

Fortschritt-Berichte VDI

Dipl.-Ing. Holger Jeromin,
Verl

Nr. 1268

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

Explizites Modell für
Benutzungsschnittstellen
im gesamten
Lebenszyklus einer
leittechnischen Anlage

Je
ro

m
in

Ex

pl
iz

it
es

 H
M

I-
M

od
el

l
im

 L
eb

en
sz

yk
lu

s
R

ei
he

 8
 ·

 N
r.

 1
26

8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

PI
TS
TO
PS
ER

VE
R

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

"Explizites Modell für Benutzungsschnittstellen im
gesamten Lebenszyklus einer leittechnischen Anlage"

Von der Fakultät für Georessourcen und Materialtechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Ing.

Holger Jeromin

aus Düsseldorf

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Prof. Dr.-Ing. Leon Urbas

Tag der mündlichen Prüfung: 03. September 2019

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Fortschritt-Berichte VDI

Explizites Modell für
Benutzungsschnittstellen
im gesamten
Lebenszyklus einer
leittechnischen Anlage

Dipl .-Ing. Holger Jeromin,
Verl

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1268

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

D82 (Diss. RWTH Aachen University, 2019)
Tag der mündlichen Prüfung: 03. September 2019

© VDI Verlag GmbH · Düsseldorf 2019
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-526808-3

Jeromin, Holger
Explizites Modell für Benutzungsschnittstellen im gesamten
Lebenszyklus einer leittechnischen Anlage
Fortschr.-Ber. VDI Reihe 08 Nr. 1268. Düsseldorf: VDI Verlag 2019.
84 Seiten, 25 Bilder, 0 Tabellen.
ISBN 978-3-18-526808-3 ISSN 0178-9546,
€ 38,00/VDI-Mitgliederpreis € 34,20.
Für die Dokumentation: HMI – Human-Machine Interface – Bedienoberflächen – Modellie-
rung – Prozessleittechnik – Prozesstechnik – PLT – Softwaredesign – Automatisierungstechnik

Diese Arbeit schlägt ein neues Konzept für die Erstellung, Wartung und den Gebrauch von
Benutzungsschnittstellen für prozesstechnische Anlagen vor. Die gesamte Darstellung wird als
HMI-Modell hinterlegt. Dafür wurden nicht nur für alle Grafikelemente (Text, Rechteck, Kreis …),
sondern auch für die gesamte Interaktion mit dem Prozess und dem Bediener Modellbausteine
(als Metamodellbausteine) definiert. Dies erleichtert die automatische Erstellung und Verände-
rung der gesamten Darstellung. Dieses Metamodell ist für größte Zukunftssicherheit technolo-
gieunabhängig definiert. Um ein solches HMI-Modell einer Anlage darzustellen wird ein Anzei-
gesystem benötigt, welches die wenigen definierten Metamodellbausteine zur Laufzeit
interpretiert. Dieses Anzeigesystem kann bei Bedarf im Laufe der Lebensdauer der technischen
Anlage in neuen Technologien implementiert werden.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit am Lehrstuhl für Prozessleittechnik
der RWTH Aachen University. Ich möchte mich an dieser Stelle bei allen bedanken, die geholfen
haben, diese Arbeit erfolgreich abzuschließen. Mein besonderer Dank gilt dabei Herrn Professor
Dr.-Ing. Ulrich Epple als Doktorvater und auch als Vorgesetzten. Die Gespräche und Diskussionen
mit ihm waren von Weitblick und tiefen Einblick in die Automatisierungstechnik geprägt und haben
damit maßgeblich zum Erfolg dieser Dissertation beigetragen. Gleichzeitig hat er am Lehrstuhl eine
sehr angenehme Arbeitsatmosphäre gepflegt und viel Vertrauen in seine Mitarbeiter gezeigt.

Weiterhin möchte ich mich herzlich bei Prof. Dr.-Ing. Leon Urbas, Inhalber der Professur für Pro-
zessleittechnik an der TU Dresden, bedanken für die Übernahme der Rolle des Zweitgutachters.
Sein tiefes Verständnis in der Thematik der Modellierung von Benutzungsschnittstellen hat mir sehr
geholfen.

Alle Kollegen des Lehrstuhls haben durch ihre Hilfsbereitschaft und unterschiedliche Expertisen
ihren Anteil an dieser Arbeit geleistet. Besonders möchte ich jedoch Stefan Schmitz danken, der
mich in seinen Jahren am Lehrstuhl immer unterstützte und die Basis meiner Arbeit am Lehrstuhl
legte. Weiterhin möchte ich Lars Evertz danken mit dem ich oft gemeinsam auf der Suche nach der
technisch optimalen Lösung war. Auch Tina Mersch lieferte entscheidene Anregungen in meiner
Promotion.
Auch bei meinen ehemaligen Studenten Christian Nick und Yannik Rocks möchte ich mich für die
konstruktive Mitgestaltung der erstellten Software bedanken.

Schließlich danke ich meiner Familie, angefangen bei meinen Eltern Lutz und Christa die immer
an mich glaubten und mich in allen Entscheidungen unterstützen. Weiterhin bedanke ich mich bei
meinen Kindern Laura und Vera die mein Leben sehr bereichern. Mein wichtigster Dank gebührt
jedoch meiner Frau Sabine, welche mich immer unterstützt und mit unendlicher Geduld motiviert
hat die Arbeit zu einem erfolgreichen Ende zu führen.

Verl, im November 2019 Holger Jeromin

III

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Sollen sich auch alle schämen, die gedankenlos sich der Wunder der Wissenschaft und
Technik bedienen und nicht mehr davon geistig erfasst haben als die Kuh von der Botanik
der Pflanzen, die sie mit Wohlbehagen frisst.

Albert Einstein (Eröffnungsansprache der 7. Großen Deutschen Funkausstellung und Phonoschau,
Berlin, Haus der Rundfunkindustrie, 22. August 1930)

IV

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Inhaltsverzeichnis

Inhaltsverzeichnis

Vorwort III

1 Einleitung 1

2 Hintergrund und Motivation 3
2.1 Stand der Technik . 4

2.1.1 iPhone/Android Programierung . 4
2.1.2 Field Device Tool/Device Type Manager (FDT/DTM) 5
2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS 6
2.1.4 Beckhoff TwinCAT 3 HMI . 7
2.1.5 ACPLT/HMI . 7
2.1.6 NAMUR Module Type Package . 8
2.1.7 automotiveHMI . 8
2.1.8 MOVISA . 9
2.1.9 IT HMI Standards . 10

2.2 Gemeinsamkeiten und allgemeine Struktur von Bedienoberflächen 12
2.3 Automatische Erstellung von Bedienoberflächen . 13
2.4 Fazit . 14

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen 15
3.1 Anforderungen . 15
3.2 Grobstruktur des Modells . 16
3.3 Modellierungsebenen . 17
3.4 Komponenten des Modells . 19

3.4.1 Darstellung . 19
3.4.2 Kopiervorlagen . 21
3.4.3 Ereignisse . 22
3.4.4 Aktionen . 24
3.4.5 Baustein zur Freitext-Programmierung . 31

3.5 Erweiterung der Grundkomponenten . 32
3.5.1 Erweiterung der Darstellung . 32
3.5.2 Erweiterung der Ereignisse . 33
3.5.3 Erweiterung der Aktionen . 34

4 Realisierung 36
4.1 Prototypische Implementierung . 36

V

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Inhaltsverzeichnis

5 Evaluation im Lebenszyklus (durch Anwendungen) 39
5.1 Eignung zur automatischen Erstellung von Bedienoberflächen 39
5.2 Engineering von Anlagenplanungsdaten (R&I-Fließbilder) 41
5.3 Eignungen des Modells zur Simulationssteuerung . 43
5.4 Engineering von Anlagensteuerungen . 46

5.4.1 Engineering einer Funktionsbausteinsprache nach IEC 61131-3 46
5.4.2 Engineering einer Ablaufsprache nach IEC 61131-3 48

5.5 Eignung für Bedienoberflächen im Betrieb . 50
5.6 Integration von fremden Bibliotheken in die Modellstruktur 53
5.7 Fazit . 55

6 Diskussion und Ausblick 56

Anhang 59
1 Anwendung R&I-Fließschema-Editor im Detail . 59
2 Interner Aufbau der Anzeigekomponente . 62
3 JavaScript API cshmimodel . 65

Literaturverzeichnis 71

VI

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Kurzfassung

Prozesstechnische Anlagen sind sehr komplex und erfordern eine ausgefeilte Steuerung. Leider
„nehmen Kompetenz und Qualifikation auf der Anwender- und Bedienerseite ab“. Dies gaben jeden-
falls 56 % von rund 1800 befragten Mitglieder im Verband Deutscher Maschinen- und Anlagenbau
(VDMA) in einer Umfrage an [Sch12]. Damit Bediener die Steuerung gerade auch in kritischen
Situationen bedienen können, ist eine leistungsfähige angepasste Benutzungsschnittstelle nötig.
Diese Schnittstellen sind jedoch sehr aufwendig bei der Erstellung.

Um diese Kosten zu senken, bieten sich zwei Möglichkeiten an. Erstens können Kosten eingespart
werden, indem möglichst viele Teile der Benutzungsschnittstelle aus vorhandenen Planungsdaten
automatisch erstellt werden. Dies hat zudem den Vorteil, dass das endgültige Ergebnis früher bereit-
steht. Weiterhin können sich weniger Fehler bei wiederkehrenden Parametrierungsaufgaben bei der
Erstellung einschleichen, was insgesamt die Qualität erhöht. Zweitens lassen sich Kosten durch
eine möglichst lange Nutzungszeit der Benutzungsschnittstelle reduzieren. In prozesstechnischen
Anlagen ist eine Lebensdauer von 30 Jahren nicht ungewöhnlich. Die Steuerungstechnik und erst
Recht die Visualisierungstechnologie verwenden jedoch immer mehr Standard-Komponenten der
IT-Branche, welche einem schnelleren Wandel unterliegen.

Diese Arbeit schlägt daher ein neues Konzept für die Erstellung, Wartung und den Gebrauch von
Benutzungsschnittstellen vor. Die gesamte Darstellung wird als HMI-Modell hinterlegt. Dafür wurden
nicht nur für alle Grafikelemente (Text, Rechteck, Kreis . . .), sondern auch für die gesamte Inter-
aktion mit dem Prozess und dem Bediener Modellbausteine (als Metamodellbausteine) definiert.
Dies erleichtert die automatische Erstellung und Veränderung der gesamten Darstellung. Dieses
Metamodell ist für größte Zukunftssicherheit technologieunabhängig definiert. Für sehr komplexe
Aufgaben existiert jedoch zusätzlich eine Erweiterung um per HTML und JavaScript frei zu pro-
grammieren. Diese Erweiterung ist dabei so entwickelt worden, dass sie stark verzahnt ist mit der
Modellwelt und zwischen beidem ein einfacher Informationsaustausch möglich ist.
Um ein solches HMI-Modell einer Anlage darzustellen wird ein Anzeigesystem benötigt, welches
die wenigen definierten Metamodellbausteine zur Laufzeit interpretiert. Dieses Anzeigesystem kann
bei Bedarf im Laufe der Lebensdauer der technischen Anlage in neuen Technologien implementiert
werden.

Als Prototyp wurde ein Anzeigesystem mit Webtechnologie realisiert. Diese Technologie hat den
großen Vorteil, dass für unterschiedlichste Betriebssysteme leistungsfähige Webbrowser existieren.
Damit ist der Prototyp selbst plattformunabhängig nutzbar.

VII

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Abstract

Abstract

Process plants are very complex and require a sophisticated control system. Unfortunately "compe-
tence and qualification on the user and operator side are decreasing". At any rate, 56 % of around
1800 members surveyed in the German engineering association VDMA gave this result in a survey
[Sch12]. In order for operators to be able to operate the plant even in critical situations, a powerful
adapted user interface is required. However, these interfaces are very complex to create.

There are two evident ways to reduce these costs. First, costs can be saved by automatically crea-
ting as many parts of the user interface as possible from existing planning data. This also has the
advantage that the final result is available earlier. Furthermore, fewer errors can creep in during
recurring parametrization tasks during creation, which increases overall quality. Secondly, costs can
be reduced by using the user interface as long as possible. In process plants, a service life of 30
years is not unusual. The control technology and especially the visualization technology, however,
use more and more standard components from the IT industry, which are subject to a faster change.

Therefore, this thesis proposes a new concept for the creation, maintenance and use of user inter-
faces. The entire representation is stored as an HMI model. Therefore, not only for all graphic ele-
ments (text, rectangle, circle . . .), but also the entire interaction with the process and the operator
model elements (as meta model elements) were defined. This facilitates the automatic creation and
modification of the entire representation. This meta model is defined as technology-independent for
maximum future security. For very complex tasks, however, there is an additional extension to freely
program via HTML and JavaScript. This extension was developed in such a way that it is strongly
interlocked with the model world and between both a simple information exchange is possible.
In order to display such an HMI model of a plant, a display system is required that interprets the
few defined meta model elements at runtime. If required, this display system can be implemented
in new technologies during the life cycle of the technical plant.

As a prototype a display system with web technology was realized. This technology has the great
advantage that powerful web browsers exist for all modern operating systems. This means that the
prototype itself can be used platform-independently.

VIII

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

1 Einleitung

Im gesamten Lebenszyklus einer technischen Anlage werden verschiedene Benutzungsschnitt-
stellen (oft auch Bedienoberfläche oder Human Machine Interface, kurz HMI genannt) benötigt.
Am wichtigsten ist diese Schnittstelle während des Betriebs, da die meisten Informationen über
den Zustand der Anlage hierüber abgerufen werden können. Zusätzlich werden alle Eingriffe in den
Prozess über diese Schnittstelle vorgenommen. Dies gilt sowohl für den Normalbetrieb, als auch
für eine Störung des bestimmungsgemäßen Betriebs. Daher werden Benutzungsschnittstellen auf-
wändig an den Anwendungszweck sowie an die Wünsche der Anwender angepasst. Nur so ist eine
spätere Akzeptanz zu gewährleisten.

Eine Anlage hat teilweise einen jahrzehntelangen Lebenszyklus, in der die Steuerungsaufgabe
erfüllt werden muss. In diesem Zeitraum gibt es oft Veränderungen, da die Anlage umgebaut oder
erweitert wird. Änderungen, welche über den Austausch baugleicher Bauteile hinausgehen, erfor-
dern dabei meist eine Anpassung der Benutzungsschnittstelle. Solche Eingriffe erfordern Exper-
tenwissen sowohl der Richtlinien, als auch des Prozessleitsystems, da die Anzeigen meist sehr
komplex programmiert sind.

Ein anderer Fall bei dem Anpassungen der Benutzungsschnittstelle notwendig werden ist der Aus-
tausch des gesamten Leitsystems. Da die Hersteller ihre Bedienoberflächen meist sehr unterschied-
lich realisieren, wird dabei teilweise auch eine komplette Neuentwicklung nötig.

Obwohl das Haupteinsatzgebiet für Benutzungsschnittstellen weiterhin die Leitwarte mit dedizierten
Computern bleiben wird, werden zusätzliche Anzeige- und Bedienmöglichkeiten immer wichtiger.
Der Trend geht aktuell zu mobilen Endgeräten, welche vom Bediener direkt in der Anlage mitgeführt
werden können. Weiterhin ist von Anlagenbetreibern oft ein direkter Einblick aufs Prozessleitsystem
gewünscht. Da schließlich auf mobilen Geräten oder Office-Computern die komplexe Software zur
Anlagensteuerung nicht installiert werden kann beziehungsweise soll, wird hierfür eine separate
Zugangstechnologie (zum Beispiel Webtechnologie) benötigt, die installiert und gewartet werden
muss.

Parallel zu den Benutzungsschnittstellen der Prozessführung gibt es einen immer größeren Bedarf
nach Assistenten und Zusatzwerkzeugen, welche zum Beispiel ein zusätzliches Monitoring oder
spezielle Kennzahlen darstellen. Auch diese Softwarewerkzeuge benötigen Benutzungsschnitt-
stellen. Hier ist jedoch eine Installation von viel Zusatzsoftware nicht gewünscht.

Je mehr Zugangsarten (zum Beispiel stationärer und mobiler Bediener, Einblick durch Führungs-
personen) genutzt werden, desto aufwendiger sind Änderungen oder Neuentwicklungen der Benut-
zungsschnittstellen. Dabei sind meist umfassende Programmierkenntnisse erforderlich. Die Benut-

1

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

1 Einleitung

zungsschnittstellen des Prozessleitsystems Honeywell Experion PKS sind zum Beispiel mit JScript
und VisualBasic frei programmierbar. Weiterhin werden Kenntnisse von Normen und Richtlinien zur
optimalen Gestaltung benötigt; beispielsweise die Richtlinie VDI/VDE 3850 [VDI02] für die Ferti-
gungsindustrie oder die Richtlinie VDI/VDE 3699 [VDI13] für die Prozessindustrie).

All diese Herausforderungen machen klar, dass die Erstellung und Pflege von Benutzungsschnitt-
stellen sehr aufwändig und damit teuer ist. Da die Wartung bei den HMI-Herstellern unterschiedlich
komplex ist, hat die Festlegung auf einen Hersteller einen großen Einfluss auf den späteren Betrieb.

Ein herstellerunabhängiger Ansatz für Benutzungsschnittstellen wurde bereits am Lehrstuhl unter
der Bezeichnung ACPLT/HMI [Sch10] entwickelt. Er erfordert jedoch für nicht triviale Aufgabenstel-
lungen eine Programmierung in Hochsprache, sodass jeder Änderungswunsch eine Änderung im
C-Code notwendig macht.

Eine Alternative wäre eine vollständige Modellierung von Benutzungsschnittstellen inklusive der
Interaktion. Dabei sollten Änderungen zur Laufzeit ohne tiefe Programmiererfahrung einfach für die
Benutzer zu realisieren sein. Durch eine technologieneutrale Definition könnte der Wert der Benut-
zungsschnittstelle im gesamten Lebenszyklus gesichert werden, da bei einem Plattformwechsel die
bisherige Applikation ohne teure Neuimplementierung übernommen werden kann.

Die vorliegende Arbeit analysiert daher einen neuen Ansatz eines expliziten Modells zur Beschrei-
bung einer Benutzungsschnittstelle, welche sich aus wenigen, vorher definierten Elementarbau-
steinen zusammensetzt (siehe Abbildung 1.1). Ziel ist es zu zeigen, dass dieses Konzept für viele
unterschiedliche Benutzungsschnittstellen im gesamten Lebenszyklus einer leittechnischen Anlage
nutzbar ist und die Wartung vereinfacht wird.

AnzeigesystemDatenbasis

Grafik Ereignisse Aktionen

Abbildung 1.1: Grundkonzept der vorliegenden Arbeit

Zu Beginn der Arbeit beschäftigt sich Kapitel 2 mit dem aktuellen Stand der Technik von Benut-
zungsschnittstellen. Es werden verschiedene Standards aus der IT und Automatisierungstechnik
zur Modellierung von Bedienoberflächen vorgestellt. Anschließend geht Kapitel 3 auf das Konzept
der vorgestellten Lösung ein, bevor dessen prototypische Implementierung in Kapitel 4 detailliert
vorgestellt wird. Daraufhin wird in Kapitel 5 durch Beispielanwendungen geprüft, ob das vorge-
stellte Modell für unterschiedlich komplexe Benutzungsschnittstellen nutzbar ist. Die Arbeit schließt
mit einer Diskussion und Ideen für zukünftige Forschungsgebiete in Kapitel 6 ab.

2

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Wie in der Einleitung erwähnt hat eine leittechnische Anlage teilweise eine jahrzehntelange Laufzeit.
Die Entität der Anlage beginnt jedoch schon ab der Planung und endet mit dem Rückbau oder
anderweitigen Nutzung der physischen Anlage. Dieser Zeitraum wird in DIN 40912 [DIN14] als
Lebenszyklus bezeichnet und definiert als „die Folge von Prozessen, die eine Entität während ihrer
Existenz durchläuft.“. Diese Prozesse sind nicht eingeschränkt auf die Nutzzeit der Anlage, da selbst
die Alterung als Prozess angesehen werden kann.

Hier seien exemplarisch einige Phasen des Lebenszyklus aufgelistet:

• Konzeption

• Planung

• Errichtung

• Inbetriebnahme

• Betrieb und Nutzung

• Umbau/Umrüstung

• Rückbau

Innerhalb der Phasen des Lebenszyklus werden unterschiedliche Bedienoberflächen eingesetzt. So
wird in der Planungsphase beispielsweise das verfahrenstechnische Fließbild und der Elektroplan
erstellt. Zur Erstellung beider Pläne wird in der Industrie meist jeweils ein gesondertes Werkzeug
genutzt. Diese sind teilweise mit unterschiedlichen Technologien realisiert und haben damit unter-
schiedliche Bedien- und Gestaltungskonzepte.

Die Bedienoberfläche, welche während des Betriebs genutzt wird, hat noch eine größere Bedeu-
tung, da sie von weniger qualifizierten Bedienern und täglich viele Stunden genutzt wird. Durch die
jahrzehntelange Lebensdauer ist die softwaretechnische Realisierung von großer Bedeutung. Die
richtige Wahl der Softwareinfrastruktur sorgt dafür, dass eine erfolgreiche Bedienoberfläche über
diese lange Zeit kosteneffizient nutzbar bleibt.

Auf dem Markt der Prozessleittechnik und erst recht allgemein der Computertechnik haben sich
unterschiedliche Ansätze zur Modellierung von Bedienoberflächen ausgebildet. Daher sollen in

3

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

diesem Kapitel einige wichtige vorhandenen Modellierungstechniken aus diesen beiden Domänen
vorgestellt werden.

Der Hauptfokus in diesem Kapitel liegt in der Modellierung der allgemeinen Darstellung und der
Interaktion.

2.1 Stand der Technik

Modelle von Bedienoberflächen gibt es von verschiedenen Herstellern und Forschungs-
einrichtungen. Daher werden in den nachfolgenden Unterkapiteln einige Standards von
Industriesteuerungs-HMI und angrenzender Standards vorgestellt und deren Eigenschaften in
Bezug auf automatische Erstellung und allgemein der Anwendungsmöglichkeiten in der Prozess-
technik geprüft. Zusätzlich werden erfolgreiche Modelle aus dem Konsumerbereich vorgestellt um
einige Ansätze auf deren Eignung in der Prozesstechnik zu analysieren. Die weiteren vorgestellten
Modelle stammen aus dem Bereich der Industrie.

Auch mobile Geräteklassen wie Mobiltelefone oder Tablets haben eine Bedienschnittstelle. Diese
haben einen anderen Anwenderkreis und insbesondere andere Aufgaben als die Anzeigen in der
Prozessleittechnik. Trotzdem wird hier die sehr erfolgreich genutzte Technik kurz vorgestellt.

2.1.1 iPhone/Android Programierung

Android von Google ist das führende Betriebssystem für Smartphones und Tablets.1 Es ist seit
seiner Veröffentlichung 2008 auf Touchbedienung und unterschiedliche Gerätemodelle ausgelegt.
Die Anwendungen (Apps genannt) müssen mit einer Vielzahl von Bildschirmgrößen und Pixelanzahl
nutzbar sein, daher sind die Bedienbilder meist relativ zur Bildschirmdimension definiert. Die Breite
eines Knopfes ist zum Beispiel halb so breit wie der Bildschirm und in der Mitte positioniert.

Die Darstellung aller solcher auf dem Bildschirm sichtbaren Objekte wird über zwei Basisklassen
realisiert. Ein View Objekt bietet ein sichtbares Objekt, eine ViewGroup ist dagegen nur ein (unsicht-
barer) Container. Ein Element der Klasse View kann keine weiteren Elemente aufnehmen, eine
ViewGroup kann jedoch beliebig viele View und ViewGroup Elemente aufnehmen. Aus dieser
Verschachtelung wird daraus eine Baumstruktur. Die ViewGroup ist nur eine Basisklasse, welche
über verschiedene Layouts realisiert wird. So gibt es zum Beispiel LinearLayout für hintereinander
gehängte Views (in einer langen Spalte oder Reihe), RelativeLayout für relativ zueinander posi-
tionierbare Views (Positionierung ist relativ zum Vater- oder Nachbarelement möglich). Auch kom-
plexe, fertig zur Verfügung gestellte Komponenten wie eine vollwertige Anzeige für HTML Inhalte
wie WebView sind als ViewGroup realisiert.

1Marktanteil 86,1 % Quelle Gartner, Stand Mai 2017 https://www.gartner.com/newsroom/id/3725117 (abgerufen am
28.7.2018)

4

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

Es existieren zwei Möglichkeiten eine Darstellung in Android zu realisieren. Das Layout kann voll-
ständig und statisch in einem XML-Dokument definiert werden. Alternativ können alle Elemente
(also View- und ViewGroup-Objekte) einzeln per Programmcode erzeugt werden und so die Appli-
kation dynamisch aufgebaut werden.2 Die XML-Datei verwendet als XML-Namensraum die URI
http://schemas.android.com/apk/res/android, es ist jedoch kein formales Schema für diese
XML-Dateien verfügbar. Dies liegt daran, dass das erstellte XML Abhängigkeiten zu beliebigen
Fremdbibliotheken hat, welche nicht in einer zentralen Schemadatei erfasst werden können.

Alle Interaktion wird über Java-Programmcode definiert. So hat jedes View oder ViewGroup Element
eine Entsprechung in einem Java-Objekt auf welchem sogenannte Listener (wie OnItemClickLis-
tener oder OnItemLongClickListener) registriert werden können. Dieser Java-Programmcode wird
daraufhin bei einem einfachen (bzw. langem) Klick auf dieses Objekt aufgerufen.

Der größte Konkurrent von Android ist das Mobilbetriebssystem iOS von Apple, welches auf mobilen
Apple Geräten wie iPhone und iPad läuft.3 Die Programmierung erfolgt ähnlich wie bei Android mit
dem Unterschied, dass eine manuelle Zusammenstellung der Anzeige meist nicht erfolgt. Statt-
dessen wird auf die umfangreiche Hilfe des Interface Builders zurückgegriffen. Weiterhin werden
hier die einzelnen Ansichten (Scenes genannt) nicht voneinander unabhängig erstellt, sondern sie
bilden eine Einheit unter dem Dach eines Storyboards. Sie werden mit sogenannten Segues ver-
knüpft. Dies sind festgelegte Übergänge zu anderen Scenes bei der Benutzung einer Schaltfläche.
Diese Art der High-Level Verknüpfung verringert die Zahl der frei programmierten Logik.4 Da es
keine Dokumentation über die dahinterliegenden Datenmodelle gibt und weiterhin eine Entwicklung
von iOS Applikationen nur auf macOS Computern möglich ist, ist eine Übertragung der Modellierung
dieser Programmierung in die Prozesstechnik nicht sinnvoll.

2.1.2 Field Device Tool/Device Type Manager (FDT/DTM)

Das offene System Field Device Tool/Device Type Manager hat es sich zur Aufgabe gemacht
eine herstellerunabhängige Konfiguration und Parametrierung von Feldgeräten zu ermöglichen. Mit
diesem Konzept muss ein Gerätehersteller keine eigene vollständige Software erstellen, sondern
liefert eine Device Type Manager-Datei (DTM), welche von einem Interpreter (der FDT Rahmen-
applikation) dem Benutzer präsentiert wird (siehe Abbildung 2.1). Diese Applikation kann ein sepa-
rates Tool (zum Beispiel das kostenlose PACTware5) sein oder in ein Leitsystem (wie beispielsweise
das System 800xA von ABB) integriert sein.

