
4 Object-Oriented Implementation of

the DIM
1

After the definition of the information model, a proper implementation in form of a data

model has to be done. As BIM relies on IFC, the IFC standard is used as basis for the data

model. Furthermore, the data model shall be visualized by available IFC software. Hence,

testing and extending existing software is explained as well.

4.1 Object-oriented Implementation of the DIM based

on IFC

Based on the model given in Figure 3.16, an implementation shall be done using an estab-

lished AEC data model. As explained in Section 2.5, IFC has been chosen as a suitable

data format. IFC already contains numerous classes to model building elements, materials,

persons, processes, and more. Figure 4.1 shows an overview of the mappings between IFC

entities and the classes in the object-oriented model. In the middle are the classes from

the object-oriented model and on the outer left and right are the related IFC entities. The

defect annotation may be represented by four different IFC entities. A proxy element is

the most generic approach to represent a defect including a geometry independently from

the damage type. However, proxy geometries are treated like a geometries of building

1This chapter contains republished work of a retracted article from ASCE [135]. The article has been

retracted by the authors because of copy right issues [136]. All content, which was affected by the copy

right issues, has been replaced, i.e., IFC code snippets in Figures 4.2, 4.4 to 4.6 and 4.9 have been

revised, Figure 15 from the article has been replaced with Figure 4.10.

62

Black

78

78
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 7
8

Kombiniert_F51_TRZ.pdf · Seite 78

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

elements, i.e., they are visualized as spatial elements, which could be counter-intuitive in

case of cracks or spalling. Better would be that a crack or spalling is subtracted from the

geometry of the building element.

Annotations allow to add information to a building element. Despite of the traditional

thought of a defect is an annotation, this entity may be used in seldom cases only because

it is limited to 2D geometry as stated by the formal proposals of the IFC standard [13].

2D geometries are suitable for defects, like cracks, in the form of crack maps or abrasion

as marked area on a surface. Similarly, surface features may also represent defects that

mainly affect the surface of a component. However, to accommodate the BIM concept, it

should be omitted to use annotations for defects because according to the IFC standard,

’An annotation is a graphical representation [...] that adds a note or meaning to the objects

[...]’ [13].

In case of damage types that include geometry subtractions of the affected component, a

voiding feature is suited best because the dedicated relationship IfcRelVoidsElement implies

that the geometry of the voiding feature is subtracted from the related building element.

Some examples for these damage types are cracks, spalling, and voids. Summarizing,

depending on the damage type, there are four IFC entities that may be used for a single

defect and the best suitable has to be chosen. Nonetheless, none of these entities represent

a defect semantically correct, hence, a distinctive defect element should be included in the

IFC standard to properly include damage information. In contrast to the suggestion of

Tanaka, Nakajima, Egusa, et al. - adding three additional entities - it would be enough to

add a single entity to properly include defects [93].

4.1.1 IFC Classes for Semantic Data

Up to now, there are no specific defect entities implemented in the IFC. However, the IFC

offers several alternatives: IfcProxy, IfcAnnotation, IfcSurfaceFeature, and IfcVoidingFea-

ture. Table 4.1 presents a comparison of the advantages and disadvantages of these IFC

entities. IfcProxy is a generic entity, but the IFC 4 lists the proxy as deprecated and

recommend using IfcBuildingElementProxy instead. A look at newer versions of the IFC

reveals that the proxy is marked deprecated no longer. The DIM should be usable in future

63

Black

79

79
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 7
9

Kombiniert_F51_TRZ.pdf · Seite 79

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.1: Mapping of the IFC entities onto the classes of the object-oriented Model.

standards, and hence, the proxy is taken as an option instead of BuildingElementProxy. A

proxy is very flexible and thus suitable for every defect type. However, a proxy is treated

as an individual element or building element, which conflicts with the nature of a defect.

A defect cannot exist without the affected component. An IfcAnnotation may be used to

add further annotations to a component. However, IfcAnnotations are only meant to have

0D, 1D, or 2D geometries. This circumstance limits their applicability to damages without

or geometries or surface damages. IfcSurfaceFeatures and IfcVoidingFeatures are suitable

for specific defects. Surface features are suitable for modeling corrosion or other defects,

which only affect the surface of a component. Voiding features are suitable for defects like

cracks or spalling, which add a void to a component. However, they are not suitable for

modeling further damage types, e.g., material changes below the surface, divergences from

specifications, or wash-outs. On the whole, depending on the defect, a suitable IFC entity

has to be chosen. Corrosion or other surface changes claim for surface features. Cracks

and spalling are represented by voiding features at best. Other defects could use either

annotations or proxies.

In the next step, the analysis of suitable relationships from the IFC standard is presented.

