Fortschritt-Berichte VDI

iy

Reihe 18

Mechanik/ M.Sc. Lars Radtke,

Bruchmechanik Hamburg

Nr. 353 A partitioned solution

approach for
fluid-structure
interaction problems
in the arterial system



https://doi.org/10.51202/9783186353184

IP 216.73.216.36, am 18.01.2028, 22:00:13.
m

tr

mit, flr oder In KI-



https://doi.org/10.51202/9783186353184

A partitioned solution approach for
fluid-structure interaction problems
in the arterial system

Vom Promotionsausschuss der
Technischen Universitdt Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Lars Radtke

aus

Ttzehoe

2020

Betreuer: Prof. Dr.-Ing. habil. Alexander Diister

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

Vorsitzender des Promotionsausschusses
Prof. Dr.-Ing. Robert Seifried

Erstgutachter
Prof. Dr.-Ing. Alexander Diister

Zweitgutachter
Prof. Dr. med. Eike Sebastian Debus
Prof. Dr.-Ing. Robert Seifried

Tag der miindlichen Priifung
11. Juli 2019

IT

IP 216.73.216.36, am 18.01.2028, 22:00:13.

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186353184

Fortschritt-Berichte VDI

| Reihe 18

Mechanik/ M.Sc. Lars Radtke,

Bruchmechanik Hamburg

[Nr. 353 | A partitioned solufion

approach for
fluid-structure
interaction problems
in the arterial system

vDI verlag



https://doi.org/10.51202/9783186353184

Radtke, Lars

A partitioned solution approach for fluid-structure interaction problems
in the arterial system

Fortschr-Ber. VDI Reihe 18 Nr. 353. Disseldorf: VDI Verlag 2020.

298 Seiten, 131 Bilder, 20 Tabellen.

ISBN ©78-3-18-335318-/, ISSN 0178-9457,

€ 100,00/ VDI-Mitgliederpreis € 90,00.

Keywords: fluid-structure interaction — blood flow — partitioned coupling = high-order finite
elements

The present work is concerned with the partitioned solution of the multifield problem arising from
a hierarchical modeling approach to cardiovascular fluid-structure interaction. Different strate-
gies fo couple the participating field solvers are investigated in detail. This includes staggered
and parallel coupling algorithms as well as different methods for convergence acceleration,
spatial inferpolation and femporal extrapolation of coupling quantities. In the developed mod-
eling and simulation approach, a fully resolved model of a segment of the arterial network is
coupled to reduced order models in order fo account for the influence of the surrounding.

There is experimental evidence that hemodynamic quantities such as the wall shear siress pro-
mote the progression cardiovascular disease. Cardiovascular FSI simulations, that can predict
these quantities, are therefore of great inferest and can aid in surgical planning and optimization
of anastomoses shapes and graft materials.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Infernet unfter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

[{German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
[German National Bibliography); detailed bibliographic data is available via Intemet at
www.dnb.de.

Arbeitsgruppe Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik

© VDI Verlag GmbH - Dissseldorf 2020

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopiel, der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISSN 01789457

ISBN ©78-3-18-335318-/

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

Acknowledgements

During my work at the Institute for Ship Structural Design and Analysis
at Hamburg University of Technology, from which this thesis has emerged,
many great people have helped, inspired and encouraged me in one or the
other way. I would like to say "thank you” here - without their input, this
output would not exist.

First of all, T would like to express my gratitude to my supervisor
Prof. Diister. His expertise in a broad range of topics in the field of numer-
ical computation, calmness in explaining and enthusiasm when discussing
new ideas have guided me through my first years in academia. Danke dafiir!
Having started at the same day in the same office, my colleague Marcel
Konig deserves my special thanks as well. His tenacity and skills, which he
was always willing to share, have contributed a lot to this thesis. Vielen
Dank! Of course, I would like to thank all of my colleague at the institute
for their helpfullness the many fruitful discussions. Danke!

Zooming out, I owe great thanks to my parents Christel and Ronald.
They have perhaps once sparked my interest in science and support me
unconditionally and without exception in everything I do. Danke fiir alles!
I would also like to thank my friends, many of whom have inspired me
technically - oftentimes without an engineering background - and all of
whom have encouraged me to stay at the university after may Masters
degree. Vielen Dank!

Finally, T would express my deepest thanks to my partner Johanna for
her everlasting support, comprehension and love. Ich liebe Dich!

111

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

IP 216.73.216.36, am 18.01.2028, 22:00:13.
m

tr

mit, flr oder In KI-



https://doi.org/10.51202/9783186353184

Contents

List of medical terms
Abstract
1 Introduction

2 Fluid-structure interaction in the arterial system
2.1 The cardiovascular system . . . . ... ... ... ... ..
2.1.1 Anatomy of the larger arteries . . . . . ... ... ..
2.1.2 Physical characteristics of arterial blood flow . . . . .
2.1.3 Cardiovascular diseases . . . . . . . .. .. ... ...
2.1.4 Vascular bypass grafts . . .. ... ... ... ...
2.2 Computational modeling . . . . . ... ... ...
2.2.1  Fluid-structure interaction . . . . . . . ... ... ..
2.2.2  Arterial hemodynamics . . . . . . ... ... ... ..

3 Mechanical modeling of the arterial system
3.1 Coupled problems . . . . . . ... ...
3.1.1 Solution approaches . . . . . . . .. .. ... ... ..
3.2 Continuum mechanics . . . . . ... ... ...
3.2.1 Conservation laws on moving domains . . . . . . ..
3.2.2  Structural mechanics . . . . . ... ...
3.2.3 Fluid mechanics . . . . . . .. ... ...
3.2.4 Interface constraints and domain motion . . . . . ..
3.3 Mechanical models for the cardiovascular system . . . . . . .
3.3.1 Constitutive equations for soft tissue . . . . . . . ..
3.3.2  Constitutive equations for blood . . . . . . . .. ...
3.3.3 One-dimensional models . . . . ... ... ... ...
3.3.4 Windkessel models . . . . ... ... ... L.
3.3.5 Models for the surrounding tissue . . . . . . ... ..
3.3.6 Velocity profiles . . . . . . ... 0oL

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster

(O lEN I =)


https://doi.org/10.51202/9783186353184

Contents

3.3.7 Hemodynamic quantities . . . . . . .. ... ... .. 66

4 Numerical methods 69
4.1 Space and time discretization . . . . ... ... 70
4.1.1 High-order finite elements for structural mechanics . 70

4.1.2 Finite volumes for fluid mechanics in moving domains 83
4.1.3 Taylor-Galerkin method for one-dimensional blood flow 88

4.1.4  Solvers for ordinary differential equations . . . . . . . 90

4.2  Geometry and mesh generation . . . .. ... ... ..... 93
4.2.1 G'-continuous surface construction . . ... ... .. 95
4.2.2 Polynomial G'* PN quads . . . . ... ......... 99
4.2.3  General polynomial G! quads . . . . ... ... ... 104

4.3 Partitioned solution approach . . . . . ... ... ... ... 112
4.3.1 Coupling algorithms . . . . . . ... ... ... ... 113
4.3.2 Convergence acceleration . . . . . . .. ... ... .. 117
4.3.3 Predictors . . . ... ... 124
4.3.4 Convergence criteria . . . . . . .. ... ... ... 127
4.3.5 Interpolation . . . ... ... ... .. 128

4.4 Coupling software . . . . . . .. ... ..o 141
4.4.1 Software design . . . . .. ... ... ... 143
4.4.2 Inter process communication . . . . . . . ... .. .. 145
4.4.3 Implementation of coupling algorithms . . . . . . .. 147
4.4.4 Field solver manipulation . . . ... ... ... ... 147

5 Numerical investigations 153
5.1 Preliminary analyses . . . . ... ... ... ... ...... 153
5.1.1 Structural mechanics . . . . . . ... ... ... ... 153
5.1.2  Fluid dynamics . . . . . . . ... .. oL 168
51.3 Reduced models . . . . . . ... .. ... ... .... 171
5.1.4 Imterpolation . . . ... .. ... ... ... ... .. 174

5.1.5  Load integration . . . . ... ... ... ... .. .. 179

5.2 Coupled benchmark problems . . . . ... ... .. ... .. 183
5.2.1 Multi-body system . . . . ... ... 184
5.2.2 Lid-driven cavity flow . . . . . .. ... ... ... 199
5.2.3 Two-dimensional flag in channel flow . . . . ... .. 204
5.2.4 Pulse wave in an elastic tube . . ... ... ... .. 208

5.3 Arterial fluid-structure interaction . . . . . ... ... ... 212
5.3.1 Initial boundary value problem . . .. ... ... .. 213

VI

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

Contents

5.3.2 Coupling algorithm . . . . . .. ... ... ... ...
533 Testcase. . . ... ... ... ...
534 Results. . . . ... ... ...

6 Applications

6.1

6.2

6.3

Hemodynamics in the scope of vessel geometry and material
6.1.1 Decoupled simulations . . . . ... ... ... ....
6.1.2 Coupled simulations . . . .. ... .. ... ... ..
Hemodynamics in idealized end-to-side anastomoses . . . . .
6.2.1 Simulation setup . . . . ... ... L.
6.2.2 Results. .. ... ... ... ...
Hemodynamics in a patient specific anastomosis . . . . . . .
6.3.1 Studycase. .. .. .. ... ... ...
6.3.2 Modeling and simulation approach . . . .. .. . ..
6.3.3 Results — one-dimensional analysis . . . . ... ...
6.3.4 Results — three-dimensional analysis . . . . . . . . ..
6.3.5 Discussion . . . . . .. ...

7 Summary and Outlook

Appendix

Al

A2

A3

A4

Ab

Tensor algebra . . . . . .. ... . ... ... ...
A.1.1 Contractions and scalar products . . . . .. .. ...
A.1.2 Dyadic products of second order tensors . . . . . ..
A.1.3 Special fourth order tensors . . . . .. .. ... ...
Continuum mechanics . . . . . . .. ... ... ... ...
A.2.1 Neo-Hookean elasticity tensor . . . . ... ... ...
Finite elements . . . . . . . . ... ... ... .. ... ..
A31 Weakform. .. ... .. ... ... ... ... ...
A.3.2 Special matrices . . . . .. ... ...
A33 Assembly . .. ... ...
A3.4 Voigtnotation . . . . . .. ...
A.3.5 Nodal shape function indices . . . . . . . . ... ...
A.3.6 Face and edge coordinates . . . . . .. ... ... ..
Taylor-Galerkin method . . . . . ... ... ... ......
A41 Left-handside . . . . ... ... .. ... .......
A4.2 Right-handside . . . . .. ... ... ... ......
Radial basis functions . . . . . . ... ... L.

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.

tersagt, m mit, flir oder in Ki-Syster

220
220

253

257
257
257
257
258
258
258
259
259
259
260
261
261
261
262
262
263
264

VII


https://doi.org/10.51202/9783186353184

Contents

A.6 Multi body system . . . ... ... 264

A.7 Coupling software . . . . . . . . ... ... 266

A.8 Preliminary investigations . . . . .. .. ... ... ... .. 266

A9 Applications . . . . . ... 267
Bibliography 269
VIII

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

List of medical terms

abdominal
adventitia
anastomosis
aorta
atherosclerosis
atrium
cardiovascular
coronary
diastole

distal

dorsal
endothelium
erythrocytes
femoral

iliac

intima

intimal hyperplasia

leucocytes
media
proximal
pulmonary
systole

thrombocytes
thrombosis
ventricle

Refers to the abdomen (stomach)

Outermost layer of an arterial wall

Here, connection between bypass graft and artery
The largest artery in the body

Inflammatory disease in arteries

Smaller chambers of the heart

Refers to the heart and the circulatory system
Refers to the heart

Phase of the cardiac cycle, where blood enters
in the left ventricle

Away from the body center, here downstream
Refers to the back

Layer of cells at the lumen boundary of an artery
red blood cell

Refers to the thigh region

Refers to the intestine region

Innermost layer of an arterial wall

Abnormal thickening of the intima

White blood cell

Middle layer of an arterial wall

Towards the body center, here upstream
Refers to the lungs

Phase of the cardiac cycle, where blood leaves
the left ventricle

Platelets activating blood clotting

Formation of a blood clot

Larger chambers of the heart

IX

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.

ot, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186353184

Abstract

The present work is concerned with the partitioned solution of the multifield
problem arising from a hierarchical modeling approach to cardiovascular
fluid-structure interaction. Different strategies to couple the participating
field solvers are investigated in detail. This includes staggered and parallel
coupling algorithms as well as different methods for convergence accelera-
tion, spatial interpolation and temporal extrapolation of coupling quantities
as well as convergence criteria. In the developed modeling and simulation
approach, a fully resolved model of a segment of the arterial network is
coupled to reduced order models in order to account for the influence of
the surrounding. The resulting problem is solved using five specialized field
solvers, namely a fluid and a structural solver for the three-dimensional
fluid-structure interaction problem, a one-dimensional blood flow solver for
the surrounding vessel network, a solver for different types of windkessel
models used to obtain physiological boundary conditions at the distal ends
of the one- and three-dimensional models, and a solver for an elastic founda-
tion that describes the surrounding tissue. The applicability of the solution
approach is demonstrated in terms of several exemplary applications in-
cluding studies of idealized and patient specific end-to-side anastomoses of
bypass grafts. They are known to be prone to the development of intimal
hyperplasia, i.e. a thickening of the vessel wall that may lead to occlusions
in the anastomosis region. There is experimental evidence that hemody-
namic quantities such as the wall shear stress promote the progression of
this secondary disease. Cardiovascular FSI simulation are therefore of great
interest and can aid in surgical planning and optimization of anastomoses
shapes and graft materials.
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1 Introduction

Today, numerical simulations play an important role in many fields of en-
gineering and physics. On the application side, they are a versatile tool
in the design and optimization process of mechanical, electrical, thermal
and other components. On the theory side, they provide deeper insight
into complex physical phenomena relying on known, fundamental laws. In
both cases simulations may be advantageous over experiments due to lower
cost, reproducibility and measurement issues. Of course, for the results to
be reliable, a small number of experiments still have to be conducted to
provide a validation of the simulation method that can be generalized to
the application scenario.

Within the field of computational mechanics, one is interested in the
motion of solid bodies or fluids. The framework of continuum mechanics
provides the fundamental laws to predict the motion of bodies with complex
shape, respectively the motion of fluids in regions with complex shape. Most
other descriptions of mechanical phenomena evolve from the continuum
mechanics approach due to certain assumptions. Examples are rigid body
motion, inviscid or incompressible flows, quasi static or small deformation
analyses, and approaches with reduced spatial dimensionality.

The choice of the most suitable description depends on the problem to
be solved and sometimes it is necessary to combine different approaches.
Fluid-structure interaction (FSI) problems are typical, if not the most com-
mon examples for such cases. Due to the different behavior of structures
and fluids, different formulations of the laws of continuum mechanics and
correspondingly different numerical methods serve to predict their motion.
The problem is then regarded as a surface-coupled two-field problem, with
fluid and structure each corresponding to one field. The region occupied
by the fluid deforms according to the structural deformation, which itself
is the result of pressure and shear loads acting on the structure due to the
flow. If this interdependency cannot be neglected in order to arrive at a
reliable description, the problem is said to be strongly coupled. If numerical
simulations account for the interdependency in every time instance under

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

1 Introduction

foundation mimics
surrounding tissue
distal pressure
.. \ three-dimensional
R \ fluid region windkessel models

one-dimensional
vessel models

given flow pulse
one-dimensional
vessel models

N~

three-dimensional
structural region

Figure 1.1: Hierarchical modeling approach to cardiovascular FSI leading to a strongly-coupled
multifield problem.

consideration, the solution approach is regarded implicit. The FSI in the
arterial system is a typical example for a physical phenomenon where such
a strong coupling prevails and an implicit solution approach is inevitable in
order to obtain realistic results.

Not only different types of matter participating in a problem, but also
regions with different accuracy requirements may lead to coupled problems.
For example, the mechanical behavior of the entire human body cannot be
simulated in a continuum mechanics sense using todays computers. How-
ever, a sufficiently small region can be modeled with such a high resolution,
while the influence of the surrounding on that region is accounted for by
appropriate boundary conditions. In this work, a simulation framework for
cardiovascular FSI problems arising from such a hierarchical modeling ap-
proach is devised. A small region in the arterial network is modeled using
a fully resolved continuum mechanics approach. The upstream and down-
stream vessel network as well the surrounding tissue are described using
reduced models. Figure 1.1 illustrates the different fields or subproblems
governing the resulting strongly coupled multifield problem. Particular em-
phasis is put on the three-dimensional fluid-structure interaction problem,
with a focus on efficient coupling procedures and the solution of the struc-
tural mechanics subproblem.

Numerical solution approaches for coupled problems can be classified as

either partitioned or monolithic methods. In the monolithic case, all fields
are solved simultaneously taking into account the influence of all fields on
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each other. In consequence, large systems of equations have to be solved
but the stability of the simulations is increased compared to the partitioned
case. Here, the different fields are solved subsequently, each under the as-
sumption that the other fields are independent of the current one. This
requires an iterative solution approach including an exchange of coupling
quantities between the fields in order to solve the coupled problem. Fur-
ther, due to the assumptions of independence within each iteration, stability
problems may occur. Often times, partitioned solution approaches are still
favorable because of the smaller individual subproblems and because of the
greater flexibility. While in the scope of monolithic schemes, each coupled
problem demands for its own problem formulation and numerical method,
it is possible to reuse specialized existing methods and software when using
partitioned schemes. This allows for high-fidelity modeling and simulation
approaches within each subproblem, which is valuable especially for arte-
rial FSI. The participating structure (the arterial wall) as well as the fluid
(the blood) show complex material behavior or rheology, respectively, which
are most often investigated separately within the fields of computational
structural dynamics (CSD) and computationally fluid dynamics (CFD). To
incorporate state-of-the-art modeling approaches from these two worlds, a
partitioned approach constitutes the ideal basis as the simulation software
(fluid solvers and structure solvers) can be reused.

Summarizing, a partitioned solution approach is well suited for cardio-
vascular FSI simulations due to the need for specialized single-field solvers
as well as the hierarchic nature of suitable modeling approaches, which
demands for a combination of three-dimensional and reduced models as il-
lustrated in Fig. 1.1. Based on these arguments, numerical methods are
developed in the scope of this work to realize a corresponding multifield
simulation. The methods are used to investigate the blood flow (the hemo-
dynamics) in a connection between a bypass graft and an artery. If an artery
is occluded and the blood transport to certain parts of the body is no longer
guaranteed, a bypass may need to be implanted. A numerical simulation of
the hemodynamics in the distal (downstream) connection is of great inter-
est, due to an increased risk of an anew occlusion in this region. The local
flow conditions are assumed to play a key role in the development of such
a restenosis, and investigating them can be of help on two different levels.
On the one hand, it can provide deeper insight into the process of growths
and remodeling of arterial tissue that eventually leads to a restenosis. A
comparison of local hemodynamics and clinically observed configurations of
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1 Introduction

higher risk is just one example. On the other hand, knowledge on the hemo-
dynamics is essential in order to optimize anastomoses in terms of shape or
graft material.

Some effort has to be made to implement a suitable simulation approach
serving this purpose. A major issue is the possible instability of the par-
titioned solution approach. Different investigations were conducted to find
the most suitable coupling algorithm (rules for the data exchange between
the single-field solvers) and convergence acceleration scheme (method to
modify the result obtained from one solver before passing it on to the other).
A modified version of the so called Quasi-Newton-Least-Square algorithm
was found superior over other methods. To efficiently solve the structural
mechanics subproblem, high-order finite elements are used as the preferred
discretization method due to their robustness and convergence character-
istics. In order to use the comparably coarse computational meshes that
characterize this method for a discretization of anastomoses, curved ele-
ments have to be used. To this end, a pipeline for mesh generation was
developed, which includes a flexible modeling tool for smooth geometries.
The proposed methods allow for an in-depth investigation of the FSI in
the arterial system, while being generally applicable on their own. This
includes not only the possibility for the methods to be applied to other
problems within the field of cardiovascular FSI but also to be used to solve
fundamentally different physical phenomena. For example, the partitioned
solution approach may also be used for thermo-mechanically or otherwise
coupled problems. Likewise, the modeling pipeline may be used to create
high-order finite element meshes for a variety of different applications.

Focusing on cardiovascular applications, the next chapter will further mo-
tivate the research and give an introduction into vascular substitutes and
other medical aspects of the circulatory system. The current state of re-
search in the field of cardiovascular FSI simulations is outlined along with
a discussion of the underlying physics and numerical methods. To begin
with, this is done from a phenomenological viewpoint, i.e. without any ref-
erence to a mathematical formulation. It was decided to separate this more
detailed overview of the corresponding interdisciplinary field of research
to provide all readers - with or without any background in computational
science, engineering or medicine - with adequate information on the topic.

In Chapter 3, the underlying physical phenomena are discussed along with
their mathematical formulation. This includes the underlying equations of
the three-dimensional FSI problem, which forms the basis for the small
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region of high resolution, as well as the means to arrive at the reduced
models used to describe the surrounding. The formulations are chosen in
such a way that they provide a suitable basis for the introduction of the
numerical methods. Yet, everything is continuous in this chapter, i.e. no
discretization in space or time is performed.

It is in Chapter 4 that the temporal and spatial discretization methods
for the subproblems as well as the mentioned modeling pipeline and the
partitioned solution approach are explained. Only a few preliminary results
are presented here along with the individual methods.

Detailed numerical investigations that serve to prove the applicability
of the proposed methods are presented in Chapter 5. The results regard-
ing their stability, efficiency, and accuracy substantiate the preference for
the partitioned solution algorithm. Smaller cardiovascular FSI studies are
conducted as well, paving the way for applying the partitioned solution ap-
proach in the scope of simulations of the FSI in bypass graft anastomoses.

In Chapter 6, exemplary investigations of the hemodynamics in idealized
arterial segments and anastomoses with cuffed bypass grafts are presented.
A patient-specific simulation of the blood flow in a distal anastomosis of
an aorto-femoral bypass and the surrounding vessel network demonstrates
the applicability of the developed modeling and simulation approach in the
scope of large-scale analyses.

ot
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2 Fluid-structure interaction in the
arterial system

The flow of blood through the cardiovascular system is a complex physi-
cal phenomenon. However, neglecting biochemical effects, the system dy-
namics can be described very accurately based on a continuum mechanics
approach. Therein, the microstructure is not resolved but a continuous
material is assumed. This is justified by the large difference in the scales
that are identified with the microstructure and the macroscopic effects to
be described, i.e. the velocity and the pressure of the blood as well as the
deformation of the vessel wall. The macroscopic behavior of the vessel ma-
terial and the rheology of blood are modeled using constitutive equations or
material model. Which type of material model is suitable may be decided
based on the microstructure or based on macroscopic experiments. Given
suitable constitutive equations, a three-dimensional simulation can be used
to predict the state of any particle in a region of interest, whether it belongs
to the vessel wall or to the blood that currently occupies the region. The
state of a particle in a continuum mechanics is defined by the displacement,
velocity, and acceleration as a function of time and space. Given this infor-
mation, hemodynamic quantities like the wall shear stress, which are known
to play an important role in the pathogenesis of cardiovascular diseases, can
then be evaluated.

However, regarding the fluid-structure interaction (FSI) in the arterial
system, only a small segment can be simulated with such a high level of
detail. To describe larger scale parts of the system, reduced models, e.g.
one-dimensional models, have to be used. As mentioned in the introduction,
cardiovascular studies will likely require combinations of different scales and
resolutions. Only in a small region of interest, e.g. the anastomosis region,
local feature of the hemodynamics are resolved. The influence of the sur-
rounding system on the hemodynamic in that region is modeled using a
coarser resolution that allows for a larger scale. In the corresponding re-
duced models of the surrounding, space or time dimensions may be dropped
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2.1 The cardiovascular system

in order to reduce computation time.

Before reviewing the corresponding underlying equations in the next
chapter, a general overview of the cardiovascular circulation shall be given.
This provides the necessary background for an adaption and reduction of
the physical laws, so that they can be effectively used in a computer simu-
lation. Detailed information about the cardiovascular system can be found
in many textbooks, e.g. [50, 199, 175], on which the following overview is
based. In the second part of this chapter, the state-of-the-art in computa-
tional modeling of FSI problems is outlined.

2.1 The cardiovascular system

The cardiovascular system of an average male adult contains about five liters
of blood. In resting condition, the heart pumps these five liters through the
systemic and the pulmonary circulation in about one minute. Figure 2.1
illustrates the different regions of the heart and gives an overview of the
flow rates within different parts of the body. Let us consider an exemplary
particle in the left ventricle: First, it is ejected into the aorta through the
aortic valve. It may then flow along the aorta to the lower parts of the body
and return to the heart from the inferior vena cava. It may alternatively
flow through one of the branches of the aortic arc to the arms or head and
return from the superior vena cava. In both cases, it arrives at the right
atrium and is then pumped into the right ventricle. From the right ventricle,
it is ejected into the pulmonary artery and then flows through the left or
right lung to return to the heart from the pulmonary vein.

In this work, only the systemic arterial system is considered, with a focus
on the lower parts of the body. Each beat of the heart initiates a pulse wave
that travels through this part of the circulation. With increasing distance
from the heart, the pulsatility dies out due to the damping effects of the
elastic vessel walls until a nearly stationary flow ensues in the capillaries.
These characteristics of the system allow for an isolated modeling approach
of arterial hemodynamics. The stationary flow in the capillaries as well as
the pulse ejected from the left ventricles provide model boundaries with well-
defined conditions. It is only through these conditions that changes within
the heart, the pulmonary circulation, and the systemic venous system are
accounted for. Despite the independence of the arterial hemodynamics from
the details of the hemodynamics in the rest of the cardiovascular system, it
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Figure 2.1: Schematic illustrations of the heart (taken from [225] and modified) and the car-
diovascular system (percentages according to [175, p. 573]).

constitutes a complex phenomenon for which, so far, no modeling approach
has been found that is clearly favorable over others.

2.1.1 Anatomy of the larger arteries

The following remarks can be found in many books on human anatomy or
cardiovascular surgery, see e.g. [50, 199]. Considering the systemic circula-
tion in the lower body, the aorta constitutes the common parent vessel of all
other vessels. It is divided into five segments. The ascending aorta exits the
heart and continues as the aortic arc, from which the vessels supplying the
head and the arms branch off. The part passing the heart dorsally (on the
backside) is called the descending aorta, followed by the abdominal aorta,
which is commonly divided into two parts, namely the suprarenal abdominal
aorta (proximal to the bifurcation of the renal arteries) and the abdominal
aorta (the part from the renal arteries to the iliac bifurcation, shown in
enlargement C in Fig. 2.2). At the iliac bifurcation, the aorta branches into
the left and right common iliac artery, which continue in a (topologically)
symmetric fashion. At the first larger bifurcation, the common iliac arteries
branch into an internal and an external iliac artery. The internal iliac artery
supplies the pelvic region, while the (larger) external iliac artery continues
in the direction of the upper thigh, where it becomes the common femoral
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Figure 2.2: Anatomy of the cardiovascular system viewed from the back (left) to the front
(right) and enlarged critical regions with respect to the development of atherosclerotic symp-
toms. The pictures were created using the free browser version of the anatomy software
ZygoteBody [241].

artery. Still in the upper thigh, different smaller vessels, the largest being
the deep femoral artery and the femoral circumflex artery, branch off from
the common femoral artery. Below the knee, the common femoral artery
continues as the popliteal artery, where this overview of the pathways of
the larger arteries concludes. The arterial network branches further into
smaller arteries and arterioles, which connect the smaller arteries and the
capillaries. While arteries always branch and with a few exceptions (see
e.g. the arteries from the intestines to the liver in Fig. 2.1) never join, the
capillaries join and increase in diameter and proceed as venules.

As they join together again and increase in diameter, they become veins
that lead back to the heart, as can be seen in Fig. 2.2.

The mentioned larger arteries - except the aorta - are classified as mus-
cular arteries. Arteries that are directly connected to the heart (the aorta
and the pulmonary artery) and the vessels branching off the aortic arc are
classified as elastic arteries [168]. Histologically, any artery consists of three
layers, the tunica intima, the tunica media and the tunica adventitia. In this
work, only muscular arteries are considered. Figure 2.3 shows a microscopic
view of a cut through a muscular artery. According to the thicknesses of
the individual layers, it is commonly assumed that the intima has no effect
on the mechanical behavior of the artery (see e.g. [101] and the references
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elastic layer
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Figure 2.3: Histology of a muscular artery (taken from [157] and relabeled).

cited therein). Of course, from a biochemical or medical point of view it is
a very important constituent. At its inner side a single layer of endothe-
lial cells forms the barrier between the blood and the rest of the vessel
wall. They play an important role in the growth and remodeling process
of arterial tissue as well as the development of cardiovascular diseases as
addressed in Section 2.1.3. The intima layer is separated from the media
layer by a clearly visible internal elastic layer, see Fig. 2.3. The properties of
media and adventitia will be discussed in Section 2.2.2 along with possible
constitutive equations, i.e. material models.

2.1.2 Physical characteristics of arterial blood flow

With every beat of the heart, a pulse wave travels through the arterial
system. During the opening of the aortic valve and the contraction of the
left ventricle, blood is pushed into the aorta. This causes an acceleration
of the blood present in the aorta and - due to inertia and viscous effects -
an increase of the local pressure which in turn leads to a dilatation of the
vessel wall. Thus, the mentioned pulse wave is threefold — consisting of the
peaks in the local pressure, the local flow velocity, and the local dilatation,
all propagating through the arterial system as waves. They travel with ap-
proximately the same velocity, but they can be very different in shape. In
the fictive case of a rigid vessel wall and under the assumption that blood
is an incompressible fluid, the entire blood in the circulatory system would
accelerate at the same time and the increase in pressure would be orders of
magnitudes higher. While it is well justified to assume that blood is incom-
pressible, it is the compliance of the vessel wall that cannot be neglected.
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Figure 2.4: Left: Typical changes in pressure and flow velocity with increasing distance from
the heart (reconstructed according to information provided in [175, p. 581]). Right: Typical
wave forms with increasing distance from the heart (reconstructed from [232]).

In models ignoring this aspect, no wave propagation would be observed at
all, or — if taking into account the negligible compressibility of blood — the
wave would propagate with the speed of sound (/& 1500 m/s in water). In
reality, the compliance leads to a much lower pulse wave velocity of around
5m/s in the larger arteries of a healthy human (cf. [175, p. 579]). Further,
the wave amplitude dies out with increasing distance from the heart until
almost stationary flow conditions prevail in the capillaries. In terms of total
resistance due to inertia and viscous effects the larger arteries contribute
only a small part. This is especially apparent when looking at the mean
pressure, which is almost constant within the larger arteries, as shown in
Fig. 2.4. In fact, effects of wave reflections at bifurcations outweigh the
effect of a decaying peripheral resistance in the larger arteries such that the
peak pressure actually increases, before it decreases rapidly in the arterioles
and capillaries. The mean flow velocity is more than one order of magni-
tude lower (15cm/sto20 cm/s, cf. [175, p. 581]) than the pulse wave veloc-
ity. Blood flow is therefore commonly considered a laminar phenomenon
in most parts of the human body. Exceptions are the aortic arc and the
carotid bifurcation, where turbulent flow conditions have been observed,
see [153, 182]. A detailed explanation of the pulse wave propagation in the
circulatory system from a medical point of view is given in [17].
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Figure 2.5: Treatment of a stenosis by means of balloon angioplasty (taken from [150]) and
a self-extracting stent-graft used to treat an abdominal aortic aneurysm (taken from [173]).

2.1.3 Cardiovascular diseases

Cardiovascular diseases (CVD) are the leading cause of death, not only
in industrialized countries, but globally. In 2015, 17.7 million people died
due to CVDs (31% of all deaths), three quarters of them in low- or middle
income countries [229]. In the European Union, 1.9 million deaths (37.5%
of all deaths) were caused by CVDs [70]. Most often, atherosclerosis is
identified as the prevailing disease, leading to a failure of arteries due to the
built-up of inflammatory lesions. They are also known as atherosclerotic
plaques and consist of a lipid core and a fibrous cap that separates the
prothrombotic core from the lumen. The risk posed by the plaques is to be
seen in a possible occlusion of a vessel. This may happen due to the growth
of the plaque itself or (more frequently) due to a rupture of the fibrous cap,
leading to the formation of a thrombus [13]. The thrombosis may then lead
to an occlusion in the region of the ruptured plaque or, after a detachment
of thrombus material, cause an occlusion in smaller, distal vessels.
Narrowed vessel regions apparent in this process are known as stenoses.
The forming of plaques includes an abnormal proliferation of smooth mus-
cle cells (SMC) into the tunica intima. The corresponding thickening of
this layer is called intimal hyperplasia (IH) and is addressed in more detail
below, as this aspect plays an important role in the healing process after
vascular surgery. An overview of the biochemical mechanisms that are in-
volved in this process and a review of recent studies on this subject is given
in [185]. Typically, stenoses are found in the carotid artery (cf. Fig. 2.2,
enlargement A), the arteries of the upper and lower limb, and in the coro-
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nary vessels (vessels supplying the heart). If possible, stenoses are treated
using minimal invasive techniques such as the placement of a stent using
a catheter. If a stainless steel stent is used, it is advanced to the stenosis
region and then dilated using a balloon, as illustrated in Fig. 2.5. (Another
type of frequently used stents are self-extracting ones which are made out
of shape memory alloys such as Nitinol.)

Another pathological change of the vessel wall is the local enlargement of
the lumen, known as an aneurysm. If a vessel wall is weakened or damaged,
a proliferation of SMC is a necessary response of the vessel wall to restore its
strength. However, if the damage is too severe or the proliferation process
is disturbed otherwise, the vessel may not withstand the blood pressure
and locally increase in diameter while decreasing in wall thickness. The
formation of aneurysm and the assessment of the rupture risk are active
fields of research, see e.g. [142, 200]. Typically, aneurysms are found along
the aorta and in intracranial arteries (arteries in the brain). If possible,
aneurysms are treated by endovascular surgery using so called stent grafts,
i.e. coated stents that provide an artificial vessel wall that shields the
aneurysm wall and restores regular flow conditions, see 2.5.

While atherosclerosis is considered a disease with systemic risk factors
such as tobacco abuse, unhealthy diet, and low activity, the described symp-
toms, i.e. stenoses and aneurysms, constitute local changes in the vessel
wall. The possible reasons for such a localization are still an open ques-
tion, but there is no doubt that the local hemodynamics play a key role.
Plaques are formed predominantly in regions were the typically laminar flow
pattern is disturbed, see [41] and the references cited in [185]. A compre-
hensive review of recent findings regarding the correlation of hemodynamic
factors and the development of atherosclerotic lesions is provided in [159].
Based on this, a novel method for such investigations is presented in [158].
Briefly speaking, the endothelial cells sense - apart from the pressure, being
the main load they are subjected to - distributed shear stresses which very
much depend on the prevailing flow conditions [3].

These wall shear stresses (WSS) are accepted as an important hemo-
dynamic quantity, which has been addressed in many experimental and
numerical investigations!. Many studies come to the conclusion that low

! Almost all corresponding studies concentrate on the WSS and how it influences the growth and re-
modeling of the vessel wall, see e.g. [41, 83, 201, 185, 200] or how it is influenced by the shape or the
material properties of the vessel wall, see e.g. [171, 97] for experimental and [72, 106, 186] for numerical
analyses.
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and oscillatory WSSs promote intimal hyperplasia and the formation of
atherosclerotic plaques. Further, oscillatory WSSs, i.e. WSSs that change
their direction significantly over one beat of the heart as well as high WSS
gradients (spatial changes) are considered risk factors. Within the field of
scientific computing, the underlying growth and remodeling has become a
subject of increasing interest [106]. Novel simulation approaches also ac-
count for the interdependency between the hemodynamics (modeled as a
FSI problem) and the biochemical processes in the vessel wall [72]. One of
the major challenges when modeling such fluid-solid-growth problems are
the different time scales on which the FSI problem and the growth and
remodeling processes have to be described.

The formation of atherosclerotic plaques is a process that happens in
the intimal layer of arteries. While intimal hyperplasia may be consid-
ered an important mechanism in the formation of atherosclerotic plaques
(cf. 200, p. 381]) it also plays a major role in the failure of vascular re-
pairs. Within a few month after the implantation, stents, stent-grafts and
bypass grafts are covered with neointima (a freshly formed intima layer).
Neointima hyperplasia is the main cause for a renewed occlusion (resteno-
sis), an issue present especially in the distal connection of bypass grafts and
the artery (distal anastomosis), see [41, 83]. The simulation of the hemo-
dynamics in distal anastomoses constitutes the leading application for the
development of the numerical methods presented in this work, and it is con-
sidered in more detail below. An overview of the recent findings regarding
a correlation between the WSS and the development of intimal hyperplasia
is given in [41, 83, 201]. Apart from investigations of the flow conditions,
these reviews include studies like those in [15], which are concerned with the
influence of structural mechanics aspects such as the stress concentration
in the vessel wall.

2.1.4 Vascular bypass grafts

If the functionality of an artery is impaired to such an extent that the per-
fusion of the distal organs is no longer ensured, vascular bypass grafts may
be implanted in an open surgery to restore a normal blood flow. Figure 2.6
gives two examples for typical implantation scenarios. Corresponding surg-
eries are by no means a first choice but a surgery with much larger risks
for the patient than a minimally invasive endovascular treatments depicted
in Fig. 2.5. Further, neointima hyperplasia and other effects (thrombus
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Figure 2.6: Left: Femoropopliteal bypass graft (taken from [96]). Right: Aortibifemoral bypass
graft (taken from [95]).

formation, progressive atherosclerosis) may lead to a renewed occlusion as
mentioned above. The failure rate strongly depends on the type of vessel
that is bypassed, on the patient’s medical history, and on the graft mate-
rial. Clinical studies with patency rates for femoropopliteal bypass grafts
have been reported in [49]. In [100], the patency of end-to-side and end-
to-end anastomoses is investigated for more than 200 patients. This study
includes different anastomoses locations and graft materials. An overview
of the corresponding investigations is given in [83, 93]. Artificial graft ma-
terials are generally more prone to restenoses than veins, which are used
whenever possible. Typical artificial materials for grafts are polytetrafluo-
roethylene (PTFE) and a fiber material made out of polyethylene tereph-
thalate (PET)?. In [170], a comparison of these two standard materials is
presented based on a comprehensive literature review.

To counteract the development of intimal hyperplasia due to unnatu-
ral hemodynamics in the anastomosis region, different types of end-to-side
anastomoses where developed. In [171, 97], experimental investigations
were conducted to compare different types, including the ones shown in
Fig. 2.7. In the non-standard types, pieces of a vein are used to alter the
shape of the anastomosis. In addition to the shape, this also changes the
compliance of the anastomosis - since graft materials are generally much
stiffer than veins. This compliance mismatch influences the growth and re-
modeling process that takes place after the implantation. However, these
effects cannot be considered in experiments like those in [171, 97], where
only the shape is reproduced using a silicon mold. Computer simulations

2PET graft material is commonly denoted by DuPont’s ([63]) brand name Dacron®)
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Figure 2.7: Different types of bypass grafts and distal end-to-side anastomoses (taken from
[171]). From left to right: Standard bypass and anastomosis, composite bypass graft, Taylor
patch, Miller cuff.

on the other hand provide a versatile tool to investigate the influence of
different graft materials.

Assuming that the anastomosis shape and the resultant hemodynamics
play a more important role than the compliance mismatch, so called pre-
cuffed artificial grafts were developed, see e.g. [213, 62, 207]. They optimize
the shape of the anastomosis similar to the cuffs shown in Fig. 2.7 by an
increased diameter at their distal end. Precuffed bypass grafts are consid-
ered in more detail in the context of the exemplary study conducted in
Chapter 6.

2.2 Computational modeling

The issues related to cardiovascular surgery motivate the development of
numerical methods to predict the hemodynamics in certain configurations
of stents/stent-grafts and bypass grafts using computer simulations. While
simulations can generally be helpful regarding the development of engineer-
ing components and the investigation of physical phenomena to avoid the
need for a large number of experiments, they are of particular interest in
the context of biomechanics. Here, experiments can oftentimes only be per-
formed in vivo, i.e. in a clinic on a living patient, because the conditions in
the body cannot be emulated in a satisfactory way in vitro, e.g. in the labo-
ratory. Investigations that are performed in silico, i.e. virtually on a digital
computer, may overcome this issue. If the simulation predicts the dynamics
of the blood and the vessel wall correctly, the influence of different vessel
shapes and materials can be investigated for a variety of conditions such as
those during rest and exercise. Over the past decades, the great potential of
numerical simulations has led to a rapid growth in the field of computational
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science with applications pertaining to cardiovascular studies. In addition
to three-dimensional continuum mechanics approaches relying on fully re-
solved models, the mentioned reduced order models are steadily developed
further as well. They have been applied for a much longer time since they
do not rely on large computational resources. While both classes of models
are applicable on their own, it is emphasized that in this work they are
used in combination. In the following, an overview of the history and the
state-of-the-art of both, reduced and fully resolved cardiovascular modeling
and simulation, is outlined. To start with, fully resolved FSI simulations in
general are considered.

2.2.1 Fluid-structure interaction

Approaches to solve FSI problems are an active field of research by itself, i.e.
without necessarily concerning a specific field of application. Standard text
books, e.g. [21, 33, 32], provide an overview of the recent developments.
As mentioned in the introduction, solution approaches can be classified
as either monolithic or partitioned. A detailed explanation follows at the
beginning of the next chapter. Here, it is sufficient to mention that in
monolithic solution approaches, the FSI is described as a single problem
using one numerical method. The mechanical behavior of the fluid, the
structure and the interaction between the two is predicted simultaneously.
Monolithic schemes include space-time methods, which employ a common
discretization strategy in space and time. They are used frequently to solve
FSI problems (see e.g. [18, 186, 196, 174]) and are characterized by good
stability at the cost of a higher implementation effort and non-standard
mathematical frameworks.

In partitioned approaches, fluid and structure are treated separately, us-
ing individual field solvers. The interaction is accounted for by boundary
conditions at the interface between fluid and structure, conveniently called
the wet surface. In particular, the displacement of the structure at the wet
surface is used to define the geometry of the fluid region. In the other direc-
tion, the fluid pressure and shear stresses at the wet surface are prescribed
as surface loads acting on the structure. Within such coupling procedures,
the mentioned coupling quantities have to be exchanged iteratively between
the participating field solvers, which is achieved by a coupling software or
coupling manager. From the coupling manager’s point of view, the field
solvers constitute black-boxes, i.e. only the respective coupling quantities
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(displacement and tractions in the FSI case) can be accessed to steer the
coupling iterations. This allows to reuse existing software from the worlds
of computational fluid and structural dynamics (CFD and CSD), which is
not only advantageous in terms of lower implementation effort, but also in
terms of specialized numerical methods that can be applied to the respective
fields.

However, the iterative solution procedure of partitioned approaches may
show a poor convergence behavior and lead to instabilities. The develop-
ment of convergence acceleration methods that reduce the number of itera-
tions and stabilize the procedure are therefore of great interest. A modified
version of the relaxation method from Aitken (1979) [2] was proposed in
[107] and was among the first to be used successfully in FSI simulations
in many studies, see e.g. [129, 214, 231]. In [144, 81], various convergence
acceleration methods were investigated with respect to their applicability
for FSI problems. Degroote et al. (2008) [52] proposed a novel acceleration
method (the quasi-Newton least squares (QNLS) method mentioned in the
introduction), which was found to outperform the comparably simple relax-
ation methods as shown in [163, 209]. It was developed further in [51, 53,
87] and has also been applied to different applications involving strongly
coupled multifield problems, see e.g. [68, 122].

The development of coupling managers is another effort that has to be
taken in order to realize partitioned simulations. While many groups make
use of the commercial software MPCCI (see [113]), others have implemented
their own coupling managers to enhance the flexibility of developing novel
coupling algorithms and convergence acceleration methods, see e.g. [209, 31,
220, 143]. Here, the in-house coupling manager comana (a C++ framework
introduced in [122]) serves as a basis for all coupled simulations.

2.2.2 Arterial hemodynamics

Possibly the first mathematical model of the arterial system that is still
frequently used today is the windkessel model by Frank (1899) [78] (see
[172] for a translation). It relates the flow and pressure in a vessel or vessel
network using an analogy to the current and voltage in an electric circuit.
In [223] multiple windkessel models were connected to build a model of the
larger arteries on a per vessel basis. Today, windkessel models are used as
a standard boundary condition in fully resolved simulations to account for
the influence of the distal vessel network, see e.g. [203, 188, 19, 128]. Spe-

18

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

2.2 Computational modeling

cial techniques for this coupling of one- and three-dimensional models are
proposed in [217, 216]. Since windkessel models lack any spatial resolution,
pulse wave propagation or wave reflection phenomena cannot be described
with them. For this type of investigation, one-dimensional models con-
stitute the standard basis. Early applications of these models for arterial
blood flow include the studies in [132, 6], where special mathematical for-
mulations are used in order to accurately account for certain features such
as the pulse wave velocity or the formation of shock waves. An overview
of these simulation approaches is given in [105]. Today, large vessel net-
works can be modeled using more general one-dimensional models for pulse
wave propagation. Dedicated numerical methods have been developed and
investigated (see e.g. [179] and the references cited therein) that overcome
dispersion and other issues commonly faced when solving wave equations.
Like in three-dimensional simulations, windkessel models are typically used
as an outflow boundary condition and may also be used as a replacement
for parts of a one-dimensional network model, as proposed in [67].

The analytical solution for the velocity profile in a pulsatile flow through
a rigid circular tube put forward by Womersley (1955) [228] constitutes
another milestone in the history of mathematical models for hemodynamic.
Despite the assumptions of a rigid wall and a circular geometry, which
render the underlying mathematical equations one-dimensional as well?,
Womersley’s formulations are still frequently used today. Given a flow at
the inlet of a vessel segment that is to be investigated in a three-dimensional
sense, the local velocity needs to be determined. To this end, many studies
make use of the velocity profile derived in [228], see e.g. [188, 19, 114, 38].
It should be noted that in [227] corresponding calculations that include the
elasticity of the vessel wall were also conducted. However, these are not
applied in three-dimensional simulation as frequently.

With increasing computational resources, the fields of CFD and CSD
have evolved to a state that allows for three-dimensional simulations of
blood flow. In early studies of this kind, like the ones by [193], a rigid wall
was assumed, i.e. only a CFD analyses was performed. Also more recently,
according analyses are conducted for various investigations of e.g. the for-
mation of stenoses ([237]), optimized bypass grafts ([222, 131]) and anasto-
moses ([137]), or hemodynamics in aneurysms ([212, 177]). Yet, for many
applications, the rigid wall assumption does not lead to satisfactory results,

3Here, the only spatial dimension corresponds to the radial directions and not to the axial direction as
in models for pulse wave propagation.
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as shown in [20, 205, 104]. In view of this, and due to the development of
efficient numerical methods in the last decade, blood flow simulations that
take the FSI into account have become more and more prominent.

Modern medical imaging techniques such as computed tomography (CT)
scanning and magnetic resonance imaging (MRI) allow to reconstruct real
vessel geometries and to use them as a basis for a numerical simulations,
see e.g. [202]. Torii ([203, 205]), Tezduyar ([194, 195, 196]) and Bazilevs
([19]) were among the first to conduct such patient specific simulations that
take the FSI into account. While in [203, 205], partitioned solution ap-
proaches are employed to solve the FSI problem, monolithic procedures are
used in [194, 195, 196, 19]. The latter have been further developed and ap-
plied in the scope of cardiovascular FSI simulations in many works, see e.g.
those by Takizawa ([188, 190, 187]). An overview of the special techniques
developed in this scope is given in [186]. This includes methods for the
imposition of Womersley velocity profiles at non-circular inlet boundaries
and special techniques to evaluate WSS related quantities, both of which
are also applicable when using partitioned solution approaches.

The root of the instability issues associated with partitioned FSI simu-
lation is the added mass effect. A detailed mathematical investigation is
provided in [77]. The added mass effect is particularly high in cardiovascu-
lar studies since the fluid and the structure have almost the same density.
Therefore, monolithic solution approaches are favored for cardiovascular
FSI problems and biomechanical FSI problems in general in [128]. Parti-
tioned simulations of cardiovascular FSI as conducted in [203, 205, 114],
have been limited to simplified material models, which are oftentimes used
in combination with a shifted pressure range*. However, as shown in [163],
novel convergence acceleration methods as the one proposed by [51] can
yield stable simulations, also for full pressure ranges and state-of-the-art
constitutive equations (material models). Isolated from the question about
the most suitable method for the three-dimensional FSI problem, the par-
titioned solution approach can be used to flexibly couple the FSI problem
with reduced order models that account for the surrounding. The practi-
cability of such a coupling was shown in [164]. In the present work, the
idea of treating the individual models (fluid, structure, surrounding tissue,
distal vessel network) as black-boxes is investigated extensively.