2Android Entwickler Dokumentation: https://developer.android.com/guide/topics/ui/declaring-layout (abge-
rufen am 28.7.2018)

3Marktanteil 13,7 % Quelle Gartner, Stand Mai 2017 https://www.gartner.com/newsroom/id/3725117 (abgerufen am
28.7.2018)

4iOS Entwickler Dokumentation https://developer.apple.com/xcode/interface-builder/ (abgerufen am
27.7.2018)

5http://www.pactware.com/ (abgerufen 27.7.2018)

5

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Abbildung 2.1: FDT/DTM Konfiguration eines Yokogawa EJX110A Differenzdruck-Messumformer ©Yokogawa

Das System ist gedacht als eine Schnittstelle für Techniker und nicht als Visualisierung für einen
vollständigen Prozess6. Die Darstellung innerhalb der DTM-Dateien kann als reine grafische Dar-
stellung von Gerätebeschreibungsdateien, Electronic Device Description (EDD), ausgeführt sein
oder als komplexe Applikation. Solch eine Applikation wird mithilfe der .NET-Technologie von Micro-
soft (siehe Kapitel 2.1.9.2) implementiert und ist daher aktuell auf anderen Betriebssystemen als
Windows oder Mobilgeräten nur über Proxylösungen wie Remote FDT Server7 von der M&M Soft-
ware GmbH möglich. Einheitliches Aussehen wird über einen DTM-Style Guide erreicht, welcher
auch für eine Zertifizierung eingehalten werden muss. Eine eigene Modellierung einer grafischen
Bedienoberfläche für den Industrieeinsatz bietet FDT/DTM daher nicht.

2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS

In diesem Abschnitt werden zwei HMI Systeme aus dem Bereich der Prozessindustrie vorgestellt,
welche in den Grundzügen eine identische Philosophie verfolgen. Sowohl die Bedienoberfläche
von Siemens SIMATIC WinCC als auch das Honeywell Experion PKS bieten eine Möglichkeit einer
dynamischen Anpassung der Darstellung [Sie13, Hon14]. Beide liefern einen grafischen Editor zur
einfachen Erstellung. Die Dynamik ist bei beiden Herstellern nur über eine Freitext-Programmierung
möglich. Dies erfolgt bei WinCC unter dem Stichwort Dynamisierungen über einen „Dynamik-
Dialog“ (grafisches Werkzeug um eine einfache WENN/DANN Logik zu programmieren), ANSI-C
oder Visual Basic Script (VBS) und bei Experion per Visual Basic Script oder JavaScript.

6 http://www.abb.com/cawp/seitp202/847374139ddb1f73c1257dd9004b1740.aspx - ABB präsentiert das erste FDI-
gestützte Gerätemanagement-Tool (abgerufen 27.7.2018)

7https://mm-software.com/de/fdt-services (abgerufen 27.7.2018)

6

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

2.1.4 Beckhoff TwinCAT 3 HMI

TwinCAT 3 HMI (TcHmi) von Beckhoff Automation ist eine Bedienoberfläche hauptsächlich für
Maschinensteuerungen. Erstellt wird die Oberfläche grafisch über eine Extension von Beckhoff in
der Entwicklungsumgebung Visual Studio von Microsoft. Dargestellt wird die Bedienoberfläche per
Webbrowser über eine Webseite mit JavaScript. Alle darzustellenden Elemente werden zu eigen-
ständigen Einheiten (Controls) wie zum Beispiel Container, Kreis, Rechteck, Knopf, Auswahlliste
zusammengefasst. Auch eigene Controls können per HTML und JavaScript erstellt werden.

Die konkrete Nutzung und Verschachtelung der gewünschten Controls einer Anzeige werden in
einer HTML-ähnlichen Beschreibungssprache gespeichert. Dabei wird jedoch nur der generische
Container von HTML (<div></div>) genutzt und mit TwinCAT spezifischen Attributen parametriert.
Das HTML-Attribut data-tchmi-type="tchmi-button" legt beispielsweise fest, dass in der spä-
teren Darstellung dieser generische <div>-Container durch einen Button ersetzt werden soll. Wei-
tere HTML-Attribute legen sowohl die Position sowie Größe der Controls, als auch die Interaktion
mit dem Bediener oder den Prozess-/Maschinendaten fest.

Es gibt bei allen Controls sehr viele Attribute zur Anpassung der Darstellung. Die Definition dieser
Attribute lehnt sich sehr stark an die genutzte Darstellungsplatform HTML an. Der Fokus liegt auf
maximaler Flexibilität und Erweiterbarkeit durch den Anwender.8

2.1.5 ACPLT/HMI

Am Lehrstuhl wurde schon vor dieser Arbeit mit dem modellbasierten Ansatz ACPLT/HMI [SE07,
Sch10] gearbeitet. Hierbei liefert jede Komponente (Bausteintypicals genannt) seine aktuelle Dar-
stellung als Scalable Vector Graphics (SVG, [FJF03]). Diese Darstellung wird im Automatisierungs-
system generiert und zyklisch vom Anzeigesystem neu abgefragt und dargestellt (siehe Abbil-
dung 2.2).

Die Anzeige wird ergänzt um Interaktions-Hinweise. Diese werden interpretiert und somit werden
unter anderem Klick, Doppelklick, Texteingabe und Drag&Drop ermöglicht. Das Anzeigesystem ist
jedoch extra simpel gehalten und gibt eine erkannte Interaktion (genannt Gesten, beispielsweise
ein Klick) nur an das Automatisierungssystem weiter. Für die wirkliche Aktion der Gesten muss dort
eine Programmierung hinterlegt worden sein. So kann eine beliebig komplexe Reaktion auf diese
Interaktion durchgeführt und, bei Bedarf, die Darstellung geändert werden.

Da bisher keine Sitzungen verwaltet werden, zeigen alle Anzeigesysteme stets das exakt gleiche
Bild an. Als Technologiedemo wurden alle Basisformen von SVG wie Rechteck, Kreis, Text und
weitere erstellt. Auch Gesten wie ein Farbwechsel oder eine Positionsänderung wurden implemen-
tiert. Beides kann einfach im Automatisierungssystem instanziiert werden. Es existiert jedoch keine
Beschreibungssprache für die Darstellung oder Gesten. Jede nicht triviale Aufgabenstellungen
erfordert daher auch eine Programmierung in Hochsprache.

8http://beckhoff.de/te2000/ (abgerufen 27.7.2018)

7

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Die Anzeige der SVG-Darstellung ist webbasiert und bietet daher eine Plattformunabhängig-
keit [Jer08] für unterschiedliche Geräteklassen (Mobil, Desktop) ohne dass eine Installation auf
den Endgeräten nötig wäre.

Anzeigesystem
Webbrowser

Modell und
Automatisierungssystem

Anwendung in ANSI C
generiert SVG

Kommandos

SVG

Abbildung 2.2: Grundstruktur von ACPLT/HMI

2.1.6 NAMUR Module Type Package

Das Konzept „DIMA - Dezentrale Intelligenz für modulare Anlagen“ wurde von der WAGO Kon-
takttechnik GmbH & Co.KG zusammen mit der Professur für Automatisierungstechnik, Helmut-
Schmidt-Universität Hamburg und der Professur für Prozessleittechnik, Technischen Univer-
sität Dresden entwickelt, um eine vollständige Automatisierung von modularen Anlagen zu
ermöglichen.[HLW+16] Das Konzept wird aktuell als NAMUR Empfehlung (VDI/VDE/NAMUR 2658)
standardisiert.[BHH+16]

Diese Module werden jeweils im Format Module Type Package (MTP) beschrieben, welche die Pro-
zedursteuerung, Control-, I/O-Ebene und auch die Visualisierung beinhaltet. Als Beschreibungs-
sprache für die Bedienoberfläche wird mittlerweile AutomationML[IEC10b] genutzt.

Die Visualisierung wird bei jeder Änderung der Anlagentopologie neu zusammengestellt. Um ein
einheitliches Aussehen bei unterschiedlichen Herstellerkomponenten zu gewährleisten, arbeitet
MTP mit Referenzen der Klassifizierungsbibliothek eCl@ss (inklusive einer Position und Rotation
auf dem Bildschirm).[OHU+15] Diese werden daraufhin vom endgültigen Programm auf dem Bild-
schirm erstellt, wobei alle genutzten Rollen dem System bekannt sein müssen um die Module feh-
lerfrei darstellen zu können. Die Datenverbindung der Module werden über eine Liste von Daten-
punkten des Moduls festgelegt. Somit ist eine Interaktion mit dem Prozess möglich.

2.1.7 automotiveHMI

Das Format automotiveHMI ist ein domänenspezifisches Austauschformat für die (verteilte) Ent-
wicklung von Infotainmentsystemen im Automobilbereich. Es wurde finanziert vom Bundesministe-
rium für Wirtschaft und Technologie (BMWi) als Verbundprojekt unter der Koordination des Deut-
schen Forschungszentrums für Künstliche Intelligenz (DFKI) in Kaiserslautern9 mit elf Automobil-
herstellern und Zulieferern. Die Spezifikation steht frei unter der MIT-Lizenz (kommerzielle Nutzung

9https://www.dfki.de/web/news/detail/News/projekt-automotive-hmi-austauschformat/ (abgerufen
27.7.2018)

8

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

möglich) als Download10 zur Verfügung. Es ist modellbasiert und bietet im Sprachkern eine inte-
grierte Versionierung.

Durch die Beschränkung auf ein Infotainmentsystem ist die hauptsächliche Interaktionsform dialog-
gestützt. Von einem Hauptbildschirm wird über Transitionen zu unterschiedlichen Dialogen gewech-
selt. Diese Transitionen werden über eine einfache Zustandsmaschine gesteuert und werden über
Ereignisse sowie Konditionen (guardCondition) definiert.

automotiveHMI spezifiziert auch Pop-ups im Kern, welche andere Anzeigen überlagern können.
Diese Pop-ups sind priorisierbar, so kann ein Pop-up für eine Ölstandwarnung eine Warnung zur
niedrigen Außentemperatur überlagern.

Weiterhin bietet der Standard auch ein Templatesystem zur Wiederverwendung von beliebigen Tei-
lobjekten.

2.1.8 MOVISA

Ein sehr interessantes HMI-Modell ist MOVISA von Stefan Henning [HB11, Hen12]. Es wird aktuell
auch kommerziell genutzt in der „MONKEY WORKS Suite“ der ELCO Industrie Automation GmbH.
Das HMI-Modell der Applikation wird vom Anwender über eine abstrakte Modellierungsschnittstelle
(high fidelity) programmiert, bietet für automatische Engineeringaufgabe jedoch auch einen direkten
Zugriff auf die Interna (low fidelity). Eine Möglichkeit der Verifikation auf diesen Modellen ist direkt
integriert. Die Verifikationsregeln können generisch sein, lassen sich über Java-Programme jedoch
auch vom Kunden erweitern.

Aus diesen Modellen wird daraufhin in einem separaten Schritt die gewünschte native Anwendung
generiert. Diese Transition kann auch Mobilgeräte als Ziel haben. Für die unterschiedlichen Anforde-
rungen der Eingabegeräte und Bildschirmgrößen können zusätzliche Vorschriften für die Transition
definiert werden. So können Teile der Darstellung für Mobilgeräte beispielsweise versteckt werden.

Das Modell selbst ist eine „Domain Specific Language“ für Produktionsautomatisierung. Sie
beschreibt neben einfachen grafischen Objekten, auch viele sogenannte „Common interaction wid-
gets“. Darunter fallen: Buttons, Slider, Combobox, Listbox, Checkbox, Radiobuttons, Eingabefelder.
Weiterhin sind sogar domänenspezifische Elemente als „Automation specific widgets“ definiert: Dies
ist beispielsweise ein „Alarm control widget“, Trend Chart und ein Drehzeigerdiagramm. Auch sehr
komplexe Darstellungselemente wie eine Tabelle und eine Baumansicht sind als „Complex widgets“
beschrieben.

Eine Besonderheit des MOVISA-Modells ist die explizite Modellierung der Interaktion außerhalb
von freier Textprogrammierung. So ist das Lesen und Schreiben von Prozessdaten direkt über eine
grafische Notation möglich. Diese wird jedoch ergänzt durch eine textuelle Syntax.

10https://sourceforge.net/projects/automotivehmi/ (abgerufen am 27.7.2018)

9

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

2.1.9 IT HMI Standards

Da die Modellierung der Bedienoberfläche im Fokus dieser Arbeit ist, werden im Folgenden einige
Standards zu Bedienoberflächen aus der Informationstechnologie beschrieben.

2.1.9.1 OpenLaszlo und Apache Flex

Die beiden Produkte Apache Flex (ehemals Adobe Flex)11 und das ältere OpenLaszlo12 sind kon-
zeptionell ähnlich aufgestellt. Beide definieren die reine Bedienoberfläche in einem eigenen XML-
Dialekt (MXML bei Flex beziehungsweise LZX bei OpenLaszlo). Die Anwendungslogik wird mithilfe
an ECMAScript angelehnter Programmierung implementiert.

Aus diesen Ressourcen wird eine Binärdatei erstellt, welche vom Browserplugin Adobe Flash beim
Anwender auf den Bildschirm dargestellt wird. Bei OpenLaszlo ist zusätzlich eine Webseite ohne
Pluginbenutzung als Export vorgesehen.

Durch die Nutzung einer Freitextprogrammiersprache mit spezieller API zu den Grafikelementen ist
eine Technologieunabhängigkeit nicht gegeben.

2.1.9.2 Extensible Application Markup Language (XAML)

Die deklarative Sprache Extensible Application Markup Language (XAML) wurde von Microsoft im
Jahre 200613 für das Grafikframework .NET entwickelt. XAML selbst definiert nur die statische Dar-
stellung. Die Programmlogik wird in einer klassischen imperativen Programmiersprache wie C#,
Visual Basic oder auch JavaScript implementiert.

Eine große Stärke von XAML sind die umfangreichen Steuerelemente (Controls) und die sehr gute
Toolunterstützung (Visual Studio und Microsoft Blend) welche die Entwicklung der Applikation sehr
beschleunigen.

XAML kann in fünf unterschiedlichen Microsoft Architekturen genutzt werden. Dies sind die Win-
dows Presentation Foundation (WPF, für Windows-Desktop-Anwendungen), Universal Windows
Platform (UWP, für Windows 10 Anwendungen), Silverlight für Windows Phone Anwendungen, Sil-
verlight innerhalb eines Webbrowser-Plug-in und letztendlich noch für iOS, Android und Windows
Phone der Sprachdialekt Xamarin Forms. Alle diese Architekturen bringen einen unterschiedlichen
Satz an Steuerelementen mit. Dies hat zur Folge, dass eine per XAML erstellte Anwendung nicht
ohne weiteres auf anderen Plattformen läuft. Eine Initiative von Microsoft eine einheitliche Definition
unter dem Namen XAML Standard läuft nur sehr schleppend an.14

11http://flex.apache.org (abgerufen am 27.7.2018)
12http://www.openlaszlo.org (abgerufen am 27.7.2018)
13http://download.microsoft.com/download/0/A/6/0A6F7755-9AF5-448B-907D-13985ACCF53E/%5BMS-XAML%5D.

pdf Xaml Object Mapping Specification 2006 (PDF), Microsoft, June 2006
14Holger Schwichtenberg, heise developer, „Kommentar: Kann Microsoft mit XAML Standard die Abwanderung von Ent-

wicklern stoppen?“ https://heise.de/-3712263 (abgerufen am 27.7.2018)

10

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

2.1.9.3 XML User Interface Language (XUL)

Die Beschreibungssprache XML User Interface Language wurde vom Mozilla-Projekt entwickelt, um
eine betriebssystemunabhängige Beschreibung für die Bedienoberflächen des Browsers Mozilla
zu erhalten. Zur Unterstützung eines Betriebssystems muss nur der XUL Interpreter angepasst
werden.

XUL beschreibt die Darstellung ausschließlich mit hoher Abstraktion mit Hilfe von sogenannten
Controls. Diese Controls werden per Cascading Style Sheets (CSS) an das Aussehen des Betriebs-
systems angepasst. Zur Auswahl stehen beispielsweise Button, Checkboxen, Datumswähler, Listen
und Texteingabefelder. Es fehlen jedoch Basiselemente wie Kreis/Ellipse, Rechteck da diese kom-
plett freie Darstellung für die Bedienoberfläche der Software nicht benötigt wird.

Die Interaktion mit den grafischen Elementen erfolgt wie bei einer Webseite ausschließlich durch
freie Programmierung durch JavaScript.

2.1.9.4 USer Interface eXtensible Markup Language (UsiXML)

Das USer Interface eXtensible Markup Language (UsiXML) erhebt den Anspruch nicht nur das
endgültige Aussehen einer Bedienoberfläche zu modellieren, sondern die gesamte Entwicklung
dieser. So definiert dieses Format vier Abstraktionslevel.

„Task & Concepts“ auf der höchsten Ebene beschreibt hier beispielsweise die Aufgabe eine Datei
über einen Trigger herunterzuladen. Die nächstniedrigere Ebene „Abstract User Interface (AUI)“
legt fest, dass hierfür ein Bedienelement gebraucht wird. Dieses wird in der Ebene „Concrete User
Interface (CUI)“ beispielsweise mit drei Möglichkeiten implementiert: Hardware-Taster, 2D-Button
mit einem normalen Bildschirm oder 3D-Button innerhalb einer Virtuellen Realität. Erst im „Final
User Interface (FUI) wird daraus ein Knopf einer Webseite oder eines nativen Windows- oder Linux-
programms.

Durch diese Beschreibungsschichten kann mit dem Format eine extrem große Vielfalt von Platt-
formen (beispielsweise Telefon, Tablet, Kiosk, Laptop, Desktop), Interaktionsmodi (Maus, Touch-
Bildschirm, Tastatur, Spracheingabe) und sowohl grafische Interaktion, Sprachinteraktion, 3D Inter-
aktion oder auch Interaktion innerhalb von Virtual Reality beschrieben werden.

UsiXML erlaubt sowohl die Verallgemeinerung als auch die Spezialisierung per Graphtransforma-
tion vorzunehmen und so beispielsweise (einmal Verallgemeinerung und wiederum Spezialisie-
rung in eine andere Richtung) aus einer konkreten Bedienoberfläche eines Desktop-Computers
eine Bedienoberfläche für mobile Endgeräte zu generieren. Diese Transformationen müssen vom
Anwender meist selbst definiert werden. Sie werden jedoch für eine weitere Benutzung gespei-
chert, sodass eine Änderung auf einer Abstraktionsebene in die anderen Ebenen überführt werden
kann.[LVM+05]

11

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Alle Interaktion wird über ein Task Modell beschrieben. Dieses ist wie die Grafikbeschreibung in
verschiedenen Abstraktionen unterteilt. So ist eine allgemeine Beschreibung beispielsweise die
Aufgabe „Erfassung von Bestellungen“, welche weiter spezifiziert wird zu „Kundendaten erfassen
/ Kundendatensatz aufrufen, Liste der Produkte und danach Versandart und Bezahlarten erfragen“.
Die Unteraufgaben können weiterhin für eine gute Benutzerführung über verschiedene Realisie-
rungen laufen, also Suche über ID, Name oder Adresse.[Pri06]

2.1.9.5 QML

QML wurde von Nokia im Jahre 2010 als universelle Beschreibungssprache für Mobil- und Desktop-
Anwendungen innerhalb der Qt Infrastruktur vorgestellt. Die Entwicklung wird mittlerweile von The
Qt Company15 weiter betrieben.

QML erlaubt eine Kombination aus deklarativer und imperativer Beschreibung einer Bedienober-
fläche. Jedes grafische Element wird über eine einfache Textsyntax hierarchisch beschrieben.

Deklarativ ist beispielsweise eine Kopplung der Breite mit der Höhe über height: 2 * width mög-
lich. Jede Änderung der Breite führt so automatisch zu einer Aktualisierung der Höhe. Auch eine
rein imperative Programmierung per JavaScript ist möglich.

Da die meisten QML Visualisierungen gemeinsam mit einem Programmkern in C++ benutzt werden
ist eine direkte Koppelung des Qt Eventsystems (Signal & Slot) möglich.16 Somit wird eine Reaktion
auf Benutzereingaben über JavaScript oder C++ realisiert.

2.2 Gemeinsamkeiten und allgemeine Struktur von
Bedienoberflächen

Auch wenn die einzelnen vorgestellten Systeme sehr unterschiedlich sind, so lassen sich immer
wiederkehrende Komponenten erkennen. So gibt es vielfältige technische Lösungen eine Bedien-
oberfläche zu modellieren, zu speichern und auf einem Bildschirm aufzubauen. In modernen Model-
lierungstechniken wird die gewünschte Applikation in Einzelelemente zerlegt. Dieser Vorgang kann
je nach Zielsetzung unterschiedlich weit gehen.

So kann beispielsweise eine einfache Applikation nur aus komplexen, fertigen Komponenten zusam-
mengesetzt werden. In diesem Fall ist die Entwicklung der Gesamtlösung schneller möglich, die
Flexibilität jedoch eingeschränkt. Eine Möglichkeit diese wieder zu erhöhen ist eine Parametrierbar-
keit der Teilkomponenten. So kann der Anwendungsentwickler im gewissen Rahmen Einfluss auf
das spätere Aussehen und/oder die Funktionalität nehmen.

15https://www.qt.io/ (abgerufen am 27.7.2018)
16http://doc.qt.io/qt-5/qtqml-syntax-signals.html (abgerufen am 27.7.2018)

12

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2.3 Automatische Erstellung von Bedienoberflächen

Volle Kontrolle hat der Entwickler im entgegengesetzten Extrem. Hierbei wird die Auftrennung bis
herunter zu den Grundformen (Text, Kreis, Rechteck . . .) getrieben. Hier ist alles auf den Anwen-
dungszweck abstimmbar. Der Nachteil ist jedoch eine wesentlich aufwändigere Entwicklung.

Die gleiche Bandbreite der Abstraktion ist auch bei der Modellierung der Interaktionsmöglichkeiten
(Beispiel: Verhalten nach einem Klick . . .) zu finden. Hier kann eine komplexe, festgelegte Interak-
tion hinterlegt sein oder der Anwendungsentwickler muss die gesamte Logik selbst implementieren.

In der Praxis wird meist ein Mittelweg genutzt. So werden mehrfach genutzte Komponenten wieder-
verwendet und der Rest einmalig implementiert.

Ist die gewünschte Modellierungstiefe festgelegt, so muss die modellierte Bedienoberfläche
anschließend gespeichert werden. Hierzu gibt es sehr viele Möglichkeiten, deren Wahl jedoch
wesentlich weniger Einfluss auf Flexibilität hat als die Modellierung selbst.

Ansätze der modellgetriebenen Architektur erlauben es eine Software nicht in Freitext-Quelltext
zu pflegen, sondern die Logik als abstraktes und vor allem zugreifbares Modell zu hinterlegen.
Dies ermöglicht es beispielsweise Teile der späteren Software automatisch zu generieren. Diese
Generierung kann endgültig sein oder auch nur als eine Art Rohfassung zur späteren händischen
Optimierung dienen.

Diese Modelle werden danach in normalen Code transformiert um sie auf dem Zielsystem nutzen
zu können.[MPV11]

2.3 Automatische Erstellung von Bedienoberflächen

Im Bereich der Prozesstechnik gibt es viele Teile der Darstellung welche mehrfach vorkommen. Die
Anzahl der Prozessbedienbildern einer durchschnittlichen Chemieanlage beträgt 130-500 welche
2500 bis 7500 EMSR (Elektrisches Messen, Steuern, Regeln)-Stellen darstellen.[Kir07] So benötigt
beispielsweise jede Pumpe ein Repräsentanz in der Anzeige, häufig zusätzlich mit einem Faceplate
für Detailinformationen. Für andere Anlagenteile gilt ähnliches, sodass viele Darstellungen umfang-
reiche Konfigurationsarbeit erfordern.

Hier ist eine automatische Erstellung der Darstellung eine Erleichterung für diese monotone Arbeit.
Ist der Regelsatz einmal fehlerfrei implementiert, so ist gewährleistet, dass dann beispielsweise die
Verknüpfung zu allen Anlagenteilen korrekt ist. Weiterhin ist die Applikation schneller und damit
kostengünstiger zu erstellen.

Schon 2007 wurde am Lehrstuhl für Prozessleittechnik in Aachen ([SE07]) die automatische Erstel-
lung von Bedienoberflächen angedacht.

Eine Voraussetzung für eine einfache automatische Erstellung ist die modellbasierte Speicherung
der Bedienoberfläche. Hier ist ein offenes Datenformat oder eine offene Schnittstelle von Vorteil,
damit nicht nur der Hersteller der Bedienoberfläche solche Leistungen anbieten kann.

13

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Simatic PCS 7 von Siemens besitzt hierfür die Funktionalität „Bildbausteine erzeugen“. Dieses
erzeugt Bausteine basierend aus der Steuerungsinformation der Ventile, Motoren und Ablaufsteue-
rungen. Allerdings fehlen hier unter anderem noch die Sensorik, Behälter und Rohrleitungen. Wei-
terhin ist in den Steuerungsinformationen keine Positionierungsinformation, weshalb nur die Erstel-
lung und Verknüpfung der Bedienelemente mit dem Steuerungssystem möglich ist.[DDFU11] Grobe
Positionierungsdaten bietet das R&I-Fließschema, welches in der Siemenssoftware COMOS vor-
handen ist. Diese Information kann über den Standard CAEX exportiert werden. Dies nutzt bei-
spielsweise autoHMI der TU Dresden [DDFU11, DU11, UHH+11]. Hier wird die Positionierung
der vorhanden Bausteine aus dem R&I-Fließschema/CAEX-Daten korrigiert. Weiterhin werden aus
diesen Daten die fehlenden Elemente (Sensoren, Behälter, Rohrleitungen) extrahiert und in der
Bedienoberfläche ergänzt.

2.4 Fazit

Zusammenfassend lässt sich festhalten, dass es viele Modelle gibt, welche eine automatische
Erstellung von Bedienoberflächen erlauben.

Jedoch existieren keine Modelle, welche gleichzeitig auch die Interaktion mit dem Bediener und dem
Prozess explizit modellieren. Dies wäre jedoch für eine einfache Änderung durch Nicht-Spezialisten
sinnvoll. Weiterhin hilft diese Technologieneutralität bei der Sicherstellung der Zukunftssicherheit.

14

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für
Benutzungsschnittstellen leittechnischer
Funktionen

Aus dem vorangegangenen Kapitel 2 wird deutlich, dass aktuell keine Modelle der Prozessleit-
technik oder Informationstechnologie zur expliziten vollständigen technologieneutralen Beschrei-
bung einer Bedienoberfläche bestehen. Dies ist aufgrund der langen Lebensdauer einer Anlage
jedoch wünschenswert.

Ziel der Arbeit ist es daher ein neuartiges Modell für Bedienoberflächen für leittechnische Funk-
tionen zu entwickeln.

3.1 Anforderungen

Das Modell soll nicht nur für eine spezifische Applikation entwickelt werden. So ist eine Bedien-
oberfläche zu einer technischen Anlage oder auch ein Engineeringwerkzeug denkbar. Diese stellen
jedoch unterschiedliche Anforderungen an eine Visualisierungsinfrastruktur. Für das erste Beispiel
benötigt das System Zugriff auf Aktualwerte der Anlage. Dies kann beispielsweise der Messwert
eines Temperatursensors sein. Neben diesen lesenden Eingriffen ist auch schreibender Zugriff
zwingend nötig. So muss eine solche Applikation alle Arten von Aktoren schalten können.

Ein Engineering-Werkzeug hat dagegen komplexere Anforderungen. So muss die Struktur des
Automatisierungssystems analysiert werden können, um beispielsweise für jede Komponente einen
passenden Anzeigeteil bereitstellen zu können. Diese Struktur muss auch verändert werden
können, um neue Elemente im Automatisierungssystems zu erstellen oder auch mehrere zuein-
ander logisch zu verknüpfen.

Entsprechend werden die Kommunikationsformen „Wert schreiben“, „Wert lesen“, „Strukturen auf-
listen“, „Objekte erstellen“, „Objekt umbenennen“ und „Objekte löschen“ benötigt. Je nach gewählter
Infrastruktur ist auch „Assoziation erstellen“ und „Assoziation löschen“ erforderlich.

Das Modell muss neben einfachen auch für komplexe Applikationen nutzbar sein. Es ist zu prüfen,
ob ein solches Darstellungsmodell ausreichend mächtig erstellt werden kann, dass auch komplexe
Anwendungen realisierbar sind.