IfcRel-Assigns “is a generalization of ’link’ relationships among instances of IfcObjects

and its various 1st level subtypes” [144]. A specific identification of the relationship is

64

Cyan Magenta Yellow Black

80

80
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
0

Kombiniert_F51_TRZ.pdf · Seite 80

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.1: Overview of the possible IFC entities with advantages and disadvantages

IfcProxy IfcAnnotation IfcSurfaceFeature IfcVoidingFeature

+ interpretable by

most applications

add (textual)

information

about defect to

component

suitable for

specific defects,

suitable for

specific defects,

geometry is not

visualized like

geometries of

components

geometry is not

visualized like

geometries of

components

- generic

container,

less supported by

applications,

only designed for

modifications at

surface,

only designed to

reduce volume of

element,

independent

object in

contrast to a

dependent defect

limited

representations,

less supported by

applications,

less supported by

applications,

modeling defects

as annotations

conflicts with the

original meaning

of annotations

modeling defects

as surface features

may conflict with

original meaning

of surface feature

modeling defects

as voiding features

may conflict with

original meaning

of voiding feature

65

Black

81

81
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
1

Kombiniert_F51_TRZ.pdf · Seite 81

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.2: Overview of the possible IFC entities with advantages and disadvantages

IfcRelAssignsToProduct IfcRelAggregates IfcRelVoidsElement

+ interpretable by most

applications

interpretable by most

applications

avoids additional data

for geometry

- not usable for defects,

which are part of a

component (cracks,

spalling ...),

some defects are not

part of a component

(e.g. vegetation) parts

designed for voids only

representation results

from geometry of sub

less supported by

applications

stored as the name of the relationship. In case of the DefectProductRelation, the name

of IfcRelAssignsToProdcut would be ”Defect product relation.” However, a defect is part

of a component and if the component is destroyed, the defect no longer exists. Hence,

a composition is more precise. Strict compositions are modeled with IfcRelAggregates.

Construction and design practice understands aggregations as a sum of different products.

This would imply that a defect is a product if an aggregation is used, which is questionable.

Altogether, aggregations seem to be the most precise relationship for physical defects.

Both relationships the aggregation and the assignment may be used for other defects.

In case of using IfcVoidingFeature to represent defects, the decomposition relationship

IfcRelVoidsElement is suitable. “IfcRelVoidsElement is an objectified relationship between

a building element and one opening element that creates a void in the element.” [144]. As

stated earlier, the voiding feature and the voids relationship are only applicable to cracks

or spalling and not in case of material changes or other damage types. An example is

depicted by Listing 4.2. IfcRelAssignsToProdcut may be used for effect-cause relations

with the name ”cause” or ”reason.” Additional information about the relation might be

given by the description of the relationship. Table 4.2 provides an overview of the existing

relationships and related advantages and disadvantages.

Figure 4.3 shows a schematic overview of one possible implementation of the DIM in IFC.

66

Black

82

82
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
2

Kombiniert_F51_TRZ.pdf · Seite 82

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Building element */

#244= IFCBEAM(’2tso43_ekkqjB6caA5ViEg ’ ,#42,

’Test Beam’, , ,#242 ,#233 , ,.BEAM .);

/* Defect Spalling */

#9002= IFCVOIDINGFEATURE(’0nlZskSHuEqdlb4p01O5hg ’,

#42,’Spalling ’,’Spalling at beam’,

’Defect - Spalling ’, #8556, , ,. CUTOUT .);

#9004= IFCRELVOIDSELEMENT(’2hSrdH4wY0ynUPTlSyLhxw ’,

#42, , ,#244 ,#9002);

Figure 4.2: Extract of an IFC file modeling a damaged beam (#244) as damaged building

element. The defect is represented by a voiding feature (#9002) and the voids

relationship (#9004) models the relationship to the beam.

The defect is implemented as voiding feature in the middle. Properties are used to include

measurements and other alpha-numeric data related to the defect. Type objects are utilized

to add classifications to defects, such as spalling or crack. Document associations are able

to relate external documents to the defect, for example, photos, reports, or testing results.

On top, the relationship IfcRelVoidsElement connects the defect to the affected bridge

element.

Figure 4.4 shows an excerpt to illustrate the incorporation of classification, measurements,

and external documents. Entity #9000 is once again the defect. This defect is classified

as spalling by the type object #9011. This classification may be hierarchical, for instance

a classification for defects and a sub-class for spalling. #9021 is a property set of mea-

surements for the spalling containing a diameter (#9022) and depth (#9023) with a unit

(#43). At the end of the excerpt, is a reference to an external report of an ultrasonic in-

vestigation (#9031). Such external documents could also be photos and included together

together with the IFC step file into an IFC-zip file.

67

Cyan Magenta Yellow Black

83

83
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
3

Kombiniert_F51_TRZ.pdf · Seite 83

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

IfcBuildingElement

IfcRelVoidsElement

IfcVoidingFeature

IfcPropertySet IfcTypeObject IfcDocumentReference

IfcRelAssociatesDocumentIfcRelDefinesByTypeIfcRelDefinesByProperties

RelatingBuildingElement

RelatedOpeningElement

RelatedObjects

Relating DocumentRelatingType

RelatedObjectsRelatedObjects

RelatingPropertyDefinition

Figure 4.3: Block diagram of the resulting IFC structure. Yellow elements are instances and

blue elements are relationships.

4.1.2 IFC Classes for Geometry Data

This subsection discusses the implementation of geometries of the DIM by using the IFC.

Besides modeling the geometry of the damaged component, the method of modeling a

defect geometry and the use of geometric representation contexts are illustrated.

Relationship-based geometry

This paragraph illustrates the implementation of the geometry model described in the

Relationship-Based Geometry section and is related to Figure 3.14. Listing 4.5 shows an

extract of an IFC file that contains an IfcVoidingFeature (#9002) as defect entity and a

related component (#244). The IfcRelVoidsElement (#9004) represents the relationship

between the defect and component and implies cutting the defect geometry out of the

component geometry.

