Fortschritt-Berichte VDI

iy

Reihe 8

Mess-,
Steuerungs- und
Regelungstechnik

Nr. 1268

Dipl.-Ing. Holger Jeromin,
Verl

Explizites Modell fir
Benutzungsschnittstellen
im gesamten
Lebenszyklus einer
leittechnischen Anlage

Lehrstuhl for
Prozessleittechnik

A ACHENER der RWTH Aachen

https://doi.org/10.51202/9783186268082

IP 216.73.216.36, am 20.01.2026, 21:58:26. © nhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

"Explizites Modell fir Benutzungsschnittstellen im
gesamten Lebenszyklus einer leittechnischen Anlage"

Von der Fakultat fir Georessourcen und Materialtechnik
der Rheinisch-Westfalischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Ing.
Holger Jeromin

aus Dusseldorf

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Prof. Dr.-Ing. Leon Urbas

Tag der mindlichen Prifung: 03. September 2019

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfigbar.

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

IP 216.73.216.36, am 20.01.2026, 21:58:26. © nhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- Dipl.-Ing. Holger Jeromin,
und Regelungstechnik Verl

[Nr. 1268 | Explizites Modell fiir
Benutzungsschnittstellen
im gesamten
Lebenszyklus einer
leittechnischen Anlage

Lehrstuhl fur
Prozessleittechnik
A AC E

N E R der RWTH Aachen

https://doi.org/10.51202/9783186268082

Jeromin, Holger

Explizites Modell fir Benutzungsschnittstellen im gesamten
Lebenszyklus einer |eiﬂechniscﬂen Anlage

Fortschr.-Ber. VDI Reihe 08 Nr. 1268. Disseldorf: VDI Verlag 2019.
84 Seiten, 25 Bilder, O Tabellen.

ISBN ©78-3-18-526808-3 ISSN 01/8-9546,

€ 38,00/VDI-Mitgliederpreis € 34,20.

Fir die Dokumentation: HMI — Human-Machine Interface — Bedienoberfléichen — Modellie-
rung — Prozessleittechnik — Prozesstechnik — PLT — Softwaredesign — Automatisierungstechnik

Diese Arbeit schlégt ein neues Konzept fir die Erstellung, Wartung und den Gebrauch von
Benutzungsschnittstellen fir prozesstechnische Anlagen vor. Die gesamte Darstellung wird als
HMI-Modell hinterlegt. Dafir wurden nicht nur fir alle Grafikelemente (Text, Rechteck, Kreis ...),
sondern auch fir die gesamte Inferaktion mit dem Prozess und dem Bediener Modellbausteine
(als Metamodellbausteine) definiert. Dies erleichtert die automatische Erstellung und Verénde-
rung der gesamten Darstellung. Dieses Metamodell ist fir grofte Zukunfissicherheit technolo-
gieunabhdngig definiert. Um ein solches HMI-Modell einer Anlage darzustellen wird ein Anzei-
gesystem bendtigt, welches die wenigen definierfen Mefamodellbausteine zur Laufzeit
interprefiert. Dieses Anzeigesystem kann bei Bedarf im Laufe der Lebensdauer der technischen
Anlage in neuen Technologien implementiert werden.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
[German National Bibliography); detailed bibliographic data is available via Infermnet at
www.dnb.de.

D82 (Diss. RWTH Aachen University, 2019)
Tag der mindlichen Prifung: 03. September 2019

© VDI Verlag GmbH - Disseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopie], der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789546
ISBN 978-3-18-526808-3

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Vorwort

Die vorliegende Dissertation entstand wahrend meiner Tatigkeit am Lehrstuhl fir Prozessleittechnik
der RWTH Aachen University. Ich méchte mich an dieser Stelle bei allen bedanken, die geholfen
haben, diese Arbeit erfolgreich abzuschlieBen. Mein besonderer Dank gilt dabei Herrn Professor
Dr.-Ing. Ulrich Epple als Doktorvater und auch als Vorgesetzten. Die Gesprache und Diskussionen
mit ihm waren von Weitblick und tiefen Einblick in die Automatisierungstechnik geprégt und haben
damit mafBgeblich zum Erfolg dieser Dissertation beigetragen. Gleichzeitig hat er am Lehrstuhl eine
sehr angenehme Arbeitsatmosphéare gepflegt und viel Vertrauen in seine Mitarbeiter gezeigt.

Weiterhin méchte ich mich herzlich bei Prof. Dr.-Ing. Leon Urbas, Inhalber der Professur fiir Pro-
zessleittechnik an der TU Dresden, bedanken fir die Ubernahme der Rolle des Zweitgutachters.
Sein tiefes Verstandnis in der Thematik der Modellierung von Benutzungsschnittstellen hat mir sehr
geholfen.

Alle Kollegen des Lehrstuhls haben durch ihre Hilfsbereitschaft und unterschiedliche Expertisen
ihren Anteil an dieser Arbeit geleistet. Besonders méchte ich jedoch Stefan Schmitz danken, der
mich in seinen Jahren am Lehrstuhl immer unterstiitzte und die Basis meiner Arbeit am Lehrstuhl
legte. Weiterhin méchte ich Lars Evertz danken mit dem ich oft gemeinsam auf der Suche nach der
technisch optimalen Lésung war. Auch Tina Mersch lieferte entscheidene Anregungen in meiner
Promotion.

Auch bei meinen ehemaligen Studenten Christian Nick und Yannik Rocks mdchte ich mich fir die
konstruktive Mitgestaltung der erstellten Software bedanken.

SchlieBlich danke ich meiner Familie, angefangen bei meinen Eltern Lutz und Christa die immer
an mich glaubten und mich in allen Entscheidungen unterstiitzen. Weiterhin bedanke ich mich bei
meinen Kindern Laura und Vera die mein Leben sehr bereichern. Mein wichtigster Dank gebihrt
jedoch meiner Frau Sabine, welche mich immer unterstiitzt und mit unendlicher Geduld motiviert
hat die Arbeit zu einem erfolgreichen Ende zu fuhren.

Verl, im November 2019 Holger Jeromin

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Sollen sich auch alle schamen, die gedankenlos sich der Wunder der Wissenschaft und
Technik bedienen und nicht mehr davon geistig erfasst haben als die Kuh von der Botanik
der Pflanzen, die sie mit Wohlbehagen frisst.

Albert Einstein (Eréffnungsansprache der 7. GroBen Deutschen Funkausstellung und Phonoschau,
Berlin, Haus der Rundfunkindustrie, 22. August 1930)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Inhaltsverzeichnis

Inhaltsverzeichnis
Vorwort i
1 Einleitung 1
2 Hintergrund und Motivation 3
21 StandderTechnik 4
2.1.1 iPhone/Android Programierung 4
2.1.2 Field Device Tool/Device Type Manager (FDT/DTM) 5
2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS 6
2.1.4 Beckhoff TWinCAT3HMI 7
215 ACPLT/HMI 7
2.1.6 NAMUR Module Type Package 8
2.1.7 automotiveHMI 8
2.1.8 MOVISA . . . e 9
219 ITHMIStandards 10
2.2 Gemeinsamkeiten und allgemeine Struktur von Bedienoberflachen 12
2.3 Automatische Erstellung von Bedienoberflachen 13
24 Fazit 14
3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen 15
3.1 Anforderungen e e 15
3.2 GrobstrukturdesModells 16
3.3 Modellierungsebenen 17
3.4 KomponentendesModells 19
3.4.1 Darstellung 19
3.4.2 Kopiervorlagen 21
3.4.3 Ereignisse. 22
3.4.4 AKHOnen. 24
3.4.5 Baustein zur Freitext-Programmierung 31
3.5 Erweiterung der Grundkomponenten 32
3.5.1 ErweiterungderDarstellung. L. 32
3.5.2 Erweiterungder Ereignisse 33
3.5.3 Erweiterungder Aktionen L 34
4 Realisierung 36
4.1 Prototypische Implementierung 36

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Inhaltsverzeichnis

5 Evaluation im Lebenszyklus (durch Anwendungen)

5.1 Eignung zur automatischen Erstellung von Bedienoberflachen.
5.2 Engineering von Anlagenplanungsdaten (R&I-FlieBbilder)
5.3 Eignungen des Modells zur Simulationssteuerung L.
5.4 Engineering von Anlagensteuerungeno e e

5.4.1 Engineering einer Funktionsbausteinsprache nach IEC61131-3

5.4.2 Engineering einer Ablaufsprache nach IEC61131-3
5.5 Eignung fir Bedienoberflaichenim Betrieb
5.6 Integration von fremden Bibliotheken in die Modellstruktur
5.7 Fazit e

6 Diskussion und Ausblick

Anhang
1 Anwendung R&l-FlieBschema-Editor im Detail
2 Interner Aufbau der Anzeigekomponenteo o L
3 JavaScript APl cshmimodel e

Literaturverzeichnis

\

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Kurzfassung

Prozesstechnische Anlagen sind sehr komplex und erfordern eine ausgefeilte Steuerung. Leider
,nehmen Kompetenz und Qualifikation auf der Anwender- und Bedienerseite ab“. Dies gaben jeden-
falls 56 % von rund 1800 befragten Mitglieder im Verband Deutscher Maschinen- und Anlagenbau
(VDMA) in einer Umfrage an [Sch12]. Damit Bediener die Steuerung gerade auch in kritischen
Situationen bedienen kénnen, ist eine leistungsfahige angepasste Benutzungsschnittstelle notig.
Diese Schnittstellen sind jedoch sehr aufwendig bei der Erstellung.

Um diese Kosten zu senken, bieten sich zwei Méglichkeiten an. Erstens kénnen Kosten eingespart
werden, indem mdglichst viele Teile der Benutzungsschnittstelle aus vorhandenen Planungsdaten
automatisch erstellt werden. Dies hat zudem den Vorteil, dass das endgiiltige Ergebnis friher bereit-
steht. Weiterhin kénnen sich weniger Fehler bei wiederkehrenden Parametrierungsaufgaben bei der
Erstellung einschleichen, was insgesamt die Qualitt erhéht. Zweitens lassen sich Kosten durch
eine mdglichst lange Nutzungszeit der Benutzungsschnittstelle reduzieren. In prozesstechnischen
Anlagen ist eine Lebensdauer von 30 Jahren nicht ungewdhnlich. Die Steuerungstechnik und erst
Recht die Visualisierungstechnologie verwenden jedoch immer mehr Standard-Komponenten der
IT-Branche, welche einem schnelleren Wandel unterliegen.

Diese Arbeit schlagt daher ein neues Konzept fiir die Erstellung, Wartung und den Gebrauch von
Benutzungsschnittstellen vor. Die gesamte Darstellung wird als HMI-Modell hinterlegt. Dafiir wurden
nicht nur fur alle Grafikelemente (Text, Rechteck, Kreis ...), sondern auch fir die gesamte Inter-
aktion mit dem Prozess und dem Bediener Modellbausteine (als Metamodellbausteine) definiert.
Dies erleichtert die automatische Erstellung und Verédnderung der gesamten Darstellung. Dieses
Metamodell ist fir gréBte Zukunftssicherheit technologieunabhangig definiert. Flir sehr komplexe
Aufgaben existiert jedoch zusétzlich eine Erweiterung um per HTML und JavaScript frei zu pro-
grammieren. Diese Erweiterung ist dabei so entwickelt worden, dass sie stark verzahnt ist mit der
Modellwelt und zwischen beidem ein einfacher Informationsaustausch méglich ist.

Um ein solches HMI-Modell einer Anlage darzustellen wird ein Anzeigesystem benétigt, welches
die wenigen definierten Metamodellbausteine zur Laufzeit interpretiert. Dieses Anzeigesystem kann
bei Bedarf im Laufe der Lebensdauer der technischen Anlage in neuen Technologien implementiert
werden.

Als Prototyp wurde ein Anzeigesystem mit Webtechnologie realisiert. Diese Technologie hat den
grofBen Vorteil, dass fur unterschiedlichste Betriebssysteme leistungsfahige Webbrowser existieren.
Damit ist der Prototyp selbst plattformunabhangig nutzbar.

Vi

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Abstract

Abstract

Process plants are very complex and require a sophisticated control system. Unfortunately "compe-
tence and qualification on the user and operator side are decreasing". At any rate, 56 % of around
1800 members surveyed in the German engineering association VDMA gave this result in a survey
[Sch12]. In order for operators to be able to operate the plant even in critical situations, a powerful
adapted user interface is required. However, these interfaces are very complex to create.

There are two evident ways to reduce these costs. First, costs can be saved by automatically crea-
ting as many parts of the user interface as possible from existing planning data. This also has the
advantage that the final result is available earlier. Furthermore, fewer errors can creep in during
recurring parametrization tasks during creation, which increases overall quality. Secondly, costs can
be reduced by using the user interface as long as possible. In process plants, a service life of 30
years is not unusual. The control technology and especially the visualization technology, however,
use more and more standard components from the IT industry, which are subject to a faster change.

Therefore, this thesis proposes a new concept for the creation, maintenance and use of user inter-
faces. The entire representation is stored as an HMI model. Therefore, not only for all graphic ele-
ments (text, rectangle, circle ...), but also the entire interaction with the process and the operator
model elements (as meta model elements) were defined. This facilitates the automatic creation and
modification of the entire representation. This meta model is defined as technology-independent for
maximum future security. For very complex tasks, however, there is an additional extension to freely
program via HTML and JavaScript. This extension was developed in such a way that it is strongly
interlocked with the model world and between both a simple information exchange is possible.

In order to display such an HMI model of a plant, a display system is required that interprets the
few defined meta model elements at runtime. If required, this display system can be implemented
in new technologies during the life cycle of the technical plant.

As a prototype a display system with web technology was realized. This technology has the great
advantage that powerful web browsers exist for all modern operating systems. This means that the
prototype itself can be used platform-independently.

VIII

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

1 Einleitung

Im gesamten Lebenszyklus einer technischen Anlage werden verschiedene Benutzungsschnitt-
stellen (oft auch Bedienoberflache oder Human Machine Interface, kurz HMI genannt) benétigt.
Am wichtigsten ist diese Schnittstelle wahrend des Betriebs, da die meisten Informationen Uber
den Zustand der Anlage hierliber abgerufen werden kdnnen. Zuséatzlich werden alle Eingriffe in den
Prozess Uber diese Schnittstelle vorgenommen. Dies gilt sowohl fir den Normalbetrieb, als auch
fUr eine Stdérung des bestimmungsgeméBen Betriebs. Daher werden Benutzungsschnittstellen auf-
wandig an den Anwendungszweck sowie an die Wiinsche der Anwender angepasst. Nur so ist eine
spatere Akzeptanz zu gewahrleisten.

Eine Anlage hat teilweise einen jahrzehntelangen Lebenszyklus, in der die Steuerungsaufgabe
erflllt werden muss. In diesem Zeitraum gibt es oft Veranderungen, da die Anlage umgebaut oder
erweitert wird. Anderungen, welche iber den Austausch baugleicher Bauteile hinausgehen, erfor-
dern dabei meist eine Anpassung der Benutzungsschnittstelle. Solche Eingriffe erfordern Exper-
tenwissen sowohl der Richtlinien, als auch des Prozessleitsystems, da die Anzeigen meist sehr
komplex programmiert sind.

Ein anderer Fall bei dem Anpassungen der Benutzungsschnittstelle notwendig werden ist der Aus-
tausch des gesamten Leitsystems. Da die Hersteller ihre Bedienoberflachen meist sehr unterschied-
lich realisieren, wird dabei teilweise auch eine komplette Neuentwicklung nétig.

Obwohl das Haupteinsatzgebiet fir Benutzungsschnittstellen weiterhin die Leitwarte mit dedizierten
Computern bleiben wird, werden zusétzliche Anzeige- und Bedienmdglichkeiten immer wichtiger.
Der Trend geht aktuell zu mobilen Endgeréaten, welche vom Bediener direkt in der Anlage mitgefiihrt
werden kénnen. Weiterhin ist von Anlagenbetreibern oft ein direkter Einblick aufs Prozessleitsystem
gew(linscht. Da schlieBlich auf mobilen Geraten oder Office-Computern die komplexe Software zur
Anlagensteuerung nicht installiert werden kann beziehungsweise soll, wird hierfiir eine separate
Zugangstechnologie (zum Beispiel Webtechnologie) benétigt, die installiert und gewartet werden
muss.

Parallel zu den Benutzungsschnittstellen der Prozessflihrung gibt es einen immer gréBeren Bedarf
nach Assistenten und Zusatzwerkzeugen, welche zum Beispiel ein zusétzliches Monitoring oder
spezielle Kennzahlen darstellen. Auch diese Softwarewerkzeuge bendtigen Benutzungsschnitt-
stellen. Hier ist jedoch eine Installation von viel Zusatzsoftware nicht gewlinscht.

Je mehr Zugangsarten (zum Beispiel stationdrer und mobiler Bediener, Einblick durch Fihrungs-
personen) genutzt werden, desto aufwendiger sind Anderungen oder Neuentwicklungen der Benut-
zungsschnittstellen. Dabei sind meist umfassende Programmierkenntnisse erforderlich. Die Benut-

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

1 Einleitung

zungsschnittstellen des Prozessleitsystems Honeywell Experion PKS sind zum Beispiel mit JScript
und VisualBasic frei programmierbar. Weiterhin werden Kenntnisse von Normen und Richtlinien zur
optimalen Gestaltung benétigt; beispielsweise die Richtlinie VDI/VDE 3850 [VDI02] fir die Ferti-
gungsindustrie oder die Richtlinie VDI/VDE 3699 [VDI13] fur die Prozessindustrie).

All diese Herausforderungen machen klar, dass die Erstellung und Pflege von Benutzungsschnitt-
stellen sehr aufwéndig und damit teuer ist. Da die Wartung bei den HMI-Herstellern unterschiedlich
komplex ist, hat die Festlegung auf einen Hersteller einen groBen Einfluss auf den spéateren Betrieb.

Ein herstellerunabhangiger Ansatz fir Benutzungsschnittstellen wurde bereits am Lehrstuhl unter
der Bezeichnung ACPLT/HMI [Sch10] entwickelt. Er erfordert jedoch flr nicht triviale Aufgabenstel-
lungen eine Programmierung in Hochsprache, sodass jeder Anderungswunsch eine Anderung im
C-Code notwendig macht.

Eine Alternative wére eine vollstdndige Modellierung von Benutzungsschnittstellen inklusive der
Interaktion. Dabei sollten Anderungen zur Laufzeit ohne tiefe Programmiererfahrung einfach fiir die
Benutzer zu realisieren sein. Durch eine technologieneutrale Definition kédnnte der Wert der Benut-
zungsschnittstelle im gesamten Lebenszyklus gesichert werden, da bei einem Plattformwechsel die
bisherige Applikation ohne teure Neuimplementierung Gbernommen werden kann.

Die vorliegende Arbeit analysiert daher einen neuen Ansatz eines expliziten Modells zur Beschrei-
bung einer Benutzungsschnittstelle, welche sich aus wenigen, vorher definierten Elementarbau-
steinen zusammensetzt (siehe Abbildung 1.1). Ziel ist es zu zeigen, dass dieses Konzept fiir viele
unterschiedliche Benutzungsschnittstellen im gesamten Lebenszyklus einer leittechnischen Anlage
nutzbar ist und die Wartung vereinfacht wird.

Datenbasis Anzeigesystem

/1IN

Grafik Ereignisse Aktionen

Abbildung 1.1: Grundkonzept der vorliegenden Arbeit

Zu Beginn der Arbeit beschéftigt sich Kapitel 2 mit dem aktuellen Stand der Technik von Benut-
zungsschnittstellen. Es werden verschiedene Standards aus der IT und Automatisierungstechnik
zur Modellierung von Bedienoberflachen vorgestellt. AnschlieBend geht Kapitel 3 auf das Konzept
der vorgestellten Loésung ein, bevor dessen prototypische Implementierung in Kapitel 4 detailliert
vorgestellt wird. Daraufhin wird in Kapitel 5 durch Beispielanwendungen geprift, ob das vorge-
stellte Modell fir unterschiedlich komplexe Benutzungsschnittstellen nutzbar ist. Die Arbeit schlief3t
mit einer Diskussion und Ideen flr zukunftige Forschungsgebiete in Kapitel 6 ab.

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Wie in der Einleitung erwahnt hat eine leittechnische Anlage teilweise eine jahrzehntelange Laufzeit.
Die Entitat der Anlage beginnt jedoch schon ab der Planung und endet mit dem Riickbau oder
anderweitigen Nutzung der physischen Anlage. Dieser Zeitraum wird in DIN 40912 [DIN14] als
Lebenszyklus bezeichnet und definiert als ,die Folge von Prozessen, die eine Entitat wahrend ihrer
Existenz durchlauft.”. Diese Prozesse sind nicht eingeschrankt auf die Nutzzeit der Anlage, da selbst
die Alterung als Prozess angesehen werden kann.

Hier seien exemplarisch einige Phasen des Lebenszyklus aufgelistet:

Konzeption

Planung

Errichtung

Inbetriebnahme

Betrieb und Nutzung

Umbau/Umristung

Riickbau

Innerhalb der Phasen des Lebenszyklus werden unterschiedliche Bedienoberflachen eingesetzt. So
wird in der Planungsphase beispielsweise das verfahrenstechnische FlieBbild und der Elektroplan
erstellt. Zur Erstellung beider Plane wird in der Industrie meist jeweils ein gesondertes Werkzeug
genutzt. Diese sind teilweise mit unterschiedlichen Technologien realisiert und haben damit unter-
schiedliche Bedien- und Gestaltungskonzepte.

Die Bedienoberflache, welche wahrend des Betriebs genutzt wird, hat noch eine gréBere Bedeu-
tung, da sie von weniger qualifizierten Bedienern und taglich viele Stunden genutzt wird. Durch die
jahrzehntelange Lebensdauer ist die softwaretechnische Realisierung von groBer Bedeutung. Die
richtige Wahl der Softwareinfrastruktur sorgt daflr, dass eine erfolgreiche Bedienoberflache lber
diese lange Zeit kosteneffizient nutzbar bleibt.

Auf dem Markt der Prozessleittechnik und erst recht allgemein der Computertechnik haben sich
unterschiedliche Ansétze zur Modellierung von Bedienoberflachen ausgebildet. Daher sollen in

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

diesem Kapitel einige wichtige vorhandenen Modellierungstechniken aus diesen beiden Doménen
vorgestellt werden.

Der Hauptfokus in diesem Kapitel liegt in der Modellierung der allgemeinen Darstellung und der
Interaktion.

2.1 Stand der Technik

Modelle von Bedienoberflachen gibt es von verschiedenen Herstellern und Forschungs-
einrichtungen. Daher werden in den nachfolgenden Unterkapiteln einige Standards von
Industriesteuerungs-HMI und angrenzender Standards vorgestellt und deren Eigenschaften in
Bezug auf automatische Erstellung und allgemein der Anwendungsmdglichkeiten in der Prozess-
technik gepruft. Zusatzlich werden erfolgreiche Modelle aus dem Konsumerbereich vorgestellt um
einige Anséatze auf deren Eignung in der Prozesstechnik zu analysieren. Die weiteren vorgestellten
Modelle stammen aus dem Bereich der Industrie.

Auch mobile Geréateklassen wie Mobiltelefone oder Tablets haben eine Bedienschnittstelle. Diese
haben einen anderen Anwenderkreis und insbesondere andere Aufgaben als die Anzeigen in der
Prozessleittechnik. Trotzdem wird hier die sehr erfolgreich genutzte Technik kurz vorgestellt.

2.1.1 iPhone/Android Programierung

Android von Google ist das fiihrende Betriebssystem fiir Smartphones und Tablets.! Es ist seit
seiner Veroffentlichung 2008 auf Touchbedienung und unterschiedliche Gerdatemodelle ausgelegt.
Die Anwendungen (Apps genannt) missen mit einer Vielzahl von Bildschirmgré3en und Pixelanzahl
nutzbar sein, daher sind die Bedienbilder meist relativ zur Bildschirmdimension definiert. Die Breite
eines Knopfes ist zum Beispiel halb so breit wie der Bildschirm und in der Mitte positioniert.

Die Darstellung aller solcher auf dem Bildschirm sichtbaren Objekte wird Uber zwei Basisklassen
realisiert. Ein View Objekt bietet ein sichtbares Objekt, eine ViewGroup ist dagegen nur ein (unsicht-
barer) Container. Ein Element der Klasse View kann keine weiteren Elemente aufnehmen, eine
ViewGroup kann jedoch beliebig viele View und ViewGroup Elemente aufnehmen. Aus dieser
Verschachtelung wird daraus eine Baumstruktur. Die ViewGroup ist nur eine Basisklasse, welche
Uber verschiedene Layouts realisiert wird. So gibt es zum Beispiel LinearLayout fir hintereinander
gehéngte Views (in einer langen Spalte oder Reihe), RelativeLayout fiir relativ zueinander posi-
tionierbare Views (Positionierung ist relativ zum Vater- oder Nachbarelement mdglich). Auch kom-
plexe, fertig zur Verfugung gestellte Komponenten wie eine vollwertige Anzeige fir HTML Inhalte
wie WebView sind als ViewGroup realisiert.

"Marktanteil 86,1 % Quelle Gartner, Stand Mai 2017 https: //www.gartner . com/newsroon/id/3725117 (abgerufen am
28.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

Es existieren zwei Mdglichkeiten eine Darstellung in Android zu realisieren. Das Layout kann voll-
standig und statisch in einem XML-Dokument definiert werden. Alternativ kénnen alle Elemente
(also View- und ViewGroup-Objekte) einzeln per Programmcode erzeugt werden und so die Appli-
kation dynamisch aufgebaut werden.? Die XML-Datei verwendet als XML-Namensraum die URI
http://schemas.android.com/apk/res/android, es ist jedoch kein formales Schema fir diese
XML-Dateien verfligbar. Dies liegt daran, dass das erstellte XML Abhéangigkeiten zu beliebigen
Fremdbibliotheken hat, welche nicht in einer zentralen Schemadatei erfasst werden kénnen.

Alle Interaktion wird Giber Java-Programmcode definiert. So hat jedes View oder ViewGroup Element
eine Entsprechung in einem Java-Objekt auf welchem sogenannte Listener (wie OnltemClickLis-
tener oder OnltemLongClickListener) registriert werden kénnen. Dieser Java-Programmcode wird
daraufhin bei einem einfachen (bzw. langem) Klick auf dieses Objekt aufgerufen.

Der gréBte Konkurrent von Android ist das Mobilbetriebssystem iOS von Apple, welches auf mobilen
Apple Geréaten wie iPhone und iPad lauft.® Die Programmierung erfolgt &hnlich wie bei Android mit
dem Unterschied, dass eine manuelle Zusammenstellung der Anzeige meist nicht erfolgt. Statt-
dessen wird auf die umfangreiche Hilfe des Interface Builders zurlickgegriffen. Weiterhin werden
hier die einzelnen Ansichten (Scenes genannt) nicht voneinander unabhangig erstellt, sondern sie
bilden eine Einheit unter dem Dach eines Storyboards. Sie werden mit sogenannten Segues ver-
kniipft. Dies sind festgelegte Ubergénge zu anderen Scenes bei der Benutzung einer Schaltflache.
Diese Art der High-Level Verkniipfung verringert die Zahl der frei programmierten Logik.* Da es
keine Dokumentation Gber die dahinterliegenden Datenmodelle gibt und weiterhin eine Entwicklung
von iOS Applikationen nur auf macOS Computern méglich ist, ist eine Ubertragung der Modellierung
dieser Programmierung in die Prozesstechnik nicht sinnvoll.

2.1.2 Field Device Tool/Device Type Manager (FDT/DTM)

Das offene System Field Device Tool/Device Type Manager hat es sich zur Aufgabe gemacht
eine herstellerunabhangige Konfiguration und Parametrierung von Feldgeréten zu ermdéglichen. Mit
diesem Konzept muss ein Geratehersteller keine eigene vollstandige Software erstellen, sondern
liefert eine Device Type Manager-Datei (DTM), welche von einem Interpreter (der FDT Rahmen-
applikation) dem Benutzer prasentiert wird (siehe Abbildung 2.1). Diese Applikation kann ein sepa-
rates Tool (zum Beispiel das kostenlose PACTware®) sein oder in ein Leitsystem (wie beispielsweise
das System 800xA von ABB) integriert sein.