15

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

Das Ziel ist ein einfaches System, welches im Lebenszyklus ohne spezielle Programmierkenntnisse
angepasst werden kann. Hat ein Schichtführer die benötigten Rechte, so soll die Anpassung (je
nach Standortpolitik) auch von diesem direkt erledigt werden können.

3.2 Grobstruktur des Modells

Das erstellte Modell für Bedienoberflächen fügt sich in die Modelle der ACPLT-Landschaft des Lehr-
stuhls für Prozessleittechnik in Aachen ein. Es trägt den Namen „Client Side Human Maschine
Interface“, abgekürzt ACPLT/csHMI.

Für eine einfache Änderung ohne spezielle Programmierkenntnisse ist die Nutzung einer textba-
sierten Programmiersprache wie C/C++ nicht geeignet. Die Anwender kennen aus dem Arbeits-
alltag mit Continous Function Chart (CFC) jedoch konfigurierbare Funktionsbausteine nach IEC
61131-3 ([IEC03]). Diese werden parametriert und arbeiten im Betrieb ihre Funktion ab, ohne dass
der Anwender hier den genauen Quelltext einsehen kann oder gar will. Stichwort „Parametrieren
statt Programmieren“.

Ähnlich wie viele in Kapitel 2.1 vorgestellte Modelle werden auch in csHMI Grafikelemente (wie
Rechteck oder Text) als einzelne Bausteine modelliert. Aus den Bausteinen dieses allgemeinen
Metamodells wird das spätere Modell der Applikation zusammengesetzt. Da eine Bedienoberfläche
oft hierarchisch aufgebaut wird, bietet das Metamodell eine nicht zyklische, gerichtete Graphstruktur
in die die Elementarbausteine eingehangen werden können. So soll beispielsweise ein Container
alle grafischen Kind-Elemente auch in der Baumstruktur des Modells unter sich gruppieren.

Anders als bei anderen Technologien ist die Modellierung der Interaktion mit dem System und
dem Benutzer gelöst. Diese wird äquivalent zu den Grafikelementen auch mit Elementarbau-
steinen modelliert. Unterhalb von jedem Grafikelement kann ein Ereignis-Baustein (wie Klick) erstellt
werden. Dieser hat wiederum als Kindelement ein Aktions-Baustein der beispielsweise einen Motor
startet. Die Gesamtheit aller Grafik-, Ereignis- und Aktions-Bausteine definiert das Modell der
gewünschten Applikation.

Es gibt Applikationen, welche durch diese explizite Modellierung nicht vollständig effektiv
beschrieben werden können. Zur Unterstützung dieser ist ein komplexer weiterer Baustein namens
Blackbox definiert. Dieser erweitert das Modell um eine freie Programmierung, um die Nachteile bei
grafisch sehr komplexen Anwendungen umgehen zu können. Trotzdem wurde diese Erweiterung
nicht als „Fremdkörper“ der Philosophie des Gesamtkonzeptes gestaltet, sondern spielt die Vorteile
geschickt aus. Im Idealfall wird ein Anwender einer solchen Erweiterung (wie bei einem CFC) nicht
die Notwendigkeit sehen, in die Interna eintauchen zu müssen.

Die soeben erwähnte Modellierung beschreibt nur die Bedienoberfläche selbst. Zur Nutzung wird
noch die Schnittstelle zum Benutzer sowie der zu steuernde Anlage benötigt. Das Gesamtkonzept
sieht daher diese drei Komponenten (siehe Abbildung 3.1) vor:

• Datenbasis zur Speicherung des Modells der Applikation.

16

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.3 Modellierungsebenen

AutomatisierungssystemAnzeigesystemDatenbasis

Grafik Ereignisse Aktionen

Abbildung 3.1: Grundstruktur des Konzeptes

• Anzeigesystem: Mit diesem interagiert der Bediener direkt. Im Normalfall ist dies ein Pro-
gramm das auf seinem Computer oder Mobilgerät ausgeführt wird.

• Automatisierungssystem dessen Status und/oder Struktur angezeigt und/oder manipuliert
werden soll.

Das Anzeigesystem wird vom Benutzer aufgerufen, lädt das Applikationsmodell und erstellt daraus
die Darstellung auf den Bildschirm. Ist in der Applikation eine Interaktion (zum Beispiel Werte lesen
oder schreiben) mit einem Automatisierungssystem erforderlich, so kommuniziert das System direkt
mit diesem.

Mit welcher Kommunikationstechnologie das Automatisierungssystem angesprochen wird ist im
Metamodell nicht festgelegt. Hier wird eine textbasierte Adressierung festgelegt, so dass beispiels-
weise OPC/UA [IEC10a] als opc.tcp://427C-AS-RTX:4840 oder ACPLT/KS [Alb03] als acpltks
://427C-AS-RTX/fb_lbo_ProcessControl adressierbar ist.

Ein Automatisierungssystem kann jedoch nicht nur Daten liefern, sondern auch einen Teil seiner
Bedienoberfläche als Teilmodell selbst mitbringen. In die Hauptansicht kann daraufhin dieser dezen-
tral gespeicherte Teil integriert werden. Siehe Abbildung 3.2:

Automatisierungssystem
Anzeigesystem

Modell

Datenbasis

Grafik Ereignisse Aktionen

Abbildung 3.2: Erweiterte Grundstruktur des Konzeptes

3.3 Modellierungsebenen

Das Beschreibungskonzept besteht aus verschiedenen Ebenen.

• So existiert eine generische Ebene, welche alle benötigten grafischen Primitive und Ereig-
nisse einer Bedienoberfläche beschreibt.

• Die zweite Ebene ist die abstrakte Ebene, welche die genaue Modellierung der vorgestellten
Elemente der generischen Ebene inklusive der Definition der Aktionen festlegt.

17

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

• Weiterhin existiert die technologische Ebene, welche die wirkliche Implementierung des
Anzeigesystems in einer bestimmten Technologie beschreibt. Dieses kann beispielsweise in
C# oder Java erstellt worden sein.

Diese strikte Trennung hat den Vorteil, dass eine Anwendung in der abstrakten Ebene definiert
wird. Somit kann man die technologische Ebene auch nach Erstellung vieler Anwendungen beliebig
verändern. Ein Technologiewechsel ist durch einen Export aus der alten und einen anschließenden
Import in die neue Technologie einfach möglich.

18

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

3.4 Komponenten des Modells

Um ein explizites Modell einer Applikation zu spezifizieren, wird eine begrenzte Auswahl von Ele-
mentarbausteinen sowohl für die Darstellung und als auch die Interaktion benötigt. Zur Auswahl wird
auf die Gemeinsamkeiten der vorhandenen Modelle (siehe Kapitel 2.2) zurückgegriffen. Neben den
Bausteinen werden jeweils deren wichtigste Attribute vorgestellt.

3.4.1 Darstellung

Jede grafische Darstellung besteht aus einer gewissen Anzahl von grafischen Primitiven oder
Grundformen. Viele komplexe Bedienoberflächen sind nur aus wenigen Grundtypen zusammen-
gestellt (siehe [Dam96, Sch10]). Die meist verwendeten Elemente sind zum Beispiel das Rechteck
und ein Text. Eine hierarchische UML-Darstellung der im Folgenden erwähnten Primitive findet sich
in Abbildung 3.3.

Diese Elemente sind Teil der generischen Ebene des Gesamtkonzepts (siehe Kapitel 3.3), da sie
in allen Bedienoberflächentechnologien so oder ähnlich benötigt werden.

Zu diesen Form-Elementen gehören zusätzlich zu den beiden Genannten noch der Kreis, Ellipse
sowie der Polygonzug und das Polygon (dies ist ein geschlossener Polygonzug). Mithilfe eines
Pfad-Form-Elements ist es möglich komplexe Darstellungen wie Kurven oder Kreisbögen zu
erstellen. Diese können über eine Beschreibung von Stiftbewegungen, welche die benötigte Dar-
stellung liefern würde, definiert werden (vergleiche die path-Elemente in den Vektorgrafikstandards
SVG [Fer01], PGML [FD98] und VML [BD98]). Auch eine Anzeige von Raster- und Vektorgrafiken
wird oft benötigt.

Element

grafisches Element

Form-Element

Linie Rechteck Kreis Ellipse Polygonzug Polygon Pfad

Freitext Vektor-/Rastergrafik

gruppierendes Element

Gruppe Kopiervorlage

Abbildung 3.3: UML-Grundstruktur aller Elemente

Alle grafischen Elemente erhalten zur universellen Nutzung einige gemeinsame Attribute: Strich-
farbe, Füllfarbe, Rotation, Transparenz und die Sichtbarkeit. Eine Strichstärke benötigen dagegen
nur alle Form-Elemente, nicht jedoch zum Beispiel Text.

Allen grafischen Elementen gemeinsam ist die Überlappung. Das Konzept sieht vor, dass die Ele-
mente in einer festgelegten Reihenfolge in der Hierarchiestufe gespeichert sind. In genau dieser

19

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

Reihenfolge werden sie auf dem Bildschirm gezeichnet. Frühe Elemente in der Hierarchie werden
von anderen im Zweifelsfall überdeckt.

Alle weiteren Attribute sind spezifisch zu den Elementen zu definieren und im Folgenden aufgelistet:

• Eine Linie benötigt eine Spezifizierung der Start/End-Koordinaten (zum Beispiel x1, x2, y1,
y2).

• Ein Rechteck kann über vier Punkte oder einfacher mit zwei Koordinaten und Breite und Höhe
definiert werden (x, y, width, height).

• Ein Kreis ist über den Mittelpunkt und den Radius festgelegt (cx, cy, r).

• Eine Ellipse benötigt zwei Radien jeweils für die große und kleine Halbachse (cx, cy, rx, ry).

• Der Polygonzug und das Polygon kann mit der gleichen Reihe von Eckpunkten aufgebaut
werden (points). Das Polygon wird jedoch bei der Anzeige geschlossen.

• Das Pfad-Element kann man als Aneinanderreihung von Stiftbewegungen definieren. Ein Bei-
spiel wäre: Bewege den Stift auf Koordinate x:10, y:10; Zeichne von dort eine gerade Linie
zur Position x:130, y:31; Bewege den Stift (ohne zu zeichnen) zu x:20, y:20 und führe von hier
einen Halbkreis mit Radius 30 nach unten. Dieses Element benötigt zur Definition daher eine
Auflistung aller Stiftbewegungen in einer speziellen Syntax (zum Beispiel im Attribut shape).

• Freitext benötigt den gewünschten Inhalt, den Ankerpunkt, Ausrichtungsanweisung (rechts-,
linksbündig, mittig), Schriftgestaltungshinweise wie Schriftgröße oder Schriftart (content, x,
y, horAlignment, verAlignment, fontSize, fontStyle, fontWeight, fontFamily).

• Raster-/Vektorgrafiken benötigen einen Ankerpunkt, eventuell eine Größe sowie eine Einbin-
dung der gewünschten Darstellung, sei es als Referenz oder direkte Einbindung (x, y, width,
height, Vektorcontent, Bitmapcontent).

Gruppe

Element

TemplateDefinition

beinhaltet

1

0...*

beinhaltet

1

0...* beinhaltet

1

0...*

beinhaltet

1

0...*

beinhaltet

1

0...*

Abbildung 3.4: Erlaubte Assoziation von Gruppe und Element

Weiterhin ist ein gruppierendes Element sinnvoll, so dass grafische Elemente logisch zusammenge-
fasst werden können. Dies erleichtert auch das gemeinsame Positionieren zum Beispiel innerhalb

20

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

eines Pop-ups. Diese Gruppe benötigt ähnlich wie Elemente eine Position, Ausdehnung, Rotation,
Transparenz und die Sichtbarkeit.

Die Regeln, welche Elemente und Gruppen wie ineinander verschachtelt werden dürfen, sind in
Abbildung 3.4 festgelegt. So darf eine Gruppe eine beliebige Menge an Elementen und auch
Gruppen enthalten. Elemente dürfen jedoch selbst keine weiteren Elemente oder Gruppen als Kin-
delemente beinhalten. Auch braucht ein Element zwingend eine Gruppe als „Vater“ innerhalb der
Baumstruktur.

Gruppen stellen somit auch den Einstiegspunkt einer Darstellung dar. Hat eine solche Gruppe keine
andere Gruppe als „Vater“ so ist der Baum den sie aufspannt eine gültige Anzeige.

3.4.2 Kopiervorlagen

Zur Wiederverwendung von Elementen und Gruppen ist eine Art Kopiervorlage sinnvoll. Diese
TemplateDefinition können von den normalen Gruppen referenziert werden und ergänzen dessen
eigene Darstellung. Sie sind äquivalent zu Klassen in einer objektorientierten Programmierung zu
sehen. So werden auch sie einmal zentral definiert und können beliebig oft und unterschiedlich
parametriert verwendet werden. Das Konzept sieht vor, dass jedes gruppierende Element genaue
eine Kopiervorlage referenzieren und beliebig viele eigene Kindelemente enthalten kann. Kopier-
vorlagen besitzen selbst nur eine Größe, nicht jedoch Position.

Verschiedene „Instanzen“ der gleichen TemplateDefinition sollen verschiedene Funktionen bereit
stellen können. So ist es sinnvoll eine Vorlage für Darstellungen und Bedienung von Pumpen zu
erstellen und dieser eine Referenz zu der jeweiligen Pumpeninstanz mitgeben zu können.

Es scheint sinnvoll die Adressierung als Text auszulegen, damit das Modell sehr flexibel in der Wahl
des Kommunikations- und damit des Automatisierungssystems ist. Die meisten Systeme in der Pro-
zessleittechnik bieten aufgrund der IEC61131 Sprachen [IEC03] als Text adressierbare Objekte mit
zugehörigen Variablen. Diese Grundstruktur wurde beispielsweise auch in das Informationsmodell
des Protokolls OPC UA [IEC10a] übernommen.

Dieses Konzept der Objekte mit Variablen hat zur Folge, dass drei verschiedene Parameterarten
gebraucht werden:

1. Keine oder genau eine Objektreferenz (FBReference): Über diese Referenz ist ein komplexer
Baustein erreichbar. Dies kann beispielsweise ein Motorkontrollbaustein sein, aber auch ein
Additionsbaustein. Ein Nutzer dieser Information kann beispielsweise eine oder mehrere
Variablen des Bausteins direkt auslesen. Dazu muss er den Aufbau dieses Bausteins kennen.

2. Keine oder mehrere Variablenreferenzen (FBVariableReference): Diese Referenz mit einem
eindeutigen Namen zeigt auf genau eine Variable. Durch den Namen ist es hiermit möglich
einer Kopiervorlage mehrere unterschiedliche Variablennamen zu übergeben.

21

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

3. Keine oder mehrere Konfigurationswerte (ConfigValues): Hier können beliebig viele Variablen
übergeben werden. Diese haben jeweils einen eindeutigen Namen und einen statischen Wert.
Dies kann beispielsweise der Maximal-Wert eines Sensors oder ein Beschriftungstext sein.

Auf diesem Konzept basieren auch die „Custom Properties“ der „Dynamic Shapes“ der Operator-
station HMIWeb des Experion PKS von Honeywell Process Solutions (siehe [Hon14]).

3.4.3 Ereignisse

Ein komplexerer Bereich ist die Interaktion zwischen dem Benutzer und beliebigen Daten. Die für
die Darstellung relevanten Daten können innerhalb des Anzeigesystems selbst oder im Automa-
tisierungssystem liegen. Die Interaktionen auslösenden Ereignisse können verschiedener Natur
sein. Beispielsweise zyklisch, zeitgesteuert oder „beim Laden“. In Benutzungsoberflächen wird ein
Ereignis oft ausgelöst durch eine Benutzeraktion, wie ein Klick.

Ereignis

Darstellungs-Ereignis

onload TimeEvent

Benutzer-Ereignis

click rightclick doubleclick mouseover mouseout aftermove

Abbildung 3.5: UML-Grundstruktur aller Ereignisse

Auch diese Ereignisse sind Teil der generischen Ebene des Gesamtkonzepts (siehe Kapitel 3.3),
da sie in allen Bedienoberflächentechnologien benötigt werden.

Eine allgemeine Darstellungstechnologie sollte die gleichen Aktionen bei unterschiedlichen Ereig-
nissen ausführen können, sodass eine Trennung der Ereignisse von den auszuführenden Aktionen
sinnvoll ist. Abbildung 3.5 bietet eine Liste von häufig innerhalb einer Darstellung genutzten Ereig-
nissen. Einem grafischen oder gruppierenden Element können im Konzept dieser Dissertation
beliebig viele Ereignisse zugeordnet werden (siehe Abbildung 3.6).

Element

Ereignis

grafisch und gruppierend

beinhaltet

1

0...*

Abbildung 3.6: Erlaubte Assoziation von Element und Ereignis

Das wichtigste Ereignis ist onload. Dieses wird aktiv nach dem Laden eines Darstellungs-
Elements. Eine onload-Aktion kann für gruppierende, als für auch grafische Elemente (siehe voriges
Kapitel 3.4.1) nützlich sein.

22

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Benutzer-Ereignisse können von vielen verschiedenen Eingabegeräten initiiert werden. Dies kann
eine Maus, eine Tastatur (auch Sondertastaturen) oder ein Touchscreen (siehe auch VDI/VDE 3699
Blatt 6 [VDI13]) sein.

Für eine Mausbedienung sind die Ereignisse Klick, Doppel-Klick und Klick mit rechter Maustaste
die wichtigsten. Aber auch das Bewegen in (mouseover genannt) oder Verlassen (mouseout) eines
Bereichs eines Elements ist für eine Mausbedienung ein typisches Ereignis.

Die Kombinationsgeste Ziehen und Ablegen („Drag and Drop“) ist eine weitere häufig genutzte
Aktion einer Darstellung. Dabei wird die Maus über ein Element bewegt, eine Maustaste gedrückt
und damit das Element „festgehalten“. Das Element folgt daraufhin der Mausbewegung, bis die
Maustaste los gelassen wird. Hauptsächliches Ziel dieser Interaktionstechnik ist ein Verschieben
eines Elements in der gleichen Hierarchieebene sowie eine Interaktion mit dem „Ziel“. Hierbei wird
ein Element von einem Kontext in einen Anderen überführt. Letzteres wird zum Beispiel häufig in
einem Engineeringwerkzeug (siehe das Beispiel in Kapitel 5.4.1 auf Seite 46) bei einem Lösch-
vorgang benutzt. Dabei wird ein Element aus dem Anlagenkontext über ein Mülleimer (in dessen
Kontext) geschoben.

Eine „Drag und Drop“ Sequenz ist sehr komplex. Der Standard HTML5 ([BFL+14]) definiert
beispielsweise acht Ereignisse im Umfeld dieser Interaktionsform (dragstart, drag, dragenter,
dragleave, dragover, dragexit, drop, dragend). Das in dieser Arbeit vorgeschlagene Konzept soll
jedoch möglichst einfach gehalten werden. Daher ist als „Drag and Drop“ Ereignis nur aftermove
definiert. Die zugehörigen Aktionen werden nach dem Ende der Verschiebegeste ausgeführt. Wei-
terhin kennzeichnet das Vorhandensein des Ereignisses ein Objekt als verschiebbar. In Kombina-
tion mit dem Ereignis mouseover sind jedoch auch unterschiedliche Aktionen für verschiedene Ziele
möglich.

Wird in einer verschachtelten Gruppe das gleiche Ereignis (zum Beispiel ein Klick) mehreren Grup-
penelementen zugeordnet, so wirkt das Ereignis immer auf das lokal „oberste“Element. In dem
Beispiel aus Abbildung 3.7 soll beispielsweise bei einem Klick auf Gruppe-Pumpe1 die Pumpe ange-
schaltet werden, beim Klick auf den TextSollwert jedoch der Sollwert der Pumpe geändert werden.
Es wurde festgelegt, das beim Klick auf den Text das Ereignis2 ausgeführt wird, da dort das Ereignis
„näher“ definiert wurde. Diese Festlegung wird bubbling (siehe [Koc06, Pix00]) genannt. Die nicht
genutzte Alternative ist capturing. Hier findet eine Ausführung des Ereignis1 statt, da dies näher an
der Basis definiert ist.

Auch auf einem Touchscreen gibt es äquivalente Interaktionen die man den Ereignissen Klick,
Doppel-Klick und Drag und Drop zuordnen kann, daher spricht auch diese zukunftsträchtige Tech-
nologie nicht gegen die Festlegung dieser Interaktionsereignisse.

Es fällt auf, dass durch eine Tastatur keine Anwender-Ereignisse ausgelöst werden können. Die
Tastatureingabe wird in diesem Konzept nur als Datenquelle (wie zum Beispiel auch eine Mauspo-
sition) innerhalb der Aktionen (siehe nächstes Kapitel 3.4.4) modelliert.

Das letzte wichtige Ereignis für eine Anwendung sind zeitgesteuerte Aufgaben. Eine Annahme
dieser Dissertation ist, dass für übliche Anwendungen in der Prozessleittechnik eine zyklische Bear-

23

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

Gruppe1

Gruppe-Pumpe1

Kreis Linie Gruppe-PumpeStatus

TextSollwert TextStatus

Gruppe3

Rechteck Text1 Text2

Gruppe4Klick Ereignis1 zugeordnet

Klick Ereignis2 zugeordnet

Abbildung 3.7: Capture und Bubbling

beitung mit konstanter Zykluszeit ausreichend ist. Im Gegensatz zu den bisher vorgestellten Ereig-
nissen wird hier ein Attribut benötigt: die Zykluszeit. Die zugeordneten Aktionen werden regelmäßig
nach Ablauf der eingestellten Zykluszeit ausgeführt.

3.4.4 Aktionen

Neben den Ereignis-Zeitpunkten selbst sind die Aktionen, die jeweils ausgeführt werden sollen,
festzulegen. Genau wie jedem Element beliebig viele Ereignisse zugeordnet werden können, so
können diesem wiederum beliebig viele Aktionen zugeordnet werden (siehe Abbildung 3.8).

Ereignis

Aktion

beinhaltet

1

0...*

Abbildung 3.8: Erlaubte Assoziation von Ereignis und Aktion

Da keine Beschreibungssprache für Darstellungssysteme gefunden wurde, welche die Interaktion
mit Fremddaten und dem Benutzer über ein ähnliches Konzept realisiert (siehe Kapitel 2.3), werden
hier die gewählten Konzepte anhand von Anforderungen für Anwendungen definiert. Diese Aktionen
gehören daher zur abstrakten Ebene des Gesamtkonzepts (siehe Kapitel 3.3), da sie in den vielen
Bedienoberflächentechnologien unterschiedlich definiert werden.

GetValue

Aktion

SetValueBaseclass

SetValue SetConcatValue SetMathValue

IfThenElseInstantiateTemplate RoutePolyline RebuildObject Communication

UnlinkObjects LinkObjects DeleteObject CreateObject RenameObject ChildrenIterator

1

1

n

1

n

1

Abbildung 3.9: UML-Grundstruktur aller Aktionen

24

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Abbildung 3.9 listet diese Aktionen auf. Allen Aktionen gemeinsam ist die Abarbeitungsreihenfolge.
Diese ist ähnlich zur Überlappung der Elemente festgelegt, sodass die Reihenfolge in der Hierarchie
gespeichert werden muss und in dieser die Aktionen abgearbeitet werden.

Die Grundidee der Modellierung ist es, keine Trennung zwischen der Darstellung und dem Auto-
matisierungssystem vorzunehmen. In diesem Konzept wird in der Anwendung die gleiche Aktion
genutzt, um beispielsweise einen Sollwert einer Pumpe zu setzen oder eine Farbe eines Bedien-
knopfes zu setzen. Auch das Auslesen eines Temperatursensors sollte sich den gleichen Mitteln
bedienen wie die X-Koordinate einer Interaktion auf einer Schaltfläche zu ermitteln.

So sind generische Aktionen definiert, welche Werte lesen (Datenquelle, getValue) und andere
Aktionen die diese Werte anschließend (eventuell verändert) schreiben (Datensenke, setValue).
Eine grundlegende Philosophie ist, dass ein lesendes Element (Datenquelle) nicht alleine existieren
kann, sondern immer an seinen Daten-Nutzer (Datensenke) gekoppelt ist. Ein setValue verfügt
daher über genau ein getValue. Diese beiden Aktionen müssen für die Aufgabe natürlich passend
konfiguriert werden.

Es folgt ein Beispiel, um dieses Konzept zu verdeutlichen: Soll beispielsweise der Messwert eines
Temperatursensors zyklisch auf dem Bildschirm gebracht werden, so sind hierfür einige Kompo-
nenten nötig.

Zur Anzeige wird zwingend eine Gruppe benötigt, in dieser liegt hier als Beispiel nur ein Text-
Element für den Wert. Diesem ist ein TimeEvent zugeordnet (konfigurierte Zykluszeit beispielsweise
1 pro Sekunde), welche wiederum ein setValue ausführt. Dieses SetValue ist eingestellt, dass es
den Inhalt (content) des Textes überschreibt. Das GetValue ist dagegen so konfiguriert, dass der
Messwert aus dem Automatisierungssystem gelesen wird. Die Modellierungskette lautet daher:

1 INSTANCE / TechUnits / cshmi / group1 :
2 CLASS / a c p l t / cshmi / Group ;
3 VARIABLE_VALUES
4 x : INPUT SINGLE = 0.000000;
5 y : INPUT SINGLE = 0.000000;
6 width : INPUT SINGLE = 1000.000000;
7 he igh t : INPUT SINGLE = 900.000000;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

10 INSTANCE / TechUnits / cshmi / group1 / Capt ionText :
11 CLASS / a c p l t / cshmi / Text ;
12 VARIABLE_VALUES
13 x : INPUT SINGLE = 75.000000;
14 y : INPUT SINGLE = 15.000000;
15 content : INPUT STRING = " load ing . . . " ;
16 END_VARIABLE_VALUES;
17 END_INSTANCE;
18 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer :
19 CLASS / a c p l t / cshmi / TimeEvent ;
20 VARIABLE_VALUES
21 cyct ime : INPUT SINGLE = 1.000000;
22 END_VARIABLE_VALUES;
23 END_INSTANCE;
24 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer / setContent :
25 CLASS / a c p l t / cshmi / SetValue ;
26 VARIABLE_VALUES
27 elemVar : INPUT STRING = " content " ;
28 END_VARIABLE_VALUES;
29 END_INSTANCE;
30 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer / setContent . value :
31 CLASS / a c p l t / cshmi / GetValue ;
32 VARIABLE_VALUES
33 ksVar : INPUT STRING = " / TechUnits / TU10 / add . value " ;
34 END_VARIABLE_VALUES;
35 END_INSTANCE;

25

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

Wie oben erwähnt kann ein SetValue nicht nur Text, sondern auch alle Eigenschaften der Anzeige
verändern. Dies kann zum Beispiel die Position, Schriftfarbe eines Textes, aber auch die Größe,
Strichfarbe und Füllfarbe eines beliebigen Form-Elements sein. Der Einfachheit halber ist in diesem
Konzept jedoch nur eine Änderung des direkt zugeordneten grafischen Elements (beispielsweise
der Text) möglich. Dies vereinfacht die Modellierung einfacher Anwendung. Für weitergehende
Änderungen existiert ein weiteres Ereignis, welches auf anderen Elementen Aktionen und damit
Veränderung auslösen kann (siehe Kapitel 3.5.2).

Werte aus dem Automatisierungssystem können entweder direkt adressiert werden oder über die
Objekt- beziehungsweise Variablenreferenzen des Vorlagensystems (siehe vorigen Abschnitt 3.4.2)
gelesen und geschrieben werden. Die Konfigurationswerte (ConfigValues) des Vorlagensystems
können auch als lokale Variablen zur Zwischenspeicherung im Anzeigesystem genutzt werden.

Eine Datenquelle GetValue kann neben den Eigenschaften der eigenen Darstellung, Werten aus
einem Automatisierungssystem und den lokalen Variablen, auch noch Information des Bedieners
liefern. Dies kann (während einer Interaktion) eine Mausposition sein oder auch eine Texteingabe,
welche in diesem Fall angefordert wird. Zusätzlich ist noch möglich einen konstanten Wert als
Datenquelle festzulegen.