The works cited above are motivated by different application scenarios.

4Instead of a blood pressure of 80 mmHgto120 mmHg, only the pulse pressure, i.e. 0 mmHgto40 mmHg,
is considered in the simulation
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2.2 Computational modeling

While the hemodynamics in aneurysms are investigated in [202, 203, 205,
195], other studies consider the blood flow in bypass grafts ([14, 114]) or
arteries in general ([61, 203]). An overview of the various application sce-
narios for cardiovascular FSI simulations from a clinical perspective is given
in [147, 211].

Constitutive models for soft tissue

A frequently applied constitutive model for soft tissue was proposed by
Holzapfel, Gasser and Ogden (2000) [101]. This HGO model takes into
account the anisotropy observed in arteries due to their cellular structure.
More precisely, the directed collagen fibers in the media and adventitia mo-
tivated the development of this transversely isotropic model. Further, it
accounts for the stiffening effect of soft tissues at large strain which results
in the decreasing compliance of artery with increasing internal pressure.
The model has been applied for different kind of applications, such as the
simulation of stent-artery contact (see [82]). Different variants of the model
have been proposed, including the ones by [235], which take into account
the active behavior of the smooth muscle cells in the media. In [176, 236],
the numerical solution of structural mechanics problems including the HGO
model is emphasized. Less frequently than for single field structural simu-
lations, the HGO model has also been applied to FSI simulations, see [163,
112].

In [204], it was shown that the assumption regarding the vessel’s material
behavior has a great effect on the results for the WSS and other quanti-
ties. Accordingly, it is of great interest to used state-of-the-art material
models such as those proposed in [101]. However, the local fiber direction
is not accessible with standard, non-invasive medical imaging techniques,
which is why these models are not applicable for complicated geometries
as faced in patient-specific simulations. Existing isotropic models that can
describe the stiffening effect of soft tissue at large strain as well therefore
constitute the best alternative. These models include the one proposed by
Delfino et al. (1997) [57], who used it to describe the mechanical behavior
of a carotid bifurcation. This or equivalent models were used frequently
in FSI simulations, see e.g. [189, 238, 108, 104], yet many studies employ
simplified material models, see e.g. [203, 205, 146]. Further, isotropic vari-
ants of the model proposed by Fung et al. (1979) [80] may be applied. It
should be noted, that the model proposed by Delfino is called a Fung-type
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2 Fluid-structure interaction in the arterial system

model as well. However, the only similarity is the exponential relation be-
tween stresses and strains, which is also a characteristic of the HGO model.
The exponents are different for each model, which motivate the naming
convention followed here.

All material models mentioned above were designed to be used along
with an incompressibility constraints. However, the experimentally ob-
served compressibility of arteries (see [234]) and the impossibility to use
incompressible models in the scope of a finite element method with a pure-
displacement formulation motivate a modification of the material laws.
While this was already done for the HGO model in [82, 236, 152], compress-
ible variants of the models by Fung and Delfino are derived in the present
work (in Section 3.3). To this end, the volumetric isochoric split proposed
in [74] is applied. This allows for a solution using a pure-displacement for-
mulation of the high-order finite element method (p-FEM), as mentioned
in the introduction. With the p-FEM, undesired locking effects to be ex-
pected when using standard low-order methods can be overcome. Locking
constitutes a severe underestimation of displacements due to anisotropy,
near-incompressibility and/or thin walls, all of which are typical character-
istics of arteries. A review of the state-of-the art in the field of the FEM is
postponed to Section 4.1, where the underlying mathematical framework is
presented.

An issue that was already addressed in [101, 82] are residual strains in
arteries. They lead to the effect that an artery wall will spring open if it is
cut along the axial direction. Further, an artery segment contracts in the
axial direction when explanted. In [195], a novel method for taking into
account residual strains was introduced, developed further, and applied to
complex geometries in the scope of FSI simulations in [192, 191]. The resid-
ual strains in arteries will be addressed again in Chapter5b, yet, a detailed
investigation is out of the scope of this work.
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3 Mechanical modeling of the arterial
system

If the phenomenon of blood flow in human arteries is considered as the flow
of a viscous fluid through a flexible structure, the problem can be stated as
a two-field problem. Further, if the fields (the fluid mechanics field and the
structural mechanics field) are modeled in a three-dimensional continuum
mechanics sense, the problem is denoted as a fully resolved fluid-structure
interaction (FSI) problem here. Both fields are governed by the conser-
vation of mass and momentum. However, due to the different mechanical
behavior of fluids and structures, different formulations of these laws are
applied. In view of the partitioned solution approach, this leads to separate
subproblems for both fields. As outlined in the previous chapter, another
reason for a split into subproblems can be the need for different resolutions
in different regions of the overall problem domain. The fluid-structure in-
teraction in the cardiovascular system and the mechanical behavior of the
entire human body are very typical examples for this. However, there are
many application scenarios, in which such a split is useful — for this or
another reason.

In view of this, a general formulation for coupled problems is introduced
in the first section of this chapter. Without any reference to an underly-
ing application, the difference between monolithic and partitioned solution
approaches is illustrated and a common notation for a subproblem is intro-
duced. This level of abstraction will not reappear until the end of Chapter
4, where the partitioned solution approach is discussed in detail. Like the
coupling software introduced there, it is designed to be generally applicable
to multifield problems.

In the second section, the governing equations of a fully resolved FSI
problem are formulated. This includes a general kinematic framework and
a formulation of the mentioned conservation equations for different types of
computational domains. Only standard constitutive equations are outlined
in this section without a reference to a specific application.
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3 Mechanical modeling of the arterial system

Table 3.1: Subproblems governing coupled cardiovascular FSI simulations.

subproblem state variables field solver task

fluid pressure p, velocity v, Compute the velocity and pressure in
domain displacement d  a moving region filled with viscous
fluid given the displacement of the
boundary of that region and the
pressure or velocity on the boundary.

structure displacement d Compute the deformation of a solid
body, given tractions or displacements
on its boundary. All stresses within
the (hyperelastic) body are uniquely
defined by its displacement.

1D vessel pressure p'P, flow Q'®,  Compute the cross-sectional pressure,
area A'P flow and area along a vessel, given
flow or pressure and the area at both
ends.
windkessel pressure pv, flow Qv Compute the pressure at the inlet of a

vessel network (represented by a
windkessel model) given the flow at
this point.

foundation displacement d* Compute the traction exerted by the
surrounding tissue on the arterial wall
given the displacement at this point.

In the third section, the application of the partitioned solution approach
to cardiovascular FSI problems is taken up again. Different reduced-order
models are introduced as further subproblems and their interaction with the
three-dimensional FSI problem is discussed. Further, constitutive equations
for arteries and blood are introduced.

In summary, all subproblems interacting in the developed simulation ap-
proach for cardiovascular FSI are introduced in this chapter. In the next
chapter, numerical methods are introduced for each of them. Here, all
quantities are to be seen as continuous functions of the time ¢ and (pos-
sibly) the current position in space @, which are defined for certain parts
QP of the overall computational domain €. Each subproblem or field is
identified with one of these parts and different quantities or field variables
are used to describe the state of the fluid, respectively the structure, inside
Q@ Table 3.1 lists all subproblems and introduces the corresponding state
variables.
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3.1 Coupled problems

3.1 Coupled problems

Coupled problems are characterized by the fact that multiple subproblems
interact with each other. In order to introduce the indexing in iterative
solution procedures and to illustrate the differences between partitioned
and monolithic solution approaches, a not further specified coupled prob-
lem with nP subproblems is considered. A mathematical formulation for a
subproblem p with a state variable u(p)(a:,t) as part of a surface coupled
problem may be stated as

The mathematical equations governing the pth subproblem are represented
by (3.1). Boundary conditions which are independent of other subproblems
are included in (3.2). The influence of other subproblems is represented by
coupling conditions (3.3). Dots (e.g %)) and apostrophes (e.g. u/®)) indi-
cate not further specified temporal and spatial derivatives, respectively. In
a volume-coupled problem, the coupling conditions must hold in the domain
Q@ rather than on its boundary I'®). However, the following considera-
tions are independent of the type of coupling. The coupled problem can be
stated as follows: Find w'?) such that

DW =0 in QW,
B® =0 onT?, (3.4)
C?» =0 on Fgm.

at any time t € [ts, to] and for allp € [1,2,...,nP]

3.1.1 Solution approaches

In view of the numerical methods to be applied to solve the individual
subproblems, the state variables u(”)(z, t) will eventually be represented by
a finite number of values or degrees of freedom. To this end, a corresponding
vector of degrees of freedom u(®) (t) is introduced in the context of the spatial
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3 Mechanical modeling of the arterial system

discretization. Throughout this work, discretized quantities are represented
by upright letters, while continuous variables or fields are represented using
italic letters. The applied numerical methods use a time stepping scheme

to compute the state variables at consecutive instances in time ¢, = tq,
ty = to + Aty, ty = t1 + Ats, etc., where Aty is the time step size. Defining
ugf ) (tx), the discrete subproblems to be solved for ui,pll in each time
step k can be stated as
1 P
P =D (uf)) + BY (wll) + C (uil)y . wT) =0, (35)

As done for the state variables, D,(f ), Bip ) and Cip ) were introduced as the
discrete counterparts to the continuous equations D®), B® and C®). They
may also depend on the state variables in previous time steps as indicated
by the subscript k. The discrete system arising from the application of the
respective numerical method is assumed to be closed, i.e. there are as many
equations collected in P;f) as there are components in u®. It should be
noted that — in accordance to B® and C?) being defined only for parts of

Q@ or its boundary — Bip ) and C,(Cp ) will most likely involve only some of

()

the degrees of freedom collected in u;7,. The discrete coupled problem can

now be stated as

1 1 nP

Py uf)
2 1 nP

Pl ol <0 o
np 1 nP

P/ @l u") =0

It can be generally treated as one nonlinear problem, which may be solved
using the Newton-Raphson method. In a monolithic solution approach, the
resulting linearized system of equations

DyPY DyaP ... Dy PV | | AulV @Y, .. al"™
Dy Py DyoPP ... Dy PP | | aa® | [ -PP (@, al")
Du(l)P](cnp) Du(Q)P](CnP) o Du(“")PEfnp) Allfnp) _Pénp) (’&En’p))

(3.7)

indeed reflects the basis for the computations performed in each time step.
Obviously, all subproblems are solved simultaneously by computing im-
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3.1 Coupled problems

proved approximations ﬁgp )

such that in each iteration ¢

=0 + Au (3.8)

of the new states u,(fﬁl. This is done iteratively

provides an improved approximation. When the Newton-Raphson method
converges after n iterations, the new solution is set to u1<<,121 = ﬁfff,) .

With the introduced formulation, a partitioned solution approach can be
interpreted as a block Gauss-Seidel method applied to the monolithic sys-
tem (3.7). To this end, a coupling iteration with index j is introduced. Each
iteration starts with the first subproblem and ugfl) is computed, possibly
using Newton-Raphson iterations, i.e.

1 1 1)/~ (1 2,5 nP.j
DywPy anlY = —PM @M u) ), (3.9)
i = + A, (3.10)

When the Newton-Raphson method converges after n" iterations, the

new solution is set to u,(flfl) = ﬁlen). It is noted that ‘15:1) does solve
Pél)(uiﬁl, ey u,(;fl) ) but is not necessarily a solution to the coupled prob-

lem. Generally, the process of solving subproblem P in coupling iteration j
may be formulated as

Dy P ™ = — PP 7wl ), (3.11)
all] = a” + A", (3.12)

The subscripts and superscripts were introduced so that any variable can be
uniquely defined within the scope of the computations it appears in. Since
the variable ﬁgp ) never appears outside of the inner solver iterations, the
subscripts and superscripts for the time step and the coupling iteration are
dropped. Besides this, the following conventions are used throughout this
work:

e Intermediate values are marked with a tilde, e.g. ﬁfp ), They do not
fulfill the respective subproblem.

e A superscript denotes the coupling iteration, e.g. j and indicates that
the quantity does not fulfill the coupled problem but only the respective
subproblem.

e The time step is indicated by a subscript, e.g. k, which either refers
to a certain item from a set of discrete values or an evaluation of a
function f(t) at t.
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3 Mechanical modeling of the arterial system

In the remainder of this chapter, the superscript j will be dropped for the
sake of readability, since all subproblems are introduced separately without
a connection to the coupled problem.

3.2 Continuum mechanics

When considering the conservation of a quantity w, the assumption of a
continuum gives rise to so-called localization arguments. Due to the fact,
that quantities are continuous in space and time, an integral statement may
be considered for an arbitrarily small region {2 and for a general conservation
law c(w)

/c(w) d2=0 & c¢(w)=0 inQ (3.13)
Q

holds. The equivalence relation (3.13) is denoted the spatial localization
argument. A localization argument with respect to time can be expressed

by
/c(w) dt=0 & c(w)=0. VtE [ts,t] (3.14)

2

Different types of regions (referred to as domains in the following, as
usual) are needed on order to describe fluids and structures. In structural
continuum mechanics, as convenient by reasoning, the domain is usually
attached to the matter and moves along with it. One could say that the
domain is attached to the body under consideration. On the fluid mechan-
ics side, the domain does not follow the matter, but instead reflects an
independently moving region, in which the fluid motion is to be described.
Fluid particles may enter and leave this type of domains, whose boundaries
- in case of FSI - follow the structure.

To formally deal with computations on such moving domains, a general
mathematical framework is introduced in the next section. This is done
independently of the considered problem to establish general conservation
laws in moving domains. In the following sections, the underlying equations
for structural and fluid dynamics are introduced by formulating the conser-
vation of mass and momentum based on the general conservation equations
for the respective type of domain.
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3.2 Continuum mechanics

material domain paréi)cg(rﬁ(;;ion
Eulerian viewpoint:
x=x0=19% =0, £l
®(X, t)and W(x, t) are not explicitely computed
Lagrangian viewpoint: spatial domain
x =X V=10 =a® o xql, Vi 1)
®(X, t) is part of the solution X

domain motion

ALE viewpoint: O(x 1)

®(X, t)and W(x, t) are not explicitely computed,

O(x. t) follows from an auxiliary problem. X .
referencial domain

Figure 3.1: Configurations of a moving domain and associated mappings.

3.2.1 Conservation laws on moving domains

The introduction to the kinematics of moving domains given here summa-
rizes the deliberations from [18, 60] using a suitable notation for the later
formulation of the numerical methods. A detailed explanation of the basic
concepts followed here can be found in standard text books, e.g. [5, 230,
26).

As a general starting point for the description of the physical behavior of
continua, a fixed domain Q) C R? is considered. It represents the obser-
vation area or control volume that moves and deforms as time evolves in its
initial or referential state. While Q) denotes a fixed domain with referen-
tial coordinates x, the current shape of the control volume is represented
by the domain Q,@ with spatial coordinates . A space-time mapping

S) ([XT, t]T) £ Q00 [t tend] — Q) % [to, fond] (3.15)

identifies every point x in Q) with a point & in ng), such that y = © (v)
holds for the space time coordinates y = [:BT7t]T and v = [XTJ]T. The
mapping © can be identified as the domain motion, cf. Fig. 3.1. For a
formal treatment of derivatives with respect to x, @ and ¢, the space-time
gradient

erad, (©) = { (f; v ] (3.16)

is established, where
F = grad, (z) = GRAD(z) (3.17)
29
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denotes a deformation gradient and

ox

s (3.18)

'lA]:

X
denotes the domain velocity.

A third domain QEX) is introduced, which is called the material configu-
ration and coincides with the region that at time ¢t = 0 was occupied by all

x
t

particles in Qi) Accordingly, a mapping
P ([XT, t]T) - Q% [to, tend] — U  [to, tend] (3.19)

relates the initial particle position X with the current one x such that
y = ® (Y) holds with the material space time coordinates ¥ = [XT, t]T.
The mapping ® can be identified as the particle motion and its gradient

F v
grady (®) = {OT 1 } (3.20)
gives rise to the well-known deformation gradient
F = gradx(x) = Grad(z) (3.21)
and the particle velocity
0
v= 22| . (3.22)
ot | x

As illustrated in Fig. 3.1, a third mapping that relates the referential coor-
dinates x and the material coordinates X follows from the two mappings
introduces so far.

U ([XT,t]T) L Q%) x [t, tena] = Q) X [to, tend] (3.23)
defines the relation Y = ¥ (v) = ® 7! (© (v)) and a deformation gradient
F = GRAD(X) (3.24)

as well as a velocity
b= %—f X (3.25)

follow from its gradient grad,,(¥). According to Fig. 3.1, special choices for
the mappings © and W give rise to well-known descriptions of the particle
motion ®.
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e If a Lagrangian description is employed, the domain motion is chosen
to coincide with the particle motion, i.e. ¥ = I. This description
is commonly used in the field of structural mechanics. Because the
spatial domain ng and likewise the mappings © and ® are part of
the solution to a corresponding structural problem! all computations

are performed with respect to the configuration Q(()X). In the context

of structural mechanics,
o5 =0 = o =ofY = oW (3.26)

denotes the undeformed reference configuration. The spatial or current
configuration is denoted by

=0l (3.27)

e In an Fulerian description, the control volume is independent of the
particles. It is fixed in space (©® = I') and particles enter and leave the
fixed domain Ql(f';) = Q(()z) = QW as time evolves. Such a description
is commonly used in the field of fluid mechanics. An undeformed con-
figuration QEX) is not computed, which allows to cope with the large
deformations, e.g. vortices in the flow, which are common in fluid dy-
namics. However, special attention has to be paid when establishing
conservation laws within such an Eulerian description. While all quan-
tities are defined in terms of spatial coordinates x, the conservation
of a quantity must still be formulated with respect to a fixed material
point, i.e. a fixed X.

e In the context of fluid-structure interaction, the standard Eulerian de-
scription is not directly applicable, because flows in moving domains
are considered. Therefore, the so called Arbitrary Lagrangian Eulerian
(ALE) description is used. In the ALE description, the domain mo-
tion ® and the particle motion ® are independent of each other and
neither ng) nor Q£X> are fixed. As in the Eularian description, special
attention has to be paid when establishing conservation laws. Further,
an auxiliary problem needs to be formulated, allowing for a computa-
tion of the domain motion ®. In most cases, an extension operator is
established that allows for a computation of the internal domain dis-
placement d=z— x from given displacement at the boundary OQ,@.

1This holds true as long as geometrical nonlinearities are considered
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3 Mechanical modeling of the arterial system

Possible choices for such an extension operator will be given in Sec-
tion 3.2.3. In the context of fluid mechanics, the moving domain is
denoted by

of =l (3.28)

Material time derivative

The introduced configurations QX (referential), QX) (material), and Q®)
(spatial) serve as a basis for different formulations of the mentioned con-
servation laws. For a not further specified quantity w, its conservation for
a certain particle can be described using a function w™(x,t), w® (x,t) or
wX )(X,t), depending on the chosen configuration. One can establish

Aw™)

Dw 0w o)), _ 9w -
+grad(w( )> v ‘X+GRAD(w<X>> v

ow'®)
Dt ot ’X ot

ot

x

(3.29)

for the so called material time derivative in the different configurations.
As done for referential and material coordinates in Eq. (3.17) and (3.21),
respectively,

grad(-) = grad, (-) (3.30)

is introduced as the gradient with respect to the spatial coordinates for
convenience. In the following % generally denotes a derivative with the
particles held fixed. The superscript indicating the configurations is dropped
for the sake of clarity. Since the introduced mappings provide an explicit
relation of the different functional forms, e.g. w®(®(x),t) = wX)(X,1),
it will be clear from the context (differentiation or integration with respect
to X, @ or x) which functional form is considered. The relations in (3.29)
follow directly from a formal application of the space-time gradients and
the chain rule, i.e. using the relations

grady (w) = grady (y)* grad, (w) = grady (v)" grad, (w) . (3.31)

Reynolds transport theorem

Let Qf) be a Lagrangian spatial domain, i.e. one that is occupied by the
same particles for all £. The conservation of the quantity w associated with
the particles is to be formulated. To this end, a source 5 and a flux vector
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~®) are introduced to describe the creation and the transport of w. This
allows to write
D
= wdQl® = / ~® . dool® + / gaa™ (3.32)
o o™ o

for the material time derivative in an integral sense. It should be noted
that the flux vector 4®) describes a flux of w from particle to particle only
and does not include convective effects. They have to be considered when
particularizing the material derivative %. One arrives at the Reynolds
transport theorem

/%: dn® 4 / grad(w) - v dOQ = /7(m)~nd09(m)+/ﬁd9(z)a

Q@) =) o0(=@) Q)

(3.33)

which seems obvious in consideration of Eq. (3.29). The restriction on the
spatial domain to be a Lagrangian one is relaxed in (3.33) due to moving
the differentiation inside the integral. With the introduced framework for
moving domains, (3.33) can be derived using standard rules for coordinate
transformations, see [5, 18]. A powerful technique frequently applied in
this context is to first integrate in time, then change (space time) variables
using the introduced mappings and, finally, use a localization argument in
time. This allows for a transformation of the Reynolds transport theorem
from the spatial to the reference and material configuration. To this end,
a suitable transformation rule for the flux vector 4® has to be defined. In
order to preserve the conservation property of (3.33),

~X) = JF1 4@ (3.34)
and
FX) = JEF 4@ (3.35)

the material and referential flux vector, respectively, are introduced. With
(3.34) and (3.35), it is ensured that

/ div(~y<w)) an@ = / Div(~y<X>) a0 = / DIV(7<X)) 4o,

Q@) QX) Q0
(3.36)
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3 Mechanical modeling of the arterial system

see [18] for a proof. Similar to the gradients in Eq. (3.17,3.21,3.30), conve-
nient notations for the divergence with respect to the different coordinates
were introduced in (3.36).

General conservation laws
By applying the divergence theorem, (3.33) can be recast into the form

[
ot

Q=)

+ div (wv _ wc)) — BdO® =, (3.37)

xr

which represents the general conservation law in the spatial domain. By
integrating (3.37) over time before changing variables in the resulting space-
time integral (from y to Y') and then localizing the new space-time integral
in time, one obtains the general conservation law in the material domain

a(‘]w) . -1 (z) _
/ = 'X—D1v<JF ~ )—JﬁdQ_O. (3.38)
Qx)

In a corresponding way, a formulation suitable for the ALE description can
be established. After some algebra as detailed in [18], one arrives at

[
ot

Q@)

+ (v —9) - grad(w) + wdiv(v) — div (’y(m)> — 3da@ = .
X

(3.39)

Note that (3.39) represents a mixed formulation of the general conservation
law. While time derivatives are taken with respect to the referential time,
i.e. with referential coordinates x held fixed, spatial gradients are computed
with respect to the spatial coordinates . As for a general scalar quantity
w, conservation equations for a vector quantity w can be derived. With a
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corresponding spatial flux tensor I'® and source vector 3, one obtains

I
ot

n div(w Qv — rW) ~ Bd0® = o,

T

Q=)
(3.40)
/ au‘”)‘ - Div(JI‘(””)F‘T) — JBdAX) =0
ot |y
(9109
(3.41)

[
ot

Q@)

+ (v —9) - grad(w) + wdiv(v) — div (FW) ~BdO@ =0
X

(3.42)

as the spatial, material, and mixed form, respectively. From (3.41), the
transformation rule for the flux tensor

r& — jr@ p-T (3.43)

can be identified.

In the following sections, the conservation for mass and linear momentum
will be formulated using (3.37-3.39) and (3.40-3.42) to obtain the governing
equations of structural and fluid dynamics. To this end, the density p and
the linear momentum density (pv) are substituted for the general quantities
w and w, respectively. Regarding the conservation of mass, no sources or
fluxes are present since mass is neither created nor transported from particle
to particle. Regarding the conservation of linear momentum, the Cauchy
stress tensor o can be identified as the spatial flux of linear momentum and
sources appear in the form of volume loads b.

3.2.2 Structural mechanics

The structural mechanics subproblem is based on the formulation of the
balance of linear momentum for a Lagrangian control volume. As illustrated
in Fig. 3.2, it moves along with the solid body under consideration, which
at time ¢ = 0 is assumed to be in an undeformed reference configuration.
The displacement d is introduced as the primary unknown in structural
mechanics. Substituting p for w in (3.38) to obtain the conservation of
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particle motion
. (X, 1)
HX, 1) Task of a structural field solver
Knowing d (X, ti), compute d (X, tii1)
given surface tractions (X, ty1) on 5"

displacement and displacments d (X, ti41) on 5.

d(X,t)

spatial domain

Discrete structural solve operator

dk+1 = Sk(fkﬂv ak+1)

material domain

Figure 3.2: Structural mechanics kinematics, core quantities and role of a structural field solver
in a partitioned simulation.

mass in the material configuration results in

27

=0. 44
5| =0 (3.44)

The flux and the source term are zero, since mass is not created or trans-
ferred from particle to particle. Introducing the density at ¢ = 0 as py,

po=4Jp (3.45)

must hold, which can be seen as a kinematic relation rather than a conser-
vation equation. For the case of incompressible materials, it constitutes a
constraint (namely J = 1) that has to be accounted for by special means,
e.g. mixed formulation with additional unknowns, see [230, p. 406]. Here,
only nearly incompressible materials are considered. Substituting (pwv) for
w in (3.41) and applying the spatial localization argument, one arrives
at the partial differential equation that describes the motion of the body
under consideration. Augmented by Dirichlet (given displacement d) and
Neumann boundary conditions (given traction ¢) as well as initial condi-
tions, the structural mechanics initial boundary value problem (IBVP) is
obtained.
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pod = Div(P) + py b in O (3.46)
d=d on T3¢ (3.47)
PN=t on T3 (3.48)
d=d in ,t=0 (3.49)
v=d=uv in Q,t=0 (3.50)
In correspondence to (3.43), the first Piola-Kirchhoff stress tensor
P=JoF" (3.51)
was introduced. Further,
. d . 2d
d= od and d= od (3.52)
ot x ot? |

were introduced as the standard temporal derivatives.

In the context of coupled simulations, the IBVP (3.46-3.50) defines the
structural mechanics subproblem, which is solved using a structural field
solver with the task summarized in Fig. 3.2. Once the problem is discretized
using a numerical method, the continuous quantities d(X, tx), t(X, t1), etc.
are represented by the respective degrees of freedom collected in the vectors
d;, t; etc. This gives rise to the operator formulation introduced in Fig. 3.2.
The boundary values t;, and dj;; may depend on the state variables of other
subproblems. Within the structural subproblem, however, they are treated
as given independent quantities, as indicated by the overbar.

Problem (3.46-3.50) must be augmented by a constitutive equation that
relates the displacement and stresses such that a closed problem is ob-
tained. To ease to corresponding calculations, the second Piola-Kirchhoff
stress tensor

S=F'P (3.53)

is introduced, which is symmetric and defined in the material configura-
tion, as opposed to P, see [230, p. 37]. Further, the right Cauchy-Green
deformation tensor

C=F'F (3.54)
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and the Green-Lagrange strain tensor
1
E:E(FTF—l) (3.55)

are introduced. They relate infinitesimal line elements in the material con-
figuration (dX) and in the current configuration (da) through

|dz||* = dX - CdX (3.56)
and
|dz|* — |dX||? =dX - EdX. (3.57)

For a detailed introduction into stress and strain measures, see [230] or [26].

Hyperelastic constitutive equations

Constitutive equations are used to describe the material behavior in solid
mechanics. They relate the internal loads within a body to the deformation
and, thus, close the structural mechanics IBVP (3.46-3.50). With the aid of
experiments, the parameters in the constitutive equation are fitted to give
the best possible agreement between simulation and experiment. Through-
out this work, hyperelastic constitutive equations are used to describe the
behavior of the considered solids. They introduce a dependency between
the chosen strain measure and the work conjugated stress measure through
a strain energy density function (SEDF) W. Choosing the Green-Lagrange
strain tensor E as the preferred strain measure (which will always be the
case here)

oW _ oW _ o OW
T 9E " aC OF

gives the second Piola-Kirchhoff stress tensor. This makes it possible to
formulate the structural mechanics problem as a minimization problem.

(3.58)

Structural mechanics in terms of energy

The total strain energy stored in an elastic body is given by £ = fQQ W dQg.
The difference between E and the work performed by the external loads
(body force b and surface traction %) is given by

:/W—d-z}dg;—/d-t‘drg. (3.59)

i)
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The minimum is found by setting the first variation d41I to zero, i.e.

5dH:/DEW~5dE—5d-Ed93—/5d-idF5:0. (3.60)
o I

As described in many textbooks, see e.g. [9, 11, 183], the dynamic situation

can likewise be found using the principle of stationary action®. It essentially

states that a mechanical system will move from one time instance t, to
another one t, such that the action

ty ty
1 . S S
H:/Ldt://§pd2—W+d'bdQB+/d-tdF3dt (3.61)
ta ta O I

is minimal, i.e. 0gH = 0. In (3.61), the Lagrangian L is equal to the
difference between kinetic and potential energy and if §gH = 0, it fulfills
the Euler-Lagrange equation
oL oL _
od dtod
which leads back to the PDE (3.46).

(3.62)

Nearly incompressible hyperelasticity

In view of the finite element method (FEM) to be applied for the numerical
discretization of the structural mechanics subproblem, it is preferable to
stick to the displacement d as only state variable. Such a pure displacement
formulation limits the choice of suitable SEDFs to those which describe
a material behavior that is at least slightly compressible. Material mod-
els intended for describing truly incompressible materials can still be used
by applying the so called isochoric-volumetric split of the SEDF into an
isochoric, distortional part W9 and a volumetric part W' as proposed
in [74]. Introducing the isochoric deformation gradient

F=J5F, with det(F)=1, (3.63)
and the volumetric deformation gradient

F=Ji1, with det(F)=J, (3.64)

2Note that the principle of stationary action is also known as Hamilton’s principle, however, as reported
in [9, p. 19], only outside of England, especially in Germany and France.
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the full deformation gradient is split in a multiplicative way as
F=-FF. (3.65)
The SEDF is split additively such that
W = W3E(F) + wl(J). (3.66)

Consequently, the second Piola-Kirchhoff stress tensor is also split into two
parts and reads

_, awdis +9 awvol
T oc oC

In accordance to (3.63), isochoric variants of the right Cauchy-Green defor-
mation tensor and the Green-Lagrange strain tensor can be defined:

S = §dis  gvol, (3.67)

C=F'F=sic E=,(C-1) (3.68)

For the distortional part W% it is common practice to substitute any C or
E appearing in a SEDF W meant to be used for incompressible material
by their isochoric counterparts (see [92]). That is, when constructing a
WaS(E) from a W¢(E), the functional form for the second Piola-Kirchhoff
stress

awinc
oC

can be reused in the compressible case, where

Sinc — 9 —pC™! (3.69)

T
oC\ = 0Jow!
is used to compute S. In (3.70),
dis
S=2 oW (3.71)
ocC

inc

Joc and therefore does not need to be derived
anew for the compressible case. The terms arising from the application of
the chain rule are found to be

oC 1

= —J (z -3C® Cl) (3.72)

has the same form as 9V

ocC
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and

oJ 1

— =-JC. 3.73

oCc 2 (373)
For a comparison with linear elasticity and the linearization of the struc-
tural mechanics subproblem in the scope of the finite element method, it is
necessary to compute the elasticity tensor
08 5 oS
~O0E ToC’
Like the SEDF and the stresses, it is split into a distortional and a volu-
metric part as C = C% + C"°!. For the distortional part,

g (' (T
—\oC oC

2 qais N
—3 (8%eCc+CesY) (3.75)

c (3.74)

4 . _ 1
+3(C-9) <cl gCc'-:Cle cl)
provides a useful relation, where

< 211/ dis
c—205 _ 07 VL (3.76)
oC oC
has the same functional form as the elasticity tensor provided for W¢. The
dyadic product defined by ® is defined in Section A.1.2. A derivation of
(3.75) can be found in [90, p. 82] or [102, p. 255]. Different forms of the
fundamental relations given above, which are based on the invariants of
C or principle stretches (the squared eigenvalues of C') can be found in
standard textbooks, e.g. [26, 230, 102].
To obtain physically meaningful results, the volumetric part of the SEDF
must ensure that
lim W — oo and lim W — co. (3.77)
J—=0

J—00

For a detailed explanation of these and additional constraints that have to
be fulfilled to ensure existence and uniqueness of a solution, see [92] or [59].
A commonly applied form of W is

Wyl = g(l —J)2. (3.78)
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However, it is not suitable for problems involving strong compression, as
WYl — 1 for J — 0, which does not ensure (3.77). In [92], the choice

Wy = = (S 4T —2) (3.79)

is proposed and found to be preferable over (3.78) as it is in line with (3.77).
A third possibility proposed in [230] is

Wyl = g (J2—1) - gln (), (3.80)

which also ensures (3.77). With (3.73), the volumetric parts of the second
Piola-Kirchhoff stress are obtained as

Sl =k (J2—-J)C, (3.81)
Syl = % (P-J?) Cc, (3.82)
Syl = g (J2—1) Cc (3.83)

and for the volumetric parts of the elasticity tensors,

=k (22-J) CT@CT =2k (S~ J) CT'BCT,  (3.84)
=5 (I CleC - (P oI C1BCT (389)
Gl=rkSPC 0C (S -1)ClBC (3.86)

is obtained.

Well established constitutive equations

A straightforward choice for a constitutive equation in the context of
structural mechanics with large displacements is given by the St.- Venant-
Kirchhoff (SVK) model. Tt extends the three-dimensional generalization of
Hooke’s law

o =CHookeg (3.87)

from linear elasticity to the geometrically nonlinear regime. While in (3.87)
the engineering strain tensor

e = symgrad(d) (3.88)
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is related to the Cauchy stress according to the small strain theory, in the
SVK model the Green-Lagrange strain E is related to the second Piola-
Kirchhoff stress S. With a constant elasticity tensor C 2 CHooke

SVK

S = clooke B — \tr(E)I +2u E (3.89)

is used, which can be derived from the SEDF

W o é(mr(E))2 +u (3.90)
3.9

2
mbsE - E. (3.91)

The parameters p and A denote the shear modulus (or first Lamé coefficient)
and the second Lamé coefficient, respectively. While the SVK model may be
used to describe deformations with large rotations, it has a major drawback
when considering the compression of a material. Since W VKO as J — 0,
(3.77) is violated.

Different, formulations of CH°°k exist, which are useful when comparing
more complex material laws to linear elasticity.

CHooke — \T 4247, (3.92)

corresponds to the formulation in (3.89).

2
cHooke — T 42D = (5—3;L)T+2uz (3.93)
naturally includes the compression modulus £ and reveals the relation
2
A=k — 3H (3.94)
considering that
1
D=T- §T‘ (3.95)

The fourth order tensors Z (the identity tensor), 7 (yielding the trace) and
D (yielding the deviatoric part) are defined in Section A.1.3. The introduced
parameters from linear elasticity can be related to the well-known Young’s
modulus E and the Poisson ratio v by

E Ev E

SN (e A () [T AT (T N
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A family of material laws developed to describe the behavior of rubber-like
materials is given by the so called Neo-Hookean models. In the incompress-
ible case, they are defined by

wine =2 (Ig —3), (3.97)

where I¢ = tr(C) denotes the first invariant of the right Cauchy-Green
deformation tensor. In the compressible case, (3.97) must be augmented
by suitable volumetric terms, which gives rise to different variants of com-
pressible Neo-Hookean models. If not stated otherwise, the variant

W (o 3) — pn() + g (In (J))? (3.99)

given in [26] is used. Note that this model does not fit into the framework of
the isochoric-volumetric split since the first term in (3.98) is not isochoric.
The second Piola-Kirchhoff stress is obtained as

ST (I-Cc)+rm()C! (3.99)
and the elasticity tensor reads
cTrCc'®C ' +2(u—-AIn()) C'®C, (3.100)

see [26, p. 163]. By comparing the resulting Neo-Hookean elasticity tensor
with the one from linear theory, i.e. evaluating C at d = 0 and compar-
ing the coefficients, it becomes obvious that parameters A\ and p indeed
correspond to the Lamé coefficients from linear elasticity.

Another variant of the Neo-Hookean model that is compatible with the
isochoric volumetric split is discussed in [230, p. 46]. It is based on

s N2 % (Ig — 3) (3.101)

in combination with W3°l. With
R (3.102)
and (3.70) as well as S}°! from (3.83), the second Piola-Kirchhoff stress is

obtained as

CREE <1 -~ ;)ICCl) + g (F-1)Cc". (3.103)
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To arrive at (3.103), it was exploited that

1 - = 1,
<I—3C—1®C)S_S—3(S-C) c, (3.104)
see [102, p. 230]. The tangent modulus can be derived using (3.75) with
¢ ™ 0 ® 0, however, a direct calculation from (3.103) using (3.58) is less
involved. As shown in Section A.2.1, it results in

1 s _ 1 2
c oy (3 J i e (C—1®C—1 +3 cC'® C—1> TR C-1>
+rJPC'eC ! +k(JF-1)C'gC

(3.105)

The relation to the linear elasticity tensor can be investigated by an evalu-
ation of C for d = 0. With I¢|,_,=3,C =1 and J|,;_, =1,

_ 4 2
CNH2|d:0:2M1@1_§M1®1+7,u1®1+1€1®1

) 3 (3.106)
= (K— 3/L) T+2uS

is obtained. By comparing (3.106) with (3.93) one finds that s and p indeed
correspond to the parameters known from linear elasticity. For this com-
parison with linear elasticity, and for others in the following, it is necessary
to exploit the fact that Z and S can be used interchangeably due to the
symmetries of E and S.

3.2.3 Fluid mechanics

The fluid mechanics subproblem in the context of FSI is described using
the ALE formulation of the conservation of mass and linear momentum. In
the present work, as well as in all cited references on cardiovascular FSI,
the fluid is assumed to have a (spatially and temporally) constant density,
which implies incompressibility (not vice versa). The resulting equations
are commonly known as the incompressible Navier-Stokes equations.

To start with, the density p is substituted for the scalar quantity w in the
general conservation law (3.39) and the linear momentum density (pwv) is
substituted for the vector quantity w in the general conservation law (3.42).
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This yields

/ ﬁ‘ + (v — ) - grad(p) + pdiv(v) dQf =0,
ot Ix
Qf

(3.107)

+ (v — ) - grad(pv) + pw div(v) — div(e) — pbQl =
X

[75

of

(3.108)

As in the structural mechanics case, the flux and source were set to v* = 0
and 8 = 0 to arrive at (3.107) and, respectively, to I'" = o and 3 = b to
arrive at (3.108). By assuming a constant density and localizing Eq. (3.107)
and (3.108) in space, one obtains the ALE form of the incompressible
Navier-Stokes equations. Augmented by standard boundary conditions,
they give rise to the IBVP that represents the fluid mechanics subproblem:

div(v) =0 in (3.109)

v+ (v — ) - grad(v) — —dlv( )—b=0 inQ, (3.110)
grad(p) - m = O and v=0 on I'}, (3.111)

gradlv) n=0 and p=p  onlY (3.112)

v=wvy and p=py inQt=0 (3.113)

The pressure enters the momentum conservation equation (3.110) through
the definition of the Cauchy stress tensor

oc=T1—pl, (3.114)

where 7 denotes the shear stress tensor. It is related to the fluid motion by
a constitutive equation, which in the fluid mechanics case is usually based
on the concept of viscosity. Constitutive equations are then given in the
form

T=2n% (3.115)
where

{ = (glad( )+ (grad(v))T) = sym grad (v) (3.116)

l\’)\»—l
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Task of a fluid field solver
Knowing v(X, ti) and p(X, ti), compute v(X, tiy1)
domain motion and p(X, ti.1) given velocities V(X tyy1) on 5"

[
_ f,
©(x.t) and pressures p(X, tkfl) on I'tk‘i1 as well as the

f.v
rt

domain displacement d (X, ty.+1) on 8S25.

€ . .
3 Discrete fluid solve operator

Qg rgp =
} = Fi(dis1, Vis1, Prr1)

r & [ Vi+1
Pii1

€1

Figure 3.3: Fluid dynamic kinematics, core quantities, and role of a fluid field solver in a
partitioned simulation.

denotes the shear rate tensor and 7 denotes the viscosity. Newtonian flu-
ids are characterized by a constant viscosity, while non-Newtonian flu-
ids may be described using constitutive equations of different forms than
that of (3.115). So-called generalized Newtonian fluids are described us-
ing (3.115), but allowing for a shear rate dependent viscosity. To this end,
the viscosity is considered to be a function of the norm of the shear rate 4,
ie.

n=n(y) =n(l¥l)- (3.117)

Particular forms of (3.117) used to describe blood are discussed in Sec-
tion 3.3.

In the context of FSI simulations, the fluid solver is represented using the
operator formulation given in Fig. 3.3. Note that the domain displacement
at the boundary (represented by d after the discretization) is considered
one of the input quantities due to the fact that the auxiliary problem is
usually solved within the fluid solver.

3.2.4 Interface constraints and domain motion

With the fluid and structural mechanics subproblems at hand, an FSI prob-
lem can be formulated by additional interface constraints. They must hold
on the wet surface, which is denoted by I'™!. On the fluid side, T'f>! € ',
i.e. a velocity boundary condition is applied. On the structure side, the

wet surface is considered in the material configuration as T € Ty, i.e. a
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traction boundary condition is applied. Further, the motion of I'Y ST must
follow the motion of the structure, which reflects a constraint for the do-
main motion O (x,t) or, likewise for the domain displacement, d=x— X-
Recalling that QEX) = Q). I'FS! may also denote the wet surface in the
reference configuration. The interface constraints can then be stated as:

t=-pn—m1, on T5! (3.118)
o=d on T (3.119)
d=d on I'FS! (3.120)

As mentioned in Section 3.2.1, the motion of the fluid domain, i.e. the dis-
placement d inside Qtf , is computed by an auxiliary problem. The auxiliary
problem has no physical interpretation, but should meet some requirements:

e The motion defined by d must result in a valid mapping O (x, 1), i.e.
det (grad,, (®)) > 0 must hold.

e The solution of the auxiliary problem should be cheap, i.e. computa-
tionally inexpensive, considering the fact that no physical consistency
is demanded.

e The domain displacement given on T should be smoothly extended
into the inside of the domain such that the cells of the mesh retain a
reasonable quality in terms of skewness, aspect ratio and size.

Different approaches are commonly applied to define an auxiliary problem
that meets these requirements, some of which are introduced in the follow-
ing. Instead of applying the equations governing the auxiliary problems
directly using the domain displacement d, it makes sense to use the domain
displacement with respect to a reference time ¢

d*(x) = d (x,t) — d (x, 1) . (3.121)
This allows to update t* (e.g. every nth time step) to reset the reference
displacement once the total displacement becomes too large. In accordance,
reference coordinates

xt = x +d’ (3.122)

are introduced.
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Laplacian smoothing

This approach is implemented in the software package OpenFOAM (see
[221, 154]), which is applied throughout this work to solve fluid mechanics
problems. The displacement is governed by a Laplacian equation and by
suitable Dirichlet boundary conditions. The auxiliary problem then reads

divye (gradge* (d*)) —0 in QF, (3.123)
d=d on TEST (3.124)
d=0 on 905\ THS. (3.125)

While the Laplace equation ensures smoothness, it has to be discretized. In
OpenFOAM, this is done using the finite volume method. As explained in

Section 4.1.2, the discretization procedure may yield displacements d that
lack the smoothness property and may even yield det (grad, (©)) < 0.

Linear elasticity

In this approach, the fluid domain motion is computed as if Qf was repre-
senting an elastic solid. The auxiliary problem then reads

divy-(0*) = 0 in Qf, (3.126)
d'=d on TS (3.127)
d'=0 on Qb \ TFSL (3.128)

For the associated Cauchy stress tensor,
o* = cHooke gx — cHooke gy morad,,. (d*) (3.129)

is used according to the theory of linear elasticity. In the experimental ver-
sion of OpenFOAM (FoamkExtend, see [85]) the solution of this auxiliary
problem is realized drawing on the finite element method as explained in
Section 4.1.2. While this results in better mesh qualities, it is computation-
ally more expensive than using Laplacian smoothing.

Radial basis functions

A promising method for the computation of the domain displacement is
to construct a continuous function d* (x,t) that interpolates given discrete
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values at the boundary collected in d*. In general, this will be computa-
tionally less expensive than solving a boundary value problem as done in
the above approaches. Among other interpolation methods, radial basis
functions (RBFs) may be used, see [46, 47, 22]. As this approach is closely
related to the computational meshes introduced along with the numerical
methods in the next chapter, an explanation is postponed to Section 4.3.5,
where different interpolation methods are discussed.

3.3 Mechanical models for the cardiovascular system

So far, the framework for fluid and structural dynamics was described with-
out a connection to a specific application. The focus of this section lies on
special formulations that are necessary for the description of cardiovascular
FSI. To start with, several material laws for the arterial wall and viscosity
models for blood are introduced. Afterwards, the reduced order models
used to describe the surrounding tissue and vessel network are explained.
Special boundary conditions are needed to couple the three-dimensional
FSI problem with the reduced order models. The chapter closes with an
explanation of these boundary conditions

3.3.1 Constitutive equations for soft tissue

This section addresses different constitutive equations commonly applied to
model arteries and soft tissue in general. Modified versions of the models are
proposed, which are applicable in the context of finite element discretization
using a pure displacement formulation as mentioned in Section 3.2.2. This
assumption of slight compressibility is well justified and has been observed
experimentally in [234]. In general, the modeling of soft tissue poses a
big challenge due to the complex material behavior that results from the
heterogeneous microstructure.

Holzapfel-Gasser-Ogden models

A group of material models often applied to describe the behavior of soft
biological tissue is based on the SEDF introduced in [101]. Based on the au-
thors’ names, they are referred to as Holzapfel-Gasser-Ogden (HGO) mod-
els. The HGO models fall in the class of transversely isotropic materials
with two preferred fiber directions. Accordingly, the SEDFs are composed
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of two different parts as
W HEO qyriso . gyfibre (3.130)

where W denotes the isotropic part that corresponds to the strain en-
ergy stored in the matrix material, i.e. the material in which the fibers are
embedded. The anisotropic part of the strain energy stored in the fibers
is denoted by W™ which depends only on strains that occur in the re-
spective preferred fiber directions. While the original HGO model in [101]
was indented to be used in the incompressible limit case, different studies
have introduced modified versions that extend the model to the compress-
ible regime, see [82, 152, 236]. They are established by applying a possibly
incomplete isochoric-volumetric split as explained in the following.

Given the incompressible variant of the HGO model, the question arises
where to replace the full deformation tensors (F,C,E) by their isochoric
counterparts (F,C,E). If the replacement is done only when establishing
Wi and if WP is left unchanged, the isochoric-volumetric split is incom-
plete. In the compressible case, the resulting W™ is nonzero — not only
for distortional but also for purely volumetric deformations. This incom-
plete split is applied in [152, 236], following the argument that a purely
volumetric deformation will actually lead to stresses in the fibers, i.e. an
anisotropic stress state. Vice versa, a volumetric stress state will result
in anisotropic deformations, e.g. a sphere under hydrostatic loading will
deform into an ellipsoid, which conforms to the expected behavior of an
anisotropic material. The isotropic part of the SEDF then reads

[ HGO
2

where W4 can be identified to be a Neo-Hookean SEDF. For the volumetric
part, W'l = Wl (cf. (3.78)) is chosen despite the known issues for strong
compression associated with it. The incomplete split yields an unmodified
anisotropic part

Wiso _ Wdis + Wvol Hgo

(Ig —3) + g (1-J)> (3.131)

py/fibre — % (ekZ(NC_1)2 + ekQ(wc_l)z) ; (3.132)
2
where the invariants
NC = aj - Cal, (3133)
VIC =asy- Cag (3134)
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adventitia

Figure 3.4: Fiber orientation in the HGO material model considering a circular artery with two
layers (left) and considering a cut-out of one layer while neglecting the curvature (right).

correspond to the first invariant of I in the fiber directions, which are
defined by the unit vectors a; and a.®. For arteries, the directions are
given by the alignment of the collagen fibers in the media and adventitia.
As illustrated in Fig. 3.4, two helically arranged families of fibers can be
identified for each layer. If aligned to a Cartesian coordinate system as

shown, the fiber directions are given by
a1 —sin (8) By + cos (8) cos (¢) Bs +cos (B)sin (¢) By, (3.135)
and
ay = —sin (8) E1 + cos (8) cos (p) Es + cos (8) sin (¢) Es, (3.136)

where ¢ denotes the circumferential angle and 8 denotes the angle between
the fiber direction and the circumferential direction. When describing ar-
teries, the model is intended to be used with individual sets of parameters
for the media and the adventitia. As stated in Section 2.2.2, the determina-
tion of @ and as is an unresolved issue for complex geometries. The second
Piola-Kirchhoff stress is found to be

S Hg() Sdis + Sﬁbers + SI’OI’ (3137)

3The anisotropic counterparts to 11 are denoted by Vo and VIIe, which explains the naming convention
found in many articles on material models with two fiber directions.
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with S as given in (3.103), S°' as given in (3.81) and

2

gfivers — o kq ((NC — 1) a; ® a; eh2Ve=1) + (VIC - 1) as @ as 6k2(v{071>2) .
(3.138)

The tangent modulus can be constructed as

C Hgo Ciso + Cﬁbcrs _ Cdis + Cir‘ol + Cﬁbcrs7 (3139)
with C}°! as given in (3.84) and C%* as given in (3.105). The fiber part is
found to be

cfbers — 4 f, eha(Mo-1)° (1 + 2k (Vg — 1)2) (a1 ®a) ® (a1 ®ay)

+ 4y Vet (1 +2ky (Ve — 1)2) (a2 ® az) ® (az @ az) .
(3.140)

Special care has to be taken when investigating the relation between C
and the linear elasticity tensor Cpoore for the HGO model. Without the
anisotropic part, & and p"%0 can be easily identified as the bulk modulus
and the shear modulus. However, when taking the fiber contribution into
account, a distinction has to be made regarding the stiffness in the fiber
direction and the stiffness orthogonal to any fiber direction.