2Android Entwickler Dokumentation: https://developer.android.com/guide/topics/ui/declaring-layout (abge-
rufen am 28.7.2018)

3Marktanteil 13,7% Quelle Gartner, Stand Mai 2017 https://www.gartner.com/newsroom/id/3725117 (abgerufen am
28.7.2018)

4i0S Entwickler Dokumentation https://developer.apple.com/xcode/interface-builder/ (abgerufen am
27.7.2018)

Shttp://www.pactware.com/ (abgerufen 27.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

{5 DTM Werks - (D2 PT1001) EIXVA.2 <Online Parameters] =2 fox 5 |
R File View Deice Tool Window BOD

< BB ER(IHS-

Desciptor, DESCRPTOR Wik Pstect: Mo YOKOGAWA
Message MESSaGE
Oevis 190

v 000 A
Merocte [Linear =
FPresDamgz 400 P

e [FE O w

Lowcut mode: [T B| -
et 41 & % o by ens J
S DG oo 287

B Connected. i @ Al

Abbildung 2.1: FDT/DTM Konfiguration eines Yokogawa EJX110A Differenzdruck-Messumformer ©Yokogawa

Das System ist gedacht als eine Schnittstelle fir Techniker und nicht als Visualisierung flr einen
vollstandigen Prozess®. Die Darstellung innerhalb der DTM-Dateien kann als reine grafische Dar-
stellung von Geréatebeschreibungsdateien, Electronic Device Description (EDD), ausgefiihrt sein
oder als komplexe Applikation. Solch eine Applikation wird mithilfe der .NET-Technologie von Micro-
soft (siehe Kapitel 2.1.9.2) implementiert und ist daher aktuell auf anderen Betriebssystemen als
Windows oder Mobilgeraten nur (iber Proxyldsungen wie Remote FDT Server” von der M&M Soft-
ware GmbH mdglich. Einheitliches Aussehen wird Uber einen DTM-Style Guide erreicht, welcher
auch flr eine Zertifizierung eingehalten werden muss. Eine eigene Modellierung einer grafischen
Bedienoberflache fir den Industrieeinsatz bietet FDT/DTM daher nicht.

2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS

In diesem Abschnitt werden zwei HMI Systeme aus dem Bereich der Prozessindustrie vorgestellt,
welche in den Grundziigen eine identische Philosophie verfolgen. Sowohl die Bedienoberflache
von Siemens SIMATIC WinCC als auch das Honeywell Experion PKS bieten eine Méglichkeit einer
dynamischen Anpassung der Darstellung [Sie13, Hon14]. Beide liefern einen grafischen Editor zur
einfachen Erstellung. Die Dynamik ist bei beiden Herstellern nur iber eine Freitext-Programmierung
moglich. Dies erfolgt bei WinCC unter dem Stichwort Dynamisierungen Uber einen ,Dynamik-
Dialog“ (grafisches Werkzeug um eine einfache WENN/DANN Logik zu programmieren), ANSI-C
oder Visual Basic Script (VBS) und bei Experion per Visual Basic Script oder JavaScript.

5 http://wuw.abb.com/cawp/seitp202/847374139ddb1£73c1257dd9004b1740. aspx - ABB présentiert das erste FDI-
gestutzte Geratemanagement-Tool (abgerufen 27.7.2018)
"https://mm-software.com/de/fdt-services (abgerufen 27.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

2.1.4 Beckhoff TwinCAT 3 HMI

TwinCAT 3 HMI (TcHmi) von Beckhoff Automation ist eine Bedienoberflache hauptsachlich fiir
Maschinensteuerungen. Erstellt wird die Oberflache grafisch lber eine Extension von Beckhoff in
der Entwicklungsumgebung Visual Studio von Microsoft. Dargestellt wird die Bedienoberflache per
Webbrowser Uber eine Webseite mit JavaScript. Alle darzustellenden Elemente werden zu eigen-
stéandigen Einheiten (Controls) wie zum Beispiel Container, Kreis, Rechteck, Knopf, Auswahlliste
zusammengefasst. Auch eigene Controls kénnen per HTML und JavaScript erstellt werden.

Die konkrete Nutzung und Verschachtelung der gewlinschten Controls einer Anzeige werden in
einer HTML-ahnlichen Beschreibungssprache gespeichert. Dabei wird jedoch nur der generische
Container von HTML (<div></div>) genutzt und mit TwinCAT spezifischen Attributen parametriert.
Das HTML-Attribut data-tchmi-type="tchmi-button" legt beispielsweise fest, dass in der spa-
teren Darstellung dieser generische <div>-Container durch einen Button ersetzt werden soll. Wei-
tere HTML-Attribute legen sowohl die Position sowie Gré3e der Controls, als auch die Interaktion
mit dem Bediener oder den Prozess-/Maschinendaten fest.

Es gibt bei allen Controls sehr viele Attribute zur Anpassung der Darstellung. Die Definition dieser
Attribute lehnt sich sehr stark an die genutzte Darstellungsplatform HTML an. Der Fokus liegt auf
maximaler Flexibilitat und Erweiterbarkeit durch den Anwender.®

2.1.5 ACPLT/HMI

Am Lehrstuhl wurde schon vor dieser Arbeit mit dem modellbasierten Ansatz ACPLT/HMI [SE07,
Sch10] gearbeitet. Hierbei liefert jede Komponente (Bausteintypicals genannt) seine aktuelle Dar-
stellung als Scalable Vector Graphics (SVG, [FJF03]). Diese Darstellung wird im Automatisierungs-
system generiert und zyklisch vom Anzeigesystem neu abgefragt und dargestellt (siehe Abbil-
dung 2.2).

Die Anzeige wird ergdnzt um Interaktions-Hinweise. Diese werden interpretiert und somit werden
unter anderem Klick, Doppelklick, Texteingabe und Drag&Drop ermdglicht. Das Anzeigesystem ist
jedoch extra simpel gehalten und gibt eine erkannte Interaktion (genannt Gesten, beispielsweise
ein Klick) nur an das Automatisierungssystem weiter. Fir die wirkliche Aktion der Gesten muss dort
eine Programmierung hinterlegt worden sein. So kann eine beliebig komplexe Reaktion auf diese
Interaktion durchgefiihrt und, bei Bedarf, die Darstellung geandert werden.

Da bisher keine Sitzungen verwaltet werden, zeigen alle Anzeigesysteme stets das exakt gleiche
Bild an. Als Technologiedemo wurden alle Basisformen von SVG wie Rechteck, Kreis, Text und
weitere erstellt. Auch Gesten wie ein Farbwechsel oder eine Positionsédnderung wurden implemen-
tiert. Beides kann einfach im Automatisierungssystem instanziiert werden. Es existiert jedoch keine
Beschreibungssprache fir die Darstellung oder Gesten. Jede nicht triviale Aufgabenstellungen
erfordert daher auch eine Programmierung in Hochsprache.

Shttp://beckhoff.de/te2000/ (abgerufen 27.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Die Anzeige der SVG-Darstellung ist webbasiert und bietet daher eine Plattformunabhangig-
keit [Jer08] fUr unterschiedliche Gerateklassen (Mobil, Desktop) ohne dass eine Installation auf
den Endgeraten nétig ware.

SVG
Modell und -_— Anzeigesystem
Automatisierungssystem — Webbrowser
Anwendung in ANSI C Kommandos

generiert SVG

Abbildung 2.2: Grundstruktur von ACPLT/HMI

2.1.6 NAMUR Module Type Package

Das Konzept ,DIMA - Dezentrale Intelligenz fir modulare Anlagen“ wurde von der WAGO Kon-
takttechnik GmbH & Co.KG zusammen mit der Professur flir Automatisierungstechnik, Helmut-
Schmidt-Universitat Hamburg und der Professur fiir Prozessleittechnik, Technischen Univer-
sitdt Dresden entwickelt, um eine vollstdndige Automatisierung von modularen Anlagen zu
ermdoglichen.[HLW16] Das Konzept wird aktuell als NAMUR Empfehlung (VDI/VDE/NAMUR 2658)
standardisiert.[BHH*16]

Diese Module werden jeweils im Format Module Type Package (MTP) beschrieben, welche die Pro-
zedursteuerung, Control-, I/O-Ebene und auch die Visualisierung beinhaltet. Als Beschreibungs-
sprache fiir die Bedienoberflache wird mittlerweile AutomationML[IEC10b] genutzt.

Die Visualisierung wird bei jeder Anderung der Anlagentopologie neu zusammengestellt. Um ein
einheitliches Aussehen bei unterschiedlichen Herstellerkomponenten zu gewabhrleisten, arbeitet
MTP mit Referenzen der Klassifizierungsbibliothek eCl@ss (inklusive einer Position und Rotation
auf dem Bildschirm).[OHU*15] Diese werden daraufhin vom endgdltigen Programm auf dem Bild-
schirm erstellt, wobei alle genutzten Rollen dem System bekannt sein miissen um die Module feh-
lerfrei darstellen zu kénnen. Die Datenverbindung der Module werden Uber eine Liste von Daten-
punkten des Moduls festgelegt. Somit ist eine Interaktion mit dem Prozess méglich.

2.1.7 automotiveHMI

Das Format automotiveHMI ist ein domé&nenspezifisches Austauschformat fur die (verteilte) Ent-
wicklung von Infotainmentsystemen im Automobilbereich. Es wurde finanziert vom Bundesministe-
rium fur Wirtschaft und Technologie (BMWi) als Verbundprojekt unter der Koordination des Deut-
schen Forschungszentrums fiir Kiinstliche Intelligenz (DFKI) in Kaiserslautern® mit elf Automobil-
herstellern und Zulieferern. Die Spezifikation steht frei unter der MIT-Lizenz (kommerzielle Nutzung

®https://www.dfki.de/web/news/detail/News/projekt-automotive-hmi-austauschformat/ (abgerufen
27.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

méglich) als Download'® zur Verfiigung. Es ist modellbasiert und bietet im Sprachkern eine inte-
grierte Versionierung.

Durch die Beschrankung auf ein Infotainmentsystem ist die hauptséchliche Interaktionsform dialog-
gestutzt. Von einem Hauptbildschirm wird Gber Transitionen zu unterschiedlichen Dialogen gewech-
selt. Diese Transitionen werden Uber eine einfache Zustandsmaschine gesteuert und werden Uber
Ereignisse sowie Konditionen (guardCondition) definiert.

automotiveHMI spezifiziert auch Pop-ups im Kern, welche andere Anzeigen Uberlagern kdnnen.
Diese Pop-ups sind priorisierbar, so kann ein Pop-up fiir eine Olstandwarnung eine Warnung zur
niedrigen AuBentemperatur Uberlagern.

Weiterhin bietet der Standard auch ein Templatesystem zur Wiederverwendung von beliebigen Tei-
lobjekten.

2.1.8 MOVISA

Ein sehr interessantes HMI-Modell ist MOVISA von Stefan Henning [HB11, Hen12]. Es wird aktuell
auch kommerziell genutzt in der ,MONKEY WORKS Suite” der ELCO Industrie Automation GmbH.
Das HMI-Modell der Applikation wird vom Anwender Uber eine abstrakte Modellierungsschnittstelle
(high fidelity) programmiert, bietet fur automatische Engineeringaufgabe jedoch auch einen direkten
Zugriff auf die Interna (low fidelity). Eine Moglichkeit der Verifikation auf diesen Modellen ist direkt
integriert. Die Verifikationsregeln kdnnen generisch sein, lassen sich tber Java-Programme jedoch
auch vom Kunden erweitern.

Aus diesen Modellen wird daraufhin in einem separaten Schritt die gewlinschte native Anwendung
generiert. Diese Transition kann auch Mobilgeréte als Ziel haben. Fiir die unterschiedlichen Anforde-
rungen der Eingabegerate und BildschirmgréBen kdnnen zusétzliche Vorschriften fir die Transition
definiert werden. So kénnen Teile der Darstellung fiir Mobilgeréate beispielsweise versteckt werden.

Das Modell selbst ist eine ,Domain Specific Language® flr Produktionsautomatisierung. Sie
beschreibt neben einfachen grafischen Objekten, auch viele sogenannte ,Common interaction wid-
gets”. Darunter fallen: Buttons, Slider, Combobox, Listbox, Checkbox, Radiobuttons, Eingabefelder.
Weiterhin sind sogar doménenspezifische Elemente als ,Automation specific widgets* definiert: Dies
ist beispielsweise ein ,,Alarm control widget”, Trend Chart und ein Drehzeigerdiagramm. Auch sehr
komplexe Darstellungselemente wie eine Tabelle und eine Baumansicht sind als ,,Complex widgets*
beschrieben.

Eine Besonderheit des MOVISA-Modells ist die explizite Modellierung der Interaktion auBerhalb
von freier Textprogrammierung. So ist das Lesen und Schreiben von Prozessdaten direkt Uber eine
grafische Notation mdglich. Diese wird jedoch ergénzt durch eine textuelle Syntax.

"https://sourceforge.net/projects/automotivehmi/ (abgerufen am 27.7.2018)

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

2.1.9 IT HMI Standards

Da die Modellierung der Bedienoberflache im Fokus dieser Arbeit ist, werden im Folgenden einige
Standards zu Bedienoberflachen aus der Informationstechnologie beschrieben.

2.1.9.1 OpenlLaszlo und Apache Flex

Die beiden Produkte Apache Flex (ehemals Adobe Flex)'" und das éltere OpenLaszlo'? sind kon-
zeptionell ahnlich aufgestellt. Beide definieren die reine Bedienoberflache in einem eigenen XML-
Dialekt (MXML bei Flex beziehungsweise LZX bei OpenlLaszlo). Die Anwendungslogik wird mithilfe
an ECMAScript angelehnter Programmierung implementiert.

Aus diesen Ressourcen wird eine Binardatei erstellt, welche vom Browserplugin Adobe Flash beim
Anwender auf den Bildschirm dargestellt wird. Bei OpenLaszlo ist zusatzlich eine Webseite ohne
Pluginbenutzung als Export vorgesehen.

Durch die Nutzung einer Freitextprogrammiersprache mit spezieller API zu den Grafikelementen ist
eine Technologieunabhéngigkeit nicht gegeben.

2.1.9.2 Extensible Application Markup Language (XAML)

Die deklarative Sprache Extensible Application Markup Language (XAML) wurde von Microsoft im
Jahre 2006 fir das Grafikframework .NET entwickelt. XAML selbst definiert nur die statische Dar-
stellung. Die Programmlogik wird in einer klassischen imperativen Programmiersprache wie C#,
Visual Basic oder auch JavaScript implementiert.

Eine groBBe Starke von XAML sind die umfangreichen Steuerelemente (Controls) und die sehr gute
Toolunterstiitzung (Visual Studio und Microsoft Blend) welche die Entwicklung der Applikation sehr
beschleunigen.

XAML kann in funf unterschiedlichen Microsoft Architekturen genutzt werden. Dies sind die Win-
dows Presentation Foundation (WPF, fir Windows-Desktop-Anwendungen), Universal Windows
Platform (UWP, fir Windows 10 Anwendungen), Silverlight fur Windows Phone Anwendungen, Sil-
verlight innerhalb eines Webbrowser-Plug-in und letztendlich noch fiir iOS, Android und Windows
Phone der Sprachdialekt Xamarin Forms. Alle diese Architekturen bringen einen unterschiedlichen
Satz an Steuerelementen mit. Dies hat zur Folge, dass eine per XAML erstellte Anwendung nicht
ohne weiteres auf anderen Plattformen lauft. Eine Initiative von Microsoft eine einheitliche Definition
unter dem Namen XAML Standard l4uft nur sehr schleppend an.'

"http://flex.apache.org (abgerufen am 27.7.2018)

"http://www.openlaszlo.org (abgerufen am 27.7.2018)

http://download.microsoft.com/download/0/A/6/0A6F7755- 9AF5-448B-907D-13985ACCF53E/%5BMS-XAMLY5D .
pdf Xaml Object Mapping Specification 2006 (PDF), Microsoft, June 2006

™Holger Schwichtenberg, heise developer, ,Kommentar: Kann Microsoft mit XAML Standard die Abwanderung von Ent-
wicklern stoppen?“ https://heise.de/-3712263 (abgerufen am 27.7.2018)

10

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2.1 Stand der Technik

2.1.9.3 XML User Interface Language (XUL)

Die Beschreibungssprache XML User Interface Language wurde vom Mozilla-Projekt entwickelt, um
eine betriebssystemunabhéngige Beschreibung fir die Bedienoberflichen des Browsers Mozilla
zu erhalten. Zur Unterstitzung eines Betriebssystems muss nur der XUL Interpreter angepasst
werden.

XUL beschreibt die Darstellung ausschlieBlich mit hoher Abstraktion mit Hilfe von sogenannten
Controls. Diese Controls werden per Cascading Style Sheets (CSS) an das Aussehen des Betriebs-
systems angepasst. Zur Auswahl stehen beispielsweise Button, Checkboxen, Datumswabhler, Listen
und Texteingabefelder. Es fehlen jedoch Basiselemente wie Kreis/Ellipse, Rechteck da diese kom-
plett freie Darstellung fur die Bedienoberflache der Software nicht bendtigt wird.

Die Interaktion mit den grafischen Elementen erfolgt wie bei einer Webseite ausschlieBlich durch
freie Programmierung durch JavaScript.

2.1.9.4 USer Interface eXtensible Markup Language (UsiXML)

Das USer Interface eXtensible Markup Language (UsiXML) erhebt den Anspruch nicht nur das
endglltige Aussehen einer Bedienoberflache zu modellieren, sondern die gesamte Entwicklung
dieser. So definiert dieses Format vier Abstraktionslevel.

,1ask & Concepts” auf der héchsten Ebene beschreibt hier beispielsweise die Aufgabe eine Datei
Uber einen Trigger herunterzuladen. Die nachstniedrigere Ebene ,Abstract User Interface (AUI)*
legt fest, dass hierfiir ein Bedienelement gebraucht wird. Dieses wird in der Ebene ,,Concrete User
Interface (CUI)“ beispielsweise mit drei Mdglichkeiten implementiert: Hardware-Taster, 2D-Button
mit einem normalen Bildschirm oder 3D-Button innerhalb einer Virtuellen Realitat. Erst im ,Final
User Interface (FUI) wird daraus ein Knopf einer Webseite oder eines nativen Windows- oder Linux-
programms.

Durch diese Beschreibungsschichten kann mit dem Format eine extrem groB3e Vielfalt von Platt-
formen (beispielsweise Telefon, Tablet, Kiosk, Laptop, Desktop), Interaktionsmodi (Maus, Touch-
Bildschirm, Tastatur, Spracheingabe) und sowohl grafische Interaktion, Sprachinteraktion, 3D Inter-
aktion oder auch Interaktion innerhalb von Virtual Reality beschrieben werden.

UsiXML erlaubt sowohl die Verallgemeinerung als auch die Spezialisierung per Graphtransforma-
tion vorzunehmen und so beispielsweise (einmal Verallgemeinerung und wiederum Spezialisie-
rung in eine andere Richtung) aus einer konkreten Bedienoberflache eines Desktop-Computers
eine Bedienoberflache fir mobile Endgerate zu generieren. Diese Transformationen missen vom
Anwender meist selbst definiert werden. Sie werden jedoch fir eine weitere Benutzung gespei-
chert, sodass eine Anderung auf einer Abstraktionsebene in die anderen Ebenen berfiihrt werden
kann.[LVM+*05]

11

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Alle Interaktion wird Uber ein Task Modell beschrieben. Dieses ist wie die Grafikbeschreibung in
verschiedenen Abstraktionen unterteilt. So ist eine allgemeine Beschreibung beispielsweise die
Aufgabe ,Erfassung von Bestellungen®, welche weiter spezifiziert wird zu ,Kundendaten erfassen
/ Kundendatensatz aufrufen, Liste der Produkte und danach Versandart und Bezahlarten erfragen®.
Die Unteraufgaben kénnen weiterhin fiir eine gute Benutzerfiihrung Uber verschiedene Realisie-
rungen laufen, also Suche Uber ID, Name oder Adresse.[Pri06]

2.1.9.5 QML

QML wurde von Nokia im Jahre 2010 als universelle Beschreibungssprache fiir Mobil- und Desktop-
Anwendungen innerhalb der Qt Infrastruktur vorgestellt. Die Entwicklung wird mittlerweile von The
Qt Company® weiter betrieben.

QML erlaubt eine Kombination aus deklarativer und imperativer Beschreibung einer Bedienober-
flache. Jedes grafische Element wird uUber eine einfache Textsyntax hierarchisch beschrieben.

Deklarativ ist beispielsweise eine Kopplung der Breite mit der Hohe Uber height: 2 * width még-
lich. Jede Anderung der Breite filhrt so automatisch zu einer Aktualisierung der Héhe. Auch eine
rein imperative Programmierung per JavaScript ist méglich.

Da die meisten QML Visualisierungen gemeinsam mit einem Programmkern in C++ benutzt werden
ist eine direkte Koppelung des Qt Eventsystems (Signal & Slot) méglich.'® Somit wird eine Reaktion
auf Benutzereingaben lber JavaScript oder C++ realisiert.

2.2 Gemeinsamkeiten und allgemeine Struktur von
Bedienoberflachen

Auch wenn die einzelnen vorgestellten Systeme sehr unterschiedlich sind, so lassen sich immer
wiederkehrende Komponenten erkennen. So gibt es vielféltige technische Lésungen eine Bedien-
oberflache zu modellieren, zu speichern und auf einem Bildschirm aufzubauen. In modernen Model-
lierungstechniken wird die gewlnschte Applikation in Einzelelemente zerlegt. Dieser Vorgang kann
je nach Zielsetzung unterschiedlich weit gehen.

So kann beispielsweise eine einfache Applikation nur aus komplexen, fertigen Komponenten zusam-
mengesetzt werden. In diesem Fall ist die Entwicklung der Gesamtldsung schneller méglich, die
Flexibilitdt jedoch eingeschrankt. Eine Méglichkeit diese wieder zu erhéhen ist eine Parametrierbar-
keit der Teilkomponenten. So kann der Anwendungsentwickler im gewissen Rahmen Einfluss auf
das spatere Aussehen und/oder die Funktionalitdt nehmen.

https://www.qt.io/ (abgerufen am 27.7.2018)
"®http://doc.qt.io/qt-5/qtqnl-syntax-signals.html (abgerufen am 27.7.2018)

12

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2.3 Automatische Erstellung von Bedienoberflachen

Volle Kontrolle hat der Entwickler im entgegengesetzten Extrem. Hierbei wird die Auftrennung bis
herunter zu den Grundformen (Text, Kreis, Rechteck ...) getrieben. Hier ist alles auf den Anwen-
dungszweck abstimmbar. Der Nachteil ist jedoch eine wesentlich aufwéndigere Entwicklung.

Die gleiche Bandbreite der Abstraktion ist auch bei der Modellierung der Interaktionsmdglichkeiten
(Beispiel: Verhalten nach einem Kilick .. .) zu finden. Hier kann eine komplexe, festgelegte Interak-
tion hinterlegt sein oder der Anwendungsentwickler muss die gesamte Logik selbst implementieren.

In der Praxis wird meist ein Mittelweg genutzt. So werden mehrfach genutzte Komponenten wieder-
verwendet und der Rest einmalig implementiert.

Ist die gewilinschte Modellierungstiefe festgelegt, so muss die modellierte Bedienoberflache
anschlieBend gespeichert werden. Hierzu gibt es sehr viele Méglichkeiten, deren Wahl jedoch
wesentlich weniger Einfluss auf Flexibilitdt hat als die Modellierung selbst.

Ansétze der modellgetriebenen Architektur erlauben es eine Software nicht in Freitext-Quelltext
zu pflegen, sondern die Logik als abstraktes und vor allem zugreifbares Modell zu hinterlegen.
Dies ermdglicht es beispielsweise Teile der spateren Software automatisch zu generieren. Diese
Generierung kann endgliltig sein oder auch nur als eine Art Rohfassung zur spéteren handischen
Optimierung dienen.

Diese Modelle werden danach in normalen Code transformiert um sie auf dem Zielsystem nutzen
zu kénnen.[MPV11]

2.3 Automatische Erstellung von Bedienoberflachen

Im Bereich der Prozesstechnik gibt es viele Teile der Darstellung welche mehrfach vorkommen. Die
Anzahl der Prozessbedienbildern einer durchschnittlichen Chemieanlage betréagt 130-500 welche
2500 bis 7500 EMSR (Elektrisches Messen, Steuern, Regeln)-Stellen darstellen.[Kir07] So benétigt
beispielsweise jede Pumpe ein Reprasentanz in der Anzeige, héufig zuséatzlich mit einem Faceplate
fur Detailinformationen. Fir andere Anlagenteile gilt &hnliches, sodass viele Darstellungen umfang-
reiche Konfigurationsarbeit erfordern.

Hier ist eine automatische Erstellung der Darstellung eine Erleichterung flr diese monotone Arbeit.
Ist der Regelsatz einmal fehlerfrei implementiert, so ist gewéhrleistet, dass dann beispielsweise die
Verkniipfung zu allen Anlagenteilen korrekt ist. Weiterhin ist die Applikation schneller und damit
kostengunstiger zu erstellen.

Schon 2007 wurde am Lehrstuhl fir Prozessleittechnik in Aachen ([SE07]) die automatische Erstel-
lung von Bedienoberfldchen angedacht.

Eine Voraussetzung fiir eine einfache automatische Erstellung ist die modellbasierte Speicherung
der Bedienoberflache. Hier ist ein offenes Datenformat oder eine offene Schnittstelle von Vorteil,
damit nicht nur der Hersteller der Bedienoberflache solche Leistungen anbieten kann.

13

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Hintergrund und Motivation

Simatic PCS 7 von Siemens besitzt hierfir die Funktionalitét ,Bildbausteine erzeugen“. Dieses
erzeugt Bausteine basierend aus der Steuerungsinformation der Ventile, Motoren und Ablaufsteue-
rungen. Allerdings fehlen hier unter anderem noch die Sensorik, Behélter und Rohrleitungen. Wei-
terhin ist in den Steuerungsinformationen keine Positionierungsinformation, weshalb nur die Erstel-
lung und Verknuipfung der Bedienelemente mit dem Steuerungssystem mdglich ist.[DDFU11] Grobe
Positionierungsdaten bietet das R&l-FlieBschema, welches in der Siemenssoftware COMOS vor-
handen ist. Diese Information kann Uber den Standard CAEX exportiert werden. Dies nutzt bei-
spielsweise autoHMI der TU Dresden [DDFU11, DU11, UHH™11]. Hier wird die Positionierung
der vorhanden Bausteine aus dem R&l-FlieBschema/CAEX-Daten korrigiert. Weiterhin werden aus
diesen Daten die fehlenden Elemente (Sensoren, Behélter, Rohrleitungen) extrahiert und in der
Bedienoberflache ergénzt.

2.4 Fazit
Zusammenfassend lasst sich festhalten, dass es viele Modelle gibt, welche eine automatische
Erstellung von Bedienoberflachen erlauben.

Jedoch existieren keine Modelle, welche gleichzeitig auch die Interaktion mit dem Bediener und dem
Prozess explizit modellieren. Dies ware jedoch fiir eine einfache Anderung durch Nicht-Spezialisten
sinnvoll. Weiterhin hilft diese Technologieneutralitat bei der Sicherstellung der Zukunftssicherheit.

14

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fir
Benutzungsschnittstellen leittechnischer
Funktionen

Aus dem vorangegangenen Kapitel 2 wird deutlich, dass aktuell keine Modelle der Prozessleit-
technik oder Informationstechnologie zur expliziten vollstdndigen technologieneutralen Beschrei-
bung einer Bedienoberfliche bestehen. Dies ist aufgrund der langen Lebensdauer einer Anlage
jedoch wiinschenswert.

Ziel der Arbeit ist es daher ein neuartiges Modell fiir Bedienoberflachen fiir leittechnische Funk-
tionen zu entwickeln.

3.1 Anforderungen

Das Modell soll nicht nur fir eine spezifische Applikation entwickelt werden. So ist eine Bedien-
oberflache zu einer technischen Anlage oder auch ein Engineeringwerkzeug denkbar. Diese stellen
jedoch unterschiedliche Anforderungen an eine Visualisierungsinfrastruktur. Fur das erste Beispiel
benétigt das System Zugriff auf Aktualwerte der Anlage. Dies kann beispielsweise der Messwert
eines Temperatursensors sein. Neben diesen lesenden Eingriffen ist auch schreibender Zugriff
zwingend nétig. So muss eine solche Applikation alle Arten von Aktoren schalten kénnen.

Ein Engineering-Werkzeug hat dagegen komplexere Anforderungen. So muss die Struktur des
Automatisierungssystems analysiert werden kdnnen, um beispielsweise fiir jede Komponente einen
passenden Anzeigeteil bereitstellen zu kdénnen. Diese Struktur muss auch veréndert werden
kénnen, um neue Elemente im Automatisierungssystems zu erstellen oder auch mehrere zuein-
ander logisch zu verknupfen.