68

Cyan Yellow Black

84

84
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
4

Kombiniert_F51_TRZ.pdf · Seite 84

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Defect Spalling */

#9000= IFCPROXY(’0igGRCoTwk6XcjC1hqayEA ’ ,#42,

’Spalling ’, ,’Defect ’ ,#242, ,. NOTDEFINED.,);

/* Damage type */

#9010= IFCRELDEFINESBYTYPE(’1bIoUtPdkkqxQGAgf -5vpA’,

#42,’Damage type’,’Typification of a defect ’ ,(#9000),

#9011);

#9011= IFCTYPEOBJECT(’10 gzfsrKgEihXsn84QV_hQ ’ ,#42,

’Damage type Spalling ’, ,’IfcProxy/Defect ’,);

/* Measurements */

#9020= IFCRELDEFINESBYPROPERTIES(’1S7kZBQd3USDFsV8uKQvDA ’ ,#42,

’Defect Measurements ’,’Diameter and depth of the

spalling ’ ,(#9000) ,#9021);

#9021= IFCPROPERTYSET(’0zky6s7LQ0CXauZHIiqYTA ’ ,#42,

’Diameter and Depth ’, ,(#9022 ,#9023));

#9022= IFCPROPERTYSINGLEVALUE(’Diameter ’, ,IFCREAL (151.0) ,#43);

#9023= IFCPROPERTYSINGLEVALUE(’depth’, ,IFCREAL (12.0) ,#43);

#43= IFCSIUNIT (*,. LENGTHUNIT .,.MILLI.,.METRE .);

/* Document */

#9030= IFCRELASSOCIATESDOCUMENT(’2Nv5qvEsoku -QzHBcSpXXA ’,

#42,’Report of ultra sonic survey ’, ,(#9000) ,#9031);

#9031= IFCDOCUMENTREFERENCE(’http :// standards.buildingsmart.org/

IFC/RELEASE/IFC4_1/FINAL/EXPRESS/IFC4x1.exp’,

’U_S_16092020 -42’,’Ultra Sonic report 16092020 -42 from

the 16th September 2020’,);

Figure 4.4: Part of an IFC file modeling a proxy for the defect (#9000) and a type object

(#9011) to define a damage type namely ’Damage type Spalling’. Additionally,

some measurements (#9021) and a reference to an external document (#9031)

are included.

69

Cyan Magenta Yellow Black

85

85
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
5

Kombiniert_F51_TRZ.pdf · Seite 85

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Building element */

#244= IFCBEAM(’2tso43_ekkqjB6caA5ViEg ’ ,#42,

’Test Beam’, , ,#242 ,#233 , ,.BEAM .);

#233= IFCPRODUCTDEFINITIONSHAPE(, ,(#227 ,#231));

#231= IFCSHAPEREPRESENTATION (#103 ,’Axis’,’MappedRepresentation ’,

(#229));

/* Defect Spalling */

#9002= IFCVOIDINGFEATURE(’3-7 hkhVEek218lI_ZN1Gzg ’ ,#42,

’Spalling ’,’Spalling at beam’,’Defect - Spalling ’,

#8556 , , ,. CUTOUT .);

#9004= IFCRELVOIDSELEMENT(’191 hmq9RzkaK7Q65Oo6tKw ’,

#42, , ,#244 ,#9002);

/* Defect Geometry */

#9003= IFCPRODUCTDEFINITIONSHAPE(, ,(#8548));

#8548= IFCSHAPEREPRESENTATION (#105,’Body’,

’MappedRepresentation ’ ,(#8546));

#8546= IFCMAPPEDITEM (#8542 ,#232);

#8542= IFCREPRESENTATIONMAP (#8541 ,#8539);

#8539= IFCSHAPEREPRESENTATION (#105,’Body’,’SweptSolid ’ ,(#8538));

#8538= IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20 ,250.);

#8526= IFCCARTESIANPOINTLIST2D (((-125. , -30.) ,(125. , -30.) ,

(125. ,30.) ,(-125. ,30.) ,(-125. , -30.)));

#8533= IFCINDEXEDPOLYCURVE (#8526 , ,.F.);

#8534= IFCARBITRARYCLOSEDPROFILEDEF (.AREA.,’Box’ ,#8533);

Figure 4.5: Extract of an IFC file modeling a beam (#244) as damaged building element.

The defect is represented by a voiding feature (#9002) and the voids relationship

(#9004) represents the relationship between the beam and the defect.

70

Cyan Magenta Yellow Black

86

86
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
6

Kombiniert_F51_TRZ.pdf · Seite 86

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Independent relationship and geometry

This section illustrates the implementation of the geometry model described in the Inde-

pendent Relationship and Geometry section and is related to Figure 3.15. In case of storing

the geometry of the damaged component in the IFC, representation contexts are chosen

to distinguish the geometries of intact and damaged components. A product might have

multiple representations and every representation has a different representation context.

Listing 4.6 illustrates the use of multiple geometries and representation contexts. The de-

fect and the beam have their own geometries as shown by entities #9003 and #233. In

this context, the damaged geometry of the beam, entity #9100, is a CSG geometry with

a subtraction of the undamaged beam and the defect geometry. An example is depicted

in Figure 4.7. The beam without any defects is shown on the left. In the middle is an

exemplary cuboid defect and on the right is the beam with the cuboid damage geometry

as cutout.