Fung model

The material model for arteries introduced in [80] accounts for the typical
behavior in a more phenomenological way. Instead of incorporating the
fiber directions explicitly into the SEDF, a general form

pyine Fune g (?—1) with Q=A-EQE (3.141)

is proposed. The tensor of material parameters A can be constructed such
that an anisotropic material behavior is described. An investigation of such
an anisotropic variant of Fung’s model can be found in [80, 101]. The
isotropic variant used here was proposed in [10] and uses

0= é (Atr (B) 4+ 2p0tx (B?)) . (3.142)

As can be easily verified, A and p correspond to the Lamé constants from
linear elasticity. However, this is not the case when using the model in com-
bination with the isochoric volumetric split. The corresponding modified
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SEDF then reads

W= Wt P2 (2 1) (3.143)

where 1
Q= (W (B) 2 (). (3.144)

C

The second Piola-Kirchhoff stresses are obtained using (3.70) and

dis _
8 = 2 " (Ap  (B) 1+ 2 e ) (3.145)

The elasticity tensor is obtained using (3.75) and

- Fung 2

C e 98 ® 8 +eQ (AT 42 e S) (3.146)

Equation (3.146) clearly reveals the relation to linear elasticity (see

Eq. (3.92)) in the incompressible case because for d = 0, e™? = 1 and

—= F . . . . .
S =% 0. Comparing the elasticity tensor with that from linear elasticity,

Ae disappears and pF™ is identified as the shear modulus p since

ol mus ((9C)" 7 0C
=0 oC oc )|,

Fung <z_ ;7’) AT +2u8) <I—:1))7'> = 2 ftpung (s— ;7’) :
(3.147)

Delfino model

In [57], a material model for arteries was proposed to describe the behavior
of a carotid artery. The SEDF proposed for the incompressible limit case
considered in [57] reads

e D 2 (Hle —1). (3.148)
Performing the isochoric volumetric split, it is found that
w P 2 (e o) 1) oyl (3.149)
The stresses are obtained using (3.70) and inserting

G Pdivo o313 1 (3.150)
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leads to
g dis Delfino. ;-3 <1 — %tr (C)® Cl> aetlc=s), (3.151)
The elasticity tensor is obtained using (3.75) and inserting
C Dellive %be%(lafi*) T (3.152)
leads to
p— T p—
ais Delfino. s (OC = (ab 1) ) 0C
cr=d <ac> (26 T)ac
2 s is
- g (Slbo ® 071 + 071 ® Slbo)
2 (= 5 (15-3) e B S |
+5J (C (ae c 1)) C'eC'-C'eC

(3.153)

For a comparison with the linear elasticity tensor, it can be easily seen
that the term in the second row of (3.153) disappears for d = 0, because
Sis"’ 40 Pellino ¢ according to (3.151). Here - contrary to all other material
models considered — the term in the third row does contribute to the tangent

modulus, which is due to the fact that

gDelﬁno ’d:O 7& 0. (3154)

This shows that in the incompressible case considered in [57], the material
(i.e. the artery) is assumed to be prestressed — a characteristic of the model
that is not preserved when performing the isochoric volumetric split, where
8|40 = 0 by construction. The issue of prestressing in the context of
arteries is addressed in more detail in Section 5.1.1. With

- (z _ :1))7') (abT) (z _ ;7’)

=(abT —abT) <I—:1))T> =0,

(3.155)

T

wacrel oC
(J (ac,) CDelﬁnoaC,>

it becomes clear that the term in the third row of (3.153) is actually the
only one that contributes to the elasticity tensor in the undeformed state.
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This yields

2 2 — ] — 11— __
ClSO ( J73 C SDelfmo) <C I@C ! —=-C ! ®C 1))
3 3 d—0
2 1
=Z(a1-1 _ =
=3 (a )(S 3T>
1
=92 J—
a (S 3T)
(3.156)

and the parameter a can be identified as the shear modulus .

3.3.2 Constitutive equations for blood

Blood is commonly known to be a non-Newtonian fluid or — as explained in
Section 3.2.3 — a generalized Newtonian fluid with a shear-rate-dependent
viscosity 7 (¥). Specific forms of 7 (§) allow for a description of an effect
called shear-thinning, which is typical for blood due to the presence of red
blood cells. With increasing shear rates, the viscosity decreases due to
a change of the arrangement of the cells. Of course, according viscosity
models describe this effect from the viewpoint of continuum mechanics, i.e.
they are only applicable for sufficiently large scales that allow to describe
the macroscopic behavior of blood in terms of continuous state variables
and properties. On a small scale, the concept of viscosity collapses, mean-
ing that a different modeling approach has to be chosen for simulations
of blood flow in capillaries. A very accurate but at the same time com-
putationally very expensive approach is to consider the red blood cells as
individual particles as done in [149]. However, corresponding fluid-particle
interaction simulations are out of the scope of this work. For the vessel sizes
considered here (with a diameter of at least a few millimeters), the contin-
uum mechanics approach is well justified. In fact, non-Newtonian effects
are seldom incorporated in comparable cardiovascular FSI simulations since
the shear rates are assumed to be in a range were these effects are negligible.
Thanks to the possibility of employing well-established viscosity models and
reuse tested implementations from the software package OpenFOAM ([221,
154]) due to the partitioned solution approach, four commonly applied vis-
cosity models for blood are used to investigate this assumption here. The
parameters for all models are collected in Tab. 3.2. In combination with
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Table 3.2: Parameters of the viscosity models experimentally obtained for blood.

Model no (mPas) 1, (mPas) k (Pas"™!') n(-) 7 (mPa) Reference
Newtonian - 4.08 - - - 114
Newtonian - 3.5 - - - 166
Newtonian 3.19 118
Power 187 3.5 12.171 0.799 - 118
Cross 103 5.25 1.15 1.25 - 1]
Bird-Carreau 56 3.5 11.0 0.357 - 181, 166
Herschel-Bulkley 187 — 8.97 0.860 17.5 212, 118

@ 100F E E
o F p—

N f = 4 b
£ 10 1 E
o F o
2 [ c

= F a oF N
(%] [
£ 1072F e
5 : 5
s | 2

-3 N O = -
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1072 10 10%2 10* 0 500 1,000
shear rate norm  (s1) shear rate norm +y (s 1)

—— Newtonian,7 = 4 mPas
-----Newtonian,7 = 3mPas
—— Herschel-Bulkley
--- Cross

Power
-~ Bird-Carreau

Figure 3.5: Viscosity (left) and norm of the shear stress (right) as a function of the strain rate

for the viscosity models under consideration.

Newtonian models, v = v, is used. In Fig. 3.5, the viscosity and shear

stresses are plotted for a selected range of shear rates.

Cross model
This model, proposed by Cross, 1965 [44] uses

C;oss Moo + o — Mo
o0 1 + (k,y)’”’

(3.157)

which results in n = 1y at 4 = 0. With increasing shear rates, the viscosity
approaches 7, as long as n > 0. The model was used in [1] as a viscosity
model for simulations of blood flow in a stenosed artery.
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Bird-Carreau model

The Bird-Carreau (BC) model goes back to [36] and is used in [181] and
[166] to describe the rheology of blood. The relation

n—1
2

0% et (m = ) (14 (69)°) (3.158)

results in n = ng at ¥ = 0. With increasing shear rates, the viscosity
approaches 7, as long as n < 1.

Power law
The power law is a comparably simple viscosity model with
0t = k4"t (3.159)

While (3.159) may be used to describe the shear-thinning effect, the param-
eters k and n do not provide the necessary flexibility. To this end,

N " < o,
E L e i > e, (3.160)
n’ else

is used with the parameters as given in [118].

Herschel-Bulkley model

The Herschel-Bulkley (HB) model goes back to [99] and defines the viscosity
as

n 2 Al T (3.161)
Y
In addition to the shear-thinning effect, a yield stress 7 is included in the
model. In scope of the discretization of the fluid mechanics subproblem,
(3.161) cannot be used directly. Instead of prescribing the yield stress 7,
a penalty viscosity vy is defined. An explanation of this issue is given in
[161].

3.3.3 One-dimensional models

The derivation of one-dimensional models for viscous flow in flexible vessels
starts with the assumption that its mechanical behavior can be described
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area AID(X, t) = AID(p'D) Task of a 1D vessel solver

\ Knowing QP (X, t) and p*P (X, tx), compute

" —— QP(X, tys1) and p'P(X, tyi1) given the
/\.\ flow Q'P or the pressure p*° at x = 0 andx = L.

X & j Discrete 1D vessel solve operator
—1 QL°
k+1 =1D
[ } Vk(Qk+1 Pict1
L pk+1

Figure 3.6: One-dimensional vessel model and role of a 1D vessel solver in a partitioned
simulation.

by average values of the independent mechanical quantities. Considering a
single vessel, there is only one spatial coordinate = corresponding to the axial
direction. The vessel’s geometry is assumed to be circular with a varying
cross-sectional area A'P(z,t). At each cross section I''P| the behavior of
the blood and the vessel wall is described by the flux

QWP (z,t) = AP IP = / vdlMP, (3.162)
T1D

and the average pressure

1
pP(z,t) = Z/ypdrm. (3.163)

71D

In (3.162) v'P denotes the average velocity and v denotes the local velocity
in the direction normal to the cross section I''P.

Having reduced the structural deformation to a single quantity A'P(x, ),
the fluid-structure interaction problem can be stated in a monolithic manner
by the one-dimensional Navier-Stokes equations

aAlD anD
= .164
En + o7 0 (3.164)

3Q1D ) an? AID 8p1D QID
78t + % (AlD + 7 78 + KR AlD 0 (3165)

which as in the three-dimensional case describe the conservation of mass
and linear momentum. They can be derived from their three-dimensional
counterparts (3.107) and (3.108) by inserting the definitions of the average
values or by considering the general conservation laws (3.37) for a one-
dimensional control volume with varying cross-sectional area A'P(x,t). A

59

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

3 Mechanical modeling of the arterial system

detailed derivation can be found in [76, 179, 160]. In either case, an as-
sumption has to be made on the velocity profile, which affects the final
one-dimensional momentum equation (3.165). The parameters « (momen-
tum correction coefficient or Coriolis coefficient) and Ky are introduced to
account for this influence. The integration of the quadratic term in the
three-dimensional momentum equations to obtain a one-dimensional aver-
aged formulation can then be stated as

1D2
/v2 dr'® — 4 /U1D2 drid — 4 AP U1D2 _ a/Cle . (3.166)

o rip

For a flat velocity profile, a« = 1 follows, which is assumed in most studies,
see [76]. Similarly, averaging the viscous term in the three-dimensional
momentum equation depends on the choice of a velocity profile. Of course,
a flat velocity profile will result in zero viscous stresses, i.e. Kp = 0.
Therefore, in most studies (see e.g. [179, 219]), a quadratic (Poiseuille)
velocity profile is assumed for this term — leading to Kp = 8w v.

A third relation is required to solve an initial boundary value problem for
the three unknowns AP Q'P, and p'P. An intuitive choice here is to relate
the cross-sectional area A'P and the pressure p'P by an equation describing
the mechanics of the vessel wall. Starting out with a general string model
(see [76]) and neglecting inertia and damping terms as well as any spatial
displacement gradients, one arrives at

. mho B
=p2 15 (\/AlD \/7> with 3= (1\—Fu2())A}JD (3.167)

where E, v, hy, and AP denote the vessel’s Young’s modulus, Poisson ratio,
initial wall thickness, and initial cross-sectional area, respectively. The pres-
sure at the outside of the vessel is denoted by plL. Inserting relation (3.167)
into the one-dimensional Navier-Stokes equations (3.164) and (3.165), the
problem can be written in standard (conservative) form:

0 0G
8—"3 +5-B (3.168)
with
AID Q" 0
Q=|: D],GZ[ 1D2 E‘ ,B_|: 1D:|. (3169)
Ql % + %AID _KRAID
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As explained in [76], choosing A'P and Q'P as independent state variables
is not the only choice, but choosing A™ and v'P is possible as well.

The conservative form gives rise to a characteristic analysis of the prob-
lem, which serves as a basis for non-reflecting or partially reflecting bound-
ary conditions at bifurcations and an investigation of wave propagation, as
explained in [76, 179]. Here, only a single vessel is considered and stan-
dard boundary conditions are used. The area A is assumed to be constant
at both ends and, therefore, does not appear in the operator formulation
given in Fig. 3.6. Note that the task of the 1D vessel solver allows for a
coupling of other models at both ends. Usually, the flow is prescribed at
the proximal end (z = 0) and the pressure is prescribed at the distal end
(x=1).

3.3.4 Windkessel models

An even more reduced model of the fluid-structure interaction in blood ves-
sels describes the relation of flow and pressure in terms of an analogy to
electrical circuits. Within such a model, the flow @) and the pressure p in a
vessel correspond to the current and the voltage, respectively. Windkessel
models can be classified as zero-dimensional models, as they provide no
spatial resolution of their state variables. They are commonly used in car-
diovascular FSI simulations to obtain a physiological pressure pulse at the
distal end (outlet) of the considered vessel segment. To this end, an implicit
boundary condition that computes the pressure in terms of the flow through
the respective boundary is implemented in the fluid solver. Alternatively,
the windkessel model can be considered as an additional field of the coupled
FSI problem.

Considering the types of windkessel models depicted in Fig. 3.7, three
types of components are used in this sense.

1. A resistor describes the dissipative viscous effects.
2. A capacitor accounts for the compliance of the vessel wall.

3. An inductivity accounts for inertia effects of the blood.

A detailed analysis of the two-, three- and four-component windkessel mod-
els discussed here is given in [217, 216]. Considering the relation between
flow and pressure of each model, one finds that

%. pw dpw
w 2C. [ e 1
QEL 0 (3.170)
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Task of a windkessel solver

o—x o 4» Knowing Q% (ty) and p*(tx), compute
Q¥(t) J_ QY(t) Ro QY(t) Ra J_ DY (tir1) given Q" (tiy).
w C_|_ pY(t) C_|_ R1 P (1) LC_|_ . essel o
! Discrete windkessel solve operator

Pl = Wi(Qii)

Figure 3.7: Two-, three- and four-component windkessel models as electrodynamic circuits
and role of a windkessel solver in a partitioned simulation.

Task of a tissue solver
Knowing d* (X, tx), compute t*(X, ti41)
given displacements d*(X, tiy1).

Discrete tissue solve operator

tEH»l = ﬁ(aiﬂ)

displacement

P Task of a reduced vessel solver
d'(X,t)

Knowing d* (X, tx), compute d* (X, txs1)
given tractions t*(X, tii1).

es3/E3

e/ E>
Dlscrete reduced vessel solve operator

e /E
o di =T (E)

Figure 3.8: Distributed mass-spring-damper system as a reduced model of the surrounding
tissue or the vessel itself and role of the respective solvers in a partitioned simulation.

for the two-component model,

dQ VV dpw
a R O

(1 + ]; ) Q¥ + C Ry (3.171)

for the three-component model and

. Qw dZngﬁ diw
<1+ )Q < CRI) & +LC 7 _R1+C & (3.172)

for the four-component model.

3.3.5 Models for the surrounding tissue

Assuming a traction-free boundary at the outside of the structural model
of an artery is common practice in FSI simulations, see e.g. [203, 206, 188].
According to the obvious presence of surrounding tissue in reality, it must
be accounted for in some way in the simulation approach. In the studies
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mentioned above, this is realized by including numerical damping into the
problem (mass proportional in [188], through the temporal discretization
scheme in [203, 206]). A more powerful approach is to use an elastic or vis-
coelastic foundation as done in [164, 146]. Of course, shifting the boundary
of the structural mechanics problem further away from the outside of the
adventitia would be the most accurate way of describing the behavior of
the surrounding tissue. However, stopping this process at the most clearly
defined boundary — where the skin touches the air and the assumption of
a traction-free boundary is well-defined — would yield problem sizes which
cannot be handled by today’s computers. This motivates the use of reduced
models for the surrounding tissue.

The foundation proposed here can be viewed as a mass-spring-damper
system that is continuously distributed across a boundary, as illustrated in
Fig. 3.8. The governing equation for the displacement d' is given by

mtd +dtd +ctd =t (3.173)

which does not include any interaction between adjacent particles. Still,
Eq. (3.173) allows for quite detailed modeling of the surrounding tissue,
provided that the inertia parameter m', the damping parameter d*, and the
stiffness parameter c¢' are considered as spatially variable. Further, nonlin-
ear effects may be included, which is done here for the stiffness parameter.
In accordance with the characteristics of soft tissue material,

t
&:%+ﬁﬁﬁw“ (3.174)
is chosen.

The inertia term in (3.173) can be interpreted as an added mass term in
the structural mechanics problem similar to the added mass effect known
from standard FSI problems. For cardiovascular FSI problems, it gives rise
to another reduced modeling approach. Instead of using the distributed
mass-spring-damper system to model the influence of the surrounding tis-
sue on the vessel wall, it can be used as a model of the vessel wall itself.
To this end, (3.173) is used to compute the displacement at the wet sur-
face while the tractions are provided from the fluid subproblem as usual.
The only difference between the usage as a foundation and the usage as a
reduced vessel model is the numerical method applied to discretize (3.173)
in space and time as explained in Section 4.1.4. In either case, an operator
formulation is possible, as given in Fig. 3.8.
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3.3.6 Velocity profiles

The main input to a fully resolved cardiovascular FSI simulation is the flux
through the inlet of the fluid domain Q(¢). From this flux, originating from
measurements or a reduced order model, a velocity profile ©(x,t) needs to
be computed, which can then be prescribed in terms of a general velocity
boundary condition (3.111) of the fluid mechanics subproblem. One obvious
constraint for @(x, t) is that it should result in the given flux, i.e.

Qt) = / o(x, t)dln, (3.175)

Thin

Assuming a circular inlet with radius R, which is locally parameterized
by polar coordinates r and ¢, and a velocity profile ¥(x(r,t), which is
symmetric about the center of the inlet, the constraint can be formulated
as

R 27
//'f)rtrdgodrz%r
00

This allows to determine the velocity profile based on the theory of flows
through circular pipes. The simplest choice results from the theory of in-
viscid flows and is commonly denoted as a piston velocity profile with

o(r,t)rdr. (3.176)

St~

St inean . (3.177)

However, with ©(R, t) # 0, such a velocity boundary condition violates the
no-slip boundary condition prescribed at the wet surface which shares all
points x (R, ¢) with the inlet. Prescribing a Poiseuille velocity profile, which
is based on the theory of stationary viscous flows, circumvents this issue:

2 A 2
~ Pois. mean r Q(t) T
v = 20" (1—2> = <1—2>. (3.178)

While the Poiseuille velocity profile delivers the analytical solution of the
three-dimensional Navier-Stokes equation in the case of a circular pipe and
a stationary flow, the pulsatile character of blood flow in arteries leads to
different velocity profiles. An analytical solution to such pulsatile flows in
circular pipes is provided by the Womersley velocity profile as derived in
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3.3 Mechanical models for the cardiovascular system

[228]. In [186], the following formulation is proposed:
2

~ Wom. r . rikt
TGN <1 - R2> + D W AR (3.179)
k=1

with the imaginary number i, the period of one beat of the heart T,

- (VA7RF) ~ o (VakEh) (3.180)
Jo (\/CW) —1

2m
=4/—R. 181
o “VTR (3.181)

In order to use (3.179), the flow must be represented as a Fourier series

and the Womersley number

Q(t)=>_ Bye*™Fr. (3.182)
=1

According to [186],
Jo (\/W) —2 (a2k13)_% Ji (\/m)
Jo (\/om) -1

holds for the Fourier coefficients. The introduced velocity profiles are shown
in Fig. 3.9 for an exemplary flow and a vessel with a radius of R = 5mm.
The mean flow rate is 232 ml/min.

B, =21 R? Ay, (3.183)

Non-circular cross sections

In [188] a mapping technique was introduced that allows for a recalculation
of a circular velocity profile such that it can be used for an arbitrarily shaped
cross section (since the mapping is not based on any physical arguments, it
should be used for nearly circular cross sections only). Denoting by (%)
the center of the cross section and by x(x,t) the point on the boundary
closest to @, the radius to be used when evaluating one of the above velocity
profiles can be formulated as

|z — x|

r(z) = (3.184)

[ — @] + [ — ]
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Figure 3.9: Typical velocity profiles prescribed as boundary conditions in cardiovascular FSI
simulations and remapping technique for non-circular cross sections.

where

(3.185)

denotes the average radius of the non-circular cross section. The final ve-
locity to be prescribed at the inlet is computed as
Q(t)

o(z,t) = Wv(r ) (3.186)

which can be seen as a correction that ensures (3.175). A truly circular
inlet T%" would yield v(x,t) = v(r, t).

3.3.7 Hemodynamic quantities

As explained in Chapter 2, the wall shear stress (WSS) can be seen as the
most important quantity in hemodynamic analyses. It is considered a fluid
mechanics quantity here, which is computed from the fluid velocity v or,
respectively, the shear rate 4 (see 3.116). With the unit outward normal of
the wall n"v,

W

(x,t)=Fn " =t—n" -t (3.187)

is obtained, which reveals that the WSS is likewise the tangential component
of the surface traction exerted by the fluid on the wall.

66

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

3.3 Mechanical models for the cardiovascular system

An open question is, how exactly the WSS influences the remodeling of
the vessel wall and how it promotes the development of intima hyperplasia
and atherosclerotic plaques. In [83], the following statements are made re-
garding this issue. As reported in [79], high WSS may injure the endothelial
cells and promote the development of lesions. On the other hand, the stud-
ies in [35] suggest that low wall shear stress leads to lesions, possibly due
to a correspondingly longer residence time of blood particles at the wall.
In accordance to this, a safe bandwidth of WSS may exist as suggested in
[121]. The hypothesis of such a bandwidth is still accepted today and has
been refined by many researchers, see e.g. [142] and the references in [83].

Regardless of whether high or low WSSs classify the local hemodynamics
as critical, the question arises whether a low/high mean WSS or a low /high
peak WSS is of interest. As stated in [136], low WSSs are to be seen critical
only in regions where the maximum WSS over one cardiac cycle is low. To
this end, the local maximum wall shear stress

Too ()= max TV (3.188)

max tet t*+T)

is utilized and critical regions are characterized by a low 7},.. Therefore,

e.g. when comparing different configurations of bypass graft anastomosis,
a quality indicator is the spatial minimum of the temporal maximum WSS,
or

(3.189)

= min 1"

w
T

max’
xcl'™v

max,min
where I' denotes the wall region of interest. Regarding the high wall shear
stress hypothesis, peak values are regarded critical, such that

’ xel'™v
provides another quality indicator.

As originally proposed in [126], direction changing or oscillatory WSSs
may also be used as an indicator for critical regions. As reformulated by
[94] and used in many studies of hemodynamics (see e.g. [186, 93, 222, 30]),
the oscillating shear index (OSI)

1 ‘ tlf+T detH
osr=-(1-1 1 (3.191)

2 e
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bypass graft
toe region: high WSSG

heel region: low || 7|, high OSI

bed region: low || ]|, high OSI

host artery

Figure 3.10: Critical regions identified in distal end-to-side anastomoses (reconstructed from
[83]).

provides a measure for how oscillatory the WSSs are.

The introduced indicators for critical regions correspond well with clini-
cally observed locations of intimal hyperplasia and atherosclerotic plaques
at inner walls of curved artery segments (see [83, 41]) and at the heel and
bed of distal anastomoses, as illustrated in Fig. 3.10. However, intimal
hyperplasia also develops in the toe region of anastomoses, where neither
low, nor high or oscillatory WSSs prevail. Typically, the WSS gradient is
high in this region, which gives rise to another quality indicator, namely
the time-averaged WSS gradient. As proposed in [30] it may be computed

as
oy (97'“’ 2 oy \?

WSSG = L : 2 ) dt. 3.192

/ \/ axl 6952) + (8902 ( )

It should be noted that other definitions of the WSS gradient have been

proposed, see e.g. the one in [133], which is based on a split of 7% in a part

acting in the direction of the mean WSS and another part acting in the

orthogonal direction. A discussion on the role of WSSG in hemodynamics
analysis in general can be found in [58].
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In the previous chapter, several models were proposed for the investigation
of the fluid-structure interaction in the arterial system on different scales.
The underlying equations of the models have to be solved approximately
using numerical methods. In general, the unknown state variables of each
model will be approximated using a finite number of unknowns. The state of
each discretized model is uniquely defined by these degrees of freedom. The
core problem, identified as the three-dimensional fluid-structure interaction
problem, is solved by the well-known finite-volume method (applied for the
fluid mechanics subproblem (3.109-3.113)) and the finite element method
(applied for the structure mechanics subproblem (3.46-3.50)). The focus
of the first part (Space and time discretization) of this chapter lies on the
introduction of these two methods and on the corresponding discretized
problems. Further, less complex discretization methods, which are used
to solve the equations underlying the windkessel models and the elastic
foundation, are introduced.

To provide analysis-suitable models for the three-dimensional FSI prob-
lem, a modeling pipeline was developed in the scope of this work. This in-
cludes a surface construction scheme that allows for a description of smooth
geometries by a small number of parameters. The resulting surface pa-
rameterizations are designed in such a way that they can be used directly
(without further approximation) in the scope of the high-order finite ele-
ment discretization. The construction schemes as well as algorithms for the
generation of the computational meshes are explained in the second part
(Geometry and mesh generation) of this chapter.

In the third part (Partitioned solution approach), the coupling procedure
according to the definition of the coupled problem introduced in Section 3.1
is laid out. This includes different coupling algorithms which refer to the
order and type (serial/parallel) of the partitioned solution approach. Each
algorithm can then be constructed using common building blocks such as
convergence acceleration schemes, predictors, and interpolation methods.
The building blocks as well as software tools for the data transfer from one
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solver to another have been implemented in the C++ library comana (see
[122]), which will be introduced in the subsequent part (Coupling software).

4.1 Space and time discretization

In this section, the solve operators introduced in the previous chapter are
filled with life. As done for the continuum mechanics basics, the numerical
methods for the fluid and the structural subproblem are introduced here
without a reference to a specific application. Due to the formulation of the
reduced models as separated subproblems, only standard boundary condi-
tions are needed in order to use the methods in a coupled cardiovascular
FSI simulation.

4.1.1 High-order finite elements for structural mechanics

High-order finite elements are used in a variant of the finite-element method
often denoted as the p-FEM [184]. In the scope of standard h-FEM, a higher
accuracy of the numerical solution is obtained by decreasing the element size
h — whereas the p-FEM, the degree p of the polynomials representing the
solution within each finite element is increased. This demands for a special
treatment of the geometry representation as well as a special construction
of the shape functions. The following theory of the FEM can be found in
many textbooks, see e.g. [184, 230, 16, 240].

Weak formulation and linearization

Starting with the structural mechanics IBVP (3.46-3.50), the first step
is to multiply the PDE (3.46) by a test function & and to integrate the
resulting expression over the computational domain Q((f')‘ The test function

)

od must vanish at the boundary Fés’d , where Dirichlet boundary conditions

are prescribed. One obtains
g= /5d- (p0d'+Div(FS)+pOB) Qs = 0, (4.1)
Q)

After some algebra including a partial integration of the divergence term
and a replacement of the resulting surface integral by the traction boundary
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condition (3.48) one arrives at

g:/pg&i-d+5E~S+pO&1-EdQB+/5d-deB=O. (4.2)
A 5
Therein,
E=D4Ed (4.3)

was introduced. The weak formulation (4.2) may also be seen as the result
of taking the first variation of the objective function (3.61) of the mini-
mization problem introduced in Section 3.2.2. Then, dd can be identified
as a displacement variation and 0F is the variation of the Green-Lagrange
strain. In the static case, the method of virtual displacements may likewise
lead to (4.2). Here, dd is not restricted to any of these interpretations but
simply considered a test function. However, the writing from the frame-
work of variational calculus for dd and éF is borrowed. Coming from the
minimization problem, (4.2) is obtained directly (.S - dF follows directly as
the first variation of the strain energy density W, see (3.60)). The more
involved derivation starting from (4.1) is summarized in Section A.3.1.
Problem (4.2) will be solved iteratively with the Newton-Raphson method
or a similar method. Therefore, the derivative of g in the direction of an
increment in the unknown displacement Ad is needed. In general, it reads

Dyg-od = /M-DddponQg
2%
+ /(5E -DgS AE + Grad(Ad) S - Grad(dd) d€2; (4.4)
€%
+ /&#D&Addﬂé +/Ad~DdeddF3,
o5 I3
where AE = DyE Ad denotes the directional derivative of the Green-
Lagrange strain tensor. Note that for the dynamic terms in the first row
of (4.4), a specific form can not be stated until a temporal discretization
scheme is applied. A derivation of the terms in the second row can be found
in [230, p. 97]. Allowing only for deformation-independent volume loads b,
as usual, the first term in the third row of (4.4) will disappear. Regarding

the second term that contains the surface traction ¢, different scenarios are
discussed at the end of this section.
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Figure 4.1: Discretization of the computational domain Q}mrms, with a finite element mesh.

Spatial discretization

Following the standard approach of finite element methods, the domain (2
is partitioned into polygonal non-overlapping subdomains or elements, such
that

oy~ Q. (4.5)
e=0

Depending on the shape of the domain and the type of finite elements used,
Qf can be represented exactly by this partitioning. Generally, however,
the finite element mesh is only an approximation of the real geometry.
Within each element, the geometry is described using 7. shape functions

Ni(f«) (r(e)7 S(ﬁ)’ t<@)), such that

X ~Y N9x[ in Q). (4.6)
i=0

The same approach is used to discretize the unknown displacement

Ne

d~> Nd =N qe in Q© (4.7)
=0
as well as the test function
od~ > N = N & in Q). (4.8)
i=0
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To ease the notation, the element degree of freedom vector

49 = [ g™ g0 }T (4.9)
was introduced in (4.7) along with the shape function matrix N(© as given
in Section A.3.2. The degree of freedom vector for the test function &d® is
constructed in the same manner as d©). The construction of suitable shape
functions is addressed at the end of this section. Here, only a few remarks
shall be given:

e Shape functions are defined on a local element coordinate system with
coordinates 7(¢) = [ r(© s ¢(© ]T (cf. Fig. 4.1).

e The fact that the same set of shape function N; is used to discretize
the unknown d and the test function &d renders the method a Bubnov-
Galerkin method.

e If the same set of shape functions is used for the geometry and the

unknown, i.e. Ni( ) = N (©) , the resulting element formulation is called

isoparametric. This is the case, as long as the two sets of shape func-
tions span the same space, i.e. span(Nfc)) = span(N,t-(e)).

o If span(N(€>) C Span(N(e ), the formulation is called subparametric.

7

If span(Nl(P)) C sparl(N<e)), it is called superparametric (given that
span(N (,) # span(N, ())).

Gradients with respect to the material coordinates X are obtained as
Grad(d) ~ Y Grad (NP) d\ in Q. (4.10)
i=0

For the computation of the partial derivatives on{/ox; involved in
Grad(]\fi(e))7 the mapping defined by (4.6) has to be considered. Apply-

ing the chain rule, one arrives at

ON"  orl) N

—— =5 (4.11)
0X;  9X; o)
which is amenable to the matrix formulation
Grad (Ni(@) =gt grad,, (N;e)) , (4.12)
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where J© denotes the element Jacobian matrix with entries
g = 9%

v 07“56) .

(4.13)

With the above concept underlying all finite element methods, the dis-
cretized governing equations can be formulated. Starting with Eq. (4.2),
the scalar product S'-0F has to be expressed in a suitable way. To this end,
the Voigt notation is applied, with

T
EV = [FEy E» Es3 2E;5 2By 2E; | (4.14)
and
T
SV =[S Sw S Siz Sk Sis] (4.15)

being the Voigt representations of the Green-Lagrange strain and the Sec-
ond Piola-Kirchhoff stress, respectively. Voigt representations of 0E and
other strain-like quantities are obtained according to (4.14) and stress-like
quantities are transformed according to (4.15) in order to preserve the equal-
ity of scalar products. Now, dEV = B(®) 6(®) can be established using the
strain-displacement matriz

B — [BP B,&ﬂ (4.16)

with BEE) as defined in Section A.3.2. This leads to the discretized weak
formulation (4.2)

g = v’ / B sVda; - / N by + / N T
9% 9 5

i(e) el©)

(4.17)

+v@t / NOT o N© 403 | d©
%

M(e)

where the static internal load vector i), the static external load vector
e, and the mass matrix M) were introduced. From them, the global
system of ordinary differential equations governing the structural mechanics
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subproblem can be obtained by assembling the element matrices according
to their connectivity, i.e. shared degrees of freedom. An algorithm for the
assembly process is given in Section A.3.3. The resulting global system
reads

Md+Dd+i=e. (4.18)

A damping matrix D has been introduced in (4.18) for the sake of com-
pleteness. In the scope of this work, it was decided to apply either no
damping at all or mass proportional damping, where D = (y M. Before the
finite element discretization of the linearized system (4.4) is established, the
temporal discretization of Eq. (4.18) is discussed.

Temporal discretization

The generalized-a: method proposed in [42] is used to discretize the struc-
tural mechanics problem in time. For special choices regarding its parame-
ters, the generalized-a method yields well-known time integration methods
such as the Newmark-5 method. A detailed analysis of the method is pro-
vided in [127]. The basic idea is to evaluate the ODE (4.18) somewhere
between time ¢ (where the state is already known) and t;41 = t; + Aty, or,
more precisely, at time

thtloa = (1 — a) th+1 + aty. (4.19)
This may be written as
M &k+am +D koram + ik+af = €Ltay, (420)

where o, is used for the inertia (mass) term while o is used for the other
(force) terms. The acceleration and the velocity are linearly interpolated,
ie.

djsi-a, = (1 — ay) disr + o dy, (4.21)
disima, = (1 —ay) dis1 + aydy. (4.22)
For the internal and the external load vector,
10, = (1— ap) i(di) +ay i(dy), (4.23)
eri1-a; = (I —ay) e(dpy1, try1) + ape(dy, tr) (4.24)
are introduced. Alternative approaches, e.g. iri1-o, = i(dry1a,) with

djy1-a, according to (4.21) and (4.22) are discussed in [127].

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

4 Numerical methods

Table 4.1: Relation between special choices for the spectral radius p,, of the generalized-«
method and well-known time integration methods.

method O, ay B v

Newmark-3 0 0 (14 o)™ 2%/;2)3:2
1—poo 2

HHT-a R~ 1% (1+ay)’ l% +ay

WBZ-a o0 (1 —am) 3~ Qm

optimal generalized-a 2/)”02“;1 p::j_l i (1—ay, + af)2 5= Qm + Qg

Introducing the spectral radius p, as a convenient parameter, oy, oy, as
well as f and  can be computed in accordance to py to yield well-known
time integration methods, as summarized in Tab. 4.1. A derivation of the
relations is provided in [69]. The optimal parameters given in Tab. 4.1
ensure second order accuracy as well as unconditional stability (for linear
problems).

The Newmark approximations

h _ 2 Y Y . ’)/Atk .
dp = (m) dpy1 — <m> d; — (5 - 1> d; — < 25 — Atk) dy,
(4.25)

" 1 1 1 : 1 -
= () 2= () - () - (55 1)
(4.26)

are used to obtain the final system of equations to be solved in each time
step. Inserting (4.25) and (4.26) in (4.20) results in the discrete structural
subproblem

P =M (aodk+a0dk+a26k) +D (Gldk+a4dk+a5ak> +ay (iy —ep)
+ ((loM + a; D) dis1 + (1 — Ozf) (ik+1 — ek+1) =0

(4.27)
with
ao:l—am al:(l—oq)v aZ:l—ozm
BAE BAt, BAL,
az = 1 ;ﬁam -1, ay = (1_;/.)7 -1, as=(1—oay) (’Yﬁ;k - Atk> .
(4.28)
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In (4.27), the terms were ordered such that only the second row contains
the unknown displacement dj.;. Consequently, these terms are the only
ones that contribute to the tangent.

Tangent matrix

As (4.27) was introduced as the discrete counterpart to (4.2),
DdHle zaUM+a1D+(1—af) (Ki—Ke) (429)

is introduced as the discrete counterpart to (4.4). Therein, the static parts
Kj; and K, can be formulated on element level before assembling them as
explained in Section A.3.3. For the linearization of the internal loads,

K\ = Dg, i = / B VB + G Ao (4.30)
2%

is obtained directly from (4.4) by inserting the finite element approxima-

tion. In (4.30), CV denotes the Voigt representation of the elasticity tensor

C = 95/pE (see Section A.3.4 for its construction) and B(®) comes from the

discretization of the Green-Lagrange strain increment AEY = B(9)d(®), The

so-called geometric stiffness G is defined using index notation by
GY = Grad(Ni(e)) - 8 Grad (N;@) (4.31)

as proposed in [230, p. 129]. The tangent contribution K(® from the exter-
nal loads may take different forms depending on the type of load applied,
as explained in the following.

In the simplest scenario, the tractions are deformation independent and
stated for the reference configuration, i.e. £ = t4(X,t) with

Dyt Ad = 0. (4.32)

So-called follower loads are defined for the undeformed reference state
and follow the surface they act on. Typically, pressure loads £ = P are
treated like this. Their contribution in the weak form can be obtained by
considering a single face of a finite element, which is parameterized by face
coordinates rl(f) and rl(]e>. The relation between the element coordinates and
the face coordinates is given in Tab. A.3.3. One obtains

1

1
/ od-dary = [ &d-pndrl? = / / o-prdr©ds?  (4.33)
)

ry ri -1-1

T
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where 1 denotes the product of the unit normal vector n and the factor
originating from the coordinate transformation. Considering the case that
7"(({3> =7 and rl()e) = 5l 7 may be obtained by

n =t x t) (4.34)

where t") and t*) denote tangent vectors. Introducing a Jacobian matrix
g = FJ that relates the derivatives with respect to the local element
coordinates  and the derivatives with respect to the spatial coordinates x,
the tangent vectors correspond to the respective columns of j, i.e.

tl(r) =41 and t§s> = jio. (4.35)
In the reference configuration, one may write
TV = Jy and T = Jp (4.36)
and
N =T" xT®, (4.37)

which allows for formulation of the traction vector in the reference config-
uration as

t'=pJFTN. (4.38)

The tangent contribution can now be obtained by standard rules, which
yield

1 1
/ Dt AddTy) = / / (D)) F~ " 4 J (DF ) p N Addrl ds;”)
T -1-1
1 1
= / / (JF T Grad(d) FT - JF T Grad(d) FT) p N dr?) s\
-1 -1

(4.39)

In partitioned FSI simulations, the traction t¥5' on the spatial domain
boundary F,Es‘t) is provided, such that a coordinate transformation must be
. . (s,t)
performed, when integrating over I'y™”. From

1 1

[ var) = [ et = [ faa- e jag arar? a0

Fé@) Fie) -1 -1
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the traction vector in the reference configuration is obtained as

g Il st (4.41)
[N

The tangent contribution may be obtained as in the case of follower loads
by expressing the normal vectors n as J FTN and applying standard rules
for differentiation. However, this contribution is independent of rigid body
motions and small as long as J & 1, so that the Newton-Raphson iterations
converge well also when neglecting Dy#">!.

Solution procedure

The elaborations from the previous sections allow for a formulation of the
solution procedure underlying a nonlinear finite element analysis in terms
of a step-by-step procedure.

1. Chose dy, do, 3, v, af, Oy, AL
2. Compute M, D, iy, ey.
3. Compute initial acceleration dy=M"! (eg - Dd, — i()).
4. Set K™ = gy M + a1 D.
5. Start time loop, set k = 0.
6. Predict ao, e.g. &U =d;.
7. Set P = af (ir—ex) — M <a0 dj, + as dy, + as dk> —
D (a1 di + asdy + as dk)
8. Start Newton-Raphson loop, set i = 0.
9. Compute K; = Ki(ai) + Ke(ai), i = i(ai), and €; = e(&i)
10. Set P; = Pt 4 Keonstd, + (1 — ay) (1 - e)
11. Set K¢ = Kt 4 (1 — o) K
12. Solve K?H A; = —P; for Ad;.

13. Update solution, EiHl =d; + ;.
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(5.Bern.)

L

Figure 4.2: Commonly used bases (Lagrange, Legendre, Bernstein) for the space of polyno-
mials PP°.

14. If not converged, increment ¢ and go to Step 9.

15. Set dy1 = d; and compute dk+1 and akH acc. to Egs. (4.22) and
(4.21)

16. Increment k and go to Step 6.

Shape functions and ansatz spaces

Polynomial shape functions are usually used in the context of finite element
methods. Figure 4.2 shows typical bases for the space of one-dimensional
polynomials. While oftentimes Lagrange bases are used to create finite
element shape functions (see e.g. [240]), integrated Legendre polynomials
are used here. As shown in [239], this leads to a slower increasing condition
number of the tangent matrix as the polynomial order is increased, which
improves the efficiency of iterative solvers. Mathematically, the bases shown
in Fig. 4.2 are equivalent in terms of the space they span. The Legendre
polynomials can be constructed with L = 1 and LY** = r, using the
recursion relation

eg. ]' . eg. . eg.
L=~ (@i-1)2F% -G -1) L) (4.42)

This leads to a recurrence relation for their integrals

2 — 1 1 . ‘
NOD ,/ZT / Ly dr == (L?Cg- - LZ.Lfg) for i > 2, (4.43)
21
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which can readily be used as shape functions for one-dimensional elements.
For ¢ = 1 and ¢ = 2, the well-known nodal shape functions from the h-FEM
are used, namely

1 1
NP =2-r), NP =14, (4.44)

From the one-dimensional basis, three-dimensional finite element bases can
be constructed in different ways, leading to different ansatz spaces. In
general, the three-dimensional bases may be constructed using

Ni(e)(r(e)) — Nl(lD)(T(E)) Ny(,}D)(S<€)) N(lD)(t(e)). (4.45)

n

Choosing different ranges for the indices I, m, n leads to different ansatz
spaces.

Tensor product space (TPS) This ansatz space is based on a simple tensor
product structure. All possible combinations of I, m, n are used, i.e.

Lmn 21, ,p+1. (4.46)

The tensor product space constitutes a basis for the full space of three-
dimensional polynomials P? x PP x PP,

Trunk space (TS) Within the tensor product space, different shape functions
may be associated with different entities of the hexahedral element. For
example, if one and only one of the indices I, m,n is smaller or equal to
two, the corresponding Ni(e) is zero on all edges and faces except for one
face. The trunk space uses the range

Imn=1,....,p+1 Withl+m+nT:SI,...,p, (4.47)

which results in a decreased number of the mentioned face shapes functions
and the internal shape functions (zero on all faces and all edges).

Serendipity space (SS) By using even less shape functions from the tensor
product space, it is possible to establish an ansatz space that contains only
nodal end edge shape functions. The corresponding range can be defined
as
ILmn=1...,p+1 with(I—1)(m—1) B0, (m—-1)(n—1) 2o,
(4.48)

which essentially states that two of the indices [, m,n have to be equal to
1.
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Quasiregional mapping

In Fig. 4.1, the mapping X = Q' (r()) is introduced. It is constructed
using the so-called quasi regional mapping concept as explained in detail
in [119, 64]. The general idea is to approximate the geometry of Qés) using
polynomials. If the Lagrange basis

rT—="r;

L) () =

4.49
1= (4.49)
0<i<p®

i)
is used to construct Ni(e), this boils down to prescribing the position at a

finite number of sampling points, because

=) 1 i
To counteract oscillations that usually appear when interpolating real func-
tions with high-order polynomials, optimal interpolation points r; (approxi-
mately computed in [39, 40]) are used. In accordance to the authors’ names,
they are referred to as Chen-Babuska points.

More precisely, the geometry is approximated separately for each entity
(face, edge) of the hexahedral element. One obtains

8 12 6
QY ="n!" -3 "e+3" £, (4.51)
i=1 i=1 i=1
with the usual nodal mapping
ni = NP () NP (s NP ) X, (4.52)

the difference between the linear (straight) and the curved edge mapping

e e,curv. e lin. 1-— 1—r.
e; ) _ (Ef g >(7‘a) _ Ef 1 )(Ta)) w (4.53)
and the corresponding difference between face mappings
e e,curv. e,lin. 1- .
£ = <E< ) () — B )(ra,rb)) ( 5 r"). (4.54)

The relation between the index i and the indices I, m and n in (4.52) as well
as the relation between the general face and edge coordinates rg, 13, 7, and
the element coordinates (¢, s(®) t() depends on the numbering of nodes,
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o meshnode @ cell center / degree of freedom  x face center

Figure 4.3: Discretization of the computational domain Qf with a finite volume mesh.

edges, and faces. A possible choice is given in Fig. A.3.1, the resulting
relations are given in Tab. A.3.1, Tab. A.3.2, Tab. A.3.3. The above consid-
erations involve parameterizations of the edge and face geometry Eée) and
Ff(-e), respectively. They are constructed using Lagrange polynomials, such
that

P8
e,curv. 2 Lag. e e,e
B = 3T ) ) x [ (4.55)
§=0
and
ps Pt . .
_Fi(e,curv.) _ Z Lgp ,Lag,)(r((le))LEp ,LagA)(Tl(]e))Xi(je,f). (456)
i=0 j=0

Due to (4.50), the weights X;Eﬁ) and X;;’f) can be identified as the points
on the geometry that are interpolated.

4.1.2 Finite volumes for fluid mechanics in moving domains

To solve the fluid mechanics subproblem (3.109-3.113), the finite volume
method (FVM) is applied. As in the FEM, the discretization process starts
with the definition of a computational mesh as illustrated in Fig. 4.3, such
that the domain is approximated by the union of n" finite volumes, i.e.

o~ o (4.57)
v=1
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For the FVM considered here, the degrees of freedom correspond to the val-
ues of the unknowns at the finite volume’s centers. These degrees of freedom
for pressure and velocity are collected separately in the global vectors

o T

pPr = [p,g) p,i” ) ] (4.58)
T wT 17T

Vi = [ o ™) } : (4.59)

By rewriting the Navier-Stokes equations apparent in the IBVP (3.109-
3.113) as

div(v) = 0, (4.60)
v + div(v — ) v — div(v grad(v)) = div (V grad('v)T> +b— %grad(p) ,
(4.61)

a discretization is constructed for each term separately. To this end, dif-
ferentiation schemes known from the finite difference method (FDM) are
applied in combination with interpolation schemes, as explained in the fol-
lowing. Further, the non-linearity of the momentum equation (4.61) and
the disappearance of the pressure in (4.60) demand for a special solution
algorithm, namely a pressure-correction method, which will be outlined at
the end of this section.

Differentiation and interpolation

The finite volume approach starts by integrating the Navier-Stokes equa-
tions over the domain Qf and splitting the resulting integral into integrals
over the individual finite volumes or cells. Considering the time step k,
these may then be approximated using a single quadrature point at the cell
center. For a general quantity w,

/ wpdQf =Y / wed” = WY, (4.62)
v=1

c=1
o, o

is obtained, where Vk(L) is the cell volume. If the term contains a divergence
(cf. (3.109) and the convective and the diffusive term in (4.61)), the volume
integral is transformed into a surface integral using the divergence theorem.
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The integrals over the cell faces are then again approximated using a single
quadrature point at the face center, i.e.

/ div(wy) dy” = > / wi-ndry) = 3 wonl S0 (4.63)

. feF, feF,
af )

with the face area S,gﬁ, the face unit normal n,Ef) and F,, the set of in-
dices of faces adjacent to the volume v. The values at the faces are then
represented by interpolating the degrees of freedom of neighboring cells,
as detailed in [148]. Finally, spatial derivatives are approximated using
differentiation schemes from the FDM, which again involve the degrees of
freedom of neighboring cells.