Entsprechend werden die Kommunikationsformen ,Wert schreiben®, ,Wert lesen, ,Strukturen auf-
listen®, ,Objekte erstellen”, ,Objekt umbenennen” und ,Objekte I6schen” bendtigt. Je nach gewéhlter
Infrastruktur ist auch ,Assoziation erstellen” und ,Assoziation I6schen” erforderlich.

Das Modell muss neben einfachen auch fiir komplexe Applikationen nutzbar sein. Es ist zu priifen,
ob ein solches Darstellungsmodell ausreichend méchtig erstellt werden kann, dass auch komplexe
Anwendungen realisierbar sind.

15

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

Das Ziel ist ein einfaches System, welches im Lebenszyklus ohne spezielle Programmierkenntnisse
angepasst werden kann. Hat ein Schichtfiihrer die benétigten Rechte, so soll die Anpassung (je
nach Standortpolitik) auch von diesem direkt erledigt werden kénnen.

3.2 Grobstruktur des Modells

Das erstellte Modell fiir Bedienoberflachen fligt sich in die Modelle der ACPLT-Landschaft des Lehr-
stuhls fir Prozessleittechnik in Aachen ein. Es tragt den Namen ,Client Side Human Maschine
Interface”, abgekurzt ACPLT/csHMI.

Fir eine einfache Anderung ohne spezielle Programmierkenntnisse ist die Nutzung einer textba-
sierten Programmiersprache wie C/C++ nicht geeignet. Die Anwender kennen aus dem Arbeits-
alltag mit Continous Function Chart (CFC) jedoch konfigurierbare Funktionsbausteine nach IEC
61131-3 ([IEC03]). Diese werden parametriert und arbeiten im Betrieb ihre Funktion ab, ohne dass
der Anwender hier den genauen Quelltext einsehen kann oder gar will. Stichwort ,,Parametrieren
statt Programmieren®.

Ahnlich wie viele in Kapitel 2.1 vorgestellte Modelle werden auch in csHMI Grafikelemente (wie
Rechteck oder Text) als einzelne Bausteine modelliert. Aus den Bausteinen dieses allgemeinen
Metamodells wird das spéatere Modell der Applikation zusammengesetzt. Da eine Bedienoberflache
oft hierarchisch aufgebaut wird, bietet das Metamodell eine nicht zyklische, gerichtete Graphstruktur
in die die Elementarbausteine eingehangen werden kénnen. So soll beispielsweise ein Container
alle grafischen Kind-Elemente auch in der Baumstruktur des Modells unter sich gruppieren.

Anders als bei anderen Technologien ist die Modellierung der Interaktion mit dem System und
dem Benutzer gelést. Diese wird &quivalent zu den Grafikelementen auch mit Elementarbau-
steinen modelliert. Unterhalb von jedem Grafikelement kann ein Ereignis-Baustein (wie Klick) erstellt
werden. Dieser hat wiederum als Kindelement ein Aktions-Baustein der beispielsweise einen Motor
startet. Die Gesamtheit aller Grafik-, Ereignis- und Aktions-Bausteine definiert das Modell der
gewlinschten Applikation.

Es gibt Applikationen, welche durch diese explizite Modellierung nicht vollstandig effektiv
beschrieben werden kénnen. Zur Unterstiitzung dieser ist ein komplexer weiterer Baustein namens
Blackbox definiert. Dieser erweitert das Modell um eine freie Programmierung, um die Nachteile bei
grafisch sehr komplexen Anwendungen umgehen zu kénnen. Trotzdem wurde diese Erweiterung
nicht als ,Fremdkdrper” der Philosophie des Gesamtkonzeptes gestaltet, sondern spielt die Vorteile
geschickt aus. Im Idealfall wird ein Anwender einer solchen Erweiterung (wie bei einem CFC) nicht
die Notwendigkeit sehen, in die Interna eintauchen zu miissen.

Die soeben erwdhnte Modellierung beschreibt nur die Bedienoberflache selbst. Zur Nutzung wird
noch die Schnittstelle zum Benutzer sowie der zu steuernde Anlage benétigt. Das Gesamtkonzept
sieht daher diese drei Komponenten (siehe Abbildung 3.1) vor:

« Datenbasis zur Speicherung des Modells der Applikation.

16

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.3 Modellierungsebenen

Datenbasis Anzeigesystem Automatisierungssystem

/ I\

Grafik Ereignisse Aktionen

Abbildung 3.1: Grundstruktur des Konzeptes

» Anzeigesystem: Mit diesem interagiert der Bediener direkt. Im Normalfall ist dies ein Pro-
gramm das auf seinem Computer oder Mobilgerat ausgefiihrt wird.

» Automatisierungssystem dessen Status und/oder Struktur angezeigt und/oder manipuliert
werden soll.

Das Anzeigesystem wird vom Benutzer aufgerufen, 1adt das Applikationsmodell und erstellt daraus
die Darstellung auf den Bildschirm. Ist in der Applikation eine Interaktion (zum Beispiel Werte lesen
oder schreiben) mit einem Automatisierungssystem erforderlich, so kommuniziert das System direkt
mit diesem.

Mit welcher Kommunikationstechnologie das Automatisierungssystem angesprochen wird ist im
Metamodell nicht festgelegt. Hier wird eine textbasierte Adressierung festgelegt, so dass beispiels-
weise OPC/UA [IEC10a] als opc.tcp://427C-AS-RTX:4840 oder ACPLT/KS [AlIbO3] als acpltks
://427C-AS-RTX/fb_lbo_ProcessControl adressierbar ist.

Ein Automatisierungssystem kann jedoch nicht nur Daten liefern, sondern auch einen Teil seiner
Bedienoberfléche als Teilmodell selbst mitbringen. In die Hauptansicht kann daraufhin dieser dezen-
tral gespeicherte Teil integriert werden. Siehe Abbildung 3.2:

Automatisierungssystem

‘ Datenbasis } }Ar i ,‘“1}
/ 1\ [ose |

Grafik Ereignisse Aktionen

Abbildung 3.2: Erweiterte Grundstruktur des Konzeptes

3.3 Modellierungsebenen

Das Beschreibungskonzept besteht aus verschiedenen Ebenen.

+ So existiert eine generische Ebene, welche alle benétigten grafischen Primitive und Ereig-
nisse einer Bedienoberflache beschreibt.

+ Die zweite Ebene ist die abstrakte Ebene, welche die genaue Modellierung der vorgestellten
Elemente der generischen Ebene inklusive der Definition der Aktionen festlegt.

17

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

» Weiterhin existiert die technologische Ebene, welche die wirkliche Implementierung des
Anzeigesystems in einer bestimmten Technologie beschreibt. Dieses kann beispielsweise in
C# oder Java erstellt worden sein.

Diese strikte Trennung hat den Vorteil, dass eine Anwendung in der abstrakten Ebene definiert
wird. Somit kann man die technologische Ebene auch nach Erstellung vieler Anwendungen beliebig
verandern. Ein Technologiewechsel ist durch einen Export aus der alten und einen anschlieBenden
Import in die neue Technologie einfach méglich.

18

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

3.4 Komponenten des Modells

Um ein explizites Modell einer Applikation zu spezifizieren, wird eine begrenzte Auswahl von Ele-
mentarbausteinen sowohl fir die Darstellung und als auch die Interaktion benétigt. Zur Auswahl wird
auf die Gemeinsamkeiten der vorhandenen Modelle (siehe Kapitel 2.2) zurlickgegriffen. Neben den
Bausteinen werden jeweils deren wichtigste Attribute vorgestellt.

3.4.1 Darstellung

Jede grafische Darstellung besteht aus einer gewissen Anzahl von grafischen Primitiven oder
Grundformen. Viele komplexe Bedienoberflachen sind nur aus wenigen Grundtypen zusammen-
gestellt (siehe [Dam96, Sch10]). Die meist verwendeten Elemente sind zum Beispiel das Rechteck
und ein Text. Eine hierarchische UML-Darstellung der im Folgenden erwé&hnten Primitive findet sich
in Abbildung 3.3.

Diese Elemente sind Teil der generischen Ebene des Gesamtkonzepts (siehe Kapitel 3.3), da sie
in allen Bedienoberflachentechnologien so oder &hnlich bendtigt werden.

Zu diesen Form-Elementen gehdren zusatzlich zu den beiden Genannten noch der Kreis, Ellipse
sowie der Polygonzug und das Polygon (dies ist ein geschlossener Polygonzug). Mithilfe eines
Pfad-Form-Elements ist es mdglich komplexe Darstellungen wie Kurven oder Kreisbégen zu
erstellen. Diese kdnnen Uber eine Beschreibung von Stiftbewegungen, welche die benétigte Dar-
stellung liefern wiirde, definiert werden (vergleiche die path-Elemente in den Vektorgrafikstandards
SVG [Fer01], PGML [FD98] und VML [BD98]). Auch eine Anzeige von Raster- und Vektorgrafiken
wird oft bendtigt.

(© Element

l@ grafisches Element

l@ gruppierendes Element|

l@Gruppe

l@ Form-Element| l@ Freitext

l@Vektor'/RastErgraﬂk

l@ Kopiervorlage

l@kechteck] l@Krels l@Elhpsel l@Polygonzug]@Polygon ©Pfadl

Abbildung 3.3: UML-Grundstruktur aller Elemente

[©vne

Alle grafischen Elemente erhalten zur universellen Nutzung einige gemeinsame Attribute: Strich-
farbe, Flillfarbe, Rotation, Transparenz und die Sichtbarkeit. Eine Strichstédrke benétigen dagegen
nur alle Form-Elemente, nicht jedoch zum Beispiel Text.

Allen grafischen Elementen gemeinsam ist die Uberlappung. Das Konzept sieht vor, dass die Ele-
mente in einer festgelegten Reihenfolge in der Hierarchiestufe gespeichert sind. In genau dieser

19

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

Reihenfolge werden sie auf dem Bildschirm gezeichnet. Friihe Elemente in der Hierarchie werden
von anderen im Zweifelsfall Gberdeckt.

Alle weiteren Attribute sind spezifisch zu den Elementen zu definieren und im Folgenden aufgelistet:

Eine Linie benétigt eine Spezifizierung der Start/End-Koordinaten (zum Beispiel x1, x2, y1,
y2).

Ein Rechteck kann Uber vier Punkte oder einfacher mit zwei Koordinaten und Breite und Hohe
definiert werden (x, y, width, height).

Ein Kreis ist Uber den Mittelpunkt und den Radius festgelegt (cx, cy, r).
Eine Ellipse bendtigt zwei Radien jeweils fiir die groBBe und kleine Halbachse (cx, cy, rx, ry).

Der Polygonzug und das Polygon kann mit der gleichen Reihe von Eckpunkten aufgebaut
werden (points). Das Polygon wird jedoch bei der Anzeige geschlossen.

Das Pfad-Element kann man als Aneinanderreihung von Stiftbewegungen definieren. Ein Bei-
spiel ware: Bewege den Stift auf Koordinate x:10, y:10; Zeichne von dort eine gerade Linie
zur Position x:130, y:31; Bewege den Stift (ohne zu zeichnen) zu x:20, y:20 und fuihre von hier
einen Halbkreis mit Radius 30 nach unten. Dieses Element benétigt zur Definition daher eine
Auflistung aller Stiftbewegungen in einer speziellen Syntax (zum Beispiel im Attribut shape).

Freitext bendtigt den gewiinschten Inhalt, den Ankerpunkt, Ausrichtungsanweisung (rechts-,
linksblindig, mittig), Schriftgestaltungshinweise wie Schriftgré3e oder Schriftart (content, x,
y, horAlignment, verAlignment, fontSize, fontStyle, fontWeight, fontFamily).

Raster-/Vektorgrafiken bendtigen einen Ankerpunkt, eventuell eine GréB3e sowie eine Einbin-
dung der gewlinschten Darstellung, sei es als Referenz oder direkte Einbindung (x, y, width,
height, Vektorcontent, Bitmapcontent).

d beinhaltet

K>
TemplateDefinition| o,
7 q

beinhaltet

P beinhaltet |beinhaltet

beinhaltet

Abbildung 3.4: Erlaubte Assoziation von Gruppe und Element

Weiterhin ist ein gruppierendes Element sinnvoll, so dass grafische Elemente logisch zusammenge-
fasst werden kénnen. Dies erleichtert auch das gemeinsame Positionieren zum Beispiel innerhalb

20

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

eines Pop-ups. Diese Gruppe benétigt &hnlich wie Elemente eine Position, Ausdehnung, Rotation,
Transparenz und die Sichtbarkeit.

Die Regeln, welche Elemente und Gruppen wie ineinander verschachtelt werden ddrfen, sind in
Abbildung 3.4 festgelegt. So darf eine Gruppe eine beliebige Menge an Elementen und auch
Gruppen enthalten. Elemente dirfen jedoch selbst keine weiteren Elemente oder Gruppen als Kin-
delemente beinhalten. Auch braucht ein Element zwingend eine Gruppe als ,Vater” innerhalb der
Baumstruktur.

Gruppen stellen somit auch den Einstiegspunkt einer Darstellung dar. Hat eine solche Gruppe keine
andere Gruppe als ,Vater” so ist der Baum den sie aufspannt eine giiltige Anzeige.

3.4.2 Kopiervorlagen

Zur Wiederverwendung von Elementen und Gruppen ist eine Art Kopiervorlage sinnvoll. Diese
TemplateDefinition kénnen von den normalen Gruppen referenziert werden und ergdnzen dessen
eigene Darstellung. Sie sind aquivalent zu Klassen in einer objektorientierten Programmierung zu
sehen. So werden auch sie einmal zentral definiert und kénnen beliebig oft und unterschiedlich
parametriert verwendet werden. Das Konzept sieht vor, dass jedes gruppierende Element genaue
eine Kopiervorlage referenzieren und beliebig viele eigene Kindelemente enthalten kann. Kopier-
vorlagen besitzen selbst nur eine Gréf3e, nicht jedoch Position.

Verschiedene ,Instanzen” der gleichen TemplateDefinition sollen verschiedene Funktionen bereit
stellen kénnen. So ist es sinnvoll eine Vorlage flr Darstellungen und Bedienung von Pumpen zu
erstellen und dieser eine Referenz zu der jeweiligen Pumpeninstanz mitgeben zu kénnen.

Es scheint sinnvoll die Adressierung als Text auszulegen, damit das Modell sehr flexibel in der Wahl
des Kommunikations- und damit des Automatisierungssystems ist. Die meisten Systeme in der Pro-
zessleittechnik bieten aufgrund der IEC61131 Sprachen [IEC03] als Text adressierbare Objekte mit
zugehdrigen Variablen. Diese Grundstruktur wurde beispielsweise auch in das Informationsmodell
des Protokolls OPC UA [IEC10a] Gbernommen.

Dieses Konzept der Objekte mit Variablen hat zur Folge, dass drei verschiedene Parameterarten
gebraucht werden:

1. Keine oder genau eine Objektreferenz (FBReference): Uber diese Referenz ist ein komplexer
Baustein erreichbar. Dies kann beispielsweise ein Motorkontrollbaustein sein, aber auch ein
Additionsbaustein. Ein Nutzer dieser Information kann beispielsweise eine oder mehrere
Variablen des Bausteins direkt auslesen. Dazu muss er den Aufbau dieses Bausteins kennen.

2. Keine oder mehrere Variablenreferenzen (FBVariableReference): Diese Referenz mit einem
eindeutigen Namen zeigt auf genau eine Variable. Durch den Namen ist es hiermit méglich
einer Kopiervorlage mehrere unterschiedliche Variablennamen zu tbergeben.

21

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

3. Keine oder mehrere Konfigurationswerte (ConfigValues): Hier kdnnen beliebig viele Variablen
Uibergeben werden. Diese haben jeweils einen eindeutigen Namen und einen statischen Wert.
Dies kann beispielsweise der Maximal-Wert eines Sensors oder ein Beschriftungstext sein.

Auf diesem Konzept basieren auch die ,Custom Properties“ der ,Dynamic Shapes“ der Operator-
station HMIWeb des Experion PKS von Honeywell Process Solutions (siehe [Hon14]).

3.4.3 Ereignisse

Ein komplexerer Bereich ist die Interaktion zwischen dem Benutzer und beliebigen Daten. Die fiir
die Darstellung relevanten Daten kénnen innerhalb des Anzeigesystems selbst oder im Automa-
tisierungssystem liegen. Die Interaktionen ausldésenden Ereignisse kdnnen verschiedener Natur
sein. Beispielsweise zyklisch, zeitgesteuert oder ,beim Laden®. In Benutzungsoberflachen wird ein
Ereignis oft ausgeldst durch eine Benutzeraktion, wie ein Klick.

@ Darstellungs-Ereignis @ Benutzer-Ereignis

[@mowseant | [@atermove

l@ click l@ rightelick l@ doubleclick l@ mouseover

Abbildung 3.5: UML-Grundstruktur aller Ereignisse

l@onload

l@ TimeEvent

Auch diese Ereignisse sind Teil der generischen Ebene des Gesamtkonzepts (siche Kapitel 3.3),
da sie in allen Bedienoberflachentechnologien bendtigt werden.

Eine allgemeine Darstellungstechnologie sollte die gleichen Aktionen bei unterschiedlichen Ereig-
nissen ausfihren kdnnen, sodass eine Trennung der Ereignisse von den auszufihrenden Aktionen
sinnvoll ist. Abbildung 3.5 bietet eine Liste von haufig innerhalb einer Darstellung genutzten Ereig-
nissen. Einem grafischen oder gruppierenden Element kdnnen im Konzept dieser Dissertation
beliebig viele Ereignisse zugeordnet werden (siehe Abbildung 3.6).

|E|ement|< grafisch und gruppierend %
1

beinhaltet

0%
Ereignis
Abbildung 3.6: Erlaubte Assoziation von Element und Ereignis
Das wichtigste Ereignis ist onload. Dieses wird aktiv nach dem Laden eines Darstellungs-

Elements. Eine onload-Aktion kann fir gruppierende, als fuir auch grafische Elemente (siehe voriges
Kapitel 3.4.1) nitzlich sein.

22

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Benutzer-Ereignisse kénnen von vielen verschiedenen Eingabegeraten initiiert werden. Dies kann
eine Maus, eine Tastatur (auch Sondertastaturen) oder ein Touchscreen (siehe auch VDI/VDE 3699
Blatt 6 [VDI13]) sein.

Fir eine Mausbedienung sind die Ereignisse Klick, Doppel-Klick und Klick mit rechter Maustaste
die wichtigsten. Aber auch das Bewegen in (mouseover genannt) oder Verlassen (mouseout) eines
Bereichs eines Elements ist fir eine Mausbedienung ein typisches Ereignis.

Die Kombinationsgeste Ziehen und Ablegen (,Drag and Drop“) ist eine weitere haufig genutzte
Aktion einer Darstellung. Dabei wird die Maus Uber ein Element bewegt, eine Maustaste gedriickt
und damit das Element ,festgehalten“. Das Element folgt daraufhin der Mausbewegung, bis die
Maustaste los gelassen wird. Hauptséchliches Ziel dieser Interaktionstechnik ist ein Verschieben
eines Elements in der gleichen Hierarchieebene sowie eine Interaktion mit dem ,Ziel“. Hierbei wird
ein Element von einem Kontext in einen Anderen Uberfiihrt. Letzteres wird zum Beispiel haufig in
einem Engineeringwerkzeug (siehe das Beispiel in Kapitel 5.4.1 auf Seite 46) bei einem L&sch-
vorgang benutzt. Dabei wird ein Element aus dem Anlagenkontext Gber ein Mulleimer (in dessen
Kontext) geschoben.

Eine ,Drag und Drop“ Sequenz ist sehr komplex. Der Standard HTML5 ([BFL*14]) definiert
beispielsweise acht Ereignisse im Umfeld dieser Interaktionsform (dragstart, drag, dragenter,
dragleave, dragover, dragexit, drop, dragend). Das in dieser Arbeit vorgeschlagene Konzept soll
jedoch mdglichst einfach gehalten werden. Daher ist als ,Drag and Drop“ Ereignis nur aftermove
definiert. Die zugehdrigen Aktionen werden nach dem Ende der Verschiebegeste ausgefiihrt. Wei-
terhin kennzeichnet das Vorhandensein des Ereignisses ein Objekt als verschiebbar. In Kombina-
tion mit dem Ereignis mouseover sind jedoch auch unterschiedliche Aktionen fir verschiedene Ziele
mdglich.

Wird in einer verschachtelten Gruppe das gleiche Ereignis (zum Beispiel ein Klick) mehreren Grup-
penelementen zugeordnet, so wirkt das Ereignis immer auf das lokal ,oberste“Element. In dem
Beispiel aus Abbildung 3.7 soll beispielsweise bei einem Klick auf Gruppe-Pumpe1 die Pumpe ange-
schaltet werden, beim Klick auf den TextSollwert jedoch der Sollwert der Pumpe geéndert werden.
Es wurde festgelegt, das beim Klick auf den Text das Ereignis2 ausgefiihrt wird, da dort das Ereignis
,naher“ definiert wurde. Diese Festlegung wird bubbling (siehe [Koc06, Pix00]) genannt. Die nicht
genutzte Alternative ist capturing. Hier findet eine Ausfihrung des Ereignis1 statt, da dies ndher an
der Basis definiert ist.

Auch auf einem Touchscreen gibt es aquivalente Interaktionen die man den Ereignissen Kiick,
Doppel-Klick und Drag und Drop zuordnen kann, daher spricht auch diese zukunftstrachtige Tech-
nologie nicht gegen die Festlegung dieser Interaktionsereignisse.

Es fallt auf, dass durch eine Tastatur keine Anwender-Ereignisse ausgelést werden kdénnen. Die
Tastatureingabe wird in diesem Konzept nur als Datenquelle (wie zum Beispiel auch eine Mauspo-
sition) innerhalb der Aktionen (siehe nachstes Kapitel 3.4.4) modelliert.

Das letzte wichtige Ereignis fur eine Anwendung sind zeitgesteuerte Aufgaben. Eine Annahme
dieser Dissertation ist, dass fir tbliche Anwendungen in der Prozessleittechnik eine zyklische Bear-

23

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

|Gruppe-Pumpe1 Klick Ereignis1 zugeordnet %
3]

|GruppefPumpeStatus|< Klick Ereignis2 zugeordnet H |Rechteck|
[

TextSollwert: TextStatus

Abbildung 3.7: Capture und Bubbling

beitung mit konstanter Zykluszeit ausreichend ist. Im Gegensatz zu den bisher vorgestellten Ereig-
nissen wird hier ein Attribut benétigt: die Zykluszeit. Die zugeordneten Aktionen werden regelmaBig
nach Ablauf der eingestellten Zykluszeit ausgeflhrt.

3.4.4 Aktionen

Neben den Ereignis-Zeitpunkten selbst sind die Aktionen, die jeweils ausgefihrt werden sollen,
festzulegen. Genau wie jedem Element beliebig viele Ereignisse zugeordnet werden kénnen, so
kdnnen diesem wiederum beliebig viele Aktionen zugeordnet werden (siehe Abbildung 3.8).

1
beinhaltet
0..%

© Aktion

Abbildung 3.8: Erlaubte Assoziation von Ereignis und Aktion

Da keine Beschreibungssprache fur Darstellungssysteme gefunden wurde, welche die Interaktion
mit Fremddaten und dem Benutzer Uber ein ahnliches Konzept realisiert (siehe Kapitel 2.3), werden
hier die gewéahlten Konzepte anhand von Anforderungen fiir Anwendungen definiert. Diese Aktionen
gehdren daher zur abstrakten Ebene des Gesamtkonzepts (siehe Kapitel 3.3), da sie in den vielen
Bedienoberflachentechnologien unterschiedlich definiert werden.

oo | (@] (@ ssvaeesos |

C |

_—

R i 1 =~ AR
[@uimorss | [@umovmes | [@veeeorns | [@cmmeormn | [@rerereovme | [@cvamione | (@i | [@eomavoe | [@senerions |

Abbildung 3.9: UML-Grundstruktur aller Aktionen

24

IP 216.73.216.36, am 20.01.2026, 21:58:26. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Abbildung 3.9 listet diese Aktionen auf. Allen Aktionen gemeinsam ist die Abarbeitungsreihenfolge.
Diese ist ahnlich zur Uberlappung der Elemente festgelegt, sodass die Reihenfolge in der Hierarchie
gespeichert werden muss und in dieser die Aktionen abgearbeitet werden.

Die Grundidee der Modellierung ist es, keine Trennung zwischen der Darstellung und dem Auto-
matisierungssystem vorzunehmen. In diesem Konzept wird in der Anwendung die gleiche Aktion
genutzt, um beispielsweise einen Sollwert einer Pumpe zu setzen oder eine Farbe eines Bedien-
knopfes zu setzen. Auch das Auslesen eines Temperatursensors sollte sich den gleichen Mitteln
bedienen wie die X-Koordinate einer Interaktion auf einer Schaltflache zu ermitteln.

So sind generische Aktionen definiert, welche Werte lesen (Datenquelle, getValue) und andere
Aktionen die diese Werte anschlieBend (eventuell verédndert) schreiben (Datensenke, setValue).
Eine grundlegende Philosophie ist, dass ein lesendes Element (Datenquelle) nicht alleine existieren
kann, sondern immer an seinen Daten-Nutzer (Datensenke) gekoppelt ist. Ein setValue verfigt
daher Uber genau ein getValue. Diese beiden Aktionen missen flr die Aufgabe natirlich passend
konfiguriert werden.

Es folgt ein Beispiel, um dieses Konzept zu verdeutlichen: Soll beispielsweise der Messwert eines
Temperatursensors zyklisch auf dem Bildschirm gebracht werden, so sind hierfir einige Kompo-
nenten nétig.

Zur Anzeige wird zwingend eine Gruppe bendtigt, in dieser liegt hier als Beispiel nur ein Text-
Element fUr den Wert. Diesem ist ein TimeEvent zugeordnet (konfigurierte Zykluszeit beispielsweise
1 pro Sekunde), welche wiederum ein setValue ausflhrt. Dieses SetValue ist eingestellt, dass es
den Inhalt (content) des Textes Uberschreibt. Das GetValue ist dagegen so konfiguriert, dass der
Messwert aus dem Automatisierungssystem gelesen wird. Die Modellierungskette lautet daher:

1| INSTANCE /TechUnits/cshmi/groupl :

2 CLASS /acplt/cshmi/Group;

3 VARIABLE_VALUES

4 x : INPUT SINGLE = 0.000000;

5 y : INPUT SINGLE = 0.000000;

6 width : INPUT SINGLE = 1000.000000;

7 height : INPUT SINGLE = 900.000000;

8 END_VARIABLE_VALUES;

9| END_INSTANCE;

10| INSTANCE /TechUnits/cshmi/group1/CaptionText :

" CLASS /acplt/cshmi/Text;

12 VARIABLE_VALUES

13 x @ INPUT SINGLE = 75.000000;

14 y @ INPUT SINGLE = 15.000000;

15 content : INPUT STRING = "loading...";
16 END_VARIABLE_VALUES;

17| END_INSTANCE;
18| INSTANCE /TechUnits/cshmi/group1/CaptionText/timer :

19 CLASS /acplt/cshmi/TimeEvent;

20 VARIABLE_VALUES

21 cyctime : INPUT SINGLE = 1.000000;
22 END_VARIABLE_VALUES;

23| END_INSTANCE;
24| INSTANCE /TechUnits/cshmi/group1/CaptionText/timer/setContent :

25 CLASS /acplt/cshmi/SetValue;

26 VARIABLE_VALUES

27 elemVar : INPUT STRING = "content”;
28 END_VARIABLE_VALUES;

29| END_INSTANCE;
30| INSTANCE /TechUnits/cshmi/groupi/CaptionText/timer/setContent.value

31 CLASS /acplt/cshmi/GetValue;

32 VARIABLE_VALUES

33 ksVar : INPUT STRING = "/TechUnits/TU10/add.value";
34 END_VARIABLE_VALUES;

35| END_INSTANCE;

25

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

Wie oben erwahnt kann ein SetValue nicht nur Text, sondern auch alle Eigenschaften der Anzeige
verandern. Dies kann zum Beispiel die Position, Schriftfarbe eines Textes, aber auch die GroBe,
Strichfarbe und Fiillfarbe eines beliebigen Form-Elements sein. Der Einfachheit halber ist in diesem
Konzept jedoch nur eine Anderung des direkt zugeordneten grafischen Elements (beispielsweise
der Text) moglich. Dies vereinfacht die Modellierung einfacher Anwendung. Fir weitergehende
Anderungen existiert ein weiteres Ereignis, welches auf anderen Elementen Aktionen und damit
Verénderung auslésen kann (siehe Kapitel 3.5.2).

Werte aus dem Automatisierungssystem kénnen entweder direkt adressiert werden oder Uber die
Objekt- beziehungsweise Variablenreferenzen des Vorlagensystems (siehe vorigen Abschnitt 3.4.2)
gelesen und geschrieben werden. Die Konfigurationswerte (ConfigValues) des Vorlagensystems
kénnen auch als lokale Variablen zur Zwischenspeicherung im Anzeigesystem genutzt werden.