Für komplexere Manipulationen der Daten wurde SetConcatValue und SetMathValue definiert.
Beide heben die 1:1 Verknüpfung zu den Datenquellen auf und nutzen eine beliebige Anzahl
Quellen. SetConcatValue hängt alle Werte direkt hintereinander und nutzt daraufhin diesen Wert.
Eine mögliche Anwendung wäre beispielsweise den Messwert um eine physikalische Einheit zu
ergänzen:

1 INSTANCE / TechUnits / cshmi / group1 :
2 CLASS / a c p l t / cshmi / Group ;
3 VARIABLE_VALUES
4 x : INPUT SINGLE = 0.000000;
5 y : INPUT SINGLE = 0.000000;
6 width : INPUT SINGLE = 1000.000000;
7 he igh t : INPUT SINGLE = 900.000000;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

10 INSTANCE / TechUnits / cshmi / group1 / Capt ionText :
11 CLASS / a c p l t / cshmi / Text ;
12 VARIABLE_VALUES
13 x : INPUT SINGLE = 75.000000;
14 y : INPUT SINGLE = 15.000000;
15 content : INPUT STRING = " load ing . . . " ;
16 END_VARIABLE_VALUES;
17 END_INSTANCE;
18 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer :
19 CLASS / a c p l t / cshmi / TimeEvent ;
20 VARIABLE_VALUES
21 cyct ime : INPUT SINGLE = 1.000000;
22 END_VARIABLE_VALUES;
23 END_INSTANCE;
24 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer / setContent :
25 CLASS / a c p l t / cshmi / SetConcatValue ;
26 VARIABLE_VALUES
27 elemVar : INPUT STRING = " content " ;
28 END_VARIABLE_VALUES;
29 END_INSTANCE;
30 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer / setContent / Value :
31 CLASS / a c p l t / cshmi / GetValue ;
32 VARIABLE_VALUES
33 ksVar : INPUT STRING = " / TechUnits / TU10 / add . value " ;
34 END_VARIABLE_VALUES;
35 END_INSTANCE;
36 INSTANCE / TechUnits / cshmi / group1 / Capt ionText / t imer / setContent / Un i t :
37 CLASS / a c p l t / cshmi / GetValue ;
38 VARIABLE_VALUES
39 value : INPUT STRING = " ms" ;
40 END_VARIABLE_VALUES;

26

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

41 END_INSTANCE;

Einige Darstellungen benötigen (wenigstens rudimentäre) Berechnungen. Als Beispiel sei hier die
Anzeige von Messwerten mithilfe eines Balkendiagramms genannt. Der Messwert kann in einem
beliebigen Wertebereich liegen. Der korrespondierende Balken muss nun prozentual die gleiche
Höhe verglichen mit dem Maximalausschlag haben, wie der Messwert von seinem Maximalwert. Ist
beispielsweise der Messwert 45 und der Maximalwert 90, so soll der Balken die Hälfte der maximal
erlaubten Höhe erhalten.

Für diese mathematischen Operationen wurde eine einfache Bearbeitungsvorschrift geschaffen.
Diese wird mit dem Baustein SetMathValue abgearbeitet. Die Rechnung beginnt mit dem Zah-
lenwert 0. Jeder Datenquelle wird zusätzlich noch eine mathematische Operation zugewiesen. Der
Zahlenwert wird nacheinander mit der Operationen und den Werten der Datenquellen verändert. Als
Beispiel sei ein Rotationszeiger genannt. Der Winkel in Grad kann über folgende Formel berechnet
werden:

Rotation = PV ∗ 180
PVmax − PVmin

= PV ∗ 180
V alueRange

(3.4.4.1)

SetMathValue Logik:

V alueRange = (0 + PVmax) − PVmin (3.4.4.2)

Rotation = ((0 + PV)/V alueRange) ∗ 180 (3.4.4.3)

In eine lokale Variable wird der Wert PVmax − PVmin vorberechnet. Dazu wird SetMathValue auf
eine neue lokale Variable (beispielsweise V alueRange) konfiguriert und zwei GetValue-Aktionen
zugeordnet (siehe Gleichung 3.4.4.2 und Listing 3.1). Die erste Aktion mit der Operation „Addi-
tion“ und dem Wert PVmax (dies kann fest konfiguriert sein oder beispielsweise aus dem Sensor
ausgelesen werden) addiert den Wert von PVmax auf den Zahlenwert 0. Die zweite Aktion hat als
mathematische Operation „Subtraktion“ und den Wert PVmin. Zusammen wird hiermit die Differenz
gespeichert.

Zyklisch wird mit dieser lokalen Variable der Winkel des Zeigerinstruments berechnet. Eine weitere
SetMathValue-Aktion wird konfiguriert auf die Rotation des Zeigerelements (siehe Gleichung 3.4.4.3
und Listing 3.2). Die erste zugehörige GetValue-Aktion ist konfiguriert als „Addition“ und dem Mess-
wert, PV der aus dem Leitsystem geholt wird. Dies addiert den Wert auf den Start-Zahlenwert 0. Die
zweite GetValue-Aktion ist eine „Division“ mit der lokalen Variable V alueRange und teilt daher den
aktuellen Wert durch die Differenz der Maximal- und Minimal-Werte. Die letzte nötige GetValue-
Aktion ist eine „Multiplikation“ mit dem festen Wert 180.

Die Syntax ist vom Konzept ähnlich zur umgekehrten polnischen Notation. Zu beachten ist, dass es
in diesem einfachen System keine Klammerung gibt, die Stackgröße daher genau 1 ist. Die aktuelle
Operation manipuliert immer den gemeinsamen Zahlenwert. Als Konvention liefert der Präfix für die
getValue Bausteine dessen mathematische Operation. Folgende Präfixe nutzen wie erwähnt den

27

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

mathematischen Operator mit dem bisherigen Wert: add*, sub*, mul*, div*. Die folgenden Präfixe
addieren das Ergebnis: abs*, acos*, asin*, atan*, cos*, exp*, log*, sin*, sqrt*, tan*. Mit pow* wird der
alte Wert potenziert mit dem neuen Wert. Ein Zufallswert von 0 bis zum neuen Wert liefert ran*.

1 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / onload / Save_ValueRange :
2 CLASS / a c p l t / cshmi / SetMathValue ;
3 VARIABLE_VALUES
4 TemplateConfigValues : INPUT STRING = " ValueRange " ;
5 END_VARIABLE_VALUES;
6 END_INSTANCE;
7 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / onload / Save_ValueRange / addMax :
8 CLASS / a c p l t / cshmi / GetValue ;
9 VARIABLE_VALUES

10 TemplateFBReferenceVariable : INPUT STRING = "Max" ;
11 END_VARIABLE_VALUES;
12 END_INSTANCE;
13 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / onload / Save_ValueRange / subMin :
14 CLASS / a c p l t / cshmi / GetValue ;
15 VARIABLE_VALUES
16 TemplateFBReferenceVariable : INPUT STRING = " Min " ;
17 END_VARIABLE_VALUES;
18 END_INSTANCE;

Listing 3.1: SetMathValue Umsetzung von Gleichung 3.4.4.2

1 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / VerlaufGruppe / Zeiger / Cycl icTime / Set_Rotat ion :
2 CLASS / a c p l t / cshmi / SetMathValue ;
3 VARIABLE_VALUES
4 elemVar : INPUT STRING = " r o t a t e " ;
5 END_VARIABLE_VALUES;
6 END_INSTANCE;
7 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / VerlaufGruppe / Zeiger / Cycl icTime / Set_Rotat ion /

addActualValue :
8 CLASS / a c p l t / cshmi / GetValue ;
9 VARIABLE_VALUES

10 TemplateFBReferenceVariable : INPUT STRING = "Pv" ;
11 END_VARIABLE_VALUES;
12 END_INSTANCE;
13 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / VerlaufGruppe / Zeiger / Cycl icTime / Set_Rotat ion /

divValueRange :
14 CLASS / a c p l t / cshmi / GetValue ;
15 VARIABLE_VALUES
16 TemplateConfigValues : INPUT STRING = " ValueRange " ;
17 END_VARIABLE_VALUES;
18 END_INSTANCE;
19 INSTANCE / TechUnits / cshmi / Templates / I O d r i v e r l i b / A IRo ta t i onPo in te rD isp lay / VerlaufGruppe / Zeiger / Cycl icTime / Set_Rotat ion / mul180

:
20 CLASS / a c p l t / cshmi / GetValue ;
21 VARIABLE_VALUES
22 value : INPUT SINGLE = 180.000000;
23 END_VARIABLE_VALUES;
24 END_INSTANCE;

Listing 3.2: SetMathValue Umsetzung von Gleichung 3.4.4.3

Applikationen benötigen auch zwingend die Möglichkeit zu einer bedingten Ausführung. So wurde
eine IfThenElse-Aktion inklusive Bedingungen definiert (siehe auch Abbildung 3.10). Die Verarbei-
tung mehrerer dieser Bedingungen kann mit einem logischen ODER beziehungsweise UND ver-
knüpft werden. Ist eine (oder alle im Falle einer UND Konfiguration) Bedingung erfüllt, so werden
die „then“-Aktionen ausgeführt, alternativ die „else“-Aktionen.

IfThenElse

Bedingungen Then-Aktion Else-Aktion

beinhaltet

1

0...*

beinhaltet

1

0...*

beinhaltet

1

0...*

Abbildung 3.10: Erlaubte Assoziation zur IfThenElse-Aktion

28

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Eine Auflistung der definierten Bedingungen liefert Abbildung/Listing 3.11. Ein Vergleich nutzt die
gleichen Datenquellen die auch schon die SetValue-Aktionen genutzt haben. Der Zahlenwert zweier
solcher Quellen kann jeweils verglichen werden (<,<=,==,!=,>= und >) und liefert damit für die Bedin-
gung eine Aussage zu WAHR oder FALSCH. Für den zweiten zu vergleichenden Wert ist es sinnvoll
mehrere Werte angeben zu können. Somit kann ein Wert bequem gleichzeitig auf mehrere Werte
verglichen werden (beispielsweise Klassenname ist „add“, „sub“ oder „mul“).

1
2 INSTANCE / TechUnits / cshmi / group / checkC lass I te ra to r :
3 CLASS / a c p l t / cshmi / C h i l d r e n I t e r a t o r ;
4 VARIABLE_VALUES
5 Chi ldrenType : INPUT STRING = "OT_DOMAIN" ;
6 END_VARIABLE_VALUES;
7 END_INSTANCE;
8 INSTANCE / TechUnits / cshmi / group / checkC lass I te ra to r . forEachChi ld / I f :
9 CLASS / a c p l t / cshmi / I fThenElse ;

10 VARIABLE_VALUES
11 END_VARIABLE_VALUES;
12 END_INSTANCE;
13 INSTANCE / TechUnits / cshmi / group / checkC lass I te ra to r . forEachChi ld / I f . i f / P e r m i t l i s t :
14 CLASS / a c p l t / cshmi / CompareI teratedChi ld ;
15 VARIABLE_VALUES
16 ch i ldVa lue : INPUT STRING = "OP_NAME" ;
17 comptype : INPUT STRING = "==" ;
18 END_VARIABLE_VALUES;
19 END_INSTANCE;
20 INSTANCE / TechUnits / cshmi / group / checkC lass I te ra to r . forEachChi ld / I f . i f / P e r m i t l i s t . wi thValue :
21 CLASS / a c p l t / cshmi / GetValue ;
22 VARIABLE_VALUES
23 value [3] : INPUT STRING = { " add " , " sub " , " mul " } ;
24 END_VARIABLE_VALUES;
25 END_INSTANCE;

Bedingung

Vergleich Operatorfrage compareIteratedChild

Abbildung 3.11: UML-Grundstruktur der Bedingungen

Die Bedingung Operatorfrage (confirm) stellt dem Bediener eine beliebige Frage (wiederum über
eine Datenquelle festzulegen), welche dieser mit Ja oder Nein beantworten kann.

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / c l i c k / I f_DeleteMode . then / Confirm . i f / Confirm :
2 CLASS / a c p l t / cshmi / Confirm ;
3 VARIABLE_VALUES
4 END_VARIABLE_VALUES;
5 END_INSTANCE;
6 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / c l i c k / I f_DeleteMode . then / Confirm . i f / Confirm . quest ion :
7 CLASS / a c p l t / cshmi / GetValue ;
8 VARIABLE_VALUES
9 value : INPUT STRING = "Do you r e a l l y want to de le te t h i s ob jec t ? " ;

10 END_VARIABLE_VALUES;
11 END_INSTANCE;

Neben den soeben vorgestellten Kontrollstrukturen sind weiterhin auch strukturverändernde Inter-
aktion mit dem Automatisierungsystem definiert. Das Kommunikationssystem ACPLT/KS[Alb03]
liefert eine Basisliste von sinnvollen Kommandos. Dazu gehört Erstellen, Umbenennen, Löschen,
Verknüpfung erstellen und Verknüpfung aufheben. Die Konfiguration dieser Aktionen wird wiederum
über die allgemeinen Datenquellen realisiert. Im folgenden Beispiel wird ein Objekt der Klasse
myClass der Bibliothek /acplt/myLib an der Stelle /TechUnits/TU10 erstellt, wobei der Name beim
Benutzer angefragt wird.

29

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

1
2 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate :
3 CLASS / a c p l t / cshmi / CreateObject ;
4 VARIABLE_VALUES
5 END_VARIABLE_VALUES;
6 END_INSTANCE;
7 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate .Name :
8 CLASS / a c p l t / cshmi / GetValue ;
9 VARIABLE_VALUES

10 Operator Input : INPUT STRING = " t e x t i n p u t : Please enter the name f o r the new ob jec t " ;
11 END_VARIABLE_VALUES;
12 END_INSTANCE;
13 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . Place :
14 CLASS / a c p l t / cshmi / GetValue ;
15 VARIABLE_VALUES
16 value : INPUT STRING = " / TechUnits / TU10" ;
17 END_VARIABLE_VALUES;
18 END_INSTANCE;
19 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . L i b r a r y :
20 CLASS / a c p l t / cshmi / GetValue ;
21 VARIABLE_VALUES
22 value : INPUT STRING = " / a c p l t / myLib " ;
23 END_VARIABLE_VALUES;
24 END_INSTANCE;
25 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . Class :
26 CLASS / a c p l t / cshmi / GetValue ;
27 VARIABLE_VALUES
28 value : INPUT STRING = " myClass " ;
29 END_VARIABLE_VALUES;
30 END_INSTANCE;

Ein weiterer, jedoch nur lesender, Zugriff auf ein Automatisierungssystem bietet die Aktion des
Iterators. Dieser kann über Vektorvariablen oder über eine Struktur iterieren. Eine Struktur kann
zum Beispiel eine Liste aller Variablen oder alle Bausteine eines CFC sein. Für jedes gefundene
Element können daraufhin beliebige weitere Aktionen ausgeführt werden. (siehe [Roc12])

Bei Iteratoren ist es teilweise möglich mehr Metadaten zu erhalten, so dass hier eine spezielle
Bedingung compareIteratedChild definiert wurde. Solche Metainformation können zum Beispiel
Zugriffsrechte oder Vererbungsinformationen beinhalten.

Gerade im Hinblick auf solche Iteratoren ist es sinnvoll eine Kopiervorlage (siehe Kapitel 3.4.2)
auch als Aktion instanziieren zu können. Dafür wurde die Aktion InstantiateTemplate definiert,
welches eine Kopiervorlage in Abhängigkeit von Iterator-Werten erstellt.

Das folgende Beispiel zeigt die Erstellung einer Kopiervorlage. Dabei wird der neuen Instanz mit
dem speziellen Parameter OP_NAME die FBReferenz des aktuellen Iteratorschritts mitgegeben.

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / onload / P a n d i x I t e r a t o r . forEachChi ld / If_ModulFound . then /
Inst_Modul :

2 CLASS / a c p l t / cshmi / Ins tan t i a teTemp la te ;
3 VARIABLE_VALUES
4 Temp la teDe f in i t i on : INPUT STRING = " Pandix / i n t e r n a l / ModulButton " ;
5 x : INPUT SINGLE = 400.000000;
6 y : INPUT SINGLE = 300.000000;
7 FBReference : INPUT STRING = "OP_NAME" ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

Wäre dieser Iterator über eine Vektorvariable statt einer Struktur iteriert, so kann der Wert per
OP_VALUE übergeben werden.

1 INSTANCE / TechUnits / cshmi / Templates / Processcont ro l / FaceplatePCUSSC / BtnCommands / TemplCommands / onload / readCommands . forEachChi ld
/ instCommandOperatorinputValue :

2 CLASS / a c p l t / cshmi / Ins tan t i a teTemp la te ;
3 VARIABLE_VALUES
4 Temp la teDe f in i t i on : INPUT STRING = " Processcont ro l / PCUCommandButton" ;
5 x : INPUT SINGLE = 0.000000;

30

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

6 y : INPUT SINGLE = 0.000000;
7 ConfigValues [2] : INPUT STRING = { " b u t t o n t e x t :OP_VALUE" , "PFCommand:OP_VALUE" } ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

In objektorientierten Automatisierungssystemen gibt es häufig eine Zugehörigkeit zwischen zwei
Objekten. Dies kann beispielsweise in einem CFC der IEC 61131-3 eine Verbindung sein. Um
diese anzeigen zu können wird eine grafische Darstellung dieser Zugehörigkeit benötigt. Die wäre
mit einem Polygonzug statisch realisierbar. Spätestens, wenn der Benutzer jedoch ein Objekt ver-
schieben kann, wird eine echte, logische Verknüpfung zwischen zwei Objekten nötig. Eine Über-
führung dieser logischen Zugehörigkeit in die grafische Darstellung liefert die Aktion Routepolyline
(siehe [Roc12]). Diese kann einen Polygonzug passend berechnen, so dass zwei Punkte verbunden
dargestellt werden.

In Bedienoberflächen ist es nötig eine Teildarstellung vollständig neu aufzubauen. Dies kann
beispielsweise nötig sein, wenn das Automatisierungssystem strukturell verändert wurde oder ein
anderer Teilbereich nun dargestellt werden soll. Daher wurde die Aktion RebuildObject definiert,
welches ein beliebiges (grafisches oder gruppierendes) Element neu aufbaut.

3.4.5 Baustein zur Freitext-Programmierung

Das vorgestellte Modell wurde bewusst einfach gehalten um die meisten, jedoch nicht alle Anwen-
dungen modellieren zu können. Komplexe, dynamische Darstellungen wie beispielsweise ein x,t-
Diagramm oder x,y-Diagramm ist mit den vorgestellten Mitteln schwer bis gar nicht effizient zu
realisieren.

Daher wurde eine Ergänzung namens Blackbox erstellt. Der Name wurde gewählt da die
Verarbeitungs-Logik nicht direkt einsehbar ist [Fin13]. Sie bietet zwei unabhängige Funktionen. So
ist sowohl eine flexible Anzeige komplexer Semantiken, als auch eine textbasierte Programmierung
zur Manipulation der Anzeige möglich. Diese beiden Funktionen sind kombinierbar und erlauben
eine sehr hohe Flexibilität.

Als Anzeige-Technologie wurde hier bewusst HTML [BFL+14] gewählt. Diese Auszeichnungs-
sprache ist die Basis des World Wide Web. Daher ist sie vielen Entwicklern gut bekannt und es
ist sehr viel Literatur verfügbar. Weiterhin ist die Auszeichnungssprache mit performanten Biblio-
theken in viele Projekte einzubetten. Als Beispiel sei hier QtWebEngine oder Chromium Embedded
Framework (CEF) genannt. Die Nutzung dieser Technologie bietet eine einfache Möglichkeit bei-
spielsweise Tabellen, Auflistungen oder Fließtext darzustellen.

Für die textbasierte Programmierung wurde ECMAscript (ECMA-262 [ecm99]) gewählt, welche
auch im World Wide Web gemeinsam mit HTML weite Verbreitung findet. Es gibt mehrere
ECMAScript-Implementierungen für diese Skriptsprache. Am bekanntesten dürfte wohl Mozilla-
JavaScript (eingesetzt in Mozilla Firefox), JScript (eingesetzt in Microsoft Internet Explorer und
Microsoft Edge), Google V8 (Google Chrome) sowie JavaScriptCore (eingesetzt in Apples Safari)
sein.

31

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

Durch diese breite Unterstützung der Technologie scheint die Wahl der Erweiterung keine zu starke
Einschränkung in der zukünftigen Nutzbarkeit zu sein. Trotzdem wird hier das Konzept der Platt-
formunabhängigkeit und damit Zukunftssicherheit bewusst verlassen um mehr Freiheiten in der
Darstellung bieten zu können.

Zur Interaktion der Programmierung mit dem Modell wurde eine spezielle JavaScript-API namens
cshmimodel definiert.

Um das Konzept der „Parametrierung statt Programmierung“ nicht vollständig aufzugeben, wurden
spezielle Variablen für den Baustein ermöglicht. So kann eine Blackbox ohne Verständnis des
JavaScript-Codes an die eigenen Bedürftnisse angepasst werden. Die Erweiterung kann so ähn-
lich einer parametrierbaren Vorlage arbeiten. Dazu wurde das JavaScript-Objekt cshmimodel.
variables in der API definiert. So kann beispielsweise die Aktualisierungsgeschwindigkeit eines
x,t-Diagramms direkt parametrierbar gestaltet werden.

Die API bietet Funktionen, um auf alle Komponenten des Anzeigesystems zuzugreifen, sodass
die textbasierte Programmierung nicht auf Interna der Anzeigetechnologie angewiesen ist. So lie-
fert beispielsweise cshmimodel.SvgElement ein SVGElement-DOM-Interface (siehe [FJF03]) zur
Manipulation der SVG-Seite der Blackbox selber. Der HTML-Teil (als HTMLElement-DOM-Interface,
siehe [BFL+14]) der Blackbox ist über cshmimodel.HtmlFirstElement erreichbar.

Zur Kommunikation mit dem Automatisierungssystem bietet die API weitere Funktionen. So sind alle
Funktionen des Kommunikationssystems KS erreichbar. Über die Funktion cshmimodel.getVar ist
beispielsweise ein Abruf von einer oder auch mehrerer Variablen möglich.

Ein Beispiel liefert das Kapitel 5.6. Eine vollständige Beschreibung der Programmier-API ist im
Anhang 3 im Listing 2 auf Seite 65 abgedruckt. Diese API-Beschreibung kann auch von JavaScript-
Editoren für umfangreiche Unterstützung dienen.

3.5 Erweiterung der Grundkomponenten

Für komplexere Benutzeroberflächen ist das in Kapitel 3.4 vorgestellte Grundmodell nicht ausrei-
chend. Daher wurde es um einige Details ergänzt, ohne jedoch die Grundphilosophie zu verletzen.

3.5.1 Erweiterung der Darstellung

Zur Vereinfachung der Erstellung von Applikationen wurde auf die Definition von Datentypen inner-
halb der Applikationen verzichtet. Alle Werte werden einheitlich als Zeichenkette (String) und damit
reiner Text interpretiert. Nur die Vergleichsoperatoren (siehe Kapitel 3.4.4) wandeln beispielsweise
für einen größer/kleiner-Vergleich den Text kurzzeitig in eine Zahlen-Variable um.

Daraus ergeben sich für die einfache Definition der Textbausteine (siehe Kapitel 3.4.1) in der Praxis
zwei Probleme.

32

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.5 Erweiterung der Grundkomponenten

• Oft ist möglich, dass eine Zahl in unterschiedlichen Genauigkeiten auf dem Bildschirm
gebracht werden soll. Da alle Werte, wie erwähnt, als Text behandelt werden, liegt beispiels-
weise die Fließkommazahl 2 (wenn sie vom Automatisierungssystem geholt wird) in Gleich-
kommadarstellung als 2,0000000 vor. Dies ist in einer Anzeige meist unerwünscht.

• Weiterhin ist ein Text, der aus dem Automatisierungssystem kommt, zu lang um ihn direkt
anzeigen zu können. Dies kann beispielsweise ein langer Name einer Klasse sein, der nicht
in den generisch vorgesehenen Platz passt.

Für beide Probleme wurde eine gemeinsame Lösung gefunden. Das Text-Element erhält zusätz-
lich das Attribut trimToLength. Ist dieser auf den Initialwert 0 so wird der Text ohne Änderung
genutzt. Ist der Wert des Attributes jedoch positiv (beispielsweise 10) so wird ein Text auf diese
Länge gekürzt. Aus „IdentifierType“ wird beispielsweise „Identifier...“. Mit dem Wert -10 wird aus
„IdentifierType“ wird „...tifierType“. Der ungekürzte Text wird als Tooltip bereitgestellt, sodass dieser
beispielsweise als Pop-up-Fenster erscheint, wenn die Maus über dem Text ruht.

Wird eine Fließkommazahl erkannt, so bestimmt trimToLength die Anzahl der anzuzeigenden
Nachkommastellen.

In vielen Anwendungsfällen ist es sinnvoll einen Teil der Anzeige einzublenden. So soll beispiels-
weise das Faceplate einer Pumpendarstellung nicht durchgehend angezeigt werden. Es ist möglich
dies mit den vorhandenen Ereignissen und Aktionen zu realisieren, dies ist jedoch sehr umständlich.
Daher wurde für alle Gruppen ein boolsches Attribut namens hideable definiert. Ist dieses wahr so
kann die Sichtbarkeit über einen Klick auf das Vater-Element einfach umgeschaltet werden. Die
Sichtbarkeit beim Laden ist davon unabhängig und je nach Anwendung passend festzulegen.

Eine wichtige Optimierung ist der bedarfgestützte dynamische Aufbau der Applikation. Einige
Objekte sind schon beim Laden der Anzeige unsichtbar. Dies kann dauerhaft sein (bei Objekten,
welche nur zum Entwickeln der Applikation benötigt wurden) oder sich während der Laufzeit der
Anzeige ändern. Als Beispiel sei hier eine Tab-Navigation genannt, welche viele Tabs definiert
jedoch die meisten beim Laden versteckt. Erst eine Interaktion mit dem Benutzer wechselt die aktive
Anzeige.

Solche Seiten können auch sehr umfangreiche Darstellungen beinhalten. Daher ist ein vollständiges
Laden aller unsichtbaren Kind-Elemente nicht sinnvoll. Hier wurde daher der Ansatz genutzt, dass
alle grafischen Kind-Elemente beim Laden nicht aufgebaut werden. Die Ereignisse des unsichtbaren
Element werden jedoch schon interpretiert. Mit dieser Maßnahme wird gewährleistet, dass bei-
spielsweise ein onload-Ereignis die Sichtbarkeit direkt aktivieren kann. Wird ein bisher verstecktes
Element später sichtbar geschaltet, so werden alle Kind-Elemente erstellt.

3.5.2 Erweiterung der Ereignisse

Interagiert ein Bediener mit einer Anzeige, so erwartet er eine schnelle Reaktion. So wurde schon
1968 von Miller [Mil68] erkannt, dass diese Reaktion schneller als 200 ms erfolgen sollte. Ansonsten

33

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen

ist der Bediener nicht sicher, dass die Interaktion erfolgreich angenommen wurde. Da diese schnelle
Reaktion nicht immer garantiert werden kann, wurde eine direkte visuelle Rückmeldungen bei Klick,
Doppelklick und Rechtsklick implementiert. Das aktivierte Element wird für 800 ms farbig hervor-
gehoben. Die wirkliche Reaktion des Systems kann daher wesentlich langsamer erfolgen, der
Bediener ist trotzdem sicher, dass seine Interaktion vom System registriert wurde.

Wie in Kapitel 3.4.4 erwähnt erlaubt die SetValue-Aktion nur eine Manipulation des direkt zuge-
ordneten Elements. Dies reicht für viele Anwendungen nicht aus, so dass eine Art „publisher
subscriber“-System innerhalb des Anzeigesystems definiert wurde. So wurde neben dem onload
- und TimeEvent-Ereignis ein globalvarchanged-Ereignis definiert. Die zugehörigen Aktionen
werden ausgeführt, wenn eine (beliebige) globale Variable geändert wurde. Somit ist es mög-
lich, durch ein bestimmtes Ereignis eine Änderung an einer anderen Stelle in der Darstellung zu
erzeugen.