Starting with the continuity equation (4.60) and performing the steps
outlined above, one obtains

div(vy) - Y vy ! (4.64)
fEF,
for cell ¢. The same process is applicable to the convective term in the
momentum equation (4.61) and yields
div(vy, — ) v — Z (v,(cf) - 'f),(ff)) -n,(gf) A,(Cf) 'v,(cf). (4.65)
fEF,

The diffusion term on the left-hand side in (4.61) is similarly treated, leading
to

div(v grad(vy)) Z yk grad ngcf) A;gf). (4.66)
feF,

The diffusion term on the right-hand side in (4.61) is augmented by a sta-
bilization term, as explained in [103], and then discretized.

div (l/k grad(’uk)T)

, 1

i (s grad(o)" = e (o)1) (167
T 1 T(f) ) 4f

- f%F Vk (grad v)" gtr (grad(vk) ) 1> ' nl(c )AEC .

Due to the continuity equation and the fact that

tr (grad(vg)) = div(vy), (4.68)

85

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

4 Numerical methods

the stabilization term is non-zero only in the scope of the solution algo-
rithm, where (4.67) is evaluated for a preliminary velocity field that is not
divergence-free. The source term is simply represented by the values at the
cell centers, giving

b— b v (4.69)

The inertia term is discretized in time using the implicit Euler method,
resulting in

(v) (v)
. VU — Vp-1 U — Yo (v)
~ — V.. 4.70
vk Aty ( Aty ) k (4.70)
The pressure gradient term is discretized as
grad(pg) — Z p,if) n,(cf) A;f), (4.71)
fer,

whereas for the terms involving the divergence of a vector field, the volume
integral was transformed into a surface integral. In the scope of the pressure
corrector method outlined next, the pressure gradient is also needed at
the face centers. Its components are then computed using the degrees of
freedom of the neighboring cells by

) p(A) - p(B)
((zrad(oi) ) — e (4.72)

! i
where d4P) denotes the distance vector between the centers of neighboring
cells A and B. The velocity gradients at the faces in (4.66) and (4.67) are
computed in an analogous way. It should be noted that for severely non-
orthogonal meshes, a correction method has to be employed when discretiz-
ing gradients and convective terms. In OpenFOAM, the correction method
proposed in [111] is available, however, the pressure correction method out-
lined in the following implicitly includes such a non-orthogonal corrector.
For details on this issue, common to most finite volume methods, see [109].

Pressure correction method

In [148, 71], different pressure correction methods are explained. In general,
when using what is called a collocated grid as opposed to a staggered grid,
special attention has to be paid when discretizing pressure gradients. An
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issue known as the checkerboard problem has to be counteracted, which
is usually done by applying a so-called Rhie-Chow interpolation [167] (cf.
[148, p. 585]). In OpenFOAM, however, this remedy is not applied explicitly
— as explained in [115] — but implicitly included in the solution algorithms.
In the present work, the solver pimpleDyMFoam is used, which implements
a solution algorithm called PIMPLE. 1t constitutes a combination of the
well-known algorithms SIMPLE (semi-implicit method for pressure linked
equations), see [156, 34] and PISO (pressure implicit with splitting of oper-
ators) as proposed in [110]. Following [45, 103, 115], the main aspects of
the algorithm are explained below.

By applying the introduced discretization schemes, a set of algebraic
equations is obtained from the momentum equations (4.61). It may be
stated as

Api g = Spy1 — Gigt Prgts (4.73)

where Ajijugyy represent all terms from the left hand side of (4.61),
Gy.1 pre1 denotes the discretized pressure gradient term and sj.; collects
all remaining terms. The discretization matrix A may be split into its
diagonal part with coefficients A.. and its off-diagonal parts with non-zero
coefficients A.,. With N, denoting the set of cell indices representing neigh-
boring cells of cell ¢, Eq. (4.73) can be written for a single cell as

A, <<> YA uggl) Cad). 4T
neN,

In the PIMPLE algorithm, improved values for the pressures and the veloc-

ities are computed in an iterative manner. Introducing the iteration index

1, the first step in every iteration is to compute a preliminary velocity

= (1) hy"
Uy = ZALTL 7+1 = (~J,t (475)

which does not include a contribution from the pressure. This step is com-
monly denoted as a momentum predictor. In (4.75), the tilde marks quanti-
ties that are evaluated for the current trial velocity w;, which is known from
the previous iteration. In the first iteration, @y = uy is used. By interpo-

lating 1:‘1(1)1 to the face centers of the finite volume mesh, the preliminary

face velocity u< )1 is obtained and a corresponding preliminary flux

¢§i)1 = u§+)1 "2?1 (4.76)

87

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

4 Numerical methods

can be computed. Taking the divergence of Eq. (4.74), the left hand side is
zero due to the continuity equation and it is possible to establish

. 1 ~ v v
div <A“ grad(fip)' )) = d1v< 7(+)1> . (4.77)

Equation (4.77) is called the pressure correction equation. The divergence
theorem is applied to yield

L\W
Z((A) grad(pi1)! ) nk+1 Z¢k+1’ (4.78)

feF, feF,

which can be solved for the pressure p;y1 after applying the discretization
(4.72). Finally, an improved trial velocity can be computed by the so-called
momentum corrector

_ 1 v
ah = al) — —arad(p)® (4.79)

VU
after applying the discretization (4.71), and a new iteration is started with
the momentum predictor (4.75). Once the velocity correction, i.e. |[G;+1 —
4 ||, becomes sufficiently small after N}, iterations, the values are considered
converged and the velocity in the current time step is set to ug; = u,.

4.1.3 Taylor-Galerkin method for one-dimensional blood flow

The considerations in this section follow those in [179] and [89]. Recalling
the hyperbolic differential equation (3.168), it can be rewritten as

. 2Q oG
and
- 82Q 0B aQ 0 oQ
_ _ = = .81
Q ot? 8Q ot Ox (H ot ) (4.81)
can be established with
oG 0 1
H=—= D\ 2 ‘ | . 4.82
9Q [‘a@w) + 5y VAP Q%w] )
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A second order Taylor expansion yields the semi-discrete system

Al -
Qk+1%Qk+Ath+7kQ

0G
= Q — Aty <Bk - ak>
z

At% 0B;, 0G} 8(Hk Bk) 0 0G|},
Jr2(8U (Bk 0:1:) Ox +8(Bk 8:6))
(4.83)

which can be rewritten as

0 At
Qi1 = Qi — Aty £ <Gk + 7" H; Bk>

At% 0B, 0G,, 0 0G}, At OB
e <0Uax_0x <H’”a)) Ak (BﬁzauB'»)
(4.84)

Equation (4.84) serves as a basis for the Galerkin method used to find
approximate solutions for Qx(z). A weak form is constructed by multiplying
(4.84) by a test function dQ and integrating the result over the domain Y,
which yields

L L
. A2 [ OB, 0G
/(QHI—Qk)-anx:Atk/Bk-aczd S [OB 0 s
2 oU
0 0
A2
Al /H,gaG’c “F dr +Atk/Gk @dx
(4.85)
with
. Aty
GkZGk+7kaBk7
) (4.86)
Bj, = B;, + %LBk B;..

2 0Q
The terms in the second row of (4.85) were further integrated by parts to
shift the derivatives to the test function as detailed in [89, p. 44]. Accord-
ing to the Galerkin approach, an algebraic system of equations is created
from (4.85) by replacing the unknown Q. as well as the test function 0Qj
by a weighted sum of shape functions.
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Discretized governing equations

As shape functions, the well-known linear shape functions from the finite-
element method (see (4.44)) are used. Due to the explicit nature of (4.85),
the area AlD1 and the flux Qk +1 can be computed separately. Denoting by
A and A, respectively Q and dQ the corresponding vectors of weights — in
this case the nodal values — the spatial discretization of (4.85) yields

AT A, =A"RY (4.87)
for the first component and
Q™M Qyy1 = QTR (4.88)

for the second component, which can be solved for the new state after
eliminating dQ and JA. As usual the global mass matrix M and the global
right hand side Vectors R and R ) are assembled from their counterparts
on element level M(©) and R The expressions for these element matrices
are given in Appendix A.4. Here, it shall only be noted that the development
of efficient numerical discretization schemes for hyperbolic problems like
that of one-dimensional viscous flow in a distensible vessel considered here
constitutes an active field of research. As pointed out in [179], certain
terms of the right hand side vectors are underintegrated or projected onto
the finite element space to ensure stability and consistency of the method.
However, a detailed analysis of the method is out of the scope of this work,
as it will only be used to demonstrate the coupling of a three-dimensional
cardiovascular FSI simulation with this reduced order model.

Boundary conditions, typically a given flow QP at 2 = 0 and a given
pressure p'P at = L (resulting in a given area A'P), are enforced by moving
the corresponding degrees of freedom to the right hand side. In [179], other
types of boundary conditions such as those to be prescribed when connecting
multiple one-dimensional vessel models to describe a vessel network are
discussed in detail. As mentioned in Section 3.3.3, a characteristic analysis
of the system (3.168) is necessary to obtain expressions for non-reflecting
or partially reflecting boundary conditions in this case.

4.1.4 Solvers for ordinary differential equations

The windkessel model as well as the elastic foundation used to model the
surrounding tissue are described by ordinary differential equations (ODEs).
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In this section, suitable solution methods and the resulting discretized equa-
tions are introduced.

Windkessel models

The windkessel models from Section 3.3.4 are discretized using the backward
differences. The temporal derivatives of flow and pressure are accordingly
discretized as

d W W _ w d W VY _ VE'
@ ~ Qin =@ and 2 w Dhtl — Pk (4.89)
de t=tpt1 Aty dt t=tp41 Aty
Second order derivatives as apparent in (3.172) are discretized as
Q" 20 + QY
622 ~ Yk+1 Qk k—1 (490)
de® |,y Aty Aty

Inserting this approximation in the ODE (3.170) that governs the two-
element windkessel model,

A\ 2e AthQZ+1+CRp}:

= 4.91
Pt C R+ Aty ( )

is obtained. For the three- and four-element windkessel models governed
by (3.171) and (3.172),

se CRip} + (Ry + Ro) Aty Q) + C R Ry (QF, — @F)

Pi = CRr AL (4.92)
and
4e 1 .
= LC At QY 4.
pk‘+1 L C (Rl C =+ Atk) ((Rl + RQ) C k Qk+l ( 93)
+R (Q)y — Q1) + Ri At (QF — 2Q) + Q1Y) (4.94)

are obtained.

Viscoelastic foundation

In the scope of a coupled simulation, the viscoelastic foundation may be
used in two different ways as mentioned in Section 3.3.5. If it is used to
describe the influence of the surrounding tissue on an artery, it is coupled
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to a structural mechanics solver that delivers displacements at discrete lo-
cations. The foundation solver computes tractions at these locations and
the equation to be solved may be written as

mtd' +d d +cd =t (4.95)

The Newmark approximations (4.25) and (4.26) are used to discretize the
temporal derivatives. Setting 8 = /1 and v = 1/2 yields the constant average
acceleration method and

4 . .
thos = (ap (dhs - - And) - )
k

2 .
d (mk, (diyy — d) — dk.> Led,

(4.96)

for the tractions.

If the viscoelastic foundation is used as a reduced structural model, it is
coupled to a fluid solver that delivers tractions at discrete locations. Euler
methods are then used to compute the displacements at these locations.
The equation to be solved for the displacement d at each location may then
be written as

mtdt +dtd+ctd =t (4.97)

Since the Euler methods are intended to be used to solve first order differ-
ential equations of the form

x = f(x), (4.98)
a transformation of variables has to be performed. Setting x =
|: dtT dtT :|T7
d' ~L1 <1 [d Lt
U el e

is obtained from (4.97), which matches the form of (4.98). Now, the explicit
Euler method is obtained by considering the equilibrium equations at time
t;, and computing the new state at time tyy1 by xp11 = xi + Aty £(xx),

which leads to
it Aty d* Aty c* 7 1
[dzm] [ (1-2nt) g —ensy [dfc]+[mtt}c], (4.100)
.y Aty 1 1 d;, 0
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center line and surface triangularization

voxel data from
medical imaging

Figure 4.4: Construction of surface triangularizations from medical imaging data.

The implicit Euler method is obtained by considering the equilibrium equa-
tions at time ;1 and computing the new state by xz11 = x5, + Aty £(xp11)-

This leads to
1 .
4. [#5])
4| mt kAL . (4.101)
qd}g 0

|:d§€+1:| _ |:1+Atkdt1 Atkctl
4.2 Geometry and mesh generation

; mt mt
d “At 1

In order to realize simulations of cardiovascular fluid-structure interaction
problems, computational meshes are needed for the fluid and the structural
subproblem. A popular pipeline for mesh generation starts with medical
images, or more precisely, voxel data. This data (a three-dimensional gray
scale image) is then segmented, i.e. regions of different tissue are identi-
fied on a per-voxel basis. Considering the example depicted in Fig. 4.4, a
threshold is defined to extract only those voxels representing the inside of
the blood vessel. The resulting voxel geometry must be smoothed to obtain
a realistic geometry of a blood vessel. The marching cubes algorithm is a
method often applied in this step. From the resulting triangularization of
the geometry’s boundary, standard techniques can be applied to remesh the
surface triangulations and to finally create a tetrahedral mesh. To this end,
the free software VMTK (The vascular modeling toolkit, [139, 7]) is used,
which implements all steps from reading the voxel data to writing out an
unstructured mesh with a boundary layer for the fluid subproblem. The
triangularization of the wet surface may be extruded to obtain a low-order
finite element mesh for the structural mechanics subproblem.

In the context of high-order finite elements, to make use of the surface tri-
angularization, it must be reparameterized. One possibility to carry out the
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center line and local radius function r(¢p)
coordinate system from raytracing E; &) = (x), 50 = s (p)

parameterization:

Figure 4.5: Parameterization of vessel geometries by a centerline and a radius function.

parameterization is based on a centerline ¢(x) (a curve in three-dimensional
space) and a radius function r(x, ), as illustrated in Fig. 4.5. In combina-
tion with a local coordinate system (T', U, V'), the centerline and the radius
functions uniquely define the vessel surface. Idealized geometries may be
defined by choosing a simple radius function, e.g.

(X, ) = R(cos(p) U(x) +sin(p) V(x)) (4.102)

for a vessel with a constant circular cross section with radius R. However,
the radius function can also be established from the surface triangulariza-
tion obtained from the voxel data. To this end, a raytracing algorithm
is used to evaluate 7(x,¢). With any definition of the radius functions,
the sampling points XZ-(M), Xi(e’e>, X;SVf> needed in the scope of the quasi
regional mapping technique (see Section 4.1.1) can be obtained using a re-
lation between the local element coordinates, e.g. 7(¢) and s®, and the
coordinates x and ¢, as shown in Fig. 4.5. This reparameterization as well
as the algorithm used to transport the local basis vectors U and V along
the curve were implemented in the meshing software tubeMesh, which was
introduced in [161].

It is generally possible to extend this geometry definition by a centerline
and a radius function to cope with bifurcations by introducing individual
basis vectors Uy, Us, Us, Uy for each quadrant in the local U-V -plane (see
Fig. 4.6). However, the resulting mesh topologies are fixed and may not
be suited for arbitrary geometries. For such cases, a more flexible mesh
generation pipeline was developed. It starts from a surface description
that can be provided by human experts to mimic average or extreme cases
that are to be studied more closely. Different from the patient-specific
geometries obtained from medical images, a corresponding geometry de-
scription should be intuitive and require a limited set of parameters. As
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|
|

extended local coordinate system general junction anastomosis geometry

Figure 4.6: Meshing of bifurcations using centerline and radius function in combination with
an extended local coordinate system.

control point mesh

Figure 4.7: Geometry definition using a coarse control point mesh, a subdivision scheme and
a construction scheme for smooth quad patches.

shown in Fig. 4.7, the description is based on a coarse input mesh, which is
first refined (and smoothed) using a subdivision scheme. The well-known
Catmull-Clark subdivision scheme proposed in [37] is used in this step. The
resulting quadrangularization is still coarse with respect to a low-order fi-
nite element mesh. For high-order finite elements, however, it provides a
reasonable element size. To obtain realistic geometries, the quadrangular-
ization is smoothed, which is done using a surface construction scheme that
yields G'-continuous geometries by definition. The main difficulty when
deriving according schemes is the handling of irregular nodes, i.e. nodes
where fewer or more than four edges join. The introduction of two such
construction schemes constitutes the main part of this section. Additional
steps on the way from the geometry definition to the computational meshes
are summarized afterwards.

4.2.1 G'-continuous surface construction

The purpose of the construction schemes explained here is to establish a
smooth surface parameterization based on a quadrilateral mesh. The topol-
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ogy of the mesh is regarded as fixed. In addition to the nodes of this control
point mesh, the normals at the nodes need to be specified. Figure 4.8 il-
lustrates the input and output of the construction scheme for a simple
quadrangularization that represents three faces of a cube. In view of the
application as a design tool and as the basis for a high-order finite element
geometry, certain requirements for the scheme can be formulated.

e The construction scheme should produce smooth geometries for arbi-
trary mesh topologies. No restriction should be made on the node
valence (the number of edges joining at a node).

e The resulting geometry should be polynomial within each quadrilat-
eral. This allows to use the geometry to create an isoparametric finite
element formulation that does not introduced further discretization
errors in terms of the shape of the considered domain.

e The polynomial order of the geometry p# should be as low as possible
such that isoparametric or subparametric element formulations can be
obtained for low shape function orders p.

e The surface construction scheme should be tunable, i.e. it should allow
for a modification of the geometry by an adjustment of global and/or
local parameters that can be specified in addition to the provided quad-
rangularization.

e The construction scheme should be local, i.e. changing the position
of a node should only affect the geometry of the surface close to the
node. In the best case, only those quadrilaterals adjacent to the node
are influenced. The locality allows for an efficient recomputation when
interacting with the mesh in the design process and ensures a certain
degree of intuitivity.

Two surface construction schemes are explained that meet these require-
ments to a reasonable extent. Before going into the details of the schemes,
common means regarding the parameterization and regularization of the
surface geometry are introduced.

Tensor product quad patches

A common method to parameterize arbitrary surfaces in three dimensions
is to divide them into quadrilaterals, which are often referred to as quad
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input: ouput:
node positions X;, normals N; G -continuous quad patches

Figure 4.8: Parameterization of a surface by quad patches.

patches. The surface can be described as the union of all patches, i.e.

nP

s=[Js". (4.103)
i=1

A standard parameterization by local coordinates 7 and s is chosen for
each patch S, This allows for a straightforward description of the patch’s
geometry using tensor product-type basis functions, such that on each patch

P& pt n
§U =33 L) Li(s") PR =3 N s BY. (4.104)
k=0 j=0 1=0

If the one-dimensional basis functions L are chosen to be of polynomial type,
then the basis functions /N; form a basis for the space of bilinear surfaces
(p = 1), biquadratic surfaces (p = 2), etc. This means that, if used in
combination with the tensor product space introduced in Section 4.1.1 of
the same polynomial degree p = p#, the resulting element formulation is
isoparametric or subparametric. However, if used in combination with the
trunk space or the serendipity space, undesired superparametric element
formulations may result even for p® < p.

For neighboring patches, it can occur that () = s+ at the common
edge as depicted in Fig. 4.8 and exemplary assumed in the following. Dif-
ferent orientations of the patches will of course lead to different relations,
however, any scenario can always be transformed into this one by rotation.
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To ease the notation,
(@) 8 (@) o8
" or(®) s ds)

are introduced for the partial derivative of S(i). Higher order derivatives
are abbreviated in a corresponding manner.

(4.105)

G'-continuity constraints

The partitioned surface description S should be smooth, which is mathe-
matically best described by the requirement that it is based on a function
space of a certain continuity. For example, if one requires that S € C?, the
surface must not have holes. This can be stated as

g (—1,s(i)) _ g+ (r(Hl)’ _1) —0. (4.106)

If § € C! is required, the surface must not have kinks, i.e. be smooth
as desired. While the requirement that § € C° can be directly used in
practice, the requirement that § € C' is too strict as it is not independent
of the parameterization of the individual patches. In the direction of a
common edge as the one depicted in Fig. 4.8,

S0 (—1.,5“”) _ g+ (r(”, _1> —0 (4.107)

can be used, resulting in C'-continuity in that direction. Requiring the
same equality for the derivatives with respect to the patch coordinates that
run orthogonal to the common edge would ensure that S € C'. However,
in combination with a low-dimensional basis for the patch descriptions S
this requirement is too strong and will not lead to pleasing discretizations.
Further, for irregular meshes with node valences other than four, the C°-
constraint along patch boundaries is impossible to fulfill. Instead, the only
requirement is that the derivatives with respect to the orthogonal coordinate
together with the in-edge derivatives lie in a common plane. This can be
expressed as

oS50 (<1,50) + 080+ (0, -1) + 80 (~1,57) 0, (4.108)

where @ and © are arbitrary functions of the common edge coordinate
s or 1) Then, the resulting surface is G'-continuous The polynomial
degree p® must of course be chosen high enough such that the constraints
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(4.106-4.108) can be fulfilled. For a regular quadrangularization, where each
internal node is adjacent to exactly four patches, this is possible for p& > 2.
However, for irregular quadrangularizations, where the valence of at least
one node is not equal to four, p® = 2 is not sufficient. The derivation of
the minimal p® that allows for the G'-continuity constraints to be fulfilled
has been addressed in many works and, according to [27], has not yet been
found for the general case. A detailed explanation is out of the scope of
this work and ceded to [27, 180, 24] and the references cited therein.

4.2.2 Polynomial G' PN quads

In [155], a construction scheme for G'-continuous surface is proposed. It
uses biquintic polynomial patches, which are termed polynomial G'-PN
quads in reference to the general concept of PN patches, see e.g. [218].
Despite its higher order, it was found to be favorable over other polyno-
mial construction schemes such as those proposed in [27, 88] due to a lower
implementation effort and a more general applicability!. As a basis, the
Bernstein polynomials with

! r—1\’ [r—1\"
LBorn.,pg _ p 4.1
i =3 (pgj)!( 2 ) < 2 ) (4109

are used. The patch description may be stated in the form

. g . gy T
SO = NP pONY) (4.110)
where
8 Bern.,p® ; Bern.,p® Bern.,p®
N, = [L8em Lo L] (4.111)

is the one-dimensional interpolation matrix for the Bernstein basis of order
p% and P is the matrix or array of control points, such that each entry
can be identified with a certain type of control point. From Fig. 4.8 and

L A construction scheme for bicubic patches is proposed in [88], and biquartic patches are considered in
[27]. In both works, a refinement step precedes the surface construction, because nodes of arbitrary
valence can only be handled by the schemes if they are surrounded by regular nodes (with valence
four).
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step Il

Figure 4.9: Steps in the construction scheme from [155]. From left to right: Input data (nodes
and normals), edge curves, edge normal curves, patch interior.

Fig. 4.9, it can be observed that

. i i [ 0] [e) (@) ] [ )
POES; POEI_; Po({,i o ADOA o

P — P.1o P.H P_lp corresponds to z g i i S z 7
Py Py ... B o ADDOA o

| @ o 0o o o e |

(4.112)

such that five different types of control points can be identified. The dif-
ferent steps of the construction scheme are outlined in the following, each
step providing a computation rule for certain types of control points. The
control points that correspond to the nodes of the quadrangularization as
well as the normals at these points serve as an input to the construction
scheme (see Figure 4.9). Taking these normals into account as a degree of
freedom instead of making them inherent to the scheme is an example for
tunability, which was introduced as a desired feature at the beginning of
this section. It allows for a prescription of the normal for each node of the
mesh independently. Further, there are many different algorithms to com-
pute the normals based on the position of the surrounding nodes. Thus, to
keep the number of input parameters small (another desired feature of the
scheme) it is possible to automatically compute the normals at some nodes
and to prescribe them explicitly at others.

Step | - construction of edge curves Given the normals and nodes of the con-
trol point mesh, curves describing the edge of the patches are computed
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first. After this step, the control points labeled by o in (4.1_12) are fixed.
Denoting the curve corresponding to edge j of patch i by slgz)
responding edge coordinate by r§i>,
s(li) =80 (r%i), 71) , sg) =80 (réi), 1)
=80 (C10f1), o) = 80 (145

The control points for each sy)

and the cor-

(4.113)

are denoted by pg’j), k=0,...,5, where
pk ) — = Py, p;(j’Q) = Pys, p§f’3) = Py, P;({.M) = Py, (4.114)

Due to the constraint that the resulting surface must interpolate the input
mesh, the control points pé 7 and pé 7 are already fixed. The remaining
edge control points are determined such that the boundary curves s§2> are

orthogonal to the given normal vectors. Denoting by IV; () and N, (9 the

@ _

normals at r; —1 and r = 1, respectively (i.e. the normals at the con-

trol points connected by s<-t>

5 ), the orthogonality constraint can be written
as

88(-0 -1 as(.i) 1 o

Os; () i _g 98 W e (4.115)
ort?) 1 ort? 2
" "

The derivative of a Bernstein polynomial can again be represented as a
Bernstein polynomial. In the present case,

as(.i) 5 4 (id) (i.d)
ern. 2 2
PRI (kaZl —p! 7) (4.116)
8rj 0

is obtained. Equation (4.115) can be reduced to constraints on the control
points, which gives
<pgw) _ p((]w)> ) Nfl’]) —0,
(s - ) - =0
Restricting the differences between the interior nodes to be orthogonal to

the given normal vectors eases the fulfillment of the G'-constraints in the
third step, so

(4.117)

(1 p) - N =0

T - (4.118)
(PE; g pg -J)) ) N2< 9 _
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are used as additional constraints. The constraints in (4.117) and (4.118)
provide four equations for the twelve unknown components of the curves’
interior control points. In order to obtain a unique solution to this under-
determined system, it is augmented by a minimization problem. In [155],
the following quantity is minimized:

HPapaZov Z Hpk Z HAP

However, to gain some control over the shape, another objective function is
proposed here. The goal is to let the norm of the normal vectors || N\ |

(4.119)

and ||N2<7] )|| control the curvature of the surface, which can be realized by
minimizing

S HQA—pm H +ZHAP ' !”\ : (4.120)
i=0
i#2
where
Ap = % (pg:,j) _ pgz,j)) (4.121)
and
[22] + 2]
o= HTp“’j)H (4.122)

With (4.120), a decrease of the norm of the normals will pull the geometry
tighter to the input mesh, as shown in Fig. 4.10. The minimization of
either objective function will lead to a linear system, such that it can be
used directly to augment the linear system of equations using Lagrange
multipliers. A general explanation of how the constraints are augmented
by the minimization problem follows at the end of this section.

Step Il - construction of edge normal curves In this step, the normal directions
along all edges are fixed. While this does not directly yield any surface
control points, it provides the basis for their construction in the next step.
A boundary normal curve is described by a Bernstein polynomial

4
) (1) =S (o) g (4129

k=0
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Figure 4.10: Influence of the norm of the given normals when using (4.120) in Step | of the
construction scheme for G PN quads from [155].

and should interpolate the normal direction at the nodes. This is ensured
by requiring that

n{ (-1) = ¢ = ag N{" and nl’ (1) = ¢{"") = ay NS, (4.124)
As in Step I, additional constraints on the normal curve’s interior control

points are added to ease the construction of the patch’s interior control
points in the third step, namely

@ =N and ¢ = az N§". (4.125)

Since n ) should be orthogonal to s; Z)

; s' »
-5 (st} (3 (o -0i) ) -0
r k=0

’ (4.126)

must hold. After multiplying out and comparing coefficients, this provides
five linear equations for the seven unknowns «g, a;, a3, a4 and the three
components of qéi’j ). To obtain a unique solution, the linear system is again
augmented by a minimization problem. To minimize the deviation of the
normal curve’s norm from those of the corner normals and to minimize the
torsion of the normal curve, the objective function
2 4

+) (0= 1) (4.127)

i=0
i#2

HNormals _ Hqgw) _ 5 (Nl(w) 4 Nz(w))

is minimized as proposed in [155].
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Step 11l - construction of patch interior The remaining control points of each
patch are determined by making the patch’s derivatives orthogonal to the
normal curves constructed in the previous step. This is achieved by com-
puting the remaining control points such that

ngi)(r(i)) .80 (r(i), —1) =0, néw(?“(i)) .8 (r(i’)7 1) =0,

T T

o | | e | (4.128)
n)(s) - 80 (—Ls“)) —0, n(s®). g0 (1,s<z)) — 0.

S

Due to the special construction of the edge curves and edge normal curves,
the constraints in (4.128) simplify significantly after multiplying out. A
system of 32 equations for 36 unknowns (the components of all control
points labeled by [J or A in (4.112)) is obtained as detailed in [155]. The
G'-constraints are independent of the innermost control points (labeled by
x in (4.112)), which accordingly can be chosen freely. To obtain a unique
solution, the differences between the control points and target points are
minimized using the objective function

2
HInterior

-

(4.129)

4
i=1
j=1
The target positions 13” are computed by fitting a bicubic patch to the
corner positions and normals before elevating its degree to biquintic without
changing its shape. This can be done by demanding that
() PYNGL, () = NEL (k) PONGL (s0) (4.130)

Bern. Bern.

Ni
holds at 36 positions (), s@). In (4.130), N® and N®) are the interpo-
lation matrices for patches of degrees three and five, respectively, as intro-
duced in (4.111). The control point matrices or arrays Pf{) and P are
constructed as P, see (4.112).

4.2.3 General polynomial G' quads

The modified construction scheme from [155] is local, of acceptably low or-
der (biquintic) and provides smooth surfaces for input meshes with nodes
of any valence. However, the scheme is restricted to the biquintic Bernstein
basis. In this section, a more general construction scheme is presented,
which allows to use any basis for two-dimensional patches (not necessarily
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tensor product type bases) as long as it leads to a solvable system of equa-
tions when formulating the general G'-constraints. The 7 control points
(or basis function weights) of patch i are collected in the vector
) . . T
p® — [ ot pit (4.131)
in a one-dimensional fashion as opposed to the arrangement in the array
PO cf. (4.112). An interpolation matrix N constructed like the one from
the FEM (see Section A.3.2) is used such that

S0 = Np®. (4.132)
Further, a gradient matrix
Moo 0 e 0 0
G (rs)=1| 0 2o o ... 0 2 0 (4.133)
0 o0 %4n 0 0 2u
is introduced to establish
5 080 ,
S0 = o =G, p". (4.134)

A gradient interpolation matrix G enables a corresponding formulation for
the s-coordinate.

The fulfillment of the continuity constraints introduced at the beginning
of this section can now be achieved by a combination of the following dis-
crete constraints.

e The node interpolation constraints can be written as
N (T,(:)., s,@) p) = Xk(f), (4.135)
where X,ii’) denotes the position of the kth node of patch i and (r,(f), sg'))

denotes its position in the patch’s local coordinate system.

e Considering two patches ¢ and i + 1 with a common edge as in the
example shown in Fig. 4.8, the edge continuity constraint (4.106) can
be discretized as

N (i, 1) p = N (1,7,) p*V = 0, (4.136)
with 7 being the kth value of the common edge coordinate r = s =
r(+1) where the constraint is prescribed.
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Gs(~1,-1)p(*+D
Gs(lv 71) p(/+1)

mn=3

l —
Gs(1,r)p® \

G (—1,-1)p"

m=5

G(1,1)p"

local coordinate r

Figure 4.11: Left: Relation between the derivatives in orthogonal and in tangential direction
of an exemplary edge. Right: Blending function o in the G' continuity constraints for different
exponents p, and different edge configurations.

e The C'-continuity constraints in edge direction as described by (4.107)
are discretized as

G, (—=1,7) p? = G, (ry, —1) p*Y = 0. (4.137)

e The G'-continuity constraints as described by (4.108) are discretized
as

G, (=1,m) P + Gy (ri, 1) PV — a(ry) G, (—1,7) P = 0,
(4.138)

which is obtained by setting & = ®~! = ©7!. In order to preserve
the linearity of the surface construction scheme, o must be specified
explicitly. With the valences n; and ny of the two nodes adjacent to
the respective edge, a(—1) = 2 cos (27/n,) and a(1) = 2 cos (27/n,) are
suitable boundary values (see Fig. 4.11). Introducing an additional
parameter pq,

9 1 Pa ) 1 Pa
a(r) =2 cos <n71r> (2 - ;) + 2 cos <n7;> (2 + ;) (4.139)

is used here with p, = 2 if not stated otherwise. For p, = 1, (4.139)
corresponds to a linear interpolation of the boundary values.

The constraints may then be assembled into a global constraint matrix

Cp=c (4.140)

as summarized in Section A.3.3 for the FEM.
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The system is solvable, if p® is chosen high enough and the introduced
constraints are combined in a suitable way and prescribed at a suitable
number of points. It is still unlikely that the constraints yield a unique
solution for the control points Pj(,? . Instead, (4.140) can be expected to be
an underdetermined system. To obtain a unique solution, it is augmented
by a minimization problem. This can be interpreted as a regularization of
the surface. The objective functions to be minimized are also called fairness
criteria and are introduced below. They are discretized in such a way that
the minimization problem can be stated as

1Qp — q||> = min. (4.141)

Now, standard procedures to solve constraint minimization problems
(CMP) can be applied. The method of Lagrange multipliers is used here,
where the CMP is formulated as

(Qp—q)" (Qp—q)+ A (Cp —¢) — min. (4.142)

Setting the derivative with respect to p and A equal to zero leads to the
linear system

{QTQ CTHP}VQTQ]. (4.143)
C 0 A c
Using this general approach, constraints can be combined with objective
functions in a very flexible way, yet the locality property is lost and one sys-
tem of equations has to be solved for the degrees of freedom of all patches.
In comparison with the systems to be solved for each patch in the con-
struction scheme from [155] this system is large. However, in view of the
application of the construction schemes within the mesh generation process,
the additionally required computational effort is justified. Since the num-
ber of patches is at least as high as the number of finite elements in the
resulting mesh, a system that is at least as large has to be solved repeatedly
during the simulation. Compared to the overall computational effort of the
simulation, the effort for mesh generation is therefore still negligible. In
most cases, the number of patches is even low enough to allow for a live
computation of the geometry, i.e. as the user interacts with the input mesh.

Regularization and fairness criteria Energy potentials are a common mean to
regularize surface geometries. They usually contain derivatives of S and
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may be constructed from the general potentials given in [224], e.g.
1

- [l

1—171 el
p 1 1

m—i//”sﬁ;’?
=1

T -1-1

2 <12 . .
+ HS;” dr® qs® (4.144)

2 12 N . .
+ 20y, ||S1 +HS§Q dr 4s, (4.145)

with a,.s = 1 by default. A so-called thin plate energy functional as used in
[27] is given by

My = aup Iy + Ty, (4.146)

where o, is introduced as a control parameter. The larger ay,, the tighter
the surface is pulled around the control point mesh. As in [224], potentials
including higher order derivatives are also used here.

)2> +||s

1 1

=y [ [ s
i=1

T -1-1

s :

2 .
+ 3 agys <HS£QS

(4.147)

and
1

) 1
i 2 N2 N2
= [ [ s+t (5] + |s])
=/ (4.148)

S

rrSs

6 Qs ‘4 HSEQLQ ® 4 g5

were found to be especially useful. The control parameters are set to ag..s =
Qrrss = Qpgss = 1 by default. Further, integrals of the deviation of S from
a given target geometry S, namely

1 1

np ) 2
n-3 [ [[s-s°
=1

=l_1-1

dr® dst (4.149)

are commonly used. The target geometry has to be provided on a per-
patch basis and may be constructed from the quadrangularization using
less complex parameterizations such as bilinear or bicubic patches.

All objective functions can be discretized in a straightforward manner
using a quadrature rule. In accordance with the polynomial basis, the

108

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

4.2 Geometry and mesh generation

Figure 4.12: Influence of the number of points at which the G-continuity constraints (4.138)

are prescribed. Top: Polynomial patch of order p& = 4 (2-5 points). Bottom: Polynomial
patch of order p8 =5 (2-6 points).

Gauss-Legendre quadrature is chosen here. The matrix Q, or more precisely
the products (QT Q) and (QT q), are assembled from the counterparts on
patch level. Considering (4.144),

ndP

(QT Q)(i) ~ Z Wy, (G;r (r, sk) Gy (18, 81) + GST (rr, sk) G (18, sk))
- (4.150)
and
Q") =0 (4.151)

are obtained, where (ry,s;) and wy are the quadrature coordinates and
weights, respectively. The other objective functions are discretized in a
corresponding way using higher order gradient matrices, e.g. Gypgs. It
should be noted that constraints, which are written as is C% p() = ¢ on
patch level, may also be used to construct a potential with Q® = C and
q” = ¢, This allows, e.g., to drop the requirement that the nodes of
the control point mesh are interpolated, which may yield a more regular
surface.

Constraint combination In order to construct a G'-continuous surface from
a given control point mesh, the first step is to choose a basis. As a first
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example, a polynomial tensor-product basis of degree p® = 4 is considered.
This gives 25 degrees of freedom for each patch in each space dimension.
Without a loss of generality, the Lagrange polynomials are used, such that
the degrees of freedom correspond to points on the surface. Prescribing the
node interpolation constraint (4.135) fixes four of them. The edge continu-
ity constraint (4.136) is prescribed at p® — 1 = 3 points. This is the number
of points that ensures that the common edges of two neighboring patches
have the same geometry. (Considering the Lagrange basis, the edge geom-
etry is defined by the 5 interpolated points on that edge, two of which are
already fixed due to the node interpolation constraint.) The C'-continuity
constraint (4.137) is therefore not needed. The G'-continuity constraints
(4.138) are prescribed at p& + 1 = 5 points, due to the fact that the deriva-
tive in the direction orthogonal to the edge, e.g. Sﬁi)(—l, (), depends on
5 degrees of freedom. For arbitrary mesh topologies, i.e. node valences,
this may lead to redundant constraints because some of these degrees of
freedom are already constrained by the edge continuity constraint. How-
ever, the resulting global system is still solvable, as long as the prescribed
constraints do not contradict each other. In general, a solver that reveals
the solvability should be used.

Whether the constraints were prescribed at enough points may be checked
using a visualization software. The shading algorithms in computer graph-
ics libraries such as OpenGL (see [117]), which constitute the core of visu-
alization software such as ParaView (see [12]) are very sensible to sharp
edges, such that a faulty combination of constraints can be detected eas-
ily. In Fig. 4.12, this is shown for the example of the number of points at
which the G'-continuity was prescribed. According to the thoughts above,
a continuous surface is obtained when prescribing the constraint at p® + 1
points.

The examples in Fig. 4.12 were created using the thin plate energy func-
tional (4.146) with oy, = 1. In Fig. 4.13, the influence of «, is illustrated.
As mentioned above, the higher oy, the tighter the surface is pulled around
the control points. The parameter may therefore be associated with the in-
verse of the thickness of a thin plate or membrane spanned around the
control points. Further, the influence of the parameters a,., i.e. the factor
in front of the cross derivative in (4.145), is shown in Fig. 4.13. While ay,
and a,s seem to allow for a flexible tuning and a great variety of surfaces,
tube-like geometries require the functionals including higher derivatives. As
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Figure 4.13: Left: Influence of the parameters ay and «a,.s. Right: Influence of functionals
with higher order derivatives.
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apparent in Fig. 4.13, for the cube geometry chosen as an example, they
make the surface bulge out. For tube-like surfaces, which are defined using
a coarse mesh with possibly only four control points per cross section, this
is a desired feature. It allows to tune the construction scheme such that
a corresponding cross section (polygonal, e.g. quadrangular in the control
point mesh) becomes circular.

4.3 Partitioned solution approach

In the partitioned solution approach considered here, the solvers for the
subproblems act as black-boxes, i.e. no other information than the solu-
tion of the respective subproblem can be obtained. Their inner structure,
e.g. the underlying system of equations or a derivative with respect to the
coupling quantity, is hidden from the outside. This motivates the operator
formulation introduced in Chapter 3 for each subproblem, respectively each
field solver. To start with, the partitioned solution approach is introduced
for the example of a two-field fluid-structure interaction problem. As in-
troduced in Section 3.1, k denotes the current time step. The state of all
subproblems at time ¢, is known and the solution state at t;,q is to be
computed. Recalling the general fluid solve operator

dis1

Vi+1 _
= _7: (@] 5 4.152
vt = se | v (4.152)
Pi+1
and the structural solve operator
dk+1 = Sk o Ek_H, (4153)

the question arises, how to realize the coupling, i.e. a fulfillment of the
interface constraints (3.118-3.120). Before introducing different coupling
algorithms to achieve this in Section 4.3.1, some preliminary considerations
have to be taken. At first, it should be recalled that the hat in &k+1 in-
dicates that it is the discretized displacement of the fluid domain, not the
discretized displacement of the structure. Bars (v) denote prescribed quan-
tities in the respective subproblem. In order to realize an exchange of the
coupling quantities, the domain displacement on the coupling interface (dis-
cretized according to the fluid mesh and collected in the vector &kﬂ) has
to be computed from the displacement provided by the structural solver
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(discretized according to the structural mesh and collected in the vector
di11). A mapping operator is introduced for this purpose such that

&k+1 = Mg o dk+1. (4.154)

A corresponding operator is introduced to compute the tractions (dis-
cretized according to the structural mesh and collected in the vector fk)
from the velocities and pressures (discretized according to the fluid mesh
and collected in the vectors pi and vi). This involves a computation ac-
cording to Eq. (3.118) and a mapping from one discretization to another,
which may be written as

th = MGoty=MGo&o [ Vil ] : (4.155)
Pr+1
Therein, the evaluation operator & yields the tractions
b =& [ Vi } ; (4.156)
Pk+1

which are discretized according to the fluid mesh. Accordingly it constitutes
an evaluation of Eq. (3.118) on a per-point basis. It should be noted that
the mapping and evaluation operators are independent of k, while the solver
operators yield different results for the same input depending of the current
state.

For the present case of a two field FSI problem, modified fluid and struc-
tural solve operators are introduced to ease the notation. The mapping and
evaluation operators may be combined with the solve operators to yield

ak+1 = M§ o Sk o Ek+1 = Sk o Ek+1 (4.157)
and
tk+1 = M; o (‘:t o fk o) \_/k+1 = fk o dk+l- (4158)
Pi+1

4.3.1 Coupling algorithms

A coupling algorithm here denotes the scheme according to which the sub-
problems in a multifield problem are coupled. With the above operators, an
FSI problem can be formulated in terms of the fixed point-condition (FPC)

ak+1 = Sk o} ﬁk o glk+1. (4159)
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A straightforward coupling algorithm may be based on the fixed-point iter-
ation (FPI)

AP S o Fodl) . (4.160)

However, such a standard fized-point iteration is unlikely to converge in
the general case, or, in other words, a corresponding partitioned solution
approach is likely to suffer from instabilities. To improve the stability,
convergence acceleration methods are used, which are generally represented
by the operator Agj) here. A modified fized-point iteration may then be
stated as

QU0 = A @0 = 4D 6 8 0 Frodl) . (4.161)

It constitutes the basis for a staggered coupling algorithm as illustrated in
Fig. 4.14. The additional operators are found to be

Ch=MS o0& (4.162)
and
e = AP o ME. (4.163)

)

An alternative variant of the staggered coupling algorithms may be based
on the FPC

Ek-&-l = ﬁk o Sk o Ek’-H- (4164)

The parallel coupling algorithm from Fig. 4.14 is based on the FPC

B | [ 2 o | D], (1.165)
tri1 Fr 0 trt1
which constitutes an alternative way of formulating the FSI problem. The

additional operator Cg )k can again be identified as a combination of map-
pings, evaluations, and accelerations, which may be defined as

Mfoo]

o ca (4.166)

et =490 |

Given that both solvers take the same time to solve the respective subprob-
lem, one iteration of the parallel algorithm takes only half the time that a
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staggered iteration takes. To compare the efficiency, the counter j* is intro-
duced in Fig. 4.14. It counts the number of consecutive solver calls rather
than being a zero-based fixed-point iteration index. While j* = i/2+ 1 in
the parallel case, the staggered case implies j* = j + 1, which likewise holds
for the mized coupling algorithm. The latter constitutes a combination of
the parallel and the staggered algorithm and is based on the FPC

élkJrl :|:‘§ko‘/—:.k R 0 R :|O ak+1 4.167
[tk+1 ] 0 Fr oSy Cir | (4.167)

The iterative procedure underlying all classes of coupling algorithms in-
troduced above may be stated in terms of a generalized solution vector s
and a combined solve operator X as a modified FPI

st = X 08l (4.168)
where X); constitutes a combination of several operators representing field
solvers, evaluations, and mappings. A general coupling algorithm can then
be implemented as depicted in Algorithm 1. Therein, the residual rij ) and
the prediction operator P, were introduced. In the following, specific forms
of the introduced data processing blocks, namely convergence acceleration
methods (Section 4.3.2), predictors (Section 4.3.3), and convergence crite-
ria (Section 4.3.4) are reviewed. Mapping schemes are considered in Sec-
tion 4.3.5.

Algorithm 1 General coupling algorithm used to solve a fixed-point condition s;y; =
Xk O Sk+41-

1: for k=0...n,x—1do > Start of the time loop
2: sglzl =P os > Predict solution
3: for (7 =0...Npax —1 do > Start of the coupling loop
4 ék’:lm =X o0 s,iH > Call all participating solvers
e
6: if CONVERGED(I‘S’)) then > Check convergence
7 s _ é(j+1)
k+1 k+1
8 break > Proceed with the next time step
9 else ‘ ‘
10: sgjll) = .A,(j )o 5121:11) > Accelerate convergence
11: end if
12: end for > End of the coupling loop
13: end for > End of the time loop
116
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4.3.2 Convergence acceleration

The purpose of a convergence acceleration method is to provide an improved

solution s,i '+~ based on solutions from previous iterations and time steps.

This may be formulated in terms of a solution increment Ask L1 as

S = A o o2+ 00, (4169
It should be noted that the operator for the acceleration method is equipped
with an iteration index, since it generally does not yield the same output
when evaluated for the same input in different iterations. This is not the
case for the solve operators, which only depend on the current time step k.

One of the fastest methods to obtain a solution to the FPC s;1 =
X o 8j41 is the Newton-Raphson (NR) method, which was introduced in
Section 3.1 for monolithic solution approaches and in Section 3.2.2 for the
solution of the structural mechanics subproblem. Transforming the fixed-
point condition into the root-finding problem

) =/ — s = XosY) — s =0, (4.170)

the solution increment can be computed as
A (4.171)
where

Jj=Dal| (4.172)
Sk+17=Sp 11

denotes the Jacobian or tangent matrix of the root-finding problem. How-

ever, in view of the black-box requirement on the field solvers, a tangent

matrix is not accessible. Correspondingly, the goal of a convergence ac-

celeration method can be seen in computing a reasonable approximation
) QU=

of J; solely from previous solution vectors s;’ +1> Spy1 > ete. Corresponding

methodq are termed quasi-Newton methods.

For the standard FPI,
j) FPI_(j
AsV) D) (4.173)
is obtained, i.e. the Jacobian matrix is approximated as J; ~ —1. A

stabilization of the standard FPI may be achieved by taking only a fraction
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Table 4.2: Quantities in a coupling algorithm and their computation throughout the iterations.

olvcr output rcsidual updatcd solution solution incrcmcnt
N N )
0 g1(;431 rl(ﬂl Sl(fll ASEUH
1 él(czll rgclil SSCZ+)1 Asilﬂ

of the residual as the solution increment, which leads to the relazed fized-
point iteration (RFPI)

AsY) FET i rl) (4.174)
The relaxation factor w; is determined according to one of the relaxation
methods introduced below. Relaxation methods may be combined with
methods that compute an improved direction of the solution increment
As,(c’ll The increment of a general modified FPI can then be stated as

25, = o

v (4.175)

Settingw; = 1 and Asy), = r¥) leads back to the increment of the standard
FPI (4.173).

For a better overview regarding the explanation of relaxation methods
and the following explanation of methods to compute an improved &121 ,
Table 4.2 lists the quantities computed in the first iterations of every time
step.

Relaxation methods

In the simplest case, the relaxation parameter is taken to be constant. As
usual, this method is called static relazation (SR) with
w Zw. (4.176)
In Aitken (1950) [2], an acceleration method was introduced, in which
the relaxation parameter is computed according to the current convergence
behavior. While formulated for scalar sequences, [138] proposed several
ways to use the ideas from [2] for vector sequences. A variant of this Aitken
relazation (AR) also mentioned in [130] uses

(riﬁ) _rl(\gll))Tr&—ll) f .

e ke P for  =1,4,7,...

w; AR ||r§9’+)ﬁrk+11)|| J A (4.177)
w else.
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as an update rule for the relaxation factor. Accordingly, the actual Aitken
relaxation step can only be applied in every third iteration. In intermediate
iterations, a constant relaxation parameter w is used to obtain two pre-
relaved residuals vV and vV~ (cf. [130]).