Eine Datenquelle GetValue kann neben den Eigenschaften der eigenen Darstellung, Werten aus
einem Automatisierungssystem und den lokalen Variablen, auch noch Information des Bedieners
liefern. Dies kann (wahrend einer Interaktion) eine Mausposition sein oder auch eine Texteingabe,
welche in diesem Fall angefordert wird. Zusatzlich ist noch méglich einen konstanten Wert als
Datenquelle festzulegen.

Fur komplexere Manipulationen der Daten wurde SetConcatValue und SetMathValue definiert.
Beide heben die 1:1 Verknipfung zu den Datenquellen auf und nutzen eine beliebige Anzahl
Quellen. SetConcatValue hangt alle Werte direkt hintereinander und nutzt daraufhin diesen Wert.
Eine mogliche Anwendung wére beispielsweise den Messwert um eine physikalische Einheit zu
ergénzen:

1| INSTANCE /TechUnits/cshmi/groupt :

2 CLASS /acplt/cshmi/Group;

3 VARIABLE_VALUES

4 x : INPUT SINGLE = 0.000000;

5 y : INPUT SINGLE = 0.000000;

6 width : INPUT SINGLE = 1000.000000;

7 height : INPUT SINGLE = 900.000000;

8 END_VARIABLE_VALUES;

9| END_INSTANCE;

10| INSTANCE /TechUnits/cshmi/group1/CaptionText :

1" CLASS /acplt/cshmi/Text;

12 VARIABLE_VALUES

13 x : INPUT SINGLE = 75.000000;

14 y @ INPUT SINGLE = 15.000000;

15 content : INPUT STRING = "loading...";
16 END_VARIABLE_VALUES ;

17| END_INSTANCE;
18| INSTANCE /TechUnits/cshmi/groupi/CaptionText/timer :

19 CLASS /acplt/cshmi/TimeEvent;

20 VARIABLE_VALUES

21 cyctime : INPUT SINGLE = 1.000000;
22 END_VARIABLE_VALUES ;

23| END_INSTANCE;
24| INSTANCE /TechUnits/cshmi/group1/CaptionText/timer/setContent :

25 CLASS /acplt/cshmi/SetConcatValue;

26 VARIABLE_VALUES

27 elemVar : INPUT STRING = "content”;
28 END_VARIABLE_VALUES ;

29| END_INSTANCE;
30| INSTANCE /TechUnits/cshmi/groupi/CaptionText/timer/setContent/Value :

31 CLASS /acplt/cshmi/GetValue;

32 VARIABLE_VALUES

33 ksVar : INPUT STRING = "/TechUnits/TU10/add.value";
34 END_VARIABLE_VALUES ;

35| END_INSTANCE;
36| INSTANCE /TechUnits/cshmi/group1/CaptionText/timer/setContent/Unit :

37 CLASS /acplt/cshmi/GetValue;
38 VARIABLE_VALUES

39 value : INPUT STRING = " ms";
40 END_VARIABLE_VALUES;

26

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

41 ‘ END_INSTANCE ; ‘

Einige Darstellungen benétigen (wenigstens rudimentére) Berechnungen. Als Beispiel sei hier die
Anzeige von Messwerten mithilfe eines Balkendiagramms genannt. Der Messwert kann in einem
beliebigen Wertebereich liegen. Der korrespondierende Balken muss nun prozentual die gleiche
Hoéhe verglichen mit dem Maximalausschlag haben, wie der Messwert von seinem Maximalwert. Ist
beispielsweise der Messwert 45 und der Maximalwert 90, so soll der Balken die Halfte der maximal
erlaubten Hbhe erhalten.

Fur diese mathematischen Operationen wurde eine einfache Bearbeitungsvorschrift geschaffen.
Diese wird mit dem Baustein SetMathValue abgearbeitet. Die Rechnung beginnt mit dem Zah-
lenwert 0. Jeder Datenquelle wird zusatzlich noch eine mathematische Operation zugewiesen. Der
Zahlenwert wird nacheinander mit der Operationen und den Werten der Datenquellen verandert. Als
Beispiel sei ein Rotationszeiger genannt. Der Winkel in Grad kann Uber folgende Formel berechnet
werden:

PV %180 PV %180
Rotation = PV PV = ValueRange (3.4.4.1)
SetMathValue Logik:
ValueRange = (0 + PViae) — PViin (3.4.4.2)
Rotation = ((0 + PV)/ValueRange) * 180 (3.4.4.3)

In eine lokale Variable wird der Wert PV,,,. — PV, vorberechnet. Dazu wird SetMathValue auf
eine neue lokale Variable (beispielsweise ValueRange) konfiguriert und zwei GetValue-Aktionen
zugeordnet (siehe Gleichung 3.4.4.2 und Listing 3.1). Die erste Aktion mit der Operation ,Addi-
tion“ und dem Wert PV,,., (dies kann fest konfiguriert sein oder beispielsweise aus dem Sensor
ausgelesen werden) addiert den Wert von PV,,., auf den Zahlenwert 0. Die zweite Aktion hat als
mathematische Operation ,Subtraktion“ und den Wert PV;,,;,,. Zusammen wird hiermit die Differenz
gespeichert.

Zyklisch wird mit dieser lokalen Variable der Winkel des Zeigerinstruments berechnet. Eine weitere
SetMathValue-Aktion wird konfiguriert auf die Rotation des Zeigerelements (siehe Gleichung 3.4.4.3
und Listing 3.2). Die erste zugehdrige GetValue-Aktion ist konfiguriert als ,Addition* und dem Mess-
wert, PV der aus dem Leitsystem geholt wird. Dies addiert den Wert auf den Start-Zahlenwert 0. Die
zweite GetValue-Aktion ist eine ,Division* mit der lokalen Variable Value Range und teilt daher den
aktuellen Wert durch die Differenz der Maximal- und Minimal-Werte. Die letzte nétige GetValue-
Aktion ist eine ,Multiplikation" mit dem festen Wert 180.

Die Syntax ist vom Konzept ahnlich zur umgekehrten polnischen Notation. Zu beachten ist, dass es
in diesem einfachen System keine Klammerung gibt, die StackgréBe daher genau 1 ist. Die aktuelle
Operation manipuliert immer den gemeinsamen Zahlenwert. Als Konvention liefert der Préfix fur die
getValue Bausteine dessen mathematische Operation. Folgende Prafixe nutzen wie erwahnt den

27

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

mathematischen Operator mit dem bisherigen Wert: add*, sub*, mul*, div*. Die folgenden Préafixe
addieren das Ergebnis: abs*, acos*, asin*, atan*, cos*, exp*, log*, sin*, sqrt*, tan*. Mit pow* wird der
alte Wert potenziert mit dem neuen Wert. Ein Zufallswert von 0 bis zum neuen Wert liefert ran*.

1| INSTANCE /TechUnits/cshmi/Templates/I1Odriverlib/AlRotationPointerDisplay/onload/Save_ValueRange :

2 CLASS /acplt/cshmi/SetMathValue;

3 VARIABLE_VALUES

4 TemplateConfigValues : INPUT STRING = "ValueRange";

5 END_VARIABLE_VALUES;

6| END_INSTANCE;

7| INSTANCE /TechUnits/cshmi/Templates/IOdriverlib/AlRotationPointerDisplay/onload/Save_ValueRange/addMax
8 CLASS /acplt/cshmi/GetValue;

9 VARIABLE_VALUES
10 TemplateFBReferenceVariable : INPUT STRING = "Max";
1 END_VARIABLE_VALUES ;

12| END_INSTANCE;
13| INSTANCE /TechUnits/cshmi/Templates/IOdriverlib/AlRotationPointerDisplay/onload/Save_ValueRange/subMin

14 CLASS /acplt/cshmi/GetValue;

15 VARIABLE_VALUES

16 TemplateFBReferenceVariable : INPUT STRING = "Min";
17 END_VARIABLE_VALUES ;

18| END_INSTANCE;

Listing 3.1: SetMathValue Umsetzung von Gleichung 3.4.4.2

1| INSTANCE /TechUnits/cshmi/Templates/IOdriverlib/AlRotationPointerDisplay/VerlaufGruppe/Zeiger/CyclicTime/Set_Rotation :

2 CLASS /acplt/cshmi/SetMathValue ;

3 VARIABLE_VALUES

4 elemVar INPUT STRING = "rotate";

5 END_VARIABLE_VALUES ;

6 END_INSTANCE ;

7 INSTANCE /TechUnits/cshmi/Templates/1Odriverlib/AlRotationPointerDisplay/VerlaufGruppe/Zeiger/CyclicTime/Set_Rotation/
addActualValue :

8 CLASS /acplt/cshmi/GetValue ;

9 VARIABLE_VALUES

10 TemplateFBReferenceVariable : INPUT STRING = "Pv";
11 END_VARIABLE_VALUES;

12| END_INSTANCE;
13| INSTANCE /TechUnits/cshmi/Templates/10driverlib/AlRotationPointerDisplay / VerlaufGruppe/ Zeiger/ CyclicTime / Set_Rotation /

divvValueRange :

14 CLASS /acplt/cshmi/GetValue;

15 VARIABLE_VALUES

16 TemplateConfigValues : INPUT STRING = "ValueRange";
17 END_VARIABLE_VALUES ;

18 END_INSTANCE ;
19 INSTANCE /TechUnits/cshmi/Templates/IOdriverlib/AlRotationPointerDisplay/VerlautGruppe/Zeiger/CyclicTime/Set_Rotation/mul180

20 CLASS /acplt/cshmi/GetValue;

21 VARIABLE_VALUES

22 value : INPUT SINGLE = 180.000000;
23 END_VARIABLE_VALUES ;

24| END_INSTANCE;

Listing 3.2: SetMathValue Umsetzung von Gleichung 3.4.4.3

Applikationen bendtigen auch zwingend die Méglichkeit zu einer bedingten Ausfiihrung. So wurde
eine IfThenElse-Aktion inklusive Bedingungen definiert (siehe auch Abbildung 3.10). Die Verarbei-
tung mehrerer dieser Bedingungen kann mit einem logischen ODER beziehungsweise UND ver-
kniipft werden. Ist eine (oder alle im Falle einer UND Konfiguration) Bedingung erfillt, so werden
die ,then“-Aktionen ausgeflhrt, alternativ die ,else“-Aktionen.

beinhaltet |beinhaltet beinhaltet

0..% 0..% 0...

|Bedingungen| |Then-Aktion| |EIse-Aktion|

Abbildung 3.10: Erlaubte Assoziation zur IfThenElse-Aktion

28

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

Eine Auflistung der definierten Bedingungen liefert Abbildung/Listing 3.11. Ein Vergleich nutzt die
gleichen Datenquellen die auch schon die SetValue-Aktionen genutzt haben. Der Zahlenwert zweier
solcher Quellen kann jeweils verglichen werden (<,<=,==,!=,>= und >) und liefert damit fir die Bedin-
gung eine Aussage zu WAHR oder FALSCH. Fiir den zweiten zu vergleichenden Wert ist es sinnvoll
mehrere Werte angeben zu kénnen. Somit kann ein Wert bequem gleichzeitig auf mehrere Werte
verglichen werden (beispielsweise Klassenname ist ,add", ,sub“ oder ,mul).

1
2| INSTANCE /TechUnits/cshmi/group/checkClassiterator :

3 CLASS /acplt/cshmi/Childrenlterator;

4 VARIABLE_VALUES

5 ChildrenType : INPUT STRING = "OT_DOMAIN";

6 END_VARIABLE_VALUES;

7| END_INSTANCE;

8| INSTANCE /TechUnits/cshmi/group/checkClasslterator.forEachChild/If :

9 CLASS /acplt/cshmi/IfThenElse;

10 VARIABLE_VALUES

" END_VARIABLE_VALUES ;

12| END_INSTANCE;

13| INSTANCE /TechUnits/cshmi/group/checkClasslterator.forEachChild/If.if/Permitlist :
14 CLASS /acplt/cshmi/ComparelteratedChild;

15 VARIABLE_VALUES

16 childValue : INPUT STRING = "OP_NAME";

17 comptype : INPUT STRING = "==";

18 END_VARIABLE_VALUES;

19| END_INSTANCE;
20| INSTANCE /TechUnits/cshmi/group/checkClasslterator.forEachChild/If.if/Permitlist.withValue :

21 CLASS /acplt/cshmi/GetValue;

22 VARIABLE_VALUES

23 value[3] : INPUT STRING = {"add" "sub" , "mul"};
24 END_VARIABLE_VALUES;

25| END_INSTANCE;

(®)Bedingung

l@ comparelteratedChild

l@verg\e\ch

l@ Operatorfrage

Abbildung 3.11: UML-Grundstruktur der Bedingungen

Die Bedingung Operatorfrage (confirm) stellt dem Bediener eine beliebige Frage (wiederum Uber
eine Datenquelle festzulegen), welche dieser mit Ja oder Nein beantworten kann.

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/click/If_DeleteMode.then/Confirm.if /Confirm :
2 CLASS /acplt/cshmi/Confirm;

3 VARIABLE_VALUES

4 END_VARIABLE_VALUES;

5| END_INSTANCE;

6| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/click/If_DeleteMode.then/Confirm.if /Confirm.question :
7 CLASS /acplt/cshmi/GetValue;

8 VARIABLE_VALUES

9 value : INPUT STRING = "Do you really want to delete this object?";

0 END_VARIABLE_VALUES;

1| END_INSTANCE;

Neben den soeben vorgestellten Kontrollstrukturen sind weiterhin auch strukturverdndernde Inter-
aktion mit dem Automatisierungsystem definiert. Das Kommunikationssystem ACPLT/KS[AIb03]
liefert eine Basisliste von sinnvollen Kommandos. Dazu gehért Erstellen, Umbenennen, Léschen,
Verkniipfung erstellen und Verkniipfung aufheben. Die Konfiguration dieser Aktionen wird wiederum
Uber die allgemeinen Datenquellen realisiert. Im folgenden Beispiel wird ein Objekt der Klasse
myClass der Bibliothek /acplt/myLib an der Stelle /TechUnits/TU10 erstellt, wobei der Name beim
Benutzer angefragt wird.

29

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

1
2| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate :

3 CLASS /acplt/cshmi/CreateObject;

4 VARIABLE_VALUES

5 END_VARIABLE_VALUES ;

6| END_INSTANCE;

7| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate .Name :
8 CLASS /acplt/cshmi/GetValue;

9 VARIABLE_VALUES
10 Operatorinput : INPUT STRING = "textinput:Please enter the name for the new object”;
1 END_VARIABLE_VALUES ;

12| END_INSTANGE;
13| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Place :

14 CLASS /acplt/cshmi/GetValue;

15 VARIABLE_VALUES

16 value : INPUT STRING = "/TechUnits/TU10";
17 END_VARIABLE_VALUES ;

18| END_INSTANCE;
19| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Library :

20 CLASS /acplt/cshmi/GetValue;

21 VARIABLE_VALUES

22 value : INPUT STRING = "/acplt/myLib";
23 END_VARIABLE_VALUES ;

24| END_INSTANCE;
25| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Class :

26 CLASS /acplt/cshmi/GetValue;

27 VARIABLE_VALUES

28 value : INPUT STRING = "myClass";
29 END_VARIABLE_VALUES ;

30| END_INSTANCE;

Ein weiterer, jedoch nur lesender, Zugriff auf ein Automatisierungssystem bietet die Aktion des
Iterators. Dieser kann Uber Vektorvariablen oder lber eine Struktur iterieren. Eine Struktur kann
zum Beispiel eine Liste aller Variablen oder alle Bausteine eines CFC sein. Flr jedes gefundene
Element kdnnen daraufhin beliebige weitere Aktionen ausgefihrt werden. (siehe [Roc12])

Bei lteratoren ist es teilweise méglich mehr Metadaten zu erhalten, so dass hier eine spezielle
Bedingung compareIteratedChild definiert wurde. Solche Metainformation kénnen zum Beispiel
Zugriffsrechte oder Vererbungsinformationen beinhalten.

Gerade im Hinblick auf solche lteratoren ist es sinnvoll eine Kopiervorlage (siehe Kapitel 3.4.2)
auch als Aktion instanziieren zu kénnen. Daflir wurde die Aktion InstantiateTemplate definiert,
welches eine Kopiervorlage in Abhangigkeit von lterator-Werten erstellt.

Das folgende Beispiel zeigt die Erstellung einer Kopiervorlage. Dabei wird der neuen Instanz mit
dem speziellen Parameter 0P_NAME die FBReferenz des aktuellen Iteratorschritts mitgegeben.

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/onload/Pandixliterator.forEachChild/If_ModulFound.then/
Inst_Modul :

2 CLASS /acplt/cshmi/InstantiateTemplate ;

3 VARIABLE_VALUES

4 TemplateDefinition : INPUT STRING = "Pandix/internal/ModulButton";

5 x : INPUT SINGLE = 400.000000;

6 y : INPUT SINGLE = 300.000000;

7

8

9

FBReference : INPUT STRING = "OP_NAME";
END_VARIABLE_VALUES;
END_INSTANCE ;

Waére dieser lterator lber eine Vektorvariable statt einer Struktur iteriert, so kann der Wert per
OP_VALUE Ubergeben werden.

1| INSTANCE /TechUnits/cshmi/Templates/Processcontrol/FaceplatePCUSSC/BtnC TemplC onload/readC .forEachChild
/instCommandOperatorinputValue :

2 CLASS /acplt/cshmi/InstantiateTemplate ;

3 VARIABLE_VALUES

4 TemplateDefinition : INPUT STRING = "Pr 1trol /PCUCK 1
5 x : INPUT SINGLE = 0.000000;

30

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.4 Komponenten des Modells

6 y @ INPUT SINGLE = 0.000000;

7 ConfigValues[2] : INPUT STRING = {"buttontext:OP_VALUE" , "PFCommand:OP_VALUE"};
8 END_VARIABLE_VALUES;

9| END_INSTANCE;

In objektorientierten Automatisierungssystemen gibt es haufig eine Zugehdrigkeit zwischen zwei
Objekten. Dies kann beispielsweise in einem CFC der IEC 61131-3 eine Verbindung sein. Um
diese anzeigen zu kénnen wird eine grafische Darstellung dieser Zugehdrigkeit benétigt. Die wére
mit einem Polygonzug statisch realisierbar. Spatestens, wenn der Benutzer jedoch ein Objekt ver-
schieben kann, wird eine echte, logische Verkniipfung zwischen zwei Objekten nétig. Eine Uber-
fihrung dieser logischen Zugehdrigkeit in die grafische Darstellung liefert die Aktion Routepolyline
(siehe [Roc12]). Diese kann einen Polygonzug passend berechnen, so dass zwei Punkte verbunden
dargestellt werden.

In Bedienoberflachen ist es nétig eine Teildarstellung vollstandig neu aufzubauen. Dies kann
beispielsweise nétig sein, wenn das Automatisierungssystem strukturell verédndert wurde oder ein
anderer Teilbereich nun dargestellt werden soll. Daher wurde die Aktion RebuildObject definiert,
welches ein beliebiges (grafisches oder gruppierendes) Element neu aufbaut.

3.4.5 Baustein zur Freitext-Programmierung

Das vorgestellte Modell wurde bewusst einfach gehalten um die meisten, jedoch nicht alle Anwen-
dungen modellieren zu kénnen. Komplexe, dynamische Darstellungen wie beispielsweise ein xt-
Diagramm oder x,y-Diagramm ist mit den vorgestellten Mitteln schwer bis gar nicht effizient zu
realisieren.

Daher wurde eine Ergdnzung namens Blackbox erstellt. Der Name wurde gewahlt da die
Verarbeitungs-Logik nicht direkt einsehbar ist [Fin13]. Sie bietet zwei unabhangige Funktionen. So
ist sowohl eine flexible Anzeige komplexer Semantiken, als auch eine textbasierte Programmierung
zur Manipulation der Anzeige mdglich. Diese beiden Funktionen sind kombinierbar und erlauben
eine sehr hohe Flexibilitét.

Als Anzeige-Technologie wurde hier bewusst HTML [BFL*14] gewahlt. Diese Auszeichnungs-
sprache ist die Basis des World Wide Web. Daher ist sie vielen Entwicklern gut bekannt und es
ist sehr viel Literatur verfligbar. Weiterhin ist die Auszeichnungssprache mit performanten Biblio-
theken in viele Projekte einzubetten. Als Beispiel sei hier QtWebEngine oder Chromium Embedded
Framework (CEF) genannt. Die Nutzung dieser Technologie bietet eine einfache Mdglichkeit bei-
spielsweise Tabellen, Auflistungen oder FlieBtext darzustellen.

Fur die textbasierte Programmierung wurde ECMAscript (ECMA-262 [ecm99]) gewahlt, welche
auch im World Wide Web gemeinsam mit HTML weite Verbreitung findet. Es gibt mehrere
ECMAScript-Implementierungen fiir diese Skriptsprache. Am bekanntesten dirfte wohl Mozilla-
JavaScript (eingesetzt in Mozilla Firefox), JScript (eingesetzt in Microsoft Internet Explorer und
Microsoft Edge), Google V8 (Google Chrome) sowie JavaScriptCore (eingesetzt in Apples Safari)
sein.

31

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

Durch diese breite Unterstiitzung der Technologie scheint die Wahl der Erweiterung keine zu starke
Einschrankung in der zuklnftigen Nutzbarkeit zu sein. Trotzdem wird hier das Konzept der Platt-
formunabhéngigkeit und damit Zukunftssicherheit bewusst verlassen um mehr Freiheiten in der
Darstellung bieten zu kdnnen.

Zur Interaktion der Programmierung mit dem Modell wurde eine spezielle JavaScript-APl namens
cshmimodel definiert.

Um das Konzept der ,Parametrierung statt Programmierung“ nicht vollstandig aufzugeben, wurden
spezielle Variablen flir den Baustein ermdglicht. So kann eine Blackbox ohne Verstandnis des
JavaScript-Codes an die eigenen Bedurftnisse angepasst werden. Die Erweiterung kann so &hn-
lich einer parametrierbaren Vorlage arbeiten. Dazu wurde das JavaScript-Objekt cshmimodel.
variables in der API definiert. So kann beispielsweise die Aktualisierungsgeschwindigkeit eines
x,t-Diagramms direkt parametrierbar gestaltet werden.

Die API bietet Funktionen, um auf alle Komponenten des Anzeigesystems zuzugreifen, sodass
die textbasierte Programmierung nicht auf Interna der Anzeigetechnologie angewiesen ist. So lie-
fert beispielsweise cshmimodel.SvgElement ein SVGElement-DOM-Interface (siehe [FJF03]) zur
Manipulation der SVG-Seite der Blackbox selber. Der HTML-Teil (als HTMLELement-DOM-Interface,
siehe [BFL*14]) der Blackbox ist (iber cshmimodel.HtmlFirstElement erreichbar.

Zur Kommunikation mit dem Automatisierungssystem bietet die AP| weitere Funktionen. So sind alle
Funktionen des Kommunikationssystems KS erreichbar. Uber die Funktion cshmimodel . getVar ist
beispielsweise ein Abruf von einer oder auch mehrerer Variablen méglich.

Ein Beispiel liefert das Kapitel 5.6. Eine vollstdndige Beschreibung der Programmier-API ist im
Anhang 3 im Listing 2 auf Seite 65 abgedruckt. Diese API-Beschreibung kann auch von JavaScript-
Editoren flir umfangreiche Unterstiitzung dienen.

3.5 Erweiterung der Grundkomponenten

Fir komplexere Benutzeroberflachen ist das in Kapitel 3.4 vorgestellte Grundmodell nicht ausrei-
chend. Daher wurde es um einige Details erganzt, ohne jedoch die Grundphilosophie zu verletzen.

3.5.1 Erweiterung der Darstellung

Zur Vereinfachung der Erstellung von Applikationen wurde auf die Definition von Datentypen inner-
halb der Applikationen verzichtet. Alle Werte werden einheitlich als Zeichenkette (String) und damit
reiner Text interpretiert. Nur die Vergleichsoperatoren (siehe Kapitel 3.4.4) wandeln beispielsweise
fur einen gréBer/kleiner-Vergleich den Text kurzzeitig in eine Zahlen-Variable um.

Daraus ergeben sich fiir die einfache Definition der Textbausteine (sieche Kapitel 3.4.1) in der Praxis
zwei Probleme.

32

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.5 Erweiterung der Grundkomponenten

« Oft ist moglich, dass eine Zahl in unterschiedlichen Genauigkeiten auf dem Bildschirm
gebracht werden soll. Da alle Werte, wie erwahnt, als Text behandelt werden, liegt beispiels-
weise die FlieBkommazahl 2 (wenn sie vom Automatisierungssystem geholt wird) in Gleich-
kommadarstellung als 2,0000000 vor. Dies ist in einer Anzeige meist unerwiinscht.

» Weiterhin ist ein Text, der aus dem Automatisierungssystem kommt, zu lang um ihn direkt
anzeigen zu kdnnen. Dies kann beispielsweise ein langer Name einer Klasse sein, der nicht
in den generisch vorgesehenen Platz passt.

Fir beide Probleme wurde eine gemeinsame Lésung gefunden. Das Text-Element erhalt zusatz-
lich das Attribut trimToLength. Ist dieser auf den Initialwert 0 so wird der Text ohne Anderung
genutzt. Ist der Wert des Attributes jedoch positiv (beispielsweise 10) so wird ein Text auf diese
Lange gekirzt. Aus ,ldentifierType” wird beispielsweise ,ldentifier...“. Mit dem Wert -10 wird aus
JdentifierType* wird ,...tifierType®“. Der ungekurzte Text wird als Tooltip bereitgestellt, sodass dieser
beispielsweise als Pop-up-Fenster erscheint, wenn die Maus Uber dem Text ruht.

Wird eine FlieBkommazahl erkannt, so bestimmt trimToLength die Anzahl der anzuzeigenden
Nachkommastellen.

In vielen Anwendungsféllen ist es sinnvoll einen Teil der Anzeige einzublenden. So soll beispiels-
weise das Faceplate einer Pumpendarstellung nicht durchgehend angezeigt werden. Es ist mdglich
dies mit den vorhandenen Ereignissen und Aktionen zu realisieren, dies ist jedoch sehr umstandlich.
Daher wurde fiir alle Gruppen ein boolsches Attribut namens hideable definiert. Ist dieses wahr so
kann die Sichtbarkeit Uber einen Klick auf das Vater-Element einfach umgeschaltet werden. Die
Sichtbarkeit beim Laden ist davon unabhangig und je nach Anwendung passend festzulegen.

Eine wichtige Optimierung ist der bedarfgestiitzte dynamische Aufbau der Applikation. Einige
Objekte sind schon beim Laden der Anzeige unsichtbar. Dies kann dauerhaft sein (bei Objekten,
welche nur zum Entwickeln der Applikation bendtigt wurden) oder sich wahrend der Laufzeit der
Anzeige andern. Als Beispiel sei hier eine Tab-Navigation genannt, welche viele Tabs definiert
jedoch die meisten beim Laden versteckt. Erst eine Interaktion mit dem Benutzer wechselt die aktive
Anzeige.

Solche Seiten kdnnen auch sehr umfangreiche Darstellungen beinhalten. Daher ist ein vollstandiges
Laden aller unsichtbaren Kind-Elemente nicht sinnvoll. Hier wurde daher der Ansatz genutzt, dass
alle grafischen Kind-Elemente beim Laden nicht aufgebaut werden. Die Ereignisse des unsichtbaren
Element werden jedoch schon interpretiert. Mit dieser MaBnahme wird gewéhrleistet, dass bei-
spielsweise ein onload-Ereignis die Sichtbarkeit direkt aktivieren kann. Wird ein bisher verstecktes
Element spéter sichtbar geschaltet, so werden alle Kind-Elemente erstellt.

3.5.2 Erweiterung der Ereignisse

Interagiert ein Bediener mit einer Anzeige, so erwartet er eine schnelle Reaktion. So wurde schon
1968 von Miller [Mil68] erkannt, dass diese Reaktion schneller als 200 ms erfolgen sollte. Ansonsten

33

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 Explizites Modell fiir Benutzungsschnittstellen leittechnischer Funktionen

ist der Bediener nicht sicher, dass die Interaktion erfolgreich angenommen wurde. Da diese schnelle
Reaktion nicht immer garantiert werden kann, wurde eine direkte visuelle Riickmeldungen bei Kilick,
Doppelklick und Rechtsklick implementiert. Das aktivierte Element wird fur 800 ms farbig hervor-
gehoben. Die wirkliche Reaktion des Systems kann daher wesentlich langsamer erfolgen, der
Bediener ist trotzdem sicher, dass seine Interaktion vom System registriert wurde.

