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1.3 Ziele, Beiträge und Aufbau der Arbeit . . . . . . . . . . . . . . . . . 8

2 Filterbänke mit geringer Latenz 10
2.1 Filterbänke in der Audiocodierung . . . . . . . . . . . . . . . . . . . 10
2.2 M -Kanal Filterbankentwurfsverfahren . . . . . . . . . . . . . . . . . . 13
2.3 Vergleich verschiedener Filterbankentwürfe . . . . . . . . . . . . . . . 21
2.4 Globale Optimierung von Entwurfsparametern . . . . . . . . . . . . . 26

3 Fehlerrobuste ADPCM-Codierung der Subband-Signale 30
3.1 Grundlagen zur ADPCM . . . . . . . . . . . . . . . . . . . . . . . . . 30
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GS,min. Minimale Sperrdämpfung der Synthesefilter einer Filterbank
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p(n) Prädiktionssignal

P a(z) Polyphasen-Matrix der Analysefilterbank beim Entwurfsverfahren
nach Schuller

p∆n(n) Zeitlich verschobene Impulsantwort des Prototypfilters beim Ent-
wurfsverfahren nach Keiler/Nguyen

pl(n) Impulsantwort des linearphasigen Prototypfilters beim Entwurfsver-
fahren nach Keiler/Nguyen

popt.(n) Numerisch optimierte Impulsantwort des Prototypfilters beim Ent-
wurfsverfahren nach Keiler/Nguyen

P s(z) Polyphasen-Matrix der Synthesefilterbank beim Entwurfsverfahren
nach Schuller

φ Parameter der Pegelreduktion in der dynamischen Bit-Allokation

p Ordnung des Lattice- oder Direktstruktur-Filters

Q(·) Operator zum Durchführen der skalaren Quantisierung

VIII

https://doi.org/10.51202/9783186854100-I - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:52:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186854100-I


q̂(n) Quantisierungsindex

q̂i(m) Subband-Quantisierungsindex des i-ten Bandes

Q−1(·) Operator zum Abbilden des Quantisierungsindexes auf den Reprä-
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εpb Fehler der Übertragungsfunktion eines Subband-Filters im Durch-
lassbereich

εr Rekonstruktionsfehler der Filterbank
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Gk Grenzfrequenz des k-ten Prototypfilters

gk(n) Verstärkungsfaktor des k-ten Filters der Vorfilterkaskade

g−1
k (n) Verstärkungsfaktor des k-ten Filters der Nachfilterkaskade

H̆bpk(z) Übertragungsfunktion des k-ten Bandpasses zur Leistungsschätzung

H̆k(z) Übertragungsfunktion des k-ten Bandes der Vorfilterkaskade

H̆k,prot.(z) Übertragungsfunktion des k-ten Prototypfilters

H̆pre(z) Resultierende Übertragungsfunktion der Vorfilterkaskade

K Anzahl der Subbänder der Vor- und Nachfilterkaskade
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λp Glättungsparameter des rekursiven Filters zur Leistungsschätzung

ν Parameter zum Abbilden auf den Verstärkungsfaktor

ωc,k Mittenfrequenz des k-ten Bandes

ωl,k Untere Grenzfrequenz des k-ten Bandes

ωu,k Obere Grenzfrequenz des k-ten Bandes

ωw,k Breite des k-ten Bandes

p(n) Mittelwert der geschätzten Leistungen

pmin Minimalwert für die geschätzte Leistung

pk(n) Geschätzte Leistung des k-ten Bandes

x̃j,bpk(n) Rekonstruiertes überabgetastetes bandpassgefiltertes Subband-
Signal

y(n) Eingangssignal der Vorfilterkaskade

ỹ(n) Ausgangssignal der Nachfilterkaskade

Formelzeichen der Sphärisch Logarithmischen Quantisierung

D Zahl der verwendeten Dimensionen

∆ Kantenlänge der Quantisierungszellen

eADPCM(n) Fehlersignal der ADPCM-Codierung

η Zahl der Durchläufe bei der Radiusschätzung

Nϕ Winkelindex

Nr Radiusindex

NSLQ SLQ-Index

R Resultierende Anzahl an Bits/Sample

r Radius des Vektors

r̂ Quantisierter Radius

r̃ Geschätzter Radius

x̂ Vektor mit quantisierten Signalwerten
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Kurzfassung

