4 Object-Oriented Implementation of
the DIM'

After the definition of the information model, a proper implementation in form of a data
model has to be done. As BIM relies on IFC, the IFC standard is used as basis for the data
model. Furthermore, the data model shall be visualized by available IFC software. Hence,

testing and extending existing software is explained as well.

4.1 Object-oriented Implementation of the DIM based
on IFC

Based on the model given in Figure 3.16, an implementation shall be done using an estab-
lished AEC data model. As explained in Section 2.5, IFC has been chosen as a suitable
data format. IFC already contains numerous classes to model building elements, materials,
persons, processes, and more. Figure 4.1 shows an overview of the mappings between IFC
entities and the classes in the object-oriented model. In the middle are the classes from
the object-oriented model and on the outer left and right are the related IFC entities. The
defect annotation may be represented by four different IFC entities. A proxy element is
the most generic approach to represent a defect including a geometry independently from

the damage type. However, proxy geometries are treated like a geometries of building

1This chapter contains republished work of a retracted article from ASCE [135]. The article has been
retracted by the authors because of copy right issues [136]. All content, which was affected by the copy
right issues, has been replaced, i.e., IFC code snippets in Figures 4.2, 4.4 to 4.6 and 4.9 have been
revised, Figure 15 from the article has been replaced with Figure 4.10.

62

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

elements, i.e., they are visualized as spatial elements, which could be counter-intuitive in
case of cracks or spalling. Better would be that a crack or spalling is subtracted from the

geometry of the building element.

Annotations allow to add information to a building element. Despite of the traditional
thought of a defect is an annotation, this entity may be used in seldom cases only because
it is limited to 2D geometry as stated by the formal proposals of the IFC standard [13].
2D geometries are suitable for defects, like cracks, in the form of crack maps or abrasion
as marked area on a surface. Similarly, surface features may also represent defects that
mainly affect the surface of a component. However, to accommodate the BIM concept, it
should be omitted to use annotations for defects because according to the IFC standard,

'An annotation is a graphical representation [...] that adds a note or meaning to the objects

[.] [13].

In case of damage types that include geometry subtractions of the affected component, a
voiding feature is suited best because the dedicated relationship /fcRelVoidsElement implies
that the geometry of the voiding feature is subtracted from the related building element.
Some examples for these damage types are cracks, spalling, and voids. Summarizing,
depending on the damage type, there are four IFC entities that may be used for a single
defect and the best suitable has to be chosen. Nonetheless, none of these entities represent
a defect semantically correct, hence, a distinctive defect element should be included in the
IFC standard to properly include damage information. In contrast to the suggestion of
Tanaka, Nakajima, Egusa, et al. - adding three additional entities - it would be enough to

add a single entity to properly include defects [93].

4.1.1 IFC Classes for Semantic Data

Up to now, there are no specific defect entities implemented in the IFC. However, the IFC
offers several alternatives: [fcProxy, IfcAnnotation, IfcSurfaceFeature, and lfcVoidingFea-
ture. Table 4.1 presents a comparison of the advantages and disadvantages of these IFC
entities. IfcProxy is a generic entity, but the IFC 4 lists the proxy as deprecated and
recommend using IfcBuildingElementProxy instead. A look at newer versions of the IFC

reveals that the proxy is marked deprecated no longer. The DIM should be usable in future

63

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

lfcSurfaceFeature L DefectAnnotation ‘

IfcVoidingFeature J—— IfcRelAssignsToProduct

}Jj IfcRelAggregates

DocumentReference }_ IfcDocumentReference

DefectType }7 IfcTypeObject

Color Legend
DamagedGeometryCutout IfcRelVoidsElement
Semantic Damage Information
.) ’ o
Visualization Information

Geometric Information Geometry IfcRepresentationitem
Building Information TextureArea
TextureMapping IfcTextureCoordinate ‘
Texturing '7 lfeSurfaceTexture ‘

Figure 4.1: Mapping of the IFC entities onto the classes of the object-oriented Model.

COOMmE

standards, and hence, the proxy is taken as an option instead of BuildingElementProxy. A
proxy is very flexible and thus suitable for every defect type. However, a proxy is treated
as an individual element or building element, which conflicts with the nature of a defect.
A defect cannot exist without the affected component. An IlfcAnnotation may be used to
add further annotations to a component. However, IfcAnnotations are only meant to have
0D, 1D, or 2D geometries. This circumstance limits their applicability to damages without
or geometries or surface damages. IfcSurfaceFeatures and IfcVoidingFeatures are suitable
for specific defects. Surface features are suitable for modeling corrosion or other defects,
which only affect the surface of a component. Voiding features are suitable for defects like
cracks or spalling, which add a void to a component. However, they are not suitable for
modeling further damage types, e.g., material changes below the surface, divergences from
specifications, or wash-outs. On the whole, depending on the defect, a suitable IFC entity
has to be chosen. Corrosion or other surface changes claim for surface features. Cracks
and spalling are represented by voiding features at best. Other defects could use either

annotations or proxies.