Wie in Kapitel 3.4.4 erwéhnt erlaubt die SetValue-Aktion nur eine Manipulation des direkt zuge-
ordneten Elements. Dies reicht fir viele Anwendungen nicht aus, so dass eine Art ,,publisher
subscriber“-System innerhalb des Anzeigesystems definiert wurde. So wurde neben dem onload
- und TimeEvent-Ereignis ein globalvarchanged-Ereignis definiert. Die zugehdrigen Aktionen
werden ausgeflhrt, wenn eine (beliebige) globale Variable geéndert wurde. Somit ist es mdég-
lich, durch ein bestimmtes Ereignis eine Anderung an einer anderen Stelle in der Darstellung zu
erzeugen.

3.5.3 Erweiterung der Aktionen

Die Kopiervorlage als Aktion instantiateTemplate erstellt eine Instanz abhéngig von Informa-
tionen eines lterators. Wird die Aktion beispielsweise flr eine Engineering-Umgebung genutzt, so
hat sich ein zusétzlicher Parameter namens preventClone bewéhrt. Mit diesem Parameter kann
eine vollstandig identische Kopie einer Vorlage verhindert werden. So wiirde beispielsweise eine
mehrfache Referenzierung ein grafisches Objekt mehrfach auf dem Bildschirm dargestellt. Dies
kann mit dem erwéhnten Parameter verhindert werden.

Mit der Aktion instantiateTemplate kann beispielsweise ein Bedienknopf fir mehrere unter-
stitzte Kommandos einer Prozessfihrung (welches in einem Vektor bereitgestellt wurde) erstellt
werden. Alternativ kann in einer Engineering-Oberflache eine Liste aller vorhandenen Klassen
erstellt werden.

Damit die neu erstellten Darstellungselemente nicht Ubereinander liegen, wurden die Parameter
x0ffset, yOffset sowie maxTemplatesPerDirection ergénzt. Mit den ersten Beiden kann jede
neue Instanz verschoben zur Vorigen erstellt werden.

maxTemplatesPerDirection wird zum Beispiel benétigt, wenn sehr viele Instanzen erstellt werden
sollen und damit eine Art ,Zeilenumbruch® simuliert werden soll. Steht in diesem Parameter bei-
spielsweise ,x:3"“ so werden maximal drei Instanzen horizontal erstellt und anschlieBend (um den
yOffset verschoben) die nachste Reihe.

Der Baustein fiir Bedingungen (siehe Kapitel 3.4.4) vergleicht zwei beliebige Werte (gelie-
fert durch zwei getValue Datenquellen). Im Grundmodell wurde nicht definiert, wie das Ergebnis
des Vergleichs im Fehlerfall eines dieser getValue-Quellen auszusehen hat. Damit der Appli-
kationsentwickler hier alle Méglichkeiten hat, wurde das Verhalten parametrierbar gestaltet. Ist
ignoreError bei einer Bedingung auf wahr eingestellt so wird der Wert als leere Zeichenkette
angenommen. Darauf wird anschlieBend wie gewohnt der Vergleich dieser Bedingung angewendet.

34

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3.5 Erweiterung der Grundkomponenten

Wurde ignoreError auf falsch parametriert, so wird im Fehlerfall die Verarbeitung der Bedingung
und damit der IfThenElse Aktion abgebrochen.

Eine Anwendung in der Prozessfilhrung (siehe Kapitel 5.5) erforderte eine dynamische Uber-
setzung von (englischen) Kommandos in deutsche Beschreibungstexte. So wurde der Baustein
TranslationSource definiert. Dieser Baustein ist von SetValue referenzierbar und liefert eine zen-
trale Zuordnung der Ursprungstexte in die Zieltexte Uber die Variable translationMapping. Dies
kann beispielsweise den Wert OPEN: OFFEN, CLOSED:ZU haben.

Als Test der einfachen Erweiterung des Modells wurde die experimentelle Aktion Vibrate erstellt,
welche bei unterstiitzten Geraten (hauptsachlich Mobilgeraten) den Vibrationsmotor kurzzeitig
aktiviert. Die Syntax wurde von der Vibration API [Kos14] des World Wide Web Consortiums Gber-
nommen. So ist neben einer einfachen Zeitdauer der Vibration (beispielsweise 500 ms) auch ein
Muster durch einen Vektor mdglich. So vibriert das Geré&t mit der Angabe von [50, 100, 150] far 50 ms,
pausiert fir 100 ms und vibriert abschlieBend noch einmal fiir 150 ms.

35

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

4 Realisierung

4 Realisierung

Das Modell des vorangegangenen Kapitels 3 ist unabh&ngig von einer Technologie definiert. In
diesem Kapitel wird eine prototypische Implementierung des Konzepts vorgestellt, um die Praxi-
stauglichkeit unter Beweis zu stellen. Diese Implementierung bildet die technologische Ebene
des Gesamtkonzepts (sieche Kapitel 3.3).

Zur Evaluation des Gesamtsystems muss die Technologie fiir die Datenbasis (wo die Applikation
gespeichert ist) und das Anzeigesystem (welche die Applikation auf dem Bildschirm bringt und mit
dem Bediener interagiert) festgelegt werden. Diese Wahl beider Systeme ist unabhangig méglich.

Zur Gestaltung einer Anwendung bietet sich eine Datenbank an, welches schon beim Erstellen eine
Syntaxprifung erlaubt. So darf eine Aktion nur zu einem Ereignis assoziiert werden. Eine Auflistung
der grundlegenden Restriktionen finden sich in den Abbildungen 3.4, 3.6, 3.8 und 3.10 des vorigen
Kapitels. Auch sind nicht alle Werte fiir die Parameter der Elemente, Ereignisse und Aktionen sinn-
voll. Auch hier ist eine Uberpriifung und gegebenenfalls Korrektur schon bei der Erstellung hilfreich.

Das Anzeigesystem muss als wichtigste Anforderung auf gewiinschten Plattformen (das kénnen
neben Windows, Linux, macOS auch Mobilgerate verschiedenster Hersteller sein) zur Verfligung
stehen. Sind mehrere Plattformen gewiinscht, so kann das Anzeigesystem mehrfach erstellt werden
oder das System selbst mehrere Plattformen unterstitzen.

Weiterhin muss ein Anzeigesystem Kommunikation mit dem Automatisierungssystem erlauben.
Das Anzeigesystem agiert als Client und greift auf einen oder mehrere Automatisierungssysteme
als Server zu. Dazu mussen beide Systeme entweder direkt das gleiche Kommunikationsprotokoll
beherrschen oder es wird ein Gateway zur Umsetzung benétigt.

4.1 Prototypische Implementierung

Zur Validierung wurde am Lehrstuhl fir Prozessleittechnik in Aachen das Konzept prototypisch
implementiert. [JE12, JE13] Als Datenbasis zur Speicherung der Anwendung wurde die objektori-
entierte ACPLT/OV-Umgebung (Objekt-Verwaltung) des Lehrstuhls fiir Prozessleittechnik in Aachen
gewahlt. Hiermit lassen sich Modelle der Leittechnik einfach realisieren und ausprobieren. Alle Logik
wird hier in Form von Objekten modelliert. Vor der Nutzung muss eine Modellierung der Vererbungs-
Klassen mit den jeweiligen Variablen erfolgen. Sowohl ein Instanziieren als auch ein schreibender
Zugriff auf die Variablen erlaubt eine Ausfiihrung von Programmcode, so dass in dieser Softwa-
reumgebung eine einfache Validierung der Anwendung schon beim Erstellen méglich ist. Auch die

36

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

4.1 Prototypische Implementierung

Benutzerfreundlichkeit des Engineeringsprozesses wird damit erhéht, indem haufige Fehler auto-
matisch korrigiert werden.

Die verschiedenen Abstraktionsschichten der einzelnen Elemente, Ereignisse und Aktionen kann
Uber Vererbung einfach umgesetzt werden.

Da ACPLT/QV als Konsolenanwendung konzipiert ist, besitzt es selbst keine Bedienoberflache. Es
existieren jedoch Software-Werkzeuge, um ein Engineering der Umgebung zu erméglichen. Dies
wird realisiert durch eine standardisierte Schnittstelle nach dem Client/Server-Prinzip. Jeder OV-
Server bietet daher ein offenes Kommunikationsprotokoll ACPLT/KS [Alb03] als Serverdienst wel-
chen diese Werkzeuge als Klienten nutzen.

Die Umgebung erlaubt eine Gliederung beliebiger Objekte Uber eine spezielle containment-
Assoziation. Diese Assoziation wird in den Engineering-Werkzeugen als Hierarchie-Ebene darge-
stellt. Dies wird in der Implementierung der Bedienoberflache genutzt um die Zuordnungen zu grup-
pierenden Elementen zu modellieren. Die Elemente, welche logisch innerhalb einer Gruppe liegen
sollen, werden in OV unterhalb des Gruppenobjekts platziert. Aber auch die Zuordnung von Ereig-
nissen zu Elementen und von Aktionen zu Ereignissen wird Uber die Hierarchie-Ebene realisiert.
Somit wird ein Objektbaum mit der gesamten Haupt-Anwendung aufgebaut. Die Kopiervorlagen
(siehe Kapitel 3.4.2) sind in einem separaten Objektbaum hinterlegt, um so Updates der genutzten
Vorlagen einfacher handhabbar zu machen. Dahinter steckt die Idee, dass Vorlagen fur viele Anwen-
dungen erstellt werden und zusétzlich von anderen Entwicklern stammen (kénnen).

Wie erwahnt muss das Anzeigesystem das Modell der Anwendung von der Datenbasis erhalten.
Dies passiert in der Implementierung tber ACPLT/KS. Das Kommunikationsprotokoll ist in einer
bindren Variante ([AIb03]; ksXDR genannt) sowie mehreren textbasierte Varianten tber HTTP
([FR14a, FR14b]; ksHTTP genannt) spezifiziert. Gerade die Variante XML (ACPLT/KSX, [MEO07])
Uber HTTP ist fir viele potenzielle Anzeigesysteme eine einfach zu nutzende Kommunikationsform.

Die Wahl der Technologie des Anzeigesystems ist nicht so kritisch wie bei konventionellen Grafik-
systemen, da diese (wie die Datenbasis) einfach ausgetauscht werden kann. Es muss nur das Meta-
modell (siehe Kapitel 3.4) implementiert werden und schon sind alle vorhandenen Anwendungen
direkt nutzbar. Dieses Metamodell ist mit neun grafischen Elementen, dem Gruppen und Vorla-
gensystem, acht Ereignissen und dreizehn Aktionen ziemlich schlank. Die sieben Form-Elemente,
viele Benutzerereignisse (click, rightclick, doubleclick) und die Kommunikations-Aktionen (create,
rename, delete, link, unlink) sind sich jeweils sehr &hnlich, was den Erstellungsaufwand weiter senkt.

Da die Bedienoberflache am Lehrstuhl haufig fur zuséatzliche Diagnosen oder Monitoringanwen-
dungen genutzt wird, bietet sich hier ein installationsfreies Anzeigesystem an. Die Wahl fiel daher
auf eine Webanwendung, also eine Kombination von HTML [BFL*14] und JavaScript [ecm99]. Flr
die Darstellung der Form-Elemente wird der Standard Scalable Vector Graphics (SVG) [FJF03]
genutzt, der in allen modernen Browser integriert ist. Somit muss nicht jeder Anwender die Soft-
ware installieren und insbesondere aktuell halten, da die Webanwendung von einer zentralen Stelle
gepflegt werden kann (siehe auch [Sch10]).

37

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

4 Realisierung

Zusammenfassend greift die Abbildung 4.1 nochmal das Konzeptbild 3.1 des vorigen Kapitels auf.
Es zeigt eine &hnliche Darstellung mit Hinweisen auf die jeweilige genutzte Technologie der Imple-

mentierung.
- HTTP
Datenbasis
ACPLT/OV

Grafik Ereignisse Aktionen

) ACPLT/KS
Anzeigesystem

Webbrowser

Automatisierungssystem
ACPLT/OV

Abbildung 4.1: Grundstruktur von ACPLT/cshmi

« Als Datenbasis zur Speicherung der Applikation dient ACPLT/OV.

« Als Anzeigesystem dient eine Webanwendung: Mit diesem interagiert der Bediener direkt. Das
Applikationsmodell wird zum Ladezeitpunkt der Applikation per HTTP Ubertragen.

» Da Webbrowser nur das HTTP-Protokoll unterstiitzen benétigt die Implementierung ein Auto-
matisierungssystem, welches einen HTTP-Server integriert hat (wie bei ACPLT/ksHTTP) oder
ein passendes Gateway was die Ubersetzung der Kommunikation tibernimmt.

38

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch
Anwendungen)

Um die Praxistauglichkeit des vorgestellten Modells fiir Bedienoberflachen zu beweisen, wurde im
Rahmen dieser Dissertation zentrale Anwendungsbereiche untersucht und exemplarisch in Form
von kleinen Applikationen evaluiert.

So sollte gezeigt werden, dass das Modell im Rahmen der Planung, des Engineering und im Betrieb
erfolgreich eingesetzt werden kann, um Betriebsablaufe zu vereinfachen und den Programmier-
aufwand zu senken. Entsprechend beschéftigt sich Kapitel 5.1 mit der Eignung des Modells zur
automatischen Erstellung von Bedienoberflachen, wahrend Kapitel 5.2-5.5 auf modellbasierte Pro-
gramme zur Anlagenplanung, der Simulation, zum Engineering und zum Betrieb eingegangen wird.
In Kapitel 5.6 wird schlieBlich untersucht, inwieweit das Modell flexibel durch Freitextprogrammier-
bausteine erweiterbar ist bevor in Kapitel 5.7 ein Fazit gezogen wird.

5.1 Eignung zur automatischen Erstellung von Bedienoberflachen

Eine Bedienoberflache wird im Regelfall per Hand von einem Anwendungsentwickler erstellt. So
nutzt er zum Beispiel den Qt Creator oder den XAML-Designer von Visual Studio, um eine Bedien-
oberflache zu erstellen. Dabei muss jede Komponente einzeln programmiert werden.

Um den Prozess zu vereinfachen und den Programmieraufwand zu senken, nutzen die meisten
Hersteller eigene Bibliotheken mit vordefinierten Bausteinen. Auch gibt es Ansatze, wie zum Bei-
spiel autoHMI der TU Dresden[DDFU11], aus R&l-FlieBbildern automatisch Bedienoberflachen zu
erzeugen. Die entwickelten Softwaretools sind jedoch bislang herstellerspezifisch und erlauben
keinen universellen Import von Planungsdaten. So erganzt die Software der TU Dresden haupt-
sachlich die Positionierung der herstellereigenen Generierung der Bedienoberflache. Daher sollte
eine neue Visualisierungsinfrastruktur die vollstandige Generierung und Platzierung von Bedienele-
menten sowie die Verknlipfung dieser mit der Anlagensteuerung erlauben. Sie sollte in der Lage
sein softwareneutrale Datenaustauschformate wie PandIX auszuwerten, um somit auf Planungs-
daten unterschiedlicher Hersteller zuzugreifen und diese automatisch in eine Bedienoberflache zu
Uberflhren.

Ein Ziel dieser Dissertation war es daher die Eignung des Modells zur automatischen Erstellung von
Bedienoberflachen zu zeigen. Dabei kann die automatische Generierung eine Basis fir handische
Optimierung oder auch die endgliltig benutzte Variante sein. Siehe hierzu auch Kapitel 2.3.

39

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Evaluation

Zuerst wurde fur alle wichtigen Anlagen-Elemente jeweils ein Grafikbaustein erstellt. Diese
bestehen ausschlieBlich aus den Elementen des HMI-Metamodells. Diese wurden generisch auf-
gebaut, um die Wiederverwendbarkeit zu gewahrleisten. Die Bausteine werden noch detailliert in
Kapitel 5.5 vorgestellt.

Fur die eigentliche Evaluation wurden aus dem Planungswerkzeug COMOS von Siemens Pla-
nungsdaten einer Versuchsanlage im PandIX-Format exportiert und in die ACPLT Laufzeitumge-
bung geladen (siehe hierzu auch Kapitel 5.2 und [ERD11, SE12, SE13]).

AnschlieBend wurde fir jedes Anlagen-Element geprift, ob ein entsprechendes Bedienelement
als Grafikbaustein im Modell vorhanden ist. Konnte dieses nicht gefunden werden, so wurde statt-
dessen ein Platzhalter erstellt, welche mit dem generischen Faceplate immerhin eine Grundfunktion
bietet. Die so generierten Anlagen-Elemente wurden in einem weiteren Schritt an die gleiche Posi-
tion gesetzt, die sie auch in den Planungsdaten enthaltenen R&I-FlieBbildes eingenommen haben.
So konnte aus dem R&I-FlieBbild automatisch eine Bedien- und Beobachtungsflache fir die Ver-
suchsanlage erstellt werden, welche anschlieBend einfach optimiert werden konnte. Abbildung 5.1
zeigt die Grundstruktur der Bedienoberflache. Diese besteht aus den generischen Bausteinen zur
Visualisierung der Prozessfiihrung sowie der generierten (und spater handisch optimierten) Bedien-
oberflache der Anlage. Bei der Nutzung wird aus beiden Teilen die Bedienoberflache der Anlage als
Instanz erstellt. Dieses beinhaltet ein HMI-Anlagenmodell, welches mit der Anzeige (und damit dem
Benutzer) sowie der Anlage kommuniziert. Eine ausfihrliche Beschreibung einer &hnlichen Aufga-
benstellung auf Basis von regelbasierten Modelltransformationen ist in [Mer18] nachzulesen.

‘ Anzeige ‘

Bedienoberflache der
Anlage A (Instanz)

j

‘ HMI-Anlagenmodell ‘4— Anlage A

" Bedienoberflache der
Prozessfiihrungs- Anlage A (Vorlage) G X
Grafikbausteine enerierung

PandIX-Anlagen-Modell

i

‘ HMI-Metamodell ‘ PandIX-Metamodell

Abbildung 5.1: Struktur der generierten Bedienoberflache

40

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.2 Engineering von Anlagenplanungsdaten (R&I-FlieB3bilder)

5.2 Engineering von Anlagenplanungsdaten (R&I-FlieBbilder)

Nachdem in Kapitel 5.1 gezeigt werden konnte, dass der vorgestellte Ansatz durch sein Vorlagen-
system die automatische Erstellung von Bedienoberflachen ermdglicht, soll in diesem Abschnitt auf
die Eignung des Modells zur Anlagenplanung eingegangen werden. Dabei wére es wieder von Vor-
teil, wenn die Anlagenplanung in einem herstellerunabhangigen Datenformat realisiert wiirde und
mit moglichst geringem Programmieraufwand machbar wére.

Evaluation

Als Datenformat wurde dabei wieder das herstellerunabhangige PandIX-Format gewahlt. Es
wurde eine vollstdndige Engineeringoberflache fiir PandIX-Elemente mit ACPLT/csHMI erstellt. Ein
Screenshot dieser Applikation ist in Abbildung 5.2 zu sehen. Die Darstellung ist zweigeteilt. So wird
der aktuelle Stand der PandIX-Daten auf der rechten Seite der Engineeringoberflache dargestellt
und die PandIX-Klassen als Liste im linken Bereich. Im dargestellten Fall enthalten die PandIX-
Daten bereits eine kleine Anlagenstruktur bestehend aus zwei Pumpen, einem Sensor und einem
Behélter.

Der Aufruf der Applikation kann durch folgendes Listing 5.1 erfolgen. So werden Uber den Parameter
TemplateDefinition (Zeile 6) das PandIX-Engineering und tber den Befehl FBReference (Zeile 7)
die anzuzeigenden PandIX-Daten referenziert.

1| INSTANCE /TechUnits/cshmi/engineeringPandIXSheet :

2 CLASS /acplt/cshmi/Group;

3 VARIABLE_VALUES

4 width : INPUT SINGLE = 1675.000000;

5 height : INPUT SINGLE = 1020.000000;

6 TemplateDefinition INPUT STRING = "Pandix/PandixEngineering";
7 FBReference : INPUT STRING = "/TechUnits/pandix";

8 END_VARIABLE_VALUES;

9| END_INSTANCE;

Listing 5.1: Nutzung des PandIX Engineerings

Mithilfe einer Iterator-Aktion wird anschlieBend automatisch der Inhalt der PandIX-Daten ausge-
lesen und mit den hinterlegten Modellbausteinen des PandIX-Engineerings verglichen. So werden
die aktuellen Anlagenteile (Pumpen, Ventile ...) erkannt und auf dem Bildschirm automatisch dar-
gestellt. Aktoren wie Pumpen, Ventile sowie Behélter werden mit allen ihren Anschlusspunkten
visualisiert. Die Rohrleitungen werden grafisch mit Linien dargestellt und verbinden die jeweils
korrekten Anschlusspunkte. Die Messstellen (beispielsweise ein Temperatursensor) werden in der
Anzeige platziert und durch Wirklinien mit der richtigen Stelle verbunden.

Soll das PandIX-Modell nun modifiziert werden, lassen sich aus der Bibliothek der PandIX-
Bausteine neue Instanzen der Grafikbausteine erzeugen und in das HMI-Anlagenmodell integrieren.
Der so genannte ,Create Mode“ erlaubt weiterhin neue Anschllsse (PandIX External Interfaces) an
ein Objekt, z. B. einen Behdlter, zu erstellen. Diese kénnen auch per Drag und Drop zum Beispiel
an den oberen oder unteren Rand des Objektes verschoben werden. Neben diesem Modus wurde

41

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

//134.130.125.4/pandix/TechUnits/pandix

NormalMode

Sensor

Actuator

ControlF...

Pipe

PipeDNA. .

BlankFla.. Pump2 Vessell

OpenFlan...

PipeJunc...

Vessel

LVessel

HeatExch...

Pump

DPump

RPump

Valve

Abbildung 5.2: Engineeringoberfléche flir PandIX (Klassenliste fiir die Abbildung gekiirzt)

42

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.3 Eignungen des Modells zur Simulationssteuerung

Anzeige

PandIX-Engineering (Instanz)

‘ HMI-Anlagenmodell } PandIX-Anlagen-Modell

I

PandIX-Engineering (Vorlage)

‘ PandIX-Grafikbausteine ‘ ‘ PandIX-Metamodell

I

‘ HMI-Metamodell ‘

Abbildung 5.3: Struktur der PandIX-Engineeringoberflache

ein weiterer Modus implementiert. So kann im ,,Config Mode“ ein Konfigurations-Faceplate einge-
blendet werden, in dem das PandIX-Element lber eine Tabelle konfiguriert werden kann.

Da das HMI-Anlagenmodell ein Abbild der Anlagendaten ist, werden synchron zur Darstellung die
PandIX-Daten veréndert. Abbildung 5.3 verdeutlicht noch einmal die beschriebenen Zusammen-
hange zwischen dem in der Bedienoberflache dargestellten Anlagenmodell, dem in den PandIX-
Daten gespeicherten PandIX Anlagen-Modell und der Anzeige am Bildschirm.

Zusammenfassend kann festgehalten werden, dass die Anlagenplanung hohe Anforderungen an
das vorgestellte Konzept stellt. Es konnten 33 verschiedene PandIX Grafikbausteine als Vorlage
implementiert werden, sodass auch sehr komplexe Anlagen planbar sind und die Eignung des
Modells fur die Anlagenplanung damit gezeigt ist.

Eine genaue Betrachtung der Interna der Applikation befindet sich im Anhang 1 auf Seite 59.

5.3 Eignungen des Modells zur Simulationssteuerung

Eine wichtige Anwendung, welche im Lebenszyklus sowohl in der Planung und dem Betrieb genutzt
wird, ist die Simulation einer Anlage. So existiert fiir die HART-Praktikumsanlage M3P.AC des Lehr-
stuhls' ein Simulator, der die gesamte Anlage nachbildet. Der Simulator verfiigt (iber einen Pro-
fibus Anschluss. Am Leitsystem wird er als Siemens ET200M Remote-10 konfiguriert. So kann die
gesamte Konfiguration mit dieser Installation geprift werden. Die Simulation umfasst die ET200M,
die 32 Sensoren und Aktoren sowie die Anlage inklusive der Produkte selbst. Um physikalisch

"http://m3p.ac/

43

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

realistisches Verhalten der Produkte zu erreichen wurde eine Simulation der Massen- und Energie-
Gleichungen erstellt.

Verriegelungen in einer prozesstechnischen Anlage verhindern auf niedriger Ebene eine Gefahr
fir die Anlage sowie Gerate. So kann mit einer Verriegelung beispielsweise verhindert werden,
dass eine Pumpe angeschaltet wird oder bleibt wenn ein Zielbehélter voll ist. Auch eine Aktivierung
einer Pumpe, wenn ein Ventil im Flussweg vollstéandig geschlossen ist, kann so verhindert werden.
Die Programmierung solcher Verriegelungen muss griindlich getestet werden, ist jedoch potenziell
gefahrlich, da die Anlage dabei naturgeman im Grenzbereich arbeitet. Auch ist ein solcher Test
zeitintensiv, da beispielsweise alle Behalter vollstandig leer beziehungsweise voll sein miissen.

Bei der Entwicklung dieser Verriegelungen ist ein oben genannter Simulator sehr hilfreich, da diese
Zustande simuliert wesentlich schneller erreicht werden kénnen und auBBerdem keine Gefahrdung
der Anlage zu beflirchten ist. Auch kann so die Anlagensteuerung friiher fertiggestellt werden, da
die echte Anlage noch nicht fertiggestellt sein muss. Entsprechend haufig werden Simulationen in
der Anlagenplanung eingesetzt.

Ziel dieses Kapitels ist es daher zu zeigen, dass auch fir die Steuerung von Simulationen eine
Bedienoberflache mit dem vorgestelltem Konzept erstellt und erfolgreich angewendet werden kann.

Evaluation

Fir die vorhandene Simulation wurde im Rahmen dieser Dissertation eine Bedienoberflache erstellt,
welche beispielsweise die einzelnen Fillstdnde der simulierten Behélter verandern kann.

Wie auch im vorhergegangenen Kapitel wird in der Anzeige ein HMI-Simulationsmodell angezeigt,
welches aus einzelnen Instanzen von Grafikbausteinen besteht und mit der eigentlichen Simulation
(vergleichbar mit den PandIX Daten) im Austausch steht. Abbildung 5.4 verdeutlicht auch hier die
Zusammenhange zwischen der Anzeige, der Datenquelle und den Modellbausteinen.

Abbildung 5.5 zeigt die erstellte, statische Bedienoberflache. Bei dieser wurden, im Gegensatz zum
Beispiel des PandIX-Engineerings aus Kapitel 5.2, alle dargestellten Applikationselemente direkt
programmiert. Uber das TimeEvent (siehe Kapitel 3.4.3) werden regelméaBig zyklisch alle Simulati-
onswerte geladen und an den entsprechenden Stellen angezeigt. Blaue Balkenanzeigen symboli-
sieren intuitiv den Fullstand der Behélter und wurden Uber die SetMathValue (siehe Kapitel 3.4.4)
berechnet. Dabei wird lber die Proportionalitdt aus den Grenzwerten der Behalterflllstidnde die
Hoéhe des Rechtecks dynamisch berechnet. Da jedes Form-Element auch rotiert werden kann,
konnte auch ein Rotationszeiger einfach erstellt werden.

Die Ansicht stellt immer den Zustand der aktuell simulierten Anlage da. Fur alle simulierten Anla-
geteile werden die Simulationsinformationen Uber ein Faceplate angezeigt und kdnnen veréndert
werden. So lassen sich die Temperaturen der Anlagekomponenten per Touchscreen modifizieren.
Die Simulationssteuerung wird seit Jahren am Lehrstuhl im Rahmen von Praktika durch Studenten
genutzt, sodass die Eignung des Modells zur Simulationssteuerung damit gezeigt ist.

