unterschieden. Als Positionierungs-
referenz kommt die Stirnfläche (axiale Ausrichtung) oder die Ringfläche (radiale Ausrich-
tung) des Hauptformelements in Frage. Dieses Merkmal ist von hoher Relevanz, da es die
Auswahl einsetzbarer Blechmassivumformprozesse wesentlich beeinflusst. Die Festlegung
des Merkmals „Querschnitt“ ist v. a. für die Formelemente der Klasse Erhebung relevant.
Dadurch kann definiert werden, ob ein Nebenformelement in seiner Größe der Dicke des
Blechhalbzeugs entspricht oder nicht. Für Funktionselemente, deren Querschnitt von der
ursprünglichen Dicke abweicht, ist ein vollständiges Fließen des Materials unter Einbezie-
hung des umgebenden Bereichs erforderlich. Ist das Nebenformelement bspw. größer, kann
der Fertigungsexperte daraus ableiten, dass der Einsatz von prozessangepassten Blechhalb-
zeugen mit lokal erhöhter Blechdicke notwendig sein wird. Die Vergabe der Merkmale ist
im Einzelfall zu prüfen. Für das Formelement Öffnung ist die Unterscheidung zwischen
Innen- oder Außenseite aus konstruktionstechnischer Sicht zum Beispiel nicht zwingend
notwendig. Dennoch übt dieses Formelement einen Einfluss auf den Fertigungsprozess aus.
Denn je nach zu integrierendem Verfahren (z. B. Scherschneiden, Laserstrahlschneiden),
sind unterschiedliche Anforderungen zu berücksichtigen.

Hinsichtlich der Hauptformelemente werden die Geometrien Scheibe, Ring, Hülse und Napf
festgelegt. Diese Benennung wird aus Gründen der Praxistauglichkeit gewählt, auch wenn
rein geometrisch betrachtet ein Ring als Napf mit sehr niedriger Wandhöhe ausgedrückt
werden kann. Bereits im Abschnitt 3.2 wurde hervorgehoben, dass zur Erfüllung der Haupt-
funktion eines Bauteils die Nebenformelemente ausschlaggebend sind. Das Hauptformele-
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ment übernimmt im Wesentlichen die Aufgabe, die Nebenformelemente zu tragen, bzw.
von ihnen aufgenommene Kräfte und Momente weiterzuleiten. Hauptformelemente werden
daher nicht detaillierter beschrieben.

Als Repräsentationsform des Ordnungsschemas wird eine Matrixstruktur vorgeschlagen.
Die Eingruppierung in eine hierarchische Baumstruktur ist prinzipiell möglich, diese kann
jedoch weniger kompakt und übersichtlich ausgeführt werden. Der höhere Aufwand bei
der Erstellung einer matrixbasierten Repräsentation wird nach [Lin09] von der Möglich-
keit aufgewogen, Lücken („weiße Felder“) für neue Entwicklungen zu identifizieren. Mit der
verfügbaren Klassifizierung wurden aus unterschiedlichen Komponenten mehrere Bautei-
le ausgewählt, analysiert und gefundene Formelemente klassiert (Schritt 2). Die Kompo-
nenten stammen aus Produkten des Automobilbereichs wie Doppelkupplungsautomatik-
getriebe und Sitzsysteme. Zu Anschauungszwecken wurde auch der Bauteildemonstrator
des SFB/TR 73 in den Katalog aufgenommen. Im Anhang A1 (Seite 157) ist das gesam-
te Ordnungsschema mit den definierten Klassemen und Merkmalen sowie die klassierten
Formelemente abgebildet.

Es ist zu erkennen, dass eine homogene Befüllung der Klassifizierungsmatrix nicht gelingt.
Der Grund hierfür liegt jedoch weniger an den gewählten Gruppen und weiteren Unter-
scheidungsmerkmalen selbst, sondern vielmehr an der Häufigkeit, mit welcher die verschie-
denen Funktionselemente auftreten. Besonders oft sind Funktionselemente der Formen-
klasse 1 (Erhebung) an der Außenseite einer Ringfläche klassifiziert worden. Diese Klasse
beinhaltet u. a. Mitnehmer und verzahnte Elemente, die zur Kraft- oder Momentübertra-
gung dienen. Sie sind somit in der Bauteilauswahl besonders häufig vertreten. Nebenfor-
melemente der Formenklasse 1 wurden im Vergleich dazu weitaus weniger identifiziert.
Erhebungen mit Orientierung nach innen stellen die existierenden Umformverfahren vor
Probleme, da mit solchen Geometrien oft Hinterschneidung verbunden sind. Ebenso häufig
wie Erhebungen sind auch Verzahnungen an einer Umfangsfläche klassifiziert worden. Der
Unterschied zwischen Innen- und Außenseite fällt dabei nur marginal aus. Verzahnungen
an der Stirnseite eines Bauteils wurden im Rahmen dieser Klassifikation nicht identifiziert,
da keine entsprechenden Bauteile in den analysierten Produkten vorkommen. Als Beipiel
wäre an dieser Stelle eine Hirth-Verzahnung zu nennen, die mit konventionellen, spanen-
den Verfahren einen hohen Fertigungs- und Kostenaufwand verursacht. Die Benutzung
von Begriffen, die häufig sprachlich verwendet werden, deren Abgrenzung jedoch mitun-
ter unscharf ausfällt, kann sich negativ auf die Objektivität auswirken. So lässt sich ein
Bereich, der durch zwei umlaufende Erhebungen begrenzt wird, auch als Vertiefung inter-
pretieren. Der Benutzer kann sich zur Lösung dieser Problematik an bereits eingeordneten
Elementen orientieren oder Rücksprache mit Fertigungsexperten halten, um festzustellen
ob bei bestimmten Formelementen eine Materialaufdickung oder -ausdünnung im Ferti-
gungsprozess überwiegt. Auffällig selten treten Funktionselemente an Bauteilstirnflächen
auf. Eine Begründung hierfür ist die getroffene Auswahl an Bauteilen, bei denen eine radiale
Krafteinleitung (vorrangig Drehbewegungen mit Momentenübertragung) überwiegt.

Eine ausführliche Analyse des Potentials der Blechmassivumformung mithilfe des For-
melementekatalogs findet sich in [BW13]. Im Folgenden wird anhand des Stahlblech-
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Bild 35: Exemplarischer Stahlblech-Lamellenträger aus [BGSS03].

Lamellenträgers ein Beispiel zur Klassifikation und Potentialabschätzung gezeigt. Wie in
Bild 35 zu erkennen, verfügt das Bauteil über axiale, außenliegende Stege. Diese werden
in einem mehrstufigen Kaltwalzprozess aus einer Stahlronde gefertigt. Weitere Prozess-
schritte sind das Prägen der Lamellenanschläge auf den umlaufenden Stegen sowie das
Stanzen der Langlöcher auf den Außenseiten der Stege [Kög10; Klo07]. Alle Formelemente
des Lamellenträgers lassen sich in der Klassifikationsmatrix für Formelemente der Blech-
massivumformung wiederfinden. Die axialen Stege ähneln den offenen Mitnehmern, die
im Rahmen eines experimentellen Blechmassivumformprozesses durch einen einstufigen
Tiefziehprozess gefertig werden konnten [MAB+12]. Die Lamellenanschläge erfordern einen
lokal begrenzten Werkstofffluss aus der Blechebene heraus, was durch den Blechmassivum-
formprozess der inkrementellen Umformung bei ähnlichen Formelementen bereits erreicht
wurde [SWG+16]. Das Stanzen von Öffnungen ist zwar kein spezifischer Blechmassivum-
formprozess, wurde jedoch bereits erfolgreich in eine Kette von Blechmassivumformprozes-
sen integriert [BBVe15], so dass auch bei diesem Formelement Rationalisierungspotential
besteht. Die genaue Auslegung eines Blechmassivumformprozesses zur Fertigung eines der-
artigen Bauteils mit den gezeigten Formelementen hat im Anschluss an die Klassifikation
durch den Fertigungsexperten zu erfolgen.
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4 Ableiten des Handlungsbedarfs

4.1 Fazit zum Stand der Forschung

Bezüglich der zentralen Thematiken dieser Arbeit wurden in den vorangegangenen Ab-
schnitten die relevanten Grundlagen dargestellt und die bestehenden Forschungsarbeiten
analysiert. Die Bedeutung des Faktors Wissen für die Produktentwicklung konnte gezeigt
werden (Abschnitt 2.1). Die Erhebung dieses Wissens erfolgt entweder durch direkte, indi-
rekte oder automatische Methoden, die in Abschnitt 2.1.4 bzw. Tabelle 3 (S. 17) gegenüber-
gestellt wurden. Die automatischen Methoden zeigen dabei hinsichtlich unterschiedlicher
Aspekte ein höheres Potential um effiziente und effektive Wissensakquise zu gewährleisten.
Dennoch wurde in Abschnitt 2.2.3 festgestellt, dass im Bereich der Produktentwicklung wis-
sensbasierte Systeme (Abschnitt 2.2) mit Wissensakquisitionskomponenten vorherrschen,
die direkte oder indirekte Methoden nutzen (Abschnitt 2.2.3, S. 27, S. 30 und S. 32).

Im vorangegangenen Kapitel 3 erfolgte eine Untersuchung der Blechmassivumformung
hinsichtlich der Thematik des Design for Manufacture. Es wurde festgestellt, dass eine
rein geometrische Betrachtung der Fertigbarkeit, bspw. durch die Identifikation zu starker
Wanddickensprünge oder Hinterschneidungen, den komplexen Prozesszusammenhängen
bei der Blechmassivumformung nicht gerecht werden kann. Auch allgemeingültige Kon-
struktionsregeln für Umformprozesse, wie sie z. B. bei Roth zu finden sind (s. Bild 20, S.
37), können keine ausreichende Unterstützung bei Design for Manufacture Analysen von
blechmassivumgeformten Bauteilen bieten. Frühzeitige Prozessauslegungen und Aussagen
über die Fertigungsgerechtheit sind aktuell nur durch zeit- und kostenintensiven Rechner-
einsatz im Rahmen FEM-basierter Prozesssimulationen möglich [SLV+11; MKS+10]. Die
dafür eingesetzten Werkzeuge (z. B. Simufact Forming R©) können jedoch nur von speziell
geschultem Personal bedient werden, binden Rechenkapazitäten und erfordern ein zeitauf-
wendiges Durchlaufen der Simulationsschritte Preprocessing, Solving und Postprocessing.
In der Produktentwicklung besteht demnach der Bedarf nach rechnerunterstützten Me-
thoden und -werkzeugen, die die frühzeitige Nutzung des Potentials von Verfahren der
Blechmassivumformung im Produktentwicklungsprozess erlauben. Dass ein solches Poten-
tial existiert, hat die Klassifikation von Nebenformelementen an bestehenden, konventionell
gefertigten Funktionsbauteilen (s. Abschnitt 3.3) gezeigt.

Der Gedanke, dass die Technologie der Wissensentdeckung in Datenbanken einen wichti-
gen Beitrag zum Lösungskonzept der vorliegenden Arbeit leisten kann, ist bereits in der
Einleitung der Arbeit skizziert. In den Abschnitten 2.4 sowie 2.5 erfolgt daher die Dar-
stellung der relevanten KDD-Grundlagen sowie bisheriger KDD-basierter Ansätze entlang
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des Produktentstehungsprozesses. Dabei fällt auf, dass jeder Ansatz beim KDD-Schritt
„Data-Mining“ (s. Abschnitt 2.4.2, S. 43) einen bestimmten Algorithmus favorisiert und
den KDD-Prozess hinsichtlich dieses gewählten Algorithmus optimiert.

Schulz zum Beispiel entscheidet sich für den Einsatz künstlicher neuronaler Netze (KNN)
und ermittelt für die beim überwachten Training von KNN relevanten Parameter (z. B.
Trainingszyklen, Momentum, Decay, Lernrate) die optimalen Einstellungen [Sch13]. Die-
se halb-automatische Vorgehensweise muss für jeden neuen Datensatz wiederholt werden
und erfordert für den dauerhaften Betrieb eines derartigen wissensbasierten Systems einen
Experten, der sowohl das Data-Mining Tool beherrscht als auch mit der Theorie der künst-
lichen neuronalen Netze vertraut ist. Zudem repräsentieren KNN das erhobene Wissen auf
subsymbolischer Ebene (s. Bild 28), was die Transparenz reduziert und die Interpretation
erheblich erschwert [Läm03; KBK+13].

Einen ähnlichen Weg verfolgt auch [Hit12] bei der metamodellbasierten Methodenplanung
für Feinschneidprozesse. Seine Ziele sind die virtuelle Generierung von Prozesswissen zur
Auslegung von Feinschneidprozessen und die Speicherung dieses Wissens in Form von Me-
tamodellen. Dazu vergleicht er unterschiedliche Metamodellierungstechniken (lineare Re-
gression, polynomiale Regression, Kriging und KNN) sowohl quantitativ als auch qualitativ
miteinander. Der quantitative Vergleich basiert auf Trainingsdaten mit einer steigenden
Anzahl N an Datentupeln (N1 = 9, N2 = 25, N3 = 64), die mittels einer Testfunkti-
on (Branin-Funktion, siehe [Bra72]) generiert wurden. Lineare und polynomiale Regressi-
onsfunktionen (quadratischer Polynomansatz) schneiden im anschließenden Vergleich der
Wurzel des mittleren Fehlerquadrats (RMSE, siehe Tabelle 4) sehr schlecht ab, wobei hierin
eine methodische Schwachstelle liegt. Die Branin-Funktion beinhaltet immer einen Poly-
nomterm vierten Grades, weshalb die Approximation durch Polynome niedrigeren Grades
zwangsläufig zu hohen Vorhersagefehlern führt. Aus den verbleibenden Modellierungstech-
niken wird schließlich das Kriging auf Basis eines Vergleichs der RMSE-Varianzen ausge-
wählt. Die RMSE-Varianz des KNN fällt bei Hitz sehr groß aus, was auf die nur einmal
durchgeführte k-fache Kreuzvalidierung zurückzuführen ist. Neue Datensätze können über
ein selbstentwickeltes GUI mit der Bezeichnung „METAGenerator“ verarbeitet werden.
Auch hier erfordert die Pflege und Erweiterung der Wissensbasis einen Kriging und Data-
Mining Experten. Zudem kann das Wissen, repräsentiert durch die Kriging-Modelle, nicht
ohne weitere Visualisierungshilfen anschaulich dargestellt werden.

Der Text-Mining Ansatz in [ESM+11] und [Sha13] eignet sich durchaus für die Verarbei-
tung der im Rahmen des ECO-Prozesse genutzten Dokumente. Allein die Vielzahl (53.000
Unterlagen) und die Art (strukturierte Formblätter) unterscheiden sich jedoch zu den Do-
kumenten die in den frühen Phasen der Entwicklung von Blechmassivumformprozessen
üblicherweise anfallen. Für FEM-Simulationen werden nur teilweise Berechnungsberichte
angefertigt und Protokolle zu Umformexperimenten folgen keiner einheitlichen Struktur.
Eine Verarbeitung durch Text-Mining zur Erhebung von fertigungsrelevantem Konstruk-
tionswissen ist somit nicht zielführend.
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4.2 Anforderungen an ein verbessertes Konzept

In der Entwurfsphase blechmassivumgeformter Bauteile müssen Produktentwickler fort-
während Design for Manufacture Analysen an Gestaltentwürfen durchführen, bspw. um die
Auswirkungen kleiner geometrischer Änderungen an komplexen Nebenformelementen ab-
schätzen zu können. Das hierfür notwendige konstruktionsrelevante Fertigungswissen muss
aus den Daten der Fertigungsprozessentwicklung akquiriert und in den Produktentwick-
lungsprozess transferiert werden. Eine geeignete Bereitstellung kann über ein wissensba-
siertes System erfolgen. Daraus und aus der vorangegangenen Bilanz werden im Folgenden
Anforderungen an ein solches System formuliert:

– Das wissensbasierte System muss den Benutzer bei der Design for Manufacture Analy-
se blechmassivumgeformter Bauteile unterstützen (assistieren). Das hierfür notwendige
konstruktionsrelevante Fertigungswissen soll das System selbstständig aus Fallbeispielen
der Prozessentwicklung lernen. Insofern wird im weiteren Verlauf der Arbeit die Bezeich-
nung selbstlernendes Assistenzsystem (Slassy) genutzt. Im Abschnitt 5.1 (S. 69) wird der
Begriff „Selbstlernen“ eingehend diskutiert.

– Der Benutzer muss durch Slassy in allen Phasen des Wissenserwerbs unterstützt werden.
Dies beinhaltet die Lokalisierung der Wissensquellen, die Erhebung, Strukturierung und
Formalisierung des Wissens und die Implementierung in der Wissensbasis. Eine Unter-
stützung der Wissensbasispflege soll ebenso durch Slassy möglich sein. Dies betrifft die
Erweiterung, Modifikation sowie Aktualisierung der Wissensbasis. So kann einer Wis-
sensalterung effektiv entgegengewirkt werden.

– Damit der Benutzer das Ergebnis des Selbstlernprozesses beurteilen kann, müssen ihm
quantitative Informationen zur Güte bzw. Verlässlichkeit des akquirierten Wissens be-
reitgestellt werden. Da das Wissen durch sogenannte Vorhersage- oder Metamodelle
repräsentiert werden soll, sind Methoden zur Berechnung geeigneter Kennwerte zu ent-
wickeln.

– Die Wissensakquisitionskomponente muss Robustheit gegenüber Ausreißern und Fehl-
werten in den Daten aufweisen. Die Selbstlernkomponente muss verlässlich und wieder-
holbar das beste Modell zur Repräsentation des konstruktionsrelevanten Fertigungswis-
sens identifizieren können.

– Slassy muss sich in die gewohnte Arbeitsumgebung des Benutzers (Konstrukteur) inte-
grieren lassen, um eine möglichst hohe Akzeptanz zu gewährleisten. Ein in sich abge-
schlossenes Werkzeug („Insellösung“), das der Benutzer zusätzlich beherrschen muss, ist
nicht zielführend.

– Es muss gewährleistet werden, dass der analysierte Bauteilentwurf als Ergebnis des Assis-
tenzsystems im weiteren Verlauf des Produktentstehungsprozesses genutzt werden kann.
Die digitale Prozesskette zwischen Produktion und Fertigung darf nicht unterbrochen
werden.
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5 Der Selbstlernprozess

Ziel des folgenden Kapitels ist die Entwicklung eines automatischen Wissensakquisitions-
prozesses für das selbstlernende Assistenzsystem Slassy. Nach einer kurzen Diskussion
des Begriffs Selbstlernen, werden aktuelle Theorien zu menschlichen Lernstrategien ana-
lysiert, um sie anschließend auf die vorliegende Problemstellung zu übertragen und damit
die Grundlage für einen Selbstlernprozess zu bilden. Der Selbstlernprozess wird später in
der Wissensakquisitions- bzw. Selbstlernkomponente von Slassy eingesetzt.

5.1 Vorüberlegung zum Begriff Selbstlernen

Häufig fallen im Zusammenhang mit wissensbasierten Systemen die Begriffe „intelligent“,
“selbstoptimierend“ oder „smart“ [KK12b]. Dadurch soll ausgedrückt werden, dass das
wissensbasierte System die kognitiven Fähigkeiten und Lernmechanismen des Menschen
nachahmt. Wissensbasierte Systeme, bei denen sogenannte künstliche neuronale Netze zum
Einsatz kommen, sind ein Beispiel für diesen Trend der Mechanismennachahmung. Trotz
weltweiter Forschungsbemühungen ist ein Durchbruch zu einer „echten“ künstlichen Intel-
ligenz jedoch noch nicht in Reichweite. Teilweise wird auch das Konzept der KI oder das
intelligenter Systeme grundsätzlich angezweifelt [BD11].

Das im Rahmen dieser Arbeit zu entwickelnde wissensbasierte System soll nicht den An-
spruch erheben, „intelligent“ handeln zu können. Es wird aber im Folgenden der Versuch
unternommen, die verschiedenen Theorien zu Lernstrategien des Menschen zu analysie-
ren. Auf der Basis dieser Analyse werden Aspekte ausgewählt, die sich zur Lösung der
vorliegenden Problemstellung nutzen, anpassen oder kombinieren lassen. Eine Recherche
zum Begriff „Selbstlernen“ führt in der deutschsprachigen Literatur hauptsächlich in die
Bereiche der Didaktik und des Wissensmanagements. Unter der englischen Entsprechung
„self-learning“ des Begriffs lassen sich Arbeiten zusammenfassen, die die Nutzung künst-
licher neuronaler Netze oder die Verbesserung sogenannter Fuzzy-Logiken (siehe [XL87])
zum Ziel haben. Auch hier adressieren die Autoren die Lernmechanismen und nicht die
eigentlichen Lernstrategien.

Unter Selbstlernen wird im Rahmen dieser Arbeit die Eigenschaft verstanden, den Wissens-
akquisitionsprozess (das Lernen) selbstständig zu gestalten und die Steuerung des Lernpro-
zesses zu übernehmen. Ein solcher Selbstlernprozess kann den Lernerfolg eigenständig eva-
luieren und auf dieser Basis Lernziele, -wege sowie -inhalte festlegen. Ein selbstlernendes,
wissensbasiertes System kann somit unabhängig vom Nutzer aus Daten, Wissen in Form

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


70 5 Der Selbstlernprozess

sogenannter Metamodelle erheben, diese Modelle optimal an die Fallbeispiele anpassen und
anschließend das bestgeeignete Modell identifizieren. Trotz eines hohen Automatisierungs-
grades muss die Entscheidung des Systems anschließend für den Nutzer nachvollziehbar
sein. Manuelle Eingriffe sind nur zur Änderung des Selbstlernprozesses zulässig, z. B. bei
Update der Data-Mining Software oder bei Änderungen der zugrundeliegenden Datenbank.

5.1.1 Menschliches Lernen

Die Mathetik bildet als Wissenschaft des Lernens die Ergänzung zur Didaktik, die sich mit
dem Vorgang des Lehrens beschäftigt [KK12b]. Lernprozesse treten bei Menschen immer
in Folge von Umwelteindrücken, Wahrnehmungen und Erfahrungen auf, die aufgenommen
und verarbeitet werden. Erst dieses Prinzip ermöglicht ein Existieren und Zurechtfinden
in einer Umwelt, mit der interagiert werden muss. Zur Beschreibung des Ablaufs von
Lernprozessen existieren unterschiedliche Theorien. Diese sind in Bild 36 zusammengefasst.

Köhler &
Wertheimer

Thorndike

Pawlow

Skinner

Woodburry

Wittoch Piaget

Bandura

1898 1918 1930 1934 1943 1956 1960 1963

Behaviorismus Kognitivismus

Bild 36: Entwicklungsübersicht der menschlichen Lerntheorien nach [FF11; KK12b]

Alle Theorien enthalten implizit die Fähigkeit zur Generalisierung und zur Diskriminati-
on als eines der wichtigsten Elemente des Lernens. Von Generalisierung wird gesprochen,
wenn unbekannte Situationen durch Anwendungen von altem Wissen bewältigt werden.
Dabei wird eine Transferleistung erbracht, in der bekannte Inhalte einer Situation regis-
triert und bereits erlernte Lösungsverfahren angewandt werden [Tho31; Tho32]. Die Dis-
krimination hingegen ermöglicht es, Unterschiede zwischen Reizen und Reaktionen oder
einzelnen Situationen zu registrieren und das menschliche Verhalten entsprechend anzu-
passen [Wei89; Ski38].

Die Idee des Behaviorismus wurde ca. ab Mitte des 19. Jahrhunderts entwickelt und fasst
Verhaltens- und Lerntheorien zusammen, die auf dem Reiz-Reaktions-Modell basieren
und allgemein als Konditionieren bezeichnet werden. Die Erforschung des Lernens wird
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im Behaviorismus auf Experimente zur Entstehung und Veränderung von Reiz-Reaktion-
Beziehungen reduziert. Bei Erklärungsversuchen werden keine inneren physiologischen Vor-
gänge (z. B. im Nervensystem) der Individuen berücksichtigt, sondern die Interaktionen
von Individuum und Umwelt als „Black-Box“ beschrieben. Hinzu kommt die Überzeugung,
dass die Gesetzmäßigkeiten einer Reiz-Reaktion-Beziehung und ihrer Herausbildung allge-
meingültig sind. Erste Behavioristen gingen davon aus, dass Untersuchungen an Tieren den
Schlüssel zu den Gesetzmäßigkeiten der Reiz-Reaktion-Beziehungen beim Menschen liefern
können. Die bekanntesten behavioristischen Ansätze sind die klassische Konditionierung
nach Pavlov und die instrumentelle bzw. operante Konditionierung nach Thorndike bzw.
Skinner. [Ski78]

Eine direkte Weiterentwicklung aus dem Behaviorismus ist das Diskriminationslernen. Es
untersucht die Fähigkeit der Unterscheidung von guten und schlechten beziehungsweise
relevanten und irrelevanten Reizen. Doch nicht nur die Differenzierung verschiedener Reize
und deren Konsequenzen, sondern auch die Integration von Reizkombination als Reiz-
muster ist ein wichtiger Faktor dieser Theorie. Die ersten Versuche für die Untersuchung
der kombinierten Reizmuster gehen auf Charles Woodbury zurück. Die mittlerweile vor-
herrschende Meinung der Mathetik ist, dass die menschliche Physiologie und Psychologie
wesentlich komplexer arbeitet. Daher werden Ansätze aus dem Behaviorismus heutzutage
hauptsächlich bei Tierversuchen angewandt. [FH20; KK12b]

Ab den 1960er und 1970er Jahren löste der Kognitivismus den Behaviorismus zunehmend
als vorherrschendes Forschungsparadigma in der Psychologie ab. Der Kognitivismus geht
davon aus, dass der Erwerb komplexer intellektueller Fähigkeiten durch behavioristische
Prinzipien allein nicht zu erklären ist. Kognitive Prozesse wie Denken, Erinnern, Wahrneh-
men und die Verwendung der Sprache müssen besondere Berücksichtigung finden. Lernen
ist demnach kein reaktiver, sondern ein bewusster Prozess, der auf Denken und Verstehen
basiert. Innerhalb des Kognitivismus werden u. a. die Lernstrategien „Lernen am Modell“,
„Lernen durch Einsicht“ und „implizites Lernen“ unterschieden. [Ban77; KK12a]

Lernen am Modell findet statt, wenn Personen (oder auch Tiere) durch die Beobachtung des
Verhaltens anderer Individuen („Vorbilder“) und der darauffolgenden Konsequenzen sich
bewusst oder unbewusst neue Verhaltensweisen aneignen. Auch die Änderung bestehen-
der Verhaltensmuster kann dadurch bewirkt werden. Dabei entscheiden die Motivation der
lernenden Person und die Wertigkeit der eintretenden Konsequenzen darüber, ob sich das
beobachtete Verhalten tatsächlich festigt. Nach Bandura beeinflussen weiterhin Faktoren
wie Aufmerksamkeit, Gedächtnisleistung, motorische Reproduktionsfähigkeit und Motiva-
tion die Aneignung und Nachahmung von beobachtetem Verhalten [Ban77]. Das Lernen
am Modell setzt keine eigenen Erfahrungen voraus, es wird lediglich durch Beobachten
gelernt. Die von extern eingehenden Informationen werden mit einer vorgegebenen aber
veränderbaren kognitiven-mentalen Struktur des Beobachtenden verarbeitet. Denken wird
demnach als Prozess der Informationsverarbeitung verstanden. [KK12a; KK12b]

Beim Lernen durch Einsicht (s. Bild 37) strukturiert das Individuum ein vorliegendes Pro-
blem denkend um und reorganisiert es „im Kopf“, um Handlungsalternativen für die Lösung
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des Problems zu finden. Diese Aneignung und Umstrukturierung von Wissen beruht auf der
Nutzung von kognitiven Fähigkeiten wie Wahrnehmungs- und Vorstellungsvermögen sowie
der Möglichkeit, Vergleiche durchzuführen und daraus zu schlussfolgern. Lernt eine Person
durch Einsicht, dann bedeutet dies, dass sowohl die Ursache-Wirkung Zusammenhänge
eines Sachverhalt als auch der Sinn und die Bedeutung der daraus entstehenden (neuen)
Situation erkannt und verstanden wurden. Für externe Beobachter ist die Verhaltensände-
rung mitunter sehr überraschend, da sie innerhalb kurzer Zeit auftreten kann. Diese Form
des Lernens erfordert besondere Fähigkeiten zur Entwicklung von parallelen Konzepten,
deren Analyse und Bewertung sowie zum Vergleich der verschiedenen Alternativen. [FF11]

Problem 
analysieren

Probier-
verhalten

Umstruk-
turierung

Einsicht & 
Lösung Anwendung Transfer

Bild 37: Die sechs Phasen beim Lernen durch Einsicht.

Durch implizites Lernen werden die Lerninhalte unbewusst bzw. intuitiv aufgenommen
und gespeichert, ohne dass dem lernenden Individuum die zugrunde liegenden Zusammen-
hänge einer Situation bewusst sind. Es läuft unbewusst und ohne den Einsatz analytischer
Strategien wie Hypothesengenerierung und Hypothesentest ab, die beim expliziten Lernen
erforderlich sind. Wie die Bezeichnung bereits vermuten lässt, mündet implizites Lernen
immer in implizitem Wissen (s. Abschnitt 2.1.2, S. 9). Personen nehmen also ohne eine
spezielle Absicht in komplexen Situationen Wissen auf, das sich später schwer verbalisieren
lassen wird. [HE13; KK12a]

Als bisher jüngste Disziplin versteht der Konstruktivismus unter Lernen eine individuelle
Entwicklung („Konstruktion“) von Wissen, die bei jedem Menschen anders abläuft. Für die
Hauptaussage des Konstruktivismus bedeutet dies, dass es keine objektive Realität gibt,
die der Lehrende dem Lernenden vermitteln kann, sondern dass Wissen immer und in jeder
Form einen subjektiven Charakter besitzt. Die Wissensaneignung beruht dadurch immer
auf den Randbedingungen des Lernens und wird durch unbewusste Faktoren gesteuert,
die deshalb nur schwer beeinflussbar sind. Dadurch sind die Mechanismen des Lernens aus
konstruktivistischer Sicht auch nicht ohne weiteres verallgemeinerbar. [Mie01]

5.1.2 Übertragung auf die Problemstellung

Nach der Darstellung der verschiedenen Lernstrategien wird im Folgenden diejenige iden-
tifiziert, nach deren Vorbild sich ein Selbstlernprozess für Slassy entwickeln ließe.

Das Reiz-Reaktions-Modell des Behaviorismus zeichnet sich dadurch aus, dass Lerninhalte
durch Vermittlung von richtig/ falsch - Meldungen im Anschluss an ein bestimmtes Verhal-
ten, das durch einen äußeren Reiz ausgelöst wurde, konditioniert werden. Während sowohl
Reiz als auch Verhalten beobachtbar sind, ist der Lernprozess selbst durch eine „Black-Box“
ausgeblendet. Eine Nutzung dieses Konzepts für einen Selbstlerprozess erscheint schwie-
rig. Durch die Fallbeispiele in den Daten der Fertigungsprozessentwicklung ist Feedback
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an das wissensbasierte System, in Form von richtig/falsch-Meldungen, prinzipiell denkbar.
Der Forderung nach einer Berücksichtigung der speziellen Design for Manufacture Pro-
blematik der Blechmassivumformung (s. Abschnitt 3.2, S. 58) kann somit jedoch nicht
nachgekommen werden. Weiterhin ist anzumerken, dass das Lernen durch Konditionie-
ren langsam abläuft und bereits gelernte Inhalte aufwändig in iterativer Form abtrainiert
werden müssen. Der „Black-Box“ Charakter der behavioristischen Theorie blendet den ei-
gentlichen Lernprozess aus, was zu Intransparenz und mangelnder Nachvollziehbarkeit der
Ergebnisse führt.

Die Theorie des Konstruktivismus besagt, dass es keine objektive Realität gibt, die vom
Lehrenden an den Lerner vermittelt werden kann. Lernprozesse sind in höchstem Maße
subjektiv, denn was eine Person unter bestimmten Bedingungen lernt, hängt stark von
seinen Motiven und Randbedingungen ab. Darüber hinaus spielt die sozio-kulturelle Ler-
numgebung eine wichtige Rolle. Insbesondere dieser Faktor macht den Ausgang eines kon-
struktivistischen Lernprozesses relativ unberechenbar. Die Wissensaneignung wird dem-
nach durch Faktoren gesteuert, die unbewusst ablaufen und somit nur schwer beeinflussbar
sind. Bei gleichen Lernrandbedingungen, können gleiche Lernstrategien zu unterschiedli-
cher Qualität des erworbenen Wissens führen. Die mangelnde Verallgemeinerbarkeit und
Wiederholgenauigkeit von konstruktivistischen Lernprozessen lässt ihre Nutzung für den
Selbstlerprozess als schwierig erscheinen.

In den Ansätzen des Kognitivismus wird Lernen nicht als reaktiver Prozess aufgefasst,
der nur auf äußere Reize hin angestoßen, sondern bewusst vom lernenden Individuum
initiiert wird. Das Lernen selbst kann dabei intuitiv erfolgen und der dabei stattfindende
Ablauf schwer oder gar nicht verbalisiert werden (Implizites Lernen). Das Erlernen der
Muttersprache durch Kleinkinder ist hierfür ein Beispiel. Das Lernen am Modell kann
ebenfalls intuitiv/implizit ablaufen, wenn die Verhaltensweisen des Modells ohne explizite
Erläuterung nachgeahmt werden. Dennoch existiert mit dem Lernen durch Einsicht eine
Modellbeschreibung, die explizit die Vorgänge beim Wissenserwerb beschreibt und dadurch
objektiv und transparent macht.

Die Phasen des Lernens durch Einsicht wurden aus lernpsychologischer Sicht beschrieben
(s. Bild 37, S. 72). Wird diese Abfolge verallgemeinert zur Beschreibung eines Wissensak-
quisitionsprozesses dargestellt, lassen sich folgende Schritte identifizieren:

1. Aufstellen von Konzepten zur Erklärung eines unbekannten Sachverhalts

2. Anwendung der Konzepte zur Problembeschreibung

3. Optimierung/Anpassung der Konzepte und Vergleich der neuen Varianten

4. Objektive Entscheidung für das passendste Konzept

5. Abspeicherung im Gedächtnis für zukünftige Anwendung

6. Wiederholung des Prozesses bei neuer Sach- oder Problemlage

An dieser Stelle ist anzumerken, dass „Konzept“ nicht im technischen Sinn zu verstehen ist,
wie beispielsweise das Lösungskonzept „Zahnradgetriebe“ für die Problemstellung „Über-
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tragung einer Drehbewegung“. Ein Konzept soll hier abstrakt als eine Möglichkeit oder
ein Modell verstanden werden, das einen bestimmten Sachverhalt erklären kann. Bild 38
beschreibt die genannte Abfolge als Prozessschaubild.
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Durchführung

Optimieren der Konzepte

Konzeptbewertung(gedankliche)
Durchführung

Auswahl eines favorisierten KonzeptsIte
ra

tiv
e 

W
ie

de
rh

ol
un

g

Abspeicherung im Gedächtnis als 
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Erstellen mehrerer Lösungskonzepte

Bild 38: Menschlicher Lernprozess angelehnt an das Lernen durch Einsicht.