In the next step, the analysis of suitable relationships from the IFC standard is presented.
IfcRel-Assigns "is a generalization of 'link’ relationships among instances of IfcObjects

and its various 1% level subtypes’ [144]. A specific identification of the relationship is

64

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.1: Overview of the possible IFC entities with advantages and disadvantages

IfcProxy

IfcAnnotation

IfcSurfaceFeature IfcVoidingFeature

+

interpretable by
most applications

add (textual)
information
about defect to

component

suitable for

specific defects,

geometry is not
visualized like
geometries of

components

suitable for

specific defects,

geometry is not
visualized like
geometries of

components

generic

container,

independent
object in
contrast to a

dependent defect

less supported by
applications,

limited

representations,

modeling defects
as annotations

conflicts with the
original meaning

of annotations

only designed for
modifications at

surface,

less supported by
applications,

modeling defects
as surface features
may conflict with
original meaning

of surface feature

only designed to
reduce volume of

element,

less supported by
applications,

modeling defects
as voiding features
may conflict with
original meaning

of voiding feature

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

65

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.2: Overview of the possible IFC entities with advantages and disadvantages

IfcRelAssignsToProduct IfcRelAggregates IfcRelVoidsElement

+ interpretable by most interpretable by most avoids additional data
applications applications for geometry
- not usable for defects, some defects are not designed for voids only
which are part of a part of a component
component (cracks, (e.g. vegetation) parts
spalling ...),
representation results less supported by

from geometry of sub applications

stored as the name of the relationship. In case of the DefectProductRelation, the name
of IfcRelAssignsToProdcut would be " Defect product relation.” However, a defect is part
of a component and if the component is destroyed, the defect no longer exists. Hence,
a composition is more precise. Strict compositions are modeled with IfcRelAggregates.
Construction and design practice understands aggregations as a sum of different products.
This would imply that a defect is a product if an aggregation is used, which is questionable.
Altogether, aggregations seem to be the most precise relationship for physical defects.
Both relationships the aggregation and the assignment may be used for other defects.
In case of using IlfcVoidingFeature to represent defects, the decomposition relationship
IfcRelVoidsElement is suitable. “IfcRelVoidsElement is an objectified relationship between
a building element and one opening element that creates a void in the element.” [144]. As
stated earlier, the voiding feature and the voids relationship are only applicable to cracks
or spalling and not in case of material changes or other damage types. An example is
depicted by Listing 4.2. [fcRelAssignsToProdcut may be used for effect-cause relations
with the name "cause” or "reason.” Additional information about the relation might be
given by the description of the relationship. Table 4.2 provides an overview of the existing
relationships and related advantages and disadvantages.

Figure 4.3 shows a schematic overview of one possible implementation of the DIM in IFC.

66

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/% Building element */
#244= IFCBEAM(’2tso43_ekkqu6caA5ViEg’,#42,
’Test Beam’, $,$,#242,#233,$%,.BEAM.);

/* Defect Spalling */

#9002= IFCVOIDINGFEATURE(’0OnlZskSHuEqdlb4p0105hg’,
#42,’Spalling’,’Spalling at beam’,
"Defect - Spalling’, #8556,$,$,.CUTOUT.);

#9004= IFCRELVOIDSELEMENT (’2hSrdH4wYOynUPT1SyLhxw’,
#42,$,8,#244 ,#9002) ;

Figure 4.2: Extract of an IFC file modeling a damaged beam (#244) as damaged building
element. The defect is represented by a voiding feature (#9002) and the voids
relationship (#9004) models the relationship to the beam.

The defect is implemented as voiding feature in the middle. Properties are used to include
measurements and other alpha-numeric data related to the defect. Type objects are utilized
to add classifications to defects, such as spalling or crack. Document associations are able
to relate external documents to the defect, for example, photos, reports, or testing results.
On top, the relationship IfcRelVoidsElement connects the defect to the affected bridge

element.

Figure 4.4 shows an excerpt to illustrate the incorporation of classification, measurements,
and external documents. Entity #9000 is once again the defect. This defect is classified
as spalling by the type object #9011. This classification may be hierarchical, for instance
a classification for defects and a sub-class for spalling. #9021 is a property set of mea-
surements for the spalling containing a diameter (#9022) and depth (#9023) with a unit
(#43). At the end of the excerpt, is a reference to an external report of an ultrasonic in-
vestigation (#9031). Such external documents could also be photos and included together
together with the IFC step file into an IFC-zip file.

67

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

IfcBuildingElement

[iczeamszcr]

RelatingBuildingElement

IfcRelVoidsElement
A,

RelatedOpeningElement

IfcVoidingFeature
RelatedObjects RelatedObjects RelatedObjects
| IfcRelDefinesByProperties | | IfcRelDefinesByType ‘ ‘ IfcRelAssociatesDocument |
RelatingPropertyDefinition RelatingType Relating Document
4 A, A,

IfcPropertySet IfcTypeObject IfcDocumentReference

Figure 4.3: Block diagram of the resulting IFC structure. Yellow elements are instances and

blue elements are relationships.