3.5.3 Erweiterung der Aktionen

Die Kopiervorlage als Aktion instantiateTemplate erstellt eine Instanz abhängig von Informa-
tionen eines Iterators. Wird die Aktion beispielsweise für eine Engineering-Umgebung genutzt, so
hat sich ein zusätzlicher Parameter namens preventClone bewährt. Mit diesem Parameter kann
eine vollständig identische Kopie einer Vorlage verhindert werden. So würde beispielsweise eine
mehrfache Referenzierung ein grafisches Objekt mehrfach auf dem Bildschirm dargestellt. Dies
kann mit dem erwähnten Parameter verhindert werden.

Mit der Aktion instantiateTemplate kann beispielsweise ein Bedienknopf für mehrere unter-
stützte Kommandos einer Prozessführung (welches in einem Vektor bereitgestellt wurde) erstellt
werden. Alternativ kann in einer Engineering-Oberfläche eine Liste aller vorhandenen Klassen
erstellt werden.

Damit die neu erstellten Darstellungselemente nicht übereinander liegen, wurden die Parameter
xOffset, yOffset sowie maxTemplatesPerDirection ergänzt. Mit den ersten Beiden kann jede
neue Instanz verschoben zur Vorigen erstellt werden.

maxTemplatesPerDirection wird zum Beispiel benötigt, wenn sehr viele Instanzen erstellt werden
sollen und damit eine Art „Zeilenumbruch“ simuliert werden soll. Steht in diesem Parameter bei-
spielsweise „x:3“ so werden maximal drei Instanzen horizontal erstellt und anschließend (um den
yOffset verschoben) die nächste Reihe.

Der Baustein für Bedingungen (siehe Kapitel 3.4.4) vergleicht zwei beliebige Werte (gelie-
fert durch zwei getValue Datenquellen). Im Grundmodell wurde nicht definiert, wie das Ergebnis
des Vergleichs im Fehlerfall eines dieser getValue-Quellen auszusehen hat. Damit der Appli-
kationsentwickler hier alle Möglichkeiten hat, wurde das Verhalten parametrierbar gestaltet. Ist
ignoreError bei einer Bedingung auf wahr eingestellt so wird der Wert als leere Zeichenkette
angenommen. Darauf wird anschließend wie gewohnt der Vergleich dieser Bedingung angewendet.

34

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3.5 Erweiterung der Grundkomponenten

Wurde ignoreError auf falsch parametriert, so wird im Fehlerfall die Verarbeitung der Bedingung
und damit der IfThenElse Aktion abgebrochen.

Eine Anwendung in der Prozessführung (siehe Kapitel 5.5) erforderte eine dynamische Über-
setzung von (englischen) Kommandos in deutsche Beschreibungstexte. So wurde der Baustein
TranslationSource definiert. Dieser Baustein ist von SetValue referenzierbar und liefert eine zen-
trale Zuordnung der Ursprungstexte in die Zieltexte über die Variable translationMapping. Dies
kann beispielsweise den Wert OPEN:OFFEN, CLOSED:ZU haben.

Als Test der einfachen Erweiterung des Modells wurde die experimentelle Aktion Vibrate erstellt,
welche bei unterstützten Geräten (hauptsächlich Mobilgeräten) den Vibrationsmotor kurzzeitig
aktiviert. Die Syntax wurde von der Vibration API [Kos14] des World Wide Web Consortiums über-
nommen. So ist neben einer einfachen Zeitdauer der Vibration (beispielsweise 500 ms) auch ein
Muster durch einen Vektor möglich. So vibriert das Gerät mit der Angabe von [50, 100, 150] für 50 ms,
pausiert für 100 ms und vibriert abschließend noch einmal für 150 ms.

35

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

4 Realisierung

4 Realisierung

Das Modell des vorangegangenen Kapitels 3 ist unabhängig von einer Technologie definiert. In
diesem Kapitel wird eine prototypische Implementierung des Konzepts vorgestellt, um die Praxi-
stauglichkeit unter Beweis zu stellen. Diese Implementierung bildet die technologische Ebene
des Gesamtkonzepts (siehe Kapitel 3.3).

Zur Evaluation des Gesamtsystems muss die Technologie für die Datenbasis (wo die Applikation
gespeichert ist) und das Anzeigesystem (welche die Applikation auf dem Bildschirm bringt und mit
dem Bediener interagiert) festgelegt werden. Diese Wahl beider Systeme ist unabhängig möglich.

Zur Gestaltung einer Anwendung bietet sich eine Datenbank an, welches schon beim Erstellen eine
Syntaxprüfung erlaubt. So darf eine Aktion nur zu einem Ereignis assoziiert werden. Eine Auflistung
der grundlegenden Restriktionen finden sich in den Abbildungen 3.4, 3.6, 3.8 und 3.10 des vorigen
Kapitels. Auch sind nicht alle Werte für die Parameter der Elemente, Ereignisse und Aktionen sinn-
voll. Auch hier ist eine Überprüfung und gegebenenfalls Korrektur schon bei der Erstellung hilfreich.

Das Anzeigesystem muss als wichtigste Anforderung auf gewünschten Plattformen (das können
neben Windows, Linux, macOS auch Mobilgeräte verschiedenster Hersteller sein) zur Verfügung
stehen. Sind mehrere Plattformen gewünscht, so kann das Anzeigesystem mehrfach erstellt werden
oder das System selbst mehrere Plattformen unterstützen.

Weiterhin muss ein Anzeigesystem Kommunikation mit dem Automatisierungssystem erlauben.
Das Anzeigesystem agiert als Client und greift auf einen oder mehrere Automatisierungssysteme
als Server zu. Dazu müssen beide Systeme entweder direkt das gleiche Kommunikationsprotokoll
beherrschen oder es wird ein Gateway zur Umsetzung benötigt.

4.1 Prototypische Implementierung

Zur Validierung wurde am Lehrstuhl für Prozessleittechnik in Aachen das Konzept prototypisch
implementiert. [JE12, JE13] Als Datenbasis zur Speicherung der Anwendung wurde die objektori-
entierte ACPLT/OV-Umgebung (Objekt-Verwaltung) des Lehrstuhls für Prozessleittechnik in Aachen
gewählt. Hiermit lassen sich Modelle der Leittechnik einfach realisieren und ausprobieren. Alle Logik
wird hier in Form von Objekten modelliert. Vor der Nutzung muss eine Modellierung der Vererbungs-
Klassen mit den jeweiligen Variablen erfolgen. Sowohl ein Instanziieren als auch ein schreibender
Zugriff auf die Variablen erlaubt eine Ausführung von Programmcode, so dass in dieser Softwa-
reumgebung eine einfache Validierung der Anwendung schon beim Erstellen möglich ist. Auch die

36

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

4.1 Prototypische Implementierung

Benutzerfreundlichkeit des Engineeringsprozesses wird damit erhöht, indem häufige Fehler auto-
matisch korrigiert werden.

Die verschiedenen Abstraktionsschichten der einzelnen Elemente, Ereignisse und Aktionen kann
über Vererbung einfach umgesetzt werden.

Da ACPLT/OV als Konsolenanwendung konzipiert ist, besitzt es selbst keine Bedienoberfläche. Es
existieren jedoch Software-Werkzeuge, um ein Engineering der Umgebung zu ermöglichen. Dies
wird realisiert durch eine standardisierte Schnittstelle nach dem Client/Server-Prinzip. Jeder OV-
Server bietet daher ein offenes Kommunikationsprotokoll ACPLT/KS [Alb03] als Serverdienst wel-
chen diese Werkzeuge als Klienten nutzen.

Die Umgebung erlaubt eine Gliederung beliebiger Objekte über eine spezielle containment-
Assoziation. Diese Assoziation wird in den Engineering-Werkzeugen als Hierarchie-Ebene darge-
stellt. Dies wird in der Implementierung der Bedienoberfläche genutzt um die Zuordnungen zu grup-
pierenden Elementen zu modellieren. Die Elemente, welche logisch innerhalb einer Gruppe liegen
sollen, werden in OV unterhalb des Gruppenobjekts platziert. Aber auch die Zuordnung von Ereig-
nissen zu Elementen und von Aktionen zu Ereignissen wird über die Hierarchie-Ebene realisiert.
Somit wird ein Objektbaum mit der gesamten Haupt-Anwendung aufgebaut. Die Kopiervorlagen
(siehe Kapitel 3.4.2) sind in einem separaten Objektbaum hinterlegt, um so Updates der genutzten
Vorlagen einfacher handhabbar zu machen. Dahinter steckt die Idee, dass Vorlagen für viele Anwen-
dungen erstellt werden und zusätzlich von anderen Entwicklern stammen (können).

Wie erwähnt muss das Anzeigesystem das Modell der Anwendung von der Datenbasis erhalten.
Dies passiert in der Implementierung über ACPLT/KS. Das Kommunikationsprotokoll ist in einer
binären Variante ([Alb03]; ksXDR genannt) sowie mehreren textbasierte Varianten über HTTP
([FR14a, FR14b]; ksHTTP genannt) spezifiziert. Gerade die Variante XML (ACPLT/KSX, [ME07])
über HTTP ist für viele potenzielle Anzeigesysteme eine einfach zu nutzende Kommunikationsform.

Die Wahl der Technologie des Anzeigesystems ist nicht so kritisch wie bei konventionellen Grafik-
systemen, da diese (wie die Datenbasis) einfach ausgetauscht werden kann. Es muss nur das Meta-
modell (siehe Kapitel 3.4) implementiert werden und schon sind alle vorhandenen Anwendungen
direkt nutzbar. Dieses Metamodell ist mit neun grafischen Elementen, dem Gruppen und Vorla-
gensystem, acht Ereignissen und dreizehn Aktionen ziemlich schlank. Die sieben Form-Elemente,
viele Benutzerereignisse (click, rightclick, doubleclick) und die Kommunikations-Aktionen (create,
rename, delete, link, unlink) sind sich jeweils sehr ähnlich, was den Erstellungsaufwand weiter senkt.

Da die Bedienoberfläche am Lehrstuhl häufig für zusätzliche Diagnosen oder Monitoringanwen-
dungen genutzt wird, bietet sich hier ein installationsfreies Anzeigesystem an. Die Wahl fiel daher
auf eine Webanwendung, also eine Kombination von HTML [BFL+14] und JavaScript [ecm99]. Für
die Darstellung der Form-Elemente wird der Standard Scalable Vector Graphics (SVG) [FJF03]
genutzt, der in allen modernen Browser integriert ist. Somit muss nicht jeder Anwender die Soft-
ware installieren und insbesondere aktuell halten, da die Webanwendung von einer zentralen Stelle
gepflegt werden kann (siehe auch [Sch10]).

37

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

4 Realisierung

Zusammenfassend greift die Abbildung 4.1 nochmal das Konzeptbild 3.1 des vorigen Kapitels auf.
Es zeigt eine ähnliche Darstellung mit Hinweisen auf die jeweilige genutzte Technologie der Imple-
mentierung.

Automatisierungssystem
ACPLT/OV

Anzeigesystem
Webbrowser

Datenbasis
ACPLT/OV

Grafik Ereignisse Aktionen

ACPLT/KSHTTP

Abbildung 4.1: Grundstruktur von ACPLT/cshmi

• Als Datenbasis zur Speicherung der Applikation dient ACPLT/OV.

• Als Anzeigesystem dient eine Webanwendung: Mit diesem interagiert der Bediener direkt. Das
Applikationsmodell wird zum Ladezeitpunkt der Applikation per HTTP übertragen.

• Da Webbrowser nur das HTTP-Protokoll unterstützen benötigt die Implementierung ein Auto-
matisierungssystem, welches einen HTTP-Server integriert hat (wie bei ACPLT/ksHTTP) oder
ein passendes Gateway was die Übersetzung der Kommunikation übernimmt.

38

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch
Anwendungen)

Um die Praxistauglichkeit des vorgestellten Modells für Bedienoberflächen zu beweisen, wurde im
Rahmen dieser Dissertation zentrale Anwendungsbereiche untersucht und exemplarisch in Form
von kleinen Applikationen evaluiert.

So sollte gezeigt werden, dass das Modell im Rahmen der Planung, des Engineering und im Betrieb
erfolgreich eingesetzt werden kann, um Betriebsabläufe zu vereinfachen und den Programmier-
aufwand zu senken. Entsprechend beschäftigt sich Kapitel 5.1 mit der Eignung des Modells zur
automatischen Erstellung von Bedienoberflächen, während Kapitel 5.2-5.5 auf modellbasierte Pro-
gramme zur Anlagenplanung, der Simulation, zum Engineering und zum Betrieb eingegangen wird.
In Kapitel 5.6 wird schließlich untersucht, inwieweit das Modell flexibel durch Freitextprogrammier-
bausteine erweiterbar ist bevor in Kapitel 5.7 ein Fazit gezogen wird.

5.1 Eignung zur automatischen Erstellung von Bedienoberflächen

Eine Bedienoberfläche wird im Regelfall per Hand von einem Anwendungsentwickler erstellt. So
nutzt er zum Beispiel den Qt Creator oder den XAML-Designer von Visual Studio, um eine Bedien-
oberfläche zu erstellen. Dabei muss jede Komponente einzeln programmiert werden.

Um den Prozess zu vereinfachen und den Programmieraufwand zu senken, nutzen die meisten
Hersteller eigene Bibliotheken mit vordefinierten Bausteinen. Auch gibt es Ansätze, wie zum Bei-
spiel autoHMI der TU Dresden[DDFU11], aus R&I-Fließbildern automatisch Bedienoberflächen zu
erzeugen. Die entwickelten Softwaretools sind jedoch bislang herstellerspezifisch und erlauben
keinen universellen Import von Planungsdaten. So ergänzt die Software der TU Dresden haupt-
sächlich die Positionierung der herstellereigenen Generierung der Bedienoberfläche. Daher sollte
eine neue Visualisierungsinfrastruktur die vollständige Generierung und Platzierung von Bedienele-
menten sowie die Verknüpfung dieser mit der Anlagensteuerung erlauben. Sie sollte in der Lage
sein softwareneutrale Datenaustauschformate wie PandIX auszuwerten, um somit auf Planungs-
daten unterschiedlicher Hersteller zuzugreifen und diese automatisch in eine Bedienoberfläche zu
überführen.

Ein Ziel dieser Dissertation war es daher die Eignung des Modells zur automatischen Erstellung von
Bedienoberflächen zu zeigen. Dabei kann die automatische Generierung eine Basis für händische
Optimierung oder auch die endgültig benutzte Variante sein. Siehe hierzu auch Kapitel 2.3.

39

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Evaluation

Zuerst wurde für alle wichtigen Anlagen-Elemente jeweils ein Grafikbaustein erstellt. Diese
bestehen ausschließlich aus den Elementen des HMI-Metamodells. Diese wurden generisch auf-
gebaut, um die Wiederverwendbarkeit zu gewährleisten. Die Bausteine werden noch detailliert in
Kapitel 5.5 vorgestellt.

Für die eigentliche Evaluation wurden aus dem Planungswerkzeug COMOS von Siemens Pla-
nungsdaten einer Versuchsanlage im PandIX-Format exportiert und in die ACPLT Laufzeitumge-
bung geladen (siehe hierzu auch Kapitel 5.2 und [ERD11, SE12, SE13]).

Anschließend wurde für jedes Anlagen-Element geprüft, ob ein entsprechendes Bedienelement
als Grafikbaustein im Modell vorhanden ist. Konnte dieses nicht gefunden werden, so wurde statt-
dessen ein Platzhalter erstellt, welche mit dem generischen Faceplate immerhin eine Grundfunktion
bietet. Die so generierten Anlagen-Elemente wurden in einem weiteren Schritt an die gleiche Posi-
tion gesetzt, die sie auch in den Planungsdaten enthaltenen R&I-Fließbildes eingenommen haben.
So konnte aus dem R&I-Fließbild automatisch eine Bedien- und Beobachtungsfläche für die Ver-
suchsanlage erstellt werden, welche anschließend einfach optimiert werden konnte. Abbildung 5.1
zeigt die Grundstruktur der Bedienoberfläche. Diese besteht aus den generischen Bausteinen zur
Visualisierung der Prozessführung sowie der generierten (und später händisch optimierten) Bedien-
oberfläche der Anlage. Bei der Nutzung wird aus beiden Teilen die Bedienoberfläche der Anlage als
Instanz erstellt. Dieses beinhaltet ein HMI-Anlagenmodell, welches mit der Anzeige (und damit dem
Benutzer) sowie der Anlage kommuniziert. Eine ausführliche Beschreibung einer ähnlichen Aufga-
benstellung auf Basis von regelbasierten Modelltransformationen ist in [Mer18] nachzulesen.

Bedienoberfläche der
Anlage A (Instanz)

Anzeige

HMI-Metamodell PandIX-Metamodell

Prozessführungs-
Grafikbausteine

HMI-Anlagenmodell

PandIX-Anlagen-Modell

Generierung

Anlage A

Bedienoberfläche der
Anlage A (Vorlage)

Abbildung 5.1: Struktur der generierten Bedienoberfläche

40

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.2 Engineering von Anlagenplanungsdaten (R&I-Fließbilder)

5.2 Engineering von Anlagenplanungsdaten (R&I-Fließbilder)

Nachdem in Kapitel 5.1 gezeigt werden konnte, dass der vorgestellte Ansatz durch sein Vorlagen-
system die automatische Erstellung von Bedienoberflächen ermöglicht, soll in diesem Abschnitt auf
die Eignung des Modells zur Anlagenplanung eingegangen werden. Dabei wäre es wieder von Vor-
teil, wenn die Anlagenplanung in einem herstellerunabhängigen Datenformat realisiert würde und
mit möglichst geringem Programmieraufwand machbar wäre.

Evaluation

Als Datenformat wurde dabei wieder das herstellerunabhängige PandIX-Format gewählt. Es
wurde eine vollständige Engineeringoberfläche für PandIX-Elemente mit ACPLT/csHMI erstellt. Ein
Screenshot dieser Applikation ist in Abbildung 5.2 zu sehen. Die Darstellung ist zweigeteilt. So wird
der aktuelle Stand der PandIX-Daten auf der rechten Seite der Engineeringoberfläche dargestellt
und die PandIX-Klassen als Liste im linken Bereich. Im dargestellten Fall enthalten die PandIX-
Daten bereits eine kleine Anlagenstruktur bestehend aus zwei Pumpen, einem Sensor und einem
Behälter.

Der Aufruf der Applikation kann durch folgendes Listing 5.1 erfolgen. So werden über den Parameter
TemplateDefinition (Zeile 6) das PandIX-Engineering und über den Befehl FBReference (Zeile 7)
die anzuzeigenden PandIX-Daten referenziert.

1 INSTANCE / TechUnits / cshmi / engineeringPandIXSheet :
2 CLASS / a c p l t / cshmi / Group ;
3 VARIABLE_VALUES
4 width : INPUT SINGLE = 1675.000000;
5 he igh t : INPUT SINGLE = 1020.000000;
6 Temp la teDe f in i t i on : INPUT STRING = " Pandix / PandixEngineer ing " ;
7 FBReference : INPUT STRING = " / TechUnits / pandix " ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

Listing 5.1: Nutzung des PandIX Engineerings

Mithilfe einer Iterator-Aktion wird anschließend automatisch der Inhalt der PandIX-Daten ausge-
lesen und mit den hinterlegten Modellbausteinen des PandIX-Engineerings verglichen. So werden
die aktuellen Anlagenteile (Pumpen, Ventile . . .) erkannt und auf dem Bildschirm automatisch dar-
gestellt. Aktoren wie Pumpen, Ventile sowie Behälter werden mit allen ihren Anschlusspunkten
visualisiert. Die Rohrleitungen werden grafisch mit Linien dargestellt und verbinden die jeweils
korrekten Anschlusspunkte. Die Messstellen (beispielsweise ein Temperatursensor) werden in der
Anzeige platziert und durch Wirklinien mit der richtigen Stelle verbunden.

Soll das PandIX-Modell nun modifiziert werden, lassen sich aus der Bibliothek der PandIX-
Bausteine neue Instanzen der Grafikbausteine erzeugen und in das HMI-Anlagenmodell integrieren.
Der so genannte „Create Mode“ erlaubt weiterhin neue Anschlüsse (PandIX External Interfaces) an
ein Objekt, z. B. einen Behälter, zu erstellen. Diese können auch per Drag und Drop zum Beispiel
an den oberen oder unteren Rand des Objektes verschoben werden. Neben diesem Modus wurde

41

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Levelup
//134.130.125.4/pandix/TechUnits/pandix

CreatePandix

Sensor

Actuator

ControlF…

Pipe

PipeDNAd…

BlankFla…

OpenFlan…

PipeJunc…

Vessel

LVessel

HeatExch…

Pump

DPump

RPump

Valve

NormalMode
Normal Config

Create Delete

Pump2 Vessel1

Act1

Pump1

Sensor1

Abbildung 5.2: Engineeringoberfläche für PandIX (Klassenliste für die Abbildung gekürzt)

42

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.3 Eignungen des Modells zur Simulationssteuerung

PandIX-Engineering (Vorlage)

PandIX-Engineering (Instanz)

Anzeige

HMI-Metamodell

PandIX-MetamodellPandIX-Grafikbausteine

HMI-Anlagenmodell PandIX-Anlagen-Modell

Abbildung 5.3: Struktur der PandIX-Engineeringoberfläche

ein weiterer Modus implementiert. So kann im „Config Mode“ ein Konfigurations-Faceplate einge-
blendet werden, in dem das PandIX-Element über eine Tabelle konfiguriert werden kann.

Da das HMI-Anlagenmodell ein Abbild der Anlagendaten ist, werden synchron zur Darstellung die
PandIX-Daten verändert. Abbildung 5.3 verdeutlicht noch einmal die beschriebenen Zusammen-
hänge zwischen dem in der Bedienoberfläche dargestellten Anlagenmodell, dem in den PandIX-
Daten gespeicherten PandIX Anlagen-Modell und der Anzeige am Bildschirm.

Zusammenfassend kann festgehalten werden, dass die Anlagenplanung hohe Anforderungen an
das vorgestellte Konzept stellt. Es konnten 33 verschiedene PandIX Grafikbausteine als Vorlage
implementiert werden, sodass auch sehr komplexe Anlagen planbar sind und die Eignung des
Modells für die Anlagenplanung damit gezeigt ist.

Eine genaue Betrachtung der Interna der Applikation befindet sich im Anhang 1 auf Seite 59.

5.3 Eignungen des Modells zur Simulationssteuerung

Eine wichtige Anwendung, welche im Lebenszyklus sowohl in der Planung und dem Betrieb genutzt
wird, ist die Simulation einer Anlage. So existiert für die HART-Praktikumsanlage M3P.AC des Lehr-
stuhls1 ein Simulator, der die gesamte Anlage nachbildet. Der Simulator verfügt über einen Pro-
fibus Anschluss. Am Leitsystem wird er als Siemens ET200M Remote-IO konfiguriert. So kann die
gesamte Konfiguration mit dieser Installation geprüft werden. Die Simulation umfasst die ET200M,
die 32 Sensoren und Aktoren sowie die Anlage inklusive der Produkte selbst. Um physikalisch

1http://m3p.ac/

43

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

realistisches Verhalten der Produkte zu erreichen wurde eine Simulation der Massen- und Energie-
Gleichungen erstellt.

Verriegelungen in einer prozesstechnischen Anlage verhindern auf niedriger Ebene eine Gefahr
für die Anlage sowie Geräte. So kann mit einer Verriegelung beispielsweise verhindert werden,
dass eine Pumpe angeschaltet wird oder bleibt wenn ein Zielbehälter voll ist. Auch eine Aktivierung
einer Pumpe, wenn ein Ventil im Flussweg vollständig geschlossen ist, kann so verhindert werden.
Die Programmierung solcher Verriegelungen muss gründlich getestet werden, ist jedoch potenziell
gefährlich, da die Anlage dabei naturgemäß im Grenzbereich arbeitet. Auch ist ein solcher Test
zeitintensiv, da beispielsweise alle Behälter vollständig leer beziehungsweise voll sein müssen.

Bei der Entwicklung dieser Verriegelungen ist ein oben genannter Simulator sehr hilfreich, da diese
Zustände simuliert wesentlich schneller erreicht werden können und außerdem keine Gefährdung
der Anlage zu befürchten ist. Auch kann so die Anlagensteuerung früher fertiggestellt werden, da
die echte Anlage noch nicht fertiggestellt sein muss. Entsprechend häufig werden Simulationen in
der Anlagenplanung eingesetzt.

Ziel dieses Kapitels ist es daher zu zeigen, dass auch für die Steuerung von Simulationen eine
Bedienoberfläche mit dem vorgestelltem Konzept erstellt und erfolgreich angewendet werden kann.

Evaluation

Für die vorhandene Simulation wurde im Rahmen dieser Dissertation eine Bedienoberfläche erstellt,
welche beispielsweise die einzelnen Füllstände der simulierten Behälter verändern kann.

Wie auch im vorhergegangenen Kapitel wird in der Anzeige ein HMI-Simulationsmodell angezeigt,
welches aus einzelnen Instanzen von Grafikbausteinen besteht und mit der eigentlichen Simulation
(vergleichbar mit den PandIX Daten) im Austausch steht. Abbildung 5.4 verdeutlicht auch hier die
Zusammenhänge zwischen der Anzeige, der Datenquelle und den Modellbausteinen.

Abbildung 5.5 zeigt die erstellte, statische Bedienoberfläche. Bei dieser wurden, im Gegensatz zum
Beispiel des PandIX-Engineerings aus Kapitel 5.2, alle dargestellten Applikationselemente direkt
programmiert. Über das TimeEvent (siehe Kapitel 3.4.3) werden regelmäßig zyklisch alle Simulati-
onswerte geladen und an den entsprechenden Stellen angezeigt. Blaue Balkenanzeigen symboli-
sieren intuitiv den Füllstand der Behälter und wurden über die SetMathValue (siehe Kapitel 3.4.4)
berechnet. Dabei wird über die Proportionalität aus den Grenzwerten der Behälterfüllstände die
Höhe des Rechtecks dynamisch berechnet. Da jedes Form-Element auch rotiert werden kann,
konnte auch ein Rotationszeiger einfach erstellt werden.

Die Ansicht stellt immer den Zustand der aktuell simulierten Anlage da. Für alle simulierten Anla-
geteile werden die Simulationsinformationen über ein Faceplate angezeigt und können verändert
werden. So lassen sich die Temperaturen der Anlagekomponenten per Touchscreen modifizieren.
Die Simulationssteuerung wird seit Jahren am Lehrstuhl im Rahmen von Praktika durch Studenten
genutzt, sodass die Eignung des Modells zur Simulationssteuerung damit gezeigt ist.

44

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.3 Eignungen des Modells zur Simulationssteuerung

Simulationssteuerung (Vorlage)

Simulationssteuerung (Instanz)

Anzeige

HMI-Metamodell

Simulations-MetamodellSimulations-Grafikbausteine

HMI-Simulationsmodell Simulation

Abbildung 5.4: Zusammenarbeit der verschiedenen Modell-Bausteine für die Simulationssteuerung

Abbildung 5.5: Pumpwerk Simulation

45

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

FCin1453 FCout1 476

FCin223

new Dom

del Dom

Con Lib: fb ssc iec611…

//134.130.125.4/engineering/TechUnits/functionChartDomain:

…t/iec61131stdfb/ADD
Add1

…unctionChart.intask

i

IN1453

IN223
OUT 476

…t/iec61131stdfb/ABS
Abs1

…unctionChart.intask

i

IN476 OUT 476
TechUnits

abs1

Add1

Abs1

functionChart

Abbildung 5.6: Engineeringoberfläche mit Continuous Function Chart

5.4 Engineering von Anlagensteuerungen

Während bislang gezeigt werden konnte, dass das Modell erfolgreich für Bedienoberflächen zur
Anlagenplanung und Simulation eingesetzt werden kann, wird im nachfolgenden Kapitel das
Erstellen einer Anlagensteuerung untersucht. So werden in der Prozessleittechnik Anlagen nur in
den seltensten Fällen in Programmiersprachen wie C oder C# programmiert, sondern meist unter
Zuhilfenahme einer der IEC61131 Sprachen sowie anwendungsspezifischer Sensor/Aktor Bau-
steinen. Siehe auch Kapitel 2.1. Entsprechend wurde im Rahmen dieser Dissertation geprüft, ob
sich das Modell auch zur Erstellung von Engineeringwerkzeugen für eine Anlagensteuerung eignet.
Im nachfolgenden Kapitel 5.4.1 wird daher auf die Eignung des Modells für ein Engineering mittels
der Funktionsbausteinsprache, auch bekannt als Continuous Function Chart (CFC, [IEC03]), einge-
gangen, während sich Kapitel 5.4.2 dem Engineering mit der Ablaufsprache (Sequential Function
Chart, SFC, [IEC03]) widmet.