Der Vorteil, den ein solches Vorgehen mit sich bringt, ist eine enorme Flexibilität wäh-
rend der Wissensakquisition. Es wird nicht an einem einzigen Modell festgehalten, welches
mit viel Aufwand so lange umstrukturiert wird, bis es den Sachverhalt hinreichend genau
wiedergibt, dafür jedoch sehr komplex und schlecht nachvollziehbar ist. Vielmehr wird zu-
nächst eine Vielzahl an Konzepten in Betracht gezogen, mit geringem Aufwand angepasst
(optimiert) und nach objektiven Maßstäben ein möglichst verlässliches Modell ausgewählt.
Ein weiterer Vorteil bei dieser Vorgehensweise ist, dass das Prinzip der Parsimonie, auch
als Ockham’s Razzor bekannt, berücksichtigt werden kann. Dieses besagt, dass von mehre-
ren gültigen Erklärungen für ein und denselben Sachverhalt immer die einfachste Theorie
allen anderen vorzuziehen ist [Sob15]. Somit bleiben Nachvollziehbarkeit und Transparenz
gewahrt.

Das aus dem Lernen durch Einsicht abgeleitete Vorgehen kann auf die Problemstellung
der vorliegenden Arbeit übertragen werden. Der „unerklärte“ Sachverhalt entspricht da-
bei den Zusammenhängen zwischen der Geometrie eines blechmassivumgeformten Bauteils
und den für die Design for Manufacture Analyse dieses Bauteils relevanten Zielgrößen (s.
Abschnitt 3.2, S. 58). Er ist implizit in den Daten der Fertigungsprozessentwicklung enthal-
ten. Passende Konzepte, die diesen Zusammenhang abbilden können werden im weiteren
Verlauf Metamodelle bezeichnet. Als „Modell eines Modells“ sind sie in der Lage auf Basis
eines Vektors an Eingangsgrößen die Ausprägung einer Zielgröße vorherzusagen und somit
den Sachverhalt zu erklären. Die Eingangsgrößen beschreiben dann beispielsweise die Geo-
metrie blechmassivumgeformter Bauteile (z. B. Längen, Breiten, Winkel) des CAD-Modells
und die Zielgröße entspricht dem Umformgrad, der sich bei dieser zu fertigenden Geometrie
ergeben wird. Die Optimierung eines Metamodells kann auf verschiedenen Strategien be-
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ruhen, richtet sich jedoch in jedem Fall nach den eingesetzten Metamodellen (s. Abschnitt
6.3.1, S. 95). Eine detaillierte Beschreibung der Umsetzung des Optimierungsansatzes kann
Abschnitt 5.3 entnommen werden. Die Beurteilung eines Konzepts geschieht beim Men-
schen durch intuitives Abwägen, bspw. zwischen dem Risiko das eingegangen werden muss,
um ein potentielles Ergebnis zu erzielen (Aufwand zu Nutzen). Ein Metamodell muss ob-
jektiv daran beurteilt werden, wie gut es eine Zielgröße vorhersagen oder einen Sachverhalt
abbilden kann. Im Abschnitt 2.4.2 (S. 47) wurden die gängigen Performanzkenngrößen für
Metamodelle bereits beschrieben. Wichtig bei der Beurteilung ist eine hohe Robustheit
bzw. Verlässlichkeit des ermittelten Werts. Liegt für jedes entwickelte und optimierte Me-
tamodell eine Beurteilung vor, so wird im nächsten Schritt das passendste Konzept bzw.
Metamodell gewählt. Diese Auswahl muss nach objektiven Kriterien und Vorgaben erfol-
gen, um dem späteren Nutzer von Slassy das verlässlichste Metamodell (Design for Manu-
facture Wissen) bereitstellen zu können. Der prinzipielle Ablauf des Selbstlernprozesses ist
in Bild 39 dargestellt
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Bild 39: Entwurf des abgeleiteten Selbstlernprozesses.

Den Ausführungen ist zu entnehmen, dass den Aspekten

- Performanzbestimmung zur Beurteilung eines Metamodells,
- Optimierung der Modelle sowie
- Auswahl des bestgeeigneten Modells

eine zentrale Bedeutung beigemessen wird. Daher werden sie in den folgenden Abschnitten
5.2, 5.3 und 5.4 ausführlich behandelt.
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5.2 Statistisch robuste Performanzbestimmung

Im vorangegangenen Abschnitt wurde hervorgehoben, dass die Schätzung des Kennwerts
zur Beurteilung der Prognosequalität eines Metamodells robust und verlässlich erfolgen
muss. Diese Performanz ist ein wichtiges Qualitätsmerkmal für einen Data-Mining Prozess
und kann im Kontext dieser Arbeit anschaulich mit einer „Wissensgüte“ gleichgesetzt wer-
den. Sie bildet außerdem die Basis für Vergleiche verschiedener Metamodelle und muss aus
diesem Grund ein unabhängiger und robuster Kennwert sein. Im Abschnitt 2.4.2 wurde
bereits die k-fache Kreuzvalidierung als gängiges Verfahren für die Schätzung der Prognose-
güte bzw. Performanz von Regressionsmodellen vorgestellt (s. Bild 25, S. 48). Die zufällige
Einteilung der Datentupel im Datensatz D in k Teildatensätze Dk und die Reihenfolge der
Datentupel in D dürfen dabei keinen Einfluss auf das Ergebnis der Performanzschätzung
haben, da dies der Forderung nach einem unabhängigen und robustem Bewertungskriteri-
um entgegen steht, wie im Folgenden gezeigt wird.

Für eine zufällige Einteilung dieser Tupel nutzen Data-Mining Programme Zufallszah-
len. Während manuelle Methoden wie Urnenziehen oder Zufallszahltabellen in gewissem
Maße echte Zufallszahlen erzeugen (s. [Hel74] oder [ZS01]), sind rechnerunterstützte Me-
thoden bei der Zufallszahlenberechnung auf einen Startwert, den sogenannten random seed
angewiesen. Da gleiche Startwerte bei deterministischen Zufallsalgorithmen auch gleiche
Zufallszahlen erzeugen, wird im Allgemeinen von Pseudozufallszahlen gesprochen. Wird
die gleiche Pseudozufallszahl (konstanter random seed) für die Einteilung der k Teilda-
tensätze Dk verwendet, so befinden sich, bei gleichem Aufbau von D, immer die gleichen
Datentupel in den Teildatensätzen Dk. Dies resultiert bei jeder Wiederholung des Kreuz-
validierungsprozesses in unveränderten Vorhersagefehlern. Bild 40 verdeutlicht dies. Ge-
zeigt ist ein Data-Mining Prozess, der einen frei verfügbaren Datensatz13 zum Training
eines Regressionsmodells nutzt und die Prognosequalität des Modells durch eine 10-fache
Kreuzvalidierung schätzt. Als Schätzer wird der mittlere relative Fehler zwischen wahrer
und vorhergesagter Zielgröße ausgegeben. Wird dem Operator der Kreuzvalidierung ein
konstanter random seed zugewiesen, so ändert sich der relative Fehler auch bei mehrmali-
ger Wiederholung nicht. Dies vermittelt den Eindruck, dass der berechnete Prognosefehler
wiederholbar und somit robust ist. Wird jedoch der random seed geändert, so ergeben
nacheinander ausgeführte Kreuzvalidierungen einen anderen, aber nach wie vor konstan-
ten Performanzwert. Der Grund hierfür liegt in der veränderten Zuordnung der Datentupel
aus D in die Teildatensätze Dk. Eine solche Änderung der Datentupel in D kann auftreten,
wenn weitere Daten hinzugefügt oder ausgetauscht werden. Der Schätzwert der Metamo-
dellperformanz ist somit, nach Standardvorgehensweise, kein robuster und unabhängiger
Kennwert.

Zur Begegnung dieser Problematik werden die Datentupel in D gezielt durchmischt, die
randon seed Werte bei jedem Durchlauf variiert und eine eine mehrfache Wiederholung
der Kreuzvalidierung mit anschließender Mittelwertbildung durchgeführt. Bild 41 zeigt die
Umsetzung dieses Konzepts als prinzipiellen Data-Mining Prozess. Zur robusten Schätzung
13 Details zum Datensatz können dem Anhang Seite 159 entnommen werden.
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Bild 40: 10-fache Kreuzvalidierung bei verschiedenen (konstanten) Werten der
Pseudozufallszahl

der Performanz werden die Datentupel in D zunächst zufällig gemischt. Dies erfolgt über
den „Shuffle“ Operator, dem der globale, variable random seed zugewiesen wird. Die mehr-
malige k-fache Kreuzvalidierung und Mittelwertbildung wird durch den Operator „Loop
& Average“ erreicht, in dem der Operator für die Kreuzvalidierung verschachtelt integriert
wird. Diesem wird für die Aufteilung der Datentupel in die k Datensätze Dk ebenfalls der
globale, variable random seed zugewiesen.

Datenimport
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Randomseeds:
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Randomseeds:
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Kreuzvalidierung

Bild 41: Data-Mining Prozess zur robusten Abschätzung der Metamodellperformanz.

Abschließend muss für den „Loop & Average“ Operator die Anzahl der n Wiederholungen
festgelegt werden, aus denen der Mittelwert der Kreuzvalidierungen berechnet wird. Hierbei
ist zu beachten, dass mit einer geringen Anzahl an Wiederholungen eine hohe Unsicher-
heit des Prognoseschätzwerts einhergeht. Wird die Anzahl der Wiederholungen erhöht, so
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steigt zwar die Robustheit des Performanzkennwerts, allerdings nimmt auch die benötigte
Rechenzeit zu. Es muss ein Kompromiss aus Robustheit und Rechenzeit gefunden werden.
Die Boxplots in Bild 42 zeigen diesen Zusammenhang. Für die Erstellung eines einzelnen
Boxplots wird der in Bild 41 dargestellte Data-Mining Prozess 50 mal durchgeführt (Test-
datensatz aus Anhang 8, S. 159). Jede Durchführung beinhaltet eine zehnfache (k = 10)
Kreuzvalidierung die n-mal wiederholt und gemittelt wird. Dabei erfolgt eine sukzessive
Erhöhung von n (n ε [1, 2, 3, 4, 5, 10, 25, 50, 100, 500, 1000]).

Bild 42: Boxplot der Performanzen mit steigender Anzahl von „Loop & Average“ Durch-
läufen. (X-Achse: n-malige 10-fache Kreuzvalidierung)

Jede Box umfasst 50% aller berechneten Mittelwerte, wobei jeder Einzelwert durch ein x
gekennzeichnet ist. Der Median, das geometrische Mittel einer Stichprobe, ist durch ei-
ne schmale Volllinie innerhalb einer Box gekennzeichnet. Fallen die Mitte einer Box und
der Median zusammen, ist von einer annähernd symmetrischen Verteilung auszugehen.
Es muss an dieser Stelle betont werden, dass bei KDD-Prozessen die Evaluation eines
Modells üblicherweise nur auf einer einmalig durchgeführten 10-fachen Kreuzvalidierung
beruht (z. B. [Hit12; Sch13]), was einem Punkt im linken Boxplot (n=1) entspricht. Hierin
liegt eine sehr hohe Unsicherheit des Prognoseschätzwerts begründet, denn der Anwender
hat in diesem Fall keine Möglichkeit festzustellen, ob das Modell über- oder unterschätzt
wird. Ein Wert von n > 1 muss festgelegt werden, um eine ausreichende Robustheit bei
vertretbarer Berechnungsdauer zu gewährleisten. In Vorversuchen wurde ermittelt, dass für
n= 20 verlässliche Performanzwerte in einer vertretbaren Zeit berechnet werden können.
Ergebnis dieser n-fach wiederholten k-fachen Kreuzvalidierung ist ein sogenannter Per-
formanzvektor. Hierunter wird im weiteren Verlauf ein Vektor der Länge n · k verstanden,
dessen Zeilenwerte mit den Vorhersagefehlern besetzt sind, die in den einzelnen Iterationen
der Kreuzvalidierung ermittelt werden.
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5.3 Überwachtes Lernen und Optimieren der
Metamodelle

In Abschnitt 5.1.2 wurde festgestellt, dass die Optimierung der alternativen Konzepte
bzw. deren Anpassung an die gegebene Problemstellung ein essentieller Bestandteil eines
Selbstlernprozesses sein muss. Die Optimierung eines Metamodells hat das Ziel, dieses
Modell sowohl optimal an den zur Verfügung stehenden Datensatz anzupassen als auch
eine Überanpassung (engl. overfitting) zu vermeiden.

Grundsätzlich existieren beim Trainieren eines Metamodells verschiedene Möglichkeiten für
dessen Optimierung. Ziel ist ein Set an optimalen Trainingsparametern zu finden, um das
Metamodell an den jeweiligen Trainingsdatensatz anzupassen und gleichzeitig ein Over-
fitting zu vermeiden. Unter Parameterset wird hier eine Menge an Werten verstanden,
durch die das Training eines Metamodells beeinflusst werden kann. Bild 43 zeigt für eine
Auswahl an Trainingsoperatoren Beispiele für derartige Parameter. An dieser Stelle wird
darauf hingewiesen, dass die Darstellungen zwar der Data-Mining Software Rapidminer R©

entnommen sind, jedoch lassen sich entsprechende Einstellungen in jeder Data-Mining
Software vornehmen.
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Bild 43: Beispiele von konfigurierbaren Parametern für das Training von künstlichen neu-
ronalen Netzen, linearen und polynomialen Regressionsmodellen in Rapidminer R©

Die folgenden Ausführungen beziehen sich auf dem Einsatz der Data-Mining Software
Rapidminer R© , sind jedoch in den zugrundeliegenden Theorien verallgemeinerbar und auf
andere Data-Mining Werkzeuge übertragbar. Sehr weitreichende Möglichkeiten zur Opti-
mierung sind in Rapidminer R© durch den „Optimize Grid“ Operator sowie den „Optimi-
ze Evolutionary“ Operator gegeben. Der „Optimize Quadratic“ Operator steht ebenfalls
zur Verfügung und rechnet als sog. Greedy-Algorithmus zwar schnell, löst Probleme je-
doch nicht immer optimal. Zudem lässt er, wie auch der „Optimize Evolutionary“ Ope-
rator, keine Berücksichtigung diskreter Parameter bei der Optimierung zu, was nur durch
den „Optimize Grid“ Operator ermöglicht wird. Die Optimierungsstrategie des „Optimize
Grid“ Operators sieht vor, nacheinander (schrittweise) alle möglichen Parameterkombina-
tionen für einen Trainingsoperator zu durchlaufen und die Konfiguration auszugeben, mit
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denen die größtmögliche Performanz (kleinster Vorhersagefehler) erreicht wird. Die Anzahl
der Optimierungsdurchläufe ist dabei durch die Menge an Parametern sowie deren Stufen
bestimmt. Werden z. B. drei Parameter mit je zwei diskreten Stufen und ein kontinuier-
licher Parameter, dessen Wert in festgelegten Grenzen über 20 Stufen durchlaufen wird,
kombiniert, so ergeben sich 168 einzelne Iterationen.

Der „Optimize Evolutionary“ Operator verfolgt die Suche nach der optimalen Parameter-
konfiguration auf Basis eines evolutionären Algorithmus (s. Bild 44). Damit unterscheidet
er sich grundlegend von der Strategie des „Optimize Grid“ Operators, der quasi blind
nach einem festen Versuchsplan angewandt wird. Streng genommen handelt es sich bei
dem implementierten Operator um einen genetischen Algorithmus, der zu den bekanntes-
ten Vertretern evolutionärer Optimierungsverfahren zählt. Der Algorithmus beginnt mit
der probabilistischen Generierung einer Startpopulation an Individuen. Jedes Individuum
ist durch sein „Genom“ eindeutig beschrieben. Dieses Genom entspricht einer bestimmten
Ausprägung des Parametersets eines zu optimierenden Modells. In der Startpopulation
werden zufällig Elternindividuen selektiert und untereinander rekombiniert, um Kindin-
dividuen zu erzeugen. Das Genom dieser Individuen der zweiten Generation wird einer
zufälligen Mutation unterzogen. Diese Mutation kommt jedoch nur mit einer sehr geringen
Wahrscheinlichkeit zur Anwendung. Sie sichert die Erreichbarkeit aller Punkte im Such-
raum und garantiert eine Grunddiversität in der Gesamtpopulation. Die Performanzen der
mutierten Kindindividuen werden ermittelt und mit denen der Elterngeneration vergli-
chen. Im Falle einer Verbesserung werden einzelne Elternindivduen ausgetauscht. Danach
wiederholt sich das Vorgehen iterativ bis der Algorithmus eine Konvergenz feststellt oder
ein anderes Abbruchkriterium erreicht ist, z. B. eine maximale Anzahl an Generationen.
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erfüllt?

Paarungs-
selektion

Umwelt-
selektion Rekombination

Bewertung Mutation

Bewertung

ja
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Bild 44: Der Ablauf eines evolutionären Algorithmus nach [Wei15].

Für die Operatoren zur Optimierung der Parametersets muss nun eine geeignete Umset-
zung im Data-Mining Prozess festgelegt werden. Hierbei ist wiederum der Grundsatz der
Robustheit zu berücksichtigen. Das betrifft zunächst die Performanzschätzung, die in je-
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der Iteration eines Optimierungsdurchlaufs erfolgt. Um auch hier eine möglichst geringe
Varianz der geschätzten Prognosequalität zu erreichen, wird das in Abschnitt 5.2 entwi-
ckelte Vorgehen für die iterativen Performanzschätzungen innerhalb einer Optimierung
genutzt. Dadurch ergibt sich der in Bild 45 prinzipiell dargestellte Aufbau einer Optimie-
rungseinheit. Die Implementierung dieser Struktur in Rapidminer R© ist unabhängig vom
eingesetzten Optimierungsoperator und der gewählten Trainingsfunktion.
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Bild 45: Der prinzipielle Aufbau der Optimierungseinheit.

Der Ablauf eines Optimierungslaufs beginnt mit der Übergabe der Daten an die Opti-
mierungseinheit. Hier wird zunächst der Optimierungsprozess zur Identifikation des best-
geeigneten Sets an Trainingsparametern gestartet (�). Innerhalb dieses Prozesses werden
die Einstellungen für die Trainingsparameter des entsprechenden Metamodells variiert und
durch eine robuste Performanzschätzung (mehrfach wiederholte 10-fache Kreuzvalidierung)
das sich mit diesen Parametern ergebende Metamodell validiert. Durch eine Rückführung
der Performanzwerte können diese anschließend verglichen werden. Das Parameterset, das
zum Modell mit dem geringsten Vorhersagefehler geführt hat, wird anschließend an einen
Trainingsoperator übergeben (�) der mit den gleichen Trainingsdaten des Optimierungs-
prozesses (�) das optimierte Metamodell erzeugt und dieses anschließend zum Export an
die Optimierungseinheit übergibt. Der Vollständigkeit halber wird neben diesem optimier-
ten Modell das zugehörige Parameterset exportiert.

Beide Teilaspekte, die robuste Performanzschätzung (Abschnitt 5.2) sowie die auf die-
se Methode zurückgreifende Optimierung der Metamodelle (Abschnitt 5.3), werden im
Folgenden als ROPE-Prozess (engl. Robust Optimization and Performance Estimation)
bezeichnet.

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


82 5 Der Selbstlernprozess

5.4 Auswahl des bestgeeigneten Metamodells

Der letzte Schritt des Selbstlernprozesses beinhaltet, wie in Abschnitt 5.1.2 gezeigt, die
Auswahl des bestgeeigneten Metamodells aus einer Grundmenge an verfügbaren Modellen.
Die Formulierung „bestgeeignetes“ Modell wird an dieser Stelle bewusst gewählt, denn
bereits in [Box79] wird festgestellt, dass „alle Modelle falsch, manche aber brauchbar sind“.
Für die Identifikation dieses Modells wird im Folgenden eine Methodik erarbeitet. Um eine
möglichst hohe Flexibilität der Wissensakquisitionskomponente zu gewährleisten, soll die
Methodik unabhängig von der Anzahl der verfügbaren Metamodelle anwendbar sein.

Der ROPE-Prozess trainiert für einen gegebenen Datensatz D eine bestimmte Anzahl M

an Metamodellen und schätzt deren Prognosequalität als Mittelwert x̄Mi
für eines der

in Tabelle 4 angegebenen Gütekriterien. Ein zunächst naheliegender und trivialer Schritt
wäre die Wahl des Modells mit dem geringsten Fehler bzw. der höchsten Prognosegüte. Es
muss jedoch berücksichtigt werden, dass auch das Fehlermaß selbst einem Fehler bzw. einer
Varianz unterliegt, die zudem nicht deterministisch, sondern rein probabilistisch zustande
kommt. Zwei wesentliche Ursachen hierfür, der Einfluss des Aufbaus der Eingangsdaten in
D sowie der des random seeds in der Kreuzvalidierung wurden bereits im Abschnitt 5.2
erläutert. Werden also zwei Metamodelle A und B derart miteinander verglichen, kann
aufgrund der Varianz der Prognosegüte (s. Bild 42) keine verlässliche Aussage getroffen
werden.

Ziel ist es das Modell zu identifizieren, welches sich signifikant von den anderen Mo-
dellen unterscheidet. Ausgangspunkt ist die Annahme, dass zu jedem Metamodell eine
Grundgesamtheit existiert, die die zugrundeliegende Prognosegüte in Form eines Mittel-
werts μMi

beschreibt. Durch die n-malige k-fache Kreuzvalidierung werden Stichproben
{eA1, eA2, . . . , eAk} sowie {eB1, eB2, . . . , eBk} aus beiden Grundgesamtheit entnommen und
daraus die Mittelwerte x̄A und x̄B gebildet (s. Bild 46).

1. Grundgesamtheit
Stichprobe aus 1. Grund-
gesamtheit

2. Grundgesamtheit

Stichprobe aus 2. Grund-
gesamtheit

Gefundene Stichproben-
mittelwertdifferenz

Bild 46: Schematische Darstellung für das Ziehen von Stichproben auf Basis von
Kreuzvalidierungen.

Ein signifikanter Unterschied bedeutet nun, dass zwischen den Mittelwerten μ̄A und μ̄B der
Grundgesamtheiten eine Differenz vorliegt, die mit hoher Wahrscheinlichkeit nicht zufällig
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entstanden ist und auf deren Existenz mithilfe der Mittelwertdifferenz zwischen den Stich-
proben x̄A und x̄B geschlossen werden kann. Die Untersuchung eines solchen Sachverhalts
wird mit dem Begriff Hypothesentest zusammengefasst. Zwischen zwei konkurrierenden
Hypothesen wird auf Basis von Stichproben eine Entscheidung zugunsten einer der beiden
Hypothesen gefällt. Die Literatur unterscheidet zwischen Nullhypothese H0 und Alterna-
tivhypothese H1 [RFHN14]. Entsprechend ihrer Bezeichnung besagt die Nullhypothese,
dass zwischen zwei Merkmalen kein Unterschied vorhanden ist. Wird H0 auf den Vergleich
der beiden Mittelwerte x̄A und x̄B bezogen, können mehrere Hypothesenpaare gebildet wer-
den. Gleichung 5.1 a) und 5.1 b) beschreiben jeweils eine gerichtete Alternativhypothese,
während diese in Gleichung 5.1 c) ungerichtet ist.

H0 : μA − μB = 0 bzw. μA = μB versus

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a) H1 : μA > μB

b) H1 : μA < μB

c) H1 : μA �= μB

(5.1)

Nachdem ein Hypothesenpaar formuliert wurde, erfolgt ein statistischer Test, aufgrund
dessen die jeweilige Tragfähigkeit von H0 bzw. H1 bestimmt wird. Hierzu wird eine Prüf-
größe aus den erhobenen (empirischen) Daten der Kreuzvalidierung berechnet. Wie diese
Berechnung erfolgt, hängt vom jeweiligen Testverfahren ab, wobei jedes Verfahren unter-
schiedliche Anforderungen an die zu analysierenden Daten stellt. Die berechnete Prüfgröße
wird mit ihrer zugrundeliegenden Verteilung verglichen, um festzustellen ob ihr Wert auffäl-
lig hoch oder niedrig ist, denn in diesen Fällen wird das als Beweis gegen die Nullhypothese
gewertet. Die Verteilung der Prüfgröße wird unter der Annahme der Gültigkeit von H0 als
bekannt vorausgesetzt. Je nach Testverfahren wird bspw. von einer Standardnormalvertei-
lung (z-Test) oder einer t-Verteilung (t-Test) der Prüfgröße ausgegangen. Die Grenze, ab
der ein Wert als „auffällig“ gilt, wird als Signifikanzniveau bezeichnet. Der Vergleich der
Prüfgröße mit dem zuvor festgelegten Signifikanzniveau α führt entweder zur Anerkennung
von H0 oder von H1 und zur Ablehnung der jeweils unterlegenen Hypothese. Dabei kann
es passieren, dass bspw. gegen die Nullhypothese entschieden wird, obwohl sie, bezogen
auf die (unbekannten) Grundgesamtheiten der Prognosegüten von Modell A und Modell
B, gültig wäre. Dies wird als Fehler 1. Art bezeichnet, wie in Tabelle 7 dargestellt.

Tabelle 7: Mögliche Fehlerarten bei statistischen Entscheidungen.
Entscheidung

für H0 gegen H0

In Wahrheit gilt H0 korrekte Entscheidung Fehler 1. Art (α-Fehler)
H0 nicht Fehler 2. Art (β-Fehler) korrekte Entscheidung

Ein Fehler 1. Art (α-Fehler) liegt vor, wenn die Nullhypothese, dass zwischen den Mittel-
werten μMA

und μMB
kein Unterschied besteht, verworfen wird. Stattdessen wird fälschli-

cherweise angenommen, dass sich die Mittelwerte signifikant unterscheiden, obwohl dies in
Wirklichkeit nicht zutrifft. Es wird irrtümlich eines der beiden Metamodelle für das besse-
re gehalten. Hier kommt das Signifikanzniveau α ins Spiel, denn es bezeichnet die Wahr-
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scheinlichkeit, mit der die Ablehnung der Nullhypothese zu einem Fehler 1. Art führt. Der
Versuchsleiter kann durch die Festlegung von α das Risiko, einen Fehler 1. Art zu begehen
kontrollieren. Üblich sind Werte von α = 0, 05 oder α = 0, 01 , wobei die Auswirkungen
einer Fehlentscheidung vor jedem Hypothesentest abgewogen werden müssen [CD82].

Eine verbreitete Entscheidungsregel für die Annahme oder Ablehnung von H0 ist der t-Test.
Er wird zudem für kleine Datenmengen empfohlen, wie sie in der vorliegenden Arbeit zu
erwarten sind. Dieser Test verwendet eine Prüfgröße, die unter der Annahme, dass die
Nullhypothese gilt, t-verteilt14 ist. Die Prüfgröße t berechnet sich entsprechend Gleichung
5.2, wobei der Ausdruck (μA − μB) aufgrund der Nullhypothese zu null gesetzt wird.

t = (x̄A − x̄B) − (μA − μB)
sx̄1−x̄2

= (x̄A − x̄B)
sx̄1−x̄2

(5.2)

In dieser Gleichung bezeichnet (x̄A − x̄B) die empirische Mittelwertdifferenz der Stichpro-
ben, sx̄1−x̄2 deren geschätzten Standardfehler und (μA − μB) die theoretische Mittelwert-
differenz der Grundgesamtheiten. Sofern t <tkrit eingehalten wird, gilt das Ergebnis als
nicht signifikant und die Nullhypothese wird akzeptiert. Dennoch ist zu beachten, dass
dies kein Beweis für die Korrektheit der Nullhypothese ist. Im Fall t ≥ tkrit wird von einem
signifikanten Ergebnis gesprochen und H0 zugunsten von H1 abgelehnt. tkrit wird unter
Berücksichtigung des Stichprobenumfangs (Freiheitsgrad) und des Signifikanzniveaus aus
Tabellen ermittelt. Trotz seiner Verbreitung und Eignung für kleine Datenmengen bzw.
Stichproben kann der t-Test für den Selbstlernprozess nicht eingesetzt werden. Der Grund
hierfür liegt in der sogenannten α-Fehlerkumulierung, die grundsätzlich alle Arten statis-
tischer Tests betrifft. Das Risiko, einen Fehler 1. Art (s. Tabelle 7) zu begehen, kumuliert
sich und steigt mit der Anzahl M der zu vergleichenden Metamodelle:

αglobal = 1 − (1 − αeinzel)
1
2 ·M ·(M−1) (5.3)

Werden vier Metamodelle miteinander verglichen (M = 4) so liegt das Gesamtrisiko, eines
der Modelle fälschlicherweise als das bestgeeignete zu bewerten (Fehler 1. Art), bereits bei
αglobal ≈ 26, 5%. Gängige Hilfsmittel sind in diesem Fall die Bonferroni bzw. die Bonfferoni-
Holm Korrektur, bei der eine Aufteilung von αglobal auf die α Werte der einzelnen t-Tests
erfolgt [BA95]. Für eine hohe Anzahl an Metamodellen bedeutet dies, dass die einzelnen
Werte für α so niedrig werden, dass die entsprechenden Nullhypothesen immer seltener ver-
worfen werden, oder nur bei sehr starken Unterschieden in den Stichproben. Wie bereits
erwähnt, soll der Selbstlernprozess eine möglichst hohe Flexibilität aufweisen. Dies bedeu-
tet, dass zum einen eine Vielzahl an Metamodellen für die Analyse der Fertigungsdaten
zur Verfügung stehen muss, da es, wie in Kapitel 2 gezeigt, kein „universelles“ Metamodell
gibt. Zum anderen soll die Wissensakquisitionskomponente in der Lage sein, in Zukunft
weitere Metamodelle aufnehmen und im Selbstlernprozess berücksichtigen zu können. Ein
Vergleich der Metamodellperformanzen auf Basis eines t-Tests ist daher nicht zielführend.
14 t-Verteilungen sind symmetrische, eingipfelige Verteilungen mit einem Erwartungswert μ = 0 und nähern

sich mit zunehmendem Freiheitsgrad einer Standardnormalverteilung an [Roo14].
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Anstatt eines t-Tests wird für die Selbstlernkomponente von Slassy ein zweistufiges Vor-
gehen verfolgt. Zunächst werden mit einer Varianzanalyse (ANOVA, engl. Analysis of
Variances) die Mittelwerte der Performanzschätzer durch einen einzigen Hypothesentest
analysiert. Dabei wird festgestellt, ob sich die Metamodelle überhaupt signifikant von-
einander unterscheiden. Anschließend wird mithilfe eines post-hoc Tests das Metamodell
identifiziert, dessen Performanz sich signifikant von den anderen unterscheidet. Diese Aus-
sage wäre mit einer Varianzanalyse allein nicht möglich (ungerichteter Hypothesentest).

Die Varianzanalyse bringt den Vorteil mit sich, dass nur einmal auf einem Datensatz getes-
tet wird und somit der α-Fehler nicht kumuliert. Zudem gehen in die ANOVA die Werte
aller Datentupel gleichzeitig ein, wodurch die Teststärke15 der ANOVA sehr viel höher
ist als die eines einzelnen t-Tests. Die ANOVA ist ein parametrisches Verfahren zur sta-
tistischen Untersuchung von Mittelwertsdifferenzen. Insbesondere bei mehr als zwei zu
untersuchenden Stichprobengruppen ist sie dem t-Test überlegen, der vom Problem der
α-Fehlerkumulierung betroffen ist. Die untersuchten Gruppen müssen bestimmte Voraus-
setzungen erfüllen, da es sonst zu großen Abweichungen des realen α-Fehlers gegenüber
dem festgelegten Signifikanzniveau kommen kann. So müssen die Stichproben voneinander
unabhängig sein und normalverteilt vorliegen. Eine weitere Voraussetzung ist, dass zwi-
schen den Gruppen annähernd Varianzhomogenität herrscht. Im Kontext der vorliegenden
Arbeit erweist sich die Eigenschaft der ANOVA, nur ungerichtete Hypothesentests zu er-
lauben, allerdings als Nachteil. Wird ein signifikantes Ergebnis nach einer Varianzanalyse
festgestellt und die Nullhypothese verworfen, ist zunächst nur die Aussage gesichert, dass
sich mindestens zwei Mittelwerte statistisch signifikant voneinander unterscheiden. Eine
genauere Aussage ist nicht möglich. Darüber hinaus umfasst eine global formulierte Alter-
nativhypothese („Die Mittelwerte unterscheiden sich.“) alle möglichen Kombinationen von
Unterschieden (größer oder kleiner) zwischen den betrachteten Metamodellperformanzen.
[Ste07; RFHN14]

In einem zweiten Schritt wird daher ein post-hoc Test durchgeführt, der einen paarwei-
sen Vergleich der Performanzkennwerte erlaubt, ohne dass der α-Fehler kumuliert oder
die Teststärke abnimmt. Als besonders geeignet bei vielen paarweisen Vergleichen hat sich
der Tukey’s Honest Significance Difference Test (Tukey’s HSD) erwiesen. Er ermittelt für
jeden paarweisen Vergleich die Mindestdifferenz, die zwischen den jeweiligen Mittelwerten
auftreten muss, damit diese Differenz auf dem zuvor definierten Signifikanzniveau signifi-
kant ist. Errechnet wird daher eine kritische Mittelwertdifferenz, deren Überschreitung auf
eine signifikante Differenz zwischen den verglichenen Gruppen schließen lässt.

Im Rahmen des Selbstlernprozesses ist zunächst auszuschließen, dass die beobachteten
Mittelwertdifferenzen zwischen den Metamodellperformanzen rein zufällig auftreten. Dies
wird durch die ANOVA sichergestellt. Ein post-hoc Test könnte beim paarweisen Vergleich
signifikante Unterschiede feststellen, die aber, global bezogen auf alle Mittelwerte, gar
nicht signifikant sind. Daher muss dem post-hoc immer eine ANOVA vorausgehen. Zudem
benötigt jede Statistik-Software zur Durchführung eines post-hoc Tests Kennwerte aus der

15 Die Sensitivität des Experimentes, einen vorhandenen Effekt identifizieren zu können. [BS10]
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ANOVA, was ein weiterer Grund für die hier festgelegte Reihenfolge ist. Im Folgenden
werden beide Schritte, ANOVA und Tukey’s HSD, detaillierter beschrieben.