4.1.2 IFC Classes for Geometry Data

This subsection discusses the implementation of geometries of the DIM by using the IFC.
Besides modeling the geometry of the damaged component, the method of modeling a
defect geometry and the use of geometric representation contexts are illustrated.

Relationship-based geometry

This paragraph illustrates the implementation of the geometry model described in the
Relationship-Based Geometry section and is related to Figure 3.14. Listing 4.5 shows an
extract of an IFC file that contains an IfcVoidingFeature (#9002) as defect entity and a
related component (#244). The IfcRelVoidsElement (#9004) represents the relationship
between the defect and component and implies cutting the defect geometry out of the

component geometry.

68

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/% Defect Spalling */
#9000= IFCPROXY (’0igGRCoTwk6XcjClhqayEA’ ,#42,

’Spalling’,$,’Defect’ ,#242,$, . NOTDEFINED.,$);
P g

/% Damage type */

#9010=

#9011=

IFCRELDEFINESBYTYPE (’1bIoUtPdkkqxQGAgf -5vphA’,
#42,’Damage type’,’Typification of a defect’,(#9000),
#9011) ;

IFCTYPEOBJECT(’10gzfsrKgEihXsn84QV_hQ’ ,#42,

’Damage type Spalling’,$,’IfcProxy/Defect’,$);

/* Measurements */

#9020=

#9021=

#9022=
#9023=

IFCRELDEFINESBYPROPERTIES (’157kZBQd3USDFsV8uKQvDA’ ,#42,
’Defect Measurements’,’Diameter and depth of the
spalling’ , (#9000) ,#9021);

IFCPROPERTYSET (’0zky6s7LQ0CXauZHIiqYTA’ ,#42,

’Diameter and Depth’,$,(#9022,#9023));

IFCPROPERTYSINGLEVALUE (’Diameter’,$, IFCREAL (151.0) ,#43);

IFCPROPERTYSINGLEVALUE (’depth’,$,IFCREAL (12.0) ,#43);

#43= IFCSIUNIT (*,.LENGTHUNIT.,.MILLI.,.METRE.);

/* Document */

#9030=

IFCRELASSOCIATESDOCUMENT (’2Nv5qvEsoku-QzHBcSpXXA~,

#42 ,’Report of ultra sonic survey’,$,(#9000) ,#9031);

#9031=

IFCDOCUMENTREFERENCE (*http://standards.buildingsmart.org/
IFC/RELEASE/IFC4_1/FINAL/EXPRESS/IFC4x1l.exp’,
’U_S_16092020-42’,’Ultra Sonic report 16092020-42 from
the 16th September 2020°,%);

Figure 4.4: Part of an IFC file modeling a proxy for the defect (#9000) and a type object

(#9011) to define a damage type namely 'Damage type Spalling’. Additionally,
some measurements (#9021) and a reference to an external document (#9031)

are included.

69

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Building element */

#244= IFCBEAM(’2tso43_ekkqjB6caAbViEg’ ,#42,
’Test Beam’,$,$,#242,#233,$,.BEAM.);

#233= IFCPRODUCTDEFINITIONSHAPE ($,$, (#227,#231));

#231= IFCSHAPEREPRESENTATION (#103,’Axis’,’MappedRepresentation’,
(#229));

/* Defect Spalling */

#9002= IFCVOIDINGFEATURE(’3-7hkhVEek2181I_ZN1Gzg’ ,#42,
’Spalling’,’Spalling at beam’,’Defect - Spalling’,
#8556 ,$,$,.CUTOUT.);

#9004= IFCRELVOIDSELEMENT(’191hmq9RzkaK7Q65006tKw’,
#42,$,$,#244 ,#9002) ;

/* Defect Geometry */

#9003= IFCPRODUCTDEFINITIONSHAPE($,$, (#8548));

#8548= IFCSHAPEREPRESENTATION (#105, ’Body’,
>MappedRepresentation’ , (#8546));

#8546= IFCMAPPEDITEM (#8542 ,#232);

#8542= IFCREPRESENTATIONMAP (#8541 ,#8539);

#8539= IFCSHAPEREPRESENTATION (#105, ’Body’,’SweptSolid’ , (#8538));

#8538= IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20,250.);

#8526= IFCCARTESIANPOINTLIST2D(((-125.,-30.),(125.,-30.),
(125.,30.),(-125.,30.) ,(-125.,-30.)));

#8533= IFCINDEXEDPOLYCURVE (#8526,$,.F.);

#8534= IFCARBITRARYCLOSEDPROFILEDEF (.AREA., ’Box’ ,#8533);

Figure 4.5: Extract of an IFC file modeling a beam (#244) as damaged building element.
The defect is represented by a voiding feature (#9002) and the voids relationship
(#9004) represents the relationship between the beam and the defect.