Fehlerrobuste Audiocodierung mit geringer Latenz hat eine Vielzahl von Anwen-
dungsfeldern. So kann diese durch Einsatz in drahtlosen Mikrofon- und Kopfhörer-
systemen, Audiostreaming-Applikationen und modernen Hörhilfen für effizientere
Übertragungsstrecken, erweiterte Funktionsumfänge und kostengünstigere Produk-
te sorgen. Allerdings eignen sich bestehende standardisierte, quelloffene oder in der
Literatur zu findende Verfahren aufgrund zu hoher Latenzen, zu geringer Audioqua-
lität oder nicht vorliegender Fehlerrobustheit nur eingeschränkt für die Verwendung
in solchen Systemen. Aus diesem Grund wird bei vielen praktischen Anwendungen
auf proprietäre Lösungen zurückgegriffen.

In der vorliegenden Arbeit wird daher das Ziel der Entwicklung eines Verfahrens
zur fehlerrobusten Audiocodierung mit geringer Latenz verfolgt, das diese Nachtei-
le überwindet. Hierzu wird der erfolgversprechende Ansatz einer Subband-ADPCM
um Maßnahmen zum Erreichen einer algorithmischen Fehlerrobustheit ergänzt, die
Codierstrukturen hinsichtlich einer Anpassung an wechselnde Signaleigenschaften
erweitert und diese bezüglich ihrer Parameter global optimiert. Die Ermittlung der
Leistungsfähigkeit des entwickelten Codierverfahrens und der Vergleich mit dem
Stand der Technik erfolgt auf Basis des PEAQ-Algorithmus. Die Ergebnisse wer-
den zusätzlich durch einen Hörversuch mit im kritischen Hören geübten Probanden
validiert.

Gemäß der in dieser Arbeit erfolgten Untersuchungen ist es mit dem entwickel-
ten Audiocodec möglich, bei moderaten Bitraten von bis zu 200 kbit/s und einer
algorithmischen Latenz von nur 0,5 ms eine Audioqualität zu erreichen, die selbst
erhöhten Ansprüchen gerecht wird, was durch die Ergebnisse des Hörversuches Be-
stätigung fand. Hierbei wird aufgrund der globalen Parameteroptimierung für das
SQAM-Testset eine PEAQ-Bewertung ohne signifikante Ausreißer erreicht. Die Co-
decrobustheit bei auftretenden Kanalübertragungsfehlern ist dabei algorithmisch si-
chergestellt, wobei für geringe Fehlerraten eine Abschätzung der Audioqualität zu
Ergebnissen führt, die mit denen von aktuellen fehlerrobusten Verfahren aus der
Literatur vergleichbar sind.

Stichworte: Audiocodierung mit geringer Latenz, fehlerrobuste Subband-ADPCM,
Filterbankdesign, dynamische Bit-Allokation, Audiocodec Optimierung.
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Abstract

Error robust low delay audio coding has numerous applications. When utilized in
technologies like wireless microphones and headsets, audiostreaming solutions or mo-
dern hearing aids it can lead to a more efficient transmission, enhanced functionalities
and inexpensive products. Unfortunately most of the well known standardized, open
source and published approaches are of limited usability in such scenarios because of
too high delays, a not sufficiently high audio quality or a missing robustness against
transmission errors. Thus for practical solutions in many cases proprietary codecs
are used.

This thesis therefore targets at developing an audio coding scheme which can over-
come the drawbacks of existing methods. For this, the promising approach of a
subband-ADPCM is extended by methods for achieving a robustness against trans-
mission errors and the codec structures are enhanced by an adaption to changing
signal characteristics as well as globally optimized regarding their parameters. The
evaluation of the codec performance and comparison to the state of the art is done
by means of the PEAQ-algorithm. The tendencies of this evaluation are verified by
a listening test with subjects that are trained in critical listening.

According to the results obtained with the research conducted in this work, the de-
veloped audio codec, with its algorithmic delay of only 0,5 ms, provides an audio
quality that even meets higher demands at a bitrate of up to 200 kbit/s which was
confirmed by the results of the listening test. Due to the applied global parameter
optimization, a PEAQ-evaluation of the codec leads to results without significant
outliers. The robustness against channel transmission errors is algorithmically ensu-
red and for low error rates an audio quality is achieved that is comparable to the
results of error robust state of the art approaches.

Keywords: Low delay audio coding, error robust subband-ADPCM, filter bank
design, dynamic bit-allocation, audio codec optimization.
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