5.4.1 Analyse der Varianzen

Ansatzpunkt für die Durchführung einer Varianzanalyse ist die Zerlegung der Gesamtvari-
anz in den Prognosefehlern, die im ROPE-Prozess ermittelt wurden, in systematische und
unsystematische Anteile. Allgemein kann die Varianz als die mittlere Abweichung jedes
einzelnen Werts xi vom Mittelwert x einer Stichprobe mit n Werten verstanden werden:

σ2
x =

∑n
i=1(xi − x̄)2

n − 1 (5.4)

Systematische Einflüsse sind auf real vorhandene Unterschiede in den Prognosefehlern zu-
rückzuführen. Somit wird durch die systematische Varianz σ2

sys der Unterschied zwischen
den Gruppen ausgedrückt. Unsystematische Einflüsse sind meist zufälliger Natur und bei
experimentell ermittelten Daten auf Messungenauigkeiten zurückzuführen. Die Varianz,
die durch unsystematische Einflüsse verursacht wird, heißt Residualvarianz σ2

Res und ent-
spricht der mittleren Abweichung der Einzelfehler ei eines Performanzvektors von dessen
Mittelwert E. Sie wird daher auch als „innere“ Varianz bezeichnet. Unter idealen Bedin-
gungen sollte Varianzhomogenität herrschen, die Residualvarianz der Abweichungen in den
einzelnen Vektoren quasi gleich sein. Jedoch ist dies in der Realität oftmals nicht gegeben.
Daher werden die einzelnen geschätzten Residualvarianzen der Gruppen addiert und durch
die Gruppenanzahl geteilt, um einen Mittelwert zu bilden. Da durch den ROPE-Prozess
in jeder Gruppe bzw. jedem Performanzvektor gleich viele Einzelwerte enthalten sind, gilt
für die Residualvarianz:

σ2
res =

∑M
i=1

∑z
j=1(eji − Ēi)2

M · (z − 1) (5.5)

Zur Berechnung der systematischen Varianz wird die Annahme getroffen, dass die Diffe-
renzen der Performanzen auf real existierende Unterschiede der Prognosequalitäten zurück
gehen. Unter dieser Annahme würde jeder Einzelfehler der Performanzvektoren dem jeweili-
gen Mittelwert entsprechen. Da allerdings auf die Einzelwerte bereits die unsystematischen
Einflüsse wirken, sind auch die Gruppenmittelwerte entsprechend verfälscht. Die systema-
tische Varianz kann daher nicht isoliert berechnet werden und entspricht auch nicht dem
Erwartungswert der Varianz zwischen den Gruppen. Der Erwartungswert der Varianz zwi-
schen gleich großen Gruppen setzt sich zusammen aus der z-gewichteten, systematischen
Varianz und der Residualvarianz:

E(σ2
zwischen) = E(σ2

res) = z · σ2
sys + σ2

res (5.6)

Die Berechnung der Varianz zwischen den Gruppen, oder auch Treatmentvarianz, erfolgt
durch Einsetzen der einzelnen Mittelwerte Ei und des Gesamtmittelwerts G aller Perfor-
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manzvektoren in die Varianzformel 5.4. Die Freiheitsgrade im Nenner ergeben sich aus
der Anzahl der verglichenen Performanzvektoren. Die Quadratsumme der Mittelwertab-
weichungen vom Gesamtmittelwert muss zusätzlich mit der Menge der Einzelwerte in einer
Gruppe multipliziert werden, damit die Genauigkeit der Mittelwerte als Populationsschät-
zer berücksichtigt wird:

σ2
treat = z · ∑M

i=1(Ēi − Ḡ)2

M − 1 (5.7)

Die Varianzen zwischen den Abweichungen in den Performanzvektoren werden nun ins
Verhältnis zu den jeweiligen inneren Varianzen gesetzt. Beide Werte schätzen auf unter-
schiedlichem Weg die gleiche Residualvarianz. Im Fall der einfaktoriellen ANOVA ist im
Erwartungswert der Varianz zwischen den Abweichungen der Performanzvektoren zusätz-
lich die systematische Varianz enthalten (s. Gleichung 5.6) vorausgesetzt, es existiert ein
systematischer (signifikanter) Einfluss auf die geschätzten Performanzen. Der Kennwert,
der sich durch den Vergleich ergibt, wird als F -Wert bezeichnet:

Fdftreat; dfres = σ2
treat

σ2
res

mit dftreat = M − 1; dfres = M · (z − 1) (5.8)

Für den F -Wert können sich zwei mögliche Werte ergeben. Sofern kein systematischer
Einfluss in den Daten und damit auch kein signifikant besseres Metamodell existiert, ge-
hen sowohl in den Zähler als auch in den Nenner nur die „inneren“ Residualvarianzen ein
und es ergibt sich F = 1. Sind die Mittelwerte der Abweichungen in den Performanz-
vektoren nicht nur wegen unsystematischer, statistischer Einflüsse verschieden, sondern
aufgrund eines echten Unterschieds zwischen mindestens zwei Modellen, so ist der Zäh-
ler stets größer als der Nenner und damit F > 1. Wie auch beim t-Test muss bei der
ANOVA eine Signifikanzprüfung des F -Werts erfolgen, um die Nullhypothese der ANOVA
(H0 : μ1 = μ2 = . . . = μM) zugunsten der Alternativhypothese (H1 : ∃i, j : μi �= μj) ver-
werfen zu können. Dies kann erfolgen wenn der berechnete F-Wert größer als der kritische
Wert Fkrit ist. In die tabellarische Ermittelung von Fkrit gehen neben dem Signifikanz-
niveau (i. A. α = 0, 05) auch die Freiheitsgrade für σ2

zwischen und σ2
Res ein. Beim Einsatz

von Statistiksoftware gibt es die Möglichkeit den als „beobachtetes Signifikanzniveau“ be-
zeichneten p-Wert zu berechnen. Dieser entspricht dem kleinsten Wert von α, für den das
Testergebnis gerade noch Signifikanz erreicht bzw. der Wahrscheinlichkeit des errechneten
F -Wertes unter Annahme der Nullhypothese. Gilt p < α wird H0 abgelehnt.

Im Fall, dass zwischen den verglichenen Performanzvektoren kein signifikanter Unterschied
existiert und H0 nicht verworfen werden kann, wird eines der Modelle anhand bestimmter
Kriterien ausgewählt, die in Abschnitt 6.3.5 (S. 109) erläutert werden.Ein signifikantes
Ergebnis führt direkt zum nächsten Schritt, dem post-hoc Test mittels Tukey’s HSD.
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5.4.2 Durchführung des post-hoc Tests

Beim post-hoc Test nach Tukey erfolgt ein paarweiser Vergleich der Vorhersagefehler aller
Metamodelle. Die dabei ermittelte Differenz der Performanzkennwerte muss einen zuvor
berechneten Mindestwert (Tukey’s Honest Significant Difference, HSD) überschreiten, da-
mit sie als statistisch signifikant gilt. Diese Differenz ist dann auf einem zuvor definierten
α-Niveau signifikant und das Risiko die Nullhypothese irrtümlicherweise zu verwerfen (Feh-
ler 1. Art) stets geringer als dieses Niveau. Der post-hoc Test nach Tukey errechent also eine
kritische Mittelwertdifferenz, deren Überschreitung einer signifikanten Mittelwertdifferenz
zwischen den zwei betrachteten Metamodellen gleichkommt.

Tukey’s HSD wird über den Kennwert q ermittelt, der dem t-Wert beim t-Test entspricht
und ähnlich definiert ist:

q(M ;df innerhalb) =
x̄Mi

− x̄Mj√
σ2

Res

z

; ∃i, j mit i �= j (5.9)

Dem q-Wert liegt eine eigene Verteilung zugrunde, die sog. „Studentized-Range“-
Verteilung, da er sich auf mehrfache Mittelwertsvergleiche bezieht. Im Gegensatz zur
t-Verteilung ist es hier möglich, einen kritischen Wert qkrit in Abhängigkeit von der An-
zahl der betrachteten Performanzvektoren zu bestimmen. Dies ist der eigentliche Grund,
weshalb es beim Einsatz von Tukey’s HSD zu keiner Kummulierung des α-Fehlers kommt.
Die Residualvarianz wird aus der zuvor durchgeführten ANOVA übernommen. Nach der
Bestimmung des kritischen Werts qkrit und Umordnung der Gleichung 5.9, kann für jeden
paarweisen Vergleich direkt Tukey’s HSD berechnet werden:

x̄Mi
− x̄Mj

= HSD = qkrit(α;M ;dfinnerhalb) ·
√

σ2
res

z
(5.10)

Diese kritische Differenz wird mit der tatsächlichen Differenz zwischen den Performanz-
vektoren verglichen. Wird festgestellt, dass die tatsächliche Differenz zwischen zwei Me-
tamodellperformanzen größer als Tukey’s HSD ist, so besteht ein statistisch signifikanter
Unterschied zwischen diesen beiden Modellen und der kleinere Vorhersagefehler des „bes-
seren“ Modells beruht nicht auf rein-zufälligen Effekten.
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6 Das selbstlernende Assistenzsystem
Slassy

Im folgenden Kapitel wird das selbstlernende Assistenzsystem, kurz Slassy, mit allen
Komponenten und deren Zusammenwirken dargestellt. Neben der Gesamtstruktur wird
zu Beginn die Integration von Slassy in das CAD-Umfeld als Arbeitsumgebung des Kon-
strukteurs vorgestellt. Anschließend liegt das Hauptaugenmerk auf der Umsetzung des in
Kapitel 5 entwickelten Selbstlernprozesses in Form der Wissensakquisitions- bzw. Selbst-
lernkomponente. Die Beschreibungen der Synthese- und Analysewerkzeuge sowie des Pro-
duktdatenmodells und dessen Anbindung an Slassy bilden den Abschluss des Kapitels.

6.1 Integration in das Arbeitsumfeld der Benutzer

Wie in Abschnitt 1.2 dargestellt, gehören zur Zielgruppe des selbstlernenden Assistenz-
systems Betriebsmittelkonstrukteure bzw. Konstrukteure von Bauteilen mit komplexen
Nebenformelementen (s. Bild 31, S. 56), die mittels Blechmassivumformung gefertigt wer-
den sollen. Während der Entwicklung dieser Bauteile sind unterschiedliche Design for X
Aspekte zu berücksichtigen. Unter anderem ist die fertigungsgerechte Gestaltung (s. Ab-
schnitt 2.3.1) nach einer Geometrieänderungen zu überprüfen, was unter den herrschenden
Randbedingungen in der Entwicklung (Zeit- und Kostendruck) zügig, jedoch gleichzeitig
auch verlässlich erfolgen muss.

Wie gehen die Benutzer bei der Design for Manufacture Überprüfung vor und wie muss
Slassy aufgebaut und integriert werden, damit eine wissensbasierte Unterstützung sicherge-
stellt ist? Bei der Beantwortung dieser Frage hilft ein Blick auf ein Detail des in Abschnitt
2.1.1 dargestellten Konstruktionsprozesses. Kern des Konstruierens ist ein iteratives Vorge-
hen mit ständigem Wechsel zwischen Produktsynthese und -analyse [FG13]. Nach [Web12]
beinhaltet die Synthese, ausgehend von vorgegebenen geforderten Eigenschaften, die Be-
stimmung der Merkmale des Bauteils. Hierbei umfasst das „Bestimmen“ zum einen die
Definition relevanter Merkmale (qualitatives Gestalten der Baustruktur, Geometrie- und
Materialfestlegung) und zum anderen die Zuweisung konkreter Werte für bereits definierte
Merkmale (Dimensionierung). In der sich anschließenden Analyse werden für das „synthe-
tisierte“ Bauteil die Eigenschaften und das sich daraus ergebende Verhalten ermittelt bzw.
vorhergesagt, sollte das Bauteil physisch (z. B. als Prototyp), noch nicht existieren [Web05].
Wird das geforderte Verhalten nicht erfüllt, so erfolgt in einem erneuten Syntheseschritt
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90 6 Das selbstlernende Assistenzsystem Slassy

eine Anpassung der Merkmale, bis schließlich die an das Bauteil gestellten Anforderungen
erfüllt sind.

Übertragen auf den Kontext dieser Arbeit umfasst die Synthese blechmassivumgeformter
Bauteile zunächst die Auswahl eines Hauptformelements und eines oder mehr Nebenfor-
melemente (s. Abschnitt 3.3). Das Hauptformelement und insbesondere das Nebenform-
element als Träger der Hauptfunktion werden anschließend feingestaltet. Dabei wählt der
Konstrukteur die Merkmale des Bauteils so, dass zum einen die gewünschten Funktionen
erfüllt und zum anderen die Grenzen der relevanten Prozessparameter Blechmassivumfor-
mung eingehalten werden (s. Abschnitt 3.2). Dies ist in Bild 47 gezeigt. Die Einbindung von
neuen Haupt- oder Nebenformelementen nutzt Funktionen des CAD-Systems, ist dadurch
besonders benutzerfreundlich und unterstützt die Standardisierung von Konstruktionspro-
zessen.

Produktsynthese

Produktanalyse

FE-Analyse
der Sperrverzahnung

im Betrieb
(s. [BW14, BDW14])

Prozessanalyse

Umformsimulation
des BMU Bauteils
(s. [GSH+16])

iterative Wechsel
zwischen Synthese

und Analyse 

iterative Wechsel
zwischen Synthese

und Analyse 

Erzeugen
verschiedener

Produktvarianten

Bild 47: Wechselspiel zwischen Produktsynthse und -analyse sowie Umformprozessanalyse.

Die Analyse der Funktionserfüllung wird in den meisten Fällen vom Konstrukteur selbst
durchgeführt, beispielsweise ein Tragfähigkeitsnachweis einer Verzahnung nach DIN 3990
oder eine FEM-basierte Simulation von verschiedenen Betriebszuständen, wie bspw. in
[BDW14; BW14]. Die DfM-Analyse von blechmassivumgeformten Bauteilen hingegen
kann, wie in Kapitel 4 dargestellt, auf herkömmliche Weise (s. Abschnitt 2.3, S. 34) nicht
mehr vom Konstrukteur geleistet werden, denn Spezialsoftware zur simulativen Umform-
prozessabsicherung beherrscht im Regelfall nur der Fertigungsexperte und Konstruktions-
richtlinien stehen für die Blechmassivumformung (noch) nicht zur Verfügung. Sowohl die
Synthese als auch die wissensbasierte Analyse von blechmassivumgeformten Bauteilen wer-
den von Slassy direkt im CAD-System umgesetzt.

Damit Slassy den Konstrukteur bei der Design for Manufacture Analyse wissensbasiert
unterstützen kann, muss das fertigungsrelevante Konstruktionswissen, bevor es ihm zur
Verfügung gestellt wird, erhoben werden. Das geschieht durch den in Kapitel 5 entwickel-
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ten Selbstlernprozess, der in der sog. Selbstlernkomponente umgesetzt wird. Der Selbst-
lernprozess basiert auf Methoden der Wissensentdeckung in Datenbanken (KDD, engl.
Knowledge Discovery in Databases). Für die Benutzerakzeptanz wird der KDD-basierte
Selbstlerprozess als besonders kritisch erachtet, denn dadurch kommt ein Aspekt hinzu,
der untypisch ist für Konstruktions- oder Produktentwicklungsabteilungen. Muss der Kon-
strukteur zur Umsetzung des Selbstlernprozesses ein spezielles KDD-Tool zusätzlich zu den
bereits eingesetzten Konstruktionswerkzeugen (CAD, PLM, Tabellenkalkulation etc.) be-
herrschen, wird dies nicht zu einem nachhaltigen Einsatz des Assistenzsystems beitragen.
Ein Wissensaustausch zwischen Konstruktion und Fertigung würde nicht stattfinden, eine
Alterung von Wissen wäre die Folge.

Um dies zu vermeiden, übernimmt Slassy, wie in Bild 48 dargestellt, für den Anwender den
Großteil der automatischen Wissensakquisition, die an den KDD-Prozess nach [FPSS96]
angelehnt ist. Dieser besteht aus neun Phasen, die im Abschnitt 2.4.1 (S. 42) detailliert
beschrieben sind.

1 Datenauswahl

2Vorverarbeitung

3Transformation

4
Data-Mining

und Modellauswahl

5 Interpretation, Nutzung

Benutzer

Slassy
Selbstlernendes 
Assistenzsystem

Bild 48: Aufteilung der KDD-Prozessschritte nach [FPSS96] zwischen Benutzer und Slassy.

Der erste Schritt erfordert Hintergrundwissen sowohl über den Fertigungsprozess als auch
über das Produkt und dessen Funktionen. Konstrukteur und Fertigungsingenieur müssen
gemeinsam Attribute und Label (s. Abschnitt 2.4.2, S. 43) definieren und eine Strate-
gie für die Datenerhebung entwickeln. Eine rechnerunterstützte Umsetzung dieses Schritts
im Rahmen dieser Arbeit wird nicht verfolgt, da er kognitive Fähigkeiten erfordert, die
nicht durch Maschinen geleistet werden können. Zum anderen existiert für die Planung
von Versuchen bereits eine Vielzahl probater Werkzeuge (z. B. Minitab, Cornerstone, R,
siehe [Mat05; SvH10]). Das Zusammenführen der Daten und deren Vorverarbeitung ist
ein Schritt, der teilweise außerhalb von Slassy durchgeführt werden kann. Dazu gehört
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bspw. die Erstellung einer Tabelle mit den Versuchs- oder Simulationsdaten in Excel R©.
Die Zuordnung der Daten zu einer bestimmten Produktinstanz (z. B. „tiefegzogener Napf
mit offenem Mitnehmer“) wird durch das in Slassy implementierte Produktmodell (s. Ab-
schnitt 6.6) sichergestellt, ebenso wie die Übergabe an das KDD-Tool für den folgenden
Schritt Datenreduktion und -abbildung. Die erste, im Rahmen dieser Arbeit entwickelte
Version von Slassy ist mit einer Grundmenge an Data-Mining Algorithmen ausgestattet
(s. Abschnitt 6.3.1), mit der der Anwender bereits effektiv arbeiten kann. Eine Erweite-
rung um zusätzliche Algorithmen kann jederzeit und mit geringem Aufwand durchgeführt
werden. Die Kernelemente des Selbstlernprozesses, der ROPE-Prozess (s. Abschnitte 5.2
und 5.3) und die 2-stufige Modellauswahl (s. Abschnitt 5.4), sind den Schritten sieben
und acht zugeordnet. Für den letzten Schritt lässt sich erneut eine Aufgabenteilung zwi-
schen Assistenzsystem und Nutzer feststellen. Während Slassy das akquirierte Wissen in
der Wissensbasis abspeichert und damit zugänglich macht, ist der Konstrukteur nun in der
Lage dieses Wissen für seine DfM-Analysen zu nutzen.

6.2 Die Komponenten und ihr Zusammenwirken

Die dargestellte Integration von Slassy in das Arbeitsumfeld des Konstrukteurs wird durch
die einzelnen Komponenten des Assistenzsystems und deren Interaktion während der Be-
dienung sichergestellt. Die Struktur der Komponenten folgt dem Grundgedanken des Kon-
struktionssystems mfk (s. Abschnitt 2.2.3, S. 27), mit einem Synthese- und einem Analyse-
teil, die über ein Produktmodell miteinander gekoppelt sind. Der wesentlichste Unterschied
zum KSmfk besteht in der Ausführung des Wissensakquisitionstools in Form der Selbst-
lernkomponente sowie in der Nutzung eines kommerziellen CAD-Systems (CATIA V5)
zur Geometrieerzeugung und -verwaltung. Letzteres hat sich bereits in den Arbeiten von
[War01] bewährt. Bild 49 fasst die einzeln Komponenten von Slassy zusammen.

Im Syntheseteil des Konstruktionssystems ermöglicht der Formelemente- und Merkmal-
editor das Arbeiten mit den Haupt- und Nebenformelementen. Dem Konstrukteur steht
ein Vorrat an Konstruktionselementen (Verzahnungen, Mitnehmer etc.) und Anordnungs-
möglichkeiten (Rotationssymmetrie, axiale oder radiale Positionierung, freie Anordnung
etc.) zur Verfügung, der an die Erfordernisse bestimmter Bauteilgruppen angepasst ist. Da
ein kommerzielles CAD-System zur Visualisierung der Bauteile zum Einsatz kommt, wird
dessen Funktion zur Festlegung von benutzerdefinierten Features (UDF, engl. user defined
feature) gleichzeitig zur Definition neuer Haupt- oder Nebenformelemente genutzt. Bei je-
dem Start des Assistenzsystem wird die Existenz neu definierter Formelemente geprüft
und entsprechende Funde in die Benutzeroberfläche des Synthesewerkzeugs integriert. Die
Verwendung eines kommerziellen CAD-Systems zur Produktvisualisierung und Modell-
speicherung bietet außerdem den Vorteil, dass die digitale Prozesskette der Produktent-
stehung unterbrechungsfrei bleibt. Das CAD-Modell eines feingestalteten Bauteils kann
somit direkt an nachfolgende Stakeholder (z. B. Arbeitvorbereitung, Qualitätsmangement,
Prototypenbau) übergeben werden.
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multidimensionale
Datenbasis

multidimensionale
Wissensbasis

Produkt
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ge
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Produkt
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is

Selbstlern-
komponente

KDD-Prozess

Metamodell

Produkt- & Prozessdatenmodell

Simulationsstudien
und Experimente

Datenakquise

Selbstlernendes Assistenzsystem

AnalysetoolSynthesetool
CAD-System

Bild 49: Übersicht der Komponenten von Slassy und ihrer Interaktionen.

Für die wissensbasierte Design for Manufacture Analyse der Bauteilentwürfe wechselt der
Benutzer in den Analyseteil des Assistenzsystems. Sofern für eine Bauteilvariante bereits
relevante Zielgrößen definiert wurden, Daten vorhanden sind und der Selbstlernprozess ab-
geschlossen ist, greift das Analysetool auf das CAD-Modell und die Wissensbasis im PPDM
zu. Das CAD-Modell enthält die aktuelle Bauteilkonfiguration (Merkmalsausprägungen),
die an die Metamodelle in der Wissensbasis zur Berechnung der Zielgrößen übergeben wird.
Der Inferenzmechanismus von Slassy wurde im Rahmen dieser Arbeit entwickelt und nutzt
die Methode der regulären Ausdrücke (s. [GL10; LR14]), um die von der Wissensbasis an
das Analysetool übergebenen Metamodelle korrekt auszuwerten. In das Analysetool ist
ferner eine Erklärungskomponente integriert, die dem Benutzer für jede Zielgröße das je-
weils gültige Metamodell darstellt. So kann die Berechnung des Analysetools ggf. händisch
überprüft werden.

Der Selbstlernkomponente nimmt eine zentrale Rolle in der Gesamtstruktur ein. Bei bishe-
rigen Entwicklungen zum KSmfk wurde das Konstruktionswissen über graphische Editoren
und Benutzeroberflächen ([Bac97]) oder direkt bei der Implementierung des Systems im
Anschluss an Experteninterviews und Literaturrecherchen eingepflegt ([Kra92; War01]).
Slassy hingegen akquiriert das konstruktionsrelevante Wissen selbstständig aus Daten der
Fertigungsprozessentwicklung, die zuvor vom Anwender über eine flexible Benutzerschnitt-
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stelle importiert wurden. Bereits vorhandene Daten können aufgerufen, angepasst und für
einen weiteren Selbstlernprozess genutzt werden. Damit die Daten den späteren Meta-
modellen korrekt zugeordnet werden, führt die Selbstlernkomponente den Benutzer durch
einen Workflow für die Definition der Attribute und Label. Zur Sicherstellung der Daten-
konsistenz werden die vom Benutzer definierten Attribute mit den im UDF hinterlegten
Parametern abgeglichen.

Daten, die im Selbstlernprozess verarbeitet werden sind im Produkt- und Prozessdaten-
modell (PPDM) des Assistenzsystems gespeichert. Das Produkt- und Prozessdatenmodell
erfüllt dabei die Funktion der hierarchischen Gliederung aller Fertigungsdaten über mehre-
re Ebenen vom Allgemeinen ins Detail. So kann beispielsweise ein blechmassivumgeform-
tes Bauteil aus mehreren Formelementen bestehen und jedes Formelement ist seinerseits
durch verschiedene Parameter (Merkmale) beschreibbar. Es werden nur die geometrie-
beschreibenden Parameter verwaltet und nicht etwa die CAD-Geometrie mittels bestehen-
der Modellierungstechniken (z. B. CSG, B-Rep oder Hybridmodelle, s. [Vaj09]) repräsen-
tiert. Hierzu wird auf das CAD-System zurückgegriffen. Neben den Geometrieparametern
werden auch nichtgeometrische Informationen wie die Ergebnisse und Randbedingungen
von Umformsimulationen (z. B. Reibverhältnisse, Umformgeschwindigkeit, Werkzeugkon-
zept) oder Umformexperimenten (z. B. Schmierstoffe, Temperatur) im Produktmodell ge-
speichert. Nach erfolgreich durchlaufenem Selbstlernprozess wird der analysierten Bauteil-
variante (z. B. „Ronde mit Außenverzahnung“) im Produkt- und Prozessdatenmodell das
akquirierte Wissen zugewiesen. Die multidimensionale Wissensbasis (s. Abschnitt 6.6.1)
ist somit in das Produkt- und Prozessdatenmodell integriert. Dies erleichtert den Zugriff
auf die Daten- und Informationsobjekte, da nur die Methode der SQL-Datenbankanfrage
genutzt wird.

6.3 Die Selbstlernkomponente

Die Selbstlernkomponente ist in der Lage, aus den Daten der Fertigungsprozessentwicklung
Wissen, repräsentiert in Form sogenannter Metamodelle, automatisch zu akquirieren. Die
Bezeichnung „selbstlernend“ bezieht sich auf die Fähigkeit, durch geeignete statistische
Verfahren in einer Grundmenge an Metamodellen das jeweils bestgeeignete Modell robust
und ohne Eingriff des Benutzers zu identifizieren. Der schematische Ablauf des in Kapitel 5
entwickelten Selbstlernprozesses ist in Bild 50 dargestellt.

Die detaillierte Erläuterung der genannten Schritte wird auf die Kapitel 6 und 7 aufgeteilt,
da einzelne Aspekte im Rahmen des Anwendungsbeispiel anschaulicher dargestellt werden
können. Der Fokus der folgenden Abschnitte liegt auf den eingesetzten Metamodellen sowie
der Umsetzung des Selbstlernprozesses im KDD-Werkzeug Rapidminer R© sowie in Matlab R©.
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Bild 50: Ablauf des Selbstlernprozesses im Assistenzsystem.

6.3.1 Auswahl der eingesetzten Metamodelle

In der Literatur findet sich eine breites Spektrum an Algorithmen, die für die Erstel-
lung eines Metamodells genutzt werden können. Es gilt jedoch zu berücksichtigen, dass
der Benutzer in der Lage sein muss, das akquirierte Wissen, repräsentiert durch die Me-
tamodelle, über die Erklärungskomponente interpretieren zu können (s. Abschnitt 4.2).
Hinsichtlich dieser Interpretation von automatisch erhobenem Wissen werden zwei Ar-
ten der Modellrepräsentation unterschieden. Neben einfach abbildbaren Zusammenhängen
(z. B. Contraints, Regeln), existieren Modelle, deren „innerer“ Aufbau zu komplex für eine
nachvollziehbare Darstellung ist. Diese werden im Allgemeinen als „Black-Box“ Modelle
bezeichnet [Ert13; HKP12]. Hintergrund ist, dass der Benutzer die Attribute vorgibt und
das Black-Box Metamodell die entsprechende Vorhersage für das Label trifft. Dabei kann
bspw. nicht festgestellt werden, ob und mit welcher Gewichtung einzelne Attribute in die
Berechnung eingehen. Jede Vorhersage des Labels bleibt intransparent. Beispiele für derar-
tige Modelle sind künstliche neuronale Netze (s. [Ert13]), Support Vector Machine (SVM,
s. [SC08]) oder Kriging (s. [OW15]). Bild 51 stellt beide Modellarten gegenüber.

Rude [Rud98] stellt fest, dass von den verfügbaren Wissensrepräsentationsarten Cons-
traints (ugs. Formeln) und Regeln für Menschen besonders leicht zu formulieren und
dementsprechend gut zu interpretieren sind. In die Selbstlernkomponente werden daher Me-
tamodellalgorithmen integriert, die diesen Repräsentationsarten zugeordnet werden kön-
nen.

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


96 6 Das selbstlernende Assistenzsystem Slassy

x1

x2

x3
…

Black-Box Modell:

Black-Box
Modell, z.B. 
Künstliches
Neuronales

Netz

y

Eingabewerte Ausgabewert

x1

x2

x3
…

Interpretierbares Modell:

z.B. Constraint

y

Bild 51: Gegenüberstellung eines Black-Box und eines durch den Menschen interpretierba-
ren Modells.

Lineare Regression

Lineare Regressionsmodelle werden durch die Bestimmung von (A + 1) unbekannten Re-
gressionskoeffizienten αi für die lineare Funktion in Gleichung 6.1 trainiert. Jedem Attribut
ist ein Regressionskoeffizient zugeordnet. Ziel ist die Minimierung des Fehlers e (Residuum)
zwischen der wahren Größe y des Labels in den Trainingsdaten (mit N > A Datentupeln)
und der Vorhersage ŷ [JS11].

ŷ = α0 +
A∑

i=1
αixi (6.1)

Die Berechnung der Koeffizienten αi erfolgt nach der Methode der kleinsten Quadrate in
Gleichung 6.2. Aus der Forderung, dass die partiellen Ableitungen der Gleichung 6.2 Null
ergeben müssen ∂g/∂αj = 0, kann das lineare Gleichungssystem 6.3 mit N Gleichungen
für (k+1) unbekannte Koeffizienten erzeugt werden.

min
N∑

i=1
(yi − ŷi)2 = min

N∑
1

⎛
⎝yi − α0 −

A∑
j=1

αjxij

⎞
⎠

2

= min g(α0, . . . , αk) (6.2)

Dieses Gleichungssystem kann wie in (6.4) gezeigt in Matrixschreibweise anschaulich dar-
gestellt werden.

y = Xα + e (6.3)

y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎥⎥⎦

; X =

⎡
⎢⎢⎢⎢⎢⎣

1 x11 x12 . . . x1A

1 x21 x22 . . . x2A

1 ... ... ... ...
1 xN1 xN2 . . . xNA

⎤
⎥⎥⎥⎥⎥⎦

; α =

⎡
⎢⎢⎢⎢⎢⎣

α1

α2
...

αN

⎤
⎥⎥⎥⎥⎥⎦

; e =

⎡
⎢⎢⎢⎢⎢⎣

e1

e2
...

eN

⎤
⎥⎥⎥⎥⎥⎦

(6.4)
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Zur Lösung des Problems wird der Vektor α mit den Schätzern für die kleinsten Quadrate
gesucht, der die Minimalbedingung (6.2) erfüllt. Mit der Annahme E = ∑(yi − ŷi)2 gilt
dann (6.5), mit der zusätzlichen Bedingung aus (6.6).

E = eT e = (y − Xα)T (y − Xα) = yT y − 2αT XT y + αT XT Xα (6.5)

∂E

∂α
= −2XT y + 2XT Xβ̂

!= 0 (6.6)

Unter der Bedingung, dass X eine reguläre Matrix ist, kann (6.6) nach dem unbekannten
Vektor mit den Regressionskoeffizienten α aufgelöst werden:

α̂ = (XT X)−1XT y (6.7)

Dies führt zur linearen Regressionsgleichung für die Vorhersage des Labels:

ŷ = f̂(x) = xT α̂ = α̂0 +
A∑

i=1
α̂ixi (6.8)

Polynominale Regression

Häufig beschreiben erhobene Daten nichtlineare Zusammenhänge zwischen den Attribu-
ten und dem Label. Da der Anwender des selbstlernenden Assistenzsystem nicht mit der
aufwendigen Datenanalyse betraut werden soll, muss gewährleistet sein, dass nichtlineares
Prozessverhalten durch Slassy korrekt identifiziert und bei der automatischen Wissensak-
quisition berücksichtigt wird. Aus diesem Grund wird neben der linearen eine polynomiale
Regression in die Selbstlernkomponente integriert. Die Regressionskoeffizienten αi entspre-
chen denen des linearen Regressionsmodells in Abschnitt 6.3.1. Hinzu kommen die Koeffi-
zienten αii für die Quadrate aller Attribute sowie die Koeffizienten αij für die sogenannten
Interaktionsterme. Mit diesen können verstärkende Wechselwirkungen zwischen Attributen
beschrieben werden.

ŷ = α0 +
A∑

i=1
αixi

︸ ︷︷ ︸
linearer Term

+
A∑

i=1
αiix

2
i

︸ ︷︷ ︸
quadr. Term

+
A∑

i=1

A∑
j=i+1

αijxixj

︸ ︷︷ ︸
Interaktionsterm

+ e (6.9)

Die polynomiale Regression aus (6.9) lässt sich ebenfalls in Matrixschreibweise ausdrücken
(6.10). Die Einträge der Koeffizientenmatrix B̂ ergeben sich entsprechend des Vorgehens
bei der linearen Regression aus der Methode der kleinsten Quadrate in (6.2) und entspre-
chend der Bedingung in (6.6).

ŷ = α0 + x′α + x′Bx mit
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α =

⎛
⎜⎜⎜⎜⎜⎝

α1

α2
...

αN

⎞
⎟⎟⎟⎟⎟⎠

; B =

⎡
⎢⎢⎢⎢⎢⎣

α11 1
2α12 . . . 1

2α1A

α22 . . . 1
2α2A

. . . ...
sym. 1

2αNA

⎤
⎥⎥⎥⎥⎥⎦

; x =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

xN

⎞
⎟⎟⎟⎟⎟⎠

(6.10)

Ein höherer Polynomgrad als zwei (quadratisches Polynom) ist im Allgemeinen nicht zweck-
mäßig, da solche extrem nichtlinearen Zusammenhänge in technischen Systemen äußerst
selten auftreten. Zudem würden hochgradige Polynome nicht die Forderung erfüllen, ohne
Hilfsmittel (z. B. Visualisierungswerkzeug) durch den Benutzer interpretierbar zu sein. Die
polynomiale Regression zeichnet sich dadurch aus, dass die Trainingsdaten an den Stütz-
stellen nicht exakt abgebildet, sondern bestmöglich angenähert (approximiert) werden.
Dies verhindert zum einen die Überanpassung des Metamodells (s. Abschnitt 2.4.2) an die
Trainingsdaten. Zum anderen wird durch die Approximation der Einfluss von Ungenau-
igkeiten in den Daten abgeschwächt. Diese sind bei experimentellen Daten unvermeidbar
(stochastische Abweichungen) und auch Simulationsdaten sind aufgrund von Modellver-
einfachungen mit numerischen Fehlern behaftet.