4.1.3 IFC Classes for Geometric-semantic Data

Geometric-semantic data may be stored as document references or as textures, which are

depicted on a 3D surface. Document references have been discussed in the FC Classes for

Semantic Data section. Coming to the implementation of textures, Figure 4.8 illustrates

how to include a texture in an IFC file. To position an image, for example, a PNG-

file, within the 3D model, a geometry is necessary. This geometry is represented by the

IfcRepresentationItem. Such a geometry could be a plane, which carries the texture slightly

above the related position of the affected component. A listing example can be found in

the study by [89]. In addition to the texture itself, the mapping is necessary. The IFC

offers the class IfcTextureCoordinate to add texture-mapping information and subclasses,

such as IfcTextureCoordinateGenerator and IfcIndexedTriangleTextureMap to either define

an algorithmic or point based texture mapping.

Texturing is a special method to include geometric-semantic data and needs a mapping

algorithm to correctly depict the texture on the geometry. Figure 4.9 shows how to achieve

that using IFC. Again, the defect is defined as proxy (#9000) with a simple cuboid geometry

71

Black

87

87
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
7

Kombiniert_F51_TRZ.pdf · Seite 87

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Building Element */

#244= IFCBEAM(’2tso43_ekkqjB6caA5ViEg ’ ,#42,

’Test Beam’, , ,#242 ,#233 , ,.BEAM .);

/* Undamaged Geometry */

#105= IFCGEOMETRICREPRESENTATIONSUBCONTEXT(’Body’,’Model ’,*,*,

,,#99, ,. MODEL_VIEW.,);

#155= IFCEXTRUDEDAREASOLID (#149 ,#154 ,#20 ,12125.4);

#187= IFCREPRESENTATIONMAP (#186 ,#165);

#225= IFCMAPPEDITEM (#187 ,#224);

#227= IFCSHAPEREPRESENTATION (#105 ,’Body’,’MappedRepresentation ’,

(#225));

#233= IFCPRODUCTDEFINITIONSHAPE(, ,(#227 ,#231 ,#9100));

/* Defect Spalling */

#9000= IFCPROXY(’0igGRCoTwk6XcjC1hqayEA ’ ,#42,

’Spalling ’, ,’Defect ’ ,#242 ,#9003 ,. NOTDEFINED.,);

/* Defect Geometry */

#8526= IFCCARTESIANPOINTLIST2D (((-125. , -30.) ,(125. , -30.) ,

(125. ,30.) ,(-125. ,30.) ,(-125. , -30.)));

#8533= IFCINDEXEDPOLYCURVE (#8526 , ,.F.);

#8534= IFCARBITRARYCLOSEDPROFILEDEF (.AREA.,’Box’ ,#8533);

#8538= IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20 ,250.);

#8539= IFCSHAPEREPRESENTATION (#9050 ,’Body’,’SweptSolid ’ ,(#8538));

#9003= IFCPRODUCTDEFINITIONSHAPE(, ,(#8539));

#9050= IFCGEOMETRICREPRESENTATIONSUBCONTEXT(’Defect Geometry ’,

’Defect Geometry ’ ,*,*,*,*,#9051, ,. MODEL_VIEW.,);

#9051= IFCGEOMETRICREPRESENTATIONCONTEXT(’Defect ’,

’Model’ ,3 ,0.01 ,#96 ,#97);

/* Damaged Component Geometry */

#9100= IFCSHAPEREPRESENTATION (#9150 ,’Body’,’CSG’ ,(#9101));

#9101= IFCCSGSOLID (#9102);

#9102= IFCBOOLEANRESULT (. DIFFERENCE . ,#155 ,#8538);

#9150= IFCGEOMETRICREPRESENTATIONSUBCONTEXT(’Damaged Components ’,

’Damage Model’ ,*,*,*,*,#9151, ,. MODEL_VIEW.,);

#9151= IFCGEOMETRICREPRESENTATIONCONTEXT(’Damaged -geometry ’,

’Model’ ,3 ,0.01 ,#96 ,#97);

Figure 4.6: Excerpt of an IFC file modeling a distinct geometry and relationship. An assign-
ment (#9001) represents the relationship between the beam (#244) and the
defect (#9000). The beam has two geometries: a damaged geometry (#9100)
and an undamaged geometry (#227).

72

Cyan Magenta Yellow Black

88

88
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
8

Kombiniert_F51_TRZ.pdf · Seite 88

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

a)
b)

c)

F
ig
ur
e
4.
7:

A
ge
om

et
ri
c
da
m
ag
e
re
pr
es
en
ta
ti
on

by
us
in
g
C
S
G

in
th
e
3D

vi
ew

.
a)

sh
ow

s
th
e
un

da
m
ag
ed

b
ea
m
,
b)

th
e

de
fe
ct

ge
om

et
ry
,
an
d
c)

th
e
da
m
ag
ed

b
ea
m
.

73

Cyan Magenta Yellow Black

89

89
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 8
9

Kombiniert_F51_TRZ.pdf · Seite 89

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.8: Damage model with texture using IfcSurfaceFeature and related elements. The

defect is shown in orange. Multiple superclasses, subclasses and selects are

omitted for simplicity. [89]

74

Cyan Magenta Yellow Black

90

90
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
0

Kombiniert_F51_TRZ.pdf · Seite 90

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.3: Overview of tested BIM authoring software and IFC viewers

Authoring software IFC viewers

Autodesk Revit 2019 [17] apstex IFC viewer [23]

BIM Vision [22]

Desite BIM [19]

Solibri Model Viewer [24]

usBIM [20]

xBIM Xplorer [21]

(#8538). In addition to that, a texture in form of a JPG-file shall be depicted on the

geometry (#10000). To create a correct visualization, the spherical mapping algorithm

shall be used for this texture (#10061). Further details about the modeling may be found

in Chapter 3.