In Irons and Tuck (1969) [107], an improved Aitken relaxation is sug-
gested. Here, it is denoted as Irons- Tuck relazation (ITR), and it allows for
an update of the relaxation factor in every iteration using the recurrence
relation

. CNT
ITR (rgfjj—l - r§£J+1 )) rl(cj-i—l )
Wiy = —wj (4.178)
! ! G _ G-
Hrk:+1 T H

The method was successfully used to accelerate partitioned FSI simulations
in many works, see e.g. [129, 163, 162, 122, 81|, where it is simply called
Aitken relazation.

Another relaxation method, investigated in [144], is denoted as backtrack
relazation (BTR). Therein, the relaxation factor w; is successively reduced
by a constant factor a < 1, i.e.

w; 2w, . (4.179)
In the first iteration the relaxation factor is set to wy = wimax. If w falls below
a given Wiy, no further reductions are performed in succeeding iterations.

Broyden method

Among the methods to compute As,(ﬁl that were investigated in [144] is the
Broyden method (BM), originally proposed in [29]. As explained in detail
in [116], several variants of this method have been developed. Here, the one
given in algorithmic form in [144] is used and reformulated in terms of the
recurrence relation

X)) BM (5 ~(j-1) w; F0-1 . pl) -1
Bl B (0 - (1 - ) (1= e ) - (1180

In each coupling iteration,

pY (4.181)
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has to be computed using f)éj ) = —r,(j) and

O] ()
~ () _ Skk1 Py [ Wi 41 I _
/ nn(w L sl ) fork= o1
ket

(4.182)

Linear line extrapolation

A method called linear line extrapolation (LLE) is proposed in [233]. It was
investigated in [144], but it was used with w; = 1 instead of combining the
approach with a relaxation method. The increment direction is computed
as

X .(j) LLE j 1 j 1
Al " sl + (1= ag) s = 8 (agrflly + (1= a)rfV) . (4183)

The parameters o are determined according to the minimization problem
a; = argmin|ja;rl) | + (1 — o). (4.184)
This yields
N\ -1
(rg-&)-l - rl(g]+1 )> rgjﬂ)
a; = — , (4.185)

J . 1 2
e =i’

which can be identified to be the formula used to compute the relaxation
parameters in the Aitken relaxation method.

Quasi-Newton least-squares method

A comparably new method originally termed interface-quasi-Newton with
inverse Jacobian from a least-squares model is introduced here as the quasi-
Newton least-squares (QNLS) method. The method is based on the ideas
in [215] and was first used in the context of partitioned FSI simulations in
[51]. Since then, it has been refined, investigated and applied by the same
author (see [53, 56, 55]) as well as other research groups (see e.g [87, 122,
163, 162, 164]).

The QNLS method provides an approximation of the inverse of the Jaco-
bian in a least-squares sense. Starting with the idea that the residual in the
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. . j+1 . .
next iteration r,(;’jl) should be zero in an optimal cabe one can try to de-
rive a solution increment &k 1 that minimizes ri 1 - Introducing residual

differences Art"")

i1, the unknown difference

S T (4.186)

is approximated by a linear combination of known residual differences, i.e.

+1 j+1)
TJSJ«H )= 7'k+1 + A’rk]—«—Jl k+1 + Z k+1 (4.187)

Different choices are possible regarding the definition of Ark’ﬁ Here,

A =) ) fori=0,...,5—1 (4.188)

is used as originally proposed in [51] 2. Regardless of this choice, the vector
of coefficients

. , T
o) = [ af) ..ol } (4.189)
is determined by solving the minimization problem
2
o) = argmin rk+1 + Za kﬁ ~ a1rgrnln\|rkﬂ:r11 2. (4.190)

i=0

The coefficients can then be used to compute the solution increment or
difference as a linear combination of known differences

U9 =gl Uty fori=1,...,J (4.191)

Using (4.188) one finds that

Ar(]u+1> r(]+1) r(J) S(J+2) S(J+1) S(]+1)+S(> &( J:j+1) AS(J

k+1 E4+1 7 TE+1 T PR+l Pk+l T P41 k+1 7 k41 k+1°
(4.192)
which gives rise to a formula for the QNLS solution increment

() ONIS () aglii) ZJ ()

J M J) AgUsi+1 JJ+1 7l+1 J
Asply ™= E :O‘z‘ Aspny T — Ay Ay gy (4193)

i=0 i=0

2 According to (4.188), the new set of residual differences has to be computed in each coupling iteration.
Using the alternative definition Ar,(ﬁﬂr? = ,E'Ll) — I';:J)r , only one new difference has to be computed

in every coupling iteration. The formulation of the method presented here is valid as long as (4.186)
holds.
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The linear combinations (4.187) and (4.193) render each set of vectors Ar,(#i

and &,(jﬁ a basis spanning a vector space. Of course, starting with another
definition for the residual differences in (4.188), one can derive a corre-
sponding formula for the solution increment like (4.193). As long as the
chosen basis spans the same vector space, such a formulation will be math-
ematically equivalent.

The question yet to be answered is how to calculate the coeflicients agj ),
The approach is similar in the different variants of the QNLS method,
yet, this is the step with room for improvements. In the original variant
from [51], a standard QR-decomposition is used to solve the least-squares
problem (4.190). Introducing the matrix

(4 _ j,i—1 j,j—2 j,1 7,0
Vi = [t s A s (4.194)

the unknown residual difference is found to be Ari,jle) = V,(f ) o) and

AT A\ 1 AT . AT N 1 N . .
= (VI At = (V) T s
(4.195)

can be used to compute the coefficient vector a;. However, using (4.195)
N .
involves the expensive calculation of the inverse of (V,(f ) Vl(j )) and further

does not reveal anything regarding the quality of the chosen basis vectors
Argcﬂg Therefore, a QR-decomposition V,(g]) = QU RU) is preferred over
(4.195) and used to obtain /) from

RV o) = - rfl) . (4.196)
Finally, Eq. (4.193) can be reformulated. Introducing the matrix

(4) _ ~(j,j ~(j,j—1 ~(5,2 ~(5,1
W= | aspd) st sl ast) | (4.197)

the solution increment is found to be

LS W) i) 4 ) (4.198)

As (4)

k+1

This is the basic variant of the QNLS method proposed in [51]. In the
following, different means to improve the stability and efficiency of the
method are introduced.
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Data reusing Along with the basic variant, a straightforward improvement
of the method is proposed in [51]. Depending on the problem characteristics,
the data from previous time steps may be reused in the current one. Here,
the variant is consequently denoted as multi-time-step quasi-Newton least-
squares method (MTQNLS). Introducing the matrices

W) — [ng> Wl W%—ﬂ (4.199)
and
VP = [P v v ] (4.200)

where Vi denotes the number of iterations performed in time step k and n
is the number of reused time steps, the solution increment is computed as

As) MRS g ) gU) ) (4.201)
The coefficient vector &) again follows from a QR-decomposition of \Af,(g )
as in the standard variant. A major drawback of the method is that the
optimal number of reused time steps n is problem-dependent. Too large
values will lead to instabilities, while too small values will not improve the
efficiency significantly.

Resetting In order to address the problem-dependency of the parameter n,
a modification of the MTQNLS method was proposed in [163]. Therein,
the matrices VAV,(CJ) and V,(fj) are reset whenever the number of iterations in a
time step exceeds a given maximum. This allows to use the method also for
problems, where the optimal 7 changes over the course of the simulation.
This is the case in cardiovascular FSI simulations, where the inflow bound-
ary conditions demand for a small number of reused time steps during the
systolic flow pulse while a larger number may be used in the diastolic phase
with a low flow rate and less sudden changes. This variant of the method is
denoted here as quasi-Newton least-squares method with resetting (QNLSR).

Filtering Another possibility to circumvent the issue of a problem-
dependent 7 was proposed in [87]. As suggested therein, the method is
denoted here as filtered quasi-Newton least-squares method (FQNLS). Fol-
lowing the observation that the instabilities due to a too large n are the
result of a linear dependency between the columns (basis vectors) of the
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matrix V,&j) , they may be filtered before using them to compute the so-
lution increment. To this end, the R-matrix of the QR-decomposition is
utilized. Due to the fact that the diagonal elements of R can be used as an
indicator for linear dependency of the columns of the matrix V (cf. [87]),
they can serve as the basis for the filtering — as follows:

1. Start with the standard matrices \7,(5 ) = \A/.,(f ) and V~V,(f ) — VAV,(f ) from
the QNLSMT method.

2. Compute the QR-decomposition of \7,(5 )

3. If the norm of a diagonal entry R;; is smaller than an absolute tolerance

NLS . . NLS
e%l or Ri/|r|| is smaller than a relative tolerance e?d , remove the

ith column of \N/'](f) and VNV,(fj) and go back to Step 2.

Once all diagonal entries have been found to be sufficiently large, coefficients
&) are determined as usual and the solution increment is computed as

Al FES W) g0) 4 ) (4.202)
The precise procedure of the different QNLS methods is best explained
in terms of the pseudo code shown in Alg. 2. As can be seen, in the first
iterations of the first time step (and in the first iteration of any time step
without data reuse), a static relaxation is performed. The procedure in
Alg. 2 may be considered a member function of a class, which further pro-
vides members for the data of prev1ous iterations and time steps, such that
any previously computed residual rgj or solution sgg), respectively s,(C ), is
accessible in any call. Of course, in an actual implementation, only data
from n previous time steps should be stored.
Special choices of the parameters lead to the different variants of the
QNLS method introduced above. With n,i = 0o, no resetting is performed.
If further 7 > 0, eUNS 5 0 and 9N > 0, the FQNLS method is obtained,

rel abs

while . > 0 with eQLNS =00 EQqu S=0 yields the QNLSMT method. The
QLNS QLNS _

rel =0or Cabs

standard variant is obtained Wlth n=0ande

4.3.3 Predictors

When considering dynamic problems, the iterative procedure to be accel-
erated by the convergence acceleration method needs to be executed for
each time step. In each time step, an appropriate initial value sﬁ)l has to
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Algorithm 2 Implementation of different variants of the quasi-Newton least-squares
method.

1: procedure COMPUTEMODIFIEDSOLUTION(sk+1 Lk, 9)

e e e e e
® VP aexNEe

—
©

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

( +1) _ =(+1)
kj+1 AJ J

OSk+1

~(+1
r;j—%)—l s 274-1) - 52]4)-1

if j =0 then
jmm =0

else if j = n, then
7m1n - ]
kmln =k

end if

if j = Jmin =0 and ( kmin =k or 7 =0 ) then
(5+1)

return wry

end if

V}E]'H) [ ] W(J+1) « [ }
forz(—zmm.‘.]—ldo

Aréfjl T 22(1 : rgc]ll( )
i1 ~(i+1)  ~(j+1
AT =8 -8
G+ j i
Vi e [ v |
W}(C.Prl) - [ WO A%I(fﬁl) ]
end for

v](cj+1) . V}(CJ‘Jrl)7 W}(CjJrl) - W](CjJrl)
for i «+ MAX(k — 7, kmin) ...k — 1 do

V}(jﬂ) - [ ijm VEN,) ]

A7(7+1) s7(G+1 N;

W e [ Wy wi |
end for

VU YU WD Wi+
Q, R + QRDECOMPOSITION(VY ™)
i < INDEXOFSMALLESTDIAGONALELEMENT(R)
while | R;|| < e2N or IRl /iRy < e2 do

VU REMOVECOLUM(, ij*l))

WU o rEmMoveECoLuM(i, WYY

Q,R + QRDECOMPOSITION(V )

i — INDEXOFSMALLESTDIAGONALELEMENT(R)

end while

v — ,Rorl Qo)".‘ 7‘2{31 -
return sw_lej) av 4 r,(f_al

41: end procedure

> Corresp. to

> Resetting

> Static relaxation

> Differences acc. to [51]

> Data reusing

> Filtering acc. to [87]

> Quasi-Newton update
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be computed, preferably taking into account the solution of previous time
steps to reduce the number of iterations. The predictors presented in the
following can all be interpreted as extrapolations of the solution at previous
time steps.

Polynomial extrapolation

The trivial case of taking the last converged solution to be the prediction
for the new time step can be interpreted as a constant extrapolation (CE).
We obtain

s Lsy (4.203)

as the corresponding prediction rule. Computing a linear function f(¢) =

al ¢+ alf that passes through s; and s;_; and setting 5521 = f(tg1) gives

a linear extrapolation (LE), which in closed form reads

(0) LE Sk — Sk-—1
Spi1 = Tk—l Aty + sy. (4.204)
For a constant time step size,
s,(le Lo Sy — Sp_1 if Aty = const. (4.205)

is obtained.
A quadratic extrapolation (QF) is obtained by evaluating a parabola that
passes through the last three known solutions. To compute s](ﬂp the system

1t . .
1ty 8 [agE a?E agE} = [ sy sp1 sp2 | (4.206)
1t 3,

is solved for the coefficients aiQE and then

E
51(321 E a3 troy + aP’ tri1 + a(?E (4.207)

is used as a prediction. A closed form for the general case is not convenient.
A constant time step size, however, simplifies the formula significantly and
leads to

sgl el 3sp — 3sk_1 + Sp_2 if Aty = const. (4.208)
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Note that in the first time steps of a simulation, a constant extrapolation
is the only choice. The extrapolation order can then be increased in every
time step until the desired order is reached. While it is possible to formu-
late extrapolations of higher orders in a similar manner to the quadratic
case, they are not considered here as they were found to cause stability
problems rather than accelerating the convergence process. A geometrical
interpretation of the prediction methods is given in Fig. 4.15.

Tangent extrapolation

A method used in [51, 53, 56] is introduced here as tangent extrapolation
(TE). The prediction for the case of a constant time step size given therein
reads

5 1 X
31(31 T 3 Sp— 28p_1 + 3 Sp_o if At = const. (4.209)

A derivation may be based on the following steps (cf. Fig. 4.15):
1. Construct a parabola as the QE case using (4.206).
2. Construct a tangent of the parabola at tj.
3. Evaluate the tangent at ;..

The tangent is found to be
t(t) =sp + (2 a%® 1, + a?E> (t—ty), (4.210)
such that for the general case,
st = t(tg) = s + (2 aQ% ¢, + a?E) Aty (4.211)

yields the prediction. As for higher order polynomial predictors, this
method cannot be applied until £ > 2 and a constant, respectively a linear
extrapolation has to be performed in the first two time steps.

4.3.4 Convergence criteria

To ensure a converged solution in the current time step before proceeding
with the next one, the difference between the coupling quantities in succeed-
ing iterations is used as an error measure. However, not only the introduced
residual has to be taken into account but also the change of other coupling
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— actual solution

- = = constant extrapolation

----- linear extrapolation
quadratic extrapolation

— tangent extrapolation

solution

ty—o te—1 tk tit1
time ¢

Figure 4.15: Prediction of the solution according to the different extrapolation methods.

quantities which, according to Fig. 4.14, are only passed from one field
solver to another by interpolation procedures without further modification.
The reason for this is the fact that, generally, the solvers only yield an ap-
proximate solution to the nonlinear problems they are designed to solve.
Taking this into account, the operators introduced for the field solvers and
likewise the combined solve operator in the fixed-point iteration (4.168) are
not the same in every iteration. For the example of the two-field FSI prob-
lem, this means that a vanishing residual r,(fll =S8, 0F0 d,ﬁl k +1 does
not exactly imply a vanishing residual

~ 1 j
#7) = ¢ ¢l) (4.212)

In any partitioned multifield simulation, it is therefore necessary to check
the residuals for all coupling quantities. In terms of the generic solution
vector s,(f), a relative convergence criterion

(j+1)
H Sp+1” — Sk+1H el 1913
R o
k+1
and an absolute criterion
18i11 — si]| < e (4.214)

are used in the present work. The coupling iterations are considered con-
verged when for all coupling quantities at least one of the criteria is fulfilled.

4.3.5 Interpolation

Due to the possibly non-matching discretizations of the individual subprob-
lems, the coupling quantities need to be interpolated. A typical example are
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the fluid loads. For the numerical methods used in this work (the FEM for
the structural mechanics subproblem and the FVM for the fluid mechanics
subproblem), they can easily be evaluated at the cell centers of the fluid
mesh. However, they need to be prescribed at the quadrature points of
the structural mesh. Here, such a mapping of a quantity (the fluid loads)
from a set of source points (the cell centers) to a set of target points (the
quadrature points) is generally referred to as an interpolation. This termi-
nology is justified due to the fact that if a target point corresponds exactly
to a source point, the value of the quantity is not altered by the mapping
process, which is in line with the definition of an interpolation. The inter-
polation methods explained in the following are divided into two classes.
Point cloud interpolation refers to methods that are established solely from
the positions of source and target points, while mesh based interpolations
take the underlying computational meshes into account.

Considering a general set of N® sources values v € RY they may be
collected in a matrix

Vi=[v v ] (4.215)

Constructing a corresponding matrix V' that collects N* target values v} €
R?, any interpolation method considered here may be described using an
interpolation matrix I € RV ag

V=TIV (4.216)

The construction of I is inherent to the interpolation method and not nec-
essarily performed explicitly. Yet, all interpolation methods obey the prop-
erties implied by this matrix formulation, i.e. linearity and independence
of the d components.

Apart from the classification as meshless and mesh-based, interpolation
methods may be consistent, which implies that a set of constant source
values results in a set of constant target values. In terms of properties of
the interpolation matrix, this implies that the sum of all coefficients in one
row is equal to one, i.e

> Ij=1 fori=1,..n" (4.217)
j=1

Consistency is a desired feature when interpolating intrinsic quantities such
as tractions or displacements. It should be noted that if extrinsic quanti-
ties such as forces need to be mapped from one discretization to another,
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conservative methods have to be applied. They ensure that the sum of the
forces at all points is the same for the source and the target discretization,
which implies that all coefficients in one column of I is equal to one. Con-
sequently, conservative mappings cannot have the interpolation property if
N*' # N°®, see [210] for details.

Point cloud interpolation

Considering a general set of n® source points p} and a set of n' target
points p;-, the point cloud interpolation methods are based on this geometry
information alone. A connectivity between the source points (possibly nodes
of a mesh) is not considered.

Nearest neighbor interpolation  For this straightforward interpolation method,
each target value is simply set to the source value that corresponds to the
source point closest to the respective target point. However, for every target
point, this source point or nearest neighbor (NN) has to be found in an
efficient way. While looping through all source points for all target points
to find the smallest distance constitutes a robust algorithm, a total of (n®n')
computations of distances is required. Organizing the points in a tree data
structure reduces the number of distance computations remarkably. A so-
called k—d tree, as proposed in [23], has become a standard method for this
purpose, i.e. organizing points in k-dimensional space.

Barycentric interpolation A barycentric interpolation is closely related to the
nearest neighbor interpolation. Instead of taking the value at the nearest
neighbor to compute the value at a source point, its three nearest neighbors
are used to compute the value. This is done by parameterizing the triangle
spanned by the three nearest neighbors using barycentric coordinates. De-
noting the indices of the three corresponding source points by a;, b; and ¢;,
the target value is computed by

vl = +a U, ~ + B; Ve, ~ Y ) (4.218)
e el e, -,
where
ai = (pi —pi,) - (P, — PL) (4.219)
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and

Bi = (pi —p,) - (P, — P, - (4.220)
Special attention has to be paid when using the barycentric interpolation
because the three source points will not necessarily span a triangle that
contains the target point. Further, the triangles spanned by them may
be degenerated to a line. To avoid extrapolation in such cases, the fourth
nearest neighbor is added to the set of source points. For all combinations
of three of these four points, it is then checked whether they form a valid
triangle that contains the target point. If no such combination is found,
another nearest neighbor is added, new possible combinations are checked,
and so forth. While this can be computationally expensive considering
a single target point, it is rarely the case that more than three nearest
neighbors are needed. In most cases, the computational meshes provide a
point distribution that excludes this case.

Inverse distance weighting Interpolation methods using an inverse distance
weighting can generally be formulated as

el v if ||p* — p5| # 0 for all j € N;
v(p)=q ol b = (4.221)
v} if ||pt—p3'-|| = 0 for some j € Nj,
where wf] ) denotes a weighting function and N; denotes the set of source
point indices contributing to the interpolated value at the target point p!.
If used as a point cloud interpolation method, a certain number of nearest
neighbors or all points within a certain distance to p} may be used. In [178],

the inverse distance weighting function

; 1
P — w3l
was proposed. Based on the author’s name, the method is also known as
Shepard interpolation.

Radial basis functions Radial basis functions (RBF) are a very flexible

method for meshless interpolation. The target values are computed as a
weighted sum of radial basis functions 6 as

vl = N0 (I[P - pil]) - (4.223)
j=1
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L7 = (%)’
o sampling points

E - = = RBF interpolation %
S single RBFs k
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distance r coordinate x

Figure 4.16: Left: Commonly applied radial basis functions (COP, C2P, and C1S with Ry = 1).
Right: Interpolation of a parabola using 8 GF with R, = 1.

The weights A; € R? are computed using the interpolation condition, i.e.
by demanding that

N&
v =Y X6, (v —pi]) - (4.224)
=1

Introducing the vector of weights
A=A o A, (4.225)
Eq. (4.224) can be stated in matrix notation as
Ve = ©°A, (4.226)
where
o5 =0, (Ilp} —pjll) withi,j=1,...n" (4.227)

Now, the coefficients can be computed as A = (6)5)71 V* and the target
values can be obtained from

Vi=0'L=0"©) 'V, (4.228)
where
05 =0;(lpi —pjll) withi=1,...,n'and j=1,...n" (4.229)

Possible choices for the RBFs and an exemplary interpolation of a
parabola are presented in Fig. 4.16. RBFs are commonly divided into
functions with a compact support and functions with a global support.
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A compact support implies a finite support radius RY and 6; (r) = 0 for
r > Réj ). The parameter Réj ) is introduced here for all basis functions by
using

0;(r) =0 (RZ)) (4.230)

as a general form. The meaning of the support radius is preserved by ensur-
ing that, in the case of a compact support, 6(7) = 0 for 7 < 1. Commonly
used functions with this property include

e the C-continuous polynomial (COP) with § (1—7)>

e the C2-continuous polynomial (C2P) with 0 @ (1-7)'(4F+1),

o the C'-continuous thin plate spline (C1S) with 0 R 72407 +
157 — 87 4+ 2072 1n (7).

More details on the origin of these RBF's can be found in [46, 47]. Commonly
used functions without a compact support include

e the Gaussian function (GF) with g < e*f27
e the multiquadric (MQ) with g MQ V1472,

e the inverse multiquadric (IMQ) with 6 @7

o the thin plate spline (TPS) with 0 5 52y (7).

A preliminary investigation of the RBF's is performed here in preparation
of a more detailed analysis of their application for the mapping of coupling
quantities (see Section 5.1.4) and as a mesh deformation method (see Sec-
tion 5.2). The domain [0,L] with L = 10 from Fig. 4.16 is kept as an
example. The following functions are then evaluated at n® = 9 source or
sampling points to be used as a basis for an interpolation with RBFs.

e Constant function f(z) =1,
e parabola f(z) = (22 — 1)2,

e step function f(z) = { ) 1 ;fl;z< L
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o sampling points —— Rs = 1,interpolation ~ —— R = 2, interpolation ~ —— Rs = 5, interpolation
-- - sampled function ~ —— Ry = 1 error —— Ry = 2, error — Rs = 5, error
parabola, randomized, GF constant, manufactured, IMQ step, equidistant, C2P
T T T T T T T T T T
1 1
0.5
0.5 .
0 ‘Q\
—0.5 T 0 *
Il Il | | Il Il Il Il Il Il Il |
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Figure 4.17: Exemplary interpolations from the study of radial basis functions and correspond-
ing errors.

The sampling points are distributed according to one of the following
schemes.

o Equidistant, with 2" = L 4 [ (1-1)%

i 2 ns?

(r.Ln) _ x(C,L) + erand L‘

e randomized, with z, =ux;

. x; % ife <2
e manufactured, with :pl(.m’L’”) = ‘ =

Using the RBFs introduced above and increasing the support radius from
Ry = 1/4 (1/1 of the mean source point distance) to Ry = 5 in ten steps, inter-
polations as the ones shown in Fig. 4.17 are obtained. A global quality mea-
sure is obtained for each interpolation by evaluating it at n' = 150 equally
distributed target points with af = Li/nt (the one-dimensional counterpart
to p'), which yields n' target values y! (the one-dimensional counterpart to
v!). Then, the mean interpolation error is computed as

1) — ol 1a Z

nt

(4.231)

i=1

Figure 4.18 shows the errors for all considered interpolations. Included are
the results for interpolations that were performed with an adaptive support
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Figure 4.18: Interpolation error ¢' (ordinates) with increasing mean support radius R (abscis-
sas) for the interpolation of differently distributed source points sampling different functions.
Marks x denote studies with adaptive Réj), marks o denote studies with uniform jo) = R.

radius R,(sj ), which was computed for each RBF by

; 1 p
jo) = (xj-&-l - {)3]'_1) - Réj) (4232)
2L
This leads to a mean support radius
n® Rgz)
— =R, (4.233)
oy
i=1
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which was kept as the abscissa in Fig. 4.18. Since the mean support radius
reflects a measure for the mean bandwidth of the system to be solved, this
is regarded a fair comparison with the case of uniform support radii. From
the results, the following conclusions can be deduced.

e For any type of RBF and source point distribution, the step function
cannot be approximated satisfactory by the interpolation.

e The RBFs GF, MQ, and IMQ show a divergent behavior for the step
function.

e The TPS shows an undesired convergence (divergence) behavior also
for the parabola and the constant function — with increasing Ry, the
error may increase.

e The RBFs with a compact support (COP, C2P, and C1S) show a slower
convergence than the RBFs with a global support.

e The GF shows the best convergence rate, while the TPS, the MQ
function, and the IMQ function (in that order) show the lowest error
for small support radii.

e For any convergent case, the adaptive computation of support radii
yields an improvement. The largest improvement is observed for the
manufactured source point distribution.

In addition to the mean interpolation error e', the maximum error, i.e.
the maximum || f(z}) — yf|| was investigated, showing a similar convergence
behavior (see Fig. A.5.2 in Section A.5). Only the MQ function is used
for further investigations and applications of the RBF interpolation, as it
yields the best compromise between convergence rate (better only for the
GF) and accuracy for small support radii (better only for the TPS). It is
used in combination with an adaptive support radius, which for every source
point is set to be twice the mean distance to the two closest source points.

Mesh-based interpolation

Mesh-based interpolation makes use of the underlying computational mesh.
In the best case, not only the geometry defined by the mesh is taken into
account, but the interpolation method of the respective numerical method
is adopted as well. A general algorithm for mesh-based interpolation then
consists of two steps.
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Algorithm 3 Robust projection of a point onto a mesh with elements of arbitrary geom-
etry.

1: procedure PROJECTTOMESH(mesh, p) > returns projected point pP
2: P < FARAWAYFROM(p)

3 for each face : mesh.fsiRegion.faces do > loop in a reasonable order
4: r, s < PROJECTTOFACE(face, p)

5: if -1<r<land —-1<s<1then

6: return f(© (r,s) > see Eq. (4.56) for the p-FEM case
7 end if

8: r < MAX(—1, MIN(1,7))

9: s = MAX(—1, MIN(1, 5))

10: if [|p” — p|| > [|£(r,s) — p|| then
11: PP < F(r,s)

12: end if

13: end for

14: for each edge : mesh.fsiRegion.edges do > loop in a reasonable order
15: r < PROJECTTOEDGE(edge, p)

16: if -1 <r <1 then

17: return e (r) > see Eq. (4.55) for the p-FEM case
18: end if

19: r 4+ MAX(—1, MIN(1,7))
20: if [|p° — p| > ||e!)(r) — pl| then
21: PP+ e(r)
22: end if
23: end for
24: return p°

25: end procedure

1. Projection of the target points onto the source mesh.
2. Evaluation of a given interpolation of the source values.

When mapping displacements from the structural mesh to the fluid mesh’s
nodes, the finite element shape functions are used in the second step. Con-
sidering the mapping of tractions from the fluid mesh to the structural
mesh’s quadrature points, an interpolation is constructed using inverse dis-
tance weighting. The projection step is the same in both cases.

Projection of points onto a mesh One can implement a simple and robust
algorithm to solve this task, see Alg. 3. While it is not applicable in practice
due to efficiency reasons, the following considerations constitute the basis
for the improved version discussed afterwards.

e A target point p' has to be projected onto a single element as shown
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correct projection correct projection
lies on different face lies on edge

Figure 4.19: Projection of a point onto the surface of an arbitrarily curved hexahedral.

in Fig. 4.19. The corresponding minimization problem and its solution
with the Newton-Raphson method are explained below. This is a com-
putationally expensive task with respect to the high-order geometry
description used for the structural mechanics subproblem.

e According to the domain [—1, 1], which is the functional domain for
all element parameterizations introduced in this chapter, the projec-
tion according to Fig. 4.19 may yield local coordinates outside of this
domain, indicating that the point should actually be projected onto
another element.

e If it is not possible to find an element for which the projection yields
local coordinates inside the domain [—1,1], the point has to be pro-
jected onto the edges, see Fig. 4.19. Again, the projection result has
to be checked.

e f the projection fails for all edges too, the local coordinate is set to the
respective boundary value —1 or 1, which can be seen as another, final
projection to the edge’s node.

Considering the mapping of coupling quantities from one discretization to
another, it is safe to assume only a small number of points for which this hi-
erarchy of projections has to be performed all the way to the end. However,
already the first step consumes an unacceptable amount of computational
resources if performed for every element.

The first improvement of Alg. 3 therefore lies in excluding elements for
which a valid projection is impossible. However, allowing for truly arbi-
trary element geometries, it is always possible to construct extreme cases
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that cause a given filtering technique to fail. Focusing on reasonable ele-
ment geometries, it was found that axis-aligned bounding boxes, which are
enlarged by the maximum projection distance to be expected, yield a valid
criterion for the exclusion. To efficiently find all elements whose bounding
box contains a given target point, they are organized in a so-called AABB-
tree data structure, see e.g. [125, 43] for details. The first of the above
subtasks is then performed for each of these elements. To further improve
the efficiency, the local coordinates are set to the respective extreme value
for each element instead of continuing with the second step if all projections
fail. The best result, i.e the point on an element closest to the target point,
is taken to be the projected point if the distance is below a given tolerance.
The introduction of this tolerance is justified in view of the finite conver-
gence criteria prescribed for the coupling algorithm and the individual field
solvers.

Concerning the projection of a point to a face and an edge, a mini-
mization problem needs to be solved to obtain the local face coordinates
rif) = [r S ] and the edge coordinate r, respectively, for a given point
p'. Following [123], the projection onto a face can be formulated as the
minimization problem

|ep|2 1 ¢ ¢ :
5 =5 (@ —p') (p"—p') = min, (4.234)

where pP(rP) is the projected point. Equation (4.234) leads to

0| 2. (pr—p)
gler | o —0. 49
or 2 {ap;'(l’p—l’t) 0 (4.235)

This nonlinear system of equations is solved using the Newton-Raphson
method, i.e. starting with an initial guess r§ and solving

0% |er|? 9 |er)?
— ArP = — — 4.236
orr 2 | " or 2 | | ( )
and updating
iy =1+ ArP (4.237)

iteratively, until Ar falls below a given tolerance. The partial derivatives
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face at sharp edge:
exclude faces on other side

standard face:
take all adjacent faces

Figure 4.20: Mesh-based interpolation. Left: Correction of evaluations of displacements at
projected points. Right: Determination of neighboring faces for mesh-based inverse distance
weighting.

on the left hand side of (4.236) are found to be

2 2 op®  9p° | &*p° ty Op°  OpP 9*pP

O el _ 05;{)-63%+8@5p-(pp—p) giaa” %5’55-(pp—pt)

ot 2|5 W tan PP T e (0P P
(4.238)

Interpolation and evaluation Having found the projected point pP, i.e. the
corresponding local coordinates 7P, the quantity in consideration has to be
computed at this point. Two scenarios are possible regarding the coupled
simulation considered here.

1. If displacements are to be evaluated at pP, the underlying numerical
method is the FEM. A description for a continuous displacement field
is therefore already given in terms of the shape functions. With the
local coordinates from the projection step, Eq. (4.7) can be used for
the evaluation step yielding

dP = N© (7?)d®, (4.239)

The degrees of freedom collected in d® may be interpreted as the in-
terpolated source values. However, this interpretation is only justified
for nodal finite element methods, e.g. those applying Lagrange shape
functions. In general, the degrees of freedom are weights which do
not correspond to the displacement at certain points. The physical
interpretation of the quantity as a displacement gives rise to a correc-
tion. Introducing a local rotation matrix RP, possibly obtained from
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a polar decomposition of the deformation gradient, the evaluated dis-
placement dP at pP should not be used directly as the displacement d*
at p'. Instead,

d=d"+(R"—1)e’ (4.240)

is used to avoid errors in cases of large rotations, as illustrated in
Fig. 4.20.

2. If tractions are to be evaluated at pP, the underlying numerical method
is the FVM. As explained in Section 4.1.2, the degrees of freedom then
correspond to the values at the face centers of the mesh. In this case,
the inverse distance weighting method is used to compute the tractions
at pP from the value at the face center of its parent finite volume and
neighboring volumes. Then, the interpolation method is mesh-based,
due to the fact that not all source points but only those corresponding
to centers neighboring faces are taken into account when constructing
the interpolation according to 4.221. Further, instead of taking all
neighboring faces, only those with a normal close to the normal of
the parent finite volume are considered to set up the inverse distance
weighting interpolation. As illustrated in Fig. 4.20, this prevents issues
associated with sharp edges, where the traction on either side should be
described without taking the other side into account in order to avoid
an influence of the discontinuity of the normal vector. In Section 5.1.4,
this is addressed in more detail.

4.4 Coupling software

As mentioned previously, the coupling software comana is used to steer the
participating solvers in a multifield simulation. It controls the data transfer,
i.e. the exchange of coupling quantities, between the solvers and provides
data structures for a convenient implementation of coupling algorithms.
Initially, comana was introduced as a coupling manager, which was designed
specifically for FSI problems (see [28]) and since then has matured to a
C++ framework, which is generally applicable in the context of partitioned
simulations, see [122].

The framework is split into a core library and adapter libraries, one of
which is provided for each supported field solver. The core library pro-
vides algorithms and data structures for the implementation of a coupling
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manager process (CMP), which includes the coupling algorithm. Further,
representations or handles the participating field solvers are created in such
a CMP. They allow to remote control of the field solvers, or field solver
processes (FSPs), i.e. through the handles, a solver may be told to

1. receive and set boundary condition values at tp.1 = t; + Aty,
2. solve for the solution at i1,

3. evaluate and send the solution at t;.1,

4. proceed with the next time step, i.e. increase k.

With the above tasks, it is possible to realize all solver-specific tasks ap-
parent in the general coupling algorithm (see Algorithm 1), e.g. the solve
operator §§f++11) = X o 32]421 More precisely, each evaluation of the solve
operator corresponds to an execution of the first three tasks. Once a cou-
pling iteration is converged, the fourth task is executed and the simulation
proceeds with the next time step.

The main challenges in implementing a coupling software that allow to

remote control field solvers in this way can be seen in

e creating a software design that allows for a convenient implementation
of new adapter libraries,

e supporting field solvers that are programmed in different programming
languages,

e providing an inter process communication mechanism that allows for
parallelized solvers and does not rely on files,

e developing data structures that allow for a convenient and safe imple-
mentation of coupling algorithms.

In the following, an overview about how these aspects are addressed in
comana is given. After a summary of the overall software design, the most
important concepts are explained in the next section. The most important
design choices regarding the implementation of coupling algorithms and
the manipulation of field solvers are explained in Sections 4.4.3 and 4.4.4,
respectively. They were found to yield a flexible framework and may be
reused in other software projects that realize similar tasks.
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Figure 4.21: Software design of the coupling manager comana introduced in [122].

4.4.1 Software design

Fig. 4.21 illustrates the split into core and adapter libraries and their usage
by the CMP and the FSPs. The CMP relies on the functions and data struc-
tures from the core library in order to implement the coupling algorithm.
An FSP constitutes a modified field solver, i.e. a field solver, to which the
respective adapter library was linked. Through the adapter library, the field
solver is enabled to communicate with the CMP. The concept of fields and
patches is used here as well.

From a numerical point of view, the most important data structures are
the representations of the different convergence acceleration methods, pre-
dictors, interpolation methods, and convergence criteria that were intro-
duced in Section 4.3 and denoted as building blocks in Fig. 4.21. In comana,
each of these building blocks is implemented as a class, providing member
functions that execute the respective operation. They can all be viewed as
data processing blocks that work on arrays or vectors. Outside an imple-
mentation context, they were correspondingly introduced using operators
(e.g. A for an arbitrary convergence acceleration method).

From an implementation point of view, data structures that do not di-
rectly represent one of these building blocks constitute the core of the soft-
ware. They realize a seamless integration of the building blocks into the
communication framework. On a low level, this includes container classes
for the processed data (the FIELD class). The most important higher level
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classes are those implementing solver handles and representations of dis-
cretized coupling interfaces or mesh regions (the classes SOLVERHANDLE
and PATcH). In the following, the concepts behind these classes is ex-
plained. Details on the implementation are provided in [122].

Fields

The main container class in comana is the FIELD class. As the name sug-
gests, a FIELD stores the field data, which is sent to and received from the
solvers. In general, the exchanged data are evaluations of scalar, vector or
higher order tensor fields at certain points in space. The total number of
scalars contained in a field accordingly depends on the tensor order, on the
global space dimension, and on the number of points. During the develop-
ment of the coupling software, certain design choices for the FIELD class
were found to ease the seamless integration of the building blocks.

e The data should be stored linear in memory, i.e. as a one-dimensional
array. This is the only storage order that is directly supported by
most inter-process communication protocols. Further, this is the way
that building blocks such as predictors and convergence acceleration
methods access the data (the corresponding operators process column
vectors, see e.g. Eq. (4.160)).

e The data should still be accessible on a per-point basis, e.g. if a vector
field is considered, the quantity at point ¢ should be accessible as a
data structure that represents a vector. This eases the implementation
of building blocks such as as interpolation methods, which rely on the
association of the evaluated quantity with a location in space.

The above points are realized in comana using a view pattern (see e.g. [4]).
For its implementation, the FIELD class draws on the container classes of
the C++ standard library and the linear algebra package Eigen (see [86]).
This concept of the FIELD class minimizes the need for copying large data
sets on their way from within the coupling algorithm to the field solvers
database. In fact, only a single copy is made for some of field solvers,
namely when exchanging the data between the CMP and the FSP. For
most field solvers, however, additional copies within the adapter library
cannot be circumvented, e.g. due to different programming languages.
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Solver handles

The SOLVERHANDLE class is an abstract representation of a field solver
within the CMP. To enhance the readability of this section, its name was
changed to place emphasis on this view from the outside. For the explana-
tion of the internally underlying concepts, the actual name SOLVERPRO-
CESSGROUP is more suitable. It pronounces the fact that, generally, a field
solver may be parallelized such that more than one FSP is associated with
it. Sending data to or receiving data from a field solver may accordingly
involve communication with a group of processes, as illustrated in Fig. 4.22.
Further, the exchanged data, e.g. fields, have to be scattered or gathered
due to the fact that the different processes of a field solver usually represent
only a part of the computational domain of the respective subproblem. As
explained in more detail in Section 4.4.2, a suitable initialization of these
parts of a computational domain constitutes the main challenge.

Patches

Trrespectively of a parallelization of a field solver, in the scope of surface
coupled problems, only a part of the boundary of the underlying compu-
tational domain represents the coupling interface (the wet surface in FSI
problems). A coupling interface is represented by the PATCH class in co-
mana. Fields are exchanged between the CMP and the FSP on the basis of
patches. A solver patch is part of the adapter library for any (mesh-based)
solver. For its implementation, a generic solver patch is provided, which
allows for a flexible arrangement of tasks such as coupling quantity evalu-
ation and mesh based interpolation. The flexible arrangement is explained
in more detail in Section 4.4.4. As depicted in Fig. 4.22, a possible paral-
lelization of the field solvers is hidden from the user by the PATCH class.
Under the hood, it is associated with the individual parts of the coupling
interface, each of which is associated with one FSP. While usually, there
is a one-to-one relation between patches of different field solvers, there is
usually no such relation between the individual parts of the patch within
the FSPs.

4.4.2 Inter process communication

Communication between the coupling manager process (CMP) and the field
solver process (FSP) is realized using the open source implementation Open-
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Figure 4.22: Concepts of field solver handles (left) and patches (right) in the scope of paral-
lelized field solvers.

MPI (see [198]) of the message passing interface (MPI) standard [8]. Tt
allows for different communication concepts and constitutes a widely ac-
cepted standard for handling data exchange between processes. In comana,
communication is established based on a server-client model, allowing to
run the CMP (server) and the FSPs (clients) independently and on differ-
ent machines if desired. The MPI standard defines interfaces for sending
and receiving arrays of standard data types such as characters, integers, and
floating point numbers that are supported by most programming languages.
In comana, these interfaces are wrapped, in order to send and receive fields
and several other data structures.

On a higher level, the communication concept is based around requests,
which are issued by the CMP (the server side). On the client side, they
are handled by a request handler as illustrated in Fig. 4.21. The four tasks
introduced at the beginning of this section are realized by the following
requests.

SOLVE Tells the solver to solve the respective subproblem.
GETFIELD Tells the solver to send a certain quantity field.
SETFIELD Tells the solver to receive a certain quantity field.
PROCEED Tells the solver to advance the state variable in time.

Further, the following requests are used to deal with adaptive time step
sizes, which may be proposed by the coupling manager or the field solvers.

GETTIMESTEPSIZE Tells the solver to send the time step size.

SETTIMESTEPSIZE Tells the solver to receive a new time step size and
to use it for the next SOLVE and PROCEED requests.
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Finally, requests for the initialization of mesh regions are needed (each field
is associated with a certain mesh region). The request INITIALIZEPATCH
tells the solver to prepare a certain mesh region to participate in the cou-
pling. Depending on the solver and the mentioned arrangement of tasks,
representations of the contained elements and accessors for coupling quan-
tities are created on the client side.

4.4.3 Implementation of coupling algorithms

With the introduced concepts, a coupling algorithm can be implemented in
terms of a speaking source code, which likewise serves as an input file to a
coupled simulation case. Aiming at academic research as the main appli-
cation area, this design of comana as a C++ framework feels appropriate.
Rather than parsing less readable XML files or similar input files, which
are purely based on data, this allows to draw on the full capacities of C++
and use conditions, loops, etc. as desired. A coupling algorithm can then
be implemented in a direct correspondence to the pseudocode introduced
in Alg. 1. Listings 1 and 2 show the initialization section and the coupling
algorithm section of an exemplary source code, respectively. With a few
renamings, the code can be used directly in the context of a coupled sim-
ulation with the fluid solver pimpleDyMFoam (sce [154] and Section 4.1.2)
and the structural solver AdhoC' (see [65] and Section 4.1.1). In Listing 3,
a corresponding source code for a parallel coupling algorithm is given.

In the source codes, the two enum classes LOCATION and QUANTITY are
used very frequently. They are attached to every SETFIELD and GETFIELD
request and the respective combination defines the local dimensionality of
the send or received field. Requests for a combination that is not provided
by a field solver will throw an exception. Setting the quantity position at
the location custom tells a solver to initialize a mesh-based interpolation
for the respective points, see Listing 1 (Rows 25, 26). Coupling quantities
can then be evaluated directly at these points, see Listing 2 (Rows 59, 64)
or Listing 3 (Rows 63, 64).

4.4.4 Field solver manipulation

In order for a standard field solver to participate in a coupled simulation,
it has to be manipulated. This is done in a minimal invasive way by im-
plementing all routines and classes needed for the communication with the
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CMP and the handling of requests in the adapter library (see Fig. 4.21).
Algorithms 4 and 5 show the pseudo-code for an original field solver and a
modified one, respectively. The existence of a loop over time steps is the
only requirement assumed to be met by any dynamic field solver. Apart
from the implicit loop, the field solver manipulation consists of five function
calls. The following four functions are the same for all field solvers.

INITIALIZECOUPLING() Establishes the connection to the CMP via MPL.

COMMUNICATEBEFORESOLVE() Waits for requests from the CMP and
handles them. Returns on request SOLVE.

COMMUNICATEAFTERSOLVE() Waits for requests from the CMP and
handles them. Returns true on PROCEED, false on request SOLVE.

FINALIZECOUPLING() Closes the connection to the CMP via MPL.

They are provided for all supported programming languages (C++, C,
Fortran, MATLAB, Python), where the non-native (non-C++) variants
constitute wrapper functions to the native (C++) variants.

Algorithm 4 Original implementa- Algorithm 5 Modified implementation of a
tion of a dynamic field solver.

dynamic field solver.

1:

2

: problem ¢~ SETUPPROBLEM()

3

4

© ® N>

—
[ R

13:

—
=

cfork=1...n" do

SOLVEPROBLEM()

UPDATESTATE()
end for

—
ke

1:

10:
11:
12:
13:
14:

INITIALIZECOUPLING()

2: problem <— SETUPPROBLEM()
3: INITIALIZEDRIVER(problem)
4: for k=1...n" do

5:
6.
7
8

while true do
COMMUNICATEBEFORESOLVE()
SOLVEPROBLEM()
if COMMUNICATEAFTER-
SOLVE() then
break
end if
end while
UPDATESTATE()
end for
FINILIZECOUPLING()

The function INITIALIZEDRIVER() has to be implemented for each field
solver and is usually directly implemented in the field solvers’ programming
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language. Its purpose is to store a global reference to the solver data base
(the data structure problem in the example in Alg. 5) such that it can be ac-
cessed later on from within functions COMMUNICATEBEFORESOLVE() and
COMMUNICATEAFTERSOLVE(). As depicted in Fig. 4.21, the solver data
base itself as well as the MPI interface must be reached through these func-
tions. Whether this is achieved purely in the native programming language
of the field solver or via a C++ interface, which is common to all adapter
libraries, constitutes an important design choice.

Both alternatives were tested in comana, and the one involving a common
C++ interface was found to be favorable. At first sight, especially if only
a small number of field solvers, possibly implementing completely differ-
ent numerical methods, is considered, adapter libraries that are completely
based on the field solvers programming language may be more suitable.
However, an increasing number of solvers makes it difficult to draw on simi-
larities between them. In the development process of comana, the similarity
of being mesh-based, which is shared between many of the considered field
solvers, was crucial for the decision to employ a common C++ interface. At
the cost of exchanging data between different programming languages this
allows to reuse algorithms and data structures needed, e.g. for the following
task:

e Handling requests such as SOLVE and PROCEED, which are indepen-
dent of the field solvers numerical method.

e Projecting target points onto a mesh as explained in Section 4.3.5.

e Integrating quantities over a cell (e.g. a finite element face), a typical
example being the integration of tractions to obtain (nodal) forces.

A customizable MESH class, accompanied by classes for cells of different
type, constitutes the core of an adapter library for a mesh-based solver.
Usually, a solver-specific mesh class is derived from this abstract mesh class.
The same is done for the cell classes. Their design allows for a decision
on how coupling quantities are to be extracted from the solver database
and how they are evaluated at the specific locations in the solver-specific
derived classes. Among other things, these decisions determine the following
aspects.

e Whether coupling quantities from the solver data base are extracted
as an entire field, e.g. for an entire patch part (c.f. Fig. 4.22), or
individually for each node, respectively each cell.
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e Whether coupling quantities are interpolated and evaluated using the
solvers internal methods (typical for FEM solvers) or using methods,
provided by the mesh class (typical for FVM solvers).

o Whether geometrical information such as mapping functions and the
related Jacobian matrices are computed within the field solver (typi-
cal solvers with special element geometries as found in the p-FEM or
isogeometric methods) or using the templates for elements provided
by the mesh class (standard elements like linear and quadratic lines,
triangles, quadrilaterals, tetrahedrals, hexahedrals, etc. are supported
by comana).

e Whether an interpolation or integration is done within the solver or
the mesh class.

Among the seamless integration of the building blocks into the commu-
nication framework by the core concepts introduced in Section 4.4.1, this
flexibility when designing a derived mesh class for a specific field solver and
the well thought out data structures one can draw on during this process
are what make the software most attractive.
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Listing 1 Initialization section of the implementation of a CMP in an FSI simulation using
the C++ framework comana.