WEKA M5P Regressionsbaum

Der Nachteil von polynomialen Regressionsmodellen, mit steigendem Polynomgrad schlech-
ter interpretierbar zu sein, kann durch sogenannte lokale lineare Modelle ausgeglichen
werden. Für das Training solcher Modelle steht im Rapidminer R© die integrierte Bibliothek
WEKA (Waikato Environment for Knowledge Analysis) zur Verfügung. Die bekanntes-
ten Vertreter von lokalen Metamodellen sind Regressionsbäume und Modellbäume. Beide
basieren auf Entscheidungsbaumalgorithmen, die ursprünglich für Klassifikationsaufgaben
entwickelten wurden (z. B. C4.5, CART).

Das Training eines Regressionsbaums gleicht zu Beginn dem eines Entscheidungsbaums.
Nach dem „teile-und-herrsche“ Prinzip wird der Trainingsdatensatz anhand von Werten der
Attribute in Teildatensätze unterteilt (engl. split) (s. Bild 52). Welches Attribut dabei zur
Definition eines Splits gewählt und welcher Attributwert zur Unterteilung des Datensatzes
festgelegt wird, hängt vom verwendeten Algorithmus ab, ebenso wie das abschließende pru-
ning, das „Stutzen“ des Baums, das Überanpassung verhindert. Auf die Algorithmen soll
hier nicht eingegangen werden, weiterführende Informationen sind [WEH11; Qui92; Qui93]
und [BFSO84] zu entnehmen. Den Blättern eines erstellten Baums können anschließend
Teilmengen an Datentupeln zugeordnet werden, die zusammengefasst den Originaldaten-
satz ergeben. Für einen Modellbaum werden die einzelnen Datentupel in den Blättern
genutzt, um ein lineares Modell zu trainieren, das nur für den jeweiligen Zweig und die
entsprechenden Werte der Attribute Gültigkeit besitzt. Diese linearen Modelle sind in
Bild 52 mit „LM num: 1“, „LM num: 2“ usw. gekennzeichnet. Zur Erstellung eines Regres-
sionsbaums wird im jeweiligen Blatt der Mittelwert des Labels als einfachster Schätzer
hinterlegt. Um Unstetigkeiten zwischen benachbarten Metamodellen zu vermeiden, wer-
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den Vorhersagen geglättet (engl. smoothing). Diese Glättung ist besonders bei Modellen
wichtig, die auf kleinen Trainingsdatensets beruhen.

M5 pruned model tree:
(using smoothed linear models) 

a2 <= 4.737 : 
| a2 <= 0.963 : 
| | a2 <= 0.669 : LM1 (15/3.042%) 
| | a2 > 0.669 : LM2 (12/2.574%) 
| a2 > 0.963 : 
| | a3 <= 3.992 : LM3 (26/3.313%) 
| | a3 > 3.992 : LM4 (51/13.677%) 
a2 > 4.737 : 
| a1 <= 4.896 : 
| | a1 <= 1.253 : 
| | | a2 <= 6.428 : LM5 (5/2.882%) 
| | | a2 > 6.428 : LM6 (7/4.948%) 
| | a1 > 1.253 : 
| | | a3 <= 6.863 : LM7 (27/6.364%) 
| | | a3 > 6.863 : LM8 (13/12.692%) 
| a1 > 4.896 : 
| | a3 <= 5.826 : LM9 (20/11.667%) 
| | a3 > 5.826 : LM10 (24/11.292%) 

LM num: 1 label = 9.051 * a1 + 23.6323 * a2 + 7.0861 * a3 + 0.4671 * a4 - 0.5273 * a5 - 83.2258 
LM num: 2 label = 10.1671 * a1 + 24.4886 * a2 + 8.2389 * a3 + 0.4671 * a4 - 0.5273 * a5 - 91.3816 
LM num: 3 label = 15.0693 * a1 + 30.5883 * a2 + 14.1799 * a3 + 0.4671 * a4 - 0.5273 * a5 - 143.9646 
LM num: 4 label = 22.0777 * a1 + 44.4208 * a2 + 14.9803 * a3 + 0.4671 * a4 - 0.5273 * a5 - 222.9581 
LM num: 5 label = 32.4628 * a1 + 28.3314 * a2 + 16.9035 * a3 + 1.3889 * a4 - 2.1412 * a5 - 220.9217 
LM num: 6 label = 33.7846 * a1 + 28.0643 * a2 + 16.9035 * a3 + 1.3889 * a4 - 2.1412 * a5 - 216.1791 
LM num: 7 label = 37.6627 * a1 + 34.1818 * a2 + 25.2041 * a3 + 1.3889 * a4 - 1.3389 * a5 - 298.1401 
LM num: 8 label = 46.686 * a1 + 39.577 * a2 + 20.0424 * a3 + 1.3889 * a4 - 1.3389 * a5 - 324.9269 
LM num: 9 label = 41.5359 * a1 + 52.1241 * a2 + 51.6383 * a3 + 0.1006 * a4 - 0.5653 * a5 - 564.0883 
LM num: 10 label = 55.6149 * a1 + 62.2628 * a2 + 53.0491 * a3 + 0.2451 * a4 - 0.5653 * a5 - 759.9052 

Number of Rules : 10

a2

a2 a1

a2 a3
a1

a3

LM2LM1 LM3 LM4 a2 a3 LM9 LM10

LM6LM5 LM7 LM8

<=4.737 >4.737

<=0.963 >0.963

<=0.669 >0.669 <=3.992 >3.992

<=4.896 >4.896

<=1.253 >1.253

<=6.428 >6.428 <=6.863 >6.863

<=5.826<=5.826 >5.826

Bild 52: Weka M5P Regressionsbaum in textueller und graphischer Darstellung.

Ein besonderer Vorteil eines M5P-basierten Metamodells besteht in der gleichzeitigen
Verwendung diskreter und kontinuierlicher Attributwerte. Dies gilt ebenso für die M5R-
basierten Modelle. Während Trainingsdaten für lineare und polynomiale Regressionsfunk-
tionen nur kontinuierliche Variablen enthalten dürfen, können Regressions- und Modellbäu-
me auch diskrete Werte verarbeiten. Beispiele für kontinuierliche Variablen sind Maße für
Längen, Winkel oder Radien. Durch den Fertigungsexperten wählbare Konzepte für Werk-
zeugarmierungen, verschiedene einsetzbare Schmierstoffe oder Ziehringprofile sind Beispiele
für diskrete Attribute.

WEKA M5R Regelgenerator

Da M5P Regressionsbäume auf Entscheidungsbäumen beruhen, können sie trotz Pruning
eine sehr komplexe Struktur mit vielfachen Verzweigungen annehmen. Prinzipiell lässt sich
der Pfad von der Wurzel des Regressionsbaums bis zu einem Modell in einem Blatt auch
als Regel formulieren. Bei komplexen Strukturen mindert dies jedoch die Interpretrierbar-
keit durch den Benutzer. Zudem besteht bei Entscheidungsbäumen immer die Gefahr sich
wiederholender Teilabschnitte des Baums, falls beispielsweise der Startknoten des Baums
(Wurzel) mit einem ungünstigen Attribut besetzt wurde. Daher wird als Alternative zum
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M5P Regressionsbaum der M5R Regelgenerator der WEKA Bibliothek in die Selbstlern-
komponente integriert.

Das Training eines M5R Regelsets beginnt mit dem Training eines M5P Regressionsbaums
auf der Basis des gesamten Trainingsdatensets D. Unter allen Modellen in den Blättern des
Baums wird das lokale lineare Modell mit der geringsten Standardabweichung identifiziert.
Alle Datentupel, die diesem lokalen Modell und dem entsprechenden Blatt zugeordnet
sind, werden aus D entfernt. Für diesen Teildatensatz wird ein eigener Regelsatz sowie
ein lokales, lineares Modell erstellt. Anschließend wird das Schema mit dem reduzierten
Datensatz D′ iterativ durchlaufen, bis alle Trainingstupel abgearbeitet sind. Dadurch ist
sichergestellt, dass jedes Tupel durch eine Regel abgedeckt ist. [HHF99]

Vollständiger
Trainings-
datensatz

Erstellung des
M5-Baums

Löschen der zuletzt 
abgedeckten Tupel

Erstellung einer Regel
aus dem Blatt mit der
geringsten Standardabweichung

Löschen des
erstellten Baums

Rule: 1 
IF 

a2 <= 4.737 
a2 > 0.963 
a3 > 3.992 

THEN 
label = 
+22.0777 * a1 
+ 44.4208 * a2 
+ 14.9803 * a3 
+ 0.4671 * a4 
- 0.5273 * a5 
- 222.9581

Bild 53: Erstellung eines Metamodells mit dem WEKA M5R Algorithmus [HHF99].

Sobald der Trainingsdatensatz erweitert werden kann, beispielsweise aufgrund neuer Ex-
perimente oder Simulationen, wird ein neues Metamodell trainiert. Dies gilt grundlegend
auch für alle anderen eingesetzten Metamodelle.

Integration der Metamodelle in Rapidminer

Die Einbindung der genannten Metamodelllerner erfolgt über das Data-Mining Tool Rapid-
miner. Vorteilhaft an dieser Software ist die flexible und benutzerfreundliche Abbildung der
zentralen KDD-Prozessschritte (s. Abschnitt 2.4.2). Jeder neue Data-Mining Prozess wird
vom Entwickler durch das Kombinieren sogenannter Operatoren erstellt. Die Operatoren
werden durch Links, die auf die Weitergabe von Daten, Metamodellen oder Performanz-
vektoren angepasst sind, miteinander verbunden. Zudem erfordern einige Operatoren den
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Aufbau eines verschachtelten Subprozesses. Die Abspeicherung der Data-Mining Prozesse
in Form textbasierter Dateien (XML16) ermöglicht später die batchbasierte und benut-
zerunabhängige Ausführung des Selbstlernprozesses. Bild 54 zeigt einen exemplarischen
Data-Mining Prozess mit der entsprechenden textbasierten Repräsentation.

<process version="5.3.015">

<operator activated="true" class="process" compatibility="5.3.015" expanded="true" 
name="Process">

<process expanded="true">

<operator activated="true" class="retrieve" compatibility="5.3.015" expanded="true" 
name="Retrieve Polynomial" width="90" x="45" y="75">

<parameter key="repository_entry" value="//Samples/data/Dissertation"/>

</operator>

<operator activated="true" class="weka:W-M5P" compatibility="5.3.001" expanded="true" 
name="W-M5P" width="90" x="179" y="75">

<parameter key="R" value="true"/>

</operator>

<operator activated="true" class="write_as_text" compatibility="5.3.015" 
expanded="true" name="Write as Text" width="90" x="313" y="75">

<parameter key="result_file" value="C:\model.txt"/>

</operator>

<connect from_op="Retrieve Polynomial" from_port="output" to_op="W-M5P" 
to_port="training set"/>

<connect from_op="W-M5P" from_port="model" to_op="Write as Text" to_port="input 1"/>

<connect from_op="Write as Text" from_port="input 1" to_port="result 1"/>

<portSpacing port="source_input 1" spacing="0"/>

<portSpacing port="sink_result 1" spacing="0"/>

<portSpacing port="sink_result 2" spacing="0"/>

</process>

</operator>

</process>

Datenimport ECO & WP Train weka:W-M5P Write as Text

1 2 3

1

2

3

a b

a

b

Bild 54: Exemplarischer Prozess in der Rapidminer R© GUI mit XML-basierter Kodierung.

Da der Selbstlernprozess als Template entwickelt und für jeden neuen Durchlauf an die
Bezeichnugnen der Attribute und Label angepasst wird, werden Platzhalter vergeben,
die später mit den entsprechenden Werten ersetzt werden. Für den Operator „Write as
Text“ � in Bild 54 kann somit beispielsweise der Speicherort der exportierten Textdatei
(value="C:\model.txt") vor jeder Ausführung des Prozesses angepasst werden.

6.3.2 Vorverarbeitung der Daten

Dem in Abschnitt 5.2 entwickelten ROPE-Prozess gehen verschiedene Schritte der Daten-
vorverarbeitung voraus. Dies entspricht den KDD-Prozessschritten drei und vier in Bild
16 Die Extensible Markup Language ist eine Sprache zur Repräsentation hierarchisch strukturierter Infor-

mationen [RB01].

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


102 6 Das selbstlernende Assistenzsystem Slassy

23 (S. 42). Ziel ist zunächst die Daten entsprechend der Vorgaben des Benutzers aus dem
Produktdatenmodell abzurufen und für den eigentlichen Trainingsprozess im Rapidminer R©

bereitzustellen. Der Benutzer kann im Softwaretool zur Steuerung des Selbstlernprozesses
aus einem zuvor importierten Versuchsdatensatz den Trainingsdatensatz für den Selbst-
lernprozess zusammenstellen (s. Bild 76). Wurden Attribute während einer Simulation
oder eines Experiments nicht variiert, zum Beispiel aufgrund konstanter Reibverhältnisse,
so wird die Selbstlernkomponente diese Attribute in keinem Metamodell berücksichtigen.
Sie müssen daher nicht im Trainingsdatensatz vorhanden sein. Ein weiterer Punkt, den es
zu berücksichtigen gilt, ist die Möglichkeit, dass einzelne Experimente oder Simulationen
keine Ergebnisse liefern. Dieser Fall kann eintreten, wenn beispielsweise die Umformsi-
mulation nicht konvergiert oder einzelne Experimente aufgrund eines Werkzeugschadens
abgebrochen werden müssen. Im Trainingsdatensatz bedeutet dies, dass für das Label im
entsprechenden Datentupel kein Eintrag existiert. Für große Datenmengen werden einzelne
Fehlstellen meist durch einen Ersatzwert, beispielsweise das arithmetische Mittel aller ande-
ren Werte der entsprechenden Größe, kompensiert [TSK10]. Für kleine Datenmengen, wie
sie im Rahmen der vorliegenden Arbeit erwartet werden, kann dies jedoch zu einer starken
Verzerrung führen. Daher werden Datentupel mit Fehlstellen aus dem Trainingsdatensatz
entfernt. Zur Vorbereitung eines Data-Mining Prozesses gehört nach [WEH11; KD15] auch
die Analyse der Eingangsgrößen hinsichtlich ihres Einflusses auf das Label. Sofern Attribu-
te existieren, die nicht oder vernachlässigbar gering auf das Label wirken, können diese aus
dem Trainingsdatensatz entfernt werden. Dies wirkt sich zudem positiv auf die Rechenzeit
eines Data-Mining Prozesses aus. Üblicherweise werden sogenannte Zusammenhangsmaße
im Rahmen von Korrelationsanalysen berechnet [FKPT07]. Auch dieser Schritt wird in
den Selbstlernprozess integriert und der Benutzer somit entlastet. Bild 55 zeigt die Imple-
mentierung der Datenvorverarbeitung.

Read Database Parse Numbers Set Role

1

Filter Examples Remove Useless

2 3 4 5

Bild 55: Darstellung der Operatorenkette zur Datenselektion und Datenvorverarbeitung
mit Parametereinstellungen.

Der „Read Database“ Operator � liest die Daten aus der multidimensionalen Datenbasis
des Produkt- und Prozessdatenmodells. Da zunächst alle Variablen (Attribute und La-
bel) in der Datenbank als string Datentyp deklariert sind, wandelt der „Parse Numbers“
Operator � entsprechende Attribute in den Datentyp real um. Im „Set Role“ Operator
� wird für den importierten Datensatz das Label definiert für das im späteren Verlauf
die Metamodelle trainiert werden sollen. Im gleichen Schritt wird die Versuchsnummer
als Datentupel-ID definiert. Geschieht dies nicht, würde Rapidminer R© diesen Wert als zu-
sätzliches Attribut interpretieren. Der folgende „Filter Examples“ Operator � sorgt über
die Einstellung no_missing_labels dafür, dass alle Datentupel ohne Wert für das Label
entfernt werden, da diese nicht für das überwachte Lernen geeignet sind. Die Möglichkeit,
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fehlende Werte durch den Mittelwert der verfügbaren Einträge zu ersetzen, wurde bereits
ausgeschlossen. Abschließend entfernt der „remove useless attributes“ Operator � alle At-
tribute, die keiner Variation unterliegen und damit keinen Einfluss auf das Label ausüben
können. In vorbereitenden Versuchen hat sich gezeigt, dass eine Parameter-Einstellung für
diesen Operator von exakt Null für die Einstellung „numerical min deviation“ keine Ent-
fernung von „unwirksamen“ Attributen bewirkt. Erst ein Wert etwas größer als Null zeigt
den gewünschten Erfolg, weshalb hier 0,01 gewählt wird.

6.3.3 Automatische Attributselektion

Die vorhergehende Filterung der Attribute (Schritt � in Bild 55) entspricht einer Vorge-
hensweise, die unabhängig vom später angewandten Data-Mining Algorithmus ausgeführt
wird. Verfahren, die Variablen mit einer „Rückkopplung“ (s. Bild 56) zum Trainingsalgo-
rithmus auswählen, werden unter der Bezeichnung Attribute Subset Selection zusammen-
gefasst. Dabei wird aus dem ursprünglichen Set an Attributen mit der Attributanzahl A

im Trainingsdatendatz D ein Subset D′ mit A′ Attributen derart ausgewählt, dass die
Vorhersageperformanz des Metamodells maximiert wird. Da für A Attribute 2A mögli-
che Kombinationen existieren, werden üblicherweise heuristische Methoden genutzt, die
einen reduzierten Suchraum nach optimalen Kombinationen durchsuchen. Die übliche Be-
zeichnung lautet greedy (engl. gefräßig, gierig), da sie schrittweise den nächsten Zustand
auswählen, der zum Zeitpunkt der Wahl den größten Gewinn bzw. das beste Ergebnis
verspricht. Greedy-Algorithmen sind oft schnell, lösen viele Probleme jedoch nicht optimal
[Cor01].

Vollständige
Attributmenge
V
A

a1 a2 a3 a4 L

Attribut-
vorauswahl

a1 a4 L

Fehlermaß
geringer?

nein

ja

Kreuzvalidierung

a1 a2 a4 L

Finale, reduzierte
Attributmenge

Bild 56: Ablauf der automatischen Attributselektion in Rapidminer.

Die im Rahmen dieser Arbeit genutzten greedy-Algorithmen sind die schrittweise Vorwärts-
selektion und die schrittweise Rückwärtseliminierung. Die schrittweise Vorwärtsselektion

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


104 6 Das selbstlernende Assistenzsystem Slassy

beginnt mit einer Nullmenge an Attributen und fügt dieser das beste der originalen Attri-
bute hinzu. Bei jeder weiteren Iteration wird das jeweils beste der verbleibenden Attribute
in die bereits ausgewählte Menge aufgenommen. Im Gegensatz dazu verfolgt die schritt-
weise Rückwärtseliminierung das Ziel aus der gesamten Menge an Attributen iterativ das
jeweils schlechteste zu entfernen. Beide Verfahren können kombiniert werden [HKP12]. Für
diskrete Zielgrößen können zudem Entscheidungsbäume (z. B. ID3, C4.5, CART) zum Ein-
satz kommen. Aus allen Daten und Attributen wird ein Entscheidungsbaum trainiert und
sofern ein Attribut nicht in diesem Baum enthalten ist, wird es als irrelevant eingestuft
und für das weitere Data-Mining ausgeschlossen.

Die Implementierung der Attributselektion in Rapidminer R© ist äußerst benutzerfreundlich
gestaltet (s. Bild 57). Für beide Varianten (schrittweise Vorwärtsselektion und Rückwärtse-
liminierung) werden die entsprechenden Operatoren gewählt und mit dem letzten Operator
der Datenvorverarbeitung in Bild 55 verbunden. Da jeder Datenstrom nur zwei Operatoren
verbinden kann, erfolgt eine Vervielfachung desselben („Multiply“).

Remove UselessRead Database Parse Numbers Set Role

1

Filter Examples

2 3 4 5

Forward Selection

Backward Elimination

Multiply

Bild 57: Integration der automatischen Attributselektion in den Data-Mining Prozess.

6.3.4 Umsetzung des ROPE-Prozesses

In den Abschnitten 5.2 und 5.3 wurde der ROPE-Prozess entwickelt, um Metamodelle
robust zu optimieren und ihre Vorhersageperformanz abzuschätzen. Anschließend werden
diese Performanzen verglichen und das bestgeeignete Metamodell an Slassy übergeben.
Die folgenden Abschnitte behandeln die Details der Umsetzung des ROPE-Prozesses im
Data-Mining Werkzeug Rapidminer R©.

Statistisch robuste Performanzschätzung

Die statistisch robuste Performanzschätzung wird im gesamten Selbstlernprozess mehrfach
benötigt, nämlich bei jeder Iteration eines Optimierungsprozesses zur Beurteilung der je-
weils erzeugten Modellinstanz, bei der im Abschnitt 6.3.3 vorgestellten Attributselektion
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mit „Rückkopplung“ zum Metamodelltraining und für die Ermittlung der Performanzvek-
toren, die für die Auswahl des bestgeeigneten Modells benötigt werden.

Jede Performanzschätzung beruht auf einer n-fach wiederholten k-fachen Kreuzvalidierung,
die direkt in Rapidminer R© umgesetzt werden kann. Eine Kreuzvalidierung wird durch den
gleichnamigen Operator repräsentiert (s. Bild 58), für den die Teilprozesse Training und
Test definiert werden müssen.

…
Vorgelagerter Prozess

Kreuzvalidierung

Modelling

Training Testing

Apply Model Performance

n=20

k=10

Loop & Average

Ausgabe des 
Performanzvektores

Bild 58: Prinzipieller Aufbau der robusten Performanzschätzung.

Im Training wird ein Metamodell mit einem reduzierten Datensatz generiert, um beim
Testen mit diesem Modell Labelwerte vorherzusagen und mit den bekannten Werten zu
vergleichen. Das Training ist in Bild 58 durch einen Operator mit der Bezeichnung „Mo-
delling“ repräsentiert, der für die finale Implementierung jeweils mit einem Operatoren
der ausgewählten Trainingsalgorithmen (s. Abschnitt 6.3.1) ersetzt werden muss. Für das
Testen wird der beim Training ausgeschlossene Teil der Daten an den „Apply“ Operator
übergeben. Dieser fügt dem Datensatz auf Basis des zuvor erzeugten Modells die Spalte
„prediction“ hinzu. Aus den Differenzen zwischen den Werten des Labels und den Vorher-
sagen können die in Tabelle 4 (S. 49) gezeigten Kennwerte für Prognosefehler berechnet
werden. Wurde der Operator für die Kreuzvalidierung einmal durchlaufen, d. h. mit k in-
ternen Wiederholungen, so können von ihm das (auf allen Daten) trainierte Metamodell
sowie die für dieses Modell geschätzte Performanz an nachfolgende bzw. übergeordnete
Operatoren übergeben werden. Die vollständige, robuste Performanzschätzung ist dadurch
sichergestellt, dass die k-fache Kreuzvalidierung n-mal wiederholt wird und ihre n Ergeb-
nisse gemittelt werden. Hierfür kann der „Loop and Average“ Operator genutzt werden, in
den die Kreuzvalidierung integriert wird (s. Bild 58).

Die Ausgabe des „Loop and Average“ Operators beinhaltet den Gesamtmittelwert der
n-mal wiederholten k-fachen Kreuzvalidierungen und die aus den n Werten berechnete
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Standardabweichung. Diese Einzelwerte eignen sich zur „manuellen“ Beurteilung der Pro-
gnosequalität eines Data-Mining Prozesses, jedoch nicht für die maschinelle Verarbeitung
in den späteren statistischen Tests (ANOVA und post-hoc). Daher müssen an geeigneter
Stelle im Data-Mining Prozess die Performanzkennwerte protokolliert und zum Perfor-
manzvektor (s. Abschnitt 5.2, S. 5.2) zusammengefasst werden. Hierfür wird der Prozess
aus Bild 58 um einen Export Operator erweitert, der alle berechneten Performanzkenn-
werte pro Kreuzvalidierungsiteration in eine Auslagerungsdatei schreibt. Da aufgrund der
Erkenntnisse aus Abschnitt 5.2 n = 20 und k = 10 für die Performanzschätzung festgelegt
werden, ergibt sich pro Metamodell ein Performanzvektor mit 200 Einträgen.

Optimierung des Trainings der Metamodelle

Im Abschnitt 5.3 wurden mit der schrittweisen Parametervariation und der evolutionären
Parameteroptimierung zwei Strategien eingeführt, mit denen das Training eines Metamo-
dells optimiert werden kann. Ziel ist es, für die Parameter, mit denen das Training eines
Metamodells direkt beeinflusst werden kann, eine optimale Einstellung zu finden.

Beide Optimierungen sind in Rapidminer R© durch entsprechende Operatoren realisiert.
Ähnlich zur Kreuzvalidierung ist eine verschachtelte bzw. hierarchische Struktur erforder-
lich, bei der in den Optimierungsprozess ein Validierungsprozess eingebettet wird. Dieser
ist für die Schätzung der Performanz der erzeugten Modellinstanzen in den Optimierungs-
schritten notwendig. Da auch diese Performanzschätzung ein robustes Ergebnis liefern
muss, wird auf die Strategie der n-mal wiederholten k-fachen Kreuzvalidierung zurück-
gegriffen. Anders als bei der Performanzschätzung des finalen Metamodells, findet in der
Optimierung jedoch kein Export der Fehlerkennwerte und keine Erzeugung eines Perfor-
manzvektors statt.

Bei der Umsetzung der Optimierung und der Festlegung der Werte für n und k müssen die
Eigenschaften der Optimierungsstrategien berücksichtigt werden. Die schrittweise Para-
metervariation findet das optimale Parameterset für den jeweiligen Lernalgorithmus durch
einen Versuchsplan, bei dem die Wertebereiche aller Lernparameter segmentiert und alle
entstehenden Abschnitte frei miteinander kombiniert werden. Dadurch wird der gesam-
te Wertebereich abgetastet und sichergestellt, dass eine Parameterkonfiguration nahe am
globalen Optimum gefunden wird. Wird der Operator der polynomialen Regression als
Beispiel bemüht, stehen fünf Parameter zur Auswahl. Bei einer Einteilung der Werteberei-
che dieser fünf Parameter in zehn Segmente ergeben sich 115 = 161.051 Kombinationen,
deren Berechnung je nach Computerleistung und zu verarbeitender Datenmenge viel Zeit
in Anspruch nimmt, denn für jede Kombination wird eine robuste Performanzschätzung
durchgeführt. Mit höheren Werten von n und k steigt der Zeitbedarf noch weiter. Für die
Performanzschätzung innerhalb der schrittweisen Parameteroptimierung wird daher eine
20-malige 10-fache Kreuzvalidierung durchgeführt.

Die evolutionäre Optimierung der Trainingsparameter verläuft hingegen wesentlich schnel-
ler, da sie feststellt, welche Parameterwerte eher zu einer Reduzierung des Fehlermaßes
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führen und dies bei den folgenden Iterationen berücksichtigt. So kann die Optimierungs-
funktion schneller einen optimalen Wertebereichen für die Parameter finden. Für die Per-
formanzschätzung innerhalb der evolutionären Optimierung wird daher eine 100-malige
10-fache Kreuzvalidierung durchgeführt.

Bild 59 zeigt für die evolutionäre Optimierung einer polynomialen Regression die schema-
tische Implementierung des in dieser Arbeit entwickelten ROPE-Prozesses in Rapidminer.
Nach der Datenvorverarbeitung und der Attributselektion 1 wird der ROPE-Prozess der
Übersicht halber als eigener Subprozess 2 gestaltet. Der oberste „Loop and Average“ Ope-
rator 3 und die darin ausgeführte Kreuzvalidierung 3 sind für die robuste Schätzung der
Performanz des optimierten Modells zuständig. Der Kreuzvalidierungsoperator beinhaltet
im Trainingsabschnitt nicht das zu trainierende Metamodell, wie dies bspw. in Bild 58
dargestellt ist. An dieser Stelle wird ein Subprozess 4 eingefügt, in dem die eigentliche
Optimierung 5 integriert ist. Bei jeder Iteration der 10-fachen Kreuzvalidierung 3 nutzt
die Optimierung einen 90%-igen Trainingsdatensatz. Die verbleibenden 10% werden für
die Schätzung der Performanz im „Testing“ Subprozess genutzt 6 , welche zur späteren
Weiterverarbeitung als Performanzvektor exportiert wird 7 . Das Training des optimalen
Metamodells mit 100% der Daten erfolgt nach der letzten Iteration der Kreuzvalidierung,
im vorliegenden Fall nach zehn Iterationen. Jeder Aufruf des Subprozesses 4 leitet einen
Datensatz an den Optimierungsoperator 5 weiter, der als Ergebnis die optimalen Trai-
ningsparameter für diesen Datensatz ausgibt. Diese werden dem Trainingsoperator durch
eine „Parameterfestlegung“ 11 zugewiesen, anschließend das entsprechende Metamodell
erstellt 8 und „nach oben“ an die Kreuzvalidierung übergeben. Die Evaluierung der Mo-
dellinstanzen in den einzelnen Optimierungsschritten erfolgt durch eine robuste 50-malige
10-fache Kreuzvalidierung 9 , deren Trainingssalgorithmus 10 dem auf der Ebene des Op-
timierungsoperators 8 entsprechen muss. Für die Einstellungen der evolutionären Opti-
mierung haben sich die im Kasten 12 gezeigten Werte bewährt. Diese Grundeinstellungen
werden für alle evolutionären Optimierungen im Selbstlernprozess beibehalten. Speziell
für die Optimierung der polynomialen Regression, werden die im rechten Teil des Kastens
gelisteten Trainingsparameter berücksichtigt. Für jeden Parameter werden eigene Gren-
zen festgelegt, in denen der Optimierungsalgorithmus arbeiten darf. Für den maximalen
Polynomgrad wird bspw. ein Wert zwischen eins und fünf zugelassen. Das Ergebnis jedes
ROPE-Prozesses ist ein mit dem Datensatz D optimal und robust trainiertes Metamo-
dell sowie dessen robust geschätzte Performanz in Form eines Vorhersagefehlers (Wurzel
d. mittleren Fehlerquadrats). Die Anzahl der ROPE-Prozesse je Selbstlernprozess wird in
Abschnitt 6.3.6 festgelegt.
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Bild 59: Umsetzung des in dieser Arbeit entwickelten ROPE-Prozesses für die polynomiale
Regression mit evolutionärer Optimierung der Trainingsparameter.
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6.3.5 Selektion des bestgeeigneten Metamodells

Wie in Abschnitt 5.4 dargestellt, erfolgt die Auswahl des bestgeeigneten Metamodells auf
Basis der aufeinander folgenden statistischen Tests ANOVA und Tukey’s HSD. Ebenso
wurde gezeigt, dass die Voraussetzungen zur Durchführung der ANOVA erfüllt sind bzw.
nur geringfügig verletzt werden und die ANOVA darauf sehr robust mit einer vernachläs-
sigbar geringen Alphafehlerkummulierung reagiert.

Ausgangspunkt für die Implementierung der automatischen Modellselektion in Matlab R©

sind die Performanzvektoren des vorangegangenen Data-Mining Schritts (s. Bild 60). Sie
wurden durch 20-mal wiederholte 10-fache Kreuzvalidierungen ermittelt und enthalten in
den Zeilen die ermittelten Vorhersagefehler. Als Kennwert und Vergleichskriterium wird
die Wurzel des mittleren Fehlerquadrats gewählt (s. Tabelle 4, S. 49), da dieses Maß die
Einheit der Zielgröße (z. B. Kilonewton, Prozent, Millimeter) wiedergibt.

?
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der Performanzvektoren
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Bild 60: Ablauf der automatischen Metamodellselektion in Slassy.

Bild 60 zeigt die Durchführung der ANOVA als ersten Schritt zur Modellauswahl. Das Er-
gebnis jeder ANOVA wird in Form eines p-Werts ausgedrückt, der mit einem zuvor festge-
legten Signifikanzniveau α zu vergleichen ist. Liegt der p-Wert unter dem Signifikanzniveau,
es wird α = 0, 05 gesetzt, so besteht zwischen mindestens zwei Performanzvektoren ein si-
gnifikanter Unterschied, d. h. die Nullhypothese (s. Abschnitt 5.4, S. 82) wird verworfen.
Im Falle eines nicht-signifikanten Ergebnisses, d. h. die Nullhypothese wird angenommen,
kann davon ausgegangen werden, dass die trainierten und verglichenen Metamodelle den
Wert der jeweiligen Zielgröße mit ähnlicher Güte vorhersagen. Einzig eine Unterscheidung
hinsichtlich der Vorhersagevarianz bietet ggf. eine ausreichende Differenzierung der Me-
tamodelle. Die Varianz kann an dieser Stelle mit einem Vertrauensintervall gleichgesetzt
werden, in dem der vorhergesagte Wert der Zielgröße tatsächlich liegt. Je geringer die Vari-
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anz, desto enger fällt das Vertrauensintervall aus und desto verlässlicher ist die Vorhersage.
Der Selbstlernprozess endet vorzeitig und gibt als bestgeeignetes Metamodell dasjenige mit
der geringsten Varianz und dessen Vorhersageungenauigkeit aus.

Sofern die ANOVA einen signifikanten Unterschied zwischen den Mittelwerten von mindes-
tens zwei Performanzvektoren festgestellt hat, erfolgt im nächsten Schritt die Ausführung
des Tukey HSD-Tests. Insbesondere in der Matlab R© Umgebung benötigt der Tukey HSD-
Test Berechnungen aus der ANOVA, weshalb eine vorherige Ausführung derselben notwen-
dig ist. Als Ergebnis wird eine „M ·(M−1)

2 Kreuz 6“-Matrix ausgegeben, in der die Ergebnisse
der paarweisen Vergleiche der Mittelwerte aller Performanzvektoren der M Metamodelle
dargestellt sind, wie Tabelle 8 exemplarisch zeigt.

Tabelle 8: Beispielhafte Tabelle eines Tukey HSD-Tests für drei Mittelwertdifferenzen.
Modell μa Modell μb Z5% |μa − μb| Z95% p-value

1 2 0,926 1,500 2,074 0,000
1 3 1,676 2,250 2,824 0,000
2 3 0,176 0,750 1,324 0,016

Spalte eins und zwei markieren die Indizes der verglichenen Modelle. Die Spalten drei und
fünf geben die untere (Z5%) bzw. die obere (Z95%) Grenze des Konfidenzintervalls für die
wahre Mittelwertdifferenz in Spalte vier an. Da es sich bei jedem paarweisen Vergleich um
einen Hypothesentest handelt, zeigt die letzte Spalte den p-Wert für diesen Test. Liegt
der Wert unter der festgelegten Grenze von α = 0, 05 so ist der Unterschied zwischen
den verglichenen Werten signifikant. Für Tabelle 8 zeigt sich, dass alle Mittelwertdifferen-
zen signifikant sind. Das Ergebnis des Tukey-HSD lässt eine Fallunterscheidung zu. Eine
Möglichkeit wäre, dass sich die Performanz eines Metamodells von den Performanzen der
anderen Modelle signifikant unterscheidet. Daneben kann auch eine „Spitzenreitergruppe“
existieren bzw. kann zwischen keinem der Modelle ein signifikanter Unterschied festgestellt
werden. In diesen beiden Fällen wird wie bei der ANOVA das Modell mit der geringsten
Varianz als finales Metamodell gewählt.