4.2 IFC Software Verification and Extension

As explained in Section 3.3 and Figure 3.10, a verification or testing of the model has to be

done to eventually adopt the model and/or existing software. This has been done by using

a broad variety of existing software. Table 4.3 gives an overview of all examined software

applications. This study focused on modeling data and not on the usability of authoring

software. Hence, only Revit was tested as representative of authoring tools. Future research

should investigate editing possibilities as well.

4.2.1 Verification of Semantic Data

In the first step, the functionality of visualizing semantic data has been tested. All four IFC

entities, i.e., IfcAnnotation, IfcProxy, IfSurfaceFeature, and IfcVoidingFeature were tested.

The expectation is that the software provides a geometric view, a hierarchical tree view, and

a view for the properties. Table 4.4 presents an overview of the test results. Revit, Desite

BIM, and Solibri Model Viewer lack the hierarchical view of the model, and hence, the

75

Black

91

91
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
1

Kombiniert_F51_TRZ.pdf · Seite 91

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

/* Defect Spalling */

#9000= IFCPROXY(’0igGRCoTwk6XcjC1hqayEA ’ ,#42,’Spalling ’,

’Spalling at beam’,’Defect -Spalling ’ ,#242,#9003,

.NOTDEFINED.,);

#9001= IFCRELAGGREGATES(’3--Gt7_4p0qqpOGbNAh_sw ’ ,#42,

’Damage to product ’,’The related product is damaged ’,

#244 ,(#9000));

/* Defect Geometry */

#9003= IFCPRODUCTDEFINITIONSHAPE(, ,(#8539));

#8539= IFCSHAPEREPRESENTATION (#105,’Body’,’SweptSolid ’ ,(#8538));

#8538= IFCEXTRUDEDAREASOLID (#8534 ,#8537 ,#20 ,250.);

#8526= IFCCARTESIANPOINTLIST2D (((-125. , -30.) ,(125. , -30.) ,(125. ,30.) ,

(-125. ,30.) ,(-125. , -30.)));

#8533= IFCINDEXEDPOLYCURVE (#8526 , ,.F.);

#8534= IFCARBITRARYCLOSEDPROFILEDEF (.AREA.,’Box’ ,#8533);

/* Texture */

#10000= IFCSTYLEDITEM (#8538 ,(#10010) ,);

#10010= IFCSURFACESTYLE(’Damage Texture ’,.BOTH . ,(#10020));

#10020= IFCSURFACESTYLEWITHTEXTURES ((#10030));

#10030= IFCIMAGETEXTURE (.T.,.T.,’TEXTURE ’ ,#10040, ,’./ Texture.JPG’);

#10040= IFCCARTESIANTRANSFORMATIONOPERATOR2D (#10050 , ,#10060 ,1.0);

#10050= IFCDIRECTION ((1. ,0.));

#10060= IFCCARTESIANPOINT ((0.0 ,0.0));

#10061= IFCTEXTURECOORDINATEGENERATOR ((#10030) ,’SPHERE ’,);

Figure 4.9: Part of an IFC file modeling a proxy for the defect (#9000) and add an image

as texture (#10030) to the entire defect geometry (#10000). The texture

mapping is defined as spherical mapping (#10061).

76

Cyan Magenta Yellow Black

92

92
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
2

Kombiniert_F51_TRZ.pdf · Seite 92

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.4: Shows which software has visualized the defect information in a hierarchical or

properties view.

Defect

types

Autodesk

Revit

Apstex

IFC

Viewer

BIM

Vision

Desite

BIM

Solibri

Model

Viewer

usBIM xBIM

Xplorer

Annotation x (x) x x

Proxy x x x x

Surface

Feature

x x x x

Voiding

Feature

x x x x

defects without geometries could not be selected. Furthermore, none of the three includes

a hierarchical view of the model. All other software visualizes the test files properly.

Next, the visualization of the relationships was tested. For this purpose, typification, exter-

nal references, and defect relationships were added. Classification could be visualized via a

property view or by using the correct product type. Table 4.5 summarizes the test results.

IFC viewers do not access product catalogs, and hence, the type is shown as property in

the view. Revit uses its internal type catalog to select the corresponding type of an entity.

However, this is only possible if the typification is stored with correct Revit family names.

The same problem arises with measurements or properties in Revit. External references

should be shown at least in the property view with their URI. The Apstex IFC viewer and

xBIM show external references in such a way. None of the other software tools showed the

external document references. Last, defect relationships, i.e., aggregation, association or

voids element, should be shown in the hierarchical view or as properties. xBIM and Apstex

show aggregations in the hierarchical view and associations as properties. BIM Vision was

able to show aggregations but not the associations.

77

Black

93

93
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
3

Kombiniert_F51_TRZ.pdf · Seite 93

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.5: Performance of the software regarding relationships.