70

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Independent relationship and geometry

This section illustrates the implementation of the geometry model described in the Inde-
pendent Relationship and Geometry section and is related to Figure 3.15. In case of storing
the geometry of the damaged component in the IFC, representation contexts are chosen
to distinguish the geometries of intact and damaged components. A product might have
multiple representations and every representation has a different representation context.
Listing 4.6 illustrates the use of multiple geometries and representation contexts. The de-
fect and the beam have their own geometries as shown by entities #9003 and #233. In
this context, the damaged geometry of the beam, entity #9100, is a CSG geometry with
a subtraction of the undamaged beam and the defect geometry. An example is depicted
in Figure 4.7. The beam without any defects is shown on the left. In the middle is an
exemplary cuboid defect and on the right is the beam with the cuboid damage geometry
as cutout.

4.1.3 IFC Classes for Geometric-semantic Data

Geometric-semantic data may be stored as document references or as textures, which are
depicted on a 3D surface. Document references have been discussed in the FC Classes for
Semantic Data section. Coming to the implementation of textures, Figure 4.8 illustrates
how to include a texture in an IFC file. To position an image, for example, a PNG-
file, within the 3D model, a geometry is necessary. This geometry is represented by the
IfcRepresentationltem. Such a geometry could be a plane, which carries the texture slightly
above the related position of the affected component. A listing example can be found in
the study by [89]. In addition to the texture itself, the mapping is necessary. The IFC
offers the class IfcTextureCoordinate to add texture-mapping information and subclasses,
such as IfcTextureCoordinateGenerator and IfcIndexed Triangle TextureMap to either define

an algorithmic or point based texture mapping.

Texturing is a special method to include geometric-semantic data and needs a mapping
algorithm to correctly depict the texture on the geometry. Figure 4.9 shows how to achieve

that using IFC. Again, the defect is defined as proxy (#9000) with a simple cuboid geometry

71

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/% Building Element */
#244= IFCBEAM(’2tso43_ekkqjB6caAbViEg’ ,#42,
’Test Beam’, $,$,#242,#233,$,.BEAM.);

/* Undamaged Geometry */

#105= IFCGEOMETRICREPRESENTATIONSUBCONTEXT (’Body’,’Model’ ,*,%*,
*,%,#99,$, . MODEL_VIEW.,$);

#155= IFCEXTRUDEDAREASOLID (#149 ,#154,#20,12125.4);

#187= IFCREPRESENTATIONMAP (#186 ,#165) ;

#225= IFCMAPPEDITEM (#187 ,#224);

#227= IFCSHAPEREPRESENTATION (#105, ’Body’,’MappedRepresentation’,
(#225));

#233= IFCPRODUCTDEFINITIONSHAPE($,$, (#227,#231,#9100));

/* Defect Spalling */
#9000= IFCPROXY(’0igGRCoTwk6XcjClhqayEA’ ,#42,
’Spalling’,$,’Defect’ ,#242,#9003, . NOTDEFINED.,$)

/* Defect Geometry x*/

#8526= IFCCARTESIANPOINTLIST2D (((-125.,-30.),(125.,-30.),
(125.,30.),(-125.,30.),(-125.,-30.)));

#8533= IFCINDEXEDPOLYCURVE (#8526,$,.F.);

#8534= IFCARBITRARYCLOSEDPROFILEDEF (.AREA., Box’ ,#8533);

#8538= IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20,250.);

#8539= IFCSHAPEREPRESENTATION (#9050, Body’,’SweptSolid’ , (#8538));

#9003= IFCPRODUCTDEFINITIONSHAPE($,$, (#8539));

#9050= IFCGEOMETRICREPRESENTATIONSUBCONTEXT (’Defect Geometry’,
"Defect Geometry’ ,*,*,%,*,#9051,$,. . MODEL_VIEW.,$);

#9051= IFCGEOMETRICREPRESENTATIONCONTEXT (’Defect’,
’Model’ ,3,0.01,#96,#97);

/* Damaged Component Geometry*/

#9100= IFCSHAPEREPRESENTATION (#9150, Body’,’CSG’,(#9101));

#9101= IFCCSGSOLID (#9102);

#9102= IFCBOOLEANRESULT (.DIFFERENCE. ,#155,#8538);

#9150= IFCGEOMETRICREPRESENTATIONSUBCONTEXT (’Damaged Components’,
’Damage Model’ ,*,%,x,* ,#9151,$, . MODEL_VIEW.,$);

#9151= IFCGEOMETRICREPRESENTATIONCONTEXT (’Damaged-geometry’,
’Model’ ,3,0.01,#96,#97);

Figure 4.6: Excerpt of an IFC file modeling a distinct geometry and relationship. An assign-
ment (#9001) represents the relationship between the beam (#244) and the

defect (#9000). The beam has two geometries: a damaged geometry (#9100)
and an undamaged geometry (#227).