Abschließend erfolgt die Übertragung des bestgeeigneten Modells in die Wissensbasis. Da
das Data-Mining Tool Rapidminer R© alle im Rahmen dieser Arbeit betrachteten Metamo-
delle in textbasierter Form (maschinenlesbarer String, s. Bild 52) ausgeben kann, werden
diese Repräsentationen direkt in das Produkt- und Prozessdatenmodell übertragen. Eine
Auswertung des Strings erfolgt zur Laufzeit der Design for Manufacture Analyse durch den
Einsatz sogenannter regulärer Ausdrücke (s. Abschnitt 6.5.1).

6.3.6 Weitere Umsetzung des Selbstlernprozesses

Zum Abschluss der Umsetzung des Selbstlernprozesses wird die Anzahl der zu vergleichen-
den Metamodelle in der Grundversion von Slassy festgelegt. Ebenso werden der Import
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der Trainingsdaten in den Selbstlernprozess und der Export des bestgeeigneten Modells
und dessen Performanzkennwerte kurz erläutert.

Das Konzept des Selbstlernprozesses ermöglicht den Vergleich einer beliebigen Menge an
Metamodellen. Für die erstmalige, konzepttionelle Implementierung von Slassy erfolgt je-
doch, durch gezielte Kombination unterschiedlicher Data-Mining Methoden und Algorith-
men, eine Begrenzung dieser Menge. In Abschnitt 6.3.1 werden insgesamt vier Metho-
den zum Training eines Metamodells unter Berücksichtigung der Anforderungen aus Ab-
schnitt 4.2 ausgewählt. Des Weiteren werden mit der schrittweisen Vorwärtsselektierung
und Rückwärtseliminierung (s. Abschnitt 6.3.3) zwei Attributselektionsverfahren vorge-
stellt mit denen, alternativ zum vollständigen Datensatz, reduzierte Datensätze erzeugt
werden können, die unter Umständen zu Metamodellen mit einer besseren Vorhersage-
performanz führen. Die robuste Optimierung der trainingsbestimmenden Parameter bietet
zwei weitere Möglichkeiten, um den Data-Mining Prozess zu gestalten. Die Kombination
der genannten Data-Mining Methoden (s. Bild 61) führt zu einer Basismenge an 24 Meta-
modellen, von denen eines durch die beschriebenen statistischen Tests als bestgeeignetes
Modell identifiziert und für Design for Manufacture Analysen verwendet werden kann.

Trainings-
algorithmus

Lineare 
Regression

Vollständiger
Datensatz

GridOpt

EvoOpt

Forward 
Selection

GridOpt

EvoOpt

Backward
Elimination

GridOpt

EvoOpt
Polynomiale
Regression …

M5P 
Regressions-

baum
…

M5R Regel-
generator …

Sechs Ausprägungen 
je Trainings-
algorithmus

Bild 61: Die gewählten Kombinationen von Data-Mining Algorithmen und Methoden füh-
ren zu 24 Metamodellen.

Für den Import der Trainingsdaten stehen im Data-Mining Tool Rapidminer R© Operatoren
zur Verfügung, die in der Lage sind unterschiedliche Datenquellen (z. B. Spreadsheets, CSV-
Dateien, Web-Datenbanken) zu nutzen. Die Datenschnittstelle zum Produkt- und Prozess-
datenmodell ist mithilfe der Datenmodellierungssprache SQL umgesetzt, daher muss auch
die Anbindung an Rapidminer R© entsprechend gestaltet werden. Hierzu wird dem Import
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Operator ein Platzhalter für den SQL-Befehl zugewiesen, der die korrekten Daten aus dem
Produkt- und Prozessdatenmodell lädt. Die Definition des SQL-Befehls erfolgt zur Lauf-
zeit am Beginn des Selbstlernprozesses und ist im Anwendungsbeispiel dargestellt. Ebenso
wird beim Export des final ausgewählten Metamodells sowie des Performanzkennwerts
verfahren.

6.4 Das Synthesewerkzeug

Der Konstrukteur wird durch das Synthesewerkzeug in die Lage versetzt, eine stofflich-
geometrische Beschreibung des blechmassivumgeformten Bauteils zu erzeugen. Insbeson-
dere die Definition der Haupt- und der Nebenformelemente (s. Abschnitt 3.3) ist eine
Grundvoraussetzung für die spätere Design for Manufacture Analyse der Gestaltentwürfe.
Die frühen Versionen des Konstruktionssystems mfk (KSmfk) realisierten die geometrische
Modellierung durch eine eigene Modellierungslogik. Hier war die Gestalt im Produktmodell
enthalten (s. Bild 62). Mit konstruktionsorientierten Eingaben des Benutzers und durch
elementspezifische Modellierungsfunktionen wurde jedes Gestaltelement als Volumenkör-
per mit Parametern beschrieben. Die Klassifikation der Nebenformelemente in Abschnitt
3.3 hat gezeigt, dass die Vielfalt blechmassivumgeformter Bauteilen weiter steigen wird.
Wie bereits bei [Bac97; War01], wird daher ein kommerzielles CAD-System zur geome-
trischen Produktmodellierung genutzt. Durch Kopplung des Produkt- und Prozessdaten-
modells im Assistenzsystem und dem 3D-Modell im CAD-System wird eine vollständige
Produktbeschreibung erreicht (s. Bild 62).

6.4.1 Bereitstellung der Hauptformelemente

Wie in Abschnitt 3.3 dargestellt, erfüllen Hauptformelemente v. a. die Funktion, Nebenfor-
melemente zu „tragen“ und die dort aufgenommenen Lasten weiterzuleiten. Als Beispiel
hierfür wurde der Synchronring in Bild 34 (S. 61) genannt. Eine Recherche bezüglich wei-
terer blechmassivumgeformter Bauteile ergab zudem, dass rotationssymmetrische Formen
vorherrschen, was auch dem häufigen Einsatz in Kfz-Getrieben geschuldet ist. Hinzu kommt
die Eigenschaft derartiger Bauteile, dass während der Umformung keine seitlichen Kräfte
auf den Stößel bzw. das Umformwerkzeug wirken, ein Zustand der von den Fertigungsexper-
ten aufgrund der höheren Genauigkeit und des geringeren Werkzeugverschleißes erwünscht
ist. Daher werden im Synthesetool rotationssymmetrische und flächige bzw. dünnwandige
Hauptformelemente implementiert.

Damit der Konstrukteur während der Synthese schnell auf Formelemente der Blechmassiv-
umformung zugreifen kann, werden sie ihm in Form von Features (s. Abschnitt 2.2.1)
angeboten. Für die Umsetzung der Features-Technologie stehen im CAD-System CATIA
V5 verschiedene Methoden zur Verfügung (s. Bild 63).

Für das dynamische Erzeugen neuer Formelemente sowie deren schnelles Ändern bietet
sich dabei das UserFeature an [Bra08]. Als sogenanntes „Black Box“ Element sind nach
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Bild 62: Wie bei den modernen Versionen des KSmfk nutzt auch Slassy das CAD-System
zur Modellierung.

der Instanziierung eines UserFeatures nur die explizit veröffentlichten Geometrieparameter
verfügbar. Auf geometriebestimmendes Wissen in Form von Regeln und Constraints des
Features kann hingegen nicht zugegriffen werden. Dies dient nicht nur dem Wissensschutz,
sondern verhindert gleichzeitig, dass veraltetes DfM-Wissen aus bereits instantiierten Bau-
teilen verbreitet wird. Das aktuellste Wissen darf nur über Slassy zugreifbar sein.

Jedes blechmassivumgeformte Bauteil besteht aus einem Hauptformelent-Typ und min-
destens einem Nebenformelement-Typ, der gemustert auftreten kann. Zum Zeitpunkt des
Verfassens dieser Arbeit lag der Fokus der Forschungsarbeiten auf Bauteilen mit glei-
chen Nebenformelementen (z. B. Lasche, Mitnehmer, Verzahnung). Da aber in Zukunft
eine noch stärkere Funktionsintegration zu erwarten ist, unterstützt Slassy bei der Syn-
these auch die Kombination unterschiedlicher Nebenformelemente. Sobald entsprechende
Prozessdaten vorliegen, kann mithilfe des Selbstlernprozesses das relevante Konstrukti-
onswissen erhoben werden. Als Hauptformelement-Grundkörper werden die Grundformen
„Scheibe“, „Napf mit umlaufenden Bord“ sowie „Napf ohne Bord“ implementiert. Jedem
Grundkörper sind Standardwerte für dessen Geometrieparameter zugewiesen, die in Zu-
sammenarbeit mit den Fertigungsexperten bestimmt werden. Beispielsweise wird dabei
die Stärke und der Zuschnitt der Blechronde berücksichtigt, aus der das blechmassivumge-
formte Bauteil später geformt wird. Bei der Parametrisierung der Grundkörper von Haupt-
formelementen werden diejenigen Parameter identifiziert, die für die externe Steuerung
der Geometrie zulässig sind. Unter externer Steuerung wird hierbei der Zugriff auf das
CAD-Modell durch Slassy verstanden (s. Bild 64). Tabelle 9 fasst die implementierten
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Bild 63: CAD-Methoden zur Wiederverwendung von Wissen nach [Bra08]

Hauptformelement-Grundkörper mit den entsprechenden Parametern zusammen. Die Prä-
fixe der Parameterbezeichnungen (W_C0_, W_C1_, W_P_) bezeichnen die Abkürzungen der
einzelnen Hauptformelemente (W), wobei C0 und C1 für je einen Typ eines tiefgezogenen
Napfes (engl. cup) und P für das Hauptformelement „Scheibe“ (engl. plate) stehen.

Um eine größtmögliche Flexibilität bei der Gestaltung eines blechmassivumgeformten Bau-
teils zu gewährleisten, darf der Konstrukteur während der Kombination von Haupt- und
Nebenformelementen keinen wesentlichen Einschränkungen unterliegen. Dies wird durch
generische Referenzobjekte in den Features erreicht, die zur Positionierung eines Nebenfor-
melements am Hauptformelement notwendig sind. Beim Zusammenbau des Bauteils durch
das Synthesetool in Slassy werden die Referenzobjekte der Haupt- und Nebenformelemente
miteinander synchronisiert (s. Abschnitt 6.4.3).

6.4.2 Bereitstellung der Nebenformelemente

Die Nebenformelemente sind für die Funktionserfüllung eines blechmassivumgeformten
Bauteils von zentraler Bedeutung (s. Abschnitt 3.3). Ihre Umsetzung im CAD-System
CATIA V5 erfolgt wie bereits bei den Hauptformelementen durch den Einsatz von
UserFeatures. Die bis zum Abschluss dieser Arbeit im Forschungsverbund SFB/TR73 be-
rücksichtigten Nebenformelemente „Sperrverzahnung“, „offener Mitnehmer“, „geschlosse-
ner Mitnehmer“ sowie „Verzahnung“ werden hinsichtlich der notwendigen Parameter zur
externen Steuerung analysiert. Diese sind, zusammen mit technischen Skizzen der Neben-
formelemente, in Tabelle 10 dargestellt. Die Präfixe der Parameterbezeichnungen (X_T0_,
X_EPO_, X_T1_) bezeichnen die Abkürzungen der einzelnen Nebenformelemente (X), wobei
T0 und T1 für je einen Verzahnungstyp und EPO für das Element „offener Mitnehmer“
(engl. engaging piece open) stehen.
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Tabelle 9: Implementierte Grundkörper von Hauptformelementen in Slassy

Bezeichnung Abbildung / Skizze mit Parametern Umformverfahren

Tiefziehen
(mit Niederhalter)

Napf mit 
Bord

Napf ohne 
Bord

Tiefziehen

Scheibe Walzen,
Stauchen

Die Positionierung eines Nebenformelements erfolgt über die externalisierten Referenzob-
jekte des Haupformelements „xy.plane“, „Point.Base“ und „Line.SymAxis“ (s. Bild 64).
Diese werden wiederum innerhalb des Nebenformelements genutzt, um Konstruktionsele-
mente (z. B. Skizzen, Solids, Ausbrüche) so zu definieren, dass nach dem Assemblieren des
Bauteils mittels Bool’scher Operation das Haupt- und das Nebenformelement einen ge-
schlossenen Körper bilden. Im Allgemeinen sind die Nebenformelemente als Positivkörper
gestaltet, d. h. sie werden bei der Synthese dem Volumen des Hauptformelements hinzu-
gefügt. Jedoch lässt sich nicht jedes Nebenformelement auf diese Weise realisieren. Der
offene Mitnehmer in Tabelle 10 beispielsweise verlangt die Anwendung eines Negativkör-
pers, der vom Volumen des Hauptformelements abgezogen wird. Diese Abzugsgeometrien
müssen bei der Konstruktion eines Nebenformelements berücksichtigt und ihre Geome-
trieparameter an das Formelement angepasst werden. Abschließend wird das hinzugefüg-
te Nebenformelement als rotationssymmetrisches Muster vervielfältigt. Der Benutzer gibt
dabei die Anzahl der gewünschten Instanzen an, wobei Slassy diesen Wert nach oben be-
grenzt. Dazu wird der Abstand zwischen den Instanzen im Bogenmaß berechnet und mit
dem spezifischen Minimalwert verglichen, der als Parameter im UserFeature des jeweiligen
Nebenformelements hinterlegt ist.
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Tabelle 10: Implementierte Nebenformelemente in Slassy
Bezeichnung Abbildung / Skizze mit Parametern Umformverfahren

FließpressenSperrver-
zahnung

Offener, bzw.
geschlossener
Mitnehmer

Tiefziehen,
Stauchen

Randverzahnung Inkrementelles
Umformen

X_T0_H1
X_T0_R0

X_T0_R1

X_T0_R2
X_T0_H0

X_EPO_R2
X_EPO_R1

X_
T1
_H

1

X_T1_R1

6.4.3 Erzeugung eines Bauteilentwurfs

Die Synthese eines blechmassivumgeformten Bauteils erfolgt über Bool’sche Operationen
zwischen den UserFeatures des Haupt- und des Nebenformelements. Die notwendige Syn-
chronisierung der Referenzobjekte übernimmt das Assistenzsystem wie in Bild 64 darge-
stellt. Der Konstrukteur wählt in der Oberfläche des Assistenzsystems zunächst ein Haupt-
formelement aus und ändert ggf. dessen Standardwerte. Anschließend fügt er das Neben-
formelement hinzu und legt die Anzahl der Instanzen am Umfang des Hauptformelements
sowie die Geometrie des Nebenformelements fest. Diese Informationen werden direkt im
CAD-Modell des Bauteils hinterlegt. Durch den Benutzer können zudem gezielte Synchro-
nisationen von Geometrieparametern zwischen dem Haupt- und dem Nebenformelement
eingebracht werden, beispielsweise zwischen der Blechdicke des Hauptformelements und
der Wandstärke des offenen Mitnehmers.

Wie in Bild 64 dargestellt, werden die Modelle der UserFeatures in die Windows-
Ordnerstruktur des Assistenzsystems integriert. Jedes Features wird, zusammen mit ei-
ner technischen Skizze und einer Icon-Darstellung, in einem eigenen Ordner abgelegt.
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Bild 64: Das Synthesetool verwaltet die Geometrieparameter, Referenzen zwischen den
Haupt- und Nebenformelementen (HFE, NFE) und dient als Schnittstelle zum
Benutzer.

Die Benennung des Ordners identifiziert jedes UserFeature eindeutig, wobei das Präfix
„W“ ein Hauptformelement und „X“ ein Nebenformelement bezeichnet. Die nachfolgende
Buchstaben-Zahlen Kombination benennt den Typ des Formelements, also „C“ für Cup
(engl. Napf ) oder „EPC“ für engaging piece open (engl. offener Mitnehmer). Zur Integra-
tion neuer Formelemente muss der Benutzer lediglich einen weiteren Ordner erstellen und
darin das vorbereitete UserFeatures sowie eine Skizze und eine Icon-Darstellung ablegen.

6.5 Das Analysewerkzeug

Das Analysetool des selbstlernenden Assistenzsystems unterstützt den Konstrukteur bei
der Design for Manufacture Analyse blechmassivumgeformter Bauteile. Dabei berücksich-
tigt es die speziellen Anforderungen der Blechmassivumformung die in Abschnitt 3.2 dar-
gestellt wurden. Für eine Design for Manufacture Analyse wird zunächst die Bauteilkon-
figuration ausgelesen, die der Konstrukteur im Synthesetool definiert hat. Sofern für das
zu analysierende Bauteil fertigungsrelevantes Konstruktionswissen vorliegt, wird dieses im
Inferenzmechanismus verarbeitet und anschließend das Ergebnis dem Benutzer präsen-
tiert. Falls für ein Bauteil noch kein Wissen durch die Selbstlernkomponente akquiriert
wurde, beispielsweise aufgrund fehlender Daten aus der Prozessentwicklung, so bricht die
DfM-Analyse vorzeitig ab und fordert den Nutzer zur Bereitstellung entsprechender Da-
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ten auf. Im Folgenden werden die Wissensverarbeitung und die Ergebnisdarstellung näher
beschrieben.

6.5.1 Verarbeitung des Konstruktionswissens

In der Wissensbasis wird das konstruktionsrelevante Fertigungswissen in Form der ermittel-
ten Metamodelle hinterlegt. Als Metamodelltypen wurden die lineare und die polynomiale
Regression sowie der Weka M5P Modellbaum und der Weka M5R Regelgenerator gewählt
(s. Abschnitt 6.3.1). Die rechnerinterne Repräsentation der Modelle erfolgt textbasiert wie
in Bild 52 (S. 99) gezeigt.

Die textbasierte Repräsentation, in der Informatik als String (engl. Zeichenkette) bezeich-
net, ist Ausgangspunkt für die Wissensverarbeitung des Assistenzsystems. Bisherige Arbei-
ten greifen auf den Inferenzmechanismus eines kommerziellen Expertensystemtools zurück
(z. B. [War01; Bac97]) oder nutzen externe Simulationssoftware (z. B. [Sch00]). Für das
selbstlernende Assistenzsystem wird ein Interpreter genutzt, der die Zeichenfolgen der text-
basierten Modellrepräsentation einliest, analysiert und auswertet. Die Information, welche
Zielgrößen (z. B. Umformkraft, Kontaktverhältnis, s. Abschnitt 3.2) einer Bauteilvariante
zugeordnet sind und ausgewertet werden müssen, entnimmt das Analysetool dem Produkt-
und Prozessdatenmodell. Das Einlesen des Strings erfolgt direkt aus dem Produkt- und
Prozessdatenmodell durch Ausführung entsprechender SQL-Befehle. Der bereitgestellte
String muss zur Analyse einen sog. Parser durchlaufen, der durch die Methode der regu-
lären Ausdrücke den String in auswertbare, mathematische Formeln überführt. Hier muss
eine Fallunterscheidung durchgeführt werden, je nachdem welcher Metamodelltyp zu ver-
arbeiten ist. Während die Strings der linearen und polynomialen Regressionsgleichungen
direkt ausgewertet werden können, erfordert die Struktur der Weka Modelle spezifische
reguläre Ausdrücke.

Im Falle des Weka M5P Modellbaums wird der Metamodell-String zunächst nach den
lokalen linearen Modellen für die Zielgröße durchsucht, denn diese geben die Attribute
(z. B. Geometrieparameter) vor, deren Wert aus der aktuellen Konfiguration des CAD-
Modells ausgelesen werden muss. Die hierarchische Struktur eines M5P Modellbaums ist in
den sog. „Pipes“ (|-Zeichen) erkennbar. Diese Struktur wird durch entsprechende reguläre
Ausdrücke in ein System aus if-else-if Schleifen überführt. Wie diese Schleifen durchlau-
fen werden, richtet sich nach den aktuellen Attributwerten im Synthesetool und gibt das
gültige lokale Regressionsmodell vor. Dessen Auswertung liefert letztendlich den Wert für
die Zielgröße (z. B. Umformkraft, Kontaktverhältnis). Bild 65 zeigt links das textbasierte
Modell eines M5P Modellbaums sowie die regulären Ausdrücke.

Beim Weka M5R Regelgenerator wird ähnlich verfahren, nur dass keine Baumstruktur zu
berücksichtigen ist. Die textuellen Regelausdrücke aus Rapidminer R© werden in interpre-
tierbare if-then-Regeln umgewandelt und die sich ergebenden Metamodelle ausgewertet
bzw. die hinterlegten Werte der Zielgröße ausgegeben (s. Bild 66).
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WM5P pruned model tree:
(using smoothed linear models)
a2 <= 4.737 : 
|   a2 <= 0.963 : 
|   |   a2 <= 0.669 : LM1 (15/3.042%)
|   |   a2 >  0.669 : LM2 (12/2.574%)
|   a2 >  0.963 : 
|   |   a3 <= 3.992 : LM3 (26/3.313%)
|   |   a3 >  3.992 : LM4 (51/13.677%)
a2 >  4.737 : 
|   a1 <= 4.896 : 
|   |   a1 <= 1.253 : 
|   |   |   a2 <= 6.428 : LM5 (5/2.882%)
|   |   |   a2 >  6.428 : LM6 (7/4.948%)
|   |   a1 >  1.253 : 
|   |   |   a3 <= 6.863 : LM7 (27/6.364%)
|   |   |   a3 >  6.863 : LM8 (13/12.692%)
|   a1 >  4.896 : 
|   |   a3 <= 5.826 : LM9 (20/11.667%)
|   |   a3 >  5.826 : LM10 (24/11.292%)

LM num: 1
label = 

9.051 * a1 
+ 23.6323 * a2 
+ 7.0861 * a3 
+ 0.4671 * a4 
- 0.5273 * a5 
- 83.2258

[...]

Reguläre Ausdrücke:Textbasiertes Modell:

LM num:([0-9]*?)\n.+? = (.*?)\n\n

Identifikation der lokalen Regressions-
gleichungen am Ende des Baums

\)(.*%\))

Identifikation des Entscheidungsbaums ohne 
Header und Regressionsgleichungen

^([^\|].*?) : (.*?%\))\n([^\|].*?) : (.*%\))

Iteratives Durchlaufen der Äste (if-else Schleifen), 
die durch das „Pipe“-Symbol | gekennzeichnet sind

\|[\s]+(.*?)$

„Trimmen“ der Äste bzw. aufteilen in
einzelne Zeilen

^LM([0-9]+).*?$

Identifikation der Modellbezeichnung
in den Blättern des Baums

Bild 65: Verarbeitung des Weka M5P Modellsbaums durch reguläre Ausdrücke.

Rule: 1
IF

X_T0_L0 > 2.75
X_T0_R0 > 0.45

THEN
Zielfunktion = + 2.617 [50/66.193%]

Rule: 2 
IF

X_T0_L0 > 2.75
X_T0_R0 <= 0.45

THEN
Zielfunktion = + 2.4476 [27/74.978%]

Rule: 3
IF

X_T0_L0 < 2.75
THEN

Zielfunktion = + 2.377 [24/88.231%]
[…]
Rule: 9

Zielfunktion = + 4.377 [24/88.231%]

Textbasiertes Modell:
^Rule: (.*?)

(?:IF(.*?)THEN.*?|[:whitespace:]*?)

Zielfunktion = (.*?)\[.*?\]$

Reguläre Ausdrücke:

('1', 'X_T0_L0 > 2.75\n\tX_T0_R0 > 0.45',
' + 2.617');

('2', 'X_T0_L0 > 2.75\n\tX_T0_R0 <= 0.45',
'+ 2.4476');

('3', 'X_T0_L0 < 2.75 \n', '+ 2.377');

[…]

('9', '', '+ 4.377')

Erzeugte Text-Strings:

if eval('X_T0_L0 > 2.75 and X_T0_R0 > 0.45‘):
then return +2.617

\n wird mit and ersetzt und if-Abfrage erzeugt:

Bild 66: Verarbeitung eines Weka M5R Regellerners durch reguläre Ausdrücke.
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6.5.2 Ergebnisdarstellung und Erklärungskomponente

Die Werte der Zielgrößen (z. B. Umformkraft, Kontaktverhältnis), die durch den Inferenz-
mechanismus vorhergesagt werden, sind dem Benutzer übersichtlich und nachvollziehbar
zu präsentieren. Hierzu erzeugt Slassy eine Tabelle (s. Bild 67). Sie enthält die für alle Ziel-
größen berechneten Vorhersagen, den im ROPE-Prozess ermittelten Performanzkennwert
sowie das Datum der Ausführung des Selbstlernprozesses. Auf Basis der vorhergesagten
Werte der Zielgrößen kann anschließend abgeschätzt werden, ob der Bauteilentwurf fer-
tigungsgerecht ausgeführt ist. Von einem nicht-fertigungsgerechten Entwurf muss ausge-
gangen werden, wenn mindestens eine der Zielgrößen außerhalb ihrer zulässigen Grenzen
liegt. Diese können in die Wissensbasis aufgenommen und die vorhergesagten Werte damit
verglichen werden. In sehr frühen Stadien der Prozessentwicklung ist eine exakte Anga-
be von Grenzwerten jedoch nicht immer möglich oder nicht zielführend. Vielmehr sollten
die Ausprägungen der Zielgrößen mit dem Fertigungsexperten diskutiert und verschiedene
Entwurfsalternativen analysiert werden. Der Wissens- und Informationsaustausch zwischen
Konstruktion und Fertigung wird somit unterstützt.

Ausgabe des 
Analyseergebnisses
für die Zielgrößen (Label)

Anzeige des hinterlegten
Metamodells für jeweils
aktivierte Zielgröße
(hier: Umformkraft)

Bild 67: In der grafischen Benutzeroberfläche des Analysetools ist die Erklärungskompo-
nente integriert.

Ein Vorteil der ausgewählten Metamodelle ist, dass sie auch ohne Hilfsmittel gut durch
den Benutzer interpretiert werden können. Expertenwissen ist nach Rude [Rud98] u. a.
in Form von Constraints und Strukturen aus Wenn-Dann-Regeln repräsentiert. In diesen
Formen lässt sich Wissen nach North [Nor11] sowohl gut externalisieren (Überführung
von implizitem zu explizitem Wissen) als auch internalisieren (Überführung von explizitem
zu implizitem Wissen) (s. Abschnitt 2.1.2, S. 9). Diesen Vorteil nutzt das Assistenzsystem.
Slassy bildet für jede Zielgröße das entsprechende Metamodell in textbasierter Form ab (s.
Bild 67 unten).
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6.6 Das Produkt- und Prozessdatenmodell

Als zentrale Komponente einer informations- und wissensverarbeitender Software muss
dem Datenmodell während der Entwicklung hohe Aufmerksamkeit beigemessen werden.
Das Datenmodell von Konstruktionsassistenzsystemen wird i. A. als Produktmodell be-
zeichnet. Es bildet alle relevanten Informationen eines Produkts ab. Diese Informationen
beschreiben zum einen das Produkt als hierarchisches, technisches System mit allen Kom-
ponenten, Unterbaugruppen und Einzelteilen. Neben dieser Produktstruktur werden auch
alle Charakteristiken berücksichtigt, die das Produkt aufgrund seines Lebenszyklus aus-
zeichnen. Zum Produktlebenszyklus werden alle Phasen von der Entwicklung und Produk-
tion über den Vertrieb bis hin zur Wartung und zum Recycling gezählt [SK97]. In dieser
Hinsicht grenzen sich Produktmodelle von reinen geometrischen Modellen ab. Zum Stand
der Technik gehören, neben den proprietären Formaten der CAD-Systeme, unterschiedliche
neutrale und genormte Datenmodelle im Umfeld der Produktentwicklung. STEP (Standard
for the exchange of product model data, s. [GAPW93; And00]) und JT (Jupiter Tesselation,
s. [ISO12]) sind die aktuell am häufigsten genutzten Modellkonzepte. Erfolgreiche Arbeiten
zur Entwicklung integrativer Produkt- und Prozessdatenmodelle finden sich ebenfalls in der
Literatur, wobei die Modellkonzepte auf den Problemstellungen der jeweiligen Forschungs-
verbünde basieren. Bei [ES05] wird das PPDM in Module (Schemata) strukturiert, die aus
logisch gruppierten Informationsentitäten aufgebaut sind. In den Arbeiten von [War01]
stehen DfX-Analysen auf der Basis von heuristischem Erfahrungswissen im Vordergrund,
die erst durch das Produkt- und Prozessdatenmodell realisierbar sind. Ein Übertragung
verfügbarer Ansätze auf die Problemstellung der vorliegenden Arbeit ist nur in begrenztem
Maße möglich. Da es sich bei der Blechmassivumformung um eine neue Gruppe von teils
kombinierten Fertigungsprozessen handelt, steht kein Standard zur Gliederung eines Pro-
duktdatenmodells für Blechbauteile mit komplexen Nebenformelementen zur Verfügung.
Zudem stellen Verfahrenskombinationen innerhalb der Blechmassivumformung und vor al-
lem der KDD-basierte Selbstlernprozess des Assistenzsystem spezifische Anforderungen an
die Datenmodellierung. Das entwickelte Produkt- und Prozessdatenmodell berücksichtigt
die für den KDD-Prozess notwendigen Daten und Informationen zum einen in Form von
einzelnen Entitäten, die in Klassen zusammengefasst sind. Neben dieser Grundstruktur
wurde aber auch der multidimensionale Charakter der Produkt- und Prozessdaten der
Blechmassivumformung erkannt und entsprechend modelliert. Aus dieser multidimensio-
nalen Datenbasis geht, durch Anwendung des Selbstlernprozesses, die multidimensionale
Wissensbasis hervor. Beides wird im folgenden Abschnitt beschrieben.

6.6.1 Die multidimensionale Daten- und Wissensbasis

Der multidimensionale Charakter der Daten, die während der Entwicklung der Blech-
massivumformung anfallen, wird durch die drei Aspekte Produkt, Prozess und Zielgröße
beschrieben (s. Bild 68).
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Produkt
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Napf mit fließgepresster
Sperrverzahnung

Fließpressen
Werkzeugkonzept A

Umformkraft

Varianten der 
Sperrverzahnung

Generisches Bauteil der 
Blechmassivumformung

Weitere Dimensionsreduzierung 

Bild 68: Prinzip der multidimensionalen Datenbasis für Slassy

Produkt bezeichnet die Ausprägung eines blechmassivumgeformten Bauteils. Allgemein
betrachtet (Bild 68, links) ist hierunter ein generisches Bauteil zu verstehen, das mittels
Blechmassivumformung zu fertigen ist. Dies wird durch den Demonstrator des SFB/TR 73
symbolisiert. Mit fortschreitender Dimensionsreduzierung wird diese generische Darstel-
lung konkreter. Ein Napf mit fließgepresster Sperrverzahnung ist hierfür das Beispiel (Bild
68, mitte). Für die Sperrverzahung dieses Napfes existieren wiederum verschiedene geome-
trische Varianten (Bild 68, rechts). Prozess beschreibt die Ausprägung der zur Verfügung
stehenden Blechmassivumformprozesse. Bei Betrachtung eines konkreten blechmassivum-
geformten Bauteils (z. B. Napf mit Sperrverzahnung) lässt sich bereits ein bestimmtes
Blechmassivumformverfahren ableiten, z. B. das Fließpressen. Für dieses Verfahren stehen
wiederum verschieden Werkzeugkonzepte zur Verfügung. Eine Unterscheidung der Werk-
zeugkonzepte ergibt sich beispielsweise durch verschiedene Behandlungen der Werkezugo-
berfläche (z. B. Beschichten, Nitrieren, Strukturieren). Die mit einem Werkzeugkonzept
gefertigten Varianten einer Sperrverzahnung sind im Bild 68 rechts dargestellt. Die Ziel-
größe bezeichnet die Bauteil- oder Prozesskenngröße, zu welcher der Benutzer von Slassy
konstruktionsrelevantes Wissen benötigt. Erst für ein konkretes Produkt (z. B. Napf mit
Sperrverzahnung) kann festgelegt werden, welche Prozess- oder Bauteilkenngrößen zur Be-
urteilung der Fertigungsgerechtheit relevant sind. Wie im Bild 68 rechts zu erkennen, wird
die Fertigungsgerechtheit der Sperrverzahnungsvarianten u. a. anhand der auftretenden
Umformkräfte beurteilt.

Weiterhin muss auch die Heterogenität der Fertigungsdaten eines Blechmassivumformpro-
zesses als wichtiges Kriterium bei der Modellierung berücksichtigt werden [FKKS08]. Dies
lässt sich innerhalb der Forschungsaktivitäten des SFB/TR 73 sehr gut beobachten. Die
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verschiedenen, sowohl systemabhängigen als auch -neutralen Daten, die in den einzelnen
Teilprojekten erzeugt werden, müssen in einem KDD-Prozess verarbeitbar sein. Der mul-
tidimensionalen Charakter der in Bild 68 dargestellten Datenbasis wird im rahmen dieser
Arbeit anschaulich durch den sogenannten OLAP-Würfel (engl. Online Analytical Proces-
sing) repräsentiert (s. Bild 69).

D
im

en
si

on
 3

Dimension 2 hierarchische
Struktur

besetzte Events unbesetzte Events

Bild 69: Der OLAP Würfel als Beispiel für multidimensionale Datenbasen, nach [CD97].

Das OLAP-Konzept fasst im ursprünglichen Sinne computerunterstützte Methoden und
Werkzeuge zur analytischen Auswertung von multidimensionalen Daten für die Unterneh-
mensführung zusammen (z. B. Umsatzerlöse, Verkaufszahlen, Inventurergebnisse) [Tot00].
Die Bezeichnung Online hebt die schnelle Bearbeitung der Anfragen des Benutzers hervor.
Wie in Bild 69 zu sehen, kann ein OLAP-Würfel in jeder Dimensionen hierarchisch ge-
gliedert werden, wodurch sogenannte Events entstehen [WK07]. Ein Event kann dabei der
Verkauf eines bestimmten Artikels im Quartal eines Geschäftsjahres in der Vertriebsregion
Süd darstellen. Die beschreibenden Dimensionen (Attribute) sind in diesem Fall das Pro-
dukt, die Zeit und der Vertriebsweg. Im allgemeinen ist ein OLAP-Würfel „dünn besetzt“,
d.h. es sind nicht alle Events im Würfel mit Einträgen belegt. Der Umgang einer Softwa-
re mit den besetzten Events des Würfels trägt entscheidend zum Speicherbedarf und zur
Performance des OLAP-Systems bei [CD97].