44

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.3 Eignungen des Modells zur Simulationssteuerung

e

Simulationssteuerung (Instanz)

Simulationssteuerung (Vorlage)

Abbildung 5.4: Zusammenarbeit der verschiedenen Modell-Bausteine fiir die Simulationssteuerung

Abbildung 5.5: Pumpwerk Simulation

45

IP 216.73.216.36, am 20.01.2026, 21:58:26. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Domain: //134.130.125.4/engineering/TechUnits/functionChart

Y O EECE I
Addl 0] tliec611315tdfb/ABS
t/iec6113 1stdfb/AD b "“C‘m"ﬂm "\ta;l';T P

453 [FCinl

23| FCin2
TechUnits

-

unctionChart.intask I
absl T | E—rE
IN2
functionChart
Add1
Absl

Abbildung 5.6: Engineeringoberflache mit Continuous Function Chart
5.4 Engineering von Anlagensteuerungen

Wéhrend bislang gezeigt werden konnte, dass das Modell erfolgreich fiir Bedienoberflachen zur
Anlagenplanung und Simulation eingesetzt werden kann, wird im nachfolgenden Kapitel das
Erstellen einer Anlagensteuerung untersucht. So werden in der Prozessleittechnik Anlagen nur in
den seltensten Fallen in Programmiersprachen wie C oder C# programmiert, sondern meist unter
Zuhilfenahme einer der IEC61131 Sprachen sowie anwendungsspezifischer Sensor/Aktor Bau-
steinen. Siehe auch Kapitel 2.1. Entsprechend wurde im Rahmen dieser Dissertation geprft, ob
sich das Modell auch zur Erstellung von Engineeringwerkzeugen fur eine Anlagensteuerung eignet.
Im nachfolgenden Kapitel 5.4.1 wird daher auf die Eignung des Modells fiir ein Engineering mittels
der Funktionsbausteinsprache, auch bekannt als Continuous Function Chart (CFC, [IECO03]), einge-
gangen, wahrend sich Kapitel 5.4.2 dem Engineering mit der Ablaufsprache (Sequential Function
Chart, SFC, [IEC03]) widmet.

Die Hauptphilosophie aller vorgestellten Engineering-Modelle ist Gbernommen von der gesamten
ACPLT-Modelllandschaft: Das Automatisierungssystem ist die zentrale Datenbank des Prozesses
(,Wabhrheit liegt im Zielsystem* [Mey00]). Das Anzeigesystem speichert keine Daten, sondern liest
und schreibt direkt ins Automatisierungssystem.

5.4.1 Engineering einer Funktionsbausteinsprache nach IEC 61131-3

Beim Engineering von Funktionsbausteinen wird das Zusammenspiel verschiedener Aktoren und
Sensoren betrachtet, die Uber Operatoren miteinander verknlpft sind. Dabei sollten alle Funktions-
bausteine mit ihren Variablen (inklusive der aktuellen Werte) angezeigt werden kénnen, damit eine
einfache und fir den Benutzer leicht verstandliche Verknlpfung der Bausteine untereinander mog-
lich ist. Bei einem Additionsoperator wiirden also entsprechend Abbildung 5.6 zwei Eingangsgréen
(Volumenstrom 1 und Volumenstrom 2) sein und eine Ausgangsgréf3e (gesamter Volumenstrom)
dem Benutzer mit Variablenname und Wert angezeigt werden. Bei einem Motorbaustein waren
es zum Beispiel die Zielgeschwindigkeit, die Beschleunigungszeit sowie die Beschleunigungskurve
als Eingangsvariable und die aktuelle Drehgeschwindigkeit als Ausgabevariable. Weiterhin sollte

46

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.4 Engineering von Anlagensteuerungen

die Anzeige ein Gruppieren der Bausteine ermdglichen, um auch bei komplexen Anlagen eine gute
Ubersichtlichkeit zu gewahrleisten. SchlieBlich sollten diese Hierarchieebenen fiir den Benutzer ein-
fach zugéanglich sein.

Evaluation

Im Rahmen dieser Arbeit wurde das in Abbildung 5.6 dargestellte Engineering-Werkzeug fur die
Funktionsbausteinsprache, auch bekannt als Continuous Function Chart (CFC, [IEC03]), program-
miert. Im Zentrum der Enineeringoberflache sind zwei Elementarfunktionsbausteine zu sehen, ein
Additionsbaustein (Add1) sowie ein Absolutbaustein (Abs), die miteinander tber eine Variable ver-
kniipft sind. Gemeinsam ergeben sie den Funktionsbaustein ,functionChart* der zwei Eingangs-
groéBen FCin1 und FCin2 hat sowie eine Ausgangsgrée FCout1. Neben den Eingangs-/ Ausgangs-
groBen steht jeweils der aktuelle Wert der Variable. So wird im Additionsbaustein zu 453 der Wert
23 addiert und damit eine Variable mit dem Wer 476 an den Absolutbaustein Ubergeben. Dieser
bildet den Betrag des Wertes und gibt diesen als Ausgangsvariable des FunctionChart-Bausteines
wieder aus.

Weiterhin enthalt die dargestellte Engineeringoberflache links eine Anzeige der bislang verfligbaren
Hierarchieebenen, wobei die einzelnen Ebenen durch Anklicken der Pfeil-Buttons aus- und ein-
klappbar sind, sowie zahlreiche Buttons zur Modifizierung der Anzeige und damit der Anlagen-
steuerung. So erscheinen beim Klicken auf die Buttons fb, SSC sowie iec61131stdb eine Liste
der in den entsprechenden Bibliotheken enthaltenen Funktionsbausteine. Wéahlt ein Benutzer einen
neuen Baustein aus einer der Bibliotheken aus, so erscheint ein Konfigurationsfenster zur Defi-
nition des Bausteinnamens. Variablenanzahl, Variablenname sowie Typ sind bei jedem Baustein
vordefiniert und werden dem Benutzer mit dem eingegeben Variablennamen im Anschluss auf dem
Display an einer vordefinierten Position eingeblendet. Der Initiator der Abarbeitung (Task Parent)
wird automatisch konfiguriert und auch im Kopfbereich angezeigt.

Die Position des Bausteins lasst sich anschlieBend per Drag und Drop frei anpassen und jederzeit
verandern. Ebenso lasst sich nachtraglich der Name durch Doppelklick auf die entsprechende Zeile
editieren. Der Button Con ermdglicht wiederum dem Benutzer neue Verbindungen zwischen beste-
henden Funktionsbausteinen zu erzeugen. Weiterhin kénnen Uber den Button Lib: weitere Biblio-
theken geladen werden, die im Anschluss dem Benutzer wie auch die bisher aktiven Bibliotheken
im oberen Teil der Bedienoberflache angeboten werden. SchlieBlich enthélt die Oberflache noch je
einen Button zum Erzeugen und Léschen einer Hierarchieebene, einen Button zum Aktualisieren
der Anzeige sowie einen Button zum Ausblenden der kompletten linken Baumstruktur. Diese letzte
Funktion wurde implementiert, damit der Benutzer zu Dokumentationszwecken ein Ubersichtliches
Abbild der Engineeringoberflache drucken kann.

Wie auch in den vorhergegangenen Anwendungen wurde die Anzeige von allen vorhandenen
Funktionsbausteinen und deren Variablen als lterationsschleife implementiert. Diese findet bei-
spielsweise einen Funktionsbaustein und erstellt die Visualisierung fir diesen Baustein Uber eine
parametrierte Kopiervorlage. Identisch wurde auch die Anzeige der nutzbaren Bibliotheken und
deren Klassen abgefragt. Da die Baumansicht immer nur so weit aufgeklappt wird wie benétigt

47

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

und unsichtbare Teile der Anzeige vom System nicht weiter aufgebaut werden missen (siehe
Kapitel 3.5.1), ist die Bedienung auch bei sehr komplexen Hierarchiestrukturen noch performant.
Weiterhin konnte durch die Realisierung der Bausteinverbindungen lber Polygonlinien eine sehr
hohe Gebrauchstauglichkeit erreicht werden. So kann ein Bediener zu jeder Zeit Bausteine per
Drag und Drop (Event: aftermove) verschieben wahrend die Polygonziige dabei Uber die Aktion
RoutePolyline zyklisch an die aktuelle Position der Verbindungspartner angepasst werden. Da fir
das menschliche Auge eine Neuberechnung alle 0,3 Sekunden ausreichend war, konnte auch diese
Funktion sehr performant realisiert werden. Eine Schwachstelle wurde allerdings im Zuge der Imple-
mentierung erkannt. So war die Darstellung und Manipulation der Abarbeitungsreihenfolge nicht mit
dem Konzept realisierbar. Dies wére jedoch Uber eine Erweiterung der Aktion 1inkObjects mdglich
und solle in nachfolgenden Forschungsarbeiten daher Betrachtung finden.

5.4.2 Engineering einer Ablaufsprache nach IEC 61131-3

Neben der Funktionsbausteinsprache ist die Ablaufsprache Sequential Function Chart (SFC, [IEC03])
die weit verbreitete Programmiersprache fur die Prozesstechnik. Im Gegensatz zur Funktionsbau-
steinsprache laufen dabei die Bausteine nicht parallel ab, sondern werden sequenziell abgearbeitet.
Ziel dieses Kapitels ist die Eignung des Modells auch zur Erstellung eines Engineeringtools fir die
Anlagensteuerung mittels Ablaufsprache zu zeigen.

Evaluation

Der am Lehrstuhl entwickelte SequencialControlChart Funktionsbaustein ist ein dynami-
scher Funktionsbaustein, welcher ,innen“ per Ablaufsprache programmiert wird [YGE13a, Yu16,
YGE13b]. Fir diesen Baustein wurde die in Abbildung 5.7 dargestellte Engineeringoberflache
erstellt. Um der starken Koppelung von CFC und SFC dabei Rechnung zu tragen wurde diese
Bedienoberflache direkt in das CFC-Engineering-Werkzeug des vorigen Kapitels 5.4.1 integriert.

Bei Auswahl eines SequencialControlChart Bausteines wird entsprechend ein spezieller Header
in der Mitte der Bedienoberflache erzeugt. Darunter werden die Bestandteile des Funktionsbau-
steines untereinander dargestellt: Schritte, Transitionen und Aktionen. In diesem Beispiel folgt auf
den Startbaustein INIT eine Transition (trans1), die aktuell geschlossen ist (schwarze Kennzeich-
nung). Beim Offnen wiirde das Programm zu Schritt 1 (step?) (ibergehen und die Eingangsva-
riablen von Funktionsbaustein add? (add1.IN1 = 42 und addl.IN2 = 23) sowie die Eingangsva-
riable von Funktionsbaustein abs? (abs1.IN1 = -5) setzen. Nach Erflllung der Bedingung in trans2
(aktuell gegeben), wiirde die Addition in step2 ausgeflihrt werden. Der Baustein abs? wirde durch
diese Programmierung jedoch nicht angesto3en werden, da in step2 nur die Ausflihrung des add1-
Bausteins angestoBen wird. Da anschlieBend transEnd nicht gebffnet ist, wiirde die Routine in
step2 stehen bleiben und auf eine Anderung der Transition warten.

Wie auch im CFC-Engineering-Werkzeug des vorigen Kapitels 5.4.1 wurden auch bei dieser
Bedienoberflache wieder Buttons zur Modifikation vorgesehen. So kann mit AddStep ein neuer
Schritt generiert, mit AddTrans eine neue Transition (mit zwei Verbindungen) erzeugt werden und

48

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.4 Engineering von Anlagensteuerungen

Domain: //134.130.125.4/engineering/TechUnits/SSC

Abbildung 5.7: Engineeringoberflache mit Sequential Control Chart

IP 216.73.216.36, am 20.01.2026, 21:58:26. ©
m

%B fb ” ssc ” iec611... |
AddStep] SSC JAddTrans
o[EN WOSTText | INIT
. mwit[Initstep: aftivestep|mir
TechUnits N feivester]
CMD
addl [l
. t/iec61131stdfb/ADD INIT
...echUnits/SSC.intask
o[INT 1T GUT| 0
) S| trans1
New Action
abs.l & | stepl 5; Target Value/Command Parameter
t/iec61131stdfb/ABS ST addl INT)
echUnits/SSC.intask SN 3
J ESSEN | B ST absL.INT 3
#traﬂsZ
New Action
| step2 5;’ Target | Value/Command Parameter
E[add1
transEnd
END

49

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

mit new Action eine Variable gesetzt (set: S) oder einen Baustein ausgefihrt werden (execute:
E). Des Weiteren kann Uber EN der Baustein aktiviert (enable) werden, ber initStepName bzw
endStepName der Startname/Endename der Routine gesetzt und liber CMD ein Reset ausgeldst
werden. Die Anzeigen WoStText und activeStep geben schlieBlich Auskunft Gber den aktuell aktiven
Schritt. Im Hintergrund laufen auch bei dieser Applikation wieder zahlreiche Suchschleifen und
Instanziierungsoperationen ab, die auf die SFC/SSC-Bausteine zugreifen. So wird beim Sequen-
cialControlChart erst (zum Ereignis onload) gepriift, wie der initiale Schritt hei3t (dieser hat im
Beispiel den Standardnamen INIT und wird in der Applikation im Header als initStepName ange-
zeigt). AnschlieBend wird dieser per Iterator gesucht und die Kopiervorlage fir einen Schritt erstellt.
Daraufhin werden alle verbundenen Transitionen lber die Assoziation nextTransitions gesucht und
diese mithilfe einer Kopiervorlage dargestellt. Diese Kopiervorlage der Transition sucht nun tber
die Assoziation previousTransitions die nachsten Schritte und ladt auch hierflr jeweils eine Kopier-
vorlage. Werden Zustandsmaschinen beschrieben sind in Ablaufsprachen Schleifen sehr haufig.
Um zu verhindern, dass die rekursive Analyse der Struktur in eine Endlosschleife [auft, wurde die
Option preventClone (siehe Kapitel 3.5.3) implementiert. Misste ein InstantiateTemplate ein
exakt gleiches Darstellungs-Objekt (geprift Gber den Namen der Referenz) erstellen, so wird die
Erstellung des Duplikats abgebrochen und die Endlosschleife damit unterbrochen. Durch intensiven
Einsatz von lteratoren und globalvarchanged-Ereignissen konnte der GrofB3teil der Anforderung an
das SFC-Engineering erfiillt werden. Allerdings wird durch den Aufbau aus HMI-Modellbausteinen
die Struktur der Software sehr komplex, sodass Sie nur schwierig zu warten ist.

5.5 Eignung fiir Bedienoberflachen im Betrieb

Auch wahrend des Betriebs einer Anlage kommen Bedienoberflaichen zum Einsatz. So muss der
Bediener zu jeder Zeit einen schnellen Einblick in den aktuellen Zustand der Anlage erlangen.
HierfUr gibt es von jedem Hersteller eines Prozessleitsystems eigene Tools um anwendungsspe-
zifische Bedienoberflachen (das sogenannte Bedienen und Beobachten) zu erstellen.

Haufig ist die Interaktion dabei jedoch Uber eine Freitextprogrammierung geldst. So stellt zum Bei-
spiel Honeywell einen grafischen Editor zur Verfiigung, mit dem man ein grafisches Abbild der
Anlage erstellen kann. Die Kommunikation mit der Anlage, die Darstellung von Messwerten und die
Interaktion muss jedoch in JavaScript frei programmiert werden. Entsprechend erfordert die War-
tung und Anpassung solcher Bedienoberflachen in der Regel spezielle Programmierkenntnisse und
ist nicht von Anwendern durchfiihrbar. In diesem letzten Abschnitt des Kapitels wird daher unter-
sucht, ob sich die Wartung und Anpassung von fiir den Betrieb vorgesehenen Bedienoberflachen
durch einen modellbasierten Aufbau vereinfachen lasst, sodass auch Personen mit nur begrenzten
Programmierkenntnissen Modifikationen vornehmen kénnen.

Als Beispiel soll dabei die Prozessfihrung eines Elektro-Lichtbogenofens betrachtet werden, wel-
cher aus Kihlsystemen, Hydraulik, Ofen und Gleichrichter besteht. Alle Sensoren und Aktoren
bendtigen dabei eine angepasste Darstellung mit farbigem Hinweis auf den aktuellen Zustand und
die Mdglichkeit der Interaktion. So sollte Uber die Bedienoberflache nicht nur der aktuelle Zustand
erkannt, sondern zum Beispiel die Pumpleistung einer Pumpe auch veréndert werden kénnen.

50

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.5 Eignung fiir Bedienoberfldchen im Betrieb

Ubersicht Kiihlwasserkreislauf Kiihlwasserverteiler Elektrode
HydraulikPumpenstation HydraulikElektrode Ofentemperatur Gleichrichter
. .
Kiihlwasserkreislauf
N134 | ERd Ausgleichsbehdlter
o
stop ||
N136 ke
Ni31 Flt]
Basic State - —| >T< I— Nachlass (= - =
STOP - Basic State
STOP
Y181 Flt
Warmetausch| Flt Busiesute | F
BasicSe | F @ STOP
STOP
Y182 Flt
Basic State F NI132 Fit
STOP =
Basic State F
STOP
t Stadtwasser

Abbildung 5.8: Bedienoberflache einer komplexen Anlage

Evaluation

Fur die Prozessfihrung des Elektro-Lichtbogenofens wurde die in Abbildung 5.8 dargestellte
Bediensoftware erstellt. Im oberen Bereich hat der Benutzer dabei die Méglichkeit sich verschie-
dene Bereiche der Anlage auf den Bildschirm zu holen. Im Screenshot ist der Kiihiwasserkreislauf
ausgewahlt, dessen Komponenten im rechten Bereich der Bedienoberflache in Form eines R&l-
FlieBbildes dargestellt werden. Entsprechend sind hier Darstellungen fir alle verfahrenstechnischen
Anlagenteile (wie Pumpe oder Ventil) vorhanden. Klickt man auf eine dieser Darstellungskompo-
nenten, so 6ffnet sich ein passendes Faceplate.

Neben diesen Anlagenkomponenten werden dem Benutzer Faceplates zu besonders wichtigen
Anlagenkomponente dauerhaft dargestellt. So besteht zum Beispiel ein Prozessfiihrungsbaustein
fur die Motoren (N134 und N136) des Kuhlkreislaufes. Hier werden dem Benutzer zu jeder Zeit Feh-
lermeldungen Uber das Submen(l Fit angezeigt und direkte Méglichkeiten der Interaktion geboten,
wie zum Beispiel das Anhalten Uber einen STOP-Knopf. Weiterhin beinhaltet die Bedienoberflache
Anzeigefelder mit aktuellen Sensorwerten. So wird von einem Temperatursensor T099_PV aktuell
eine KihImitteltemperatur von 20°C gemessen und dem Bediener darstellt.

51

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

Die Prozessflihrungsbausteine der Steuerung wurden Uber ein Vererbungssystem erstellt, sodass
ihre Grundstruktur immer gleich aufgebaut ist und sich nur in spezialisierten Diensten unterscheidet
(siehe [YQE10]). Dies wurde auch in der Bedienoberflache genutzt. So haben alle Prozessflihrungs-
bausteine ein gemeinsames Faceplate und damit eine &hnliche Anzeige. Hier wurde das gleiche
Anzeigemodell der Prozessfiihrungsbausteine genutzt wie auch schon in Kapitel 5.1.

Das Faceplate muss kaum parametriert werden, sondern analysiert die jeweiligen F&higkeiten
selbst und stellt entsprechend angepasste Bedienelemente dar. Diesem generischen Ansatz kommt
zugute, dass alle Prozessflihrungsbausteine Uber eine Ausgangs-Variable die jeweils unterstitzten
Kommandos zur Verfligung stellen. Diese Kommandos werden Uber die Aktion Childrenlterator aus-
gelesen und den Bediener als Schaltflachen prasentiert. Nachdem diese Vorarbeit einmalig erstellt
wurde, ist das Erstellen der Bedienoberflache sehr einfach, da pro Prozessflihrungselement ein
identisches Template angesprochen wird. Listing 5.5 gibt einen kleinen Einblick in den Program-
miercode. So wird das generische Faceplate (Zeile 6) an einer Position erstellt und ein Prozessflih-
rungsbaustein referenziert (Zeile 7).

1| INSTANCE /TechUnits/cshmi/ElboMainSheet/hydraulicPumpUnit/bubFrame/Pumpstation/GCU010 :
2 CLASS /acplt/cshmi/Group;

3 VARIABLE_VALUES

4 x : INPUT SINGLE = 200.000000;

5 y @ INPUT SINGLE = 200.000000

6 TemplateDefinition : INPUT STRING = "Processcontrol/FaceplatePCUGeneric";

7 FBReference : INPUT STRING = "TechUnits/P30/1C10/PU10/PS20/TU10/GCU010" ;

8 END_VARIABLE_VALUES;

9| END_INSTANCE;

SchlieBlich wurde eine Alarmtabelle programmiert, in der der Status von 81 méglichen Alarmen dar-
gestellt wird. Diese lasst sich ebenfalls Uber die Bedienoberflache aufrufen und stellt dem Benutzer
eine Liste der aller aktuellen Fehlermeldungen zur Verflgung.

Die Alarmtabelle fragt zyklisch den aktuellen Alarmzustand der benétigten Prozessfiihrungsbau-
steine ab. Im Fehlerfall sollte die Applikation die jeweiligen Eintréage in der Tabelle blinken lassen.
Diese Anforderung erforderte eine Synchronisation aller TimeEvents. Andernfalls war es sehr st6-
rend, dass jeder Alarm zwar in der gleichen Frequenz blinkte, jedoch zu den Anderen phasen-
verschoben war. Die Synchronisation erreichte, dass alle TimeEvents (beziehungsweise dessen
Aktionen) basierend auf der jeweiligen Zykluszeit gleichzeitig abgearbeitet wurden. So wurde
erreicht, dass der Farbwechsel des Blinkens gleichzeitig auf dem Bildschirm sichtbar wurde. Zusétz-
lich hatte diese Anderung den Vorteil, dass die jeweilige Kommunikation mit dem Automatisierungs-
system in eine Anfrage gebiindelt werden konnten und damit weniger Ressourcen verbraucht.

In Abbildung 5.9 ist die Struktur der Modell-Bausteine dargestellt. Die hier gezeigten
Prozessflihrungs-Grafikbausteine sind dieselben, welche auf in Kapitel 5.1 genutzt wurden. Hier
ist nur die Bedienoberflache selbst vollstandig handisch erzeugt worden.

52

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.6 Integration von fremden Bibliotheken in die Modellstruktur

Anzeige

Bedienoberflache der
Anlage B (Instanz)

‘ HMI-Anlagenmodell ‘4——> Anlage B

—

. Bedienoberfldche der
Prozessfiihrungs- Anlage B (Vorlage)
Grafikbausteine

— 1

HMI-Metamodell

Abbildung 5.9: Zusammenarbeit der verschiedenen Modell-Bausteine fiir das Bedienen und Beobachten
5.6 Integration von fremden Bibliotheken in die Modellstruktur

Waéhrend in den bisherigen Kapiteln der weite Einsatzbereich des entwickelten Modells gezeigt
werden konnte, soll in diesem Kapitel die Offenheit des Modells fur die Integration fremder Biblio-
theken gezeigt werden.

So wurde fir die Blackbox (siehe Kapitel 3.4.5) ein einfach zu verwendendes x(t)-Diagramm erstellt
und damit die einfache Nutzbarkeit von vorhandenen JavaScript-Bibliotheken gezeigt. Hierflr wurde
die Bibliothek ,Smoothie Charts*? eingebunden. Diese erlaubt es, wie in Abbildung 5.10 dargestellt,
Live-Daten direkt anzuzeigen. Das Template wurde so angelegt, dass die Interna von Smoothie
komplett gekapselt wurden. Der Nutzer kann in der Objektwelt der gewohnten Applikation bis zu
zehn Werte des Automatisierungssystem referenzieren. Weiterhin ist es méglich, den minimalen
und maximalen Wert, die Farben der Beschriftung und die Laufgeschwindigkeit der Anzeige zu
manipulieren.

00w

2208000 220804 220808 zaae1d - 19000, ¢m

Abbildung 5.10: Beispieldarstellung der JavaScript-Bibliothek ,Smoothie Charts”

Nachfolgende Listings geben einen Einblick in die Programmierung.

2http://smoothiecharts.org/

53

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5 Evaluation im Lebenszyklus (durch Anwendungen)

1| INSTANCE /TechUnits/cshmi/xtshowcase/ xtdiagram :
2 CLASS /Libraries/cshmi/Group;

3 VARIABLE_VALUES

4 x @ INPUT SINGLE = 0.000000;

5 y : INPUT SINGLE = 0.000000;

6 width : INPUT SINGLE = 1000.000000;

7 height : INPUT SINGLE = 900.000000;

8 TemplateDefinition : INPUT STRING = "xtdiagram";

9 FBReference : INPUT STRING = "";

10 FBVariableReference[1] : INPUT STRING = {"datal:/TechUnits/TU/random.OutS"};
1" ConfigValues[4] : INPUT STRING = {

12 "minValue:—1000" , "maxValue:1000" , "velocity:10" "cycTime:0.05"

13 b

14 END_VARIABLE_VALUES;

15| END_INSTANCE;

Listing 5.2: Parametrierung des x(t)-Diagrams

So lassen sich zum Beispiel Sensordaten einer Anlage in Echtzeit mit der Konfiguration aus Lis-
ting 5.2 auf dem Bildschirm anzeigen. Die Positionierung und GréBendefinition erfolgt per x, y, width
und height. Der Parameter TemplateDefinition referenziert die Kopiervorlage mit dem entspre-
chenden Namen. Der sonst viel genutzte Parameter FBReference wird hier nicht genutzt, da dieser
eine Objekt-Referenz entgegennimmt. Stattdessen wird auf den Parameter FBVariableReference
gesetzt, da dieser mehrere benannte Variablen adressieren kann. Im Beispiel ist das ein Baustein,
welcher Zufallswerte liefert. Der Name datal muss dquivalent zu den Interna der Kopiervorlage
Ubergeben werden. Hier ist wie oben angedeutet datal bis data10 mdglich. In dem Parameter
ConfigValues erfolgt die erwéhnte optionale Konfiguration.

1| INSTANCE /TechUnits/cshmi/ T /xtdiagram/diagr ic/jsMinValue.value :
2 CLASS /acplt/cshmi/GetValue;

3 VARIABLE_VALUES

4 TemplateConfigValues : INPUT STRING = "minValue";

5 END_VARIABLE_VALUES ;

6| END_INSTANCE;

Listing 5.3: Koppelung der Variablen der JavaScriptwelt mit der Modellwelt

Das Listing 5.3 zeigt einen Ausschnitt der Koppelung der Modell-Welt mit der JavaScript-Welt. Auf
die erwdhnte ConfigValue minValue der Kopiervorlage (Zeile 4: TemplateConfigValue) kann per
JavaScript lesend (Zeile 2: GetValue) Uber den Namen jsMinValue (Zeile 1) zugegriffen werden.

var minValue = 0;
if (cshmimodel. variables.jsMinValue) {
var temp = parseFloat(cshmimodel.variables.jsMinValue.getValue());
if (lisNaN(temp)){
minvalue = temp;

}

}

Listing 5.4: Parametrierung des x(t)-Diagrams

SchlieBlich gibt Listing 5.4 einen Einblick in den Code innerhalb der Blackbox. Zuerst werden Stan-
dardwerte in eine Variable geschrieben und daraufhin mithilfe der Blackbox-API (siehe Anhang 3)
geprift, ob der Parameter jsMinValue vorhanden ist und eine gliltige Zahl reprasentiert. In diesem
Fall wird dieser Wert Gbernommen und im Anschluss an SmoothieCharts tibergeben.

54

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

5.7 Fazit

5.7 Fazit

Zusammenfassend hat die Evaluation des Modells ergeben, dass sich das Konzept auf klassische
Applikationen der Prozessleittechnik wie die Simulationssteuerung oder das ,Bedienung und Beob-
achten” gut anwenden l&sst.

Der in dieser Arbeit vorgestellte Ansatz der Modellierung vereinfachte weiterhin durch sein Vorla-
gensystem die automatische Erstellung der Bedienoberflache. Hier konnten durch die gemeinsame
Nutzung der Visualisierung aller benétigten Prozessfuhrungsbausteine auch bei der Evaluation
,Bedienung und Beobachten* direkt Synergieeffekte genutzt und Engineeringaufwand eingespart
werden.

Selbst die Erweiterung um den Freitextprogrammier-Baustein fligt sich schliissig ins Gesamtkon-
zept ein. Somit kann das Modell fiir mehr grafisch komplexere Applikationen genutzt werden. Der
Anwender benétigt dabei keine JavaScript-Kenntnisse und kann schnell zu einem zufriedenstel-
lenden Ergebnis gelangen. Dass er bei der Nutzung dieses Bausteins die Plattformunabhangigkeit
verliert, ist er Nachteil, den er explizit in Kauf nehmen muss.

Muss eine Applikation jedoch in einer sehr stark dynamischen Umgebung oder mit sehr komplexen
Benutzerinteraktion arbeiten, so kommt das Modell an seine Grenzen. Dies war beispielsweise bei
den Engineering-Applikationen der Fall gewesen. Hier wird auch die Wartbarkeit der Applikation
eine Herausforderung und erfordert gute Dokumentation der Applikationsinterna.