72

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

‘weaq paSewep syl (o pue ‘A119woad 129)9p

syl (q ‘weaq paSewepun ayl smoys (e "MIIA Qg 3yl ul G Suisn Aq uoijejussaidas sSewep duPW0dS v i/ 24nSi4

€ (g (e

73

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

| IfcRepresentationltem

A
Items

| IfcRepresentation
A

Representations

| IfcProductRepresentation

Representation Textures

L i

. Semantic Damage Information

. Visualization Information
|:| Geometric Information

Figure 4.8: Damage model with texture using IfcSurfaceFeature and related elements. The

defect is shown in orange. Multiple superclasses, subclasses and selects are

omitted for simplicity. [89]

74

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.3: Overview of tested BIM authoring software and IFC viewers

Authoring software IFC viewers

Autodesk Revit 2019 [17] apstex IFC viewer [23]
BIM Vision [22]
Desite BIM [19]
Solibri Model Viewer [24]
usBIM [20]
xBIM Xplorer [21]

(#8538). In addition to that, a texture in form of a JPG-file shall be depicted on the
geometry (#10000). To create a correct visualization, the spherical mapping algorithm
shall be used for this texture (#10061). Further details about the modeling may be found
in Chapter 3.

4.2 IFC Software Verification and Extension

As explained in Section 3.3 and Figure 3.10, a verification or testing of the model has to be
done to eventually adopt the model and/or existing software. This has been done by using
a broad variety of existing software. Table 4.3 gives an overview of all examined software
applications. This study focused on modeling data and not on the usability of authoring
software. Hence, only Revit was tested as representative of authoring tools. Future research

should investigate editing possibilities as well.

4.2.1 Verification of Semantic Data

In the first step, the functionality of visualizing semantic data has been tested. All four IFC
entities, i.e., IfcAnnotation, IfcProxy, IfSurfaceFeature, and IlfcVoidingFeature were tested.
The expectation is that the software provides a geometric view, a hierarchical tree view, and
a view for the properties. Table 4.4 presents an overview of the test results. Revit, Desite

BIM, and Solibri Model Viewer lack the hierarchical view of the model, and hence, the

75

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Defect Spalling */

#9000=

#9001=

#9003=
#8539=
#8538=
#8526=

#8533=
#8534=

#10000=
#10010=
#10020=
#10030=
#10040=
#10050=
#10060=
#10061=

IFCPROXY(’0igGRCoTwk6XcjClhgayEA’ ,#42, ’Spalling’,
’Spalling at beam’,’Defect -Spalling’ ,#242,#9003,
.NOTDEFINED.,$);

IFCRELAGGREGATES (’3--Gt7_4p0qqpOGbNAh_sw’ ,#42,

’Damage to product’,’The related product is damaged’,
#244 , (#9000)) ;

/* Defect Geometry */
IFCPRODUCTDEFINITIONSHAPE($,$, (#8539));
IFCSHAPEREPRESENTATION (#105, >Body’,’SweptSolid’ , (#8538));
IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20,250.) ;
IFCCARTESIANPOINTLIST2D (((-125.,-30.),(125.,-30.),(125.,30.),

(-125.,30.),(-125.,-30.)));

IFCINDEXEDPOLYCURVE (#8526,$,.F.);
IFCARBITRARYCLOSEDPROFILEDEF (. AREA., Box’ ,#8533);

/* Texture */

IFCSTYLEDITEM (#8538, (#10010) ,$);

IFCSURFACESTYLE (’Damage Texture’,.BOTH., (#10020));
IFCSURFACESTYLEWITHTEXTURES ((#10030));
IFCIMAGETEXTURE(.T.,.T., TEXTURE’ ,#10040,$,’./Texture.JPG’);
IFCCARTESIANTRANSFORMATIONOPERATOR2D (#10050,$,#10060,1.0);
IFCDIRECTION ((1.,0.));

IFCCARTESIANPOINT ((0.0,0.0));
IFCTEXTURECOORDINATEGENERATOR ((#10030) , ’ SPHERE’ ,$);

Figure 4.9: Part of an IFC file modeling a proxy for the defect (#9000) and add an image

76

as texture (#10030) to the entire defect geometry (#10000). The texture
mapping is defined as spherical mapping (#10061).

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.4: Shows which software has visualized the defect information in a hierarchical or

properties view.

Defect Autodesk Apstex BIM Desite Solibri usBIM xBIM

types Revit IFC Vision BIM Model Xplorer
Viewer Viewer
Annotation X (x) X X
Proxy X X X X
Surface X X X X
Feature
Voiding X X X X
Feature

defects without geometries could not be selected. Furthermore, none of the three includes

a hierarchical view of the model. All other software visualizes the test files properly.

Next, the visualization of the relationships was tested. For this purpose, typification, exter-
nal references, and defect relationships were added. Classification could be visualized via a
property view or by using the correct product type. Table 4.5 summarizes the test results.
IFC viewers do not access product catalogs, and hence, the type is shown as property in
the view. Revit uses its internal type catalog to select the corresponding type of an entity.
However, this is only possible if the typification is stored with correct Revit family names.
The same problem arises with measurements or properties in Revit. External references
should be shown at least in the property view with their URI. The Apstex IFC viewer and
xBIM show external references in such a way. None of the other software tools showed the
external document references. Last, defect relationships, i.e., aggregation, association or
voids element, should be shown in the hierarchical view or as properties. xBIM and Apstex
show aggregations in the hierarchical view and associations as properties. BIM Vision was

able to show aggregations but not the associations.

7

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.5: Performance of the software regarding relationships.