Defect In-

formation

Autodesk

Revit

Apstex

IFC

Viewer

BIM

Vision

Desite

MD

Solibri

Model

Viewer

usBIM xBIM

Xplorer

Classification (x) x x x

External

References

x x

Measurements (x) x x

Defect Re-

lationship

x (x) x

4.2.2 Verification Texture Implementation

Textures are the second requirement in the data model. To test texturing, an image has

been attached to an additional plane, which is at the defect position. Other geometries

may be used instead of a plane. As depicted by the last row in Table 4.6, none of the

available software was able to properly visualize the texture. Most of them ignored the

texture parameter. usBIM only shows the plane where the texture should be depicted.

4.2.3 Verification of Geometry Data

Geometric representations are very common in the AEC sector. However, the software

programs support the geometric representations in different quality, which is evidenced

in Table 4.6. The visualization of CSG geometries was done properly by all IFC viewers

except Desite BIM and the Solibri Model Viewer. None of the viewers that are available

by the software vendors offers a selection of representation context. This requirement was

78

Black

94

94
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
4

Kombiniert_F51_TRZ.pdf · Seite 94

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

achieved only by Revit. Revit includes 2D plans and 3D views for its building models;

however, multiple 3D geometries are not possible in Revit.

The next step tested the visualization of an IfcVoidingFeature with an IfcRelVoidsElement

relationship in accordance with the relationship-based cut-out. The voiding feature is cor-

rectly supported by apstex’s IFC Viewer and xBIM Xplorer. Other programs do not respect

an IfcVoidingFeature with an IfcRelVoidsElement relationship. Many viewers are able to

handle an opening in conjunction with an IfcRelVoidsElement. However, defining a defect

as an opening is semantically wrong. Figure 4.10 shows the visualization of an IfcVoid-

ingFeature with an IfcRelVoidsElement relationship in the original xBIM Xplorer. 4.10 a)

shows a beam with typical spalling. Figure 4.10 b) depicts a close-up screenshot of the

cut-out of the defect in the beam. Lastly, in Figure 4.10 c) one can see the blue highlighted

defect geometry of the spalling. A similar result is achieved with the Apstex IFC Viewer.

4.2.4 Extension of xBIM Xplorer

Although, IFC is an established standard and implemented in many software applications,

several of them show limitations regarding geometry and texture visualization. Furthermore,

only Revit supports different views. Hence, manual extensions have to be made to an

existing application. Three possibilities exist to extend existing software: (1) developing

a plugin or extension, (2) using an Application Programming Interface (API) to add code

within the software, or (3) the software itself is open source. In the given software pool,

only Revit provides an API. However, Revit shows errors already on the IFC import. Hence,

a completely new importer would be necessary that would mean a huge effort. None of

the software has a fully developed plugin system. xBIM has a plugin system, however,

it is under development. Two of the viewers are (partly) open source: xBIM and apstex.

apstex offer only their core IFC parser and model as open source. xBIM offer their complete

software including the viewer as open source. So, xBIM was chosen for further extensions.

During the development, xBIM has been extended with

1. making links to external references clickable

2. saving and restoring camera positions

79

Black

95

95
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
5

Kombiniert_F51_TRZ.pdf · Seite 95

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.6: Performance of the software regarding different geometric representations and

texture.

Geometry data A
u
to
d
es
k
R
ev

it

A
p
st
ex

IF
C

V
ie
w
er

B
IM

V
is
io
n

D
es
it
e
B
IM

S
o
lib

ri
M
o
d
el

V
ie
w
er

u
sB

IM

xB
IM

X
p
lo
re
r
[o
ri
g
in
a
l]

xB
IM

X
p
lo
re
r
[e
xt
en

d
ed

]

C
S
G
+

co
nt
ex
ts Context selectable x x

Show different

representations

x

Show defect geometry x x x x x

V
oi
di
ng

fe
at
ur
e

Subtract geometry x x x x x

Show defect geometry x x x x x

Texture

Visualize Texture x

80

Black

96

96
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
6

Kombiniert_F51_TRZ.pdf · Seite 96

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

a)
b)

c)

F
ig
ur
e
4.
10
:
T
he

vi
su
al
iz
at
io
n
in

xB
IM

X
pl
or
er

of
a
b
ea
m

w
it
h
sp
al
lin
g
m
o
de
le
d
by

us
in
g
a
vo
id
in
g
fe
at
ur
e
a)

an
d
a
cl
os
e

vi
ew

at
th
e
sp
al
lin
g
at

th
e
b
ea
m

b)
.
c)

sh
ow

s
th
e
ty
pi
ca
l
sp
al
lin
g
ge
om

et
ry
.
T
he

tr
an
sp
ar
en
cy

ha
s
b
ee
n
ri
se
n

to
im

pr
ov
e
th
e
vi
si
bi
lit
y
of

th
e
cu
to
ut
.

81

Cyan Magenta Yellow Black

97

97
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
7

Kombiniert_F51_TRZ.pdf · Seite 97

Preflight Lx3 am Oktober 7, 2024 | 11:08:14 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

3. export selected elements to wavefront obj files

4. select a visualization context

5. manual triangular texture mapping

6. and spherical texture mapping

Point 1 was done to getting in touch with the software structure of xBIM and try a first

implementation. External references including a path may be included in a document

reference. At that time, the path was shown as a normal string. With some minor changes

in the IfcMetaDataControl, a clickable link was created that automatically opens the given

file in the default application, e.g., the browser.