#include "comana/kernel/comana.h"

using namespace Comana;

// abbreviations

using R = Request;
using L = Location;
using Q = QuantityType;

int main()

{

SolverHandle fSolver("pimpledymfoam"), sSolver("adhoc");

// flutd patch

Patch fPatch(fSolver, "Surface A", Topology::plane);
R::initializePatch(fPatch);

Field fVertices = R::getField(fPatch, L::vertex, Q::position);

// structural patch

Patch sPatch(sSolver, "Patch 3", Topology::plane);
R::initializePatch(sPatch);

Field sPoints = R::getField(sPatch, L::quadraturePoint, Q::position);

// initialize custom points
R::setField(fPatch, L::custom, Q::position, sPoints);
R::setField(sPatch, L::custom, Q::position, fVertices);

// initialize fields
Field displacement = R::getField(sPatch, L::custom, Q::displacement);
Field traction = R::getField(fPatch, L::custom, Q::traction);

// initialize vectors

Vector &preliminaryDisplacementVector = displacement.getComponents();
Vector displacementVector = preliminaryDisplacementVector;

const auto nDisplacementDof = displacementArray.size();

Vector residual;

// start of coupling algorithm section
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Listing 2 Staggered coupling algorithm section of a typical implementation of a CMP in
an FSI simulation using the C++ framework comana.

// end of initialization section

// building blocks

PolynomialPredictor predictor(2);

ConvergenceCriterion criterion(le-6);
QuasiNewtonLeastSquaresMethod accelerator(displacementVector) ;

// time loop

const auto number0fTimeSteps=1000;
const auto maxNumberOfIterations=50;
for(auto k=0; k<numberOfTimeSteps; k++)

{
predictor.predict(displacementArray) ;
for(auto j=0; j<maxNumberOfIterations; j++)
{
preliminaryDisplacementVector = displacementVector;
// solve fluid subproblem
R::setField(fPatch, L::vertex, Q::displacement, displacement);
R::proceed(fSolver);
R::getField(fPatch, L::custom, Q::traction, traction);
// solve structural subproblem
R::setField(sPatch, L::quadraturePoint, Q::traction, traction);
R::proceed(sSolver) ;
R::getField(sPatch, L::custom, Q::displacement, displacement);
residual = preliminaryDisplacementVector - displacementVector;
if (criterion.fulfilled(displacementVector, residual)
{
displacementArray = preliminaryDisplacementVector;
R::proceed(fSolver);
R::proceed(sSolver);
break;
}
else
{
R::iterate(fSolver);
R::iterate(sSolver);
displacementVector = accelerator.updateSolution(residual);
3
}
}
}
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In order to study the applicability of the proposed numerical methods, in-
vestigations regarding their accuracy and efficiency were conducted. The
results are presented in this chapter. In the first section, single field prob-
lems are considered in order to ensure the proper function of the individual
field solvers. The main focus lies on the structural mechanics constitutive
laws. In the second section, the partitioned solution approach is considered.
The introduced coupling algorithms and convergence acceleration schemes
are investigated in terms of robustness and efficiency. Further, benchmark
problems are solved in order to validate the simulation approach. In the
last section, the numerical methods are investigated with respect to their
performance in cardiovascular FSI simulations.

5.1 Preliminary analyses

In this section, the individual subproblems introduced in Chapter 3 and the
corresponding numerical methods introduced in Chapter 4 are investigated.
The purpose of the conducted simulations is twofold. On the one hand,
they give rise to investigations of the accuracy and the efficiency of the
numerical methods. On the other hand, they reveal the influence of the
model parameters like the parameters of the constitutive models for the
structural and the fluid mechanics subproblem.

5.1.1 Structural mechanics

In this section, three aspects of the structural mechanics subproblem and
its discretization are considered. At first, the superior convergence be-
havior the p-FEM introduced in Section 4.1.1 over the classical h-FEM is
demonstrated. Secondly, the robustness of the soft-tissue material models
introduced in Section 3.3.1 is investigated. Finally, suitable parameters for
the isotropic models are identified in order to use those models for FSI
simulations with non-trivial geometry.
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Convergence analysis

As a basis for the convergence study, a cylindrically shaped artery is consid-
ered. It is loaded with an internal pressure of p; = 16 kPa. The displacement
in axial direction is suppressed by applying suitable Dirichlet boundary con-
ditions at both ends. Due to the symmetry, only a quarter of the cylinder
is discretized. The HGO model is employed with the parameters identified
in [82]. Different sets of parameters are used for the media and adventitia
layer, which are assumed to have the same thickness for this test case. The
sets of parameters will be considered in more detail later on in this section.
They were also used in [162], where the convergence behavior of the p-FEM
was investigated as well. Therein, the trunk and the tensor product space
were considered, while this study is augmented by the serendipity space.
The following findings from [162] are not reinvestigated.

e A p-refinement should be done isotropically. For thin-walled struc-
tures as considered in [64], the use of anisotropic ansatz spaces (dif-
ferent polynomial degrees in thickness and in plane direction) yields
a performance gain — but this is not the case when considering the
load-displacement behavior of (rather thick-walled) arteries.

e A similar convergence behavior is observed for bypass-like structures,
even though they are characterized by a much smaller wall thickness,
and were modeled using an isotropic (Neo-Hooke) material model in
[162].

e A similar convergence behavior is observed also for arterial segments
with non-circular geometry.

e A mesh with two elements in the thickness direction and eight elements
in the circumferential direction (two in the quarter model considered
here) yields a suitable element size.

A reference solution for the convergence analysis was computed using the
same polynomial degree p = p® = 10 for the geometry and the shape func-
tion. For all simulations, the number of quadrature points per element was
chosen to be (p+5)% in order to avoid any influence of inaccuracy induced
by the quadrature. The coarsest low-order mesh under consideration con-
sists of 8 elements in circumferential direction (for the quarter model) and
2 elements in thickness direction. Refinements are done only in those direc-
tions, not in the axial direction. The simulation error for three quantities

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

5.1 Preliminary analyses

of interest, namely the strain energy F, the maximum displacement ||d™|
and the von Mises stress oy are investigated. For all quantities, the relative
error is considered, e.g.

Erof )
H (51)

CE = ‘ ’ Eref

for the strain energy.

The results in Figure 5.1 show that the trunk space is favorable over
the other ansatz spaces. The comparably low error for quadratic elements
(p = py = 2), which was discovered in [162], is observed here as well. It is
attributed to the problem characteristics, which seem to be such that the
solution lacks an important contribution from the additional shape func-
tions present for p = 3 as opposed to p = 2. This may at the same time
shift the convergence graph for the A-FEM with p = p, = 2 towards lower
errors, such that this discretization method should be investigated for other
problems as well, before making statements about its performance, which
for the present case is unexpectedly high. In any case, the convergence
rates of the p-FEM are even higher — and as long as the trunk space (TS)
is used instead of the tensor product space (TPS), the same error can be
achieved with less degrees of freedom in nearly all ranges of desired accu-
racies. The convergence of simulations with the serendipity space (SS) is
limited, which is attributed to a lack of modes that are crucial in order to
describe the correct displacements. Therefore, it is not recommended to
apply this space.

Volumetric strain energy

Having applied the isochoric volumetric split for the introduced constitu-
tive models, their robustness and physical consistency in the case of large
strains shall be investigated here. For material models that are based on
a strain energy density function (SEDF) with a decoupled volumetric and
distortional part, an effect called thickness thickening is expected for large
uniaxial stretches, see e.g. [92]. While a detailed investigation is out of the
scope of this work, the studies conducted here ensure that this undesired
effect is not observed within the physiological range of stretches an artery is
subjected to. Further, a comparison of the different volumetric parts of the
SEDF Wl introduced in Section 3.2.2 and an investigation of the influence
of the bulk modulus x are of interest.
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Figure 5.1: Convergence behavior of the p-FEM and the h-FEM for a two-layered model of
an idealized artery.
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Table 5.1: Parameters for the soft tissue material models.

shear modulus ~ pH%0 27 kPa
fiber stiffness ky 0.64 kPa
HGO (media) fiber stiffness ko 3.54 —
fiber angle B8 10 °
bulk modulus K 10 kPa

shear modulus ~ pfG0 2.7 kPa
fiber stiffness k1 0.64 kPa
HGO (adventitia) fiber stiffness ko 3.54 —

fiber angle B 10 °
bulk modulus K 10 kPa
) shear modulus a 44.2 Pa
Delfino stress factor b 16.7 -
bulk modulus K 10 MPa
shear modulus  p 44.2 kPa
Fung first Lamé coeff. A& 997 kPa
stress factor c 50 kPa
bulk modulus K 10  MPa

As a test case, a unit cube with symmetry boundary conditions at three
of its boundaries as depicted in Figure 5.2 is considered. The symmetry
boundaries can be identified as I'Pak Tleft and TPottom At each of these
boundaries, the displacement is restricted to the in-plane direction. Two
different scenarios are considered for the other boundaries.

1. A uniform displacement d, in the z-direction is prescribed at the
boundary I'"8" The boundaries I'"" and TP are stress-free.

2. A uniform displacement is prescribed at the boundaries T'*ieht Tfront
and I'°P| such that an isochoric deformation is obtained.

For the second scenario, the displacement to be prescribed at the bound-
aries '™ and TP is obtained by considering the volume in the deformed
configuration, which reads

Vi=(1+d)(1+dy)(1+d.). (5.2)

Therein, d, denotes the displacement at I as in the first scenario, while
d, and d. denote the displacements, which are prescribed at [front and Ttop,
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deformed
configuration
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Figure 5.2: Reference and deformed configuration of the unit cube considered as a test case.

respectively. From V; =1, and d, = d, it is found that

1

dy=d, = ——1
Y VI+d,

(5.3)

Table 5.1 lists the parameters for the considered material models. The
parameters for the Delfino material were taken from [57], where they were
identified for the incompressible limit case. The shear modulus for the
Fung model is taken to be that of the Delfino model, while the first Lamé
coefficient-like parameter AF¢ is determined from p and s according to
linear elasticity. Note that A™™& does not actually represent a parameter
that has an effect on the initial (linearized around zero deformation) stiff-
ness, as shown in Section 3.3.1. The parameter ¢ was chosen such that a
similar load displacement behavior is obtained for the Fung and the Delfino
model. As demonstrated in Section 3.3.1 as well, the qualitative behavior
of the incompressible Delfino model is not preserved in the compressible
variant. A usage of the parameters in Table 5.1 is therefore questionable,
and they are only chosen as a starting point here. A more consistent set of
parameters is determined in Section 5.1.1. The parameters for the HGO are
taken from [82]. A bulk modulus of x = 1 x 107 Pa given therein is adopted
for the other material models as well. The fiber directions are set to

a; = \}i (e1 + es) (5.4)
and
as = 1 (e1 —es). (5.5)
V2
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Figure 5.3: Lateral displacement (left) and axial stress (right) plotted over the axial dis-
placement for the first scenario considered for the test case unit cube. Solid lines represent
k =1 x 107 Pa, dashed lines k = 1 x 106 Pa, and dash-dotted lines x = 1 x 10° Pa.

For the volumetric part of the soft tissue SEDFs, Wyl = (1 — J)? as
introduced in Eq. (3.78) is considered first. As a reference, the St. Venant-
Kirchhoff model is considered as well. As usual when considering arterial
walls, a Young’s modulus of F = 1 Mpa is assumed, which, in combination
with a bulk modulus of x = 107, leads to

3k E
= — =0.337MP 5.6
h= 9 —F a, (5.6)
3k—F
= — =0.483. 5.7
v or (5.7)

In Figure 5.3, the lateral displacement d, = d. is plotted over the axial
displacement d,. for the first scenario and different bulk moduli k. The effect
of thickness thickening is not observed until the stretch reaches a value far
beyond the physiological range (for £ = 1 x 107 Pa, d, ~ 0.5m marks the
point where the lateral stretch no longer decreases but starts to increase).
For the HGO model and the St. Venant-Kirchhoff model, it is not observed
at all. Figure 5.3 further shows that the load displacement behavior for all
material models except the HGO model strongly depends on the value for
K.

Regarding the second scenario, the thickness thickening effect can be ob-
served indirectly for the HGO model. As shown in Figure 5.4, the lateral
stresses 0., = 0y, = 09 = 033 are negative for moderate axial displacement.
However, between d, = 0.8 m and d, = 0.9 m, they become positive, which
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Figure 5.4: Axial stress (left) and lateral stress (right) plotted over the axial displacement for
the second scenario considered for the test case unit cube.

would lead to thickness thickening if the lateral displacement was not con-
strained to conform to an isochoric deformation. Again, stretches in this
range are far beyond the physiological limit, indicating that all material
models can safely be applied in cardiovascular FSI simulations.

In [92], the unphysical effects are circumvented for a rubber-like SEDF
by choosing the volumetric part W3 = £ (J° 4 J=° — 2) introduced in
Eq. (3.80). This was also done for the soft tissue material models considered
here. While the results in Figure 5.5 indicate that the point at which the
thickness thickening is observed first is shifted towards larger stretches, the
effect can still be observed within the considered stretch ranges. Due to the
fact that this constitutes only a small improvement, which is irrelevant for
physiological deformation scenarios, the simpler term W' is used in the
following for all soft tissue material models. This yields an HGO model that
is very close to the compressible variant from from [82]! and is equivalent
to the one considered in [152] and [236].

While the St. Venant-Kichhoff model shows physically consistent results
even for the very large stretches considered here, it is emphasized again that
this model has a major drawback for strong compressions. However, this
can be shown analytically — as has already been done, see e.g. [230] and
Section 3.2.2.

!The invariant IV and VI are computed from the isochoric counterparts of C in [82] as discussed in
Section 3.3.1.
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Figure 5.5: Influence of the volumetric part of the SEDF W"°! on the thickness thickening
effect for the first scenario considered for the test case unit cube.

Parameter identification

According to the findings in the previous section, material parameters ob-
tained for the incompressible variants of the material models cannot simply
be adopted for the compressible variants introduced in Section 3.3.1. In-
stead, it is necessary to identify equivalent parameters that yield a similar
load-displacement behavior. To this end, the case considered in [82] is taken
as a reference. Material parameters for the HGO model are provided there,
but they were identified considering prestresses, which — like the anisotropy
— cannot easily be incorporated in models with a complex geometry. In the
same manner as would be appropriate when taking experimental data as
a reference, parameters for the isotropic models are identified, but taking
simulation results as a reference.

Prestressed reference case As mentioned in Chapter 2, an artery shrinks
in axial direction when it is explanted. Further, if cut along the axial
direction, it springs open. Accordingly, prestresses must exist in the closed
and axially stretched load-free configuration. One attempt to capture these
prestresses in a simulation is to start the modeling process from the opened
and unstretched state. This state is then assumed to correspond to a stress-
free configuration, whose geometry has to be determined by separating the
arterial layers. Here, this is done in a similar manner as in [82], as illustrated
in Figure 5.6 and explained in the following.
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Figure 5.6: Configurations and circumferencial stress for an artery made out of HGO material
considering prestresses within the vessel wall.

1. The starting point of the simulation is taken to be the opened state.

162

This stress free configuration is meshed individually for the media and
adventitia. As can be seen in Figure 5.6, the radii of both layers do
not match at this state. Throughout the simulation, the displacement
in z-direction at the boundaries I'™* and I'*® is set to zero, which leads
to a symmetry boundary condition.

. By applying Dirichlet boundary conditions that prescribe the displace-

ment in y-direction at the boundaries I and I'*¢, both layers are
closed. Further, Dirichlet boundary conditions are applied on the outer
boundary of the media I'™° and on the inner boundary of the adven-
titia I'*°. Here, the prescribed displacement is determined in such a
way that the two boundaries coincide at the end of the prestretching
phase, which lasts for the first 40 load steps.

. From load step 41 on, the Dirichlet boundary conditions applied on I'™°

and I'™! are changed. Instead of prescribing a fixed displacement, the
two boundaries are now glued together to ensure that any additional
displacement is forced to be equal. This results in a small displacement
from load step 45 to 46, which brings the system into an equilibrium
state.

. From load step 50 to load step 100, an axial stretch of A* = 1.1 is ap-

plied by prescribing the displacement in the z-direction at the bound-
aries representing the ends of the vessel segment.
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Figure 5.7: Stress states during the simulation of the prestressed reference case.

5. From load step 100 to load step 200, an internal pressure load is ap-
plied and increased to a value of p; = 26.66 kPa. While the loads
exceed the pressure range considered in [82] (p; = 0kPato13.33kPa),
no unphysical effects are observed.

The stress distributions in the closed but axially unstretched state (load step
50) as well as that in the axially stretched state loaded with p; = 13.33kPa
(load step 150) shown in Figure 5.7 are in good agreement with the ones
given in [82]. The study is well-suited to show the adventitia’s role as a
shield that protects the other layers from damage at high loads. While
much higher stresses prevail in the media under low to medium loads, the
stresses in adventitia reach comparable levels in the high load regime.

Optimization procedure For cases with complex geometries, it is desired to
start the modeling process from the unloaded but prestretched state. In
the reference case, this state was reached in load step 100, cf. Figure 5.6. In
practice, it may correspond to an artery being clamped (no blood pressure)
but not explanted (stretched in axial and circumferential direction). This
is a situation that occurs, for example, during bypass surgeries. Besides
working with closed geometries, it is desired to apply isotropic material
models, due to a lack of information on the preferred fibre direction in
complex geometries.

In the following, the possibility to reproduce the load-displacement be-
havior of the prestressed anisotropic case using a simplified isotropic model
is investigated. It should be emphasized that this is an attempt to reproduce

163

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

5 Numerical investigations

only the load-displacement behavior. Realistic stress states corresponding
to the ones shown in Figure 5.6 are obviously not reproducible using such a
simplified model. In view of the FSI simulations to be performed, this deci-
sion seems reasonable. While, from a structural mechanics point of view, an
adequate prediction of the stresses inside the material is a major concern,
only the load-displacement behavior is of interest in an FSI simulation in
the scope of hemodynamics. That is, if the structural model predicts the
displacement of the inner vessel wall properly, the hemodynamics are pre-
dicted well — assuming that the fluid mechanics are captured well including
all boundary conditions.

For the optimization procedure, the load-displacement curve from the
prestressed case during the loading phase (shaded in gray in Figure 5.6)
is extracted and taken as a reference. The values are collected in a vector
drf. Trial solutions, obtained from simulations with the simplified model
are denoted by dgrial, where i denotes the iteration number within the op-
timization process. The MATALB function LSQNONLIN (see [197]) is then
used with its standard parameters to minimize the error

trial _ qref
_ fJam = at)
[[dret]|

The function LSQNONLIN implements the Levenberg-Marquardt algorithm
(LMA) proposed in [134] and rediscovered in [140]. It was previously used
for the identification of material parameters from experimental data, see
e.g. [91] and the references cited therein.
The optimization process yields errors e;

opt

e (5.8)

Pt each of which corresponds to

a set of material parameters, namely

Fung

pi = [ )\fung ¢ | (5.9)
for the Fung model and
Pi D01:ﬁn0 [ a; bl :| (510)

for the Delfino model (see Section 3.3.1 for details). While a fully three-
dimensional finite element simulation with the simplified model is performed
in each iteration, the only input to the LMA are the corresponding trial
solutions d?ial and an initial set of parameters py. Its output are improved
sets of parameters, which eventually lead to a decreased e?pt.

The geometry for the simplified model is taken to be that of the pre-

stretched one, corresponding to the beginning of the reference loading phase
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Figure 5.8: Load-displacement behavior obtained with the original Fung model for the artery
case and progression of the parameter values during the optimization process.

(load step 100 in Figure 5.6). At this state, the inner and outer radii of the
vessel wall were found to be r; = 1.65 mm and r, = 2.36 mm, respectively.
A distinction between media and adventitia is not made in the simplified
model. Rather, the artery is modeled as one homogeneous layer.

Figure 5.8 shows the results of the optimization procedure for the Fung
model. The initial values for the material parameters were taken to be those
from Table 5.1. As can be seen, the LMA manages to reduce the error to
some extent (from ey = 0.413 to eg; = 0.0488), however, the result is rather
unsatisfactory. The load displacement curve does not match the reference
very well. A similar mismatch is found for the Delfino model.

In order to find a more suitable model, the simple uniaxial tension test
from the beginning of this section is considered again. This time, a third
scenario is examined, where the deformation is driven by a uniform traction

t=[t. 00]", (5.11)

which is applied at the boundary I'®", As shown in Figure 5.9 (left), the
mismatch prevails also for this case, which does not include any prestresses
or biaxial stress states. This motivates a modification of the SEDF, since it
is the only difference between the considered models. Looking at respective
SEDFs, there is an obvious conceptional difference: While there is a Neo-
Hookean term in the HGO model to account for the stiffness of the matrix
material, such a term is missing in the Fung and the Delfino model. If this
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Figure 5.9: Load-displacement behavior obtained with the original Fung model (left) and the
modified Fung model (right) for the uniaxial tension case.

term is included in these models as well, modified SEDF's are obtained:
WFung* _ WFung + WNH (512)
and
py/Delfino”™ _ pp/Delfino , pNH (5.13)

where WTue and WPero denote the original SEDFs introduced in
Eqgs. (3.141) and (3.149), respectively. For the second Piola-Kirchhoff
stresses and elasticity tensors, a corresponding addition is obtained as ex-
plained in Section 3.2.2. As can be seen from Figure 5.9 (right), the load-
displacement curve for the uniaxial tension test can be represented very
well by the modified Fung model. A similarly good match was found for
the modified Delfino model.

Coming back to the simplified model of an artery, it is found that a very
good approximation of the load displacement curve can be achieved here as
well, see Figure 5.10 and 5.11. A closer look at the progression of the error
given in Figure 5.12 motivates the use of the Fung model. Compared to the
Delfino model, the error is slightly lower here, even though both models lead
to good fits. In order to check the robustness of the identified parameters,
several more optimizations were performed using different initial values py.
While no minimum was found in some of the cases, it showed that the same
set of minimizing parameters occurred in all the successful runs, which
indicates the uniqueness of the solution.
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Figure 5.10: Load-displacement behavior obtained with the modified Fung model for the
artery case and progression of the parameter values during the optimization process.
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Figure 5.11: Load-displacement behavior obtained with the modified Delfino model for the
artery case and progression of the parameter values during the optimization process.
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Figure 5.12: Reduction of the error during the optimization process.

5.1.2 Fluid dynamics

In this section, preliminary investigations of the fluid mechanics subprob-
lem are presented. They serve to assess the influence of the constitutive
equation, respectively the viscosity model. Therefore, the flow through a
straight rigid vessel is considered. Three different diameters are examined
in view of the assumption that the typically low shear rates prevailing in
small arteries and arterioles lead to a strong influence of the shear thin-
ning effect and the initial shear stress (see Section 3.3.2), while this effect
is negligible for larger arteries.

The considered vessel diameters and flow rates are taken from experi-
mental studies. The largest vessel resembles a common femoral artery of
an average male. A mean diameter of D; = 10mm and a mean flow rate
of @1 = 350 ml/min are set according to the results presented in [135].
Therein, the minimum and maximum flow rates observed during the car-
diac cycle were found to be Q¥ = 127 ml/min and QP** = 819 ml/min,
respectively. The time-dependent flow rate 1(t) shown in Figure 5.13 (left)
was determined such that these bounds are matched approximately and a
typical flow curve in the lower extremities is obtained. As a second sce-
nario, the flow rate in an artery in the human finger as investigated in [120]
is considered. According to the different specimens examined therein, the
diameter is set to Dy = 800 pm. The time-dependent mean axial veloc-
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Figure 5.13: Flow rates for the femoral artery-like vessel (left), the finger artery-like vessel
(middle), and the retina arteriole-like vessel (right).

ity measured in [120] was reconstructed using the WebPlotDigitizer (see
[169]) and corresponds to the flow rate shown in Figure5.13 (middle) with
a mean value of @™ = 3.93ml/min. The smallest vessel resembles an
arteriole in the retina and, according to the studies in [84], has a diameter
of D; = 110 pm. A mean flow rate of Q§*" = 0.0102 ml/min was measured
therein. Further, a ratio between minimum and maximum flow rate of 3.1
is given. The flow rate for the finger artery is taken as a basis and then
scaled and shifted accordingly to arrive at the flow rate Q3(t), as shown in
Figure 5.13 (right).

To start with, a stationary flow using the respective mean flow rate is
considered for all vessels. Figure 5.14 shows a comparison between the
different viscosity models. While minor differences can be observed, it is
questionable, whether the usage of a more complex model is justified. The
flattened velocity profiles prevailing for all viscosity models due to the in-
crease viscosity for low shear rates is still very close to the one obtained
for the Newtonian model. Different (constant and shear-rate-independent)
viscosities would of course yield the same parabolic velocity profile in the
stationary case, but the pressure drop would change.

In the pulsatile case, the shape of the velocity profiles does depend on the
viscosity, as shown in Figure 5.15. Besides the effect of different viscosities in
combination with the Newtonian model, the influence of the viscosity model
itself is more pronounced here. It is also observed that the velocity profiles in
the smaller vessels correspond very well to the parabolic Poisseuille velocity
profile. Here, the differences due to different viscosities in combination with
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Figure 5.14: Velocity profiles for the pulsatile flow situation in the femoral artery-like vessel
(left), the finger artery-like vessel (middle), and the retina arteriole-like vessel (right).

the Newtonian model are negligible, as in the stationary case. In the large
vessel, the typical Womersley shape is observed. This may also be estimated
a priori in terms of the Womersley number (see Eq. (3.181)), which describes
the relation between viscous and inertia forces or, respectively, their effect
on the velocity profile. Being proportional to the radius, it is much higher
for the flow in the large vessel than for those in the smaller vessels. The
differences due to the viscosity model are clearly visible, especially in the
late diastolic phase (instance 0s, 0.8 s in Figure 5.15).

Concluding, one can say that the viscosity has a major impact on the
velocity profiles in pulsatile flows. The effect of a non-Newtonian behavior
can be observed as well. However, the differences induced due to different
mean viscosities are comparably large. It is therefore emphasized that sim-
ulations of hemodynamics, respectively the interpretations of their results,
have to be done in view of the prescribed blood viscosity. In patient-specific
studies, e.g. with vessel geometries obtained from CT scans, patient-specific
parameters for the viscosity models should be used as well. Further, physi-
ological velocity profiles should be prescribed at inlet boundaries, such that
the distance from the inlet, from which on a fully developed flow prevails, is
as short as possible. This means that Womersley profiles rather than Pois-
seuille profiles should be prescribed, especially for larger arteries, where the
flow characteristics are such that the two choices show severe differences.
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Figure 5.15: Velocity profiles for the pulsatile flow situation in the femoral artery-like vessel
(left), the finger artery-like vessel (middle), and the retina arteriole-like vessel (right).

5.1.3 Reduced models

In this section, the one-dimensional network model and the windkessel mod-
els are considered. For the former, the implementation is compared to a
reference solution for validation purposes, while the latter are investigated
in more detail in order to be used efficiently in the scope of FSI simulations.

One-dimensional vessel model

The one-dimensional vessel model introduced in Section 3.3.3 is solved with
the Taylor-Galerkin method introduced in Section 4.1.3. It was imple-
mented in MATLAB (see [141]) and is validated considering an example
from [179]. The problem setup consists of a single vessel, which is dis-
cretized here using 100 one-dimensional finite elements. It has a length of
L = 15cm and a diameter of D = 1cm. The stiffness parameter and the
density are set to 3 = 451352kgs tem 2 and p = 1kg/cm?, respectively.
At the inlet, a pressure pulse

sin H) 2000Pa ift < T
Dy = (Tp (5.14)
0Pa else

with a duration of T, = 0.167s is prescribed. As shown in Figure 5.16,
the solution to the wave propagation problem obtained with the Taylor-
Garlerkin method is very similar to the reference solution from [179]. The
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Figure 5.16: Pulse wave propagation in a single vessel: Results obtained with the Taylor-
Galerkin method from [179] introduced in Section 4.1.3.

reference solution was obtained using the WebPlotDigitizer (see [169]),
which is a tool to extract graphs from images that has been used through-
out this work. Minor differences are attributed to inaccuracies induced by
this process.

Windkessel models

The windkessel models introduced in Section 3.3.4 are used to determine a
physiological pressure at the distal end of a fully resolved model in terms
of the flow prevailing at this point. Like the test simulations for the fluid
mechanics subproblem from Section 5.1.3 all cardiovascular FSI simulations
considered in this work are based on a given flow through the inlet. Due
to the elasticity of the vessel wall, this flow will of course not match the
flow through the outlet — however, for vessel segments of reasonable length,
they will show a qualitatively similar behavior. This motivates preliminary
investigations of the windkessel models, which are directly based on a given
flow.

The FSI simulations under consideration start from homogeneous initial
conditions, meaning that, initially, there is no flow at all. However, all
evaluations of hemodynamic quantities are not performed before the system
has reached a periodic state. The time until a periodic state is reached,
strongly depends on the way the windkessel model is coupled to the fluid
mechanics subproblem. Of course, it is desirable to reach this state as
quickly as possible in order to save computation time. To this end, an
alternative to the technique introduced in [163] is explained here.
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Given the maximum (systolic) pressure pyax and the minimum (diastolic)
pressure pmi, as well as a periodic flow pulse Q(t), the system must be slowly
driven to a corresponding state from its homogeneous initial state. Instead
of Q(t), a modified or ramped flow Q" = f}. () Q(t) is applied, where

fi = { ; (cos (’%) — 1) if t <13, (5.15)

else.

[

Due to its frequent usage in coupled simulations to slowly blend data from
one state to another, a cosine ramp according to Eq. (5.15) is actually
present as a building block in comana.

Influence of the initial conditions Figure 5.17 shows the pressure response for
a two-component windkessel model. The parameters C' = 0.3 ml/mmHg,
Ry = 2.55mmHgs/ml and Ry = 0.1mmHgs/ml were determined ac-
cordingly such that a pressure range of approximately 80 mmHg < p <
120 mmHg is obtained in the periodic state. The flow pulse was ramped
using 7y = 0.5, which is a reasonable value in view of the FSI simulations,
see e.g. [163]. For an unramped flow, a periodic state would be reached
most quickly for an initial value of py = ppin &= 80 mmHg, but this is not the
case if a ramped pressure is fed into the windkessel model. Looking at the
periodicity error introduced in Figure 5.17, it is found that py = 160 mmHg
is more suitable in this case. The error already drops below 1 mmHg in the
first period. Of course, only the pressure response resulting from the choice
po = 0mmHg can readily be applied in an FSI simulations, which demand
for a smooth change from the unloaded to the loaded state. However, the
pressure which is actually applied in the fluid subproblem can be ramped
like the flow in order to make all choices applicable. If not stated otherwise,
this is done here for all cardiovascular FSI simulations, while the initial
pressure is set to twice the lowest value expected for the periodic state.

Influence of the parameters So far, only the three-component windkessel
model was considered. In order to investigate the influence of the pa-
rameters, the four-component windkessel model is considered. Figure 5.18
shows the pressure response for varying values of C' in combination with
L = 0mmHgs/ml (which corresponds to the three-component model) and
for varying values of L in combination with C' = 0.3 ml/mmHg. The values
for Ry and R» are set to the same values as in the previous section. The
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Figure 5.17: Influence of the initial pressure on the periodicity of the response of a three-
component windkessel model.

results are obtained using the same flow form as above. However, only one
period is considered, after which the flow remains constant. Accordingly,
the applied flow is given by

. Q) ift<ls
@ = { Q(0) else. (5.16)

The parameter variations show the behavior that was to be expected ac-
cording to the physical meaning of the individual components. Increasing
the capacity C, which corresponds to an increased compliance of the vessel
network, lower maximum pressures are obtained. Furthermore, the pres-
sure decays more slowly. Regarding the inductivity L, which represents the
inertia effects of the blood, a physically meaningful behavior is observed as
well. With increasing values, the pressure is affected to a greater extent by
the derivative of the flow pulse. In other words, the effects of accelerating
and decelerating the blood become visible.

5.1.4 Interpolation

In order to investigate and compare the different interpolation methods
introduced in Section 4.3.5, two test geometries are considered, namely a
unit cube (edge length [ = 1) and a unit sphere (radius R = 1). Dis-
cretizations with 54,150,384 and 864 quadrilateral elements are created for
each geometry and used as a basis for the interpolation. The discretizations
with 150 elements are shown as an example in Figure 5.19. The nodes of
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Figure 5.18: Influence of the capacity C (left) and the inductivity L (right) on the pressure
response of the four-component windkessel model.

N

Figure 5.19: Test second coarsest quadrilateral meshes used as a basis for the interpolations
and sampled functions (polynomial f(x,y,2) = % + 4 + 2* and normal vector).

these source meshes serve as sampling points for the meshless interpolation
methods (barycentric, nearest neighbor, radial basis functions). Further, an
interpolation with linear shape functions is created, drawing on the nodal
values as degrees of freedom. For the inverse distance weighting, the el-
ement centers are used as sampling points. Along with the meshes, the
sampled functions are illustrated in Figure 5.19. For both geometries, the
polynomial

() polynomial e y3 42t (5.17)

as well as the respective normal vector are considered. While being uniquely
defined for the sphere, e.g. by

f(a:) sphere:normal x (518)
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the normal vector for the cube is not well defined along its edges and at its
corners. As can be seen in Figure 5.19, the mean normal of the adjacent
faces is assumed here. For the inverse distance weighting, this issue is not
relevant because the element centers are used as sampling points. As in
Section 4.3.5, the local integration error

e(z) = f(x) - i(z) (5.19)

is analyzed, where ¢(x) denotes the interpolation. As a global error measure
and for visualization purposes, the interpolation is evaluated at the nodes
of a mesh with 15000 quadrilaterals. They constitute the n = 14400 target
points p!. Recalling that the values at the sampling or source points are
collected in a matrix V* (see Eq. (4.215)) and I denotes a general inter-
polation matrix, a matrix collecting the errors at all target points can be
stated as

1

. . . T T s
e =[ep]) ... €lpy)] =[Ff) ... fB,)] —IV. (5.20)
The global error measure can then be computed as
el

Vo

which corresponds to the definition in (4.231), given that ||e!]| denotes the
Frobenius norm of e!. Further, the maximum error el , . i.e. the component

with the maximum absolute value in €' is evaluated.

(5.21)

Results

For a qualitative overview of the interpolations, Figure 5.20 and Figure 5.21
exemplary show the interpolation error for the source meshes with 150
quadrilaterals. From the overview, it can be observed that only three of
the considered scenarios yield satisfactory results for this comparably coarse
source point mesh. The radial basis functions seem to be a reliable choice
for the sphere geometry regardless of the sampled function. Further, the
inverse distance weighting shows a very small error for the cube geome-
try when interpolating the normal vector. Only along the edges, where
the mean normal is chosen as a reference as mentioned above, the error
rises above the minimum tolerance, which is achievable despite the finite
precision arithmetic underlying all implementations. The convergence char-
acteristics shown in Figure 5.22 confirm the above statements.
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Figure 5.20: Error distribution ||e!|| for the interpolation of the polynomial illustrated in Fig-
ure 5.19 and defined in Eq. (5.17) using the nodes (respectively the face centers) of meshes
with 150 quadrilaterals as sampling points.

barycentric X nearest neighbor radial basis functions  inverse distance weighting  linear shape function
085 0 092 0 080 0 092 0 0.85

0 0.052 0 022 0 861077 0 0.23

Figure 5.21: Error distribution ||€'|| for the interpolation of the normal vector as illustrated in
Figure 5.19 using the nodes (respectively the face centers) of meshes with 150 quadrilaterals
as sampling points.

177

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

5 Numerical investigations

—&— barycentric

—4— nearest neighbor
—2— radial basis functions
—o— inverse dist. weighting
—e— linear shape functions

| | | | | | |
54 150 384 864 i % 54 150 384 864

number of sampling points n° number of sampling points n®

interpolation error
interpolation error

—&— barycentric

—%— nearest neighbor
—A— radial basis functions
L | —o— inverse dist. weighting
—o— linear shape functions

105} 8

interpolation error
interpolation error

| et

1077 Eu I I 1
54 150 384 864
number of sampling points n°

—1 L1 I I T
10 54 150 384 864 -

number of sampling points n°

7ol

Figure 5.22: Convergence of the global interpolation error €' (solid lines) and the maximum
error ¢! (dashed lines) with increasing number of sampling points.
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5.1.5 Load integration

In the scope of FSI simulations, spatially and temporarily varying surface
tractions are prescribed at the boundary of the structural mechanics sub-
problem. The according integral in the weak form (see Eq. 4.2) is approxi-
mated using Gaussian quadrature. While this yields very good approxima-
tions in the case of moderate and smooth spatial variations, discontinuous
or severely varying tractions demand for a modification of the quadrature
rule in order to capture the applied load accurately. The FSI problems
considered in the present work are solved using high-order finite elements
on the structural side and classical finite volumes on the fluid side. In view
of this, the structural meshes are likely to be much coarse than the fluid
meshes, which yields a scenario where the prescribed fluid loads may show
severe variations across one structural element face. According to the above
arguments, these tractions are therefore not captured accurately if standard
Gaussian quadrature is applied. In this section, a simple remedy for this
issue is investigated. It is based on a partitioning of the structural element
face into subcells, on which a standard Gaussian quadrature is applied.

One-dimensional integrals
Figure 5.23 (left) shows two functions.

fi(x) = cos (3 ) (5.22)

can be expected to be accurately integrable using Gaussian quadrature due
to its smoothness while

) = { ;1%)5) ieflse— 05<x<05 (5.23)

is non-smooth (only C’-continuous). Here, the aforementioned issues are
expected.
The functions f; are integrated analytically to provide reference solutions

1
Fref = /fi dz. (5.24)
-1

For the standard Gaussian quadrature, approximations are computed as

nap

E(TLQP) _ Z f7(£§n“p)) w](.nqp)’ (525)
j=1
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where a: ) denotes the jth point for a Gaussian quadrature rule with n
points in total. The corresponding weight is denoted by w(" ") If the
considered interval Q = [—1, 1] is split into n* subcells
2(k—1 2k
Q= {—1 f2ED g } (5.26)
nEC an

and Gaussian quadrature is applied on each subcell, possibly improved ap-
proximations are computed as

n*¢ nP

77‘{]’ Z Z f[ 77‘11) ! rnq{) 7 (527)

k=1 j=1

where

- 2k — 1+ 2" oy w™™)
B4 = 1+ <7> and " = 2 (5.28)

nSC nSC

hold for the modified quadrature points and weights within subcell k.
An investigation of the relative error
F_(”qp) _ F_rcf
1

in relation to n% as shown in Figure 5.23 confirms the above expectations.
Regarding fi(z), the standard Gaussian quadrature is the most performant
method. The non-smooth function fy can only be integrated accurately, if
the subcell boundaries coincide with the discontinuities. The lower bound
of the error observable therein is attributed to the finite precision arithmetic
underlying the computations.

Surface tractions

The technique described above for the one-dimensional case can just as well
be applied for the two-dimensional integrals arising in the finite element load
vector. Recalling the contribution to the weak form due to surface traction
from Eq. (4.2), it is usually approximated on element level as

ndP  nap

/ £ary) ZZ (x (a2 ) det () w™ ™ (5.30)

r)
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Figure 5.23: Considered function for the quadrature test (left) and approximation error for
f1 (middle) and f> (right).

where f = N©" ¢ results from the discretization of 5d - ¢ (N is the
shape function matrix, see Section A.3.2). J denotes the Jacobian matrix
associated with the respective element face and is defined by

. oX
T g

(5.31)

Partitioning the element face as in the one-dimensional case,

n*¢ n*¢ nP P

/ fary) ~ 33 S fdet ( (a1, 2wl ol

k=1 1=1 i=1 j=1
r !

(5.32)

is obtained, where f;;; = f (X (i:g,?lqp), i’xﬂqp))). Of course, the finite ele-

ment solution, which is based on the smooth shape functions in N®) may
not be able to reproduce an accurate solution in the vicinity of discontinu-
ities in the load. However, capturing the load accurately in an integral sense
may already improve the overall solution significantly. A simple test case is
considered to illustrate this. It consists of a beam, which is clamped at the
left and subjected to pressure on the right as depicted in Figure 5.24. The
beam’s dimensions are 100 x 1 x 10m. Its material behavior is described
using the St. Venant-Kirchhoff model with a Young’s modulus of £ = 12 Pa
and a Poisson ratio of v = 0. The problem was also considered in [151],
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Figure 5.24: Test case beam under follower load considered for a comparison of the different
quadrature rules used to approximate the traction integral in the FEM load vector.

and it constitutes a benchmark problem for follower loads. If

24 1
=" [y -2 .
=2 (v-3) (5.33)

holds for the prescribed pressure, the beam will approximately deform into a
circle (the zero-thickness limit case will yield a perfect circle). It is assumed
that a modified load
- AU 1 1 4
_— p:am(Y—i) for z <y <z
b2 { 0 else (5:34)

leads to a very similar displacement if the factor « is chosen such that an
equivalent moment

m— [ (y—%) nay= [ (y—%) P dy (5.35)

Tright Tright

is obtained. From Eq. (5.35), it is found that oz = 125/27. This assumption is
confirmed by a check with a discretization, where five elements in thickness
directions are used such that the load py can be integrated exactly using
standard Gaussian quadrature, see Figure 5.24. As shown therein as well,
the subcell integration in combination with the original discretization (one
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Figure 5.25: Comparison of the results for the test case beam under follower load obtained
with different quadrature rules and a modified (discontinuous) load.

element in thickness direction) yields a similar result, while the standard
quadrature does not. As in the one-dimensional case, this result is only
obtained if the subcell boundaries correspond to the discontinuities in the
integrand, i.e. for n° = 5 in the present case. This example shows how
an accurate approximation of the traction, at least in an integral sense,
can improve the solution significantly. Of course, errors in the stresses
in the vicinity of the discontinuity cannot be reduced by this technique.
It is only for the check case where the element boundaries coincide with
the discontinuity that the stresses can be assumed to be meaningful, see
Figure 5.25.

5.2 Coupled benchmark problems

In the following, several benchmark problems are introduced. They are used
to validate the coupling software and to investigate the performance of the
introduced coupling algorithms and convergence acceleration methods.
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Figure 5.26: Multibody system used for the investigation of the coupling algorithms and con-
vergence acceleration methods. Left: System behavior over time. Right: Indexing of the point
masses and elastic rods.

Table 5.2: Parameters used in the simulations of the multibody system.

parameter variable value unit
number of segments n 8 -
total length L 5 m
total mass m 2 kg
damping coeflicient d 0.1 Ns/m
gravitational acceleration g 10 m/s?
elastic rod stiffness c 100 N/m

5.2.1 Multi-body system

The numerous coupling algorithms and convergence acceleration schemes
introduced in Chapter 4, Sections 4.3.1 and 4.3.2 shall be investigated in
terms of efficiency and stability. Such a study has to be performed for a
simplified problem that can be solved for the various possible parameter
combinations in an acceptable time. To this end, a chain of point masses
connected with elastic rods is considered as shown in Fig 5.26. Table 5.2
lists the parameters used in the simulations.

Governing equations

The mechanical behavior of the system is governed by the conservation of
linear momentum

(1) n () (i) _ pl+1)
mazE" +dx {_ g]+f for (5.36)
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which must hold for every point mass i with position 2 (¢). All points share
the same mass m and damping coefficient d. The gravitational acceleration
is denoted by g. The axial force in rod ¢ is given by

, , (i-1) _ (D) I , ,

(i) _ 0 _ X X7\ _to ( (i-1) _ <z>>

f c (L LU) < 70 > c <1 L(i)> X x\ ),
N —

magnitude direction

(5.37)

where c is the spring stiffness common to all elastic rods. The current length
of rod 7 is given by L; = ||x;_1 — X;]|, the common initial length is denoted
by L. With the global vectors

) [0 mg}Tij(l)

(
r [0 mg]" = F0 4+ §©

2™

[0 mg]T_f(vL)
the equilibrium equations (5.36) can be combined to the global system
mx+dx—f=0. (5.39)

It is discretized in time using the Newmark-/5 method that introduced as a
special variant of the generalized-a method in Table 4.1. Choosing 8 = 0.25
and v = 0.5 the resulting nonlinear system of equations to be solved in each
time step reads

g = (Z’rg — Zi) (X]ﬁq — Xk) — %Xk - ka - ka - fi+1 =0. (540)
The Newton-Raphson method introduced in the context of continuum me-
chanics in Section 4.1.1 is used to solve (5.40). A derivation of the linearized
system is provided in Section A.6.

The equilibrium equations (5.39) are further solved explicitly using the
central difference method. After inserting the corresponding discretizations
for velocity

. 1
XE = m (Xk+1 - kal) (541)
and acceleration
. 1
X = @ (Xk+1 — 2Xk + Xk_l) (542)
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in (5.39) one obtains

m d\"'"/m d
Xk+1 = (Atz + 2At> (Atz (2xp — xp1) + Exk - fk> (5.43)

as an update rule.

The two monolithic solution approaches serve as references for the inves-
tigation of the partitioned solution approaches. The latter are based on a
coupled problem, which is obtained by condensing parts of the system into
individual subproblems. One subproblem describes the movement of the
point masses and another one describes the forces within the rods. The
mass problem is then linear and using the Newmark discretization (again
with = 0.25 and v = 0.5) the update rule

4m+2d ! 4m+2d n 4m+d o+ mi F
X = — 4+ — —+ — | x —_ X — 1
LT AA T A A2 AL) T\ A kI B T ke

(5.44)

is obtained. The bar over f;,; indicates, that within the mass problem, the
forces are regarded as a prescribed coupling quantity. The force problem is
obtained from Eq. (5.37) by using the position of the masses as a prescribed
coupling quantity, i.e.

FO = ¢ <1 _ L(?)> ()‘((’_D — i(z)) , (5.45)

In order to find an appropriate time step size for the investigation of the
partitioned solution approaches, a convergence study was performed. As
an error measure, the position of point mass nP™ is considered at the time

instances t = 0s,2s,...,100s. The displacements are then collected in the
vector
x(") = [ a:(()npm) w(gm) ac%,jm) ] : (5.46)

A monolithic, implicit simulation is performed with At =1 x 1073 s to pro-
pm

vide a reference solution XI(Zf ). The mean relative error is then computed
as

Hx(""“‘) — 5™

ref

e = ’ (5.47)
‘ <)

ref
The results shown in Figure 5.27 give rise to the following statements:
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Figure 5.27: Convergence study for the multibody system using the different solution ap-
proaches. The partitioned simulations were exemplary carried out with a staggered coupling
algorithm and a constant relaxation with w = 0.5.

e All solution approaches show a similar accuracy for low time step sizes
(At <0.1s).

e The explicit approach using the central difference method becomes
unstable for At > 0.1s.

e The partitioned approach becomes unstable for At > 0.2s.

Accordingly, the time step sizes At = 0.1s and At = 0.2s are used for
the investigation of the coupling algorithms and convergence acceleration
schemes. While for At = 0.1 it is expected that stability problems are not
an issue, the case At = 0.2s may need some effort in terms of tuning the
parameters involved in the solution approaches.

Partitioned solution approaches

The system is solved using the introduced coupling algorithms, i.e. the
staggered one (with the force problem corresponding to the first subprob-
lem), the parallel one as well as the mixed one. All convergence acceleration
schemes introduced in Section 4.3.2 are employed while varying all param-
eters of each method. Table 5.3 lists the ranges for the considered param-
eters. Due to the high risk of overlooking certain parameter combinations,
1 x 10° simulations are performed for each coupling algorithm and time step
size. In each simulation, the convergence acceleration scheme as well as its
parameters are determined in a random fashion. Further, the prescribed
convergence tolerance €™ is chosen randomly from {10’107 1078,1079, 10’4}.
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This ensures that the conclusions about the efficiency of the solution ap-
proaches can be made with respect to whether a very accurate solution is
demanded or not. For all simulations, the quantity of interest is the number
of consecutive solver calls j* (equal to the number of coupling iterations j
only for the staggered and the mixed algorithms, c.f. Section 4.3.1).

Results

Figure 5.28 gives an overview of the staggered simulations with time step
size At = 0.1s. For the histogram, a window size of 1 was chosen, i.e.
the bars show for how many simulations 0 < 7* < 1, 1 < j* < 2, etc.
Simulations, in which the maximum number of iterations did not suffice to
fulfill the prescribed convergence criteria, are considered with j* = 100 in
Figure 5.28. The same holds for simulations that diverged or yielded a mean
relative error eP > ! where P is computed like €™ (see Eq. 5.47) but
using the monolithic solution with the respective time step size (At = 0.1s
or At =0.2s) as a reference solution.

In addition to the histogram, a probability density function (PDF) is
determined using a normal distribution as a kernel function. More precisely,
the PDF is obtained by a superposition of normal distributions computed
for each data point and reads

po () = -3 L (") (5.48)
ntw Vor

Therein, n® is the number of data points (in this case 1 x 10°, the number
of simulations performed for a given setting) and w is the bandwidth of
the kernel distributions. According to the shape of the PDF's obtained for
different bandwidths, w = 1 is chosen for subsequent investigations, since
for w* < 1 or w* > 1 the resulting distributions are not smooth enough or
too smooth, respectively.