Die Hauptphilosophie aller vorgestellten Engineering-Modelle ist übernommen von der gesamten
ACPLT-Modelllandschaft: Das Automatisierungssystem ist die zentrale Datenbank des Prozesses
(„Wahrheit liegt im Zielsystem“ [Mey00]). Das Anzeigesystem speichert keine Daten, sondern liest
und schreibt direkt ins Automatisierungssystem.

5.4.1 Engineering einer Funktionsbausteinsprache nach IEC 61131-3

Beim Engineering von Funktionsbausteinen wird das Zusammenspiel verschiedener Aktoren und
Sensoren betrachtet, die über Operatoren miteinander verknüpft sind. Dabei sollten alle Funktions-
bausteine mit ihren Variablen (inklusive der aktuellen Werte) angezeigt werden können, damit eine
einfache und für den Benutzer leicht verständliche Verknüpfung der Bausteine untereinander mög-
lich ist. Bei einem Additionsoperator würden also entsprechend Abbildung 5.6 zwei Eingangsgrößen
(Volumenstrom 1 und Volumenstrom 2) sein und eine Ausgangsgröße (gesamter Volumenstrom)
dem Benutzer mit Variablenname und Wert angezeigt werden. Bei einem Motorbaustein wären
es zum Beispiel die Zielgeschwindigkeit, die Beschleunigungszeit sowie die Beschleunigungskurve
als Eingangsvariable und die aktuelle Drehgeschwindigkeit als Ausgabevariable. Weiterhin sollte

46

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.4 Engineering von Anlagensteuerungen

die Anzeige ein Gruppieren der Bausteine ermöglichen, um auch bei komplexen Anlagen eine gute
Übersichtlichkeit zu gewährleisten. Schließlich sollten diese Hierarchieebenen für den Benutzer ein-
fach zugänglich sein.

Evaluation

Im Rahmen dieser Arbeit wurde das in Abbildung 5.6 dargestellte Engineering-Werkzeug für die
Funktionsbausteinsprache, auch bekannt als Continuous Function Chart (CFC, [IEC03]), program-
miert. Im Zentrum der Enineeringoberfläche sind zwei Elementarfunktionsbausteine zu sehen, ein
Additionsbaustein (Add1) sowie ein Absolutbaustein (Abs), die miteinander über eine Variable ver-
knüpft sind. Gemeinsam ergeben sie den Funktionsbaustein „functionChart“ der zwei Eingangs-
größen FCin1 und FCin2 hat sowie eine Ausgangsgröße FCout1. Neben den Eingangs-/ Ausgangs-
größen steht jeweils der aktuelle Wert der Variable. So wird im Additionsbaustein zu 453 der Wert
23 addiert und damit eine Variable mit dem Wer 476 an den Absolutbaustein übergeben. Dieser
bildet den Betrag des Wertes und gibt diesen als Ausgangsvariable des FunctionChart-Bausteines
wieder aus.

Weiterhin enthält die dargestellte Engineeringoberfläche links eine Anzeige der bislang verfügbaren
Hierarchieebenen, wobei die einzelnen Ebenen durch Anklicken der Pfeil-Buttons aus- und ein-
klappbar sind, sowie zahlreiche Buttons zur Modifizierung der Anzeige und damit der Anlagen-
steuerung. So erscheinen beim Klicken auf die Buttons fb, SSC sowie iec61131stdb eine Liste
der in den entsprechenden Bibliotheken enthaltenen Funktionsbausteine. Wählt ein Benutzer einen
neuen Baustein aus einer der Bibliotheken aus, so erscheint ein Konfigurationsfenster zur Defi-
nition des Bausteinnamens. Variablenanzahl, Variablenname sowie Typ sind bei jedem Baustein
vordefiniert und werden dem Benutzer mit dem eingegeben Variablennamen im Anschluss auf dem
Display an einer vordefinierten Position eingeblendet. Der Initiator der Abarbeitung (Task Parent)
wird automatisch konfiguriert und auch im Kopfbereich angezeigt.

Die Position des Bausteins lässt sich anschließend per Drag und Drop frei anpassen und jederzeit
verändern. Ebenso lässt sich nachträglich der Name durch Doppelklick auf die entsprechende Zeile
editieren. Der Button Con ermöglicht wiederum dem Benutzer neue Verbindungen zwischen beste-
henden Funktionsbausteinen zu erzeugen. Weiterhin können über den Button Lib: weitere Biblio-
theken geladen werden, die im Anschluss dem Benutzer wie auch die bisher aktiven Bibliotheken
im oberen Teil der Bedienoberfläche angeboten werden. Schließlich enthält die Oberfläche noch je
einen Button zum Erzeugen und Löschen einer Hierarchieebene, einen Button zum Aktualisieren
der Anzeige sowie einen Button zum Ausblenden der kompletten linken Baumstruktur. Diese letzte
Funktion wurde implementiert, damit der Benutzer zu Dokumentationszwecken ein übersichtliches
Abbild der Engineeringoberfläche drucken kann.

Wie auch in den vorhergegangenen Anwendungen wurde die Anzeige von allen vorhandenen
Funktionsbausteinen und deren Variablen als Iterationsschleife implementiert. Diese findet bei-
spielsweise einen Funktionsbaustein und erstellt die Visualisierung für diesen Baustein über eine
parametrierte Kopiervorlage. Identisch wurde auch die Anzeige der nutzbaren Bibliotheken und
deren Klassen abgefragt. Da die Baumansicht immer nur so weit aufgeklappt wird wie benötigt

47

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

und unsichtbare Teile der Anzeige vom System nicht weiter aufgebaut werden müssen (siehe
Kapitel 3.5.1), ist die Bedienung auch bei sehr komplexen Hierarchiestrukturen noch performant.
Weiterhin konnte durch die Realisierung der Bausteinverbindungen über Polygonlinien eine sehr
hohe Gebrauchstauglichkeit erreicht werden. So kann ein Bediener zu jeder Zeit Bausteine per
Drag und Drop (Event: aftermove) verschieben während die Polygonzüge dabei über die Aktion
RoutePolyline zyklisch an die aktuelle Position der Verbindungspartner angepasst werden. Da für
das menschliche Auge eine Neuberechnung alle 0,3 Sekunden ausreichend war, konnte auch diese
Funktion sehr performant realisiert werden. Eine Schwachstelle wurde allerdings im Zuge der Imple-
mentierung erkannt. So war die Darstellung und Manipulation der Abarbeitungsreihenfolge nicht mit
dem Konzept realisierbar. Dies wäre jedoch über eine Erweiterung der Aktion linkObjects möglich
und solle in nachfolgenden Forschungsarbeiten daher Betrachtung finden.

5.4.2 Engineering einer Ablaufsprache nach IEC 61131-3

Neben der Funktionsbausteinsprache ist die Ablaufsprache Sequential Function Chart (SFC, [IEC03])
die weit verbreitete Programmiersprache für die Prozesstechnik. Im Gegensatz zur Funktionsbau-
steinsprache laufen dabei die Bausteine nicht parallel ab, sondern werden sequenziell abgearbeitet.
Ziel dieses Kapitels ist die Eignung des Modells auch zur Erstellung eines Engineeringtools für die
Anlagensteuerung mittels Ablaufsprache zu zeigen.

Evaluation

Der am Lehrstuhl entwickelte SequencialControlChart Funktionsbaustein ist ein dynami-
scher Funktionsbaustein, welcher „innen“ per Ablaufsprache programmiert wird [YGE13a, Yu16,
YGE13b]. Für diesen Baustein wurde die in Abbildung 5.7 dargestellte Engineeringoberfläche
erstellt. Um der starken Koppelung von CFC und SFC dabei Rechnung zu tragen wurde diese
Bedienoberfläche direkt in das CFC-Engineering-Werkzeug des vorigen Kapitels 5.4.1 integriert.

Bei Auswahl eines SequencialControlChart Bausteines wird entsprechend ein spezieller Header
in der Mitte der Bedienoberfläche erzeugt. Darunter werden die Bestandteile des Funktionsbau-
steines untereinander dargestellt: Schritte, Transitionen und Aktionen. In diesem Beispiel folgt auf
den Startbaustein INIT eine Transition (trans1), die aktuell geschlossen ist (schwarze Kennzeich-
nung). Beim Öffnen würde das Programm zu Schritt 1 (step1) übergehen und die Eingangsva-
riablen von Funktionsbaustein add1 (add1.IN1 = 42 und add1.IN2 = 23) sowie die Eingangsva-
riable von Funktionsbaustein abs1 (abs1.IN1 = -5) setzen. Nach Erfüllung der Bedingung in trans2
(aktuell gegeben), würde die Addition in step2 ausgeführt werden. Der Baustein abs1 würde durch
diese Programmierung jedoch nicht angestoßen werden, da in step2 nur die Ausführung des add1-
Bausteins angestoßen wird. Da anschließend transEnd nicht geöffnet ist, würde die Routine in
step2 stehen bleiben und auf eine Änderung der Transition warten.

Wie auch im CFC-Engineering-Werkzeug des vorigen Kapitels 5.4.1 wurden auch bei dieser
Bedienoberfläche wieder Buttons zur Modifikation vorgesehen. So kann mit AddStep ein neuer
Schritt generiert, mit AddTrans eine neue Transition (mit zwei Verbindungen) erzeugt werden und

48

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.4 Engineering von Anlagensteuerungen

INIT

trans1

new Dom

del Dom

TechUnits

Con Lib: fb ssc iec611…

//134.130.125.4/engineering/TechUnits/SSCDomain:

SSCAddStep AddTrans

EN0

initStepN…INIT

endStepNa…END

CMD

woStText INIT

activeStep INIT

END

step1
S add1.IN1 42
S add1.IN2 23

New Action

Target Value/Command Parameter

step2
E add1

New Action

Target Value/Command Parameter

trans2

transEnd

…t/iec61131stdfb/ADD
add1

…echUnits/SSC.intask

i

IN10

IN20
OUT 0

…t/iec61131stdfb/ABS
abs1

…echUnits/SSC.intask

i

IN10 OUT 0
S abs1.IN1 -5

Abbildung 5.7: Engineeringoberfläche mit Sequential Control Chart

49

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

mit new Action eine Variable gesetzt (set: S) oder einen Baustein ausgeführt werden (execute:
E). Des Weiteren kann über EN der Baustein aktiviert (enable) werden, über initStepName bzw
endStepName der Startname/Endename der Routine gesetzt und über CMD ein Reset ausgelöst
werden. Die Anzeigen WoStText und activeStep geben schließlich Auskunft über den aktuell aktiven
Schritt. Im Hintergrund laufen auch bei dieser Applikation wieder zahlreiche Suchschleifen und
Instanziierungsoperationen ab, die auf die SFC/SSC-Bausteine zugreifen. So wird beim Sequen-
cialControlChart erst (zum Ereignis onload) geprüft, wie der initiale Schritt heißt (dieser hat im
Beispiel den Standardnamen INIT und wird in der Applikation im Header als initStepName ange-
zeigt). Anschließend wird dieser per Iterator gesucht und die Kopiervorlage für einen Schritt erstellt.
Daraufhin werden alle verbundenen Transitionen über die Assoziation nextTransitions gesucht und
diese mithilfe einer Kopiervorlage dargestellt. Diese Kopiervorlage der Transition sucht nun über
die Assoziation previousTransitions die nächsten Schritte und lädt auch hierfür jeweils eine Kopier-
vorlage. Werden Zustandsmaschinen beschrieben sind in Ablaufsprachen Schleifen sehr häufig.
Um zu verhindern, dass die rekursive Analyse der Struktur in eine Endlosschleife läuft, wurde die
Option preventClone (siehe Kapitel 3.5.3) implementiert. Müsste ein InstantiateTemplate ein
exakt gleiches Darstellungs-Objekt (geprüft über den Namen der Referenz) erstellen, so wird die
Erstellung des Duplikats abgebrochen und die Endlosschleife damit unterbrochen. Durch intensiven
Einsatz von Iteratoren und globalvarchanged-Ereignissen konnte der Großteil der Anforderung an
das SFC-Engineering erfüllt werden. Allerdings wird durch den Aufbau aus HMI-Modellbausteinen
die Struktur der Software sehr komplex, sodass Sie nur schwierig zu warten ist.

5.5 Eignung für Bedienoberflächen im Betrieb

Auch während des Betriebs einer Anlage kommen Bedienoberflächen zum Einsatz. So muss der
Bediener zu jeder Zeit einen schnellen Einblick in den aktuellen Zustand der Anlage erlangen.
Hierfür gibt es von jedem Hersteller eines Prozessleitsystems eigene Tools um anwendungsspe-
zifische Bedienoberflächen (das sogenannte Bedienen und Beobachten) zu erstellen.

Häufig ist die Interaktion dabei jedoch über eine Freitextprogrammierung gelöst. So stellt zum Bei-
spiel Honeywell einen grafischen Editor zur Verfügung, mit dem man ein grafisches Abbild der
Anlage erstellen kann. Die Kommunikation mit der Anlage, die Darstellung von Messwerten und die
Interaktion muss jedoch in JavaScript frei programmiert werden. Entsprechend erfordert die War-
tung und Anpassung solcher Bedienoberflächen in der Regel spezielle Programmierkenntnisse und
ist nicht von Anwendern durchführbar. In diesem letzten Abschnitt des Kapitels wird daher unter-
sucht, ob sich die Wartung und Anpassung von für den Betrieb vorgesehenen Bedienoberflächen
durch einen modellbasierten Aufbau vereinfachen lässt, sodass auch Personen mit nur begrenzten
Programmierkenntnissen Modifikationen vornehmen können.

Als Beispiel soll dabei die Prozessführung eines Elektro-Lichtbogenofens betrachtet werden, wel-
cher aus Kühlsystemen, Hydraulik, Ofen und Gleichrichter besteht. Alle Sensoren und Aktoren
benötigen dabei eine angepasste Darstellung mit farbigem Hinweis auf den aktuellen Zustand und
die Möglichkeit der Interaktion. So sollte über die Bedienoberfläche nicht nur der aktuelle Zustand
erkannt, sondern zum Beispiel die Pumpleistung einer Pumpe auch verändert werden können.

50

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.5 Eignung für Bedienoberflächen im Betrieb

Abbildung 5.8: Bedienoberfläche einer komplexen Anlage

Evaluation

Für die Prozessführung des Elektro-Lichtbogenofens wurde die in Abbildung 5.8 dargestellte
Bediensoftware erstellt. Im oberen Bereich hat der Benutzer dabei die Möglichkeit sich verschie-
dene Bereiche der Anlage auf den Bildschirm zu holen. Im Screenshot ist der Kühlwasserkreislauf
ausgewählt, dessen Komponenten im rechten Bereich der Bedienoberfläche in Form eines R&I-
Fließbildes dargestellt werden. Entsprechend sind hier Darstellungen für alle verfahrenstechnischen
Anlagenteile (wie Pumpe oder Ventil) vorhanden. Klickt man auf eine dieser Darstellungskompo-
nenten, so öffnet sich ein passendes Faceplate.

Neben diesen Anlagenkomponenten werden dem Benutzer Faceplates zu besonders wichtigen
Anlagenkomponente dauerhaft dargestellt. So besteht zum Beispiel ein Prozessführungsbaustein
für die Motoren (N134 und N136) des Kühlkreislaufes. Hier werden dem Benutzer zu jeder Zeit Feh-
lermeldungen über das Submenü Flt angezeigt und direkte Möglichkeiten der Interaktion geboten,
wie zum Beispiel das Anhalten über einen STOP-Knopf. Weiterhin beinhaltet die Bedienoberfläche
Anzeigefelder mit aktuellen Sensorwerten. So wird von einem Temperatursensor T099_PV aktuell
eine Kühlmitteltemperatur von 20°C gemessen und dem Bediener darstellt.

51

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Die Prozessführungsbausteine der Steuerung wurden über ein Vererbungssystem erstellt, sodass
ihre Grundstruktur immer gleich aufgebaut ist und sich nur in spezialisierten Diensten unterscheidet
(siehe [YQE10]). Dies wurde auch in der Bedienoberfläche genutzt. So haben alle Prozessführungs-
bausteine ein gemeinsames Faceplate und damit eine ähnliche Anzeige. Hier wurde das gleiche
Anzeigemodell der Prozessführungsbausteine genutzt wie auch schon in Kapitel 5.1.

Das Faceplate muss kaum parametriert werden, sondern analysiert die jeweiligen Fähigkeiten
selbst und stellt entsprechend angepasste Bedienelemente dar. Diesem generischen Ansatz kommt
zugute, dass alle Prozessführungsbausteine über eine Ausgangs-Variable die jeweils unterstützten
Kommandos zur Verfügung stellen. Diese Kommandos werden über die Aktion ChildrenIterator aus-
gelesen und den Bediener als Schaltflächen präsentiert. Nachdem diese Vorarbeit einmalig erstellt
wurde, ist das Erstellen der Bedienoberfläche sehr einfach, da pro Prozessführungselement ein
identisches Template angesprochen wird. Listing 5.5 gibt einen kleinen Einblick in den Program-
miercode. So wird das generische Faceplate (Zeile 6) an einer Position erstellt und ein Prozessfüh-
rungsbaustein referenziert (Zeile 7).

1 INSTANCE / TechUnits / cshmi / ElboMainSheet / hydraul icPumpUnit / bubFrame / Pumpstation /GCU010 :
2 CLASS / a c p l t / cshmi / Group ;
3 VARIABLE_VALUES
4 x : INPUT SINGLE = 200.000000;
5 y : INPUT SINGLE = 200.000000;
6 Temp la teDe f in i t i on : INPUT STRING = " Processcont ro l / FaceplatePCUGeneric " ;
7 FBReference : INPUT STRING = " TechUnits / P30 / IC10 / PU10 / PS20 / TU10 /GCU010" ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

Schließlich wurde eine Alarmtabelle programmiert, in der der Status von 81 möglichen Alarmen dar-
gestellt wird. Diese lässt sich ebenfalls über die Bedienoberfläche aufrufen und stellt dem Benutzer
eine Liste der aller aktuellen Fehlermeldungen zur Verfügung.

Die Alarmtabelle fragt zyklisch den aktuellen Alarmzustand der benötigten Prozessführungsbau-
steine ab. Im Fehlerfall sollte die Applikation die jeweiligen Einträge in der Tabelle blinken lassen.
Diese Anforderung erforderte eine Synchronisation aller TimeEvents. Andernfalls war es sehr stö-
rend, dass jeder Alarm zwar in der gleichen Frequenz blinkte, jedoch zu den Anderen phasen-
verschoben war. Die Synchronisation erreichte, dass alle TimeEvents (beziehungsweise dessen
Aktionen) basierend auf der jeweiligen Zykluszeit gleichzeitig abgearbeitet wurden. So wurde
erreicht, dass der Farbwechsel des Blinkens gleichzeitig auf dem Bildschirm sichtbar wurde. Zusätz-
lich hatte diese Änderung den Vorteil, dass die jeweilige Kommunikation mit dem Automatisierungs-
system in eine Anfrage gebündelt werden konnten und damit weniger Ressourcen verbraucht.

In Abbildung 5.9 ist die Struktur der Modell-Bausteine dargestellt. Die hier gezeigten
Prozessführungs-Grafikbausteine sind dieselben, welche auf in Kapitel 5.1 genutzt wurden. Hier
ist nur die Bedienoberfläche selbst vollständig händisch erzeugt worden.

52

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.6 Integration von fremden Bibliotheken in die Modellstruktur

Bedienoberfläche der
Anlage B (Instanz)

Anzeige

HMI-Metamodell

Prozessführungs-
Grafikbausteine

HMI-Anlagenmodell Anlage B

Bedienoberfläche der
Anlage B (Vorlage)

Abbildung 5.9: Zusammenarbeit der verschiedenen Modell-Bausteine für das Bedienen und Beobachten

5.6 Integration von fremden Bibliotheken in die Modellstruktur

Während in den bisherigen Kapiteln der weite Einsatzbereich des entwickelten Modells gezeigt
werden konnte, soll in diesem Kapitel die Offenheit des Modells für die Integration fremder Biblio-
theken gezeigt werden.

So wurde für die Blackbox (siehe Kapitel 3.4.5) ein einfach zu verwendendes x(t)-Diagramm erstellt
und damit die einfache Nutzbarkeit von vorhandenen JavaScript-Bibliotheken gezeigt. Hierfür wurde
die Bibliothek „Smoothie Charts“2 eingebunden. Diese erlaubt es, wie in Abbildung 5.10 dargestellt,
Live-Daten direkt anzuzeigen. Das Template wurde so angelegt, dass die Interna von Smoothie
komplett gekapselt wurden. Der Nutzer kann in der Objektwelt der gewohnten Applikation bis zu
zehn Werte des Automatisierungssystem referenzieren. Weiterhin ist es möglich, den minimalen
und maximalen Wert, die Farben der Beschriftung und die Laufgeschwindigkeit der Anzeige zu
manipulieren.

Abbildung 5.10: Beispieldarstellung der JavaScript-Bibliothek „Smoothie Charts“

Nachfolgende Listings geben einen Einblick in die Programmierung.
2http://smoothiecharts.org/

53

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

1 INSTANCE / TechUnits / cshmi / xtshowcase / xtdiagram :
2 CLASS / L i b r a r i e s / cshmi / Group ;
3 VARIABLE_VALUES
4 x : INPUT SINGLE = 0.000000;
5 y : INPUT SINGLE = 0.000000;
6 width : INPUT SINGLE = 1000.000000;
7 he igh t : INPUT SINGLE = 900.000000;
8 Temp la teDe f in i t i on : INPUT STRING = " xtdiagram " ;
9 FBReference : INPUT STRING = " " ;

10 FBVariableReference [1] : INPUT STRING = { " data1 : / TechUnits /TU/ random . OutS " } ;
11 ConfigValues [4] : INPUT STRING = {
12 " minValue:−1000 " , " maxValue :1000 " , " v e l o c i t y :10 " , " cycTime :0 .05 "
13 } ;
14 END_VARIABLE_VALUES;
15 END_INSTANCE;

Listing 5.2: Parametrierung des x(t)-Diagrams

So lassen sich zum Beispiel Sensordaten einer Anlage in Echtzeit mit der Konfiguration aus Lis-
ting 5.2 auf dem Bildschirm anzeigen. Die Positionierung und Größendefinition erfolgt per x, y, width
und height. Der Parameter TemplateDefinition referenziert die Kopiervorlage mit dem entspre-
chenden Namen. Der sonst viel genutzte Parameter FBReference wird hier nicht genutzt, da dieser
eine Objekt-Referenz entgegennimmt. Stattdessen wird auf den Parameter FBVariableReference
gesetzt, da dieser mehrere benannte Variablen adressieren kann. Im Beispiel ist das ein Baustein,
welcher Zufallswerte liefert. Der Name data1 muss äquivalent zu den Interna der Kopiervorlage
übergeben werden. Hier ist wie oben angedeutet data1 bis data10 möglich. In dem Parameter
ConfigValues erfolgt die erwähnte optionale Konfiguration.

1 INSTANCE / TechUnits / cshmi / Templates / xtdiagram / diagrammagic / jsMinValue . value :
2 CLASS / a c p l t / cshmi / GetValue ;
3 VARIABLE_VALUES
4 TemplateConfigValues : INPUT STRING = " minValue " ;
5 END_VARIABLE_VALUES;
6 END_INSTANCE;

Listing 5.3: Koppelung der Variablen der JavaScriptwelt mit der Modellwelt

Das Listing 5.3 zeigt einen Ausschnitt der Koppelung der Modell-Welt mit der JavaScript-Welt. Auf
die erwähnte ConfigValue minValue der Kopiervorlage (Zeile 4: TemplateConfigValue) kann per
JavaScript lesend (Zeile 2: GetValue) über den Namen jsMinValue (Zeile 1) zugegriffen werden.

var minValue = 0;
i f (cshmimodel . v a r i a b l e s . jsMinValue) {

var temp = parseFloat (cshmimodel . v a r i a b l e s . jsMinValue . getValue ()) ;
i f (! isNaN (temp)) {

minvalue = temp ;
}

}

Listing 5.4: Parametrierung des x(t)-Diagrams

Schließlich gibt Listing 5.4 einen Einblick in den Code innerhalb der Blackbox. Zuerst werden Stan-
dardwerte in eine Variable geschrieben und daraufhin mithilfe der Blackbox-API (siehe Anhang 3)
geprüft, ob der Parameter jsMinValue vorhanden ist und eine gültige Zahl repräsentiert. In diesem
Fall wird dieser Wert übernommen und im Anschluss an SmoothieCharts übergeben.

54

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

5.7 Fazit

5.7 Fazit

Zusammenfassend hat die Evaluation des Modells ergeben, dass sich das Konzept auf klassische
Applikationen der Prozessleittechnik wie die Simulationssteuerung oder das „Bedienung und Beob-
achten“ gut anwenden lässt.

Der in dieser Arbeit vorgestellte Ansatz der Modellierung vereinfachte weiterhin durch sein Vorla-
gensystem die automatische Erstellung der Bedienoberfläche. Hier konnten durch die gemeinsame
Nutzung der Visualisierung aller benötigten Prozessführungsbausteine auch bei der Evaluation
„Bedienung und Beobachten“ direkt Synergieeffekte genutzt und Engineeringaufwand eingespart
werden.

Selbst die Erweiterung um den Freitextprogrammier-Baustein fügt sich schlüssig ins Gesamtkon-
zept ein. Somit kann das Modell für mehr grafisch komplexere Applikationen genutzt werden. Der
Anwender benötigt dabei keine JavaScript-Kenntnisse und kann schnell zu einem zufriedenstel-
lenden Ergebnis gelangen. Dass er bei der Nutzung dieses Bausteins die Plattformunabhängigkeit
verliert, ist er Nachteil, den er explizit in Kauf nehmen muss.

Muss eine Applikation jedoch in einer sehr stark dynamischen Umgebung oder mit sehr komplexen
Benutzerinteraktion arbeiten, so kommt das Modell an seine Grenzen. Dies war beispielsweise bei
den Engineering-Applikationen der Fall gewesen. Hier wird auch die Wartbarkeit der Applikation
eine Herausforderung und erfordert gute Dokumentation der Applikationsinterna.

55

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

6 Diskussion und Ausblick

6 Diskussion und Ausblick

Ziel der Arbeit war die Evaluation eines neuartigen Konzepts der Modellierung einer Benutzungs-
schnittstelle für die Prozessleittechnik. Dieses sieht die Trennung in drei Komponenten vor: Die
Datenbasis (1) speichert das vollständige Modell der fertigen Benutzungsschnittstelle. Das Anzei-
gesystem (2) lädt und interpretiert dieses Modell und kommuniziert bei Bedarf mit dem Automati-
sierungssystem (3).