Defect In- Autodesk Apstex BIM Desite Solibri usBIM xBIM

formation Revit IFC Vision MD Model Xplorer
Viewer Viewer

Classification (x) X X X
External X X

References

Measurements (x) X X

Defect Re- X (x) X

lationship

4.2.2 Verification Texture Implementation

Textures are the second requirement in the data model. To test texturing, an image has
been attached to an additional plane, which is at the defect position. Other geometries
may be used instead of a plane. As depicted by the last row in Table 4.6, none of the
available software was able to properly visualize the texture. Most of them ignored the

texture parameter. usBIM only shows the plane where the texture should be depicted.

4.2.3 Verification of Geometry Data

Geometric representations are very common in the AEC sector. However, the software
programs support the geometric representations in different quality, which is evidenced
in Table 4.6. The visualization of CSG geometries was done properly by all IFC viewers
except Desite BIM and the Solibri Model Viewer. None of the viewers that are available

by the software vendors offers a selection of representation context. This requirement was

78

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

achieved only by Revit. Revit includes 2D plans and 3D views for its building models;

however, multiple 3D geometries are not possible in Revit.

The next step tested the visualization of an IfcVoidingFeature with an IfcRelVoidsElement
relationship in accordance with the relationship-based cut-out. The voiding feature is cor-
rectly supported by apstex's IFC Viewer and xBIM Xplorer. Other programs do not respect
an IfcVoidingFeature with an IfcRelVoidsElement relationship. Many viewers are able to
handle an opening in conjunction with an /fcRelVoidsElement. However, defining a defect
as an opening is semantically wrong. Figure 4.10 shows the visualization of an /fcVoid-
ingFeature with an IfcRelVoidsElement relationship in the original xBIM Xplorer. 4.10 a)
shows a beam with typical spalling. Figure 4.10 b) depicts a close-up screenshot of the
cut-out of the defect in the beam. Lastly, in Figure 4.10 c) one can see the blue highlighted
defect geometry of the spalling. A similar result is achieved with the Apstex IFC Viewer.

4.2.4 Extension of xBIM Xplorer

Although, IFC is an established standard and implemented in many software applications,
several of them show limitations regarding geometry and texture visualization. Furthermore,
only Revit supports different views. Hence, manual extensions have to be made to an
existing application. Three possibilities exist to extend existing software: (1) developing
a plugin or extension, (2) using an Application Programming Interface (API) to add code
within the software, or (3) the software itself is open source. In the given software pool,
only Revit provides an API. However, Revit shows errors already on the IFC import. Hence,
a completely new importer would be necessary that would mean a huge effort. None of
the software has a fully developed plugin system. xBIM has a plugin system, however,
it is under development. Two of the viewers are (partly) open source: xBIM and apstex.
apstex offer only their core IFC parser and model as open source. xBIM offer their complete
software including the viewer as open source. So, xBIM was chosen for further extensions.

During the development, xBIM has been extended with

1. making links to external references clickable

2. saving and restoring camera positions

79

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.6: Performance of the software regarding different geometric representations and

texture.

£}
T s
g s 5
s H 0 S
: & 5 3
£ 2 > = =
5 > T 5@
®o 533 5 s
¥ = & @ 3 < =
S ¥ > 2% s
0 2 858 =2 3 =
2 v 2T a = g = =
S 2 = 0 o uw o m
Geometry data Q< 00 v 5 x X
w0
< Context selectable X X
ot
c
o
o
+
2 Show different X
O .
representations
Show defect geometry X X X X X
[
5 Subtract geometry X X X X X
©
Q
60
=
=]
S Show defect geometry X X X X X
Texture
Visualize Texture X

80

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

"1N01N2 3y3 Jo Aijiqisia sy anoidwi 01
uasl usaq sey Aouaiedsuesy sy Aipwoas Suijjeds [eaidA1 aya smoys (2 *(q weaq ay1 1e Suijjeds syl 18 MIIA

as0|> e pue (e ainjeay Suipion e Suisn Aq pajspow Suljjeds yiim weaq e jo Jalojdx |N|gX ul uolezijensia ay| QT { 24nSi4

81

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

3. export selected elements to wavefront obj files
4. select a visualization context
5. manual triangular texture mapping

6. and spherical texture mapping

Point 1 was done to getting in touch with the software structure of xBIM and try a first
implementation. External references including a path may be included in a document
reference. At that time, the path was shown as a normal string. With some minor changes
in the IfcMetaDataControl, a clickable link was created that automatically opens the given

file in the default application, e.g., the browser.

Writing articles, conference papers and documentation required several screenshots of mod-
els, defects, and components. However, if the same view shall be used for different models
or a another screenshot has to be taken after some model changes, it comes in handy to
save and restore camera positions. This leads to the implementation of an export and
import of camera view parameters. This function can be found in the top menu under
camera/camera position. After saving the properties via save as, a text file is generated
as shown in Figure 4.11. Three 3D vectors define the view: the camera position, look and
upwards direction. The x, y, and z components of these parameters each are stored in one
line. Hence, the first three lines define the x, y, and z component of the position. Followed

by the look and upwards direction in the same way.