In Figure 5.29, the PDF's for all coupling algorithms and time step sizes
are shown. As expected, a first observation shows that the increase in the
time step size results in an increase of j*. Further, the standard deviations
as well as the number of failed simulations (for which j* = 100) is larger for
the cases with At = 0.2s. The characteristic quantities of each distribution
given in Table 5.4 confirm this observation. The mean and minimum values
as well as the standard deviations were obtained from simulations with
J* < 100 only, i.e. failed simulations were excluded from this statistic.
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Figure 5.28: Number of simulations over number of iterations per time step for the multi-body

system.
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The characteristic quantities further show that the number of failed sim-
ulations is much higher for the parallel and the mixed coupling algorithms.
Also the mean and minimum values are lower for the staggered simulations,
the only exception being the mean number of consecutive solver calls for the
parallel coupling algorithm with At = 0.2. However, the statistic includes
all considered convergence acceleration schemes and parameter settings,
some of which may be inappropriate for certain coupling algorithms and
time step sizes. For a clearer picture of the performance differences, the re-
sults are investigated for the convergence acceleration schemes individually
in the following.

Figure 5.30 shows the mean number of consecutive solver calls
j* over the mean relative error eP® for the staggered simula-
tions. In correspondence with the prescribed convergence criteria
(1x 10711 x 10781 x 10751 x 107%), the data point’s abscissas cluster
below these values. As expected, a strong correlation between the pre-
scribed tolerance €' (respectively the error e®*) and j* can be observed.

Due to their qualitatively different behavior, the convergence acceleration
methods are divided into two groups in Figure 5.30. One group includes
all variants of the QNLS method, another group includes all other methods
as well as the standard QNLS method for comparison. For better read-
ability, only the first 5000 simulations are shown in each plot after making
sure that the features observed for the full set of simulations are preserved.
Again, failed simulations with j* = 100 were excluded in advance. As a
general observation, it is noted that the mean number of solver calls j*
shows a much smaller deviation for the QNLS methods than for the other
methods. This indicates that the QNLS methods are less dependent on
their parameters, which is of course a desired feature. It is also noted that
the backtrack relaxation is among the most performant methods (for the
staggered algorithm considered in Figure 5.30), especially for the cases with
high tolerances e™.

The minimum and mean j* (excluding failed simulations) is depicted in
Figure 5.31 for all considered convergence acceleration methods, coupling
algorithms and time step sizes. It is found that the differences between the
coupling strategies are much more pronounced for the larger time step size.
The results obtained for the smaller time step size are therefore excluded
from further investigations. From the mean and minimum values of j*, two
important observations for subsequent simulations can be made.
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Figure 5.30: Number of coupling iterations over the mean relative error for the first 5000
successful (not diverged) simulations with At = 0.1s (top two plots) and At = 0.2s (bottom
two plots).
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e The multi time step QNLS methods are prone to instabilities if no re-
setting or filtering is used. In combination with the staggered coupling
algorithm, only four of the (approximately 7000) simulations did not
fail, which explains the small difference between the mean an mini-
mum j*. For the parallel algorithm, none of the simulation employing
this convergence acceleration method ran successfully, for the mixed
algorithm,

e The Irons-Tuck relaxation cannot be used as introduced in combination
with the parallel coupling algorithm. All simulation employing this
combination failed. This constitutes a pitfall that is easily overlooked
because in previous investigations of the staggered algorithm, the Irons-
Tuck relaxation seemed to be more stable (yet less efficient) than the
QNLS methods (see [163]).

Finally, the influence of the method parameters shall be investigated.
While the data obtained from the 10° simulations that were performed for
each time step size and coupling algorithm contains much more information
than can be presented in this work, selected aspects that are most interest-
ing are considered in the following. At first, a comparison of the constant
relaxation, the Aitken relaxation and the Irons-Tuck relaxation is made.
Figure 5.32 shows the mean number of consecutive solver calls in relation
to the initial relaxation factor wy. Considering the smaller time step size,
it is clearly observed that the methods do not improve the efficiency of
the simulations. A relaxation parameter of wy = 1 (or even larger) yields
the smallest j*. Regarding the larger time step size, there exist a mini-
mum for the constant relaxation and the Aitken relaxation at wg =~ 0.5.
Remarkably, such an optimal value does not exist for the Irons-Tuck relax-
ation. It seems to be completely independent of the initial relaxation factor
for the considered problem and leads to much smaller j* than the other
methods. The only observable differences in j* stems from the prescribed
convergence tolerances, which as in the scatter plots on Figure 5.30 yield
clearly distinguishable groups (identifiable as four individual lines for each
method in Fig. 5.32). Investigating the relation between wy and j* for the
parallel coupling algorithm (see Figure 5.33), it is found that there exist
an optimum value smaller than one for both time step sizes. Results for
the Irons-Tuck relaxation are not available, since all according simulations
failed as mentioned above. The relation between wy and j* for the mixed
coupling algorithm does not provide further insights and is qualitatively
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Figure 5.32: Influence of the (initial) relaxation factor wq in the constant (CR), the Aitken
(AR) and the Irons-Tuck relaxation (ITR) in combination with the staggered coupling algorithm.

equivalent to the one for the staggered algorithm, see Figure A.8.3).

As could be observed from the scatter plots (see e.g. Fig. 5.30), the QNLS
methods were almost independent of the respective parameters listed in Ta-
ble 5.3. Plots as the ones considered above for the relaxation methods show
almost horizontal lines. Methods that were found to noticeably depend on
their parameters were found to be the backtrack relaxation and the line
extrapolation method. Figures 5.35 and 5.34 show the relation between the
parameters and the number of consecutive solver calls j*. Again, minima
can be observed, which depend on the time step size and the coupling algo-
rithm. For both methods, the staggered and the mixed coupling algorithm
yield lower values for j* and should be preferred accordingly.
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Figure 5.33: Influence of the (initial) relaxation factor wy in the constant (CR), the Aitken
(AR) and the Irons-Tuck relaxation (ITR) in combination with the parallel coupling algorithm.
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Table 5.3: Considered ranges for the parameters of the convergence acceleration schemes.

convergence acceleration method parameter variable range
Aitken relaxation (AR) initial relaxation factor wp [107-3,1]
backtrack relaxation (BTR) reduction factor « [0.5,1]
Broyden method (BM) initial relaxation factor wp [1073,1]
constant relaxation (CR) relaxation factor w [1073,1]
Irons-Tuck relaxation (ITR) initial relaxation factor wp [1073,1]
Linear line extrapolation initial relaxation factor @ [1073,1]
(LLE) residual factor B (1071, 1]
standard QNLS (QNLS) initial relaxation factor wo [1073,1]
) initial relaxation factor wo [1073,1]
filtered QNLS (FQNLS) singularity tolerance Ié] [1076,107]
. initial relaxation factor wo [1073,1]
QNLS with reset (QNLSR) iterations before reset n' {6,7,...,25}
. initial relaxation factor w 10731
filtered QNLS with reset I ] . ! 0 [76 ’ L
(FQNLSR) singularity tolerance Ié] (10761071
’ iterations before reset n' {6,7,...,25}
multi time step QNLS initial relaxation factor wo [1073,1]
(QNLSMT) saved time steps nsts {2,3,...,20}
initial relaxation fac -3
filtered multi time step QNLS H,Htldl rgldxatlon factor “o [1_06 ’ 1_] 1
(FQNLSMT) singularity tolerance Ié; [107¢1071
saved time steps nsts {2,3,...,20}
- initial relaxation factor w [1073,1]
1ti time step QNLS initia 0 i
‘I:.lléhlreg;e (SQ?\II)L%I\/ITR) iterations before reset nt {6,7,...,25}
‘ saved time steps nsts {2,3,...,20}
initial relaxation factor wo [1073,1]
filtered multi time step QNLS singularity tolerance B8 [1076,1071]
with reset (FQNLSMTR) iterations before reset nt {2,3,...,20}
saved time steps nsts {2,3,...,20}
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Table 5.4: Comparison of the considered coupling algorithms and time step sizes.

algorithm Af mean minimum standard deviation failed

assereq 01 102 3.0 8.2 11509
stageered (9 16.2 43 10.1 13881
g 01105 3.1 4.6 16721
paraliel 99 15.8 5.9 5.7 927597
ixed 01 10.8 3.5 9.2 13798
X 02 16.5 6.3 10.4 17970
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Figure 5.36: Geometry and boundary conditions for the benchmark case lid-driven cavity flow.

5.2.2 Lid-driven cavity flow

The lid-driven cavity flow is a standard benchmark problem for compu-
tational fluid dynamics. As illustrated in Fig. 5.36, it is augmented by
a structural problem describing a flexible bottom of the cavity to provide
a benchmark problem for fluid-structure interaction problems. The two-
dimensional structural model is clamped at its left and right ends. Zero
traction is assumed at the bottom, while the fluid loads are prescribed at
the top boundary (the wet surface). On the fluid side, the bottom bound-
ary corresponds to the wet surface. The domain displacement as well as the
velocity are prescribed here according to the displacements of the structural
problem. On the bottom part of the left and right boundary of the fluid
domain, a rigid wall boundary condition (zero velocity and zero domain dis-
placement) is prescribed. On the upper part of the right boundary, where
y > Ly, a pressure boundary condition is prescribed. Accordingly, only the
velocity gradient in the normal direction is constraint (cf. Eq. (3.112)) such
that fluid may flow into or out of the domain at this boundary. On the upper
part of the left boundary as well as the top boundary, a velocity boundary
condition is prescribed in combination with zero domain displacement. The
maximum value of the z-component of the velocity is given by

oo (e () e

The structural problem is discretized with high-order finite elements as
introduced in Section 4.1.1. In particular, 16 quadrilateral continuum ele-

(5.49)
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Table 5.5: Parameters for the benchmark case lid-driven cavity flow.

. density o 1kg/m?
fluid T ¢ 2
kinematic viscosity »' 0.01m/s
density 7 500kg/m3
structure  Young’s modulus E  500Pa
Poisson ratio v 0
. time step size At 0.01s
FEM spectral radius Pss 0.8
FVM time step size At 0.01s

ments of equal shape and order p = 2 with a plain stress assumption are
used. The fluid problem is discretized using the finite volume method, see
Section 4.1.2. A mesh with 40 by 40 equally shaped finite volumes is used.
These discretizations are comparably coarse such that a mesh dependent
solution can be expected. However, the case was previously considered in
[214, 145] with a similarly coarse discretization on the fluid side and shall be
resembled here as closely as possible. The parameters for fluid and structure
as well as the respective numerical methods are given in Tab. 5.5.

Results

In Fig. 5.37 the velocity and pressure field at a representative time instance
are shown to give a general overview of the solution. Further, the deformed
fluid meshes resulting from the different mesh deformation techniques intro-
duced in Section 3.2.4 are shown. It can be observed that the two variants
of Laplacian smoothing as well as the radial basis function interpolation
provide good quality meshes, while the consideration of the fluid domain as
pseudo solid yields an acceptable yet less well deformed mesh in terms of
element size and aspect ratio.

To ensure the validity of the solution, the displacement in y-direction of
the wet surface’s midpoint is compared to the solution obtained in [214] and
[145]. Due to the lack of information about the precise boundary conditions
used in [145], the present solution as well as that from [214] differ signifi-
cantly. The small difference observed between the present solution and that
from [214] may result from different mesh deformation strategies. As can
be seen, using the pseudo solid approach changes the results to an extend
which is comparable to this difference. While the applied mesh deformation
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Figure 5.37: Pressure and velocity field for the lid-driven cavity flow and deformed meshes at
time t = 22.5s.
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Figure 5.38: Displacement of the flexible bottoms center point in the benchmark case lid-
driven cavity flow.

technique (not stated in [214]) could accordingly explain the differences, this
is unlikely, since all other mesh deformation techniques yield the same result
and the pseudo solid approach yields by far the worst mesh distortions. It
is therefore believed that the difference stem from different time integration
methods. While in [214] the generalized-a method is applied on the fluid
side, the implicit Euler method is used here.

As done for the multi-body system, the lid-driven cavity flow is simulated
using different coupling algorithms and convergence acceleration methods.
The mean number of consecutive solver calls j* (see Fig. 4.14) is com-
pared for the introduced coupling algorithms and convergence acceleration
methods that performed best in the simulation of the multi-body system in
Section 5.2.1. Again, three different convergence criteria are considered, all
of which result in the solution shown in Fig. 5.38 (up toa small difference
in the range of the prescribed relative tolerance r*®"). Tables 5.6 and 5.8
list the mean number of consecutive solver calls j* for each criterion. The
comparison confirms most of the statements derived from the investigation
in Section 5.2.1. This includes the issues related to the unfiltered multi time
step QNLS method without resetting (QNLSMT) in combination with any
coupling algorithms as well as those related to the Irons-Tuck relaxation
(IT) in combination with the parallel coupling algorithms. However, some
of the statements found for the multi-body system do not hold for the FSI
problem considered here.

e The backtrack relaxation is not among the most performant conver-
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gence acceleration methods. In fact, in none of the simulations it
managed to bring down the residual below the prescribed tolerance
as indicated by the dash.

e A high tolerance does not necessarily lead to a lower j*. Instead, for
some solution methods, the (in accordance with the higher tolerance)
more inaccurate solution in a certain time step leads to the need for
more coupling iterations in later time steps, which may actually yield
an increased j*.

e The filtered multi-time-step QNLS method with resetting
(FQNLSMTR) is not in general the most performant method.
For the low tolerance case with €' = 107 and ¢ = 107'2, the multi
time step variants of the QNLS method are actually outperformed by
the single-time-step variants. However, such a low tolerance scenario
may not be an appropriate reference, since a much higher tolerance is
usually sufficient.

Assuming that the obtained results are generalizable, it can be stated that
the FQNSLMTR should be the first choice when deciding on a convergence
acceleration method for a coupled problem. In case this multi time step
method fails to bring down the residual to the prescribed tolerance or leads
to a diverging solution, the FQNLSR method should be tried secondly. For a
trade off between efficiency and implementation effort, the Irons-Tuck relax-
ation may be considered, however, only in combination with the staggered
or the mixed coupling algorithm. While the numbers in Tab. 5.5 indicate
that the performance of the parallel and mixed coupling algorithms are con-
siderably higher than that of the staggered one, the decision on the coupling
algorithm must still be taken with care. As described in Section 4.3.1, the
mean number of consecutive solver calls j* is only an objective measure for
the performance if the considered subproblems require the same amount of
computation time or can be parallelized such that they require the same
amount of real time. Even if this assumption holds, such that the amount of
real time needed is indeed proportional to j*, the staggered algorithm will
still come with the advantage of a lower number of processes being active
at the same time. This advantage is actually the dominating one, at least if
more than one simulation is to be performed as explained in the following.

One may consider the example of a coupled problem, which has to be
solved for two sets of parameters and which consists of two subproblems
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that require the same time for the solution of one time step. Assuming that
the simulation shall be run on a computer with two processors, the question
arises, whether to run the two simulations at the same time or one after the
other. For the parallel and for the mixed algorithm, running the simulation
at the same time is not a reasonable choice, since all processors are busy
at all times and two simultaneously running simulations would thwart each
other. Regarding the staggered algorithm, where within one simulation one
of the field solver processes is always idle or paused, the operating system
usually manages to distribute the processes among the processors in a way
that allows for running two simulations at the same time efficiently. Assum-
ing that the operating system does this perfectly, the usage of the parallel
and mixed algorithm is only favorable, if the mean number of consecutive
solver calls j* is only half of that needed in the staggered case. In reality,
such a perfect process management is of course not possible, such that the
parallel and mixed algorithms are also preferable when the difference in j* is
not as large. On the other hand, also a coupled problem with subproblems
that need exactly the same amount of time does not exist. That is, even
if the amount of processes is unlimited or only a single simulation needs to
be performed, a moderately higher j* for the staggered algorithm may still
result in lower computation times. Following these arguments and looking
at the numbers in Tab. 5.6-5.8, the staggered coupling algorithm is recom-
mended. However, the arguments indicate that this is a difficult decision,
which depends on the available hardware and software. For a detailed in-
vestigation of the performance, a true measurement of computation time
and real time is therefore inevitable. The decision for the staggered cou-
pling algorithm is underpinned here by the fact, that it is the most stable
one. While only the backtrack relaxation and the multi time step QNLS
method without filtering fail to solve the problem in the staggered case,
several other convergence acceleration methods fail if the parallel or the
mixed algorithm is used.

5.2.3 Two-dimensional flag in channel flow

In [208] a benchmark case was proposed which is considered here to verify
the applied partitioned solution approach. It consists of a two-dimensional
channel flow as illustrated in Figure 5.39. A rigid cylinder is placed eccentri-
cally in the channel, leading to a small difference between the flow velocity
and the pressure above and below. At the downstream side of the cylinder,
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Table 5.6: Performance of various convergence acceleration schemes for the benchmark case
lid-driven cavity flow and high convergence tolerance ™ =1 x 1073, ? =1 x 1075.

convergence acceleration method

staggered parallel

mixed

Backtrack relaxation, a = 0.98

Broyden method, wy =1

Irons-Tuck relaxation, wy = 0.5

QNLS method, wy = 0.5

FQNLSR method, wy = 0.5

QNLSMT method, wy = 0.5, ns* = 10
FQNLSMTR method, wy = 0.25, ns* = 10

7.85
6.97
6.83
7.41

6.81

3.98
4.62

3.26

10.1
5.50
5.64
5.58

4.23

Table 5.7: Performance of various convergence acceleration schemes for the benchmark case
lid-driven cavity flow and a moderate convergence tolerance ™ = 1 x 1075, ¢ =1 x 1071°.

convergence acceleration method

staggered parallel

mixed

Backtrack relaxation, o = 0.98

Broyden method, wy =1

Irons-Tuck relaxation, wy = 0.5

QNLS method, wy = 0.5

FQNLSR method, wy = 0.5

QNLSMT method, wy = 0.5, ns* = 10
FQNLSMTR method, wy = 0.25, n*%* = 10

6.83
747
5.99
6.00

4.77

4.12
4.13
3.00
2.68

5.95
6.21
5.93

4.50

Table 5.8: Performance of various convergence acceleration schemes for the benchmark case
lid-driven cavity flow and a low convergence tolerance €' = 1 x 1077, €* =1 x 10712,

convergence acceleration method

staggered parallel

mixed

Backtrack relaxation, o = 0.98

Broyden method, wy =1

Irons-Tuck relaxation, wy = 0.5

QNLS method, wy = 0.5

FQNLSR method, wy = 0.5

QNLSMT method, wy = 0.5, ns* = 10
FQNLSMTR method, wy = 0.25, n®* = 10

8.71
9.67
7.64
7.98

5.52
5.96

10.4
8.6
8.2

7.76
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Figure 5.39: Geometry and boundary conditions for the benchmark case two-dimensional flag
in channel flow.

a flexible flag is attached, whose movement is the subject of investigation.

The flow is driven by a parabolic velocity profile, which is prescribed at
the inlet boundary I'"™. The mean flow velocity ¥ is increased smoothly at
the beginning of the simulation, such that

n-{

Three different scenarios are considered and named FSI1, FSI2 and FSI3
hereafter as in [208]. The parameter settings for each of then is given in Ta-
ble 5.9. For the scenario FSI1, the mean inflow velocity is comparably low,
leading to a steady state solution, where the flag is bended upwards. For
the scenarios FSI2 and FSI3, the flag eventually shows a periodic motion,
induced by a von Kérman vortex street, which develops due to the fluid-
structure interaction. The amplitude and period of the motion are very

1 (1 —cos (%)) Umax ift<T

else. (5.50)

Umax

sensitive to the physical as well as the numerical parameters, which renders
these scenarios ideal benchmark problems. The scenario FSI3 further poses
a challenge for the partitioned coupling procedure. Due to the increased
time step size At and the decreased structural density p* as compared to
the other cases, a large added mass effect is present. Without suitable con-
vergence acceleration methods, this leads to instabilities or a large number
of coupling iterations per time step. In addition, the smaller Young’s mod-
ulus in the FSI3 scenario as compared to the FSI2 scenario leads to larger
deformations, which poses a challenge for the mesh motion solver.
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Table 5.9: Parameters for the benchmark case two-dimensional flag in channel flow.

FSIt FSI2 FSI3

density o 10° 10° 10° kg/m?
fluid kinematic viscosity vt 1073 1073 1073 m/s?

mean inflow velocity — Uy 0.2 1 2 m/s

density o 103 10* 103 kg/m?
structure  Young’s modulus E  14x10% 56x10% 14x10° Pa

Poisson ratio v 0.4 0.4 0.4 -

time step size At 1073 1073 1072 s
FEM B 0.25 0.25 0.25 -

Newmark parameters 05 05 05 ]
FVM time step size At 1073 1073 1072 s

All scenarios are simulated using high-order finite elements to discretize
the structural problem. The Newmark method is used here for time inte-
gration with the parameters given in Table 5.9. For the fluid problem, the
finite volume method is used as the spatial discretization method while the
implicit Euler method is used for time integration. A staggered coupling
algorithm is used in combination with the FQNLSMTR method for con-
vergence acceleration. As a predictor, the tangent extrapolation is applied.
For a comparison with the reference solution provided in [208], the displace-
ment of the flag tip in z-direction d, and its displacement in y-direction d,
are considered. Further, the total drag force

fe= / on- e, dry™ (5.51)
F{,FSI
and the total lift force
fy= / on-ey ArtFst (5.52)
Ff,FSI

are considered. As introduced in Chapter 3, e, and e, denote unit vectors
in the direction of the respective coordinate axis and m denotes the unit
outward normal at the coupling interface.

207

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

5 Numerical investigations

displacement magnitute ||d|| (mm)
0 0.200 0.401 0.601 0.802

velocity magnitute ||v|| (m/s)
0 0.102 0.204 0.305 0.407

Figure 5.40: Velocity field and displacement field at ¢ = 10s for scenario FSI1.

Results

Figure 5.40 and 5.41 show snap shots of the displacement and velocity
fields for the FSI1 and FSI2 case, respectively, to give an impression of
the dynamic behavior of the system. The situation in the FSI3 case phe-
nomenologically matches that of the FSI2 case, however, the frequency of
the oscillatory motion of the flag is higher, while its amplitude is lower. A
quantitative evaluation of the three scenarios is given in Figure 5.42. For
the FSI1 case, the displacement of the flag tip as well as the lift and the
drag force are plottet for the entire simulation time of ¢®* = 10s. As can be
seen, the system slowly reaches a steady state, where the inspected quanti-
ties are in good agreement with the reference solution from [208]. For the
cases FSI2 and FSI3, appropriate time intervals at the end of the simulation
time are selected. The motion shows a periodic behavior, which is in good
agreement with the reference solution from [208] regarding both, amplitude
and frequency.

5.2.4 Pulse wave in an elastic tube

In this benchmark case, the pulse wave propagation in an elastic tube is
considered, similar to the one-dimensional test case from Section 5.1.3 but
using a fully resolved simulation approach. Accordingly, a fluid and a struc-
tural subproblem are considered. Details regarding the geometry and the
spatial discretizations are provided in Fig. 5.43.

At the inlet boundary of the fluid domain, a pressure boundary condition

208

IP 216.73.216.36, am 18.01.2028, 22:00:13.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

5.2 Coupled benchmark problems

displacement magnitute ||d|| (mm)
0 9.81 19.6 29.4 39.2

[ G S

velocity magnitute ||v|| (m/s)
0 0.554 1.11 1.67 2.22

Figure 5.41: Velocity field and displacement field at ¢ = 10s for scenario FSI2.

with

1 eos (22 ~
5= { 5 COS (Tp> 1.3332kPa if t < T, (5.53)

0kPa else

is prescribed. As in [75], where a similar problem is considered, the pulse
duration is set to 7, = 2ms. At the outlet boundary, a pressure of p°** =
0 Pa is prescribed. The fluid density and dynamic viscosity are set to p =
1 x 103kg/m? and 7 = 3 x 107* Pas, respectively. The structural model
is clamped at both ends and assumed stress free on the outside. The tube
material has a density of 1.2 x 103 kg/m? and its behavior is described using
the St. Venant-Kirchhoff model with a Young’s modulus of £ = 0.3 MPa
and a Poisson ratio of v = 0.3. The simulation with a time step size of
At = 0.1ms lasts for n® = 180 time steps. The Newmark-/3 method with
B =049 and v = 0.9 is used to discretize the structural subproblem in
time. Since it was observed in [51] that the length of the tube has a major
impact on the number of coupling iterations, three settings are considered
(L=5cm, L =10cm, L = 20cm).

In Fig. 5.44, an impression of the solution is given in terms of the pressure
distribution at time ¢ = 12 ms. It can be observed, that the solution at this
time is very similar for the tubes with lengths L = 10cm and L = 20 cm.
For the tube with L = 5c¢m, the pulse wave has already been reflected at
the end such that a different pressure distribution prevails. As shown in
Fig. 5.44 as well, the number of coupling iterations per time step increases
significantly with increasing L. This is the case for the entire simulation
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Figure 5.42: Displacement and force results for the considered scenarios FSI1, FSI2, FSI3

(from top to bottom).
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Figure 5.43: Geometry and spatial discretization of the benchmark case pulse wave in an
elastic tube.
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Figure 5.44: Number of coupling iterations (left) and pressure distribution at selected time
instance (right) for the test case pulse wave in flexible tube.

course, not only once the solutions show reflection phenomena. A tube with
length L = 40 cm was considered as well, however, the partitioned solution
approach fails to solve the problem in this case as in [51]. In Fig. 5.45, a
quantitative comparison between the different lengths is given in terms of
the pressure distributions at selected time instances. It can be observed
that the solution between all considered lengths is very similar as long as
the pulse wave is not reflected.

While this benchmark case is based on a different boundary value prob-
lem than classical cardiovascular FSI studies, the observed limit of the par-
titioned solution approach in terms of L is expected to play a major role in
such simulations as well. However, in view of the increased computational
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Figure 5.45: Pressure distribution at the center of the tube at selected time instances.

cost due to finer spatial discretizations and longer time intervals consid-
ered in the simulations, cardiovascular studies are typically concerned with
moderate length to diameter ratios.

5.3 Arterial fluid-structure interaction

After the more general presentation of the potential of the partitioned solu-
tion approach and the individual field solvers, their ability to solve cardio-
vascular FSI problems is demonstrated in this section. The typical initial
boundary value problem (IBVP) is introduced and solved for an idealized
vessel with a simple geometry. Here, the only concern is the efficiency of the
coupling strategy, while investigations of the hemodynamics are considered
in the next chapter. The studies from [163] showed the severe increase in
the number of coupling iterations for simulations with soft tissue material
as opposed to simulations relying on rubber-like material laws. Here, only
a soft-tissue material model is used and the focus is put on the partitioned
coupling of the additional subproblems representing the reduced models,
namely the elastic foundation and the windkessel model and its influence
on the performance. In so far, the investigation follow the proposal in [164],
where the same multifield problem was used to simulate the flow in an end-
to-side anastomosis and the need for and investigation of the performance
was emphasized. Additionally, the possibility to use adaptive time step
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Figure 5.46: Boundary value problem underlying a classical fully resolved cardiovascular FSI
simulation.

sizes is considered here.

5.3.1 Initial boundary value problem

Typically, cardiovascular FSI studies are based on the classical IBVP for FSI
introduced in Section 3.2. Considering only the systemic arterial circulation,
the boundary conditions are likewise the same in most studies. As depicted
in Fig. 5.46, the resulting problem represents a ducted flow with one inlet
and possibly multiple outlets. The flow is driven by a prescribed velocity
v(x,t) at the inlet, i.e. TF™ € ™. At each outlet, the pressure p(t) is
prescribed, i.e [ ¢ T¥? While in some studies a constant pressure is
assumed, which corresponds to a standard boundary condition, windkessel
models are typically integrated into the fluid solver in order to determine
a physiological p(t). Regarding the structural problem, the outer boundary
% which is in contact with the surrounding tissue, is typically assumed to
be stress free. Alternatively, a nonzero traction £ is determined using, e.g.
an elastic foundation as introduced in Section 3.3.5. In any case, ' € I'>*
holds, eventually with £ = 0. On the structural boundaries at the inlet and
the outlets, the displacement is usually directly prescribed or constraint in
some way. As illustrated in Fig. 5.46, either all components are fixed or only
displacements in the normal direction are prevented. In the latter case, the
in-plane displacement must be constraint at least at some points in order
to prevent rigid body motions.
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Figure 5.47: Interdependency of the introduced subproblems in a cardiovascular FSI simula-
tion. Circles indicate, whether a coupling quantity is computed by the respective field solver or
the coupling manager.

5.3.2 Coupling algorithm

In the present work, the windkessel model and the elastic foundation are
considered as individual subproblems within the partitioned solution ap-
proach. Further, the one-dimensional vessel model may be coupled to the
fully resolved fluid subproblem and some segments of the vessel wall may be
described using a reduced structural model instead of the fully resolved one.
Figure 5.47 schematically shows the resulting interaction between all sub-
problems in this fully coupled case. Here, the investigations are restricted
to the subproblem highlighted in blue, which yields the same simulation
and modeling approach as the one followed in [164].

Recalling the coupling algorithms introduced in Section 4.3.1, any of them
can readily be used to solve the typical IBVP described in the previous sec-
tion. Facing the fact that the cardiovascular FSI problem may now consist
of more than two subproblems, the classical coupling algorithms are no
longer applicable. However, since each of the additional subproblems is
only coupled to one of the fully resolved subproblems, only small modifica-
tions to the algorithms are necessary. As in [164], the following procedure
underlies the modified staggered coupling algorithm.

0)

1. Predict the displacement ;12 +1 and the flow Q,(ﬂl, set ¢ = 0.
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2. Solve the windkessel problem for the pressure p ;CH).

3. Compute f)k,iill from pwgﬁ ),

4. Solve the fluid problem for the velocity v,(;:ll ) and the pressure p,gijll ),

5. Evaluate the traction ©\;, and the flow Q¥} .

6. Solve the tissue problem for tt,fill ) = t](::ll ),

7. Solve the structural problem for d,:rll .

8. Evaluate d;::f) and dt(1+1)

9. If all convergence criteria are fulfilled, increase k£ and go to Step 1.
Otherwise, increase i and go to Step 2.

5.3.3 Test case

Starting with the classical IBVP introduced above, the simulation of a
straight segment of an artery with a circular cross section is considered
while integrating the windkessel model in the fluid solver and neglecting any
influence of the surrounding tissue. Subsequently, the windkessel model is
considered as a separate subproblem and finally, the tissue solver, respec-
tively the elastic foundation, is activated. It is noted that such an on and
off switching of certain parts of the overall model is one of the major advan-
tages of the partitioned solution approach, which likewise allows to exchange
certain parts by more sophisticated models.

A diameter of D = 1cm and a length of L = 10cm are chosen and
the displacement at the ends of the structural model is only constraint
in the normal (axial) direction. The HGO material models with the pa-
rameters from Table 5.1 is applied. The fiber directions are set as in the
simulations in [82] and Section 5.1.1, such that two helically wound fiber
families are obtained. The density of blood as well as that of the vessel
wall are set to p = 1 x 10®kg/m? and the Newtonian viscosity model with
n = 1 x 107*Pas is used. For the simulations involving the tissue solver,
the inertia and damping parameters are set to zero (m' = d* = 0), such that
a classical elastic foundation is obtained. The stiffness parameter is set to
c* =10 x 10° Pa/m. While this is a comparably low value (see e.g. [164]) it
ensures that the simulations with and without the tissue solver yield similar
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results, such that any influence on the number of coupling iterations can
be attributed to the coupling between the structural subproblem and the
tissue subproblem, while the influence of different flow situations induced
by the consideration of the surrounding tissue can be expected to be neg-
ligible. The mesh topologies are taken to be the same as in Section 5.2.4
(see Fig. 5.43), however, coarser meshes are used (4500 finite volume on the
fluid side and 24 finite elements with shape functions from the trunk space
and a polynomial order of p = p® = 4 on the structural side).

Within the field of computational fluid dynamics, it is common practice
to used adaptive time step sizes based on the so called Courant number. It
describes the relation between the velocity and the size of finite volumes.
In the one-dimensional case, it can be uniquely defined as

Ax v, Aty
=—=—— 5.54
h hy ( )

Co
where h, is the size of the finite volume and Az is the distance a fluid
particle travels in one time step. For classical pressure-corrector methods
like the SIMPLE or the PISO algorithm (see Section 4.1.2) it should hold
that Co < 1 to ensure stability of the iterative solution process underlying
these methods. As explained in [103], the PIMPLE algorithm allows for
slightly higher Courant numbers due to the additional implicit loop. While
for the larger simulations presented in the next chapter, this limit Co™ > 1
is tried to be reached as closely as possible in order to save computation
time, here the classical constraint Co™* =1 is used and the time step size
is computed on this basis. Accordingly, the time step size of the coupled
simulation is dictated by the fluid mechanics subproblem. As described in
Section 4.4, it is received from the fluid solver and send to the structural
solver using the coupling manager. Within the implicit coupling iterations,
the time step size is held constant. More precisely, Aty,.; is computed,
based on the solution at time tj, which was obtained using At;. One could
say, the time step adaptivity is realized in an explicit manner.

All simulations are performed for a time interval of 3s, which for the
prescribed flow at the inlet corresponds to three beats of the heart. For
the simulations with a constant time step size, At = 3ms is chosen. In a
preliminary study, this was found to be close to the maximum time step
size, where a stable solution process is still possible (At = 3.25ms yields
instabilities within the pressure-corrector method).
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Figure 5.48: Influence of the consideration of the windkessel model as a separate subproblem
on the number of coupling iterations.

5.3.4 Results

Figure 5.48 shows the distribution of the structural displacement and the
fluid velocity to give an impression of the problem and the applied compu-
tational meshes. Further, the prescribed flow through the inlet is shown,
which is very close to the one used in Section 5.1.2 for the large artery.
In Figure 5.49 (left), the maximum displacement and the total number of
coupling iterations is shown for the simulations with a constant time step
size. As expected, the solution is found to be independent of, whether the
windkessel model is integrated into the fluid solver (case F,S) or treated
as a separate subproblem (case F,S, W). Due to the low value for ¢*, also
the cases with the elastic foundation (cases F,S,7T and F,S,W,T) show
a very similar displacement behavior.

Regarding the total number of coupling iterations shown in Figure 5.49
(right), a significant increase is observed for the scenarios that treat the
windkessel model and/or the foundation in a partitioned manner. While the
a partitioned treatment of the windkessel model approximately doubles the
number of coupling iterations, a partitioned treatment of the tissue solver
seems to be less expensive. In general, the number of coupling iterations
increases rapidly at the beginning of the simulations, where the system
is driven from the homogeneous initial state to the range of physiological
pressures (80 mmHgto120 mmHg). In order to make the comparison more
fair, the aspect that more residuals are checked for convergence in the fully
coupled simulations (those including W and/or T as separate subproblems)
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Figure 5.49: Influence of the consideration of the windkessel model as a separate subproblem
on the number of coupling iterations in simulations with a constant time step size At = 3ms.

has to be accounted for. As described in Section 4.3.4 all coupling quantities
have to be checked, which in the fully coupled case includes the displacement
and the traction at the structural models outside as well as the pressure and
the flow at the outlet. Accordingly, an additional simulation without the
tissue solver and with the windkessel model integrated into the fluid solver
was conducted in combination with all convergence criteria prescribed in
the fully coupled model. This case is denotes as F,S(W, T) in Figure 5.49
(right) and shows that the increase in the number of coupling iteration is
not a result of the additional convergence criteria alone.

In Fig. 5.50, the results obtained for adaptive time step sizes are shown.
In accordance with the dynamic behavior of the system, i.e. high flow ve-
locities in the systolic phase and low flow velocities in the diastolic phase,
the time step size varies severely over one cycle. While At < 5ms during
peak flow, At > 20ms at the end of a cycle, where the flow is lowest. For
the cases that involve the tissue solver 7T, the adaptive time step control
was constrained by an upper limit of At™** = 4.5ms. Only then the stabil-
ity of the simulation could be guaranteed. Of course, this bound was only
necessary at some phases of the simulation and an alternative approach in-
volving a lower maximum Courant number Co would be possible as well.
In any case, the adaptive time step size control leads to a remarkable in-
crease in performance. For the classical two-field FSI problem, the total
number of coupling iterations drops from 3026 to 1195, which correspond
to a reduction of the computation effort to less than 40%. For the fully
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Figure 5.50: Time step size (left) and total number of coupling iterations (right) for adaptive
time stepping.

coupled case F,S, W, T, the effort is still reduced to almost 70%, despite
the comparably low A#™a*,

219

/e IP 216.73.216.36, am 18.01.2028, 22:00:13.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

6 Applications

In this chapter, the partitioned solution approach is applied to investigate
the hemodynamics in selected arterial segments. In the first section, the
influence of different parameters on the hemodynamics in segments of dif-
ferent shape is investigated. Secondly, the hemodynamics in different con-
figurations of distal end-to-side anastomoses are considered. In the third
section, an exemplary clinical study is performed in order to demonstrate
the applicability of the approach for larger scale problems.

6.1 Hemodynamics in the scope of vessel geometry and
material

In this section, the hemodynamics in three exemplary vessel segments shown
in Fig. 6.1 are investigated. The main focus lies on assessing the influence
of the geometry on the hemodynamics. Further, the effects of an elastic
vessel wall as opposed to a rigid wall assumption are investigated. The
introduced hemodynamic quantities, such as the wall shear stress, are eval-
uated and compared accross the segments under consideration. In addition
to demonstrating the usage of the partitioned solution approach this pro-
vides references for a later investigation of the hemodynamics in bypass
graft anastomoses.

As introduced in Fig. 6.1, the segments are referred to as straight, curved,
and bifurcation in the following. The straight case is defined through its
diameter D = 1 cm and its length L = 10 cm. The curved case has the same
cross-sectional geometry as the straight case, however, its centerline follows
a 90° arc with a radius of R = 5mm. The bifurcation case is based on a
patient-specific geometry. A voxel image is taken from [66] and segmented
using the free software package VTMK (The Vascular Modeling Toolkit, see
[139]). While the voxel image actually shows a cerebral aneurysm including
the proximal and distal vessel network, only a small segment is extracted for
the present study. Then, it is scaled in such a way that the parent vessel’s
diameter approximately matches that of the other cases. This is justified
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straight bifurcation

Figure 6.1: Lumen surfaces of the considered arterial segments.

Figure 6.2: Computational fluid meshes for the considered arterial segments.

in view of the intention of the study, which is to compare the influence of
different modeling aspects and to provide a reference in terms of clinical
relevant hemodynamic quantities for later investigations. Summarizing, all
geometries constitute fictive arterial segments. For a realistic reconstruction
of geometries from medical imaging, many more aspects, for instance the
blood pressure at the time the image was taken, have to be considered. Us-
ing the mesh generation technique introduced in Section 4.2, which is based
on a centerline and a radius vector, structured hexahedral fluid meshes are
generated for the considered geometries, see Fig. 6.2. While a radius vector
with constant length (||7|| = » = 5mm) is used for the cases curved and
straight, the raytracing technique (see Fig. 4.5) is applied for case bifurca-
tion case. Here, the triangulation of the lumen boundary obtained using
VMTK from the segmented CT image constitutes the geometry definition.
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At the proximal end of the segments, an inflow with the pulse shape and
period reported in [226] is enforced by prescribing a temporally varying
Poisseuille velocity profile. A three element windkessel model with resis-
tances Ry = 2.55mmHgs/ml, Ry = 0.1 mmHgs/ml and a compliance of
C' = 0.3ml/mmHg is attached to the distal ends of the models. To arrive
at a physiological pressure range, the flow is scaled by a factor of 5 before it
is passed to the windkessel solvers in the straight and the curved case. For
the bifurcation, it is scaled by a factor of 10, such that approximately half
of the inflow passes through each outlet. The influence of the surround-
ing tissue is not considered in this study. All simulations are performed
using an adaptive time step size based on a maximum Courant number of
Comax = 3. The initial step size is set to Aty = 1 ms.

6.1.1 Decoupled simulations

At first, only the fluid subproblem is considered, or in other words, the vessel
wall is assumed to be rigid. Figure 6.3 shows the oscillating shear index
(OSI) for the decoupled fluid simulations. As expected, the maximum OSI is
much larger in the bifurcation case than in the other cases. For the curved
case, a region of increased OSI is observed at the inner wall (the region
facing the center of the arc that defines the centerline). The maximum wall
shear stress || T, is increased at the outer wall. For the straight case, a
slight increase in the OSI is observed at the distal end. This is attributed
to the Womersley velocity profile prevailing at this point as opposed to the
proximal end, where a Poisseuille velocity profile is prescribed. As shown in
Figures 3.9 and 5.15, the Womersley profiles are typically associated with
a near-wall velocity that changes the axial direction. Accordingly, the wall
shear stress (WSS) changes its direction, which is reflected by a non-zero
OSI as explained in Section 3.3.7. The bifurcation case shows much higher
extreme values for the OSI and for ||y, ||. However, it is emphasized that
the considered flow situation is just one possibility within a large range of
physiologically meaningful ones. In view of the same boundary conditions
that were applied in all cases, the study still demonstrates the large effect
that the shape of the vessel wall has on the hemodynamic quantities.

In addition to the decoupled fluid simulations, static structural simu-
lations are performed. As for the fluid, structured hexahedral meshes are
created using the centerline-radius technique. All models feature a constant
wall thickness of d = 2mm was assumed. The Fung material model with

222

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

6.1 Hemodynamics in the scope of vessel geometry and material

proximal end proximal end

Figure 6.3: Maximum and mean wall shear stress for the decoupled simulations with a rigid
wall assumption.
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von Mises stress o, (kPa)

l 205

162

Figure 6.4: Stress distribution due to an internal pressure of 16kPa for the cases straight
and curved.

the parameters identified in Section 5.1.1 is used. The models are clamped
at the proximal and distal ends. A spatially constant pressure, which is
increased in 40 load steps to 16kPa (~ 120mmHg), is prescribed at the
inner wall.

Fig. 6.4 shows the stress distribution for the straight and for the curved
case. It can be observed that the curvature has a small but clearly observ-
able influence on the maximum stress, which in both cases prevails at the
inside (o, = 188 kPa for the straight case and o, = 205kPa for the curved
case). The stress distribution for the bifurcation case is shown in Fig. 6.5.
In accordance with the smooth geometry and the constant material prop-
erties, the stress field is found to be smooth as well, yet large variations are
present. While in some regions the stress rises up to 255 kPa, the stresses
are even below 100kPa in some regions of the inner surface. This can be
partly attributed to a not perfectly constant wall thickness. However, in
view of the findings from [162], where the effect of varying wall thicknesses
was investigated in more detail, it can be assumed that the stress variations
are mainly due to qualitative differences in the geometry. It is assumed
that, with regard to the quality, the simulations reflect the true differences
in the stress states caused by the different geometries. However, as ex-
plained in detail in Section 5.1.1, the simplified modeling approach followed
here does not allow for a quantitative analysis. Since prestresses and the
multi-layered structure of the artery are neglected, only the trend of increas-
ing stresses from the straight case over the curved case to the bifurcation
case can be captured. In the following, evaluations of the simulations are
therefore restricted to hemodynamic quantities.
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Figure 6.5: Stress distribution due to an internal pressure of 16 kPa for the case bifurcation.
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Figure 6.6: Proximal and distal flow in the differently shaped vessel segments.

6.1.2 Coupled simulations

Using the same modeling approach followed in Section 5.3, a fully resolved
FSI simulation is performed for each segment. Figure 6.6 shows the flow
through the inlet (equal for all models) and the flow through the individual
outlets. Looking at the straight and curved case, it noted that the influence
of the shape on the difference between inflow and outflow is negligible. Small
deviations are only to be found during the starting phase of the simulation,
where the system is driven from its homogeneous initial conditions to the
pressurized state, due to the different volume changes for each model. For
the bifurcation case, the flow splits almost evenly as expected from the
equivalent windkessel models attached to each outlet. However, the larger
pressure difference needed to drive the same flow through the smaller branch
leads to clearly observable deviations especially in the systolic phase.

Fig. 6.7 shows the OSI distributions obtained from the coupled simula-
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proximal end proximal end
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Figure 6.7: Oscillating shear index and maximum wall shear stress for the coupled simulations
with elastic vessel walls.

tions. A significant difference compared to the simulations with a rigid wall
assumption can be observed. However, they have to be attributed partly
to the cigar-shaped flow domain, which results from the zero-displacement
boundary condition at the vessel ends. For all shapes, the wall shear stresses
shown in Fig. 6.7 are lower compared to those obtained for the rigid scenario.
This was to be expected due to the increased diameters of the pressurized
vessels. The comparison between the rigid and the elastic case is therefore
restricted to illustrative purposes. For a fair comparison, the rigid model
should match the geometry of the deformed vessel. Means to achieve this,
which also include the possibility for a comparison of different material mod-
els, were elaborated and applied in [165, 163] and are not further considered
here. This noted, Table 6.1 gives an overview on the extreme values for the
wall-shear stress related quantities. Further, the maximum pressure at the
proximal end is included as an indicator for the resistance of the respective
segment.
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Table 6.1: Comparison of the oscillating shear index and the extreme values for the wall shear
stress.

OSLpax T (Pa) ¥ (Pa)

max,min max, max

straight (rigid) 0.079 2.2 4.4
curved (rigid) 0.21 2.2 12
bifurcation (rigid) 0.44 2.0 44
straight (elastic) 0.48 0.67 2.6
curved (elastic) 0.48 0.64 8.9
bifurcation (elastic)  0.48 0.19 39

6.2 Hemodynamics in idealized end-to-side anastomoses

In this section, the focus is turned to bypass graft anastomoses. Investi-
gating the hemodynamics in these anastomoses constitutes the target ap-
plication for which the numerical methods in this work were developed.
Accordingly, the main developments explained in Chapter 4 are used here
in combination to arrive at an efficient and customizable modeling and sim-
ulation procedure.

The construction scheme for smooth surfaces is employed to obtain phys-
iological meaningful geometries, which are based on a limited number of
parameters. As explained in Section 4.2.1, a coarse quadrilateral control
point mesh denotes the input to the scheme. Using the free modeling soft-
ware Blender [25], such control point meshes are created for three different
end-to-side anastomoses. The resulting G'-continuous surfaces, which are
taken as the lumen boundary here, are shown in Fig. 6.8. As mentioned
in Chapter 2, it is assumed that cuffed bypass grafts improve the hemody-
namics in the anastomosis region, which motivates the present study. In
the model denoted as standard bypass in Fig. 6.8, the bypass graft has a
constant diameter in the anastomosis region. In models denoted as small
cuff and large cuff, the bypass graft increases in diameter towards the anas-
tomosis region. Bypass grafts of these and similar types are either precuffed
(see e.g. the one investigated in [207]) or prepared by the surgeon (see e.g.
the one investigated in [171]). The present study is concerned with the
influence of the cuff size on the hemodynamic quantities. Thanks to the
developed partitioned simulation approach, the deformation of the vessel
walls as well as the influence of the surrounding can be taken into account.
Due to the fact that it is an exemplary study used to illustrate the po-
tential of the simulation approach, the model parameters (fluid and vessel
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large cuff

small cuff

standard bypass

Figure 6.8: Lumen surfaces in anastomoses of standard and precuffed bypass grafts.

wall properties as well as proximal inflow and distal pressure) are kept con-
stant. Nevertheless, it is emphasized that, in addition to the geometry, the
influence of these parameters could be investigated as well.

From the G'-continuous surfaces, tetrahedral fluid meshes are created us-
ing VMTK (The Vascular modeling toolkit, see [139] and Section 4.2). For
the construction of the structural meshes, another G'-continuous surface is
created from the lumen surface by moving the control points in the outward
normal direction according to a given wall thickness. It is assumed to be
h, = 3mm for the artery and h;, = 1mm for the graft. The radii of the
graft and the artery are approximately R, = 7.5mm and R, = 11 mm. In
the region of the suture line, the thicknesses are smoothly blended together.
Drawing on the fact that the models are aligned with the global coordinate
system as shown in Fig. 6.9, the local thickness can be described in terms
of the z-coordinate as

h, if 2z < Zmn,
h(z) = e hy + =2y 3 2 < 2 < Zimax, (6.1)
hy, if 2> Zmax-

Letting the artery’s centerline be at z = 0 mm, the blending region extends
from zpy, = 10mm to zy. = 15 mm.
6.2.1 Simulation setup

The coupling procedure used for the test case in Section 5.3 is used here
in the same way. The adaptive time step size is controlled by the fluid
solver based on a maximum Courant number of 4. A time interval of 2.4
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Figure 6.9: Structural mesh and geometry parameter for the anastomosis of the standard
graft.

is simulated, starting with a time step size of Aty = 1ms. A flow pulse,
according to the one reported in [226], is prescribed at the proximal end of
the bypass graft. While the shape is left unchanged, the pulse is scaled such
that physiological velocities arise. No flow is prescribed at the proximal end
of the artery, assuming that the upstream part is completely occluded.