Im Gegensatz zu vorhandenen Modellierungen werden in dem vorgestelltem Ansatz nicht nur alle
grafischen Elemente, sondern auch alle Ereignisse und dazugehörigen Aktionen als atomare Kom-
ponenten einzeln modelliert. So wurden neben den grundlegenden Grafikelementen (wie Text,
Rechteck, Kreis) auch die wichtigsten Benutzerinteraktionen und ausgewählte übergeordnete Ereig-
nisse (wie einmalige oder zyklische Abarbeitung) in das Metamodell mit aufgenommen. Weiterhin
wurden Aktionen zur Manipulation der Anzeige sowie des Automatisierungssystems festgelegt.
Schließlich wurde im Metamodell für wiederkehrende Fragmente der Applikation auch ein parame-
trierbarer Kopiervorlagen-Mechanismus entwickelt. So wurden wiederverwendbare Elemente wie
ein Button aus einem Rechteck und einem Text (inklusive Logik zur Veränderung der Textinhaltes)
erstellt und für alle späteren Applikationsentwickler in einer Kopiervorlage hinterlegt. Somit wird eine
Applikation vollständig technologieneutral modelliert.

Da die ganze Bedienoberfläche modellbasiert vorliegt, ist sie prädestiniert, um selbst auf der Grund-
lage von beliebigen Regelwerken erstellt oder verändert zu werden. Das Modell bietet jedoch auch
umfangreiche Möglichkeiten der Strukturanalyse und -manipulation des Automatisierungssystems.
Dies ermöglicht es auf der einen Seite Applikationen zu entwickeln, welche je nach analysiertem
Kontext eine angepasste Darstellung zeigt. Auf der anderen Seite können jedoch auch komplexe
Engineering-Werkzeuge erstellt werden.

Die reine Beschränkung des Modells auf atomare Elemente erleichtert die Implementierung auf
unterschiedliche Plattformen. So ist es einfach möglich, die Anzeigekomponente zu realisieren, da
nur 11 Elemente, 8 Ereignisse sowie 14 Aktionen implementiert werden müssen. Dies gewähr-
leistet, dass eine Applikation über die gesamte Lebensdauer einer Anlage nutzbar ist, selbst wenn
zwischendurch die eingesetzte Technologie gewechselt werden muss.

Um das Modell für ein größeres Anwendungsspektrum nutzbar zu machen, wurde mit dem Baustein
Blackbox eine Möglichkeit geschaffen komplexere Darstellungen mit der Beschreibungssprache
HTML und/oder komplexe Logiken mit der Programmiersprache JavaScript zu erstellen. Dabei wird
jedoch die Plattformunabhängigkeit potenziell verlassen.

56

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Das Metamodell wurde prototypisch in der Laufzeitumgebung des Lehrstuhls für Prozessleittechnik
ACPLT/RTE implementiert. So konnte gezeigt werden, dass die Speicherung eines Applikations-
modells möglich ist und dem Anzeigesystem bereitgestellt werden kann. Für die Darstellung selbst
wurde auf Webtechnologie gesetzt, um eine geforderte Plattformunabhängigkeit zu erreichen. Dazu
sind performante Browser für Desktopbetriebssysteme wie Windows, Linux, macOS und auch für
Mobilbetriebssysteme wie Android oder iOS verfügbar. Die Kommunikation mit dem Automatisie-
rungssystem wurde per ACPLT/KS auf HTTP-Basis realisiert.

Die Tauglichkeit des Modells für unterschiedlichste Aufgaben wurde mithilfe von Beispielanwen-
dungen über den gesamten Lebenszyklus einer Anlage geprüft. Es konnten alle Anwendungen
erstellt werden. Weiterhin ließ sich feststellen, dass der Ansatz der vollständigen Modellierung mit-
tels atomarer Bausteine für einfache Bedienoberflächen sehr gut nutzbar ist. Insbesondere, wenn
für die zu visualisierenden leittechnischen Funktionen Kopiervorlagen existieren ist die Nutzung
sehr vorteilhaft. Da die Kopiervorlagen in der gleichen Technologie implementiert sind, ist es wei-
terhin sehr einfach diese an eigene Wünsche anzupassen. Für die Editor-Unterstützung bei der Pro-
grammierung des Bausteins zur Freitext-Programmierung (Blackbox) konnte mit einer TypeScript-
Definitionsdatei eine sehr einfache Nutzung erreicht werden. Bei komplexeren Applikationen wurden
die Grenzen des Konzepts jedoch deutlich. Hier wäre eine bessere Software-Unterstützung der
Anwendungsentwickler wünschenswert.

Zudem zeigte die Evaluation Optimierungspotential in der Modellierung selbst. Die Beschränkung
des Metamodells auf wenige atomare Elementarbausteine für Grafikelemente, Ereignisse und
Aktionen ist ein Vorteil in der Entwicklung der Grundlagensoftware führte jedoch zum Nachteil in
der aufwändigeren Programmierung bei der Erstellung der Applikationen selbst.

Hier ist zu entscheiden, ob in späteren Arbeiten dieser Ansatz etwas aufgeweicht wird und ausge-
wählte abstraktere Elemente, Ereignisse und Aktionen hinzugefügt werden. Während der Entwick-
lung wurden beispielsweise die folgenden grafischen Elemente als Kandidaten einer Erweiterung
identifiziert:

• Auswahllisten

• Radio-Buttons / Checkboxen

Genau für diese grafischen Elemente zugeschnitten wäre ein Ereignis, welche nach einer erfolgten
Bedienerauswahl ausgelöst wird. Die Einbindung dieser Auswahl ist über die bisherige Philoso-
phie problemlos möglich. So würde zum Beispiel ein GetValue-Baustein diese Auswahl als weitere
Datenquelle, ähnlich wie aktuell bei einer Mausposition, erhalten.

Eine weitere potenzielle Erleichterung zur Erstellung von Bedienoberflächen wäre die Entwicklung
eines Import-Werkzeugs. Dieses könnte Vektorgrafiken einlesen und unterstützte Grafikelemente in
HMI-Bausteine überführen. Diese würde anschließend als Basis für eine Applikation dienen, indem
die Geschäftslogik in Form von Ereignissen und Aktionen ergänzt würde.

Zudem wird in der Prozessleittechnik aktuell das Konzept der Diensteorientierung vorangetrieben
([WE17]). Hierfür wäre eine Aktion zum „Dienstbefehl absetzen“ eine interessante Erweiterung des
Metamodells.

57

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

6 Diskussion und Ausblick

Schließlich wäre zur weiteren Evaluation des Ansatzes eine Entwicklung eines alternativen Anzei-
gesystems, beispielsweise in der Programmiersprache C# mit Windows Presentation Foundation
(WPF) oder C++ mit Qt, wünschenswert. Ob diese Implementierung den Modell-Baustein für die
Freitextprogrammierung (Blackbox) unterstützt wäre zu entscheiden.

58

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

1 Anwendung R&I-Fließschema-Editor im Detail

In diesem Anhang wird eine umfangreiche Anwendung im Detail vorgestellt, um dem Leser einen
Eindruck der prototypischen Implementierung des in dieser Arbeit vorgestellten Modells zu geben.

Die Applikation bietet eine Kopiervorlage als Haupteinsprungpunkt namens Pandix/PandixEngineering
. Dieses muss nur in einer Gruppe referenziert werden, siehe Kapitel 3.4.2 und Listing 1 in Zeile 6.
Zeile 7 definiert, dass das PandIX Modell unter „/TechUnits/pandix“ visualisiert werden soll.

1 INSTANCE / TechUnits / cshmi / engineeringPandIXSheet :
2 CLASS / a c p l t / cshmi / Group ;
3 VARIABLE_VALUES
4 width : INPUT SINGLE = 1675.000000;
5 he igh t : INPUT SINGLE = 1020.000000;
6 Temp la teDe f in i t i on : INPUT STRING = " Pandix / PandixEngineer ing " ;
7 FBReference : INPUT STRING = " / TechUnits / pandix " ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

Listing 1: Nutzung des PandIX Engineerings

Die Applikation durchsucht über einen Iterator zuerst einmal die Assoziation /acplt/ov/library.
instance um die pandix-Bibliothek zu finden. Diese iteriert wiederum über alle Klassen um über
eine Positivliste die gewünschten Klassen zu erhalten:

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / PandixEngineer ing / CreateObjectBut ton / onload / pand i xPa th I t e ra to r . forEachChi ld /
I f_Found . then / C l a s s I t e r a t e . forEachChi ld / I f . i f / P e r m i t l i s t . wi thValue :

2 CLASS / a c p l t / cshmi / GetValue ;
3 VARIABLE_VALUES
4 value [2 5] : INPUT STRING = { " Actua tor " , " BlankFlange " , " CheckValve " , " Cont ro lFunc t ion " , " Connector " , "DPump" , "

GeneralI tem " , " HeatExchanger " , " HeatSource " , " LVessel " , " OpenFlange " , " Pipe " , " PipeDNAdapter " , " P ipeJunct ion "
, "Pump" , "RPump" , " RuptureDisk " , " SafetyValve " , " Sensor " , " ThreeWayValve " , " Valve " , " Vessel " , "

P lan tSec t ion " , " ProcessPlant " , " Indus t r ia lComplex " } ;
5 END_VARIABLE_VALUES;
6 END_INSTANCE;

Für alle diese Klassen wird anschließend ein neuer Button (Zeile 4) per Aktion InstantiateTemplate
erzeugt. Der erste Button wird an die Position x:0, y: 40 Pixel (Zeile 5 und 6) erstellt. Alle Wei-
teren werden um 30 Pixel nach unten (Zeile 8) versetzt. Jeder Button erhält als FBReferenz (siehe
Kapitel 3.4.2) das aktuelle Objekt des Iterators:

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / PandixEngineer ing / CreateObjectBut ton / onload / pand i xPa th I t e ra to r . forEachChi ld /
I f_Found . then / C l a s s I t e r a t e . forEachChi ld / I f . then / Ins t_Bu t ton :

2 CLASS / a c p l t / cshmi / Ins tan t i a teTemp la te ;
3 VARIABLE_VALUES
4 Temp la teDe f in i t i on : INPUT STRING = " Pandix / i n t e r n a l / PandixClassButton " ;
5 x : INPUT SINGLE = 0.000000;
6 y : INPUT SINGLE = 40.000000;
7 xOf fse t : INPUT SINGLE = 0.000000;
8 yOf fse t : INPUT SINGLE = 30.000000;
9 FBReference : INPUT STRING = "OP_NAME" ;

59

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

10 END_VARIABLE_VALUES;
11 END_INSTANCE;

Mit dieser Referenz kann ein neues PandIX-Objekt beim Klick auf diesen Button erstellt werden:
1 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate :
2 CLASS / a c p l t / cshmi / CreateObject ;
3 END_INSTANCE;
4 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate .Name :
5 CLASS / a c p l t / cshmi / GetValue ;
6 VARIABLE_VALUES
7 Operator Input : INPUT STRING = " t e x t i n p u t : Please enter the name f o r the new ob jec t " ;
8 END_VARIABLE_VALUES;
9 END_INSTANCE;

10 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . Place :
11 CLASS / a c p l t / cshmi / GetValue ;
12 VARIABLE_VALUES
13 globa lVar : INPUT STRING = " RefDomain " ; # Hier i s t der a k t u e l l angezeigte Pfad
14 END_VARIABLE_VALUES;
15 END_INSTANCE;
16 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . L i b r a r y :
17 CLASS / a c p l t / cshmi / GetValue ;
18 VARIABLE_VALUES
19 TemplateFBReferenceVariable : INPUT STRING = " CSHMIfu l lqua l i f iedparentname " ; # Pfad zur PandIX−B i b l i o t h e k
20 END_VARIABLE_VALUES;
21 END_INSTANCE;
22 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / PandixClassButton / c l i c k / ac t ionCreate . Class :
23 CLASS / a c p l t / cshmi / GetValue ;
24 VARIABLE_VALUES
25 TemplateFBReferenceVariable : INPUT STRING = " i d e n t i f i e r " ; # Name der Klasse des Buttons
26 END_VARIABLE_VALUES;
27 END_INSTANCE;

Ein weiterer Iterator analysiert das aktuell anzuzeigende „Verzeichnis“. Hier ist der Ausschnitt abge-
bildet, welcher für die Pumpenklasse Pump eine Anzeige für eine Pumpe erstellt.

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / onload / P a n d i x I t e r a t o r . forEachChi ld / If_Pump . i f / If_Pump :
2 CLASS / a c p l t / cshmi / CompareI teratedChi ld ;
3 VARIABLE_VALUES
4 ch i ldVa lue : INPUT STRING = "OP_CLASS" ;
5 comptype : INPUT STRING = "==" ;
6 END_VARIABLE_VALUES;
7 END_INSTANCE;
8 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / onload / P a n d i x I t e r a t o r . forEachChi ld / If_Pump . i f / If_Pump .

wi thValue :
9 CLASS / a c p l t / cshmi / GetValue ;

10 VARIABLE_VALUES
11 value [1] : INPUT STRING = { " / a c p l t / pandix /Pump" } ;
12 END_VARIABLE_VALUES;
13 END_INSTANCE;
14 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / onload / P a n d i x I t e r a t o r . forEachChi ld / If_Pump . then / Inst_Pump :
15 CLASS / a c p l t / cshmi / Ins tan t i a teTemp la te ;
16 VARIABLE_VALUES
17 Temp la teDe f in i t i on : INPUT STRING = " Pandix /Pump" ;
18 x : INPUT SINGLE = 100.000000;
19 y : INPUT SINGLE = 300.000000;
20 xOf fse t : INPUT SINGLE = 100.000000;
21 yOf fse t : INPUT SINGLE = 100.000000;
22 maxTemplatesPerDirect ion : INPUT STRING = " x :10 " ;
23 FBReference : INPUT STRING = "OP_NAME" ;
24 END_VARIABLE_VALUES;
25 END_INSTANCE;

In Zeile 20 bis 22 ist definiert, dass zehn gefundene Pumpen jeweils um 100 Pixel (Zeile 22) seitlich
verschoben werden. Die 11. bis 20. Pumpe würden eine Zeile drunter bilden (siehe Kapitel 3.5.3).
Mit Zeile 23 wird die Anzeige der Pumpe mit dem PandIX-Datenobjekt verknüpft. Eine ähnliche
Logik existiert für alle weiteren anzuzeigenden Elemente.

Neben den PandIX-Elementen (in PandIX/CAEX übergreifend PPE_Request genannt) werden
auch für PandIX-Verbindungen (CAEX InternalLink) zwischen den einzelnen PandIX-Elementen
jeweils grafische Elemente erstellt. Da diese auch im HMI mit den PandIX-Verbindungen verknüpft

60

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

1 Anwendung R&I-Fließschema-Editor im Detail

sind, können die logischen Verbindungen als Polylinie automatisch per routePolyline positioniert
werden.

Wird ein Hierarchieelement entdeckt, so wird eine Option angeboten die Ansicht in diese tiefere
Hierarchie zu wechseln.

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / globalvarchanged / I f _ac t i vePand i x . then / Set_reference :
2 CLASS / a c p l t / cshmi / SetValue ;
3 VARIABLE_VALUES
4 TemplateFBReferenceVariable : INPUT STRING = " f u l l q u a l i f i e d n a m e " ;
5 END_VARIABLE_VALUES;
6 END_INSTANCE;
7 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / globalvarchanged / I f _ac t i vePand i x . then / Set_reference . value :
8 CLASS / a c p l t / cshmi / GetValue ;
9 VARIABLE_VALUES

10 globa lVar : INPUT STRING = " act ivePand ix " ;
11 END_VARIABLE_VALUES;
12 END_INSTANCE;
13 INSTANCE / TechUnits / cshmi / Templates / Pandix / i n t e r n a l / act iveView / globalvarchanged / I f _ac t i vePand i x . then / re load :
14 CLASS / a c p l t / cshmi / Rebui ldObject ;
15 END_INSTANCE;

Der Hierarchiewechsel wird über ein Überschreiben der FBReferenz (Zeile 4) der Hauptanzeige
activeView mit dem neuen Pfad (Zeile 10) erreicht. Anschließend wird in Zeile 14 die Hauptanzeige
neu geladen.

In dieser Applikation werden auch die verschiedenen Rohrleitungen und Wirklinien automatisch
geroutet:

1 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e :
2 CLASS / a c p l t / cshmi / P o l y l i n e ;
3 VARIABLE_VALUES
4 po in t s : INPUT STRING = " 0 ,0 0 ,0 " ;
5 st rokeWidth : INPUT SINGLE = 2.000000;
6 s t roke : INPUT STRING = " black " ;
7 END_VARIABLE_VALUES;
8 END_INSTANCE;
9 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time :

10 CLASS / a c p l t / cshmi / TimeEvent ;
11 VARIABLE_VALUES
12 cyct ime : INPUT SINGLE = 0.500000;
13 END_VARIABLE_VALUES;
14 END_INSTANCE;
15 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time / RouteLine :
16 CLASS / a c p l t / cshmi / RoutePoly l ine ;
17 VARIABLE_VALUES
18 o f f s e t : INPUT SINGLE = 10.000000;
19 gr idWid th : INPUT SINGLE = 5.000000;
20 END_VARIABLE_VALUES;
21 END_INSTANCE;
22 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time / RouteLine . SourceBasename :
23 CLASS / a c p l t / cshmi / GetValue ;
24 VARIABLE_VALUES
25 TemplateFBReferenceVariable : INPUT STRING = " / PIn . SideA " ;
26 END_VARIABLE_VALUES;
27 END_INSTANCE;
28 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time / RouteLine . SourceVariablename :
29 CLASS / a c p l t / cshmi / GetValue ;
30 VARIABLE_VALUES
31 value : INPUT VOID = ;
32 END_VARIABLE_VALUES;
33 END_INSTANCE;
34 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time / RouteLine . TargetBasename :
35 CLASS / a c p l t / cshmi / GetValue ;
36 VARIABLE_VALUES
37 TemplateFBReferenceVariable : INPUT STRING = " / POut . SideA " ;
38 END_VARIABLE_VALUES;
39 END_INSTANCE;
40 INSTANCE / TechUnits / cshmi / Templates / Pandix / Pipe / P o l y l i n e / Time / RouteLine . TargetVariablename :
41 CLASS / a c p l t / cshmi / GetValue ;
42 VARIABLE_VALUES
43 value : INPUT VOID = ;
44 END_VARIABLE_VALUES;
45 END_INSTANCE;

61

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

Die Polylinie der Rohrleitung wird zyklisch zweimal die Sekunde (Zeile 12) neu berechnet. Dabei
werden die jeweiligen Verbindungspartner beim PandIX-Pipe-Objekt unter den Namen PIn.SideA
und POut.SideA gesucht.

2 Interner Aufbau der Anzeigekomponente

Der aktuelle Quelltext der Anzeigekomponente kann auf der Github-Webseite des Lehrstuhls
https://github.com/acplt/rte unter dem Pfad /addonlibs/hmi/hmiJavaScript eingesehen
werden. Dieser Anhang liefert eine Beschreibung des Aufbaus zum Zeitpunkt der Erstellung dieser
Dissertationsschrift.

Zuerst wird eine HTML Seite vom Browser geladen, mit allen grafischen Elementen, welche immer
nötig ist. Darin wird eine JavaScript-Ressource namens hmi-hub-loader.js nachgeladen. Diese läd
nun alle weiteren Ressource nach, welche für das HMI nötig ist. hmi-generics.js ist eine Samm-
lung von Hilfsfunktionen, hauptsächlich zur Unterstützung nicht ganz aktueller Browser. hmi-class-
HMI.js sammelt alle generischen HMI Funktionen, zum Beispiel die Interaktion mit dem Bediener
beim Laden der Webseite. hmi-class-HMIKSClient.js liefert eine Abstrahierung des KS Proto-
kolls. Dies kann direkt genutzt werden, wenn der Zielserver einen entsprechenden Webserver
mit KS-Erweiterung (zum Beispiel ein ACPLT/OV-Server mit der Bibliothek kshttp) bietet. Alternativ
bietet die Firma LTSoft ein Gateway um das etablierte Binärprotokoll ACPLT/KS [Alb03] nutzen zu
können. Weiterhin ist die Anwendung in der Lage das Darstellungsmodell ACPLT/HMI von Stefan
Schmitz [Sch10] auf den Bildschirm zu bringen, wofür weitere JS-Ressourcen nötig sind.

Die Hauptdatei für die vorgestellte Anzeigekomponente dieser Dissertation ist hmi-class-
cshmi.js. Wenn die gewünschte Anzeige ausgewählt wurde, wird eine Funktion (HMI.cshmi.
instanciateCshmi) zur Initialisierung der Darstellung aufgerufen. Da für komplexe Anwendungen
sehr viele (viele hundert) Darstellungsprimitive benötigt werden, ist es sinnvoll die Konfiguration
aller dieser Primitive in einem einzigen Netzwerkzugriff vom Server zu laden. Diese Funktion
versucht daher diese Konfiguration, als JSON1 kodiert, von einem speziellen Baustein unter der
Adresse /TechUnits/cshmi/turbo.asJSON abzurufen. Ist dies erfolgreich, wird die Konfiguration
im Javascript-Objekt HMI.cshmi.ResourceList zentral zur späteren Nutzung gespeichert.

Anschließend wird die Funktion HMI.cshmi._interpreteElementOrEventRecursive aufgerufen.
Diese Funktion ist ein zentraler Punkt, welcher grafische Elemente und Ereignisse auf verschie-
dene Subfunktionen aufteilt. Nach der Erstellung der grafischen Repräsentanz zum Beispiel einer
Gruppe, werden weitere grafische Kindelemente und Ereignisse geladen und interpretiert.

Elemente

Ist ein grafisches Element, wie ein Kreis, anzuzeigen so wird zum Beispiel die Funktion HMI.cshmi.
_buildSvgCircle aufgerufen. Äquivalente Funktionen existieren zu allen Grafikprimitiven wie Path,

1http://json.org/

62

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

2 Interner Aufbau der Anzeigekomponente

Line, Polyline, Polygon, Text, Ellipse, Rectangle und Image. Alle diese Funktionen erhalten
als Parameter neben einer eindeutigen Bezeichnung (als String namens ObjectPath) noch das
Gruppenobjekt (als DOM Element namens VisualParentObject), wo das neue Element eingebettet
werden wird.

Gemeinsame Parameter vieler Grafikelemente wie Strich- oder Füllfarbe werden mithilfe der Hilfs-
funktion HMI.cshmi._processBasicVariables gesetzt. Liegt die Konfiguration im Javascript-Objekt
HMI.cshmi.ResourceList vor, so kann die Darstellung direkt aufgebaut werden, andernfalls muss
die Konfiguration über ein Netzwerkzugriff abgefragt werden. Die Funktionen erhält noch einen
boolschen Parameter namens preventNetworkRequest. Ist dieser auf wahr gesetzt und die Konfi-
guration des Bausteins nicht bekannt, so wird dieser Netzwerkzugriff unterlassen. Damit kann ein
aufwendiger Netzwerkzugriff bei nicht sichtbaren Elementen verhindert werden.

Die Erstellung einer Gruppe in HMI.cshmi._buildSvgGroup ist etwas aufwendiger, da sie mehrere
Funktionen in sich vereint. Als Erstes kann die Gruppe weitere Objekte über ein Vorlagensystem
einbinden (über TemplateDefinition) und außerdem gewissen Konfigurationsparameter setzen,
welche für den ganzen Darstellungs-Zweig Gültigkeit hat.

Wird eine Instanziierung einer Vorlage benötigt, so wird dessen Konfiguration (Breite und Höhe)
über einen identischen Mechanismus wie die Grafikprimitive geholt, wenn sie zu diesem Zeit-
punkt nicht schon bekannt sind. Wird eine FBReference benötigt, so wird diese im grafischen
Objekt an der Stelle VisualObject.ResourceList.FBReference gespeichert. Es ist jedoch mög-
lich, dass diese Referenz über einen URL-Parameter namens FBReference des Browsers über-
schrieben wird. FBVariableReferencen sind mehrere möglich, so dass diese in einem JavaScript-
Objekt VisualObject.ResourceList.FBVariableReference gespeichert werden. Ähnlich werden
alle ConfigValues im JavaScript-Objekt VisualObject.ResourceList.ConfigValues gespeichert.
Weiterhin wird im grafischen Objekt das SVG-Attribut overflow="visible" gesetzt. Damit werden
alle Kindelemente dargestellt, unabhängig von der Größe der Gruppe selbst.

Ist die Gruppe nicht über das Element, sondern über die Aktion InstantiateTemplate erstellt
worden und der Parameter preventClone gesetzt, so wird anschließend geprüft, ob dieses Objekt
schon identisch vorhanden ist. Ist dies der Fall, wird die Darstellung dieser Instanz verhindert.
Anschließend wird die genaue X-Y-Position des neuen Objektes berechnet. Die Parameter xOffset
, yOffset und maxTemplatesPerDirection erlaubt dazu eine genaue Parametrierung. Details zur
Logik siehe Kapitel 3.5.3.

Soll eine Gruppe selbst „versteckbar“ sein, so wird dies im Vater-Objekt der Darstellung ver-
merkt, sowie dort ein Event-Handler zum Ausblenden und Anzeigen aller Kinder hinterlegt.
Innerhalb dieser Logik ist es manchmal nötig die Reihenfolge der Objekte innerhalb des
DOM des Browsers zu ändern, um eine vollständige Anzeige zu erlauben. Für die Funktion
previousTemplateCount ist die Original-Reihenfolge jedoch nötig, sodass diese zusätzlich in einem
Array cshmiOriginalOrderList gespeichert wird.

Am Ende der Funktion HMI.cshmi._buildSvgGroup werden noch alle Kindelemente interpretiert,
welche eventuell über ein Template angefordert wurden.

63

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

Um eine Blackbox zu erstellen wird die Funktion HMI.cshmi._buildBlackbox genutzt. Dieser Code
holt (wenn bisher noch nicht bekannt) die Inhalte der Variablen HTMLcontent, sourceOfLibrary,
jsOnload und jsOnglobalvarchanged vom Modell.

Wird HTMLcontent genutzt, so wird der entsprechende HTML-Code in den Darstellungsbaum
des Browsers eingehangen. Soll JavaScript-Code ausgeführt werden, so wird ein API-Object
namens cshmimodel (siehe Anhang 3) erstellt, welche Kommunikation mit dem Automatisierungs-
system und der Darstellung ermöglicht. jsOnload wird ausgeführt, wenn alle Bibliotheken über
sourceOfLibrary vollständig geladen sind.

Ereignisse

Hat ein Element ein TimeEvent assoziiert, so wird die Haupt-Funktion HMI.cshmi.
_interpreteElementOrEventRecursive die Helper-Funktion HMI.cshmi._interpreteTimeEvent
aufrufen. Diese sorgt dafür, dass Ereignisse für die die gleiche Zykluszeit angefordert wurde,
gemeinsam ausgeführt werden. Ist diese Zeit größer als eine Sekunde so wird dafür gesorgt,
dass der erste Aufruf kurz nach dem Laden der Gesamtanzeige vorgezogen wird, um schneller
einen definierten Zustand zu erhalten. Die Funktion HMI.cshmi._handleTimeEvent erhält eine
Liste von Variablen-Namen, welche in diesem Zyklus benötigt werden und holt alle diese Werte
gemeinsam ab und speichert sie zentral. Anschließend werden alle Aktionen über die Hilfsfunktion
HMI.cshmi._interpreteAction ausgeführt.

Für die ClientEvents „onload“ und „globalvarchanged“ wird die Funktion HMI.cshmi.
_interpreteClientEvent() genutzt. Für beide Ereignisarten wird das aktive Element in jeweils
eine Liste geschrieben. Die erste Liste wird nach dem vollständigen Aufbau der Anzeige abgear-
beitet und führt damit die gewünschten Aktionen aus (und löscht dabei die jeweilige Aktion aus
der Liste). Die zweite Liste wird später beim Setzen einer globalen Variable abgearbeitet. Diese
Liste bleibt dabei natürlich bestehen, da deren Aktionen im Gegensatz zur „onload“ Liste mehrfach
ausgeführt werden soll.