55

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

6 Diskussion und Ausblick

6 Diskussion und Ausblick

Ziel der Arbeit war die Evaluation eines neuartigen Konzepts der Modellierung einer Benutzungs-
schnittstelle fiir die Prozessleittechnik. Dieses sieht die Trennung in drei Komponenten vor: Die
Datenbasis (1) speichert das vollstdndige Modell der fertigen Benutzungsschnittstelle. Das Anzei-
gesystem (2) Iadt und interpretiert dieses Modell und kommuniziert bei Bedarf mit dem Automati-
sierungssystem (3).

Im Gegensatz zu vorhandenen Modellierungen werden in dem vorgestelltem Ansatz nicht nur alle
grafischen Elemente, sondern auch alle Ereignisse und dazugehdrigen Aktionen als atomare Kom-
ponenten einzeln modelliert. So wurden neben den grundlegenden Grafikelementen (wie Text,
Rechteck, Kreis) auch die wichtigsten Benutzerinteraktionen und ausgewahlte tibergeordnete Ereig-
nisse (wie einmalige oder zyklische Abarbeitung) in das Metamodell mit aufgenommen. Weiterhin
wurden Aktionen zur Manipulation der Anzeige sowie des Automatisierungssystems festgelegt.
SchlieBlich wurde im Metamodell fiir wiederkehrende Fragmente der Applikation auch ein parame-
trierbarer Kopiervorlagen-Mechanismus entwickelt. So wurden wiederverwendbare Elemente wie
ein Button aus einem Rechteck und einem Text (inklusive Logik zur Veranderung der Textinhaltes)
erstellt und fur alle spateren Applikationsentwickler in einer Kopiervorlage hinterlegt. Somit wird eine
Applikation vollstandig technologieneutral modelliert.

Da die ganze Bedienoberflache modellbasiert vorliegt, ist sie pradestiniert, um selbst auf der Grund-
lage von beliebigen Regelwerken erstellt oder verandert zu werden. Das Modell bietet jedoch auch
umfangreiche Méglichkeiten der Strukturanalyse und -manipulation des Automatisierungssystems.
Dies ermoglicht es auf der einen Seite Applikationen zu entwickeln, welche je nach analysiertem
Kontext eine angepasste Darstellung zeigt. Auf der anderen Seite kdnnen jedoch auch komplexe
Engineering-Werkzeuge erstellt werden.

Die reine Beschrankung des Modells auf atomare Elemente erleichtert die Implementierung auf
unterschiedliche Plattformen. So ist es einfach méglich, die Anzeigekomponente zu realisieren, da
nur 11 Elemente, 8 Ereignisse sowie 14 Aktionen implementiert werden missen. Dies gewéhr-
leistet, dass eine Applikation Uber die gesamte Lebensdauer einer Anlage nutzbar ist, selbst wenn
zwischendurch die eingesetzte Technologie gewechselt werden muss.

Um das Modell fir ein gréBeres Anwendungsspektrum nutzbar zu machen, wurde mit dem Baustein
Blackbox eine Moglichkeit geschaffen komplexere Darstellungen mit der Beschreibungssprache
HTML und/oder komplexe Logiken mit der Programmiersprache JavaScript zu erstellen. Dabei wird
jedoch die Plattformunabhangigkeit potenziell verlassen.

56

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Das Metamodell wurde prototypisch in der Laufzeitumgebung des Lehrstuhls flr Prozessleittechnik
ACPLT/RTE implementiert. So konnte gezeigt werden, dass die Speicherung eines Applikations-
modells méglich ist und dem Anzeigesystem bereitgestellt werden kann. Fir die Darstellung selbst
wurde auf Webtechnologie gesetzt, um eine geforderte Plattformunabhéngigkeit zu erreichen. Dazu
sind performante Browser fir Desktopbetriebssysteme wie Windows, Linux, macOS und auch fir
Mobilbetriebssysteme wie Android oder iOS verfligbar. Die Kommunikation mit dem Automatisie-
rungssystem wurde per ACPLT/KS auf HTTP-Basis realisiert.

Die Tauglichkeit des Modells fir unterschiedlichste Aufgaben wurde mithilfe von Beispielanwen-
dungen Uber den gesamten Lebenszyklus einer Anlage gepriift. Es konnten alle Anwendungen
erstellt werden. Weiterhin lieB3 sich feststellen, dass der Ansatz der vollstandigen Modellierung mit-
tels atomarer Bausteine fiir einfache Bedienoberflachen sehr gut nutzbar ist. Insbesondere, wenn
fir die zu visualisierenden leittechnischen Funktionen Kopiervorlagen existieren ist die Nutzung
sehr vorteilhaft. Da die Kopiervorlagen in der gleichen Technologie implementiert sind, ist es wei-
terhin sehr einfach diese an eigene Wiinsche anzupassen. Fir die Editor-Unterstltzung bei der Pro-
grammierung des Bausteins zur Freitext-Programmierung (Blackbox) konnte mit einer TypeScript-
Definitionsdatei eine sehr einfache Nutzung erreicht werden. Bei komplexeren Applikationen wurden
die Grenzen des Konzepts jedoch deutlich. Hier ware eine bessere Software-Unterstiitzung der
Anwendungsentwickler wiinschenswert.

Zudem zeigte die Evaluation Optimierungspotential in der Modellierung selbst. Die Beschréankung
des Metamodells auf wenige atomare Elementarbausteine fiir Grafikelemente, Ereignisse und
Aktionen ist ein Vorteil in der Entwicklung der Grundlagensoftware fiihrte jedoch zum Nachteil in
der aufwandigeren Programmierung bei der Erstellung der Applikationen selbst.

Hier ist zu entscheiden, ob in spateren Arbeiten dieser Ansatz etwas aufgeweicht wird und ausge-
wahlte abstraktere Elemente, Ereignisse und Aktionen hinzugefiigt werden. Wahrend der Entwick-
lung wurden beispielsweise die folgenden grafischen Elemente als Kandidaten einer Erweiterung
identifiziert:

» Auswabhllisten

» Radio-Buttons / Checkboxen

Genau fir diese grafischen Elemente zugeschnitten wére ein Ereignis, welche nach einer erfolgten
Bedienerauswahl ausgeldst wird. Die Einbindung dieser Auswahl ist (ber die bisherige Philoso-
phie problemlos méglich. So wiirde zum Beispiel ein GetValue-Baustein diese Auswahl als weitere
Datenquelle, ahnlich wie aktuell bei einer Mausposition, erhalten.

Eine weitere potenzielle Erleichterung zur Erstellung von Bedienoberflachen wére die Entwicklung
eines Import-Werkzeugs. Dieses kdnnte Vektorgrafiken einlesen und unterstiitzte Grafikelemente in
HMI-Bausteine Uberfiihren. Diese wiirde anschlieBend als Basis fiir eine Applikation dienen, indem
die Geschéftslogik in Form von Ereignissen und Aktionen erganzt wiirde.

Zudem wird in der Prozessleittechnik aktuell das Konzept der Diensteorientierung vorangetrieben
([WE17]). Hierfur wére eine Aktion zum ,Dienstbefehl absetzen* eine interessante Erweiterung des
Metamodells.

57

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

6 Diskussion und Ausblick

SchlieBlich ware zur weiteren Evaluation des Ansatzes eine Entwicklung eines alternativen Anzei-
gesystems, beispielsweise in der Programmiersprache C# mit Windows Presentation Foundation
(WPF) oder C++ mit Qt, wiinschenswert. Ob diese Implementierung den Modell-Baustein fiir die
Freitextprogrammierung (Blackbox) unterstitzt wére zu entscheiden.

58

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

1 Anwendung R&l-FlieBschema-Editor im Detail

In diesem Anhang wird eine umfangreiche Anwendung im Detail vorgestellt, um dem Leser einen
Eindruck der prototypischen Implementierung des in dieser Arbeit vorgestellten Modells zu geben.

Die Applikation bietet eine Kopiervorlage als Haupteinsprungpunkt namens Pandix/PandixEngineering
. Dieses muss nur in einer Gruppe referenziert werden, siehe Kapitel 3.4.2 und Listing 1 in Zeile 6.
Zeile 7 definiert, dass das PandIX Modell unter ,/TechUnits/pandix” visualisiert werden soll.

1| INSTANCE /TechUnits/cshmi/engineeringPandIXSheet :

2 CLASS /acplt/cshmi/Group;

3 VARIABLE_VALUES

4 width : INPUT SINGLE = 1675.000000;

5 height : INPUT SINGLE = 1020.000000;

6 TemplateDefinition INPUT STRING = "Pandix/PandixEngineering";
7 FBReference : INPUT STRING = "/TechUnits/pandix";

8 END_VARIABLE_VALUES;

9| END_INSTANCE;

Listing 1: Nutzung des PandIX Engineerings

Die Applikation durchsucht Uber einen Iterator zuerst einmal die Assoziation /acplt/ov/library.
instance um die pandix-Bibliothek zu finden. Diese iteriert wiederum Uber alle Klassen um Uber
eine Positivliste die gewlinschten Klassen zu erhalten:

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/PandixEngineering/CreateObjectButton/onload/pandixPathlterator.forEachChild/
If_Found.then/Classlterate.forEachChild/If.if/Permitlist.withValue :

2 CLASS /acplt/cshmi/GetValue;

3 VARIABLE_VALUES

4 value[25] : INPUT STRING = {"Actuator” , "BlankFlange" , "CheckValve" , "ControlFunction” , "Connector” , "DPump" , "
Generalltem" , "HeatExchanger" , "HeatSource" , "LVessel" , "OpenFlange" , "Pipe" , "PipeDNAdapter" , "PipeJunction"

, "Pump" , "RPump" , "RuptureDisk" , "SafetyValve" , "Sensor" , "ThreeWayValve" , "Valve" , "Vessel" , "

PlantSection" , "ProcessPlant” , "IndustrialComplex"};

5 END_VARIABLE_VALUES;

6| END_INSTANCE;

Fur alle diese Klassen wird anschlieBBend ein neuer Button (Zeile 4) per Aktion InstantiateTemplate
erzeugt. Der erste Button wird an die Position x:0, y: 40 Pixel (Zeile 5 und 6) erstellt. Alle Wei-
teren werden um 30 Pixel nach unten (Zeile 8) versetzt. Jeder Button erhélt als FBReferenz (siehe
Kapitel 3.4.2) das aktuelle Objekt des lterators:

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/PandixEngineering/CreateObjectButton/onload/pandixPathlterator.forEachChild /
If_Found.then/Classlterate.forEachChild/ If .then/Inst_Button :

2 CLASS /acplt/cshmi/InstantiateTemplate ;

3 VARIABLE_VALUES

4 TemplateDefinition INPUT STRING = "Pandix/internal/PandixClassButton";

5 x : INPUT SINGLE = 0.000000;

6

7

8

9

y @ INPUT SINGLE = 40.000000;

xOffset : INPUT SINGLE = 0.000000;
yOffset : INPUT SINGLE = 30.000000;
FBReference : INPUT STRING = "OP_NAME";

59

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

10 END_VARIABLE_VALUES;;
11| END_INSTANCE;

Mit dieser Referenz kann ein neues PandIX-Objekt beim Klick auf diesen Button erstellt werden:

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate :

2 CLASS /acplt/cshmi/CreateObject;

3| END_INSTANCE;

4| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate .Name :
5 CLASS /acplt/cshmi/GetValue;

6 VARIABLE_VALUES

7 Operatorinput : INPUT STRING = "textinput:Please enter the name for the new object”;

8 END_VARIABLE_VALUES ;

9| END_INSTANCE;

10| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Place :

1 CLASS /acplt/cshmi/GetValue;

12 VARIABLE_VALUES

13 globalVar : INPUT STRING = "RefDomain"; # Hier ist der aktuell angezeigte Pfad
14 END_VARIABLE_VALUES ;

15| END_INSTANCE;
16| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Library :

17 CLASS /acplt/cshmi/GetValue;

18 VARIABLE_VALUES

19 TemplateFBReferenceVariable : INPUT STRING = "CSHMIfullqualifiedparentname”; # Pfad zur PandIX—Bibliothek
20 END_VARIABLE_VALUES ;

21| END_INSTANCE;
22| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/PandixClassButton/click/actionCreate.Class :

23 CLASS /acplt/cshmi/GetValue;

24 VARIABLE_VALUES

25 TemplateFBReferenceVariable : INPUT STRING = "identifier"; # Name der Klasse des Buttons
26 END_VARIABLE_VALUES ;

27| END_INSTANCE;

Ein weiterer Iterator analysiert das aktuell anzuzeigende ,Verzeichnis®. Hier ist der Ausschnitt abge-
bildet, welcher flr die Pumpenklasse Pump eine Anzeige flr eine Pumpe erstellt.

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/onload/PandixlIterator.forEachChild/If_Pump.if/If_Pump :
2 CLASS /acplt/cshmi/ComparelteratedChild ;

3 VARIABLE_VALUES

4 childValue : INPUT STRING
5 comptype INPUT STRING =
6

7

8

"OP_CLASS";

END_VARIABLE_VALUES;
END_INSTANCE;;
INSTANCE ~ /TechUnits /cshmi/ Templates/ Pandix/ internal / activeView /onload/ PandixIterator . forEachChild /If_Pump. if /If_Pump.

withValue :
9 CLASS /acplt/cshmi/GetValue;
10 VARIABLE_VALUES
11 value[1] : INPUT STRING = { "/acplt/pandix/Pump"};
12 END_VARIABLE_VALUES ;

13| END_INSTANGE;
14| INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/onload/Pandixlterator.forEachChild/If_Pump.then/Inst_Pump :

15 CLASS /acplt/cshmi/InstantiateTemplate ;

16 VARIABLE_VALUES

17 TemplateDefinition : INPUT STRING = "Pandix/Pump";
18 x : INPUT SINGLE = 100.000000

19 y : INPUT SINGLE = 300.000000;

20 xOffset : INPUT SINGLE = 100.000000;

21 yOffset : INPUT SINGLE = 100.000000;

22 maxTemplatesPerDirection : INPUT STRING = "x:10";
23 FBReference : INPUT STRING = "OP_NAME";

24 END_VARIABLE_VALUES :

25| END_INSTANCE;

In Zeile 20 bis 22 ist definiert, dass zehn gefundene Pumpen jeweils um 100 Pixel (Zeile 22) seitlich
verschoben werden. Die 11. bis 20. Pumpe wirden eine Zeile drunter bilden (siehe Kapitel 3.5.3).
Mit Zeile 23 wird die Anzeige der Pumpe mit dem PandIX-Datenobjekt verknlpft. Eine &hnliche
Logik existiert flr alle weiteren anzuzeigenden Elemente.

Neben den PandIX-Elementen (in PandIX/CAEX ubergreifend PPE_Request genannt) werden
auch fir PandIX-Verbindungen (CAEX InternalLink) zwischen den einzelnen PandIX-Elementen
jeweils grafische Elemente erstellt. Da diese auch im HMI mit den PandIX-Verbindungen verknipft

60

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
m

https://doi.org/10.51202/9783186268082

1 Anwendung R&l-FlieBschema-Editor im Detail

sind, kdnnen die logischen Verbindungen als Polylinie automatisch per routePolyline positioniert
werden.

Wird ein Hierarchieelement entdeckt, so wird eine Option angeboten die Ansicht in diese tiefere
Hierarchie zu wechseln.

1
2
3
4
5
6
7
8

9
10
"
12
13
14
15

INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/globalvarchanged/If_activePandix.then/Set_reference
CLASS /acplt/cshmi/SetValue;
VARIABLE_VALUES
TemplateFBReferenceVariable : INPUT STRING = "fullqualifiedname";
END_VARIABLE_VALUES;
END_INSTANCE ;
INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/globalvarchanged/If_activePandix.then/Set_reference.value
CLASS /acplt/cshmi/GetValue;
VARIABLE_VALUES
globalVar : INPUT STRING = "activePandix";
END_VARIABLE_VALUES;
END_INSTANCE ;
INSTANCE /TechUnits/cshmi/Templates/Pandix/internal/activeView/globalvarchanged/If_activePandix.then/reload
CLASS /acplt/cshmi/RebuildObject;
END_INSTANCE ;

Der Hierarchiewechsel wird iiber ein Uberschreiben der FBReferenz (Zeile 4) der Hauptanzeige
activeView mit dem neuen Pfad (Zeile 10) erreicht. AnschlieBend wird in Zeile 14 die Hauptanzeige
neu geladen.

In dieser Applikation werden auch die verschiedenen Rohrleitungen und Wirklinien automatisch

geroutet:

1| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline

2 CLASS /acplt/cshmi/Polyline ;

3 VARIABLE_VALUES

4 points : INPUT STRING = "0,0 0,0";

5 strokeWidth : INPUT SINGLE = 2.000000;

6 stroke : INPUT STRING = "black";

7 END_VARIABLE_VALUES;

8| END_INSTANCE;

9| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time :

10 CLASS /acplt/cshmi/TimeEvent;

" VARIABLE_VALUES

12 cyctime : INPUT SINGLE = 0.500000;

13 END_VARIABLE_VALUES;

14| END_INSTANCE;

15| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time/RouteLine
16 CLASS /acplt/cshmi/RoutePolyline ;

17 VARIABLE_VALUES

18 offset : INPUT SINGLE = 10.000000;

19 gridWidth : INPUT SINGLE = 5.000000;

20 END_VARIABLE_VALUES;

21| END_INSTANCE;

22| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time/RoutelLine.SourceBasename :
23 CLASS /acplt/cshmi/GetValue;

24 VARIABLE_VALUES

25 TemplateFBReferenceVariable : INPUT STRING = "/PlIn.SideA";

26 END_VARIABLE_VALUES;

27| END_INSTANCE;

28| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time/RouteLine.SourceVariablename :
29 CLASS /acplt/cshmi/GetValue;

30 VARIABLE_VALUES

31 value : INPUT VOID = ;

32 END_VARIABLE_VALUES;

33| END_INSTANCE;

34| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time/RouteLine.TargetBasename :
35 CLASS /acplt/cshmi/GetValue;

36 VARIABLE_VALUES

37 TemplateFBReferenceVariable : INPUT STRING = "/POut. SideA";

38 END_VARIABLE_VALUES;

39| END_INSTANCE;

40| INSTANCE /TechUnits/cshmi/Templates/Pandix/Pipe/Polyline/Time/RouteLine.TargetVariablename
4 CLASS /acplt/cshmi/GetValue;

42 VARIABLE_VALUES

43 value : INPUT VOID = ;

44 END_VARIABLE_VALUES;

45| END_INSTANCE;

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

61

https://doi.org/10.51202/9783186268082

Anhang

Die Polylinie der Rohrleitung wird zyklisch zweimal die Sekunde (Zeile 12) neu berechnet. Dabei
werden die jeweiligen Verbindungspartner beim PandIX-Pipe-Objekt unter den Namen PIn.SideA
und POut . SideA gesucht.

2 Interner Aufbau der Anzeigekomponente

Der aktuelle Quelltext der Anzeigekomponente kann auf der Github-Webseite des Lehrstuhls
https://github.com/acplt/rte unter dem Pfad /addonlibs/hmi/hmiJavaScript eingesehen
werden. Dieser Anhang liefert eine Beschreibung des Aufbaus zum Zeitpunkt der Erstellung dieser
Dissertationsschrift.

Zuerst wird eine HTML Seite vom Browser geladen, mit allen grafischen Elementen, welche immer
nétig ist. Darin wird eine JavaScript-Ressource namens hmi-hub-loader.js nachgeladen. Diese 1ad
nun alle weiteren Ressource nach, welche fiir das HMI nétig ist. hmi-generics.js ist eine Samm-
lung von Hilfsfunktionen, hauptsachlich zur Unterstiitzung nicht ganz aktueller Browser. hmi-class-
HMI.js sammelt alle generischen HMI Funktionen, zum Beispiel die Interaktion mit dem Bediener
beim Laden der Webseite. hmi-class-HMIKSClient.js liefert eine Abstrahierung des KS Proto-
kolls. Dies kann direkt genutzt werden, wenn der Zielserver einen entsprechenden Webserver
mit KS-Erweiterung (zum Beispiel ein ACPLT/OV-Server mit der Bibliothek kshttp) bietet. Alternativ
bietet die Firma LTSoft ein Gateway um das etablierte Binarprotokoll ACPLT/KS [AIb03] nutzen zu
kénnen. Weiterhin ist die Anwendung in der Lage das Darstellungsmodell ACPLT/HMI von Stefan
Schmitz [Sch10] auf den Bildschirm zu bringen, woflir weitere JS-Ressourcen nétig sind.

Die Hauptdatei fur die vorgestellte Anzeigekomponente dieser Dissertation ist hmi-class-
cshmi.js. Wenn die gewiinschte Anzeige ausgewahlt wurde, wird eine Funktion (HMI.cshmi.
instanciateCshmi) zur Initialisierung der Darstellung aufgerufen. Da fir komplexe Anwendungen
sehr viele (viele hundert) Darstellungsprimitive bendtigt werden, ist es sinnvoll die Konfiguration
aller dieser Primitive in einem einzigen Netzwerkzugriff vom Server zu laden. Diese Funktion
versucht daher diese Konfiguration, als JSON' kodiert, von einem speziellen Baustein unter der
Adresse /TechUnits/cshmi/turbo.asJSON abzurufen. Ist dies erfolgreich, wird die Konfiguration
im Javascript-Objekt HMI. cshmi.ResourceList zentral zur spateren Nutzung gespeichert.

AnschlieBend wird die Funktion HMI.cshmi._interpreteElementOrEventRecursive aufgerufen.
Diese Funktion ist ein zentraler Punkt, welcher grafische Elemente und Ereignisse auf verschie-
dene Subfunktionen aufteilt. Nach der Erstellung der grafischen Représentanz zum Beispiel einer
Gruppe, werden weitere grafische Kindelemente und Ereignisse geladen und interpretiert.

Elemente

Ist ein grafisches Element, wie ein Kreis, anzuzeigen so wird zum Beispiel die Funktion HMI.cshmi.
_buildSvgCircle aufgerufen. Aquivalente Funktionen existieren zu allen Grafikprimitiven wie Path,

"http://json.org/

62

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

2 Interner Aufbau der Anzeigekomponente

Line, Polyline, Polygon, Text, Ellipse, Rectangle und Image. Alle diese Funktionen erhalten
als Parameter neben einer eindeutigen Bezeichnung (als String namens ObjectPath) noch das
Gruppenobjekt (als DOM Element namens VisualParentObject), wo das neue Element eingebettet
werden wird.

Gemeinsame Parameter vieler Grafikelemente wie Strich- oder Fullfarbe werden mithilfe der Hilfs-
funktion HMI. cshmi._processBasicVariables gesetzt. Liegt die Konfiguration im Javascript-Objekt
HMI.cshmi.ResourcelList vor, so kann die Darstellung direkt aufgebaut werden, andernfalls muss
die Konfiguration Uber ein Netzwerkzugriff abgefragt werden. Die Funktionen erhalt noch einen
boolschen Parameter namens preventNetworkRequest. Ist dieser auf wahr gesetzt und die Konfi-
guration des Bausteins nicht bekannt, so wird dieser Netzwerkzugriff unterlassen. Damit kann ein
aufwendiger Netzwerkzugriff bei nicht sichtbaren Elementen verhindert werden.

Die Erstellung einer Gruppe in HMI.cshmi._buildSvgGroup ist etwas aufwendiger, da sie mehrere
Funktionen in sich vereint. Als Erstes kann die Gruppe weitere Objekte Uber ein Vorlagensystem
einbinden (Uber TemplateDefinition) und auBerdem gewissen Konfigurationsparameter setzen,
welche fur den ganzen Darstellungs-Zweig Gliltigkeit hat.

Wird eine Instanziierung einer Vorlage benétigt, so wird dessen Konfiguration (Breite und Héhe)
Uber einen identischen Mechanismus wie die Grafikprimitive geholt, wenn sie zu diesem Zeit-
punkt nicht schon bekannt sind. Wird eine FBReference benétigt, so wird diese im grafischen
Objekt an der Stelle VisualObject.ResourceList.FBReference gespeichert. Es ist jedoch mdg-
lich, dass diese Referenz Uber einen URL-Parameter namens FBReference des Browsers Uber-
schrieben wird. FBVariableReferencen sind mehrere méglich, so dass diese in einem JavaScript-
Objekt VisualObject.ResourceList.FBVariableReference gespeichert werden. Ahnlich werden
alle ConfigValues im JavaScript-Objekt VisualObject.ResourceList.ConfigValues gespeichert.
Weiterhin wird im grafischen Objekt das SVG-Attribut overflow="visible" gesetzt. Damit werden
alle Kindelemente dargestellt, unabhéngig von der GréBe der Gruppe selbst.

Ist die Gruppe nicht Uber das Element, sondern Uber die Aktion InstantiateTemplate erstellt
worden und der Parameter preventClone gesetzt, so wird anschlieBend geprift, ob dieses Objekt
schon identisch vorhanden ist. Ist dies der Fall, wird die Darstellung dieser Instanz verhindert.
AnschlieBend wird die genaue X-Y-Position des neuen Objektes berechnet. Die Parameter x0ffset
, yOffset und maxTemplatesPerDirection erlaubt dazu eine genaue Parametrierung. Details zur
Logik siehe Kapitel 3.5.3.

Soll eine Gruppe selbst ,versteckbar® sein, so wird dies im Vater-Objekt der Darstellung ver-
merkt, sowie dort ein Event-Handler zum Ausblenden und Anzeigen aller Kinder hinterlegt.
Innerhalb dieser Logik ist es manchmal nétig die Reihenfolge der Objekte innerhalb des
DOM des Browsers zu andern, um eine vollstindige Anzeige zu erlauben. Fir die Funktion
previousTemplateCount ist die Original-Reihenfolge jedoch nétig, sodass diese zusatzlich in einem
Array cshmiOriginalOrderList gespeichert wird.

Am Ende der Funktion HMI.cshmi._buildSvgGroup werden noch alle Kindelemente interpretiert,
welche eventuell Uber ein Template angefordert wurden.

63

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

Um eine Blackbox zu erstellen wird die Funktion HMI.cshmi._buildBlackbox genutzt. Dieser Code
holt (wenn bisher noch nicht bekannt) die Inhalte der Variablen HTMLcontent, source0fLibrary,
jsOnload und jsOnglobalvarchanged vom Modell.

Wird HTMLcontent genutzt, so wird der entsprechende HTML-Code in den Darstellungsbaum
des Browsers eingehangen. Soll JavaScript-Code ausgefiihrt werden, so wird ein API-Object
namens cshmimodel (siehe Anhang 3) erstellt, welche Kommunikation mit dem Automatisierungs-
system und der Darstellung ermdglicht. jsOnload wird ausgeflhrt, wenn alle Bibliotheken Uber
sourceOfLibrary vollstdndig geladen sind.

Ereignisse

Hat ein Element ein TimeEvent assoziiert, so wird die Haupt-Funktion HMI.cshmi.
_interpreteElementOrEventRecursive die Helper-Funktion HMI.cshmi._interpreteTimeEvent
aufrufen. Diese sorgt dafiir, dass Ereignisse fiir die die gleiche Zykluszeit angefordert wurde,
gemeinsam ausgefiihrt werden. Ist diese Zeit groBer als eine Sekunde so wird daflr gesorgt,
dass der erste Aufruf kurz nach dem Laden der Gesamtanzeige vorgezogen wird, um schneller
einen definierten Zustand zu erhalten. Die Funktion HMI.cshmi._handleTimeEvent erhélt eine
Liste von Variablen-Namen, welche in diesem Zyklus benétigt werden und holt alle diese Werte
gemeinsam ab und speichert sie zentral. AnschlieBend werden alle Aktionen lber die Hilfsfunktion
HMI.cshmi._interpreteAction ausgefuhrt.

Fur die ClientEvents ,onload* und ,globalvarchanged* wird die Funktion HMI.cshmi.
_interpreteClientEvent () genutzt. Fir beide Ereignisarten wird das aktive Element in jeweils
eine Liste geschrieben. Die erste Liste wird nach dem vollstandigen Aufbau der Anzeige abgear-
beitet und fihrt damit die gewiinschten Aktionen aus (und léscht dabei die jeweilige Aktion aus
der Liste). Die zweite Liste wird spater beim Setzen einer globalen Variable abgearbeitet. Diese
Liste bleibt dabei natirlich bestehen, da deren Aktionen im Gegensatz zur ,onload” Liste mehrfach
ausgefihrt werden soll.