To account for the surrounding tissue, an elastic foundation solver is
used. Its inertia and damping parameters are set to m' = d* = 0, ans
the stiffness parameter is set to ¢! = 10°Pa/m. A three-element windkessel
model is used to describe the influence of the distal arterial network. Its
parameters are set to B = 2.55mmHgs/ml, Ry = 0.1mmHgs/ml, and
C' = 0.3ml/mmHg, which yields a physiological pressure in the rage of
approximately 80 mmHgto120 mmHg if fed with the inflow pulse. In order
to smoothly drive the system from the homogeneous initial state to this
range of pressures, the coupling of the three-dimensional FSI simulation
and the windkessel model is not enforced directly. Instead, the pressure
obtained from the windkessel model is multiplied by a ramp function (see
Section 3.3.4) for a duration of T, = 0.1s. Further, the coupling between the
fluid and the structural solver within the three-dimensional FSI simulation
is smoothly activated by multiplying the tractions by a ramp function with
T, =0.5s.

The material behavior of the artery is described using the modified Fung
model with the parameters identified in Section 5.1.1. The bypass material
is known to be much stiffer. As in [164], it is described using the Neo-
Hooke model according to Eq. (3.98) with E = 5 x 107 Pa and v = 0.49.

229

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

6 Applications

The parameters are based on the compliance measurements conducted in
the scope of [124].

In order to keep the simulation time at a reasonable level, comparably
coarse spatial discretizations are chosen. For the fluid subproblem, a finite
volume mesh with 345456 cells is used. On the structural side, 164 high-
order finite elements with shape functions from the trunk space are used. A
polynomial degree of p = 5 is chosen for the in-plane direction, while p = 2
in the thickness direction. The geometry is described using polynomials of
order p, = 4. This leads to subparametric element formulations and a mesh
that represents the geometry of the G'-continuous surface exactly (up to
round-off errors).

6.2.2 Results

In Fig. 6.10, the flow and pressure at the proximal end of the bypass (inflow)
and the distal end of the artery (outflow) are shown for the course of the
simulation. It is observed that, due to non optimal initial conditions in the
windkessel model (compare Section 3.3.4), the pressure does not reach a
periodic state in the considered time interval. Instead, a slow increase is
observed. While in previous simulations all hemodynamic quantities were
not evaluated before a periodic state was reached, this is not possible here.
Instead, the last period, i.e. the interval 2.2s < t < 3, is taken as a basis
for evaluation. Looking at the evaluation of the pressure, it is expected that
the system is already very close to the desired periodic state. However, it is
noted that the following results represent a state where the blood pressure
increases slowly, which of course is still a situation that is found in reality. In
reality, the blood pressure does in fact undergo continuous changes. In the
simulation, the periodic state is only needed as a basis for comparisons and
interpretations on a scenario that does not depend on the initial condition.
For the present purpose of demonstrating the application of the solution
approach, this is not regarded as important.

Figure 6.11 shows the distribution of the oscillating shear index (OSI)
and the local maximum wall shear stress for the variant small cuff. The
distribution is qualitatively very similar for the other variants. In all cases,
the heel, toe, and bed can be identified as critical regions due to extreme
maximum wall shear stresses, the high wall shear stress gradients, and the
high values for the oscillating shear index. These findings was also observed
experimentally (see [93]) and have been reproduced previously using the
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Figure 6.10: Flow and pressure for the variant small cuff over the course of the simulation.
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Figure 6.11: Oscillating shear index and maximum wall shear stress for variant B.

present simulation approach in [164]. However, different geometries and
more realistic material models are considered here. Looking more closely at
the distributions of the OSI and 7)., shown in Fig. 6.12, a region with an
increased OSI index is observed close to the anastomosis toe for the standard
variant. In the cuffed variant, this undesired effect is almost completely
eliminated. As elaborated in more detail in [162] and [164], this can be
attributed to vortices in the flow, whose formation and collapsing is very
sensitive to changes in the curvature of the vessel wall. The contour plots
of the velocity on a slice through the middle of the anastomosis at specific
times in the cardiac cycle shown in Fig. 6.13 illustrate this. The comparison
between the FSI simulation and pure fluid simulations with a rigid wall
assumption further shows that the elasticity of the vessel has an influence on
this effect. Considering the maximum wall shear stress || || in Fig. 6.12,
the rigid-wall assumption leads to increased values. From the view on the
anastomosis region selected for the presentation of the distribution, the
significant changes in shape due to the elasticity of the vessel wall can be
observed as well.

Table 6.2 shows a comparison of the extreme values for the mentioned
hemodynamic quantities. In accordance with the qualitative similarity, the
quantitative differences between the models are comparably small as well.
Still, the expected improvement due to the cuff is clearly observable. While
the small cuff does not affect the maximum OSI, the large cuff at least re-
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Figure 6.12: Comparison of the oscillating shear index (top) and the maximum wall shear
stress (bottom) for the FSI simulations with an elastic vessel wall (left) and the fluid simulations
with a rigid wall assumption (right).
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Figure 6.13: Velocity at a slice through the anastomosis with a small cuff at time ¢t = 2.57s,
t =2.90s, and ¢t = 3.0s (from top to bottom).
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Table 6.2: Comparison of the maximum oscillating shear index and the extreme values for
the wall shear stress.

OSIHMX (7) HTr:ax,min” (Pa) H‘rl;‘x’ax,maxH (Pd)
standard bypass 0.49 9.16 x 107 6.84
small cuff 0.49 7.86 x 107° 5.59
large cuff 0.48 1.29 x 1074 4.83

duces the maximum OSI by 2% as compared to the standard bypass. Clearly,
the cuffs have more influence on the extreme values for the maximum wall
shear stress T,v,.. This is observed for the largest maximum wall shear stress
during one cardiac cycle T, 1., as well as for the smallest maximum wall
shear stress 7,/ ;- A mathematical definition for these quantities is pro-
vided in Equations (3.189) and (3.190). Compared to the standard bypass,
the maximum value is reduced by 29% and the minimum value is increased
by 41% for the large cuff, both of which constitute an improvement in view
of the discussion in Section 3.3.7. However, it should be noted that — for
a reliable evaluation of the quality of different anastomoses — it would be
necessary to evaluate more flow scenarios, such as carefully designed rest
and exercise conditions as well as different distributions of the total inflow

to the two possible inlets.

6.3 Hemodynamics in a patient specific anastomosis

In this section, the partitioned solution approach is exemplarily applied for
a patient-specific setting. The case has been studied previously in [226], but
assuming the vessel wall to be rigid. Many of the parameters, e.g. those
regarding the mechanical properties of the vessel wall as well as those of
the patient’s blood, are unknown. Thus, typical values from the literature
have to be assumed. Therefore, the simulation results cannot be interpreted
as a reasonable approximation of the real hemodynamics in the circulatory
system of the respective patient. The study case can still give an impression
of the use of numerical simulations in surgical planning and ensure the
applicability of the developed methods for investigations of this type.

6.3.1 Study case

The considered patient is a 67-year-old female with occlusive peripheral ar-
terial disease. Fig. 6.14 shows the reconstructed lumen surface, which is
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available through the Cardiovascular Online Repository [73]. Smaller ar-
teries that branch off the common and external iliac artery as well as the
femoral artery were removed (c.f. Figure 2.2). While a strong progression
of the disease was observed throughout the larger arteries of the lower ex-
tremities, the region with the most severe symptoms is clearly identified as
the bifurcation, where the left common iliac artery branches into the inter-
nal and external iliac arteries. Proximal to the bifurcation, an aneurysm
with a dissection (separation of the arterial layers) was found. Distal to
the bifurcation in the external iliac artery, a severe stenosis had developed.
More details on the patient’s medical history and the progression of the
disease are provided in [226]. The studies presented therein are concerned
with the introduction of a cardiovascular simulation software, which is de-
signed to assist vascular surgeons in planning revascularization procedures.
The software allows to modify the preoperatively acquired medical images —
magnetic resonance imaging (MRI) in the present case — and study different
alternatives for the planned intervention. For the study case at hand, the
postoperative model shown in Figure 6.14 was modified after the patient un-
derwent the surgery, such that it closely reflects the geometry obtained from
postoperatively acquired MRI data. While the patient was symptom-free
at that time, the postoperative images revealed that the bypassed external
iliac arteries had occluded completely, which is attributed to the low flow
prevailing therein after the surgery. The present study reproduces this flow
situation as shown below.

In succession to the creation of pre- and postoperative models, a sur-
gical planning procedure with the aid of the software introduced in [226]
then includes a one-dimensional and a three-dimensional analysis. While
the one-dimensional results are obtained on a standard workstation within
minutes, the three-dimensional analyses take several hours. Both simu-
lations provide insight into the prevailing flow and pressure distributions.
However, the one-dimensional model does not include any effects induced by
geometric features such as curvatures and non-circular cross sections, while
the three-dimensional analysis does not include any effects induced by the
elasticity of the vessel walls. The partitioned solution approach provides
an ideal basis for more sophisticated modeling and simulation approaches.
Of course, extensive software engineering would have to be performed from
the development of the solution approach to obtain a software that is appli-
cable in clinical practice, ensuring a proper user interaction and acceptable
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Figure 6.14: Preoperative (left) and idealized postoperative (right) vessel geometry. The
lumen surfaces were reconstructed from segmented MRI data as detailed in [226].

computation times'. Further, additional techniques would be needed in
order to automatize parts of the modeling process. Nevertheless, a fictive
surgical planning procedure based on the fully coupled FSI problem can be
conducted as explained in the following.

6.3.2 Modeling and simulation approach

With the modeling techniques developed around the partitioned solution
approach, the fluid-structure interaction segment of the arterial tree shown
in Fig. 6.14 can be investigated in detail. Since the geometry was ob-
tained from medical images that were recorded when the artery was un-
der pressure, the simulation is not performed for the full pressure range,
i.e. from 80 mmHgtol2mmHg, but only for the pulse pressure, i.e. from
0 mmHgto4d0 mmHg. To solve the problem in acceptable time, only the
anastomosis region is modeled in a fully resolved three-dimensional way.
Further, only the anastomosis on the left side (see Fig. 6.14) is considered.
The vessels proximal to this anastomosis as well as the entire right side are

1With the solvers applied in this work, the one-dimensional analyses can be done within minutes as well
but the fully coupled FSI simulation takes several days.
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modeled using the one-dimensional vessel model introduced in Section 3.3.3.
In order to simulate the blood flow in the network, the vessel solver based
on the Taylor-Galerkin method described in Section 4.1.3 is augmented by
the boundary conditions introduced in [179], allowing for bifurcating and
joining vessels.

The proximal ends of the three-dimensional model are coupled to the
one-dimensional model by exchanging the flow and pressure. To this end,
the flow obtained from the vessel solver is distributed to the inlet boundary
of the fluid model in terms of a Womersely velocity profile. The pressure at
this boundary is averaged and prescribed in the vessel solver. At the distal
end, a two-element windkessel model is used to account for the influence of
the downstream vessel network. It delivers the pressure at the outlet bound-
ary of the fluid domain in terms of the flow, which is evaluated from the
velocity by integration over the boundary. The fluid and structural solver
exchange the surface traction and the displacement as usual. Additionally,
the structural solver is coupled to a tissue solver that delivers tractions in
terms of displacements.

A sub-stepping scheme is used, because the one-dimensional vessel solver
demands for a much smaller time step size than the three-dimensional fluid
solver. For every macro time step performed by the other solvers, the
vessel solver performs 20 micro time steps. This allows for an implicit
coupling despite the explicit nature of the Taylor-Galerkin method. Given
the known average pressure at the proximal ends of the anastomosis region
collected in a vector f),ch and a corresponding trial pressure at the current
time step f),lclz’l(j ), where k still counts the macro time steps, the values at
the intermediate steps are computed using a linear interpolation. At any
time t; <t < 41, these intermediate values are then computed by

; the1 — t t—1t i
_1D (5) £ = k+1 _1D k 1D (j) 6.2
p ( ) Atk pk Atk pk+1 ) ( . )

where At denotes the macro time step size.

The final coupling procedure is shown in Algorithm 6. For the present
application, it was found to be preferable over algorithms with an additional
inner loop to equilibrate pairs of fields separately as done in [68]. To avoid
confusions, the evaluation and solver operators needed to achieve the above
coupling are combined, such that each combined operator delivers every
output that is needed from the contained solver. The substepping procedure
is hidden in the same way, arriving at the operators F , S , f/, 7', and W for
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the fluid, structural, vessel, tissue, and windkessel solver, respectively. It
is noted that due to an implementation detail in the actual code that was
used for the present case, the pressure and velocity fields were predicted
based on a constant extrapolation. The displacement was predicted using
the tangent extrapolation techniques as usual (see 4.3.3).

Algorithm 6 Coupling algorithm for multifield cardiovascular FSI simulations.

1: fork=0...n—1do > Start of the time loop
2: d§£¢4 = Pk o dk > Predict lumen displacements
3: Qﬁ?) =Po Q“’ > Predict distal flow
4: 13,131(0) Pr o piP > Predict proximal pressures
5: for j=0. ﬂmx 1 do > Start of the coupling loop
6: pgcfll) Wi (Q¥9)) > Call the windkessel solver
7: \’/,(Cfll) ( e (J ) > Call the vessel solver
t(]+1)
8: plefll) Fi (d;f:ll), ’,EJ_;U, ’,(5:11)) > Call the fluid solver
Qw (5+1)
L k41
9: t;‘,,(j;r]) =Tk (a;ﬁlﬂ)) > Call the tissue solver
[ auy (U 40)
10: éf(}ll) =5 ( el tkﬂ) > Call structural solver
L Akt
11: if CONVERGED( .) then > Check convergence of all fields
12: dkH dfjjf
(+1)
13: V= QY
14: f’ich f’ich (+1)
15: break > Proceed with the next time step
16: else
17: dff:ll = A (dijﬂl ) > Accelerate convergence
18: end if
19: end for > End of the coupling loop
20: end for > End of the time loop

One-dimensional network model

The one-dimensional network model is created by combining the data from
[226] and [179]. For cach vessel in the network, its length L, cross sectional
area Ay and stiffness coefficient S have to be prescribed. The geometric
data of the bypass is set according to the three-dimensional model from
[226], which is shown in Fig. 6.14. The vessel parameters are taken from
[179], which also served as a basis for the implementation of the vessel
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postoperative coupled

preoperative

Figure 6.15: One-dimensional network models and vessel indices for the uncoupled (left and
middle) and coupled (right) simulations.

Table 6.3: Properties of the vessels in the one-dimensional network model (preoperative).

vessel L (ecm) Ap (em?) B (kgs™2m™2) parents daughters
1 abdominal aorta 5 0.578 399 - 1,2
2 left common iliac artery 5.8 0.328 649 1 4,5
3 right common iliac artery 5.9 0.328 649 1 6,7
4 left internal iliac artery 5 0.181 3134 2 -
5 left external iliac artery 144 0.252 1493 2 -
6 right internal iliac artery 5.1 0.181 3134 3 -
7 right external iliac artery 14.5 0.252 1493 3 -

solver. Therein, the study of a full body network consisting of 55 arteries
is presented. Here, only those arteries present in the model from [226] are
considered, i.e. a section of the abdominal aorta and the common, internal
and external iliac arteries. The femoral arteries are not considered explicitly
but taken to be the continuation of the external iliac arteries. The resulting
data for the vessel networks before (preoperative) and after (postoperative)
the bypass surgery are given in Tables 6.3, 6.4. To account for the stenosis
in the left external iliac artery, its diameter was decreased by a factor of
ten. The topologies of the networks are illustrated in Figure 6.15. It further
shows the model used in combination with the fully resolved FSI simulation
of the anastomosis region, where the distal end of the left external iliac
artery and the left bypass leg is coupled to the three-dimensional model.
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Table 6.4: Properties of the vessels in the one-dimensional network model (postoperative).

vessel L (em) Ap (em?) f (kgs~2cm™2) parents daughters

1 abdominal aorta I 2.5 0.578 399 - 2,11

2 abdominal aorta IT 2.5 0.578 399 - 3,4

3 left common iliac 5.8 0.328 649 2 5,6

4 right common iliac 5.9 0.328 649 2 8,9

5 left internal iliac 5 0.181 3134 3 -

6 left external iliac I 44 0.252 1493 3 7

7 left external iliac II 10 0.252 1493 6,11 -

8 right internal iliac 5.1 0.181 3134 4 -

9 right external iliac I 4.5 0.252 1493 4 10
10 right external iliac 1T 10 0.252 1493 9,12 -
11 common bypass 4.5 0.252 5000 1 12,13
12 left bypass 13 0.252 5000 11 7
13 right bypass 13 0.252 5000 11 10

At all distal ends, two-element windkessel models are used to prescribe
a physiological pressure. The resistances and compliances are set to R =
7.52smmHg/ml and C' = 0.013ml/mmHg for all models. In view of the
exemplary character of this study, this simplification is regarded as justified
here as long as physiologically meaningful flow rates are obtained. A more
accurate strategy based on additional flow measurements is addressed below
along with the description of the results.

Three-dimensional anastomosis model

The three-dimensional meshes for the fully resolved model of the anasto-
mosis region are created similarly to those for the idealized anastomoses
considered in the previous section. This time, however, the surface rep-
resentation from [226] is used to construct the coarse quadrilateral mesh,
which forms the basis for the subsequent mesh generation process illus-
trated in Fig. 6.16. Using the modeling software Blender (see [25]), the
manually constructed quadrilateral mesh (see Fig. 6.16, A) is refined and
smoothed using a Catmull-Clark subdivision scheme (see [37]). The re-
sulting quadrilateral mesh (see Fig. 6.16, B) is again modified manually in
order to closely match the reference surface from [226]. After computing
the smooth lumen surface (see Fig. 6.16, C) using the construction scheme
introduced in Section 4.2, a second surface (representing the vessel’s outer
boundary) is obtained by extruding the lumen surface (see Fig. 6.16, D). A
structural mesh (see Fig.6.16, E) is then created based on these boundaries.
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Each of the hexahedral elements corresponds to one of the quadrilaterals.
The polynomial degree for the geometry description is chosen as pg = 5.
A tetrahedral fluid mesh (see Fig. 6.16, F) is constructed from a triangula-
tion of the smoothed lumen surface using VM TK. It is noted that only the
construction of the quadrilateral meshes A and B requires the input from
a user. The subsequent mesh generation process can be done in a fully
automatic way.

As before, the stiffness of the elastic foundation underlying the tissue
solver is set to ¢' = 1 x 10% Pa/m, while the inertia and damping parameters
are set to zero. An initial time step size of Aty = 1ms is chosen. In
subsequent time steps the fluid solver dictates a At; based on a maximum
Courant number of 10. The convergence of each coupled field is checked
based on a relative tolerance of e™ = 107> and an absolute tolerance of
e = 10712, see Section 4.3.4 for details. Mass-proportional structural
damping with a parameter of {; = 0.01 is applied. As investigated in [163],
this stabilizes the simulation while altering the results only to a negligible
extent.

6.3.3 Results — one-dimensional analysis

In view of the application of cardiovascular FSI simulation in the clinic, an
appropriate starting point would be to get an impression of the overall flow
situation. For this purpose, the one-dimensional model alone can already
provide some insight. It yields the flow Q'P and the pressure p'P (aver-
aged over the cross section) at every point within the considered vessels.
Figure 6.17 shows the pressure distribution within the network that rep-
resents the preoperative state at time of maximum flow through the inlet
(the proximal end of the abdominal aorta). The decreased flow in the left
external iliac artery due to the narrowing in this vessel is clearly visible.
Of course, the flow separation at bifurcations within the network strongly
depends on the windkessel models. While, for the sake of simplicity, the
same parameters are chosen here at each distal end, flow measurements at
these points can be used to tune the parameters such that the simulation
results match the measurement. In [226], a simple iterative procedure is
proposed for this purpose. Here, the physiological consistency of the result,
i.e. a decreased flow distal to the narrowed vessel, is regarded as sufficient.
The flow distribution in Fig. 6.17 further proves the physical consistency of
the treatment of bifurcations, since the flow at the distal ends of all vessels
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Figure 6.16: Modeling steps for the patient specific exemplary case.

243

IP 216.73.216.36, am 18.01.2028, 22:00:13.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

6 Applications

_ —— abdominal aorta
30 — I il
—— left common iliac
—— right common iliac
—— leftinternal iliac
20l i left external iliac
—— right internal iliac
—— right external iliac

pressure (mmHg)

10| l
I I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24
distance (cm)

Figure 6.17: Pressure distribution in the preoperative vessel network at the time of minimum
and maximum inflow.
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Figure 6.18: Flow distribution in the preoperative vessel network at the time of maximum
inflow.

matches the sum of the flow at the proximal end of their respective daughter
vessels. The pressure distributions shown in Fig. 6.18 are likewise consis-
tent in a physiological and physical way. Here, the pressure is continuous
at bifurcations, and the pressure drop in the narrowed vessel is much larger
than that in the corresponding healthy artery. Of course, in addition to
looking at the pressure and flow distributions in the network at a certain
time, the evolution of these quantities at a certain point can be investigated
as well. Fig. 6.19 shows the flow at the proximal end and the pressure at
the distal end of all arteries. Again, the decreased flow in the left external
iliac artery due to the stenosis is clearly visible.

The same investigations can be made for the postoperative network
model. Figure 6.20 shows the flow distribution for this situation. For com-
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Figure 6.19: Flow at the proximal ends and pressure at the distal ends over the last period
considered in the one-dimensional simulation.

pleteness, the pressure distribution is given in Fig. A.9.4. It is found to be
nearly constant throughout the network — as can be expected for healthy
vessels without narrowing. This one-dimensional analysis already indicates
that the flow in the left external iliac artery normalizes due to the bypass.
Further, it can be noted that only a very low flow prevails in the com-
mon iliac arteries in the postoperative model. This can also be seen in
the evolution of the flow and pressure over time, see Fig. 6.21. In [226], it
is in fact reported that a follow-up measurement of the flow rates showed
that the common iliac arteries were almost completely occluded. The low
flow rates after the surgery may serve as an explanation for this — and the
one-dimensional analysis could serve as a basis to develop a surgical plan to
counteract this issue. While it is not intended here to suggest an alternative
treatment for this specific case, the findings might generally suggest that
a smaller graft-diameter or a further upstream anastomosis location could
be preferable. Of course, any of such decisions will always be constrained
by anatomic features such as limited operative accesses or the progression
of the disease. =~ Summarizing the investigations of the one-dimensional
analysis, flow and pressure distribution within the arterial network can al-
ready provide insight to the advantages and drawbacks of certain surgical
plans. The achievement of the main goal of a bypass surgery, i.e. to re-
store the blood supply in regions distal to stenoses, can be investigated in a
flexible and computationally inexpensive manner. However, the actual flow
patterns in the anastomosis region, which affect the progression of intimal
hyperplasia cannot be obtained from the cross-sectional averages provided
by the one-dimensional analysis. This can only be achieved through the
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Figure 6.20: Flow distribution in the postoperative vessel network at the time of maximum

inflow.
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Figure 6.21: Flow at the proximal ends and pressure at the distal ends over the last period
considered in the one-dimensional simulation.
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Figure 6.22: Total number of coupling iterations and time step size for the fully coupled
anastomosis simulation.

fully-resolved three-dimensional FSI simulation.

6.3.4 Results — three-dimensional analysis

Before turning to the hemodynamic-related results of the coupled FSI sim-
ulation, a short note is made on the coupling iterations and the time step
size. As shown in Fig. 6.22, the adaptive time stepping reduces the com-
putational efforts drastically. A constant time step size would have to be
smaller than Atym = 9.2 x 107°s, such that 26087 instead of 13304 time
steps had to be performed. It is further noted that the number of cou-
pling iterations stays at a moderate level throughout the simulation. The
maximum number of coupling iterations in a time step is found to be 13,
while the mean is 6.8. The additional field does not seem to have a large
influence on the convergence rate of the underlying modified fixed-point
iteration. However, a direct comparison with the previous simulations is
questionable, since they were performed for the real pressure range, while
only the pulse pressure is used here. The findings from [163] indicate that
this will lead to a decrease in the number of coupling iterations, such that
two effects on the efficiency could be mixed here.

Hemodynamics

As before, the three-dimensional simulations deliver structural displace-
ments as well as fluid velocities and pressures, from which the hemodynamic
quantities of interest can be computed. Since the fully coupled multifield
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model considered here includes a one-dimensional description of the anas-
tomosis’ surrounding, it is also possible to study the flow and pressure
distribution in the respective parts of the arterial system. Figure 6.23 gives
an overview about the results that could be used for surgical planning pur-
poses. In clinical practice, several alternative revascularization procedures
could be compared based on such an overview.

While the overview in Fig. 6.23 includes the most important characteris-
tics about the flow situation in the anastomosis region, like the maximum
oscillating shear index and the extreme values for the wall shear stress, the
corresponding distributions can also be visualized as before. Figures 6.24
and 6.25 show these distributions for the fully coupled simulation. As ex-
plained above, it reflects the flow situation directly after surgery, where a
significant flow through the external iliac artery was still present. Accord-
ing to the measurements six month after surgery, reported in [226], the
external iliac arteries occluded afterwards, which results in a very different
flow situation — similar to the one considered in Section 6.2 for the idealized
anastomoses. Figures 6.24 and 6.25 therefore show a comparison of the
fully coupled simulation and a second FSI simulation without flow through
the external iliac artery. This second simulation was not obtained using the
fully coupled approach but based on the classical approach followed in the
previous studies, i.e. without a one-dimensional vessel solver. The flow at
the proximal end of the bypass is directly prescribed based on the follow-up
measurements from [226]. The streamlines at the time of maximum in-
flow in Fig. 6.26 further illustrate the difference in the flow situations. The
vortex prevailing in the scenario without inflow from the artery that was
also observed for the idealized anastomoses (see Fig. 6.13) disappears in the
scenario, where that flow is present.

Structural results

From the structural solver, displacements and stresses are obtained dur-
ing the simulation. Figure 6.27 shows the anastomosis in the undeformed
state 2y and the deformed state €, at the time of maximum pressure (at
t = 1.87s). Keeping in mind that the simulation was only performed for the
pulse pressure range, the deformations only reflect the displacements of the
artery within one cardiac cycle. Correspondingly, they are much smaller
than those determined in the previous FSI simulations. For a better illus-
tration and comparison of the two states, three cross sections with notable
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Figure 6.23: Flow and pressure over one cardiac cycle at selected points of the coupled
postoperative model.
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oscillating shear index oscillating shear index
0 0.094 0.19 0.28 3.7 0 0.098 0.20 0.29 3.9
|G I | -

Figure 6.24: Distribution of the oscillating shear index obtained from the fully coupled sim-
ulation (left) and the classical FSI simulation without inflow through the host artery.

maximum wall shear stress || 7%, || (Pa) maximum wall shear stress || 7). || (Pa)
0.159 9.46 18.9 28.4 38.0 0.000157 3.02 6.05 9.07 12.1
- T | -

Figure 6.25: Distribution of the maximum wall shear stress obtained from the fully coupled
simulation (left) and the classical FSI simulation without inflow through the host artery.
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6.3 Hemodynamics in a patient specific anastomosis

velocity ||v|| (m/s)
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Figure 6.26: Streamlines computed from the velocity fields at the time of maximum inflow
from the fully coupled simulation (left) and the classical FSI simulation without inflow through
the host artery.

shape changes were highlighted in Fig. 6.27. It should be noted that, gen-
erally, there are no loads acting on the structure in the undeformed state.
However, regarding the present study, the vessels were certainly under pres-
sure at the time the MRI image was taken. Therefore, the stresses acting
on the artery and the graft can only be investigated using additional sim-
ulations. One may be tempted to conduct a simulation using the actual
physiological pressure level — then, however, the appropriate undeformed
state would be unknown. A standard approach would be to solve an in-
verse problem based on an assumed load that prevailed at the time the
geometry was captured. Usually, the diastolic pressure is assumed in such
cases, see e.g. [191]. Still, for a truly realistic structural model, such com-
putations would have to include the prestresses prevailing in arteries when
they are unloaded.

6.3.5 Discussion

The above thoughts on the structural mechanics model highlight the great
challenges in developing a realistic structural model for patient specific ar-
teries and vessels in the scope of cardiovascular FSI simulations. If material
parameters are used that were identified based on an unloaded undeformed
state, simulations covering the full pressure constituted the better choice.
As shown in the previous simulations, the partitioned solution approach is
applicable also in cases which were found to be more prone to instabilities
than simulations based on the pulse pressure only, see [163]. While the
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Figure 6.27: Left: Undeformed configuration of the structural domain. Right: Deformed
configuration at the time of maximum pressure.

parameters for the structural and the reduced models have to be refined,
the exemplary study of the patient-specific anastomosis still illustrates the
potential of the partitioned solution approach as a tool for the analysis of
clinical relevant problems. It is regarded as certain that improved mod-
els like this would also allow to solve the resulting FSI problems using the
developed numerical methods. With increasing computational resources,
corresponding simulations may be conducted on a regular basis in future
clinics. It is only due to the partitioned nature of the approach and the
resulting flexibility of combining different models and to use specialized
solvers that corresponding high fidelity models can be used as a basis. Con-
cluding, it was shown that the individual models from Chapter 3 and the
corresponding numerical methods for their solution from Chapter 4 allow
for a very detailed description of the hemodynamics while keeping the com-
putational cost at an acceptable level.
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7 Summary and Outlook

Driven by the goal to predict the local hemodynamics in segments of the
arterial system, several modeling and simulation methods were developed
and investigated in detail in this work. They enable three-dimensional
simulations of the fluid-structure interaction (FSI) in such regions that allow
for in-depth investigations of clinically relevant issues, e.g. regarding the
influence of the vessel geometry and material on hemodynamic quantities
such as the wall shear stress. Reduced models of the surrounding are used to
provide realistic boundary conditions to the fully resolved FSI problem. The
resulting multifield problem is solved using a partitioned solution approach.
The main achievement is the development of numerical methods that are
needed to realize such a partitioned simulation in which specialized field
solvers applying different numerical methods are coupled.

Partitioned cardiovascular FSI simulations are prone to instabilities due
to the large added mass effect resulting from the similar density of the fluid
and structure. Accordingly, a major part of this work is concerned with
the investigation of convergence acceleration methods that ensure stability
and efficiency despite this nature of the problem. Together with predic-
tors and suitable convergence criteria, they were used in combination with
staggered, parallel, and mixed coupling algorithms. Using a simple test
problem, the most efficient method was found to be a quasi-Newton least
squares method with filtering. The findings from this study were confirmed
in simulations of more complex benchmark problems that at the same time
serve as a validation of the developed coupling software. Due to the non-
matching discretizations of the fluid and the structural subproblem, loads
and displacements have to be mapped from one computational mesh to an-
other. Based on a detailed investigation of different interpolation methods
suitable for this task, the recommendation to use mesh-based interpolation
methods is given. If not available, radial basis functions constitute an ac-
ceptable alternative — with the drawback that the coupling interface must
be smooth or split into parts that are smooth.

Drawing on the experiences from the two-field FSI problem, a partitioned

IP 216.73.216.36, am 18.01.2028, 22:00:13. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186353184

7 Summary and Outlook

solution approach for the augmented problem including the reduced models
was introduced. In addition to the fluid and the structural solver, a one-
dimensional blood flow solver and several types of windkessel models were
included in the simulation approach. A coupling algorithm in which all
fields are solved subsequently was found preferable over approaches where
pairs of fields are coupled in an inner iteration. The simulation method
was designed such that an adaptive time step size can be dictated by one
of the participating solvers (here the fluid solver), which significantly de-
creases the computation time. Further, a sub-stepping scheme can be ap-
plied for solvers that demand for a particularly small time step size (here
the one-dimensional vessel solver). Thanks to the partitioned nature of the
approach, all solvers can be exchanged and improved independently from
each other. For an efficient solution of the structural mechanics subproblem,
high-order finite elements were used as the preferred spatial discretization
method. They proved to be well-suited especially for the simulation of ar-
teries and bypass grafts which are nearly incompressible, highly anisotropic,
and possibly thin-walled — all of which may induce locking if standard finite
elements are used. In order to create computational meshes with curved ele-
ments, which are needed to utilize the advantages of the high-order method,
a surface construction scheme was introduced. It is based on a set of mini-
mizers and constraints that can be mixed freely to achieve a certain smooth-
ness of the surface. A set like this turned out to be a very useful basis for the
construction of idealized and patient-specific geometries. Being based on
a piecewise polynomial description, the surface geometries can be directly
used to obtain iso- or subparametric element formulations.

To prove the applicability of the methods, several exemplary studies were
conducted. The general possibility to investigate the influence of vessel
shape and material on the hemodynamics was demonstrated for idealized
healthy arteries of different shape and distal end-to-side anastomoses of dif-
ferently cuffed bypass grafts. The evaluations of hemodynamic quantities
like the oscillating shear index and the maximum wall shear stress over one
cardiac cycle correspond well to explanations and theories about critical
regions in anastomoses. The influence of the cuff size was found to be un-
expectedly low for the considered scenario. However, the studies were of
exemplary type and their main purpose can be seen in demonstrating the
developed numerical methods. In the same spirit, a patient-specific simu-
lation of the distal anastomosis of an aorto-femoral bypass was performed.
The partitioned solution approach was found to be very suitable for the cou-
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pling of the fully-resolved model of the anastomosis region based on medical
images and the reduced order models of the surrounding vessel network.

Concluding, it can be said the modeling and simulation approach per-
formed well in addressing clinically relevant questions related to the hemo-
dynamics in the arterial system. However, many of the developed meth-
ods are generally applicable for the solution of strongly coupled multifield
problems. Convergence acceleration methods and predictors may even be
applied to improve the convergence of vector sequences out of the scope of
coupled problems. Further, the methods for geometry and mesh genera-
tion as well as the interpolation methods can be useful in many different
applications.

Outlook on future works

The limitations elaborated at the end of Chapter 6 revealed that a refine-
ment of the structural model is one of the biggest challenges on the way to an
improved simulation approach. While state-of-the-art material models are
employed in this work, the accurate modeling of prestresses in arteries re-
mains an unsolved problem. The fact that the geometry for patient-specific
models is usually obtained from medical images taken when the artery is in
a loaded state further complicates this issue. However, there are ongoing
efforts to refine the modeling approaches and numerical methods to solve
the inverse problem arising due to this situation, see e.g. [191]. Another
major challenge that arises especially in patient specific simulations is the
identification of material parameters. Non-invasive methods to obtain in-
formation about the mechanical behavior of arteries are just starting to be
developed. In fact, [54] is the only reference found in the scope of this
thesis that addresses this question. While limited to the small deformation
regime, future works could further develop the method introduced therein
and combine it with the means to address the prestressing.

The above tasks constitute major developments in the field of soft-tissue
modeling and are not likely to be completed in the following years. Until
a truly realistic structural modeling approach for cardiovascular FSI stud-
ies is available, the idealized models used in this work may still serve as
a basis for clinically relevant investigations. Non-patient specific simula-
tions based on typical or extreme values can yield valuable insight into flow
situations in critical regions. While the investigation of anastomoses was
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the driving force behind developing the simulation approach for this work,
many other applications can be targeted using the same methods. This in-
cludes the assessment of the hemodynamics in stented vessels, the influence
of non-homogeneous surrounding tissue, and the simulation of blood flow
through stent-grafts. While the partitioned solution approach can be ap-
plied as-is, the boundary conditions at the coupling interfaces between the
one-dimensional and the three-dimensional model should be improved. A
desired feature that is not covered by the solvers developed in the scope of
this work could be non-reflecting boundary conditions that not only couple
flow and pressure, but also the structural deformations.

The fact that the structural model as well as the mentioned interface
boundary conditions are not yet fully satisfactory gives just one direction
for future works. Another direction is given by the potential of the parti-
tioned solution approach. The decreased computational effort due to the
reduced modeling approach of the surrounding allows for a usage of the
approach in the scope of mathematical optimization methods. While the
current work provides methods to predict local hemodynamic quantities, op-
timization methods could provide improved shapes or graft materials that,
e.g., minimize the oscillating shear index in the anastomosis region. While
the general applicability of adjoint methods for this purpose was already
shown in [98], the general applicability of adjoint methods for this purpose
was already shown, future works should further develop this promising ap-
proach.
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Appendix

A.1 Tensor algebra

For an in-depth treatment of tensor algebra as well as tensor analyisis
see [26, 230, 5]. Here, only non-standard operators are listed which are
not uniquely defined in literature.

A.1.1 Contractions and scalar products

Considering first-order tensors a and b, second-oder tensors A and B, and
fourth-order tensors A and B, the following operations are defined according
to the notation proposed in [48].

a-b=ab, (A1)
(Aa); = Ajja; (A.2)
A- B = A;; B (A.3)
(AB);. = Aij Bji (A.4)
(AA); = Aiju Bu (A.5)
(AB)jimn = Aijkt Brimn (A.6)

A.1.2 Dyadic products of second order tensors

Considering two arbitrary second-order tensors A and B, the following
operators are defined:

(A® B);j;; = Aij Bu (A7)

(A@B)jjkl = Ay Bﬂ (A.8)

(A® B),;;; = Au Bjk (A.9)
— 1

(A®B),;, = 5 (Aix Bji + Ai Bji,) (A.10)
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A.1.3 Special fourth order tensors

Fourth-order tensors constructed from the dyadic product of the second-
order identity tensor 1 are helpful when working with tensor expressions.
The following definitions are used in this work:

I=191 & TA=A (A.11)
T=1®1 - TA=tr(A)1 (A.12)
S=1®1 — SA=sym(A) (A.13)
D=o0— éT — DA=dev(A) (A.14)

A.2 Continuum mechanics

A.2.1 Neo-Hookean elasticity tensor

Recalling the second Piola-Kirchhoff stress as given in (3.103), it can be
rewritten as
2 1 2
R snIieC + g J2C! - g ct (A.15)
The tangent modulus can be obtained in a systematic way by taking the
derivative of each summand separately. For the first summand

a 2 1 2
- 31) = —= -31 -1 Al
sc (n7i1) =—guritec (A.16)
is obtained. The second one results in
1 9 N 1 9 1 d.J5
“p=s(lcC T3 =-pJs [cCH+-puleC'——
356 (o ) =317 56 1o € +3u1e 07155 (A17)
1 _ 1 '
- g,m <1 eC't-IcC'nC™! - §ICC*1 ®Cl) .
For the third and fourth summand,
Kk O K O.J? K o, 0C™!
o J2 1 — -7 071 i J2
290 )=53c¢ 37 ¢ (A18)
_Fp (C—l O — Cflgcfl)
2
and
oCc! _
=-Cc'gCc A19
e g (A.19)

are obtained, respectively. The summation of Eq. (A.16-A.19) results in the
expression given for C in (3.105).
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Finite elements

A.3 Finite elements

A.3.1 Weak form

As mentioned in Section 4.1.1, some algebra is necessary to derive the final
weak form (4.2) from the weighted residual form (4.1). To start off with,
the static internal load term in (4.1) is integrated by parts, which yields

/Div( ) - 6d A = /P Grad(8d) A€, /PN sddTls.  (A.20)

QB 0 0
Further,
OF — % ((Grad(8d))" F + F" Grad(ad)) (A.21)

holds for the variation of the Green-Lagrange strain tensor. Drawing on the
symmetry of S and dF, it holds that

P .Grad(éd) = S - F* Grad(6d) = S - OE. (A.22)

as detailed in [230, p. 84]. Together with (A.21), (A.22) provides the link
between (4.1) and (4.2) for the general case, i.e. without assuming an
underlying minimization problem.

A.3.2 Special matrices

The element interpolation matrix

N9 0 o N 00
NO=1| 0o N9 0 ... 0 NY o0 (A.23)
0 o0 N9 0 0 NY

allows for an evaluation of quantities which are defined through an ele-
ment degree of freedom vector, e.g. the displacement vector d(®, inside the
element as

d=N®d® inQ©, (A.24)
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The element strain-displacement matrix

(')N(e) aN(f) (r)N(e) T
Fny Fy 31 5
AN v dN@ AN
12 (’93 22 Thg F32 s
ON ()N(C) IN©
B _ 13 5 Faz =5t F33 =t
i T 5N_<> ON© aN© aN© AN ®© AN
Fii ==+ Fis 32) Fy 37) + 22 o Fy a:() + £'32 3,()
AN N N oN” ONL
oS+ P P o 85 S+ P
AN, AN, N AN, oN“ oN*
L P T P Fo e+ Fas T B+ Fas 5
(A.25)
allows for a computation of
EV =B & (A.26)
and
AEY = B Ad" (A.27)

A.3.3 Assembly

In the finite element method, global matrices and Vectors are assernbled
from the counterparts on element level, e.g. M from M and d from d®
To this end, all degrees of freedom are identified with a unique global mdex
g and an element location vector that contains the global indices of the
element’s (dn.) degrees of freedom is introduced as

16) = [gl g2 -+ 9dn,) ] , (A.28)

where d denotes the number of space dimensions. Now, the assembly process
can be realized according to Alg. 7.

Algorithm 7 Assembly of global matrices and vectors in the finite element method.
1: fore=1...n°do

2 fori=1...(dn.) do

3 ), = d

4 forj=1...(dn.) do
5: My, = MY

6 end for

7 end for

8: end for
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Table A.3.1: Relation between edge coordinates and element coordinates

node 1 2 3 4 5 6 7 8
l 1 21 2 1 2 1 2
m 1 1 2 2 1 1 2 2
n 1111 2 2 2 2

A.3.4 Voigt notation

As done for second-order tensors in (4.14) and (4.15), fourth-order tensors
that have the symmetries of the elasticity tensor introduced in (3.74) can
be represented using the Voigt notation as

[ Ciiin Cii22 Cuss Ciniz Crizz Ciis

Coo11 Cazoz Cazzz Coniz Cazzs Coons
v | Cs311 Cs322 Csszz Cssia Css23 Csais

C—CV— . (A.29)

Cizi1 Ciza2 Cizzz Ciziz Ciazs Ciois

Cosi1 Cazza Caszs Casiz Cozaz Coasis

Cizsir1 Cizze Cisss Ciziz Cizaz Cisis

Considering the product arising in the linearized weak form (4.4), it can be
reformulated as

OE -C AE — EY - CV AE. (A.30)

A.3.5 Nodal shape function indices

Recalling the nodal mapping

n\? = NP () NP (se)) N{P) () x(em), (A.31)

n n

from (4.52), the relations between the index ¢ and the indices [, m, and n
for the node numbering of a hexahedral element as shown in Fig. 4.1 are
those given in Tab. A.3.1.

A.3.6 Face and edge coordinates

For the node numbering of a hexahedral element as shown in Fig. A.3.1,
the relations between the element coordinates and the face and the edge
coordinates, respectively, are those given in Tab.A.3.3 and Tab. A.3.2.
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Figure A.3.1: Numbering of nodes, faces and edges of a hexahedral finite element.

Table A.3.2: Relation between edge coordinates and element coordinates

edge 1 2 3 4 5 6 7 8 9 10 11 12

© pe) 0 @ g0 g0 g0 g0 g o go 4o

o
Ta T

r 5O 5@ 5@ g0 o) 4o g0 g0 p@ g _p@  _p©
re 1O 0 4O 0 40 _p© g _p@ g _g@) g _g©

A.4 Taylor-Galerkin method

The global systems (4.87) and (4.88) are assembled from their counterpart
on element level, which can be computed as follows. While the same ma-
trices are given in [89], a different notation — one commonly used in the
scope of the finite-element method — is applied here. This allows for a more
flexible tuning of the method, e.g. by using different shape functions or
quadrature rules.

A.4.1 Left-hand side

Introducing the interpolation matrix

_[NPEE) o

B 0 NPy |7
which is assumed to be the same for each element e and applying the usual
finite element approximations

AP(2) x NA® and Q™(z) ~NQ¥ in Q) (A.33)

N (A.32)
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Taylor-Galerkin method

Table A.3.3: Relation between face coordinates and element coordinates

face 1 2 3 4 5 6
I C I C G I e)
I s g6 _gle) _gle) e t(e)
re 1O &) gl @) o) )

with
A= (A7 A" and Q°=[Q5 Q5" (A.34)

the element mass matrix reads

1
h hi2 1
@ _ " [NT _n
M 2/N N dr 2[12]. (A.35)
-1

Therein, h denotes the length common to all elements, such that /2 can be
interpreted as 9%/or. As in the scope of the FEM for structural mechanics,
the global left hand side M may be assembled according to Alg. 7.

A.4.2 Right-hand side

The right hand sides are split into the individual terms arising in (4.85)
such that

R]({Aﬁe) _ R;{ALC) + R]({Ale) + R](CA?”@) (A36)
and
R}(CQ,e) _ R}({Ql,e) n RECQM n RIEQ&e). (A.37)

For the summands, one obtains

1
R _ % / NTNA® dr = M A, (A.38)
-1
h¢ /
R/(le,e) _ % /NTNQ](:) dr = M© Q;ﬁ (A.39)
e
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1
(a2¢) _ h° T © At NQW©
Ry = 2 /B (N Q-5 KRNAQC) dr (A.40)
-1 g
2 2 o\ 2
e o (NQ) 8 (NAY) Ataky (NQY)
R = / B” + - ;
' 2 E NA%@ SpAo (N A;:>>
(A41)
R\ — 0 (A.42)

1
R@ _ I /BT KpNQBQY 2K;NQ'BQ

) (NA;?’)2 (NA,(:>>2
1 A43
Kp (N Q§j>)2 BAY  Kns (NA[T) BA[ e
o (NaYY ! 20 0 o

A.5 Radial basis functions

In addition to the mean error shown in Section 4.3.5, Fig. 4.18, the maxi-
mum error for each case considered there is shown in Fig. A.5.2.

A.6 Multi body system

From the structure of the system, the tangent matrix K according to the
directional derivative Dgy [Ax] = K Ax can be identified to be a band
matrix

KOH g2
K(?,l) K(Q,Z) K(2ﬁ3)
K — (A.44)
K(n,—lm,—Q) K(n—l,n—l) K(n—lm)
K(n,n—l) K(”’”)
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Multi body system
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Figure A.5.2: Maximum interpolation error ||f(z}) — y!|| (ordinates) with increasing mean
support radius R; (abscissas) for the interpolation of differently distributed source points sam-

pling different functions. Marks x denote studies with adaptive Réi), marks o denote studies

with uniform R = R,.
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Figure A.8.3: Influence of the (initial) relaxation factor wy in the constant, the Aitken and
the Irons-Tuck relaxation in combination with the mixed coupling algorithm.

In each time step, a Newton-Raphson iteration

K|z Ax) = —g|z0 (A.46)
) = 50 4 Ax0) (A.47)

starting with an initial guess () = x; is performed until ||g|| < ' after N
iterations. Then, after setting x; .1 = %), the next time step is processed.
A.7 Coupling software

Listing 3 shows the source code of the algorithm section of a coupling man-
ager process implementing a parallel coupling algorithm.

A.8 Preliminary investigations

Figure 5.32 shows the influence of the parameter wy on the mean number
of consecutive solver calls j* for the mixed coupling algorithm in addition
to Figure 5.32 and 5.33, covering the staggered and the parallel algorithm,
respectively.
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Figure A.9.4: Pressure distribution in the postoperative vessel network at the time of mini-
mum and maximum inflow.

A.9 Applications
In this section, additional information and results obtained in the scope

of Chapter 6 are given. Fig. A.9.4 shows the pressure distribution in the
postoperative vessel network considered in Section 6.3.
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Listing 3 Parallel coupling algorithm section of a typical implementation of a CMP in an
FSI simulation using the C++ framework comana.
// end of initialization section

// building blocks

PolynomialPredictor predictor(2);

ConvergenceCriterion convergenceCriterion(le-6);
QuasiNewtonLeastSquaresMethod accelerator(displacementVector) ;

// time loop

const auto number0fTimeSteps=1000;
const auto maxNumberOfIterations=50;
for(auto t=0; t<numberOfTimeSteps; t++)

{
predictor.predict(displacementArray) ;
for(auto j=0; j<maxNumberOfIterations; j++)
{
preliminarySolutionVector = solutionVector;
scatter(solution, displacement, traction);
// solve both subproblems
R::setField(fPatch, L::vertex, Q::displacement, displacement);
R::setField(sPatch, L::quadraturePoint, Q::traction, traction);
R::proceed(fSolver);
R::proceed(sSolver);
R::getField(fPatch, L::custom, Q::traction, traction);
R::getField(sPatch, L::custom, Q::displacement, displacement);
gather(displacement, traction, solution);
residual = preliminarySolutionVector - solutionVector;
if (criterion.fulfilled(solutionVector,residual)
{
solutionVector = preliminarySolutionVector;
R::proceed(fSolver);
R::proceed(sSolver);
break;
}
else
{
R::iterate(fSolver);
R::iterate(sSolver);
solutionVector = accelerator.updateSolution(residual);
}
}
}
}
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