Alle Benutzer-Ereignisse werden einheitlich über HMI.cshmi._interpreteOperatorEvent() verar-
beitet. Die Ereignisse „Klick“, „Doppel-Klick“, „Rechtsklick“, „mouseover“ und „mouseout“ sind sehr
ähnlich. Das Element, für das eines der drei Klick-Ereignisse definiert wurde, wird speziell mar-
kiert, sodass der Mauszeiger eine spezielle Form erhält, wenn er über einem solchen Element
gehalten wird. Tritt später dieses Ereignis ein, so wird vom Browser Programmcode ausgeführt.
Zuerst wird mithilfe der Funktion Event.stopPropagation() die Propagierung des Ereignisses
gestoppt und damit verhindert, dass ein überlagertes Element beispielsweise zusätzlich eine Aktion
zu diesem Klick ausführt. Eine Besonderheit ist das Ereignis zum Rechtsklick. Dieses liefert norma-
lerweise ein Kontextmenü des Browsers. Daher wird dies über Event.preventDefault() verhin-
dert. Bei allen wird das entsprechende MouseEvent-Objekt (siehe [Pix00]) gespeichert, um in einer
Aktion beispielsweise Mauskoordinaten abfragen zu können. Weiterhin wird über die Funktion HMI.
displaygestureReactionMarker() für 0,8 Sekunden ein kleines Rechteck als schnelles optisches
Feedback eingeblendet. Anschließend wird über die Funktion HMI.cshmi._interpreteAction()
die zugeordnete Aktion ausgeführt.

64

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 JavaScript API cshmimodel

3 JavaScript API cshmimodel

Die Aktion Blackbox (siehe Kapitel 3.4.5) erlaubt die Ausführung von beliebigem JavaScript-Code.
Zur Unterstützung des Applikationsentwicklers wurde eine API entwickelt mit der beispielsweise mit
den grafischen Elementen interagiert werden kann. Weiterhin hat der Entwickler die Möglichkeit
auf die Modellwelt zuzugreifen um zum Beispiel eine neue Instanz der Kopiervorlagen erstellen
zu können. Als letzte Möglichkeit bietet die API eine direkte Kommunikation mit dem Automatisie-
rungssystem um direkt Werte lesen und schreiben zu können, aber auch strukturelle Änderungen
(Erstellen, Löschen...) anzustoßen.

Zur einfachen Programmierung wurde für die API eine TypeScript-Definitions-Datei2 erstellt. Mit
dieser ist sehr gute Editor-Unterstützung beim Programmieren möglich. Visual Studio Code und
Visual Studio sind hier zum Zeitpunkt der Erstellung der Dissertationsschrift zu empfehlen.

Weiterhin dient diese Datei hier als Referenz des Umfangs der API.

Listing 2: cshmimodel API als TypeScript Definition

1 declare namespace cshmimodel {
2 /** Common callback definition for KS Communication */
3 interface IKsCallback {
4 (
5 /** HMIJavaScriptKSClient object */
6 client : object ,
7 /** the plain request object */
8 req: XMLHttpRequest
9): void

10 }
11 interface Dictionary <T> {
12 [index: string]: T | undefined ;
13 }
14
15 /** html body node of the HTML content */
16 let HtmlBody : HTMLBodyElement | null;
17 /** SVG Element of the blackbox */
18 let SvgElement : SVGElement ;
19 /** first HTML element of blackbox html content */
20 let HtmlFirstElement : HTMLElement | null;
21 let Modelpath : string ;
22 /** document object of the blackbox */
23 let document : Document ;
24 /** Window object of the blackbox */
25 let window : Window ;
26 /** API to variables below the blackbox object */

2https://github.com/acplt/rte/blob/master/addonlibs/hmi/cshmi_blackbox.d.ts

65

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

27 let variables : Dictionary <{
28 varName : string ;
29 getValue : () => string ;
30 setValue : (newValue : string) => void;
31 }>;
32 /**
33 * Creates a new template below the current blackbox
34 * @param x
35 * @param y
36 * @param rotate
37 * @param hideable
38 * @param PathOfTemplateDefinition
39 * @param FBReference
40 * @param FBVariableReference
41 * @param ConfigValues
42 */
43 function instantiateTemplate (
44 x: string ,
45 y: string ,
46 rotate : string ,
47 hideable : string ,
48 PathOfTemplateDefinition : string ,
49 FBReference : string ,
50 FBVariableReference : string ,
51 ConfigValues : string
52): void;
53 /**
54 * Requests an Engineering Property
55 * @param path of object to query
56 * @param requestType = OT_DOMAIN type of KS Object to query

(" OT_DOMAIN ", " OT_VARIABLE ", " OT_LINK " or " OT_ANY "). "
OT_DOMAIN " if not supplied

57 * @param requestOutput Array of interesting objects
properties (" OP_NAME ", " OP_TYPE ", " OP_COMMENT ", " OP_ACCESS
", " OP_SEMANTIC ", " OP_CREATIONTIME ", " OP_CLASS " or " OT_ANY
"). " OP_NAME " if not supplied

58 * @param cbfnc callback function for a async request
59 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

60 * @return "{ fb_hmi1 } { fb_hmi2 } { fb_hmi3 } { MANAGER } { fb_hmi4 }
{ fb_hmi5 }" or null or true (if callback used)

61 */
62 function getEP (

66

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 JavaScript API cshmimodel

63 path: string ,
64 requestType ?: " OT_DOMAIN " | " OT_VARIABLE " | " OT_LINK " | "

OT_ANY ",
65 requestOutput ?: " OP_NAME " | " OP_TYPE " | " OP_COMMENT " | "

OP_ACCESS " | " OP_SEMANTIC " | " OP_CREATIONTIME " | "
OP_CLASS " | (" OP_NAME " | " OP_TYPE " | " OP_COMMENT " | "
OP_ACCESS " | " OP_SEMANTIC " | " OP_CREATIONTIME " | "
OP_CLASS ")[] | " OT_ANY ",

66 cbfnc ?: IKsCallback ,
67 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
68): string | null | true;
69 /**
70 * Requests a KS Variable
71 * @param path of the variable to fetch , multiple path

possible via an Array
72 * @param requestOutput Array of interesting objects

properties (" OP_NAME ", " OP_TYPE ", " OP_VALUE ", "
OP_TIMESTAMP " or " OP_STATE "). " OP_VALUE " if not supplied

73 * @param cbfnc callback function for a async request
74 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

75 * @return "{{/ TechUnits / HMIManager }}", response : "{/ TechUnits
/ Sheet1 }" or "TksS -0042:: KS_ERR_BADPATH {{/ Libraries /hmi/
Manager . instance KS_ERR_BADPATH }}"

76 */
77 function getVar (
78 path: string | string [],
79 requestOutput : " OP_NAME " | " OP_TYPE " | " OP_VALUE " | "

OP_TIMESTAMP " | " OP_STATE ",
80 cbfnc ?: IKsCallback ,
81 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
82): string ;
83 /**
84 * Sets a KS Variable
85 * @param path of the variable to set
86 * @param { String } value to set (StringVec are Arrays)
87 * @param { String } type variable type (for example "

KS_VT_STRING ") to set , null if no change
88 * @param cbfnc callback function for a async request
89 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

90 * @return true , "" or null

67

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

91 */
92 function setVar (
93 path: string ,
94 value: string | string [],
95 type: " KS_VT_BOOL " | " KS_VT_INT " | " KS_VT_UINT " | "

KS_VT_SINGLE " | " KS_VT_DOUBLE " | " KS_VT_STRING " | "
KS_VT_TIME " | " KS_VT_TIME_SPAN " | " KS_VT_STATE " | "
KS_VT_STRUCT " | " KS_VT_BYTE_VEC " | " KS_VT_BOOL_VEC " | "
KS_VT_INT_VEC " | " KS_VT_UINT_VEC " | " KS_VT_SINGLE_VEC "
| " KS_VT_DOUBLE_VEC " | " KS_VT_STRING_VEC " | "
KS_VT_TIME_VEC " | " KS_VT_TIME_SPAN_VEC " | "
KS_VT_TIME_SERIES " | " KS_VT_STATE_VEC " | null ,

96 cbfnc ?: IKsCallback ,
97 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
98): "" | true | null
99 /**

100 * Rename a KS object
101 * @param path of the object to rename
102 * @param newname (optional with full path) of the object
103 * @param cbfnc callback function for a async request
104 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

105 * @return true , "" or null
106 */
107 function renameObjects (
108 oldName : string ,
109 newName : string ,
110 cbfnc ?: IKsCallback ,
111 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
112): "" | true | null
113 /**
114 * Create a KS object
115 * @param path of the object to create
116 * @param classname full class name of the new object
117 * @param cbfnc callback function for a async request
118 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

119 * @return true , "" or null
120 */
121 function createObject (
122 path: string ,
123 classname : string ,

68

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

3 JavaScript API cshmimodel

124 cbfnc ?: IKsCallback ,
125 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
126): "" | true | null
127 /**
128 * Delete a KS object
129 * @param path ob the object to delete
130 * @param cbfnc callback function for a async request
131 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

132 * @return true , "" or null
133 */
134 function deleteObject (
135 path ,
136 cbfnc ?: IKsCallback ,
137 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
138): "" | true | null
139 /**
140 * Link two KS objects
141 * @param pathA of the first object
142 * @param pathB of the second object
143 * @param portnameA name of the port
144 * @param cbfnc callback function for a async request
145 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

146 * @return true , "" or null
147 */
148 function linkObjects (
149 pathA: string ,
150 pathB: string ,
151 portnameA : string ,
152 cbfnc ?: IKsCallback ,
153 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
154): "" | true | null
155 /**
156 * Unlinks two KS objects
157 * @param pathA of the first object
158 * @param pathB of the second object
159 * @param portnameA name of the port
160 * @param cbfnc callback function for a async request
161 * @param responseFormat Mime -Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

69

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Anhang

162 * @return true , "" or null
163 */
164 function unlinkObjects (
165 pathA: string ,
166 pathB: string ,
167 portnameA : string ,
168 cbfnc ?: IKsCallback ,
169 responseFormat ?: "text/tcl" | "text/ksx" | "text/plain"
170): "" | true | null
171
172 /**
173 * Prints an info message on the website
174 * @param text
175 */
176 function log_info_onwebsite (
177 text: string
178): void;
179 /**
180 * Prints an error message on the website
181 * @param text
182 */
183 function log_error_onwebsite (
184 text: string
185): void;
186 /**
187 * returns the KS Response as an Array , or an empty Array
188 * if the optional argument recursionDepth is > 0,
189 */
190 function splitKsResponse (
191 response : string ,
192 recursionDepth : number
193): any [];
194 }

70

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[Alb03] ALBRECHT, Harald: On Meta-Modeling for Communication in Operational Process Con-
trol Engineering. Düsseldorf, Lehrstuhl für Prozessleittechnik der RWTH Aachen Univer-
sity, Diss., 2003

[BD98] BOWLER, John ; DISTER, Brian: Vector Markup Language (VML) Specification. Mai 1998
http://www.w3.org/TR/1998/NOTE-VML-19980513

[BFL+14] BERJON, Robin ; FAULKNER, Steve ; LEITHEAD, Travis ; PFEIFFER, Silvia ; O’CONNOR,
Edward ; NAVARA, Erika D.: HTML 5 / W3C. 2014. – W3C Recommendation. –
http://www.w3.org/TR/2014/REC-html5-20141028/

[BHH+16] BERNSHAUSEN, Jens ; HALLER, Axel ; HOLM, Thomas ; HOERNICKE, Mario ; OBST,
Michael ; LADIGES, Jan: Namur Modul Type Package – Definition. In: atp edition -
Automatisierungstechnische Praxis 1 (2016), S. 72–81

[Dam96] DAMMERT, Jürgen: Plattformübergreifende Konstruktion graphischer Benutzeroberflä-
chen . Verlag Dr. Kovac, 1996. – ISBN 3860644777

[DDFU11] DOHERR, F. ; DRUMM, O. ; FRANZE, V. ; URBAS, L.: Bedienbilder auf Knopfdruck. In:
Automatisierungstechnische Praxis atp 53 (2011), Nr. 11, S. 30–39. – ISSN 0178–2320

[DIN14] ; DIN Deutsches Institut für Normung e. V. (Veranst.): DIN SPEC 40912: Kernmodelle -
Beschreibung und Beispiele. 2014

[DU11] DOHERR, F. ; URBAS, L.: autoHMI: a model driven software engineering approach
for HMIs in process industries. In: 2011 IEEE International Conference on Computer
Science and Automation Engineering. Piscataway, NJ : IEEE, 07 2011. – ISBN 978–1–
4244–8727–1, S. 627 – 631

[ecm99] ; ECMA (European Association for Standardizing Information and Communication Sys-
tems) (Veranst.): ECMA-262: ECMAScript Language Specification. http://www.
ecma-international.org/publications/standards/Ecma-327.htm. Version: Third,
Dezember 1999

[ERD11] EPPLE, Ulrich ; REMMEL, Markus ; DRUMM, Oliver: Modellbasiertes Format für RI-
Informationen. In: Automatisierungstechnische Praxis (atp EDITION), 53. Jahrgang, 1-
2/2011 (2011), S. 62–71

[FD98] FERRAIOLO, Jon ; DISTER, Brian: Precision Graphics Markup Language (PGML) Speci-
fication. April 1998 http://www.w3.org/TR/1998/NOTE-PGML-19980410.html

71

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[Fer01] FERRAIOLO, Jon: Scalable Vector Graphics (SVG) 1.0 Specification. September 2001
http://www.w3.org/TR/2001/REC-SVG-20010904

[Fin13] FINK, Eugen: Erweiterung der Visualisierungsinfrastruktur ACPLT/csHMI zur Nutzung
generischer JavaScript-Fremdbibliotheken, Bachelorarbeit, 2013

[FJF03] FUJISAWA, Jun ; JACKSON, Dean ; FERRAIOLO, Jon: Scalable Vector Graphics (SVG)
1.1 Specification. Januar 2003 http://www.w3.org/TR/2003/REC-SVG11-20030114/

[FR14a] FIELDING, R. ; RESCHKE, J.: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. RFC 7230 (Proposed Standard). http://www.ietf.org/rfc/rfc7230.
txt. Version: Juni 2014 (Request for Comments)

[FR14b] FIELDING, R. ; RESCHKE, J.: Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. RFC 7231 (Proposed Standard). http://www.ietf.org/rfc/rfc7231.txt.
Version: Juni 2014 (Request for Comments)

[HB11] HENNIG, Stefan ; BRAUNE, Annerose: Sustainable visualization solutions in industrial
automation with Movisa — A case study. In: Proceedings of INDIN 2011. Caparica,
Lisbon, Portugal, 08 2011. – ISBN 978–1–4577–0433–8, S. 634 – 639

[Hen12] HENNIG, Stefan: Design of sustainable solutions for process visualization in industrial
automation with model-driven software development. Dresden, Diss., 2012

[HLW+16] HOLM, Thomas ; LADIGES, Jan ; WASSILEW, Sachari ; ALTMANN, Paul ; FAY, Alexander ;
URBAS, Leon ; HEMPEN, Ulrich: DIMA im realen Einsatz - Von der Idee zum Prototypen.
In: Automation 2016: der 17. Branchentreff der Mess- und Automatisierungstechnik /
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik. Düsseldorf : VDI-Verlag,
2016 (VDI-Berichte ; 2284). – ISBN 978–3–18–092284–0, S. 71–83. – CD-ROM

[Hon14] HONEYWELL INTERNATIONAL SÀRL: Experion LX, HMIWeb Display Building Guide.
Release 110. Honeywell International Sàrl, Z.A. La Pièce 16, 1180 Rolle (VD),
Schweiz, Feb 2014. https://www.honeywellprocess.com/library/support/Public/
Documents/HMIWeb_Display_Building_Guide_EXDOC-XX54-en-110.pdf

[IEC03] Norm März 2003. IEC 61131-3, 2nd edition. Programmable controllers – Part 3: Pro-
gramming languages

[IEC10a] Norm 2010. IEC 62541: OPC Unified Architecture

[IEC10b] Norm 2010. IEC 62714: Engineering data exchange format for use in industrial automa-
tion systems engineering - Automation Markup Language

[JE12] JEROMIN, Holger ; EPPLE, Ulrich: Anwendungs- und herstellerneutrales Modell zur Dar-
stellung und Interaktion mit leittechnischen Funktionen. In: Automation 2012 : der 13.
Branchentreff der Mess- und Automatisierungstechnik / VDI/VDE-Gesellschaft Mess-
und Automatisierungstechnik. Düsseldorf : VDI-Verlag, 2012 (VDI-Berichte ; 2171). –
ISBN 978–3–18–092171–6, S. 219–222. – CD-ROM

72

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[JE13] JEROMIN, Holger ; EPPLE, Ulrich: Modellbasiertes und technologieneutrales HMI für ein-
gebettete Komponenten. In: GIESE, Holger (Hrsg.) ; HUHN, Michaela (Hrsg.) ; PHILLIPS,
Jan (Hrsg.) ; SCHÄTZ, Bernhard (Hrsg.): Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IX, Schloss Dagstuhl, Germany, April 24-26, 2013,
Tagungsband Modellbasierte Entwicklung eingebetteter Systeme, fortiss GmbH, Mün-
chen, 2013, 80–89

[Jer08] JEROMIN, Holger: Browserbasierte Visualisierung aktiver Flusswege in komplexen
Abfüllstationen, RWTH Aachen, Diplomarbeit, 12 2008

[Kir07] KIRMAS, M: Anwenderbericht zur Nutzung von typischen Funktionsbausteinen (Typicals)
bei der Erstellung von leittechnischer Anwendersoftware. In: Automation 2007 VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik. Düsseldorf : VDI-Verlag, 2007 (VDI-
Berichte ; 2284), S. 783–790. – CD-ROM

[Koc06] KOCH, Peter-Paul: ppk on JavaScript, 1/e. New Riders, 2006. – ISBN 0321423305

[Kos14] KOSTIAINEN, Anssi: Vibration API. Juni 2014 http://www.w3.org/TR/2014/WD-vibration-
20140619/

[LVM+05] In: LIMBOURG, Quentin ; VANDERDONCKT, Jean ; MICHOTTE, Benjamin ; BOUILLON,
Laurent ; LÓPEZ-JAQUERO, Víctor: USIXML: A Language Supporting Multi-path Deve-
lopment of User Interfaces. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. –
ISBN 978–3–540–31961–0, 200–220

[ME07] MÜLLER, Jochen ; ENSTE, Udo: Datenkommunikation in der Prozessindustrie. Olden-
bourg Industrieverla, 2007. – ISBN 3835631160

[Mer18] MERSCH, Tina: Regelbasierte Modelltransformation in prozessleittechnischen Laufzeit-
umgebungen. Düsseldorf, Lehrstuhl für Prozessleittechnik der RWTH Aachen University,
Diss., 2018

[Mey00] MEYER, Dirk: Dezentrale Intelligenz durch Metamodell-basierte Objektverwaltung. In:
MEHLHORN, Kurt (Hrsg.) ; SNELTING, Gregor (Hrsg.): Informatik 2000. Berlin, Heidelberg
: Springer Berlin Heidelberg, 2000. – ISBN 978–3–642–58322–3, S. 304–317

[Mil68] MILLER, Robert B.: Response Time in Man-computer Conversational Transactions. In:
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. New
York, NY, USA : ACM, 1968 (AFIPS ’68 (Fall, part I)), 267–277

[MPV11] MEIXNER, Gerrit ; PATERNÒ, Fabio ; VANDERDONCKT, Jean: Past, Present, and Future
of Model-Based User Interface Development. In: i-com 10 (2011), Nr. 3, 2–11. http:
//dx.doi.org/10.1524/icom.2011.0026. – DOI 10.1524/icom.2011.0026

[OHU+15] OBST, Michael ; HOLM, Thomas ; URBAS, Leon ; FAY, Alexander ; KREFT, Sven ;
HEMPEN, Ulrich ; ALBERS, Thomas: Beschreibung von Prozessmodulen - Ein weiterer
Schritt zur Umsetzung der NE 148. In: atp edition - Automatisierungstechnische Praxis
1 (2015), S. 48–59

73

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[Pix00] PIXLEY, Tom: Document Object Model (DOM) Level 2 Events Specification / W3C. 2000.
– W3C Recommendation. – http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-
20001113

[Pri06] PRIBEANU, Costin: Task Modeling for User Interface Design–A Layered Approach. In:
International Journal of Information Technology 3 (2006), Nr. 2, S. 86–90

[Roc12] ROCKS, Yannick: Erstellung einer modellbasierten Engineering Software für
ACPLT/csHMI, Bachelorarbeit, 2012

[Sch10] SCHMITZ, Stefan: Grafik- und Interaktionsmodell für die Vereinheitlichung grafischer
Benutzungsschnittstellen der Prozessleittechnik. Düsseldorf, Lehrstuhl für Prozessleit-
technik der RWTH Aachen University, Diss., 2010

[Sch12] SCHNELLER, Anne: Parametrieren statt programmieren. In: VDI nachrichten 10.02.2012,
2012

[SE07] SCHMITZ, Stefan ; EPPLE, Ulrich: Automatisierte Projektierung von HMI-Oberflächen. In:
GMA Kongress 2007 – Automation im gesamten Lebenszyklus. Düsseldorf : VDI-Verlag,
Juni 2007 (VDI-Berichte, No. 1980, ISBN: 978-9-18-091980-5), S. 127–138

[SE12] SCHÜLLER, Andreas ; EPPLE, Ulrich: PandIX – Exchanging P&I diagram model data. In:
ETFA 2012: IEEE 17th International Conference on Emerging Technologies and Factory
Automation ; September 17-21, 2012, Krakow, Poland. Piscataway, NJ : IEEE, 2012. –
ISBN 978–1–4673–4737–2. – 1 CD-ROM

[SE13] SCHÜLLER, Andreas ; EPPLE, Ulrich: Ein Modellserver zur Nutzung von R&I-Fließbild-
Informationen. In: AUTOMATION 2013: 14. Branchentreff der Mess- und Automatisie-
rungstechnik. Düsseldorf : VDI-Verlag GmbH, Juni 2013. – ISBN 978–3–18–092209–6,
S. 223–226

[Sie13] SIEMENS AG: SIMATIC HMI, WinCC: Scripting (VBS, ANSI-C, VBA) - Systemhandbuch.
WinCC V7.2. Siemens AG, Industry Sector, Postfach 48 48, 90026 Nürnberg, Deutsch-
land, 2013. https://cache.industry.siemens.com/dl/files/640/73453640/att_
67199/v1/WinCCInformationSystemScripting_de-DE.pdf

[UHH+11] URBAS, L. ; HENNIG, S ; HAGER, H ; DOHERR, F ; BRAUNE, A: Towards context adaptive
HMIs in process industries. In: 2011 9th IEEE International Conference on Industrial
Informatics. Caparica, Lisbon, Portugal : IEEE, 07 2011. – ISBN 978–1–4577–0435–2

[VDI02] ; Verband Deutscher Ingenieure (VDI) (Veranst.): VDIVDE Richtlinie 3850, Nutzerge-
rechte Gestaltung von Bediensystemen für Maschinen. 2002

[VDI13] ; Verband Deutscher Ingenieure (VDI) (Veranst.): VDIVDE Richtlinie 3699, Prozessfüh-
rung mit Bildschirmen. 2013

74

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[WE17] WAGNER, Constantin A. ; EPPLE, Ulrich: Integration von Serviceschnittstellen in Funk-
tionsbausteinarchitekturen. In: Automation 2017: der 18. Branchentreff der Mess- und
Automatisierungstechnik / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik.
Düsseldorf : VDI-Verlag, 2017 (VDI-Berichte ; 2284). – ISBN 978–3–18–092284–0. –
CD-ROM

[YGE13a] YU, L. ; GRÜNER, S. ; EPPLE, U.: An engineerable procedure description method for
industrial automation. In: 2013 IEEE 18th Conference on Emerging Technologies Fac-
tory Automation (ETFA), 2013. – ISSN 1946–0740, S. 1–8

[YGE13b] YU, Liyong ; GRÜNER, Sten ; EPPLE, Ulrich: An Engineerable Procedure Description
Method for Industrial Automation. In: ETFA 2013: IEEE 18th International Conference
on Emerging Technologies and Factory Automation. Piscataway, NJ : IEEE, 2013. –
ISBN 978–1–4799–0864–6

[YQE10] YU, Liyong ; QUIRÓS, Gustavo ; EPPLE, Ulrich: Service-Oriented Process Control for
Complex Multifunctional Plants: Concept and Case Study. In: ETFA 2010: 15th IEEE
International Conference on Emerging Technologies and Factory Automation. Bilbao :
IEEE, September 2010. – ISBN 978–1–4244–6849–2

[Yu16] YU, Liyong: A reference model for the integration of agent orientation in the operative
environment of automation systems. Düsseldorf, Lehrstuhl für Prozessleittechnik der
RWTH Aachen University, Diss., 2016

75

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Veröffentlichen Sie die Ergebnisse Ihrer interdisziplinären technikorientierten
Spitzenforschung in der renommierten Schriftenreihe Fortschritt-Berichte VDI.
Ihre Dissertationen, Habilitationen und Forschungsberichte sind hier bestens platziert:

• Kompetente Beratung und editorische Betreuung
• Vergabe einer ISBN-Nr.
• Verbreitung der Publikation im Buchhandel
• Wissenschaftliches Ansehen der Reihe Fortschritt-Berichte VDI
• Veröffentlichung mit Nähe zum VDI
• Zitierfähigkeit durch Aufnahme in einschlägige Bibliographien
• Präsenz in Fach-, Uni- und Landesbibliotheken
• Schnelle, einfache und kostengünstige Abwicklung

PRoFItIeReN SIe VoN UNSeRem ReNommee!
www.vdi-nachrichten.com/autorwerden

Werden Sie Autor
im VDI Verlag!

Publizieren Sie
in „Fortschritt-
Berichte VDI“

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-526808-3

https://doi.org/10.51202/9783186268082 - Generiert durch IP 216.73.216.36, am 20.01.2026, 21:56:26. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186268082

	Cover
	1 Einleitung
	2 Hintergrund und Motivation
	2.1 Stand der Technik
	2.1.1 iPhone/Android Programierung
	2.1.2 Field Device Tool/Device Type Manager (FDT/DTM)
	2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS
	2.1.4 Beckhoff TwinCAT 3 HMI
	2.1.5 ACPLT/HMI
	2.1.6 NAMUR Module Type Package
	2.1.7 automotiveHMI
	2.1.8 MOVISA
	2.1.9 IT HMI Standards

	2.2 Gemeinsamkeiten und allgemeine Struktur von Bedienoberflächen
	2.3 Automatische Erstellung von Bedienoberflächen
	2.4 Fazit

	3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen
	3.1 Anforderungen
	3.2 Grobstruktur des Modells
	3.3 Modellierungsebenen
	3.4 Komponenten des Modells
	3.4.1 Darstellung
	3.4.2 Kopiervorlagen
	3.4.3 Ereignisse
	3.4.4 Aktionen
	3.4.5 Baustein zur Freitext-Programmierung

	3.5 Erweiterung der Grundkomponenten
	3.5.1 Erweiterung der Darstellung
	3.5.2 Erweiterung der Ereignisse
	3.5.3 Erweiterung der Aktionen

	4 Realisierung
	4.1 Prototypische Implementierung

	5 Evaluation im Lebenszyklus (durch Anwendungen)
	5.1 Eignung zur automatischen Erstellung von Bedienoberflächen
	5.2 Engineering von Anlagenplanungsdaten (R&I-Fließbilder)
	5.3 Eignungen des Modells zur Simulationssteuerung
	5.4 Engineering von Anlagensteuerungen
	5.4.1 Engineering einer Funktionsbausteinsprache nach IEC 61131-3
	5.4.2 Engineering einer Ablaufsprache nach IEC 61131-3

	5.5 Eignung für Bedienoberflächen im Betrieb
	5.6 Integration von fremden Bibliotheken in die Modellstruktur
	5.7 Fazit

	6 Diskussion und Ausblick
	Anhang
	1 Anwendung R&I-Fließschema-Editor im Detail
	2 Interner Aufbau der Anzeigekomponente
	3 JavaScript API cshmimodel

	Literaturverzeichnis