37.7465246782768
-2.11495031082126
2.48377096998818
-2.15067950496985
3.96105889744229
-1.33312049451982
-0.0374374448485882
0.068951195969613
0.996917333733132

Figure 4.11: Exemplary camera position file containing three lines each for position, look

and upwards direction.

82

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Subsequent processes, for instance structural analyses with Ansys, required the geometry
only. However, Ansys does not have a built in IFC import that meant another format was
necessary. Wavefront files with the ending .obj come in handy in this case. IfcConvert is
a usable tool for such tasks because it enables the transformation of IFC files into many
other file types [25]. To enable also the selection of a specific representation context, the
code has changed in that way that a representation context may be selected via its name
[145]. So, the geometries of the selected context(s) are transformed only.

Unfortunately, IfcOpenShell is a command line tool and, hence, a bit cumbersome. After
using IfcConvert several times, a graphical user interface found be much more practical.
Therefore, the xBIM Xplorer has been extended with a small export function that allows to
export selected geometries as wavefront files. Together with the selection of the represen-
tation context (4), any geometry may be exported in a more intuitive way.

Figure 4.12 shows the selection of different visualization contexts based on a model with
undamaged (a) and damaged component geometries (c) as well as the damage geometry
itself (b) in the extended xBIM Xplorer. The top line shows the selected representation
context, the line below presents an overview of the model and the bottom line depicts
a close-up view of the damaged section. If the defect geometry and the geometry of the
damaged component are activated simultaneously, the used defect element, which is a proxy
in this case, is shown as filling in the damaged beam. This is disadvantageous because
the defect geometry should not be a filling. If the relationship-based cut out is used,
i.e., lfcVoidingFeature with IfcRelVoidsElement, only the damaged component geometry
is visible, but not the damage geometry solely. This is comprehensible because openings
or voids are normally only visible as subtraction in another element and not as individual

element.

Texture related information is represented by green boxes in the diagram. Besides the
information, which image shall be used as texture, a texture area and texture mapping
is required. Texture maps describe mathematically how to map photos as textures onto
a given geometry. Such a texture map may be defined implicitly or explicitly. Multiple
texture mapping algorithms exist. Two methods are implemented in the xBIM Xplorer to
demonstrate the use of textures for DIM. First, a manual and a spherical texture mapping.
Within the IFC file manual texture maps may be provided via the IfcIndexed Triangle Tex-

83

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

[@3 Representation Context Selection ~ — m} brd

I [13D-undemaged

1 []3D-defect-geometry

1 []3D-damaged-geometry
v [13D-plan

{7 Representation Context Selection

a X

{17 Representation Context Selection

[m]

1 []3D-undamaged

I [Z13D-defect-geometry

1 []3D-damaged-geometry
b [13D-plan

v [J3D-undamaged

3 _H_w_v.n&nﬁ».ono:g

1 [¥]3D-damaged-geometry
v [13D-plan

a)

Figure 4.12: Model of a defect by using CSG and different visualization contexts in the 3D view. a) shows the undamaged

b)

beam, b) the defect geometry, and c) the damaged beam.

<)

84

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

tureMap. It contains a mapping between triangles of the shape and related coordinates in
the texture, i.e., a vertex has one or more related u-v-coordinates [13]. So, the creator of
the IFC file has the full control about the mapping.

Second, in case of a texture on a sphere, spherical texture mapping may be used. This maps
the spherical coordinates of the mesh vertices onto the u-v coordinates of the texture. By
identifying the midpoint vy of the volume, vectors between the midpoint and all vertices v,,
of the 3D model are calculated. Subsequently, the spherical coordinates of these vectors,
consisting of r, ¢, and 6, are calculated. Figure 4.13 shows a sketch of the polar coordinates
with ¢. Analog to ¢, 0 is calculated using the = and y axes. Last, the spherical angles ¢
and ¢ as radians between 0 and 27 are mapped onto the two texture coordinates v and v

between 0 and 1 with)

U:%
_9
2

Figure 4.14 shows the Nassi-Shneiderman of the resulting algorithm for spherical mapping.

v

midPoint is calculated based on the min and max values of the vertices shown in Figure
4.15. midPoint is equally to vy. Based on that midpoint a vector direction as well as the
related angles ¢ and 6 are calculated. As aforementioned, the algorithms are implemented
in C# within xBIM Xplorer. C# allows to parallelize operations by using the Parallel class
within the System.Threading. Tasks namespace as depicted in Figure 4.16 [146].

In order to provide an extensible object-oriented implementation, a interface based structure
has been used for the implementation depicted in Figure 4.17. Generally spoken, each
texture mapping algorithm aims to provide a texture map based on the vertices, normals, and
triangles. Hence, this can be abstracted into an interface, which is called /TextureMapping.
Besides the texture map itself, this interface also forces the implementations to provide
an information about their algorithm as an enumeration TextureMapGenerationMethod via
the GetTexturingMethod Possible states are defined in the IfcTextureCoordinateGenerator
of the IFC 4 standard [13].