6.6.2 Strukturierung der Produkt- und Prozessdaten

Nachfolgend werden der Aufbau und die Struktur der Datenbank für die Produkt- und Pro-
zessdaten beschrieben. Als grundlegendes Konzept für die Umsetzung wird ein relationales
Datenbankschema verwendet, das Flexibilität bei Strukturergänzungen und -änderungen
bietet. Ein weiterer Vorteil ist die Möglichkeit, beliebig viele Sichtweisen auf die Produkt-
und Prozessdaten mit unterschiedlichen logischen Strukturen einzunehmen, indem ver-
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schiedene Entitätstabellen oder Teile davon kombiniert werden. Dies ermöglicht in der
Zukunft die Entwicklung einer Version von Slassy, die auf die Bedürfnisse des Prozessent-
wicklers angepasst werden kann, ohne eine physische Änderung der bereits vorhandenen
Produkt- und Prozessdatenbank vornehmen zu müssen.

Bei der Erstellung des relationalen Datenbankschemas werden insbesondere die ersten drei
Normalformen (s. [KR05; Kle11]) beachtet, mit dem Ziel, Redundanzen in der Datenspei-
cherung zu beseitigen, funktionelle und transitive Abhängigkeiten zu vermeiden und ein
klar strukturiertes Datenbankmodell zu erhalten. Im Fokus der Beschreibungen stehen die
Erfassung der Umformversuche und der Blechmassivumformverfahren mit den jeweiligen
Werk- und Halbzeugkonzepten sowie die Strukturierung der Ergebnisgrößen des Selbstlern-
prozesses, der Metamodelle und der Bauteile mit den verschiedenen Formelementen. Bild
70 zeigt die schematische Darstellung der Produkt- und Prozessdaten mit den jeweiligen
Relationen. Zu den Elementen Beschreibende Parameter und Werte der beschreibenden
Parameter je Versuch ist anzumerken, dass diese der Übersicht halber zusammengefasst
wurden. In der physischen Ausführung der Datenbank werden je Aspekt (Zusatzeigen-
schaft, Formelement, Fertigungsverfahren, Werkzeugkonzept und Halbzeugkonzept) eigene
entsprechende Tabellen angelegt.

Produktdaten Prozessdaten

Bauteil

verfügbare
Formelemente

Werte der 
Ergebnis-

parameter je 
Versuch

Versuch

Daten der
ModelleModelltyp

Vorhersage
(bestes Modell)

Beschreibende
Parameter

Werte der 
beschreibenden

Parameter je 
Versuch

Zusatzeigen-
schaften je 

Bauteil

Ergebnis-
parameter

Fertigungs-
verfahren

Halbzeug-
konzept

Werkzeug-
konzept

Beschreibende
Parameter

Werte der 
beschreibenden

Parameter je 
Versuch

Verbaute 
Formelemente

je Bauteil

Bild 70: Schematische Darstellung der Verbindungen zwischen Produkt- und Prozessdaten.

Unter der Bezeichnung „Versuch“ werden sowohl Simulationen als auch Experimente mit
Verfahren der Blechmassivumformung zusammengefasst. Um den Umformversuch best-
möglich zu beschreiben, werden alle Parameterwerte eines Versuchs (z. B. Geometriepa-
rameter, Prozessparameter, Ergebnisgrößen) einer eindeutigen (fortlaufenden) Versuchs-
nummer (Versuchs-ID) zugeordnet. Dazu wird für jeden Versuchsdurchgang in der Entität
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„Versuch“ ein Eintrag erstellt. Hier kann eine Beschreibung zum jeweiligen Versuch hinzu-
gefügt werden, beispielsweise in welchem Kontext die Daten erzeugt oder welche Methoden
zur Versuchsplanung genutzt wurden. So kann von jedem Werttupel per Fremdschlüssel
auf die Versuchs-ID verwiesen werden.

Die Datenstrukturen von Werk- und Halbzeugkonzepten sowie die der Blechmassivum-
formverfahren sind ähnlich aufgebaut und werden exemplarisch an der Struktur für die
Fertigungsverfahren erläutert, wie sie in Bild 71 gezeigt ist. Zur Integration eines neu-
en Blechmassivumformverfahrens wird die Tabelle der Entität „Fertigungsverfahren“ um
einen Eintrag mit der entsprechenden Bezeichnung, bspw. „Tiefziehen“, erweitert. Das Da-
tenbanktool fügt der Bezeichnung automatisch einen eindeutigen Primärschlüssel zur Iden-
tifikation zu. Attribute, die den jeweiligen Fertigungsprozess auszeichnen, jedoch keine Er-
gebnisgrößen sind (z. B. geschätzte Reibzahl zwischen Werkzeug und Werkstück, Umform-
geschwindigkeit, Maschinennummer), werden in der Tabelle „FertigungPara“ hinterlegt
und das entsprechende Fertigungsverfahren per Fremdschlüssel „Fertigungsverfahren_ID“
referenziert. Die Integration der Daten bzw. des Datentupels eines Versuchs führt zur Be-
legung der Entität „FertParaWerte“ mit dem jeweiligen Wert. Die Relation zum Versuch
wird wiederum durch einen Fremdschlüssel („Versuch_ID“) hergestellt. In ähnlicher Weise
wird für die Struktur der Halb- und Werkzeugkonzepte verfahren.

Fertigungsverfahren
Primärschlüssel:
- ID 
Merkmale:
- Bezeichnung
- Beschreibung

FertigungPara
Primärschlüssel:
- ID
- Fertigungsverfahren_ID
Merkmale:
- Bezeichnung
- Einheit
- Beschreibung
- AlphanumWert

FertParaWerte
Primärschlüssel:
- ID
- FertigungPara_ID
- Versuch_ID

Merkmale:
- Bezeichnung
- Einheit
- Beschreibung
- AlphanumWert

1:n 1:n
Versuch

Bild 71: Darstellung der Datenbankstruktur zur Vorhaltung von Daten über
Blechmassivumformverfahren

Die unterschiedlichen Varianten an blechmassivumgeformten Bauteilen (s. Bild 31, S. 56)
werden in der Tabelle „Bauteil“ geführt. Neben der Bauteilbezeichnung enthält diese zur
Verwaltung von Änderungen am Bauteil bei Bedarf auch zu vergebene Versionsnummern
sowie einen kurzen Beschreibungstext. Bei der Abbildung der Bauteilstruktur wird das
Konzept der Haupt- und Nebenformelemente (s. Abschnitt 3.3, S. 61) berücksichtigt. Ent-
sprechend besteht ein Bauteil aus maximal einem Haupt- und mindestens einem Neben-
formelement. Die Definition eines Formelementes erfolgt über die Tabelle „Formelemente“
(s. Bild 72). Sie enthält die Bezeichnung (z. B. „tiefgezogener Napf“, „Scheibe“) sowie ein
Formelementkürzel, das bspw. als Präfix für die Geometrieparameter genutzt werden kann
(z. B. „C“ für Napf, engl. Cup). Das Attribut Typ_HFE_NFE enthält die Angabe, ob es
sich bei dem Formelement um ein Haupt- (Typ_HFE_NFE = HFE) oder ein Nebenfor-
melement (Typ_HFE_NFE = NFE) handelt. Jedes Formelement wird im CAD-Modell
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durch unterschiedliche Geometrieparameter (z. B. Längen, Breiten, Winkel) beschrieben,
die im Produkt- und Prozessdatenmodell in der Tabelle „FormelementePara“ hinterlegt
sind. Neben der Angabe einer Parameter-Bezeichnung sowie der Einheit kann zusätzlich
ein Beschreibungstext angegeben werden. Um ein Formelement auch über alphanumerische
Parameter beschreiben zu können, wird ein binäres Attribut „AlphanumWert“ definiert.
Im Falle eines entsprechenden Parameters (z. B. Blechmaterial DC04 oder DP600) muss
„AlphanumWert“ an dieser Stelle zu „true“ bzw. „1“ gesetzt werden. Da ein Formele-
ment verschiedenen Bauteilvarianten zugeordnet sein kann (z. B. „Napf mit Sperrverzah-
nung“ oder „Scheibe mit Sperrverzahnung“) wird eine sogenannte Hilfstabelle benötigt.
Diese Tabelle „Bauteil_has_Formelemente“ beinhaltet während des Betriebs von Slassy
die Formelementekombinationen für ein bestimmtes Bauteil. Werden nun Versuchsstudi-
en mit verschiedenen Werten der Geometrieparameter durchgeführt, erfolgt eine Speiche-
rung dieser Versuchsdaten in der Tabelle „FormParaWerte“. Per Fremdschlüssel werden die
zugehörigen FormelementePara-IDs und die Versuchs-IDs referenziert. Sofern ein numeri-
scher Ergebniswert vorliegt, wird dieser in „wert_numerisch“ eingetragen, andernfalls in
„wert_alphanumerisch“. Die Tabelle „FormParaWerte“ enthält nach der Integration eines
Fertigungsdatensatzes die Ausprägungen der einzelnen Parameter (Eingangsgrößen, z. B.
Geometrie) und spiegelt somit den zugrundeliegenden Versuchsplan (s. Abschnitt 2.3.3,
S. 39) wider. Ähnlich zu den Formelementen eines Bauteils wird mit dessen möglichen
Zusatzeigenschaften verfahren. Zusatzeigenschaften sind bspw. funktionsrelevante Attri-
bute wie die auftretende Flächenpressung an der Funktionsfläche der Sperrverzahnung (s.
Abschnitt 3.3, Bild 21 sowie [BW14]). Somit kann eine Verknüpfung zwischen Produkt-
und Prozessanforderungen hergestellt werden.

Bauteil

Primärschlüssel:
- ID 

Merkmale:
- Bezeichnung
- Version
- Beschreibung

1:n
Bauteil_has_formelemente

Primärschlüssel:
- Bauteil_ID
- Formelemente_ID

Merkmale:
keine

Versuch

Formelemente

Primärschlüssel:
- ID

Merkmale:
- Bezeichnung
- Typ_HFE_NFE
- Typ_Kurzname
- Beschreibung

FormelementePara

Primärschlüssel:
- ID
- Formelemente_ID

Merkmale:
- Bezeichnung
- Einheit
- AlphanumWert
- Beschreibung

FormParaWerte

Primärschlüssel:
- ID
- FormelementePara_ID
- Versuch_ID

Merkmale:
- wert_numerisch
- wert_alphanumerisch1:n

1:n
1:n

Bild 72: Datenbankstruktur zur Datenverwaltung der Formelemente.

Jedem blechmassivumgeformten Bauteil sind verschiedene Ergebnisparameter zugewiesen
(s. Abschnitt 3.2). Dies in der Datenbank des PPDMs abzubilden ist Zweck der Tabel-

https://doi.org/10.51202/9783186449016 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:34:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186449016


6.6 Das Produkt- und Prozessdatenmodell 127

le „ErgebPara“ (s. Bild 73). Per Fremdschlüssel wird von dieser Entität auf die jeweilige
Bauteil-ID referenziert. Bei der Definition einer Ergebnisgröße (s. Abschnitt 6.6.3) muss der
Benutzer die Parameterbezeichung sowie eine Einheit angeben (z. B. Umformkraft in kN).
Die Ergebniswerte aus den Umformversuchen einer Parameterstudie werden per Fremd-
schlüssel auf die zugehörige Versuchs-, Bauteil- und Ergebnisparameter-ID referenziert.

ErgebPara

Primärschlüssel:
- ID
- Bauteil_ID

Merkmale:
- Bezeichnung
- Einheit
- AlphanumWert
- Beschreibung

1:n
ErgebparaWerte

Primärschlüssel:
- ID
- Versuch_ID
- ErgebPara_ID

Merkmale:
- wert_numerisch
- wert_alphanumerisch

VersuchBauteil

Bild 73: Darstellung der Datenbankstruktur für die Ergebniswerte und deren Verbindung
zu Bauteil und Versuch.

In der Tabelle „ModellTyp“ (s. Bild 74) werden die im Abschnitt 6.3.1 ausgewählten Mo-
delle „Lineare Regression“ (ID=1), „Polynomiale Regression“ (ID=2), „Weka M5P Mo-
dellbaum“ (ID=3) sowie „Weka M5R Regellerner“ (ID=4) hinterlegt. Die Beibehaltung
der IDs ist für die Ausführung des Assistenzsystems erforderlich und bei neu hinzuzu-
fügenden Modelltypen muss die Liste entsprechend fortlaufend nummeriert sein. Hat die
Selbstlernkomponente das bestgeeignete Metamodell identifiziert, so wird in der Entität
„Vorhersage“ die Referenz zur Ergebnisgröße („ErgebPara_ID“) eines bestimmten Bau-
teils festgelegt. Der Modelltyp gibt die spätere Auswertung des Modells durch das Analy-
setool vor und muss daher ebenfalls abgelegt werden („ModellTyp_ID“). Das KDD-Tool
Rapidminer R© ermöglicht den Export textbasierter Modellrepräsentationen in Form eines
Strings. Das Attribut „RM_Bestes_Modell“ beinhaltet diesen String, dessen Verarbeitung
im Abschnitt 6.5 beschrieben wurde. Neben dem Modellstring enthält die Entität mit dem
Attribut „RM_Perf_Bestes_Modell“ auch die durch den ROPE-Prozess (s. Abschnitt 5.2)
geschätzte Performanz.

ModellTyp

Primärschlüssel:
- ID

Merkmale:
- Name
- Beschreibung

1:n
Modell_Daten

Primärschlüssel:
- ID
- Vorhersage_ID
- ModellTyp_ID

Merkmale:
- RM_Modell_1
- …
- RM_Modell_6
- RM_Perf_Modell_1
- …
- RM_Perf_Modell_6

ErgebParaVorhersage

Primärschlüssel:
- ID
- Ergeb_Para_ID
- ModellTyp_ID

Merkmale:
- test_werte
- RM_bestes_Modell
- RM_Perf_bestes_Modell
- Zeitpunkt_Erstellung

1:n

Bild 74: Datenbankstruktur für Vorhersagemodelle.
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128 6 Das selbstlernende Assistenzsystem Slassy

6.6.3 Operative Integration der Produkt- und Prozessdaten

Die Durchführung der Datenerhebung und die Vorbereitung der Wissensakquisition durch
den Benutzer erfordert eine komfortable und einfach zu bedienende Benutzungsoberfläche.
Diese ist als Teil der Akquisitionskomponente des selbstlernenden Assistenzsystems zu
betrachten. Das Vorgehen zur Integration der Produkt- und Prozessdaten ist in Bild 75
beschrieben.

Start: Bauteil erzeugen
(Name, Version, Beschreibung)

HFE auswählen

HFE
vorhanden?

NFE auswählen

Zielgröße zuweisen
(Name, Einheit, 

Beschreibung, Bauteil_ID)

HFE erzeugen
(Name, Typ_HFE_NFE = HFE, 
TypAbkürzung, Beschreibung)

nein

ja

alle NFE
vorhanden?

NFE erzeugen
(Name, Typ_HFE_NFE = NFE, 
TypAbkürzung, Beschreibung)

nein

alle Parameter
vorhanden?

Parameter erzeugen 
(Name, Einheit, Beschreibung)

nein

nein

Flat Table erstellen

Fertigungsdaten
vorhanden?

Daten erzeugen: Versuchsplan 
erstellen, Parameterstudie 

durchführen, auswerten

Flat Table füllenZiel: Selbstlernprozess starten

ja

ja

ja

Bild 75: Ablaufschema zur Integration von Produkt- und Prozessdaten.
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Zu Beginn erfolgt die Definition eines blechmassivumgeformten Bauteils für das eine Ver-
sionsnummer vergeben und eine kurze Beschreibung verfasst wird. Basis eines Bauteilm-
odells ist das Hauptformelement. Hier kann der Benutzer aus bestehenden Modellen (z. B.
Näpfe, Scheiben etc.) wählen oder ein Hauptformelement erzeugen, das noch nicht in der
Datenbank vorhanden ist. Diesem Hautpformelement werden anschließend die Nebenform-
elemente zugeordnet. Auch hier besteht die Möglichkeit, existierende Nebenformelemente
zu wählen oder neue zu erzeugen. In den nächsten beiden Schritten müssen die verän-
derbaren Parameter (z. B. Längen und Winkel eines Formelements) sowie die relevanten
DfM-Ergebnisgrößen (z. B. Umformkraft, Kontaktverhältnis) definiert werden. Hierbei sind
die Benennungen im späteren synthetisierten CAD-Modell zu berücksichtigen. Zur Erhö-
hung des Benutzerkomforts wurde eine Supportfunktion implementiert, die das aktuell im
Syntheseteil erzeugte Bauteilmodell analysiert und die vorhandenen Geometrieparameter
aus den UserFeatures des Haupt- und der Nebenformelemente automatisch in die Impor-
toberfläche übernimmt. Bild 76 zeigt die Umsetzung dieses Schemas in der graphischen
Benutzeroberfläche von Slassy.

Bild 76: Benutzeroberfläche zur Integration von Produkt- und Prozessdaten.
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130 6 Das selbstlernende Assistenzsystem Slassy

Aus den Listen für Zielgröße und Parameter wird im unteren Bereich der Benutzerober-
fläche eine zu Beginn noch leere Datentabelle erzeugt. Das Befüllen dieser Tabelle mit
den Versuchsdaten kann manuell oder durch Import einer vorliegenden Excel R© Tabelle
erfolgen. Die Benennung der Spalten einer solchen Versuchsdatentabelle muss mit der im
Datenakquisitionstool übereinstimmen. Die Übernahme der Eingaben durch das PPDM
wird von einer kurzen Versuchsbeschreibung begleitet, die der Benutzer tätigen muss, um
den Kontext der Versuchsdaten zu erfassen (z. B. „Versuchsreihe Bauteil A, Juni 2016).
Die somit gewährleistete kontextabhängige Datenüberprüfung kann vom Benutzer in einer
eigenen Ansicht des Assistenzsystems durchgeführt werden. Zum Starten des Selbstlern-
prozesses wechselt der Benutzer in die entsprechende Ansicht und wählt den Datensatz,
aus dem das konstruktionsrelevante Fertigungswissen automatisch erhoben werden soll. Da
die Laufzeit eines KDD-Prozesses im Allgemeinen mit dem Umfang der Daten steigt, kann
der Benutzer hier bereits eine Vorauswahl der zu verarbeitenden Attribute und Label tref-
fen. Nach dem Start und dem erfolgreichen Durchlaufen des Selbstlernprozesses, speichert
das Assistenzsystem das ermittelte bestgeignete Metamodell in der multidimensionalen
Wissensbasis. Der Benutzer erhält einen kurzen Ergebnisbericht mit Informationen zum
ermittelten Metamodell und dessen Performanz.
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7 Anwendungsbeispiel:
Tiefziehen-Querfließpressen

Am Beispiel eines blechmassivumgeformten Bauteils werden im Folgenden die Funktions-
weise des Assistenzsystems und der Umgang mit der grafischen Benutzeroberfläche dar-
gestellt. Im Fokus stehen die Aufnahme neuer Formelemente in Slassy, die Erhebung und
Integration der Fertigungsdaten und das Durchlaufen des Selbstlernprozesses. Obwohl der
Selbstlernprozess während der Laufzeit im Hintergrund aktiv ist und nur die wichtigsten
Informationen an den Benutzer ausgibt, werden die einzelnen Prozessschritte in diesem
Kapitel nachvollziehbar beschrieben.

7.1 Integration des Bauteils in Slassy

Als blechmassivumgeformtes Bauteil wird ein Demonstrator aus einem der Teilprojekte
des Sonderforschungsbereichs Transregio 73 gewählt (s. Bild 77). Die Form des Bauteils
orientiert sich an Synchronringen in Fahrzeuggetrieben, die u. a. die Funktion der Drehzahl-
anpassung von Antriebs- und Abtriebswelle erfüllen. Das gezeigte Bauteil wird in einem
zweistufigen Fertigungsprozess zunächst tiefgezogen und anschließend werden durch Quer-
fließpressen Verzahnungen am Umfang des Flanschs ausgeformt.

Tiefzieh-
stempel

Fließpress-
matrize

Tiefzieheinsatz/
Auswerfer

CAD-Entwurf Umformwerkzeug Gefertigter Prototyp

Bild 77: Bauteil des Anwendungsbeispiels aus dem SFB/TR 73, z. B. in [VKME12;
MKOS11]).
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132 7 Anwendungsbeispiel: Tiefziehen-Querfließpressen

7.1.1 Aufbau des Hauptformelements Napf

Als Hauptformelement kann bei diesem Bauteil ein tiefgezogener Napf mit Flansch identifi-
ziert werden. Bild 78 zeigt das Bauteil bzw. das Hauptformelement mit Bemaßungen, wobei
die Geometrieparameter des Hauptformelements in der Bezeichnung das Präfix W_C0 erhal-
ten (W: Hauptformelement, C0: Napf Form 0, von engl. cup), wie in Tabelle 9 (S. 115) bereits
gezeigt. Die angegebenen Maße sind zu Anschauungszwecken gewählt, entsprechen in der
Größenordnung jedoch den im SFB/TR 73 üblichen Werten. Der Flansch ist notwendig
für den Tiefziehvorgang, da hier die Niederhalterkraft zur Vermeidung von Faltenbildung
eingeleitet wird. Der Napfinnenradius W_C0_R2 ergibt sich während der Umformung aus
der Form des Tiefziehstempels, während der Napfaußenradius W_C0_R1 durch die Tief-
ziehmatrize geformt wird. Die Blechdicke W_C0_H0 im Bereich der später ausgeformten
Nebenformelemente wird wiederum durch das eingesetzte Blechhalbzeug bestimmt. Wie
in Abschnitt 6.4.1 beschrieben, verfügt jedes Hauptformelement über Referenzelemente (s.
Bild 78), die zur Synthese mit den Nebenformelementen notwendig sind.

Point.NFE.1
Plane.NFE.1

Plane.NFE.0

Point.NFE.0

Line.SymAxis

xy-Ebene

zx-Ebene

yz-Ebene

xy-Ebene

zx-Ebene

yz-Ebene

Bild 78: Geometrie und Referenzelemente des Hauptformelements tiefgezogenem Napf.

Während der Laufzeit muss Slassy in der Lage sein, auf das Hauptformelement zuzugrei-
fen, um Geometrieparameter durch den Benutzer ändern zu lassen und die definierten
Referenzelemente für das Nebenformelement bereitzustellen. Hierzu erfolgt die Definition
eines UserFeatuers im CAD-System17 mit Ein- und Ausgabeelementen sowie veröffentlich-
ten und von außen zugreifbaren Geometrieparametern. Das Hauptformelement benötigt
als Eingabeelement die xy-Ebene zur korrekten Positionierung im Raum. Die Ausgabe-
elemente entsprechen den zuvor definierten Referenzelementen für das Nebenformelement.
Neben den Geometrieparametern kann Slassy auf den Parameter „sync“ zugreifen. Dieser
enthält die Namen der Geometrieparameter eines Nebenformelements, die mit Parametern
des Hauptformelements synchronisiert, d. h. in ihren Werten gleich gesetzt werden kön-
nen. Die Bereitstellung der CAD-Datei, einer Voransicht sowie einer technischen Skizze
des Hauptformelements erfolgt über die Windows-Ordnerstruktur.
17 Details zu UserFeatures und deren Erstellung können [Bra08] entnommen werden.
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7.1 Integration des Bauteils in Slassy 133

7.1.2 Aufbau des Nebenformelements Sperrverzahnung

Die Verzahnung als Nebenformelement wird nach dem Tiefziehen durch einen Querfließpro-
zess radial am Umfang des Flanschs geformt. Tabelle 10 (S. 116) zeigt die Bezeichnungen
der Geometrieparameter der Sperrverzahnung mit dem Präfix X_T0 (X: Nebenformelement,
C0: Napf Form 0, von engl. cup)

Bild 79 zeigt die Geometrie des Nebenformelements sowie die Bemaßungen, die mit dem
Präfix X_T0 gekennzeichnet sind. Das UserFeature eines Nebenformelements muss intern
drei Objekte aufweisen, die die drei Ausgabeelemente des UserFeatures des Hauptform-
elements als Referenz nutzen. An diesen Objekten richten sich alle weiteren Geometrien
des Nebenformelements aus. Im Falle der Sperrverzahnung handelt es sich dabei um die
xy-Ebene des CAD-Modells, den Punkt „Point.Base“ sowie das Element „Line.SymAxis“
wie in Bild 79 gezeigt. Das dort gezeigte Nebenformelement ist als eine Art Startgeometrie
zu verstehen. Diese erscheint beim ersten Aufruf des Formelements im Synthesetool. Der
Benutzer passt anschließend die Werte der gezeigten Maße an.

xy-Ebene

zx-Ebene

yz-Ebene

Line.SymAxisPoint.Base

Bild 79: Geometrie und Referenzelemente des Nebenformelements Sperrverzahnung.

Bei der Definition des UserFeatures eines Nebenformelements werden die oben genann-
ten drei internen Objekte als Eingabeelemente festgelegt, die bei der Instanziierung des
UserFeatures (s. Abschnitt 7.1.3) mit den Ausgabeelementen des UserFeatures des Haupt-
formelements verlinkt werden. Wie bereits beim tiefgezogenen Napf werden die Geome-
trieparameter der Sperrverzahnung publiziert, um sie für das Assistenzsystem und damit
für den Benutzer zugreifbar zu machen. Für das Kreismuster eines Nebenformelements am
Umfang des Hauptformelements kann der Benutzer die Anzahl der zu erzeugenden Kopien
selbst bestimmen. Sie ist jedoch nach oben begrenzt, da zu eng beieinander liegende Fea-
tures weder funktions- noch fertigungsgerecht sind. Daher enthält jedes UserFeatures den
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publizierten Parameter „NFE_UsedAngle“, der dem Kreisbogenwinkel entspricht, den das
Nebenformelement am Umfang des Hauptformelements einnimmt. Während der Synthese
prüft Slassy diesen Winkel und reduziert die Anzahl der Kreismusterelemente, falls es zu
einer Überschneidung der Nebenformelemente kommt.

7.1.3 Synthese des Bauteilmodells

Bild 80 zeigt die graphische Benutzeroberfläche des Synthesewerkzeugs in Slassy. Im obe-
ren Bereich wählt der Benutzer ein verfügbares Hauptformelement aus und passt über ein
Kontextmenü dessen Geometrie an. Anschließend erfolgt die Auswahl und Geometriean-
passung eines oder mehrerer Nebenformelemente.

Bild 80: Graphische Benutzeroberfläche des Synthesewerkzeugs (links) mit Kontextmenü
zur Geometrieanpassung eines Nebenformelements (rechts)

Die systeminterne Bauteilsynthese beginnt mit der Instanziierung eines UserFeatures für
ein Hauptformelement in einem zunächst leeren CAD-Einzelteil mit den globalen Refe-
renzebenen in XY-, YZ- und ZX-Richtung und einem leeren Hauptkörper. Hierzu erzeugt
Slassy einen temporären Körper im CAD-Part, fügt das UserFeature ein und weist dem
lokalen Eingabeelement „xy.plane“ des Features die globale XY-Referenzebene des CAD-
Einzelteils zu. Anschließend wird der temporäre Körper durch eine Bool’sche Operation
dem Hauptkörper hinzugefügt. Damit ist das Hauptformelement für den Nutzer im CAD-
System sichtbar und kann von ihm geändert werden. Für das Nebenformelement wird
ähnlich verfahren, indem ein weiterer temporärer Körper dem CAD-Einzelteil (mit einem
Hauptformelement) hinzugefügt wird. In diesem wird das UserFeatures des Nebenformele-
ments instantiiert und die Ausgabeelemente des Hauptformelements (s. oben) den Einga-
beelementen des Nebenformelements zugewiesen. Durch eine weitere Bool’sche Operation
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fügt Slassy auch den temporären Körper inklusive Nebenformelement dem Hauptkörper
hinzu und erzeugt ein Kreismuster mit „Line.SymAxis“ (s. oben) als Drehachse. Nun kann
der Benutzer die Gestalt des Nebenformelements anpassen. Bild 81 fasst den Ablauf zu-
sammen.

xy-Ebene

zx-Ebene
yz-Ebene

Line.SymAxis

Point.Base

Point.NFE.1
Plane.NFE.1

Plane.NFE.0

Point.NFE.0

Line.SymAxis

xy-Ebene

zx-Ebene

yz-Ebene

Synthesetool

Verknüpfung der 
Referenzelemente
durch Slassy

Assemblierung
des Bauteils

Manipulation der 
Geometrieparameter

Bild 81: Zuweisung der Referenzelemente von Haupt- und Nebenformelement durch das
Synthesetool.

Die Oberfläche des Synthesetools bietet dem Benutzer ein hohes Maß an Flexibilität. Ne-
ben Kreismustern mit variierender Nebenformelementanzahl, können verschiedene Neben-
formelemente kombiniert sowie ihre Positionen am Umfang des Hauptformelements einzeln
festgelegt werden.

7.2 Erhebung der Fertigungsdaten

Die in diesem Abschnitt dargestellte Datenerhebung ist fester Bestandteil eines KDD-
Prozesses (s. Abschnitt 2.4.1, S. 42) und erfordert eine sorgfältige Vorbereitung, denn sie
beeinflusst die Qualität des Gesamtergebnisses entscheidend. Da die Datenerhebung im
Rahmen des SFB/TR 73 teilweise in der Fertigungsprozessentwicklung verortet war, wird
im Folgenden nur die grobe Vorgehensweise dargestellt. Für Details zur Fertigungstechno-
logie wird auf bereits zitierte Veröffentlichungen im Abschnitt 3 verwiesen. Das Vorgehen
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beginnt mit der Definition der Produktgrößen, deren Einfluss auf das Fertigungsergebnis
untersucht werden soll (Attribute). Diese werden in einer simulativen Parameterstudie ent-
sprechend eines statistischen Versuchsplans variiert. Die Auswertung der Simulationen zur
Ermittlung der Zielgrößen (Label) schließt die Datenerhebung ab.

7.2.1 Auswahl der relevanten Parameter und Entwicklung des
Versuchsplans

Das Synthesetool bietet dem Konstrukteur die Möglichkeit, sowohl am Haupt- (Napf mit
Flansch) als auch am Nebenformelement (Sperrverzahnung) insgesamt 17 Geometriepara-
meter zu variieren. Der qualitative Einfluss dieser Parameter (Faktoren) auf Umformpro-
zessgrößen kann durch Methoden der statistischen Versuchsplanung (s. Abschnitt 2.3.3, S.
39) ermittelt werden. Dabei werden die verschiedenen Ausprägungen (Einstellungen) der
Faktoren nach festen Schemata kombiniert. Zur Erfassung nicht-linearer Zusammenhänge
und Wechselwirkungen haben sich vor allem vollfaktorielle Versuchspläne mit drei Stufen
je Faktor etabliert [Sch14a; DB10].

Ein vollfaktorieller, dreistufiger Versuchsplan mit allen Parametern des blechmassivum-
geformten Bauteils würde jedoch 317 = 129.140.163 Simulationen erfordern, weshalb eine
Reduzierung der untersuchten Parameter sowie eine Festlegung ihrer Grenzen notwendig
ist. Durch Gespräche mit Fertigungsexperten können die Geometrieparameter identifiziert
werden, die sowohl aus Sicht der Konstruktion als auch der Prozessentwicklung von ho-
her Bedeutung sind. Eine detaillierte Betrachtung dieser Parameter erfolgt in Abschnitt
7.2.2 (s. S. 139). Ziel der fachlichen Diskussionen ist letztlich ein Kompromiss, bei dem
die Interessen beider Seiten berücksichtigt werden. Der Konstrukteur möchte beispielswei-
se während der Bauteilauslegung die Zahnbreite, die Zahnlänge und den Flankenwinkel
besonders häufig variieren, um den Einfluss der sich dadurch ändernden Kontaktfläche (s.
Bild 47, S. 90) während des Synchronisationsvorgangs zu untersuchen. Der Fertigungstech-
nologe ist wiederum an der Realisierung kleiner, komplexer Formfeatures wie dem Kopf-
und dem Dachradius interessiert, da dies ein erklärtes Ziel der Forschungsarbeiten des
SFB/TR 73 ist. Die Blechmassivumformung zeichnet sich des Weiteren durch sehr hohe
und lokale Beanspruchungen mit starken Gradienten in der Umformzone aus [MAB+12].
Eine systematische Variation kleiner Geometrien lässt hinsichtlich dieses Aspekts gezielte
Untersuchungen zu.

Neben den zu variierenden Parametern müssen vom Konstrukteur und Fertigungsexperten
die Zielgrößen festgelegt werden, auf deren Basis eine Design for Manufacture Analyse
durchgeführt werden kann. Für das Sperrverzahnungsbauteil sind dies der Umformgrad ϕ,
die Umformkraft FU sowie das Kontaktverhältnis c (engl. contact ratio) zwischen Werkstoff
und Werkzeugkavität.

Der Umformgrad ist der natürliche Logarithmus des Formänderungsverhältnisses und ei-
ne wichtige Größe zur Beurteilung eines Umformprozesses, z. B. bei der Ermittlung des
Kraft- und Arbeitsbedarfs [Kug09; DB10]. In besonders kritischen Bereichen des Bauteils
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darf der Gesamtumformgrad einen höchstzulässigen Wert ϕvG nicht übersteigen. Dieser
Grenzumformgrad ist nicht nur abhängig vom Werkstoff, sondern u. a. auch vom ange-
wandten Verfahren, der Umformgeschwindigkeit und der Temperatur [Klo07]. Aber auch
für den Konstrukteur ist der Umformgrad von Bedeutung, denn hohe Umformgrade gehen
mit einer hohen Zunahme der Versetzungsdichte im metallischen Gefüge einher und führen
zu (Kalt-)Verfestigungen des Werkstoffs [IS10]. Grenzumformgrade lassen sich aufgrund ei-
ner Vielzahl an Einflussfaktoren (Werkstoff, Verfahren, Umformvorgeschichte, Tempratur,
etc.) nur sehr schwer definieren. Der maximal erreichte Umformgrad nach der Umformung
variiert im vorliegenden Beispiel je nach simulierter Bauteilvariante in Betrag und Ort (s.
Bild 82). Für die Auswertung gilt es zudem zu beachten, dass der maximale Umformgrad
auch in Bereichen liegen kann, die für die DfM-Analyse mitunter irrelevant sein können.
In Bild 82 ist dies z. B. Bereich 1. Hier bildet sich während der Umformung ein Grat, der
durch eine Nachbearbeitung (z. B. Laserschneiden) entfernt wird. Für die Auswertung ist
der Bereich 2 relevant.

FE-Simulation
eines Bauteil-
segments

0,0

0,46

0,91

1,37

1,82

2,28

2,73

3,19φ

Bild 82: Auswertung der FE-Simulation des Sperrverzahnungsbauteil anhand des Umform-
grads ϕ.