Writing articles, conference papers and documentation required several screenshots of mod-

els, defects, and components. However, if the same view shall be used for different models

or a another screenshot has to be taken after some model changes, it comes in handy to

save and restore camera positions. This leads to the implementation of an export and

import of camera view parameters. This function can be found in the top menu under

camera/camera position. After saving the properties via save as, a text file is generated

as shown in Figure 4.11. Three 3D vectors define the view: the camera position, look and

upwards direction. The x, y, and z components of these parameters each are stored in one

line. Hence, the first three lines define the x, y, and z component of the position. Followed

by the look and upwards direction in the same way.

37.7465246782768

-2.11495031082126

2.48377096998818

-2.15067950496985

3.96105889744229

-1.33312049451982

-0.0374374448485882

0.068951195969613

0.996917333733132

Figure 4.11: Exemplary camera position file containing three lines each for position, look

and upwards direction.

82

Black

98

98
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
8

Kombiniert_F51_TRZ.pdf · Seite 98

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Subsequent processes, for instance structural analyses with Ansys, required the geometry

only. However, Ansys does not have a built in IFC import that meant another format was

necessary. Wavefront files with the ending .obj come in handy in this case. IfcConvert is

a usable tool for such tasks because it enables the transformation of IFC files into many

other file types [25]. To enable also the selection of a specific representation context, the

code has changed in that way that a representation context may be selected via its name

[145]. So, the geometries of the selected context(s) are transformed only.

Unfortunately, IfcOpenShell is a command line tool and, hence, a bit cumbersome. After

using IfcConvert several times, a graphical user interface found be much more practical.

Therefore, the xBIM Xplorer has been extended with a small export function that allows to

export selected geometries as wavefront files. Together with the selection of the represen-

tation context (4), any geometry may be exported in a more intuitive way.

Figure 4.12 shows the selection of different visualization contexts based on a model with

undamaged (a) and damaged component geometries (c) as well as the damage geometry

itself (b) in the extended xBIM Xplorer. The top line shows the selected representation

context, the line below presents an overview of the model and the bottom line depicts

a close-up view of the damaged section. If the defect geometry and the geometry of the

damaged component are activated simultaneously, the used defect element, which is a proxy

in this case, is shown as filling in the damaged beam. This is disadvantageous because

the defect geometry should not be a filling. If the relationship-based cut out is used,

i.e., IfcVoidingFeature with IfcRelVoidsElement, only the damaged component geometry

is visible, but not the damage geometry solely. This is comprehensible because openings

or voids are normally only visible as subtraction in another element and not as individual

element.

Texture related information is represented by green boxes in the diagram. Besides the

information, which image shall be used as texture, a texture area and texture mapping

is required. Texture maps describe mathematically how to map photos as textures onto

a given geometry. Such a texture map may be defined implicitly or explicitly. Multiple

texture mapping algorithms exist. Two methods are implemented in the xBIM Xplorer to

demonstrate the use of textures for DIM. First, a manual and a spherical texture mapping.

Within the IFC file manual texture maps may be provided via the IfcIndexedTriangleTex-

83

Black

99

99
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 9
9

Kombiniert_F51_TRZ.pdf · Seite 99

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

a)
b)

c)

F
igure

4.12:
M
o
del

of
a
defect

by
using

C
S
G
and

diff
erent

visualization
contexts

in
the

3D
view

.
a)

show
s
the

undam
aged

b
eam

,
b)

the
defect

geom
etry,

and
c)

the
dam

aged
b
eam

.

84

Cyan Magenta Yellow Black

100

100
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 1
00

Kombiniert_F51_TRZ.pdf · Seite 100

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

tureMap. It contains a mapping between triangles of the shape and related coordinates in

the texture, i.e., a vertex has one or more related u-v-coordinates [13]. So, the creator of

the IFC file has the full control about the mapping.

Second, in case of a texture on a sphere, spherical texture mapping may be used. This maps

the spherical coordinates of the mesh vertices onto the u-v coordinates of the texture. By

identifying the midpoint v0 of the volume, vectors between the midpoint and all vertices vn

of the 3D model are calculated. Subsequently, the spherical coordinates of these vectors,

consisting of r, ϕ, and θ, are calculated. Figure 4.13 shows a sketch of the polar coordinates

with ϕ. Analog to ϕ, θ is calculated using the z and y axes. Last, the spherical angles θ

and ϕ as radians between 0 and 2π are mapped onto the two texture coordinates u and v

between 0 and 1 with

u =
θ

2π

v =
ϕ

2π

Figure 4.14 shows the Nassi-Shneiderman of the resulting algorithm for spherical mapping.

midPoint is calculated based on the min and max values of the vertices shown in Figure

4.15. midPoint is equally to v0. Based on that midpoint a vector direction as well as the

related angles ϕ and θ are calculated. As aforementioned, the algorithms are implemented

in C# within xBIM Xplorer. C# allows to parallelize operations by using the Parallel class

within the System.Threading.Tasks namespace as depicted in Figure 4.16 [146].

In order to provide an extensible object-oriented implementation, a interface based structure

has been used for the implementation depicted in Figure 4.17. Generally spoken, each

texture mapping algorithm aims to provide a texture map based on the vertices, normals, and

triangles. Hence, this can be abstracted into an interface, which is called ITextureMapping.