The described interface is implemented by two classes: ManualTriangular TextureMapping
and Spherical TextureMap. To create the correct instance, the static class TextureMap-

pingFactory takes an IfcTextureCoordinate object as argument and returns the related

85

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

YA

[0)

Vo

f r | X

Figure 4.13: Exemplary sketch for calculation of ¢ for spherical mapping.

function GetTextureMap(vertices, normals, triangles) {

textureCoordinates = new Point[vertices Length]

midPoint = getMidPoint(vertices)

intidx = 0; idx < textureCoordinates Length; idx++

meshPoint = vertices[idx]

direction = meshPoint - midpoint

theta = Math.Acos(direction.Z / direction_Length)

directionZ < 0
Wahr Falsch
theta = theta * (1) ‘ J7

direction X = 0
Wahr Falsch
phi = Atan(direction.Y / direction.X) ‘ Q'

direction X == 0
Wahr Falsch
phi = Sign(direction.Y) * Math.PI / 2.0 ‘ Q’

direction.X < 0 && direction.> >= 0

Wahr Falsch
phi = Atan(direction.Y / direction.X) + PI; ‘ phi = Atan(direction.Y / direction.X) - PI

textureCoordinates|idx] = new Point (phi theta)

return textureCoordinates

Figure 4.14: Nassi-Shneiderman diagram of the algorithm to create a spherical texture map.

86

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

function GetMidPoint(vertices) { ®
minX = MinimumX (vertices) + o
maxX = MaximumX (vertices) + 0
minY = MinimumY (vertices) + 0
maxY = MaximumY (vertices) + 0
minZ = MinimumZ (vertices) + 0
maxZ = MaximumZ (vertices) + 0
midPoint = new Vector ((minX + maxX) / 2, (minY + maxY) / 2, (minZ + maxZ) / 2 + 0
return midPoint + 0

H

Figure 4.15: Nassi-Shneiderman diagram for the calculation of the midpoint.

implementation of /TextureMapping. Hence, if the provided texture coordinate generator

has the mode sphere, a Spherical TextureMap is returned.

4.2.5 Comparing Test Results to Requirements
Altogether, with the use of IFC and an extension of the xBIM Xplorer, it was possible
to address all requirements stated in the Requirement Analysis section. Table 4.7 shows

an overview of the requirements and finally used entities of the standardized IFC 4. All

implementations could be verified by using an extended version of the xBIM Xplorer.

87

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11, -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

public

b

< > GetTextureMap (
> vertices,
> normals, <int> triangles)

[l textureCoordinates = new [vertices.Count ()];

midPoint = this.GetMidPoint (vertices);

.For (0, textureCoordinates.Length, (verticeIndex) =>

meshPoint = vertices.ElementAt (verticeIndex);
direction =
() (meshPoint - midPoint);
double theta = .Acos(direction.Z

/ direction.Length);
if (direction.Z < 0)

{
theta *= -1;
}
double phij
if (direction.X > 0)
{
phi = .Atan(direction.Y / direction.X);
}
else if (direction.X == 0)
{
phi = .S8ign(direction.Y)
* .PI / 2.0;
}

else if (direction.X < 0 && direction.Y >= 0)

phi = .Atan(direction.Y / direction.X)
+ .PI;

}

else

{
phi = .Atan(direction.Y / direction.X)
- .PI;

}

double u = phi;
double v = theta;

textureCoordinates [verticeIndex] = new (u, v);

return textureCoordinates;

Figure 4.16: Calculation of the spherical texture map in C# using the Parallel library to
provide a faster computation.

88

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.17: UML diagram of the structure for texture maps.

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.7: Summary of test requirements and test results.

Requirement

Successfully tested solutions

Defect entity

IfcAnnotation, IfcProxy,

IfcVoidingFeature, IfcSurfaceFeature

Relationship for damaged

components

IfcRelAssociatesProduct,
IfcRelAggregates, IfcRelVoidsElement

Relationship for defect

groups

IfcRelAggregates

Relationship for cause and
effect

IfcRelAssociates

Relationship for related
documents

IfcRelAssociatesDocument

Classification

IfcTypeObject and
IfcRelDefinesBy Type

Defect properties

IfcPropertySet and IfcProperty

Multiple photos, images, or
videos

See relationships for documents

Textures

IfclmageTexture and

Ifc TextureCoordinate

1D, 2D, and 3D defect

geometry

IfcProductDefinitionShape and
subclasses

Multiple geometries and

selection

IfcGeometricRepresentationContext

90

https://doi.ora/10.51202/6783186224040-62 - am 18.01.2026, 19:41:11,

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	4.1 Object-oriented Implementation of the DIM based on IFC
	4.1.1 IFCClassesforSemanticData
	4.1.2 IFC Classes for Geometry Data
	4.1.3 IFC Classes for Geometric-semantic Data

	4.2 IFCSoftwareVerificationandExtension
	4.2.1 Verification of Semantic Data
	4.2.2 Verification Texture Implementation
	4.2.3 Verification of Geometry Data
	4.2.4 ExtensionofxBIMXplorer
	4.2.5 Comparing Test Results to Requirements