Die maximale Umformkraft Fumax muss bei einem Umformprozess durch die Umformma-
schine aufgebracht werden und ist daher für die Wahl der Maschine von zentraler Bedeu-
tung [DB10]. Ihre Berechnung ist eine komplexe Aufgabe, da unterschiedliche Einflussfak-
toren berücksichtigt werden müssen. Neben der Bauteilgeometrie und dem -werkstoff hat
vor allem die gewählte Umformtemperatur Einfluss auf die Umformkraft. Die insgesamt
aufzubringende Umformkraft kann nach Siebel durch Addition der ideellen Umformkraft
Fid mit dem Reib- (FR), Schiebungs- (FSch) und Biegeanteil (FB) ermittelt werden [Sie32]:

Fges = Fid + FR + FSch + FB (7.1)
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Die Berechnung der einzelnen Anteile gestaltet sich je nach Prozess unterschiedlich, sodass
keine allgemeingültigen Formeln angegeben werden können. Für etablierte Verfahren kön-
nen empirisch ermittelte, spezifische Gleichungen bspw. aus [Tsc05] entnommen werden.
Für die Prozesse der Blechmassivumformung existieren derartige Erfahrungswerte nicht,
weshalb für den Fertigungstechnologen eine Vorhersage der Umformkraft eine Unterstüt-
zung in der Prozessentwicklung darstellt. Zudem kennt er die zur Verfügung stehenden
Umformmaschinen und kann durch Kenntnis der maximalen Umformkraft entscheiden, ob
eine experimentelle Validierung der Simulationsergebnisse möglich ist.

Als dritte Zielgröße beschreibt das Kontaktverhältnis die relative Größe der Kontaktfläche
zwischen dem umgeformten Werkstoff und der Werkzeugkavität, die die Sperrverzahnung
abbildet. Ein Wert von c = 0, 0 entspricht dabei keinem Kontakt, während ein Wert von
c = 1, 0 einer komplett ausgefüllten Kavität und damit einer vollständigen Ausformung
der Sperrverzahnung entspricht. Bild 83 zeigt beispielhaft die Ausformung einer Sperrver-
zahnung bei c = 0, 87. Das Kontaktverhältnis ergibt sich aus dem Anteil der gelben (kein
Kontakt) und blauen (Kontakt) Bereiche.

Nominelle Kavität 
des Umformwerkzeugs

Simulierte Ausfüllung der Kavität durch den Werkstoff
(Draufsicht)

Kontakt Werkstoff-Kavität 
Kontaktverhältnis (87%, rechnerisch ermittelt)

kein Kontakt 

Fließpressmatrize

Bild 83: Der Formfüllungsgrad (entspr. Kontaktverhältniss) einer Simulation im
Anwendungsbeispiel.

Als Versuchsplan kommt ein dreistufiger, vollfaktorieller Aufbau zum Einsatz, mit der An-
passung, dass der Parameter „Zahnlänge“ (X_T0_L0) nur in einem schmalen Wertebereich
auf zwei Stufen variiert wird. Dies begründet sich v. a. durch die frühe Entwicklungsphase
des Blechmassivumformprozesses, in welcher der lateral-radiale Stofffluss noch nicht aus-
reichend kontrolliert werden kann. Somit ergeben sich N = 34 · 21 = 162 Simulationen.
Der gesamte Versuchsplan mit Faktoreinstellungen und sich ergebenden Zielgrößen kann
im Anhang aus der Tabelle 8 (S. 160) entnommen werden.
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7.2.2 Durchführung der Parameterstudie und Auswertung

Die Parameterstudie wird simulativ mithilfe der Software Simufact Forming umgesetzt.
Generell werden bei einer FEM-Simulation die Aufgaben a) Preprocessing (Erstellung
eines FEM-Modells), b) Solving (Lösen der Differentialgleichungen durch Software) und
c) Postprocessing (Ergebnisaufbereitung und -auswertung) unterschieden [MG15; Vaj09].
Abschnitt 2.3.3 enthält eine genaue Beschreibung dieser Schritte. Das FEM-Modell zur
Simulation des Blechmassivumformprozesses basiert auf dem CAD-Modell des Umform-
werkzeugs, wie in Bild 84 (links) gezeigt. Durch ausnutzen der Symmetrie kann aus dem
Gesamtwerkzeug ein Kreissegment (β = 10◦) ausgeschnitten werden, das zwei Sperrverzah-
nungen umfasst (s. Bild 84). Dadurch kann bspw. der Stofffluss zwischen zwei Nebenform-
elementen untersucht werden, was bei Kreissegmenten mit nur einem Zahn nicht möglich
wäre. Die Simulation rechnet inkrementweise, wobei nach Bedarf zu Beginn eines neuen
Inkrements eine Neuvernetzung des Bauteils erfolgt, falls im vorhergehenden Inkrement
eine zu starke Netzverzerrung aufgrund der plastischen Verformung aufgetreten ist.

Fließpress-
matrize

Blechronde
(vernetzt)

Fließpresstempel

(halb-transparent)

Obere Werkzeughälfte 
fährt herunter

Untersuchte 
Geometrieparameter

Bild 84: Darstellung des FEM-Preprocessings im Anwendungsbeispiel.

Von insgesamt 162 Simulationen konnten zehn nicht vollständig durchgeführt werden.
Grund hierfür waren u. a. Fehler bei der automatischen Neuvernetzung zu Beginn einzel-
ner Simulationsinkremente. Dem Datensatz werden zudem zehn zufällig ausgewählte Tupel
entnommen, um die Performanz der durch die Selbstlernkomponente trainierten Model-
le im Rahmen dieses Anwendungsbeispiels getrennt zu evaluieren (Hold-out Verfahren, s.
Abschnitt 2.4.2, S. 47). Tabelle 11 fasst die Ergebnisse der simulativen Parameterstudie
zusammen.

Die erhobenen Fertigungsdaten werden anschließend in die multidimensionale Datenbasis
von Slassy übernommen. Hierzu nutzt der Anwender direkt die Oberfläche des Assistenz-
systems und legt fest, für welches Bauteil und für welche Parameter er Daten importieren
möchte (s. Bild 76). Nach dem Import können die Daten aller bisherigen Versuche aufge-
rufen, angepasst und ggf. mit neuen Daten ergänzt werden. Der Start des KDD-basierten
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Tabelle 11: Zusammenfassung der Ergebnisse aus der Simulationsstudie.
Name Einheit Mittelwert Std.-abw. Stufen bzw. Range

X_T0_W0 mm 2.50662 0.40409 [2,00; 2,50; 3,00 ]
X_T0_L0 mm 2.75497 0.25078 [2,50; 3,00 ]
X_T0_R1 mm 0.36623 0.17005 [0,20; 0,30; 0,60]
X_T0_R2 mm 0.59801 0.24616 [0,30; 0,60; 0,9]
X_T0_A0 deg 55.6788 3.09480 [52,50; 55,00; 60,00]

Umformgrad (max) - 2.44591 0.25966 [1,89125; 3,07478]
Umformkraft (max) kN 1905,00 289,000 [1234,00; 2567,00]
Kontaktverhältnis - 0.51476 0.05064 [0,2597; 0,60739]

Selbstlernprozesses erfolgt ebenfalls über die Oberfläche des Assistenzsystems. Der folgende
Abschnitt beschreibt die Datenverarbeitung in der Selbstlernkomponente.
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7.3 Verarbeitung der Daten in der Selbstlernkomponente

Die erhobenen und in der multidimensionalen Datenbasis gespeicherten Fertigungsdaten
werden im hier beschriebenen Anwendungsfall für die drei Ergebnisgrößen getrennt verar-
beitet, denn jeder instantiierte Selbstlernprozess trainiert pro Durchlauf nur Metamodelle
für ein Label (Ergebnisgröße). Da die Funktionsweise der Selbstlernkomponente in jedem
Fall gleich bleibt, wird sie im Folgenden nur für den maximalen Umformgrad beschrieben.

7.3.1 Import und Vorbehandlung der Daten

Da die multidimensionale Datenbasis im Assistenzsystem Slassy mithilfe der SQL-
Datenbanksprache aufgebaut wird, muss ein Zugriff auf diese Daten durch entsprechende
Befehle erfolgen. Um dem Benutzer dies zu erleichtern, wird eine temporäre SQL-Abfrage
im Assistenzsystem hinterlegt (s. Bild 85). Diese wird entsprechend der Benutzerauswahl
in der grafischen Benutzeroberfläche (s. Bild 86) angepasst.

SELECT 
FormParaWert.Versuch_ID, 
GROUP_CONCAT(IF(FormParaWert.FormelementePara_ID = 9, FormParaWert.wert_numerisch, NULL))  AS 'X_T0_W0', 
GROUP_CONCAT(IF(FormParaWert.FormelementePara_ID = 10, FormParaWert.wert_numerisch, NULL)) AS 'X_T0_L0',
GROUP_CONCAT(IF(FormParaWert.FormelementePara_ID = 13, FormParaWert.wert_numerisch, NULL)) AS 'X_T0_A0',
GROUP_CONCAT(IF(FormParaWert.FormelementePara_ID = 15, FormParaWert.wert_numerisch, NULL)) AS 'X_T0_R1',
GROUP_CONCAT(IF(FormParaWert.FormelementePara_ID = 18, FormParaWert.wert_numerisch, NULL)) AS 'X_T0_R2',
ErgebParaWerte.wert_numerisch AS ‚'Label' 

FROM 
FormParaWerte, ErgebParaWerte

WHERE 
FormParaWerte.Versuch_ID = ErgebParaWerte.Versuch_ID
AND FormParaWerte.ErgebPara_Bauteil_ID = 1 
AND FormParaWerte.ErgebPara_ID = 1 

GROUP BY 
Versuch_ID; 

Bild 85: SQL-Abfrage der Trainingsdaten für das Anwendungsbeispiel.

Wie im Abschnitt 6.3.2 (S. 101) dargestellt, werden nach dem Import der Daten zunächst
alle im String-Format vorliegenden Tupel in Daten-Typen umgewandelt, die durch das
Data-Mining Werkzeug Rapidminer R© verarbeitet werden können („Parse Numbers“ Ope-
rator). Da es sich bei jedem Attribut um einen Geometrieparameter handelt, der grund-
sätzlich beliebige (positive) Werte annehmen kann, werden alle Attribute als „real“ (reelle
Zahl) klassifiziert. Anschließend wird durch den „Set Role“ Operator die Ergebnisgröße
(Umformgrad) als Label definiert. Die prozessinterne generische Benennung „Label“ wird
dem spezifischen Namen vorgezogen, da so weniger Anpassungen im Prozesstemplate not-
wendig sind. Der Operator „Filter Examples“ entfernt die zehn Datentupel bei denen die
Simulationen vorzeitig von der Software abgebrochen wurden. Ein Auffüllen der Lücken
durch das arithmetische Mittel der vorhandenen Werte ist aufgrund der geringen Größe des
Datensatzes (N = 142) nicht empfehlenswert [WEH11]. Abschließend analysiert der Ope-
rator „Remove Useless Attributes“ ob Eingangsgrößen aus dem Datensatz entfernt werden
können. Da der Benutzer bereits über die Oberfläche des Assistenzsystems die Geometrie-
parameter ausgewählt hat, die im Rahmen der Simulationsstudie variiert wurden, entfernt
dieser Operator keine weiteren Attribute. Der Selbstlernprozess wird mit fünf Attributen,
einem Label und 142 Datentupel durchgeführt.
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Auswahl des Bauteils Auswahl der Fertigungsdaten

Auswahl der 
Geometrieparameter

Auswahl der Prozessgröße

Start des KDD-Prozesses

Bild 86: Vorbereitung des Selbstlernprozesses durch Parameter- und Datenauswahl.

7.3.2 Automatische Attributselektion

Wie im Abschnitt 6.3.3 dargestellt verfügt das Assistenzsystem über eine automatische At-
tributselektion, die durch Rückkoppelung mit den jeweiligen Lernalgorithmen eine optimale
Attributauswahl durchführt. Die beiden Selektionsstrategien „schrittweise Vorwärtsselek-
tion“ und „schrittweise Rückwärtseliminierung“ werden für jeden der vier Lernalgorithmen
(s. Abschnitt 6.3.1) je einmal angewandt, so dass an dieser Stelle im Gesamtprozess acht
Teilprozesse durchlaufen werden. Die Teilergebnisse der Attributselektionen müssen im
Standardbetrieb vom Benutzer weder ausgewertet noch berücksichtigt werden. Im Rahmen
dieses Anwendungsbeispiels erfolgt jedoch eine kurze Erläuterung der Attributselektionen
anhand des Bildes 87. Deutlich ist der Einfluss unterschiedlicher Selektionsstrategien auf
die verbleibende Menge an Attributen zu erkennen. Mit Ausnahme der linearen Regression
unterscheiden sich bei allen Metamodelltypen die identifizierten Attributgruppen. Ebenso
sind auch bei den geschätzten Performanzen teilweise deutliche Unterschiede zu erken-
nen. Dies rechtfertigt das grundlegende Prinzip des selbstlernenden Assistenzsystems - ein
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flexibles Training verschiedener Metamodelle mit anschließender statistisch abgesicherter
Modellauswahl - umso mehr.

Trainings-
algorithmus

Lineare 
Regression

Forward 
Selection

Backward
Elimination

Polynomiale
Regression

Forward
Selection

Backward
Elimination

M5P 
Regressions-
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Forward
Selection

Backward
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M5R Regel-
generator
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Bild 87: Die erzeugten Attributmengen mit geschätzten Fehlerkennwerten.

7.3.3 Durchlaufen des ROPE-Prozesses

Aufgrund der Kombination unterschiedlicher Metamodelltypen, Selektions- und Optimie-
rungsverfahren werden durch den Selbstlernprozess 24 Metamodelle trainiert (s. Bild 61,
S. 111) und die jeweiligen Vorhersageperformanzen geschätzt. In Abschnitt 5.1 wurde dar-
gestellt, dass die Berechnung des Kennwerts zur Beurteilung der Prognosequalität eines
Metamodells robust und verlässlich erfolgen muss. Außerdem kann durch die Optimierung
der Trainingsparameter die Performanz eines Metamodells weiter verbessert werden. Zu
diesem Zweck wurde der sogenannte ROPE-Prozess (engl. Robust Optimization and Per-
formance Estimation) entwickelt (s. Abschnitt 5.2 ff.) und in Rapidminer R© implementiert
(s. Abschnitt 6.3.4).

Neben den im vorherigen Abschnitt durch Attributselektion erzeugten und teilweise redu-
zierten Datensätzen (N = 142, A = variabel) wird je Metamodelltyp auch der vollständige
Initialdatensatz (N = 142, A = 5) zum Training verwendet. Auf alle Datensätze werden
die beiden Strategien der schrittweisen und der evolutionären Optimierung angewandt und
somit die Basismenge an 24 Metamodellen mit den robust geschätzten Vorhersageperfor-
manzen erzeugt. Exemplarisch wird im Folgenden der ROPE-Prozess mit evolutionärer
Optimierung eines M5P-Modellbaums und dem Initialdatensatz herausgegriffen, um die
Abläufe des Selbstlernprozesses zu erläutern.

Kennzeichnend für alle ROPE-Prozesse ist die hierarchische Struktur, die in generischer
Form im Abschnitt 6.3.4 (S. 106) erläutert ist (s. auch Bild 59). Der Initialdatensatz wird
an einen „Loop and Average“ Operator übergeben, in den eine Kreuzvalidierung (s. Ab-
schnitt 2.4.2, S. 47) integriert ist. Diese Integration ist für die 20-malige Wiederholung der
10-fachen Kreuzvalidierung notwendig, da nur so eine robuste Schätzung des Vorhersage-
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fehlers sichergestellt ist. In der Kreuzvalidierung erfolgt eine Aufteilung des Initialdaten-
satzes in einen Trainingsdatensatz (N90% ≈ 128) und einen Testdatensatz (N10% ≈ 14). In
das Training der Kreuzvalidierung ist die Optimierung der Trainingsparameter des M5P-
Modellbaums integriert.

Zu den verfügbaren Trainingsparametern eines M5P-Modellbaums gehören:

- N: Angabe ob der Baum vereinfacht (engl. pruning) werden soll (boolsche Variable)
- U: Vorhersagen in Übergangsbereichen des Baums werden geglättet (boolsche Var.)
- R: Training eines Regressionsbaums anstatt eines Modellbaums (boolsche Variable)
- M: minimale Anzahl an Instanzen pro Blatt (M ∈ Z)
- L: Abspeicherung der Instanzen an Baumverzweigungen (boolsche Variable)

Von diesen verfügbaren Parametern werden N, U, R und M in der Optimierung berück-
sichtigt. L wird lediglich zu Visualisierungszwecken benötigt und hat keinen Einfluss auf
den Vorhersagefehler des M5P-Metamodells. Für alle anderen Metamodelltypen (lineare
und polynomiale Regression, M5R-Regellerner) werden die jeweiligen Trainingsparameter
für die schrittweise und evolutionäre Optimierung ebenso festgelegt.

Die Optimierung im vorliegenden Beispiel verfolgt das Ziel einzelne „Individuen“ von M5P-
Metamodellen mit konkreten Ausprägungen von N, U, R und M entsprechend einer evolu-
tionären Strategie zu trainieren und zu validieren. Hierzu ist eine 10-fache Kreuzvalidierung
in die Optimierung zu integrieren (untere Ebene) und zur Gewährleistung der Robustheit
5-mal zu wiederholen. Die Reduzierung der Anzahl an 10-fachen Kreuzvaliderungen auf
n = 5 (im Vergleich zu n = 20 auf der oberen Ebene) begründet sich in dem enorm stei-
genden Rechenbedarf. Aufgrund der hierarchischen Struktur des ROPE-Prozesses erhöht
sich die Rechenzeit, abhängig vom eingesetzten Computer, um das bis zu fünffache. In
der Optimierung werden, im Unterschied zur Kreuzvalidierung auf der oberen Ebene, nur
noch N81% ≈ 115 Datentupel für das Training und N9% ≈ 13 Datentupel für das Testen
der einzelnen Optimierungsindividuen genutzt. Bild 88 zeigt den Verlauf der Trainingspa-
rameter während der Optimierung. Die Konvergenz des Parameters sowie die tendenzielle
Verkleinerung der kreisförmigen Piktogramme (entspricht reduziertem Vorhersagefehler)
mit steigender Anzahl an Optimierungsiterationen sind deutlich zu erkennen.

Nachdem die Optimierung abgeschlossen ist, wird mit den ermittelten Werten der Trai-
ningsparameter ein M5P-Modellbaum trainiert und im Rahmen der Kreuzvalidierung auf
der oberen Ebene validiert. Der Trainingsteil der 10-fachen Kreuzvalidierung wird nach
deren Abschluss ein elftes Mal mit dem kompletten Initialdatensatz durchlaufen und der
dabei angestoßene Optimierungsprozess berechnet ein neues, optimales Set an Trainingspa-
rametern auf Basis aller Trainingsdaten. Das mit diesem Set trainierte M5P-Metamodell
wird nach Beendigung des „Loop and Average„ Operators abgerufen.

Grundlage für den späteren Vergleich der Metamodelle sind die durch die Kreuzvalidierung
auf der oberen Ebene geschätzten Vorhersagefehler, die in den sogenannten Performanz-
vektoren zusammengefasst sind. Die Erzeugung der Performanzvektoren geschieht durch
Zwischenspeichern der Werte des RMSE (Wurzel des mittleren Fehlerquadrats, s. Tabelle
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Bild 88: Gesamtansicht des Prozesses.

4) und Ausgabe als Spaltenvektor. Dessen Länge richtet sich nach den Werten für n sowie
k und beträgt n = 20 · 10 = 200.

7.3.4 Modellauswahl und -evaluierung

Alle 24 Metamodelle, die nach dem Durchlaufen der einzelnen ROPE-Prozesse vorliegen,
können prinzipiell dazu genutzt werden, auf der Basis von Geometrieparametern der Sperr-
verzahnung den zu erwartenden maximalen Umformgrad vorherzusagen. Das Assistenzsys-
tem ist in der Lage, in dieser Menge an Modellen das bestgeeignete zu identifizieren und
für den Benutzer bereitzustellen. Hierzu wird ein zweistufiger statistischer Auswahlprozess
durchlaufen, dessen Entwicklung in Kapitel 5 beschrieben ist. Zunächst wird auf Basis
einer Varianzanalyse (ANOVA, engl. Analysis of Variances) die Aussage getroffen, ob bei
mindestens zwei Performanzvektoren ein signifikanter Unterschied zwischen den Vorhersa-
gefehlern vorliegt. Signifikant bedeutet dabei, dass der Unterschied nicht zufällig auftritt,
sondern als deterministisch und wiederholbar angesehen werden kann. Das Modell mit dem
kleineren Vorhersagefehler liefert in diesem Fall die verlässlichere Vorhersage des Umform-
grads.

Die Eigenschaften der erzeugten Performanzvektoren sind in Tabelle 12 zusammenge-
fasst. Die Tabelle zeigt in ihren Quadranten die vier Metamodelltypen lineare Regression
(1 ≤ Mi ≤ 6), polynomiale Regression (7 ≤ Mi ≤ 12), M5P-Modellbaum (13 ≤ Mi ≤ 18)
sowie M5R-Regelgenerator (19 ≤ Mi ≤ 24). Für eine genaue Aufschlüsselung der Mo-
dellbezeichnungen wird auf den Anhang A4 (S. 162) verwiesen. Die dargestellten Werte
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entsprechen jeweils der Wurzel des mittleren Fehlerquadrats (RMSE), die in den 20-maligen
10-fachen Kreuzvalidierungen geschätzt wird.

Tabelle 12: Übersicht der Eigenschaften der erzeugten 24 Performanzvektoren.
Mi x̄Mi x̃Mi V ar[XMi] Min Max Mi x̄Mi x̃Mi V ar[X] Min Max

1 0,515 0,513 0,00117 0,422 0,627 13 0,277 0,280 0,00154 0,168 0,409
2 0,489 0,490 0,00730 0.408 0,558 14 0,291 0,288 0,00159 0,177 0,390
3 0,702 0,704 0,00082 0,628 0,788 15 0,231 0,231 0,00141 0,107 0,335
4 0,588 0,591 0,00171 0,457 0,706 16 0,092 0,092 0,00037 0,040 0,154
5 0,485 0,480 0,00173 0,360 0,633 17 0,345 0,346 0,00104 0,257 0,439
6 0,523 0,524 0,00291 0,386 0,674 18 0,308 0,307 0,00110 0,228 0,398

7 0,828 0,827 0,00086 0,748 0,908 19 0,481 0,481 0,00034 0,434 0,531
8 1,049 1,046 0,00099 0,977 1,161 20 0,417 0,418 0,00251 0,289 0,518
9 1,139 1,139 0,00380 1,002 1,308 21 0,299 0,297 0,00158 0,176 0,398
10 1,022 1,027 0,00481 0,801 1,245 22 0,306 0,305 0,00214 0,178 0,450
11 1,199 1,200 0,00392 1,036 1,368 23 0,556 0,555 0,00175 0,446 0,655
12 0,914 0,916 0,00139 0,819 1,020 24 0,519 0,520 0,00141 0,427 0,618

Varianzanalyse (ANOVA) der Performanzvektoren

Grundgedanke der Varianzanalyse ist die Zerlegung der Gesamtvarianzen der Performanz-
vektoren in systematische und unsystematische Anteile. Überwiegen die systematischen
Anteile, so kann davon ausgegangen werden, dass die unterschiedlichen Modelltypen, At-
tributsselektionsstrategien und Optimierungsalgorithmen einen signifikanten Einfluss auf
die Prognosequalität der Metamodelle haben.

Die Durchführung der ANOVA verlangt, dass die genutzten Daten bestimmten Anforderun-
gen genügen die im Abschnitt 5.4 (S. 82) behandelt wurden. Die Unabängigkeit der Einträ-
ge in den Performanzvektoren ist aufgrund der Ermittlung in getrennten ROPE-Prozessen
gegeben. Die Varianzhomogenität wird üblicherweise durch gesonderte Tests (z. B. Levene-
Test) genauer analysiert werden, kann allerdings aufgrund der gleichen Stichprobengrößen
als erfüllt angesehen werden. Des weiteren lässt sich aus der von Bock formulierten Faust-
regel für z ≥ 50 ableiten, dass die Performanzen normalverteilt vorliegen [Boc75].

Zunächst wird die totale Varianz aller Vorhersagefehler aus deren arithmetischem Gesamt-
mittel und den Einzelwerten berechnet:

σ2
tot =

∑
M

∑
z(xMz − X̄)2

n − 1 =
∑24

1
∑200

1 (xMz − 0, 5661)2

(24 · 200) − 1 = 0, 4021 (7.2)

Zur Ermittlung der unsystematischen Einflüsse auf Unterschiede zwischen den Performanz-
vektoren muss die Residualvarianz, auch als Fehler- oder innere Varianz bezeichnet, be-
rechnet werden. Unter idealen Bedingungen sollte Varianzhomogenität herrschen, die Re-
sidualvarianzen der einzelnen Performanzvektoren quasi gleich sein. Jedoch ist dies in der
Realität oftmals nicht gegeben. Daher werden die einzelnen geschätzten Residualvarianzen
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der Vektoren addiert und durch die Gesamtanzahl geteilt, um einen Mittelwert zu bilden.
Die Residualvarianz ergibt sich im vorliegenden Beispiel zu:

σ2
res =

∑
M

∑
z(xMz − x̄Mi

)2

M · (z − 1) =
∑24

1
∑200

1 (xMz − x̄Mi
)2

24 · (200 − 1) = 0, 00174 (7.3)

Die Berechnung der Treatmentvarianz erfolgt mithilfe der einzelnen Mittelwerte x̄Mi
und

des Gesamtmittelwerts X̄ aller Performanzvektoren. Die Freiheitsgrade im Nenner erge-
ben sich aus der Anzahl der verglichenen Performanzvektoren. Die Quadratsumme der
Mittelwertabweichungen vom Gesamtmittelwert muss zusätzlich mit der Menge der Ein-
zelwerte in einer Gruppe multipliziert werden, damit die Genauigkeit der Mittelwerte als
Populationsschätzer berücksichtigt wird:

σ2
treat = z · ∑M

i=1(x̄Mi
− X̄)2

M − 1 = 200 · ∑24
M(x̄Mi

− 0, 5661)2

24 − 1 = 18, 9456 (7.4)

Am Ende der ANOVA steht die Überprüfung der Nullhypothese der Varianzanalyse die
besagt, dass zwischen den Mittelwerten aller Performanzvektoren (s. Tabelle 12) kein si-
gnifikanter Unterschied besteht:

H0 : x̄1 = x̄2 = . . . = x̄24 (7.5)

Eine Ablehnung der Nullhypothese zugunsten der Alternativhypothese, dass zwischen min-
destens zwei Performanzvektoren ein Unterschied existiert, basiert auf der Berechnung der
Prüfgröße F , die die Treatmentvarianz (Varianz zwischen den Gruppen) mit der Residual-
varianz ins Verhältnis setzt (s. Gleichung 7.6). Ein Vergleich des ermittelten F-Werts mit
dem kritischen F-Wert erlaubt im vorliegenden Beispiel die Ablehnung der Nullhypothese.
Es kann davon ausgegangen werden, dass zwischen mindestens zwei Performanzvektoren
ein statistisch signifikanter Unterschied besteht.

Fwert = σ2
treat

σ2
res

= 18, 9456
0, 00174 = 10, 872 ≥ Fkrit(dftreat, dfres, αkrit) = 1, 5315 (7.6)

Das Ergebnis einer ANOVA wird als sogenannte ANOVA-Tabelle bezeichnet (s. Tabelle 13)
und enthält die zuvor „manuell“ berechneten Werte der Varianzen. Ein Vergleich zeigt,
dass beide Wege zum gleichen Ergebnis führen, da auch die automatisierte ANOVA eine
Ablehnung der Nullhypothese zulässt.

Tabelle 13: Ergebnistabelle der in Matlab R© durchgeführten ANOVA.
Variation SS DoF Mean SS Fvalue p-value Fcrit

Treatment 435, 749 23 18, 94561 10872, 21 2, 34e − 132 1, 5315
Residual 8, 323 4776 0, 00174
Total 444, 072 4799
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post-hoc Test der Performanzvektoren nach Tukey

Mithilfe der Varianzanalyse kann festgestellt werden, ob zwischen den Performanzvektoren
ein genereller Unterschied besteht. Eine Aussage darüber, welches Metamodell den signifi-
kant kleinsten Fehler aufweist, ist jedoch nicht möglich. Hierzu beinhaltet der Selbstlern-
prozess einen post-hoc Test nach Tukey, der die Performanzvektoren paarweise vergleicht,
ohne dass es dabei zur α-Fehlerkumulierung (s. Abschnitt 5.4) kommt.

Bei diesem Test wird eine kritische Mittelwertdifferenz zwischen den Performanzvektoren
berechnet, deren Überschreitung einem signifikanten Unterschied zwischen zwei betrach-
teten Performanzvektoren gleichkommt. Diese „Honest Significance Distance“ (HSD) wird
über den Kennwert q ermittelt, der dem t-Wert beim gleichnamigen Test entspricht und
ähnlich definiert ist:

q(M ;df innerhalb) =
x̄Mi

− x̄Mj√
σ2

Res

z

; ∃i, j mit i �= j (7.7)

Dabei entsprechen x̄Mi
und x̄Mj

den Mittelwerten der paarweise zu vergleichenden Perfor-
manzvektoren und σ2

res der Residualvarianz, die bereits in der ANOVA berechnet wurde.
Da dem q-Wert die „Studentized-Range“ Verteilung zugrunde liegt, lässt sich ein kritischer
q-Wert ermitteln, ab dem eine beobachtete Mittelwertdifferenz statistisch signifikant auf
einem bestimmten α-Niveau ist. Durch Einsetzen des kritischen q-Werts ist es möglich,
eine kritische Differenz zu bestimmen, mit der die tatsächlichen Differenzen zwischen den
Gruppenmittelwerten verglichen werden:

HSD = qkrit(α,M,dfres) ·
√

σ2
res

z
= qkrit(0.05, 24, 4776)︸ ︷︷ ︸

5,144

·
√

σ2
Res

200 = 0, 01518 (7.8)

Anhand der berechneten Honest Significant Difference können die Mittelwerte der 24 Meta-
modellperformanzen paarweise miteinander verglichen werden. Tabelle 14 (Anhang, S. 163)
zeigt die Beträge der Mittelwertdifferenzen aller Performanzvektoren. Ein Großteil der Mit-
telwertdifferenzen übersteigt den berechneten Wert der Honest Significant Difference. Diese
Differenzen können als statistisch signifikant eingestuft werden. Die Performanz des Mo-
dells Nummer 16 unterscheidet sich ebenfalls signifikant von allen anderen. Der geringe
Vorhersagefehler dieses Metamodells kann somit auf systematische Ursachen (Attributse-
lektion, Optimierungsstrategie) zurückgeführt und eine reine Zufälligkleit ausgeschlossen
werden. Daher wird dieses Modell als bestgeeignetes Metamodell ausgewählt.

Eine derartige manuelle Vorgehensweise zur Identifikation des bestgeeigneten Modells ist
für den normalen Gebrauch des Assistenzsystems unpraktikabel. Der Benutzer muss noch
in weiterem Maße unterstützt werden, um seine Akzeptanz gegenüber Slassy zu erhöhen.
Daher wird im Anschluss an die ANOVA auch der post-hoc Test nach Tukey automati-
siert durchgeführt. Ergebnis dieses Tests ist Tabelle c mit den Ergebnissen der paarweisen
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Tukey-HSD Berechnung

Modell Nr.

1 0,5150

2 0,4890

3 0,7023

… …

16 0,092

… …

24 0,5199

Vergleiche
Modell a mit b Mittelwert-

differenz p-Wert
a b

1 16 0,4230 0,000

… … … …

2 16 0,3969 0,000

… … … …

16 17 -0,2533 0,000

16 18 0,2166 0,000

16 19 -0,3892 0,000

16 20 -0,3250 0,000

16 21 -0,2076 0,000

16 22 -0,2149 0,000

16 23 -0,4644 0,000

16 24 0,4278 0,000

… … … …

Tabelle c mit paarweisen
Vergleichen der 
Metamodellperformanzen

Tabelle m mit
Mittelwerten der 
Metamodell-
performanzen

Minimum

alle p-Werte für Modell 16 unter 
dem Signifikanzniveau ( )

Variation SS DoF Mean SS Fvalue p-value Fcrit

A N O V A

Bild 89: Auswahl des Metamodells Nr. 16 mit dem signifikant geringstem Fehler durch
einen post-hoc Test nach Tukey.

Mittelwertvergleiche und Tabelle m mit den Mittelwerten und Varianzen der Performanz-
vektoren. Beide Tabellen sind in Ausschnitten in Bild 89 dargestellt.

Die automatische Auswahl des bestgeeigneten Modells erfolgt auf Basis der im post-hoc
Test nach Tukey erzeugten Tabellen c und m. Aus m wird der niedrigste i-te Eintrag ge-
sucht, im vorliegenden Beispiel i = 16. In c muss nun in jeder Zeile, in der der i-te Eintrag
mit anderen Werten verglichen wird, der Eintrag für den p-Wert in der letzten Spalte unter
dem festgelegten Signifikanzniveau (α = 0, 05) liegen. Nur wenn beide Bedingungen erfüllt
sind, kann das i-te Modell mit dem signifikant niedrigstem Vorhersagefehler ausgewählt
werden. Bild 89 zeigt dieses Vorgehen für das Modell 16 des vorliegenden Anwendungs-
beispiels.

Evaluierung der akquirierten Metamodelle

Aufgrund des ROPE-Prozesses ist davon auszugehen, dass die Schätzungen der Metamo-
dellperformanzen robust sind und als verlässlich angesehen werden können. Eine weiterge-
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hende Evaluierung der Modelle ist im Standardbetrieb nicht vorgesehen. Dennoch soll an
dieser Stelle das von Slassy als bestgeeignetes Metamodell identifizierte M5P-Modellbaum
mit den übrigen 23 Modellen verglichen werden. Dies geschieht nach dem Hold-Out Ver-
fahren (s. Abschnitt 2.4.2) anhand der zehn Datentupel die im Abschnitt 7.2.2 aus dem
ursprünglichen Datensatz der Simulationsstudie herausgenommen und somit nicht für das
Training der Modelle genutzt wurden.

Die Tupel sowie die einzelnen Metamodelle werden in das Data-Mining Werkzeug
Rapidminer R© importiert. Da bei den Testdaten die realen Ergebnisse bekannt sind, können
daraus die Vorhersagefehler direkt berechnet werden. Bild 90 zeigt die Gegenüberstellung
der Modelle anhand der jeweils erreichten RMSE-Werte.

0

0,5

1

1,5

Vo
rh

er
sa

ge
fe

hl
er

 (m
ax

. U
m

fo
rm

gr
ad

, R
M

SE
)

Bezeichnungen der Metamodelle

Bild 90: Vorhersagefehler der trainierten Metamodelle des Anwendungsbeispiels, ermittelt
im Holdout Verfahren (s. Abschnitt 2.4.2).