Besides the texture map itself, this interface also forces the implementations to provide

an information about their algorithm as an enumeration TextureMapGenerationMethod via

the GetTexturingMethod Possible states are defined in the IfcTextureCoordinateGenerator

of the IFC 4 standard [13].

The described interface is implemented by two classes: ManualTriangularTextureMapping

and SphericalTextureMap. To create the correct instance, the static class TextureMap-

pingFactory takes an IfcTextureCoordinate object as argument and returns the related

85

Black

101

10
1

K
om

b
in

ie
rt

_F
51

_T
R

Z
.p

d
f ·

 S
ei

te
 1

01

Kombiniert_F51_TRZ.pdf · Seite 101

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.13: Exemplary sketch for calculation of φ for spherical mapping.

Figure 4.14: Nassi-Shneiderman diagram of the algorithm to create a spherical texture map.

86

Cyan Magenta Yellow Black

102

102
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 1
02

Kombiniert_F51_TRZ.pdf · Seite 102

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.15: Nassi-Shneiderman diagram for the calculation of the midpoint.

implementation of ITextureMapping. Hence, if the provided texture coordinate generator

has the mode sphere, a SphericalTextureMap is returned.

4.2.5 Comparing Test Results to Requirements

Altogether, with the use of IFC and an extension of the xBIM Xplorer, it was possible

to address all requirements stated in the Requirement Analysis section. Table 4.7 shows

an overview of the requirements and finally used entities of the standardized IFC 4. All

implementations could be verified by using an extended version of the xBIM Xplorer.

87

Cyan Magenta Yellow Black

103

10
3

K
om

b
in

ie
rt

_F
51

_T
R

Z
.p

d
f ·

 S
ei

te
 1

03

Kombiniert_F51_TRZ.pdf · Seite 103

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

public IEnumerable <Point > GetTextureMap(

IEnumerable <Point3D > vertices ,

IEnumerable <Vector3D > normals , IEnumerable <int > triangles)

{

Point [] textureCoordinates = new Point[vertices.Count ()];

Vector3D midPoint = this.GetMidPoint(vertices);

Parallel.For(0, textureCoordinates.Length , (verticeIndex) =>

{

Point3D meshPoint = vertices.ElementAt(verticeIndex);

Vector3D direction =

(Vector3D)(meshPoint - midPoint);

double theta = Math.Acos(direction.Z

/ direction.Length);

if (direction.Z < 0)

{

theta *= -1;

}

double phi;

if (direction.X > 0)

{

phi = Math.Atan(direction.Y / direction.X);

}

else if (direction.X == 0)

{

phi = Math.Sign(direction.Y)

* Math.PI / 2.0;

}

else if (direction.X < 0 && direction.Y >= 0)

{

phi = Math.Atan(direction.Y / direction.X)

+ Math.PI;

}

else

{

phi = Math.Atan(direction.Y / direction.X)

- Math.PI;

}

double u = phi;

double v = theta;

textureCoordinates[verticeIndex] = new Point(u, v);

});

return textureCoordinates;

}

Figure 4.16: Calculation of the spherical texture map in C# using the Parallel library to
provide a faster computation.

88

Cyan Magenta Yellow Black

104

104
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 1
04

Kombiniert_F51_TRZ.pdf · Seite 104

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Figure 4.17: UML diagram of the structure for texture maps.

89

Cyan Magenta Yellow Black

105

10
5

K
om

b
in

ie
rt

_F
51

_T
R

Z
.p

d
f ·

 S
ei

te
 1

05

Kombiniert_F51_TRZ.pdf · Seite 105

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Table 4.7: Summary of test requirements and test results.

Requirement Successfully tested solutions

Defect entity IfcAnnotation, IfcProxy,

IfcVoidingFeature, IfcSurfaceFeature

Relationship for damaged

components

IfcRelAssociatesProduct,

IfcRelAggregates, IfcRelVoidsElement

Relationship for defect

groups

IfcRelAggregates

Relationship for cause and

effect

IfcRelAssociates

Relationship for related

documents

IfcRelAssociatesDocument

Classification IfcTypeObject and

IfcRelDefinesByType

Defect properties IfcPropertySet and IfcProperty

Multiple photos, images, or

videos

See relationships for documents

Textures IfcImageTexture and

IfcTextureCoordinate

1D, 2D, and 3D defect

geometry

IfcProductDefinitionShape and

subclasses

Multiple geometries and

selection

IfcGeometricRepresentationContext

90

Black

106

106
K

om
b

in
ie

rt
_F

51
_T

R
Z

.p
d

f ·
 S

ei
te

 1
06

Kombiniert_F51_TRZ.pdf · Seite 106

Preflight Lx3 am Oktober 7, 2024 | 11:08:15 | 148 mm x 210 mm

Breite 148 mm x Höhe 210 mm

https://doi.org/10.51202/9783186224040-62 - am 18.01.2026, 19:41:11. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.51202/9783186224040-62
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	4.1 Object-oriented Implementation of the DIM based on IFC
	4.1.1 IFCClassesforSemanticData
	4.1.2 IFC Classes for Geometry Data
	4.1.3 IFC Classes for Geometric-semantic Data

	4.2 IFCSoftwareVerificationandExtension
	4.2.1 Verification of Semantic Data
	4.2.2 Verification Texture Implementation
	4.2.3 Verification of Geometry Data
	4.2.4 ExtensionofxBIMXplorer
	4.2.5 Comparing Test Results to Requirements