Alle Benutzer-Ereignisse werden einheitlich Gber HMI. cshmi._interpreteOperatorEvent () verar-
beitet. Die Ereignisse ,Klick®, ,Doppel-Klick®, ,Rechtsklick®, ,mouseover” und ,mouseout” sind sehr
ahnlich. Das Element, fiir das eines der drei Klick-Ereignisse definiert wurde, wird speziell mar-
kiert, sodass der Mauszeiger eine spezielle Form erhalt, wenn er Uber einem solchen Element
gehalten wird. Tritt spater dieses Ereignis ein, so wird vom Browser Programmcode ausgefuhrt.
Zuerst wird mithilfe der Funktion Event.stopPropagation() die Propagierung des Ereignisses
gestoppt und damit verhindert, dass ein Uberlagertes Element beispielsweise zusatzlich eine Aktion
zu diesem Klick ausfihrt. Eine Besonderheit ist das Ereignis zum Rechtsklick. Dieses liefert norma-
lerweise ein Kontextmenu des Browsers. Daher wird dies lber Event.preventDefault() verhin-
dert. Bei allen wird das entsprechende MouseEvent-Objekt (siehe [Pix00]) gespeichert, um in einer
Aktion beispielsweise Mauskoordinaten abfragen zu kénnen. Weiterhin wird Uber die Funktion HMI .
displaygestureReactionMarker () fir 0,8 Sekunden ein kleines Rechteck als schnelles optisches
Feedback eingeblendet. AnschlieBend wird Uiber die Funktion HMI.cshmi._interpreteAction()
die zugeordnete Aktion ausgefihrt.

64

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 JavaScript APl cshmimodel

3 JavaScript API cshmimodel

Die Aktion Blackbox (siehe Kapitel 3.4.5) erlaubt die Ausfiihrung von beliebigem JavaScript-Code.
Zur Unterstlitzung des Applikationsentwicklers wurde eine API entwickelt mit der beispielsweise mit
den grafischen Elementen interagiert werden kann. Weiterhin hat der Entwickler die Mdglichkeit
auf die Modellwelt zuzugreifen um zum Beispiel eine neue Instanz der Kopiervorlagen erstellen
zu kénnen. Als letzte Méglichkeit bietet die API eine direkte Kommunikation mit dem Automatisie-
rungssystem um direkt Werte lesen und schreiben zu kénnen, aber auch strukturelle Anderungen
(Erstellen, Léschen...) anzustoBen.

Zur einfachen Programmierung wurde fiir die API eine TypeScript-Definitions-Datei® erstellt. Mit
dieser ist sehr gute Editor-Unterstiitzung beim Programmieren mdglich. Visual Studio Code und
Visual Studio sind hier zum Zeitpunkt der Erstellung der Dissertationsschrift zu empfehlen.

Weiterhin dient diese Datei hier als Referenz des Umfangs der API.

Listing 2: cshmimodel API als TypeScript Definition

1|declare namespace cshmimodel {

2 /** Common callback definition for KS Communication */
3 interface IKsCallback {

4 (

5 /** HMIJavaScriptKSClient object */

6 client: object,

7 /** the plain request object */

8 req: XMLHttpRequest

9): void

10 }

11 interface Dictionary<T> {

12 [index: stringl: T | undefined;

13 }

14

15 /** html body node of the HTML content */

16 let HtmlBody: HTMLBodyElement | null;

17 /** SVG Element of the blackbox */

18 let SvgElement: SVGElement;

19 /*x first HTML element of blackbox html content */
20 let HtmlFirstElement: HTMLElement | null;
21 let Modelpath: string;
22 /** document object of the blackbox */
23 let document: Document;
24 /** Window object of the blackbox */
25 let window: Window;
26 /** API to variables below the blackbox object */

®https://github.com/acplt/rte/blob/master/addonlibs/hmi/cshmi_blackbox.d.ts

65

IP 216.73.216.36, am 20.01.2026, 21:58:26. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

27 let variables: Dictionary<{

28 varName: string;

29 getValue: () => string;

30 setValue: (newValue: string) => void;

31 }>;

32 /%%

33 * Creates a new template below the current blackbox

34 * Qparam x

35 * @param y

36 * @param rotate

37 * Qparam hideable

38 * Q@param PathOfTemplateDefinition

39 * Q@param FBReference

40 * @param FBVariableReference

41 * @param ConfigValues

42 */

43 function instantiateTemplate (

44 x: string,

45 y: string,

46 rotate: string,

47 hideable: string,

48 PathOfTemplateDefinition: string,

49 FBReference: string,

50 FBVariableReference: string,

51 ConfigValues: string

52): void;

53 /%%

54 * Requests an Engineering Property

55 * Q@param path of object to query

56 * Qparam requestType = OT_DOMAIN type of KS Object to query
("OT_DOMAIN", "OT_VARIABLE", "OT_LINK" or "OT_ANY"). "
OT_DOMAIN" if not supplied

57 * Q@param requestOutput Array of interesting objects
properties ("OP_NAME", "OP_TYPE", "OP_COMMENT", "OP_ACCESS
", "OP_SEMANTIC", "OP_CREATIONTIME", "OP_CLASS" or "OT_ANY
"). "OP_NAME" if not supplied

58 * @param cbfnc callback function for a async request

59 * Qparam responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

60 % @return "{fb_hmil} {fb_hmi2} {fb_hmi3} {MANAGER} {fb_hmid}
{fb_hmib5}" or null or true (if callback used)

61 */

62 function getEP (

66

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 JavaScript APl cshmimodel

63
64

65

66
67
68
69
70
71

72

73
74

75

76
77
78
79

80
81
82
83
84
85
86
87

88
89

90

path: string,

requestType?: "OT_DOMAIN" | "OT_VARIABLE" | "OT_LINK" | "
OT_ANY",

requestOutput?: "OP_NAME" | "OP_TYPE" | "OP_COMMENT" | "
OP_ACCESS" | "OP_SEMANTIC" | "OP_CREATIONTIME" | "
OP_CLASS" | ("OP_NAME" | "OP_TYPE" | "OP_COMMENT" | "
OP_ACCESS" | "OP_SEMANTIC" | "OP_CREATIONTIME" | "
OP_CLASS")[] | "OT_ANY",

cbfnc?: IKsCallback,

responseFormat?: "text/tcl" | "text/ksx" | "text/plain"

): string | null | true;

/ * %

* Requests a KS Variable

* Q@param path of the variable to fetch, multiple path
possible via an Array

* Q@param requestOutput Array of interesting objects
properties ("OP_NAME", "OP_TYPE", "OP_VALUE", "
OP_TIMESTAMP" or "OP_STATE"). "OP_VALUE" if not supplied

* @param cbfnc callback function for a async request

* @param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

* Q@return "{{/TechUnits/HMIManager}}", response: "{/TechUnits
/Sheetl1}" or "TksS-0042::KS_ERR_BADPATH {{/Libraries/hmi/
Manager.instance KS_ERR_BADPATH}}"

*/

function getVar (
path: string | string(],

requestOutput: "OP_NAME" | "OP_TYPE" | "OP_VALUE" | "
OP_TIMESTAMP" | "OP_STATE",
cbfnc?: IKsCallback,
responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
): string;
/**
* Sets a KS Variable
* @param path of the variable to set
* @param {String} value to set (StringVec are Arrays)
* @param {String} type variable type (for example "
KS_VT_STRING") to set, null if no change
* @param cbfnc callback function for a async request

* @param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

* @return true, or null

67

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

91

93
94
95

96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123

68

*/
function setVar (
path: string,

value: string | stringl[],
type: "KS_VT_BOOL" | "KS_VT_INT" | "KS_VT_UINT" | "
KS_VT_SINGLE" | "KS_VT_DOUBLE" | "KS_VT_STRING" | "
KS_VT_TIME" | "KS_VT_TIME_SPAN" | "KS_VT_STATE" | "
KS_VT_STRUCT" | "KS_VT_BYTE_VEC" | "KS_VT_BOOL_VEC" | "
KS_VT_INT_VEC" | "KS_VT_UINT_VEC" | "KS_VT_SINGLE_VEC"
| "KS_VT_DOUBLE_VEC" | "KS_VT_STRING_VEC" | "
KS_VT_TIME_VEC" | "KS_VT_TIME_SPAN_VEC" | "
KS_VT_TIME_SERIES" | "KS_VT_STATE_VEC" | null,
cbfnc?: IKsCallback,
responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
): "" | true | null
/ % %
* Rename a KS object
* @param path of the object to rename
* Q@param newname (optional with full path) of the object
* @param cbfnc callback function for a async request
* Q@param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied
* @return true, "" or null
*/

function renameObjects (
oldName: string,
newName: string,
cbfnc?: IKsCallback,

responseFormat?: "text/tcl" | "text/ksx" | "text/plain"

): "" | true | null

/ % x

* Create a KS object

* @param path of the object to create

* Q@param classname full class name of the new object

* @param cbfnc callback function for a async request

* Q@param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

* Q@return true, "" or null

*/

function createObject (
path: string,
classname: string,

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

3 JavaScript APl cshmimodel

124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

cbfnc?: IKsCallback,

responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
): "" | true | null
/**
* Delete a KS object
* Q@param path ob the object to delete
* @param cbfnc callback function for a async request
* @param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied
* Qreturn true, "" or null
*/
function deleteObject (
path,
cbfnc?: IKsCallback,
responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
): "" | true | null
/**
* Link two KS objects
* Q@param pathA of the first object
* @param pathB of the second object
* Q@param portnameA name of the port
* @param cbfnc callback function for a async request
* @param responseFormat Mime-Type of requested response (

probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl" if not supplied

"" or null

* Q@return true,
*/
function linkObjects (
pathA: string,
pathB: string,
portnameA: string,
cbfnc?: IKsCallback,
responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
"" | true | null
*

)
/
Unlinks two KS objects

@param pathA of the first object

@param pathB of the second object

@param portnameA name of the port

@param cbfnc callback function for a async request

* O K X X X ¥

@param responseFormat Mime-Type of requested response (
probably "text/tcl", "text/ksx", "text/plain" used). "text
/tcl"™ if not supplied

69

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Anhang

162 * Q@return true, "" or null
163 */
164 function unlinkObjects (
165 pathA: string,
166 pathB: string,
167 portnameA: string,
168 cbfnc?: IKsCallback,
169 responseFormat?: "text/tcl" | "text/ksx" | "text/plain"
170): "" | true | null
171
172 /* %
173 * Prints an info message on the website
174 * Q@param text
175 */
176 function log_info_onwebsite (
177 text: string
178): void;
179 /%%
180 * Prints an error message on the website
181 * Qparam text
182 */
183 function log_error_onwebsite (
184 text: string
185): void;
186 /%%
187 * returns the KS Response as an Array, or an empty Array
188 * if the optional argument recursionDepth is > O,
189 */
190 function splitKsResponse (
191 response: string,
192 recursionDepth: number
193): anyl[]l;
194}
70

IP 216.73.216.36, am 20.01.2026, 21:58:26. ©

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[AIb03] ALBRECHT, Harald: On Meta-Modeling for Communication in Operational Process Con-
trol Engineering. Disseldorf, Lehrstuhl fir Prozessleittechnik der RWTH Aachen Univer-
sity, Diss., 2003

[BD98] BOWLER, John ; DISTER, Brian: Vector Markup Language (VML) Specification. Mai 1998
http://www.w3.0rg/TR/1998/NOTE-VML-19980513

[BFL*14] BERJON, Robin ; FAULKNER, Steve ; LEITHEAD, Travis ; PFEIFFER, Silvia ; O’CONNOR,
Edward ; NAVARA, Erika D.. HTML 5/ W3C. 2014. — W3C Recommendation. —
http://www.w3.0rg/TR/2014/REC-htmI5-20141028/

[BHH*16] BERNSHAUSEN, Jens ; HALLER, Axel ; HOLM, Thomas ; HOERNICKE, Mario ; OBST,
Michael ; LADIGES, Jan: Namur Modul Type Package — Definition. In: atp edition -
Automatisierungstechnische Praxis 1 (2016), S. 72-81

[Dam96] DAMMERT, Jirgen: Plattformiibergreifende Konstruktion graphischer Benutzeroberfla-
chen . Verlag Dr. Kovac, 1996. — ISBN 3860644777

[DDFU11] DOHERR, F. ; DRUMM, O. ; FRANZE, V. ; URBAS, L.: Bedienbilder auf Knopfdruck. In:
Automatisierungstechnische Praxis atp 53 (2011), Nr. 11, S. 30-39. — ISSN 0178-2320

[DIN14] ; DIN Deutsches Institut fir Normung e. V. (Veranst.): DIN SPEC 40912: Kernmodelle -
Beschreibung und Beispiele. 2014

[DU11] DOHERR, F. ; URBAS, L.: autoHMI: a model driven software engineering approach
for HMIs in process industries. In: 2011 IEEE International Conference on Computer
Science and Automation Engineering. Piscataway, NJ : IEEE, 07 2011. — ISBN 978-1—
4244-8727-1, S. 627 — 631

[ecm99] ; ECMA (European Association for Standardizing Information and Communication Sys-
tems) (Veranst.): ECMA-262: ECMAScript Language Specification. http://www.
ecma-international.org/publications/standards/Ecma-327.htm. Version: Third,
Dezember 1999

[ERD11] EPPLE, Ulrich ; REMMEL, Markus ; DRUMM, Oliver: Modellbasiertes Format fir RI-
Informationen. In: Automatisierungstechnische Praxis (atp EDITION), 53. Jahrgang, 1-
2/2011 (2011), S. 62-71

[FD98] FERRAIOLO, Jon ; DISTER, Brian: Precision Graphics Markup Language (PGML) Speci-
fication. April 1998 http://www.w3.0rg/TR/1998/NOTE-PGML-19980410.html

71

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[Fer01]

[Fin13]

[FJFO3]

[FR14a]

[FR14b]

[HB11]

[Hen12]

[HLW+16]

[Hon14]

[IECO3]

[IEC10a]

[IEC10b]

[JE12]

72

FERRAIOLO, Jon: Scalable Vector Graphics (SVG) 1.0 Specification. September 2001
http://www.w3.0rg/TR/2001/REC-SVG-20010904

FINK, Eugen: Erweiterung der Visualisierungsinfrastruktur ACPLT/csHMI zur Nutzung
generischer JavaScript-Fremdbibliotheken, Bachelorarbeit, 2013

FUJISAWA, Jun ; JACKSON, Dean ; FERRAIOLO, Jon: Scalable Vector Graphics (SVG)
1.1 Specification. Januar 2003 http://www.w3.0rg/TR/2003/REC-SVG11-20030114/

FIELDING, R. ; RESCHKE, J.: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. RFC 7230 (Proposed Standard). http://www.ietf.org/rfc/rfc7230.
txt. Version:Juni 2014 (Request for Comments)

FIELDING, R. ; RESCHKE, J.: Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. RFC 7231 (Proposed Standard). http://www.ietf.org/rfc/rfc7231.txt.
Version: Juni 2014 (Request for Comments)

HENNIG, Stefan ; BRAUNE, Annerose: Sustainable visualization solutions in industrial
automation with Movisa — A case study. In: Proceedings of INDIN 2011. Caparica,
Lisbon, Portugal, 08 2011. — ISBN 978-1-4577-0433-8, S. 634 — 639

HENNIG, Stefan: Design of sustainable solutions for process visualization in industrial
automation with model-driven software development. Dresden, Diss., 2012

HoLM, Thomas ; LADIGES, Jan ; WASSILEW, Sachari ; ALTMANN, Paul ; FAY, Alexander ;
URBAS, Leon ; HEMPEN, Ulrich: DIMA im realen Einsatz - Von der Idee zum Prototypen.
In: Automation 2016: der 17. Branchentreff der Mess- und Automatisierungstechnik /
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik. Dusseldorf : VDI-Verlag,
2016 (VDI-Berichte ; 2284). — ISBN 978-3—-18-092284-0, S. 71-83. — CD-ROM

HONEYWELL INTERNATIONAL SARL: Experion LX, HMIWeb Display Building Guide.
Release 110. Honeywell International Sarl, Z.A. La Piece 16, 1180 Rolle (VD),
Schweiz, Feb 2014. https://www.honeywellprocess.com/library/support/Public/
Documents/HMIWeb_Display_Building_Guide_EXDOC-XX54-en-110.pdf

Norm Méarz 2003. IEC 61131-3, 2" edition. Programmable controllers — Part 3: Pro-
gramming languages

Norm 2010. IEC 62541: OPC Unified Architecture

Norm 2010. /IEC 62714: Engineering data exchange format for use in industrial automa-
tion systems engineering - Automation Markup Language

JEROMIN, Holger ; EPPLE, Ulrich: Anwendungs- und herstellerneutrales Modell zur Dar-
stellung und Interaktion mit leittechnischen Funktionen. In: Automation 2012 : der 13.
Branchentreff der Mess- und Automatisierungstechnik / VDI/VDE-Gesellschaft Mess-
und Automatisierungstechnik. Dusseldorf : VDI-Verlag, 2012 (VDI-Berichte ; 2171). —
ISBN 978-3-18-092171-6, S. 219-222. — CD-ROM

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[JE13] JEROMIN, Holger ; EPPLE, Ulrich: Modellbasiertes und technologieneutrales HMI fir ein-
gebettete Komponenten. In: GIESE, Holger (Hrsg.) ; HUHN, Michaela (Hrsg.) ; PHILLIPS,
Jan (Hrsg.) ; SCHATz, Bernhard (Hrsg.): Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IX, Schloss Dagstuhl, Germany, April 24-26, 2013,
Tagungsband Modellbasierte Entwicklung eingebetteter Systeme, fortiss GmbH, Min-
chen, 2013, 80-89

[Jer08] JEROMIN, Holger: Browserbasierte Visualisierung aktiver Flusswege in komplexen
Abfiillstationen, RWTH Aachen, Diplomarbeit, 12 2008

[Kir07] KIRMAS, M: Anwenderbericht zur Nutzung von typischen Funktionsbausteinen (Typicals)
bei der Erstellung von leittechnischer Anwendersoftware. In: Automation 2007 VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik. Dusseldorf : VDI-Verlag, 2007 (VDI-
Berichte ; 2284), S. 783-790. — CD-ROM

[Koc06] KoCH, Peter-Paul: ppk on JavaScript, 1/e. New Riders, 2006. — ISBN 0321423305

[Kos14] KOSTIAINEN, Anssi: Vibration API. Juni 2014 http://www.w3.0rg/TR/2014/WD-vibration-
20140619/

[LVMT05] In:LIMBOURG, Quentin ; VANDERDONCKT, Jean ; MICHOTTE, Benjamin ; BOUILLON,
Laurent ; LOPEZ-JAQUERO, Victor: USIXML: A Language Supporting Multi-path Deve-
lopment of User Interfaces. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. —
ISBN 978-3-540-31961-0, 200220

[MEO7] MULLER, Jochen ; ENSTE, Udo: Datenkommunikation in der Prozessindustrie. Olden-
bourg Industrieverla, 2007. — ISBN 3835631160

[Mer18] MERSCH, Tina: Regelbasierte Modelltransformation in prozessleittechnischen Laufzeit-
umgebungen. Disseldorf, Lehrstuhl fir Prozessleittechnik der RWTH Aachen University,
Diss., 2018

[Mey00] MEYER, Dirk: Dezentrale Intelligenz durch Metamodell-basierte Objektverwaltung. In:
MEHLHORN, Kurt (Hrsg.) ; SNELTING, Gregor (Hrsg.): Informatik 2000. Berlin, Heidelberg
: Springer Berlin Heidelberg, 2000. — ISBN 978-3-642-58322-3, S. 304-317

[Mil68] MILLER, Robert B.: Response Time in Man-computer Conversational Transactions. In:
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part |. New
York, NY, USA : ACM, 1968 (AFIPS '68 (Fall, part I)), 267-277

[MPV11] MEIXNER, Gerrit ; PATERNO, Fabio ; VANDERDONCKT, Jean: Past, Present, and Future
of Model-Based User Interface Development. In: i-com 10 (2011), Nr. 3, 2—11. http:
//dx.doi.org/10.1524/icom.2011.0026. — DOI 10.1524/icom.2011.0026

[OHU*15] OBST, Michael ; HoLM, Thomas ; URBAS, Leon ; FAY, Alexander ; KREFT, Sven ;
HEMPEN, Ulrich ; ALBERS, Thomas: Beschreibung von Prozessmodulen - Ein weiterer
Schritt zur Umsetzung der NE 148. In: atp edition - Automatisierungstechnische Praxis
1 (2015), S. 48-59

73

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[Pix00] PiXLEY, Tom: Document Object Model (DOM) Level 2 Events Specification / W3C. 2000.
— WB3C Recommendation. — http://www.w3.0rg/TR/2000/REC-DOM-Level-2-Events-
20001113

[Prio6] PRIBEANU, Costin: Task Modeling for User Interface Design—A Layered Approach. In:
International Journal of Information Technology 3 (2006), Nr. 2, S. 86—90

[Roc12] ROCKS, Yannick: Erstellung einer modellbasierten Engineering Software flir
ACPLT/csHMI, Bachelorarbeit, 2012

[Sch10] ScHMITZ, Stefan: Grafik- und Interaktionsmodell fiir die Vereinheitlichung grafischer
Benutzungsschnittstellen der Prozessleittechnik. Dusseldorf, Lehrstuhl fir Prozessleit-
technik der RWTH Aachen University, Diss., 2010

[Sch12] SCHNELLER, Anne: Parametrieren statt programmieren. In: VDI nachrichten 10.02.2012,
2012

[SE07] ScHMITZ, Stefan ; EPPLE, Ulrich: Automatisierte Projektierung von HMI-Oberflachen. In:
GMA Kongress 2007 — Automation im gesamten Lebenszyklus. Dusseldorf : VDI-Verlag,
Juni 2007 (VDI-Berichte, No. 1980, ISBN: 978-9-18-091980-5), S. 127-138

[SE12] ScHULLER, Andreas ; EPPLE, Ulrich: PandIX — Exchanging P&l diagram model data. In:
ETFA 2012: IEEE 17th International Conference on Emerging Technologies and Factory
Automation ; September 17-21, 2012, Krakow, Poland. Piscataway, NJ : IEEE, 2012. —
ISBN 978-1-4673-4737-2. — 1 CD-ROM

[SE13] SCHULLER, Andreas ; EPPLE, Ulrich: Ein Modellserver zur Nutzung von R&l-FlieBbild-
Informationen. In: AUTOMATION 2013: 14. Branchentreff der Mess- und Automatisie-
rungstechnik. Dusseldorf : VDI-Verlag GmbH, Juni 2013. — ISBN 978-3-18-092209-6,
S. 223-226

[Sie13] SIEMENS AG: SIMATIC HMI, WinCC: Scripting (VBS, ANSI-C, VBA) - Systemhandbuch.
WinCC V7.2. Siemens AG, Industry Sector, Postfach 48 48, 90026 Nirnberg, Deutsch-
land, 2013. https://cache.industry.siemens.com/d1l/files/640/73453640/att_
67199/v1/WinCCInformationSystemScripting_de-DE.pdf

[UHHT11] URBAS, L. ; HENNIG, S ; HAGER, H ; DOHERR, F ; BRAUNE, A: Towards context adaptive
HMIs in process industries. In: 2011 9th IEEE International Conference on Industrial
Informatics. Caparica, Lisbon, Portugal : IEEE, 07 2011. — ISBN 978-1-4577-0435-2

[VDIO2] ; Verband Deutscher Ingenieure (VDI) (Veranst.): VDIVDE Richtlinie 3850, Nutzerge-
rechte Gestaltung von Bediensystemen fiir Maschinen. 2002

[VDI13] ; Verband Deutscher Ingenieure (VDI) (Veranst.): VDIVDE Richtlinie 3699, Prozessfiih-
rung mit Bildschirmen. 2013

74

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Literaturverzeichnis

[WE17] WAGNER, Constantin A. ; EPPLE, Ulrich: Integration von Serviceschnittstellen in Funk-

[YGE13a]

[YGE13b]

[YQE10

[Yu16

]

tionsbausteinarchitekturen. In: Automation 2017: der 18. Branchentreff der Mess- und
Automatisierungstechnik / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik.
Disseldorf : VDI-Verlag, 2017 (VDI-Berichte ; 2284). — ISBN 978-3-18-092284-0. —
CD-ROM

Yu, L. ; GRUNER, S. ; EPPLE, U.: An engineerable procedure description method for
industrial automation. In: 2013 IEEE 18th Conference on Emerging Technologies Fac-
tory Automation (ETFA), 2013. — ISSN 19460740, S. 1-8

Yu, Liyong ; GRUNER, Sten ; EPPLE, Ulrich: An Engineerable Procedure Description
Method for Industrial Automation. In: ETFA 2013: IEEE 18th International Conference
on Emerging Technologies and Factory Automation. Piscataway, NJ : IEEE, 2013. —
ISBN 978-1-4799-0864—6

Yu, Liyong ; QUIROS, Gustavo ; EPPLE, Ulrich: Service-Oriented Process Control for
Complex Multifunctional Plants: Concept and Case Study. In: ETFA 2010: 15th IEEE
International Conference on Emerging Technologies and Factory Automation. Bilbao :
IEEE, September 2010. — ISBN 978-1-4244-6849-2

Yu, Liyong: A reference model for the integration of agent orientation in the operative
environment of automation systems. Dusseldorf, Lehrstuhl fir Prozessleittechnik der
RWTH Aachen University, Diss., 2016

75

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lhebertechtlich geschitzter Inhalt 2

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

IP 216.73.216.36, am 20.01.2026, 21:58:26. © nhal.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Werden Sie Autor
im VDI Verlag!

Publizieren Sie
in , Fortschritt-
Berichte VDI“

Veroffentlichen Sie die Ergebnisse Ihrer interdisziplinaren technikorientierten
Spitzenforschung in der renommierten Schriftenreihe Fortschritt-Berichte VDI.
Ihre Dissertationen, Habilitationen und Forschungsberichte sind hier bestens platziert:

Kompetente Beratung und editorische Betreuung

Vergabe einer ISBN-Nr.

Verbreitung der Publikation im Buchhandel
Wissenschaftliches Ansehen der Reihe Fortschritt-Berichte VDI
Veroffentlichung mit Nahe zum VDI

Zitierfahigkeit durch Aufnahme in einschléagige Bibliographien
Prasenz in Fach-, Uni- und Landesbibliotheken

Schnelle, einfache und kostenglinstige Abwicklung

PROFITIEREN SIE VON UNSEREM RENOMMEE!
www.vdi-nachrichten.com/autorwerden

1P 216.73.216.36, am 20.01.2026, 21:58:26. © Lrheberrechtich geschitzter Inhalt 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
7 Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik
20 Rechnerunterstitzte Verfahren (CAD, CAM, CAE CAQ, CIM ..)
21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-526808-3

IP 216.73.216.36, am 20.01.2026, 21:58:26. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186268082

	Cover
	1 Einleitung
	2 Hintergrund und Motivation
	2.1 Stand der Technik
	2.1.1 iPhone/Android Programierung
	2.1.2 Field Device Tool/Device Type Manager (FDT/DTM)
	2.1.3 Siemens SIMATIC WinCC, Honeywell Experion PKS
	2.1.4 Beckhoff TwinCAT 3 HMI
	2.1.5 ACPLT/HMI
	2.1.6 NAMUR Module Type Package
	2.1.7 automotiveHMI
	2.1.8 MOVISA
	2.1.9 IT HMI Standards

	2.2 Gemeinsamkeiten und allgemeine Struktur von Bedienoberflächen
	2.3 Automatische Erstellung von Bedienoberflächen
	2.4 Fazit

	3 Explizites Modell für Benutzungsschnittstellen leittechnischer Funktionen
	3.1 Anforderungen
	3.2 Grobstruktur des Modells
	3.3 Modellierungsebenen
	3.4 Komponenten des Modells
	3.4.1 Darstellung
	3.4.2 Kopiervorlagen
	3.4.3 Ereignisse
	3.4.4 Aktionen
	3.4.5 Baustein zur Freitext-Programmierung

	3.5 Erweiterung der Grundkomponenten
	3.5.1 Erweiterung der Darstellung
	3.5.2 Erweiterung der Ereignisse
	3.5.3 Erweiterung der Aktionen

	4 Realisierung
	4.1 Prototypische Implementierung

	5 Evaluation im Lebenszyklus (durch Anwendungen)
	5.1 Eignung zur automatischen Erstellung von Bedienoberflächen
	5.2 Engineering von Anlagenplanungsdaten (R&I-Fließbilder)
	5.3 Eignungen des Modells zur Simulationssteuerung
	5.4 Engineering von Anlagensteuerungen
	5.4.1 Engineering einer Funktionsbausteinsprache nach IEC 61131-3
	5.4.2 Engineering einer Ablaufsprache nach IEC 61131-3

	5.5 Eignung für Bedienoberflächen im Betrieb
	5.6 Integration von fremden Bibliotheken in die Modellstruktur
	5.7 Fazit

	6 Diskussion und Ausblick
	Anhang
	1 Anwendung R&I-Fließschema-Editor im Detail
	2 Interner Aufbau der Anzeigekomponente
	3 JavaScript API cshmimodel

	Literaturverzeichnis