Zu erkennen ist, dass das ausgewählte Modell 16 die durch den ROPE-Prozess geschätzte
niedrige Vorhersageungenauigkeit beibehält und sich von den anderen Modellen abhebt. Es
kann zum einen davon ausgegangen werden, dass der ROPE-Prozess die Forderung nach
einer verlässlichen Schätzung der Performanz erfüllt und zum anderen, dass die verfolgte
Selbstlernstrategie sich bewährt hat. Zu erkennen sind weiterhin Cluster von Metamodellen
mit ähnlichen Vorhersagefehlern, wie die polynomialen Regressionsmodelle. Diese neigen
bei höheren Polynomgraden zwar zur besseren Vorhersage der Trainingsdaten, gleichzeitig
sinkt jedoch die Vorhersagegüte für neue Daten.
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7.4 Analyse des Bauteilentwurfs

Nach Abschluss des Selbstlernprozesses wird das akquirierte Wissen in Form des M5P-
Modellbaums in die Wissensbasis des Assistenzsystems eingefügt. Des Weiteren erfolgt
eine Wiederholung des Selbstlernprozesses für die beiden verbleibenden Zielgrößen Um-
formkraft und Kontaktverhältnis. Da die Daten zum Training der Vorhersagemodelle in
der multidimensionalen Datenbasis gespeichert sind (s. Abschnitt 6.6.1), kann die Cha-
rakteristik der Multidimensionalität auch für die Wissensbasis übernommen werden. Das
akquirierte Wissen zur Vorhersage des maximalen Umformgrads und anderer Zielgrößen
ist eindeutig dem Bauteil „Napf mit Sperrverzahnung“ und den abgeleiteten Instanzen
zugeordnet.

Der Benutzer wechselt zur Vorhersage der Zielgrößen innerhalb der grafischen Oberfläche
in den Bereich „Analyse“ (s. Bild 91). Das Assistenzsystem überprüft im Hintergrund die
Wissensbasis, ob für das in der Synthese aktive Bauteil bereits Wissens akquiriert wurde.
Ist dies nicht der Fall, wird der Benutzer auf den notwendigen Schritt der Datenerhebung
hingewiesen. Für das vorliegende Anwendungsbeispiel wird auf Basis der aktuellen Aus-
prägung der Geometrieparameter eine Ergebnistabelle erzeugt, die neben den Zielgrößen
auch die vorhergesagten Werte und den RMSE angibt. Im unteren Bereich des Analy-
setools wird je nach aktivierter Zielgröße das entsprechende Metamodell angezeigt. Dies
lässt bspw. eine Überprüfung der angezeigten Ergebnisse zu. Anzumerken ist, dass im Falle
der M5-Modelle die textbasierte Repräsentation und nicht die im Rapidminer R© erzeugte
grafische Struktur wiedergegeben wird.

Auf Basis der sich ergebenden Werte (Fumax = 12345 kN , c = 0, 644, ϕmax = 0, 888) kann
eine DfM orientierte Beurteilung des Bauteilentwurfs erfolgen. Eine Möglichkeit wäre diese
Beurteilung vom Assistenzsystem übernehmen zu lassen und dem Benutzer durch eine Art
Ampelsystem das Ergebnis zu präsentieren. Hierzu müssen die Grenzwerte der Ergebnis-
größen bekannt sein. Für sehr frühe Phasen der Prozessentwicklung ist dies jedoch nicht
zielführend oder teilweise nicht möglich. Wie bereits im Kapitel 3 dargestellt, zeichnet
sich die Entwicklung der Blechmassivumformung durch eine hohe Dynamik aus. Innerhalb
kurzer Zeit können neue Entwicklungen, z. B. in den Bereichen Tribologie, Werkzeugausle-
gung oder Prozessführung zu einer deutlichen Verschiebung der Prozessgrenzen führen (s.
z. B. [MKS+10]). Feste Grenzwerte sind zudem je nach Kennwert nicht bestimmbar. Be-
reits [Klo07] zeigt, dass für das Verfahren Kaltfließpressen für unterschiedliches Material
die maximalen Umformgrade stark variieren und Randbedingungen wie geometriebeding-
te Fließbehinderungen, Reibung in der Wirkfuge zwischen Werkstück und Werkzeug sowie
Grenzen der Belastbarkeit der Werkzeuge berücksichtigt werden müssen. Dies Aspekte
müssen bei der DfM-Analyse berücksichtig werden, liegen jedoch zu großen Teilen im Ar-
beitsbereich der Prozessentwicklung.

Bei der wissensbasierten Design for Manufacture Analyse soll Slassy daher assistieren und
die Produkt- und die Prozessentwicklung gleichermaßen in eine sinnvolle Richtung lenken.
Konstrukteur und Fertigungsingenieur beurteilen die vorhergesagten Kennwerte gemein-
sam und passen ggf. die weitere Entwicklungsstrategien an. Für das vorliegende Beispiel
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liegen sowohl die Umformkraft als auch der Umformgrad in realistischen und akzepta-
blen Größenordnungen (s. [MKOS11]). Das Kontaktverhältnis lässt hingegen auf eine zu
geringe Formfüllung schließen, die deutlich unter bereits erreichten Werten liegt (z. B. in
[MKS+10]). Dadurch kann bspw. die Funktionserfüllung des Nebenformelements „Sperr-
verzahnung“ nicht gewährleistet werden. Das Bauteil ist insgesamt als nicht fertigungs-
gerecht zu beurteilen. Für die weitere Prozessentwicklung sollte somit die Erhöhung der
Formfüllung im Fokus stehen.

Bild 91: Oberfläche des Assistenzsystems zur Vorhersage der DfM-relevanten Zielgrößen.

Aufgrund der metamodellbasierten Vorhersage der Prozesskennwerte, ermöglicht das As-
sistenzsystem außerdem einen zügigen Wechsel zwischen Synthese- und Analysetool, um
innerhalb kurzer Zeit verschiedene Varianten zu erzeugen und zu analysieren. Hierin be-
steht ein Vorteil gegenüber der reinen simulationsbasierten Vorgehensweise, bei der ein-
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7.4 Analyse des Bauteilentwurfs 153

zelne Varianten mehrere Stunden bis Tage zur Analyse benötigen. Das Wissen in Form
der Metamodelle kann andererseits auch zur direkten Unterstützung der Simulation ge-
nutzt werden. Ergibt die metamodellbasierte Vorhersage relevanter Zielgrößen, dass diese
zu weit in unzulässigen Bereichen liegen, kann von einer Simulation abgesehen und eine
andere Kombination von Eingangsgrößen untersucht werden.
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8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wird ein Ansatz für ein selbstlernendes Assistenzsystem
(Slassy) zur automatischen Akquisition von konstruktionsrelevantem Fertigungswissen und
dessen prototypische Umsetzung vorgestellt. Die Selbstlernfähigkeit des Assistenzsystems
ermöglicht die Bereitstellung von Design for Manufacture (DfM) Wissen in frühen Phasen
einer Fertigungsprozess- und Produktentwicklung. Der Selbstlernprozess Technologie der
Wissensentdeckung in Datenbanken (engl. Knowledge Discovery in Databases, KDD) zur
Analyse von Fertigungsdaten, die im Rahmen von simulativen und/oder experimentellen
Studien bei der Prozessentwicklung erzeugt werden. Ausgangspunkt ist die Feststellung,
dass einerseits indirekte und direkte Verfahren der Wissensakquisition in frühen Phasen
der Fertigungsprozessentwicklung nur bedingt angewandt werden können. Andererseits er-
füllen existerende Ansätze für eine automatische oder automatisierte Wissensakquisition
wichtige Anforderungen nicht. Daraus wird die Notwendigkeit für ein Assistenzsystem ab-
geleitet, das den Nutzer vom kritischen Knowledge Engineering Schritt der Wissensakqui-
sition entlastet (Stichwort „Flaschenhals“ nach [Fei81]). Entwicklungskontext von Slassy
ist der SFB/TR 73, der sich mit der Erforschung der Blechmassivumformung beschäftigt.
Aus diese neuartigen Verfahrensgruppe stammt das Anwendungsbeispiel der vorliegenden
Arbeit.

Die Auseinandersetzung mit dem Begriff „Selbstlernen“ ist erforderlich, um eine ausrei-
chende Abgrenzung zu Konzepten mit der Bezeichnung „intelligent“ zu erreichen. Derarti-
ge Entwicklungen münden bisher im Einsatz sog. künstlicher neuronaler Netze, die jedoch
nicht die in dieser Arbeit gestellten Anforderungen erfüllen (Stichwort „Interpretierbar-
keit“). Deshalb werden Strategien zum menschlichen Lernen aus unterschiedlichen Dis-
ziplinen (z. B. Konstruktivismus, Behaviorismus) zusammengetragen, analysiert und auf
Basis formulierter Anforderungen verglichen. Das Konzept des „Lernens durch Einsicht“
dient als Basis für die Entwicklung des Selbstlernprozesses.

Der Selbstlernprozess beinhaltet zwei wesentliche Kernelemente: die robuste Optimierung
und Performanzschätzung (ROPE-Prozess) sowie eine zweistufige Inferenzstatistik zur ver-
lässlichen Identifikation des benötigten DfM-Wissens. Dieses Wissen ist in Form sogenann-
ter Metamodelle repräsentiert. Ein Metamodell ist in der Lage, auf Basis von Eingangs-
größen (z. B. Geometrieparameter) eine Systemantwort (z. B. Umformgrad als Prozesser-
gebnis) vorherzusagen. Wie genau diese Vorhersage ist, wird durch die Performanz ausge-
drückt. Deren Wert wird im ROPE-Prozess stochastisch robust geschätzt. Die Optimierung
betrifft die Erzeugung bzw. das Training eines Metamodells und ermöglicht eine optimale
Anpassung des Modells an die zur Verfügung gestellten Daten. Aufgrund der Forderung
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nach einer möglichst flexiblen Wissensakquisitionskomponente wird die Strategie verfolgt,
eine Vielzahl an Metamodellen zu trainieren. Die Selbstlernkomponente wählt anschließend
das bestgeeignete Metamodell aus. Diese Auswahl erfolgt durch ein zweistufiges Verfahren,
das Methoden der Inferenzstatistik (statistische Tests) nutzt. Dadurch kann ausgeschlos-
sen werden, dass die Unterschiede zwischen den Metamodellperformanzen stochastischen
Ursprungs sind und ein Modell gerade nur „zufällig“ das bestgeeignete ist.

Die Verarbeitung von Fertigungsdaten im KDD-basierten Selbstlernprozess bedingt, dass
bei der Systemanwendung Daten vorliegen, deren genaue Struktur zum Zeitpunkt der Sys-
temimplementierung noch unbekannt ist. Eine in dieser Hinsicht größtmögliche Flexibili-
tät wird durch die entwickelte multidimensionale Datenbasis erreicht, die sich am OLAP-
Würfel Konzept orientiert. Sie ist in das Produkt- und Prozessdatenmodell (PPDM) inte-
griert, das die Funktion der hierarchischen Gliederung aller Fertigungsdaten über mehrere
Ebenen vom Allgemeinen ins Detail erfüllt. Inhalte des Produkt- und Prozessdatenmodells
sind Informationen über den Fertigungsprozess die aus Sicht des Produktentwicklers über
alle Phasen des Produktlebenszyklus hinweg konstruktionsrelevant sind.

Das Synthesetool des Assistenzsystems ermöglicht die Modellierung des blechmassivum-
geformten Bauteils. Der Nutzer greift hierzu auf Haupt- und Nebenformelemente zu und
erzeugt einen Gestaltentwurf. Die Bereitstellung der Formelemente erfolgt durch ein kom-
merzielles CAD-System und die damit verfügbare Feature-Technologie. Zu jeder erzeugten
Bauteilvariante kann der Benutzer die relevanten Zielgrößen (z. B. Umformkraft, Umform-
grad) und die möglichen Eingansgrößen (z. B. Geometrieparameter) selbst definieren.

Im Analysewerkzeug wird das automatisch akquirierte Wissen zur Unterstützung des An-
wenders bei DfM-Analysen genutzt. Das Assistenzsystem prognostiziert dazu die vom
Konstruktions- und vom Fertigungsingenieur festgelegten und bauteilspezifischen Zielgrö-
ßen auf Basis der aktuellen Bauteilausprägung. Neben dem vorhergesagten Wert einer
Zielgröße wird dem Benutzer die Wurzel des mittleren Fehlerquadrats als Schätzwert für
die Vorhersagegüte angezeigt. Die Erklärungskomponente ist in das Analysetool integriert
und stellt dem Benutzer das jeweils gültige Metamodell dar. So kann die Berechnung des
Analysetools bei Bedarf händisch überprüft werden.

Mithilfe der prototypischen Umsetzung und anhand eines Beispiels aus der Entwicklung
eines Blechmassivumformprozesses wird das Konzept des selbstlernenden Assistenzsystems
verifiziert und das Potential, das sich durch den Einsatz von Methoden der Wissensentde-
ckung in Datenbanken im Umfeld der Konstruktionstechnik ergibt, offengelegt.

Als sehr vielversprechend wird eine Weiterentwicklung des Synthesewerkzeugs angese-
hen. In der aktuellen Implementierung definiert der Benutzer ein blechmassivumgeformtes
Bauteil und lässt diesen Entwurf von Slassy wissensbasiert analysieren. Ergibt die DfM-
Beurteilung, dass keine fertigungsgerechte Gestalt vorliegt, so wechselt der Benutzer in das
Synthesetool, ändert die Gestalt des Bauteils anhand eines Geometrieparameters und star-
tet die wissensbasierte Analyse ein weiteres Mal. Dieses iterative Vorgehen könnte durch die
Entwicklung einer wissensbasierten Synthese enorm beschleunigt werden. Ausgangspunkt
wären die in der multidimensionalen Wissensbasis hinterlegten Metamodelle zur Vorher-
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sage der Ergebnisgrößen eines Blechmassivumformprozesses. Ein nicht-fertigungsgerechter
Gestaltentwurf liegt i. d. R. vor, wenn der Wert mindestens einer bauteilspezifischen Ziel-
größen außerhalb der zulässigen Grenzen liegt, bspw. bei einer zu hohen Umformkraft. Um
einen fertigungsgerechten Entwurf zu ermitteln, ist ein Optimierungsproblem zu lösen: Für
einen gegebenen Lösungsraum Ω und eine Bewertungsfunktion f : Ω → R ist eine Lösung
x ∈ Ω zu finden, die f minimiert. Da zu erwarten ist, dass pro Bauteilvariante nicht nur eine
sondern mehrere Ergebnisgrößen zu berücksichtigen sind, müssen geeignete Methoden der
Mehrzieloptimierung identifiziert werden, um diese Problemstellung zu lösen. Erschwerend
kommt hinzu, dass bei einer Optimierung diskrete (z. B. Werkzeugkonzept, Armierungskon-
zept, eingesetzte Ziehringprofil) und kontinuierliche (z. B. geometrische Größen wie Länge,
Breite, Winkel) Prozess-, Werkzeug- und Bauteilparameter miteinbezogen werden müssen.
Ein erster Lösungsansatz hierfür wurde in [BSSW15] vorgestellt. Dadurch erscheint in na-
her Zukunft die „Berechnung“ fertigungsgerechter und pareto-optimaler Gestaltentwürfe
realistisch. Diese Einschätzung wird von Autoren im Umfeld des Design for Manufacture
bzw. des Design for X (z. B. [Sto91; Tic97; van01; Bau09; BDK10]) bisher nicht geteilt.

Aus den Forschungstätigkeiten zur vorliegenden Arbeit im Rahmen des SFB/TR 73 lässt
sich außerdem Potential für den Einsatz weiterer KDD-Methoden ableiten. Während die
Mehrzieloptimierung sich an den KDD-Prozess des Assistenzsystems anschließt, ließe sich
bereits zu Beginn in den Prozess der Datenerhebung eingreifen und „aktiv“ gestalten. Das
bisherige „passive“ Vorgehen bei der Datenerhebung besteht aus der Erstellung eines Ver-
suchsplans (z. B. voll-faktoriell, zentral-zusammengesetzt, nach Box-Behnken; s. [SvH10])
der die Parametereinstellungen für alle durchzuführenden Versuche vorgibt. Dies hat den
Vorteil, dass mit einfachen Methoden (z. B. Mittelwertbildung) u. a. Effekte von einzelnen
Faktoren berechnet werden können. Als nachteilig erweist sich jedoch der starre Versuchs-
plan und der exponentiell steigende Versuchsaufwand bei mehreren Eingangsgrößen. Mit
Methoden des maschinellen Lernens ist es möglich, den Versuchsplan flexibel zu gestalten
und die Parameterseinstellungen für jeden weiteren Versuch so zu wählen, dass der In-
formationsgewinn maximiert wird. Sogenannte Gaußprozesse können hier einen wichtigen
Beitrag leisten, da sie, anders als bspw. M5-basierte Metamodelle, die Vorhersageunge-
nauigkeiten lokal berechnen können. Jede Parametereinstellung wird so gewählt, dass ein
weiterer Versuch an die Stelle mit der höchsten Ungenauigkeit im Wertebereich des Meta-
modells gesetzt und ein neues Datentupel für das maschinelle Lernen mit Gaußprozessen
erzeugt wird. In Vorversuchen konnte der Aufwand für FEM-basierte Strukturanalysen bei
gleichbleibender Aussagefähigkeit der Ergebnisse um ca. 20% gesenkt werden [BDW14].

Die präsentierten Methoden und Konzepte haben einen hohen Grad der Realisierung
erreicht. Am Lehrstuhl für Konstruktionstechnik (KTmfk) der Universität Erlangen-
Nürnberg (FAU) wurden bereits in verschiedenen Forschungsprojekten KDD-Technologien
erfolgreich eingesetzt. Zudem verfolgt die Arbeitsgruppe „Assistenzsysteme“ am KTmfk
die Vision KDD-Methoden und -Werkzeuge entlang des gesamten Produktentstehungspro-
zeses zu etablieren [BKK+15].
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Anhang

Katalog für BMU-Nebenformelemente

Bild 92: Matrixbasierte Umsetzung eines Ordnungsschemas für Nebenformelemente.
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Bild 93: Exemplarische Klassierung von Nebenformelementen.
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Testdatensatz „Concrete Slump Test“

Im Abschnitt 5.2 wird ein frei verfügbarer Testdatensatz zur Erläuterung der Robust-
heitsproblematik bei Kreuzvalidierungen genutzt. Die Daten wurden von [Yeh07] erhoben
und sind über das Machine Learning Repository der University of California verfügbar. Sie
umfassen 103 Datentupel mit sieben Attributen und drei Zielgrößen (Label). Die folgende
Tabelle fasst den Datensatz zusammen. Die Mittelwerte der Attribute beziehen sich auf
den Masseanteil des Stoffes in kg pro Kubikmeter Beton.

Attribut Mittelwert [ kg
m3 ] Std.-abw. Wertebereich

Zement 229,89 78,787 [137,0; 374,0]
Schlacke 77,973 60,461 [0; 193,0]
Flugasche 149,01 85,418 [0; 260,0]
Wasser 197,17 20,208 [160,0; 240,0]
Betonverflüssiger 8,5400 2,8075 [4,4; 19,0]
grobe Bestandteile 883.97 88,391 [708,0; 1049,0]
feine Bestandteile 739,60 63,342 [640,6; 902,0]

Zielgröße Mittelwert Std.-abw. Wertebereich
Setzungsvermögen [cm] 18,048 8,751 [0; 29,0]
Fliessvermögen [cm] 49,611 17,56 [20,0; 78,0]
Druckfestigkeit [MPa] 36,040 7,838 [17,19; 58,53]
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Versuchsplan zum Anwendungsbeispiel „Sperrverzahnung“

Die Tabelle enthält die Fertigungsdaten des Anwendungsbeispiels aus Kapitel 7. Abgebro-
chene Simulationen sind mit � im Eintrag des Labels gekennzeichnet, die zufällig gezogenen
Tupel der Hold-out Validierung (Abschnitt 7.3.4, S. 149) sind farbig hinterlegt.

ID X_T0_A0 X_T0_W0 X_T0_L0 X_T0_R2 X_T0_R1 Umformgrad Kontaktverhältnis Umformkraft

1 52,50 3,00 3,00 0,30 0,30 2,359 0,492 1630,985
2 55,00 3,00 3,00 0,30 0,30 2,347 0,469 1916,886
3 60,00 3,00 3,00 0,30 0,30 2,635 0,514 1956,531
4 52,50 2,50 3,00 0,30 0,30 2,421 0,492 2033,704
5 55,00 2,50 3,00 0,30 0,30 2,745 0,525 2145,726
6 60,00 2,50 3,00 0,30 0,30 2,635 0,512 1878,541
7 52,50 2,00 3,00 0,30 0,30 2,620 0,540 2039,176
8 55,00 2,00 3,00 0,30 0,30 2,554 0,560 2115,011
9 60,00 2,00 3,00 0,30 0,30 2,511 0,540 2081,601

10 52,50 3,00 2,50 0,30 0,30 1,903 0,533 1708,621
11 55,00 3,00 2,50 0,30 0,30 2,082 0,528 1991,181
12 60,00 3,00 2,50 0,30 0,30 � � �

13 52,50 2,50 2,50 0,30 0,30 2,106 0,550 2239,970
14 55,00 2,50 2,50 0,30 0,30 2,096 0,561 2333,052
15 60,00 2,50 2,50 0,30 0,30 2,033 0,568 2293,047
16 52,50 2,00 2,50 0,30 0,30 2,460 0,592 2470,634
17 55,00 2,00 2,50 0,30 0,30 2,328 0,577 2128,243
18 60,00 2,00 2,50 0,30 0,30 2,371 0,601 2567,048
19 52,50 3,00 3,00 0,60 0,30 2,529 0,484 1802,428
20 55,00 3,00 3,00 0,60 0,30 2,500 0,469 1648,750
21 60,00 3,00 3,00 0,60 0,30 2,511 0,454 1701,550
22 52,50 2,50 3,00 0,60 0,30 2,451 0,455 1402,335
23 55,00 2,50 3,00 0,60 0,30 2,738 0,507 1503,678
24 60,00 2,50 3,00 0,60 0,30 2,744 0,517 2122,277
25 52,50 2,00 3,00 0,60 0,30 2,468 0,522 1852,679
26 55,00 2,00 3,00 0,60 0,30 2,387 0,551 1852,582
27 60,00 2,00 3,00 0,60 0,30 2,863 0,539 1961,542
28 52,50 3,00 2,50 0,60 0,30 2,057 0,493 1820,044
29 55,00 3,00 2,50 0,60 0,30 2,020 0,502 1972,949
30 60,00 3,00 2,50 0,60 0,30 2,132 0,512 1668,948
31 52,50 2,50 2,50 0,60 0,30 2,260 0,550 2123,321
32 55,00 2,50 2,50 0,60 0,30 2,541 0,523 1964,317
33 60,00 2,50 2,50 0,60 0,30 2,212 0,554 2211,937
34 52,50 2,00 2,50 0,60 0,30 2,738 0,585 2129,105
35 55,00 2,00 2,50 0,60 0,30 2,413 0,579 2392,372
36 60,00 2,00 2,50 0,60 0,30 � � �

37 52,50 3,00 3,00 0,90 0,30 2,986 0,454 1508,354
38 55,00 3,00 3,00 0,90 0,30 2,699 0,479 1568,319
39 60,00 3,00 3,00 0,90 0,30 2,978 0,453 1522,467
40 52,50 2,50 3,00 0,90 0,30 2,620 0,489 1685,638
41 55,00 2,50 3,00 0,90 0,30 2,611 0,468 1414,141
42 60,00 2,50 3,00 0,90 0,30 2,560 0,503 1763,109
43 52,50 2,00 3,00 0,90 0,30 2,956 0,522 1762,261
44 55,00 2,00 3,00 0,90 0,30 3,075 0,551 2119,213
45 60,00 2,00 3,00 0,90 0,30 � � �

46 52,50 3,00 2,50 0,90 0,30 2,476 0,510 2101,835
47 55,00 3,00 2,50 0,90 0,30 2,467 0,499 2195,810
48 60,00 3,00 2,50 0,90 0,30 2,055 0,470 1466,784
49 52,50 2,50 2,50 0,90 0,30 2,482 0,548 2074,842
50 55,00 2,50 2,50 0,90 0,30 2,243 0,549 2053,947
51 60,00 2,50 2,50 0,90 0,30 2,498 0,542 2019,635
52 52,50 2,00 2,50 0,90 0,30 2,600 0,590 2192,778
53 55,00 2,00 2,50 0,90 0,30 2,579 0,572 2103,596
54 60,00 2,00 2,50 0,90 0,30 2,552 0,597 2259,143
55 52,50 3,00 3,00 0,30 0,20 2,431 0,482 1823,336
56 55,00 3,00 3,00 0,30 0,20 2,210 0,457 1696,395
57 60,00 3,00 3,00 0,30 0,20 2,335 0,483 1908,838
58 52,50 2,50 3,00 0,30 0,20 2,338 0,459 1676,340
59 55,00 2,50 3,00 0,30 0,20 2,433 0,474 1664,069
60 60,00 2,50 3,00 0,30 0,20 2,579 0,528 1908,443
61 52,50 2,00 3,00 0,30 0,20 2,648 0,548 2063,638
62 55,00 2,00 3,00 0,30 0,20 2,102 0,521 1241,394
63 60,00 2,00 3,00 0,30 0,20 2,824 0,545 2046,446
64 52,50 3,00 2,50 0,30 0,20 2,032 0,478 1700,883
65 55,00 3,00 2,50 0,30 0,20 2,013 0,528 2053,659
66 60,00 3,00 2,50 0,30 0,20 � � �

67 52,50 2,50 2,50 0,30 0,20 2,197 0,565 2371,460
68 55,00 2,50 2,50 0,30 0,20 1,984 0,532 1808,147
69 60,00 2,50 2,50 0,30 0,20 2,261 0,543 2133,508
70 52,50 2,00 2,50 0,30 0,20 2,451 0,580 2147,163
71 55,00 2,00 2,50 0,30 0,20 2,315 0,577 2392,178
72 60,00 2,00 2,50 0,30 0,20 2,378 0,607 1911,316
73 52,50 3,00 3,00 0,60 0,20 2,668 0,475 1781,224
74 55,00 3,00 3,00 0,60 0,20 2,646 0,485 1857,025
75 60,00 3,00 3,00 0,60 0,20 2,740 0,465 1669,504
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76 52,50 2,50 3,00 0,60 0,20 � � �

77 55,00 2,50 3,00 0,60 0,20 2,532 0,511 1598,672
78 60,00 2,50 3,00 0,60 0,20 2,697 0,500 1728,631
79 52,50 2,00 3,00 0,60 0,20 2,686 0,504 2135,320
80 55,00 2,00 3,00 0,60 0,20 2,741 0,557 2040,886
81 60,00 2,00 3,00 0,60 0,20 � � �

82 52,50 3,00 2,50 0,60 0,20 2,074 0,510 1987,448
83 55,00 3,00 2,50 0,60 0,20 1,987 0,444 1581,564
84 60,00 3,00 2,50 0,60 0,20 2,065 0,521 2108,311
85 52,50 2,50 2,50 0,60 0,20 2,350 0,552 2316,590
86 55,00 2,50 2,50 0,60 0,20 2,123 0,551 1992,834
87 60,00 2,50 2,50 0,60 0,20 2,200 0,547 2210,723
88 52,50 2,00 2,50 0,60 0,20 2,609 0,562 2414,781
89 55,00 2,00 2,50 0,60 0,20 2,192 0,605 1672,260
90 60,00 2,00 2,50 0,60 0,20 2,335 0,588 2537,416
91 52,50 3,00 3,00 0,90 0,20 2,684 0,476 1768,023
92 55,00 3,00 3,00 0,90 0,20 2,413 0,403 1546,605
93 60,00 3,00 3,00 0,90 0,20 2,499 0,470 1612,715
94 52,50 2,50 3,00 0,90 0,20 2,940 0,501 1600,864
95 55,00 2,50 3,00 0,90 0,20 2,853 0,456 1394,005
96 60,00 2,50 3,00 0,90 0,20 2,558 0,522 2011,617
97 52,50 2,00 3,00 0,90 0,20 2,763 0,556 1948,309
98 55,00 2,00 3,00 0,90 0,20 2,758 0,528 1839,235
99 60,00 2,00 3,00 0,90 0,20 2,737 0,525 1717,717

100 52,50 3,00 2,50 0,90 0,20 2,116 0,495 1850,326
101 55,00 3,00 2,50 0,90 0,20 2,285 0,524 1755,600
102 60,00 3,00 2,50 0,90 0,20 � � �

103 52,50 2,50 2,50 0,90 0,20 2,223 0,545 2238,563
104 55,00 2,50 2,50 0,90 0,20 2,402 0,539 1590,917
105 60,00 2,50 2,50 0,90 0,20 2,507 0,563 2125,776
106 52,50 2,00 2,50 0,90 0,20 2,277 0,260 1515,260
107 55,00 2,00 2,50 0,90 0,20 2,673 0,594 2213,169
108 60,00 2,00 2,50 0,90 0,20 2,556 0,587 2451,273
109 52,50 3,00 3,00 0,30 0,60 2,615 0,435 1366,779
110 55,00 3,00 3,00 0,30 0,60 2,721 0,476 1796,780
111 60,00 3,00 3,00 0,30 0,60 2,565 0,439 1679,264
112 52,50 2,50 3,00 0,30 0,60 2,398 0,506 1469,736
113 55,00 2,50 3,00 0,30 0,60 2,491 0,495 1937,021
114 60,00 2,50 3,00 0,30 0,60 2,606 0,470 1684,569
115 52,50 2,00 3,00 0,30 0,60 2,763 0,551 2208,149
116 55,00 2,00 3,00 0,30 0,60 2,435 0,493 1667,874
117 60,00 2,00 3,00 0,30 0,60 2,402 0,500 1987,066
118 52,50 3,00 2,50 0,30 0,60 1,891 0,513 1905,212
119 55,00 3,00 2,50 0,30 0,60 1,992 0,527 1755,479
120 60,00 3,00 2,50 0,30 0,60 2,135 0,561 2087,485
121 52,50 2,50 2,50 0,30 0,60 2,104 0,557 2206,208
122 55,00 2,50 2,50 0,30 0,60 2,294 0,567 2297,481
123 60,00 2,50 2,50 0,30 0,60 1,979 0,570 2299,951
124 52,50 2,00 2,50 0,30 0,60 2,197 0,576 2412,454
125 55,00 2,00 2,50 0,30 0,60 � � �

126 60,00 2,00 2,50 0,30 0,60 2,122 0,588 2137,473
127 52,50 3,00 3,00 0,60 0,60 2,573 0,434 1272,754
128 55,00 3,00 3,00 0,60 0,60 2,461 0,425 1233,869
129 60,00 3,00 3,00 0,60 0,60 2,298 0,435 1749,193
130 52,50 2,50 3,00 0,60 0,60 2,501 0,475 1455,003
131 55,00 2,50 3,00 0,60 0,60 2,833 0,448 1832,149
132 60,00 2,50 3,00 0,60 0,60 2,543 0,448 1471,910
133 52,50 2,00 3,00 0,60 0,60 2,539 0,532 1689,889
134 55,00 2,00 3,00 0,60 0,60 2,879 0,522 1848,334
135 60,00 2,00 3,00 0,60 0,60 2,801 0,509 1766,942
136 52,50 3,00 2,50 0,60 0,60 2,142 0,513 2146,990
137 55,00 3,00 2,50 0,60 0,60 2,146 0,483 1764,899
138 60,00 3,00 2,50 0,60 0,60 � � �

139 52,50 2,50 2,50 0,60 0,60 2,337 0,513 1921,867
140 55,00 2,50 2,50 0,60 0,60 2,147 0,513 1789,507
141 60,00 2,50 2,50 0,60 0,60 2,328 0,522 1909,704
142 52,50 2,00 2,50 0,60 0,60 2,191 0,581 2210,564
143 55,00 2,00 2,50 0,60 0,60 2,731 0,544 1912,033
144 60,00 2,00 2,50 0,60 0,60 2,199 0,566 2364,252
145 52,50 3,00 3,00 0,90 0,60 2,563 0,453 1609,679
146 55,00 3,00 3,00 0,90 0,60 2,644 0,442 1670,449
147 60,00 3,00 3,00 0,90 0,60 2,621 0,445 1551,660
148 52,50 2,50 3,00 0,90 0,60 2,662 0,487 1878,359
149 55,00 2,50 3,00 0,90 0,60 2,538 0,417 1571,946
150 60,00 2,50 3,00 0,90 0,60 2,475 0,436 1502,510
151 52,50 2,00 3,00 0,90 0,60 2,762 0,519 1923,694
152 55,00 2,00 3,00 0,90 0,60 � � �

153 60,00 2,00 3,00 0,90 0,60 2,860 0,519 1791,282
154 52,50 3,00 2,50 0,90 0,60 2,075 0,458 1876,830
155 55,00 3,00 2,50 0,90 0,60 2,364 0,476 1824,410
156 60,00 3,00 2,50 0,90 0,60 2,292 0,448 1632,680
157 52,50 2,50 2,50 0,90 0,60 2,485 0,545 2192,594
158 55,00 2,50 2,50 0,90 0,60 2,215 0,534 2082,904
159 60,00 2,50 2,50 0,90 0,60 2,505 0,536 1959,984
160 52,50 2,00 2,50 0,90 0,60 2,602 0,573 2255,853
161 55,00 2,00 2,50 0,90 0,60 � � �

162 60,00 2,00 2,50 0,90 0,60 2,688 0,577 2329,200
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162 Anhang

Übersicht der implementierten Metamodelle

ID Kurzname Parameteroptimierung Attributauswahl Metamodelltyp

1 Ia1 (1) Schrittweise
(a) Alle Attribute

(I) Lineare
Regression

2 Ia2 (2) Evolutionär
3 Ib1 (1) Schrittweise

(b) Forward Selection
4 Ib2 (2) Evolutionär
5 Ic1 (1) Schrittweise

(a) Backward Elimination
6 Ic2 (2) Evolutionär

7 Ia1 (1) Schrittweise
(a) Alle Attribute

(II) Polynomiale
Regression

8 Ia2 (2) Evolutionär
9 Ib1 (1) Schrittweise

(b) Forward Selection
10 Ib2 (2) Evolutionär
11 Ic1 (1) Schrittweise

(a) Backward Elimination
12 Ic2 (2) Evolutionär

13 Ia1 (1) Schrittweise
(a) Alle Attribute

(III) Weka M5P
Modellbaum

14 Ia2 (2) Evolutionär
15 Ib1 (1) Schrittweise

(b) Forward Selection
16 Ib2 (2) Evolutionär
17 Ic1 (1) Schrittweise

(a) Backward Elimination
18 Ic2 (2) Evolutionär

19 Ia1 (1) Schrittweise
(a) Alle Attribute

(IV) Weka M5R
Regellerner

20 Ia2 (2) Evolutionär
21 Ib1 (1) Schrittweise

(b) Forward Selection
22 Ib2 (2) Evolutionär
23 Ic1 (1) Schrittweise

(a) Backward Elimination
24 Ic2 (2) Evolutionär
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Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
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