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Trying to define what “AI” is can feel like trying to catch a slimy fish that keeps 
slipping when gripped, leaving you with only buzzwords in your hands. The 
term in itself is much older than the current hype, which started in the second 
decade of the twenty-first century after the “data science” hype. The quest 
for machines to perform “intelligent” tasks, or tasks linked to the expres
sion of some sort of intelligence, was formally recognized and named “AI” in 
the mid-1950s by researchers including John McCarthy, Herbert Simon, and 
Arthur Samuel. However, the conceptual groundwork can be traced back to 
Alan Turing, and even further if we consider the foundational algorithmic 
principles at the basis of much modern AI. 

Clearly, in order to define and explain what AI is and how it works, a natural 
starting point is the definition of “intelligence.” This, however, seems to be the 
critical yet crucial part in the “sliminess” of AI. One of the best definitions avail
able is given by the very same John McCarthy and reflects the broader context 
in which it was formulated: “intelligence is the computational part of the abil
ity to achieve goals in the world.”1 Intelligence is directly linked to the ability to 
compute something and the concept of intention. “To achieve goals” appears to 
be the distinguishing prerogative of an intelligent entity, even though this is an 
inherently relative concept, since the notion of a goal depends on the context 
and, in particular, on the perspective of an observer. Richard Sutton expands 
on this relativity, stating that “a goal-achieving system is one that is more use
fully understood in terms of outcomes than in terms of mechanisms.”2 This 
suggests that an observer perceives such a system primarily through its out
comes rather than through the underlying mechanisms driving it. 

1 John McCarthy, “What is artificial intelligence?” (Stanford University, 2007), 2, http://w 
ww-formal.stanford.edu/jmc/whatisai.pdf. 

2 Rich Sutton, “The definition of intelligence,” Incomplete Ideas (blog), July 9, 2016, http:// 
incompleteideas.net/IncIdeas/DefinitionOfIntelligence.html. 
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30 Part 2: Fundamentals

The quest for intelligent systems is often, in a first approximation, reduced
to the problem of “how to construct computer programs that automatically im
prove with experience.”3 This reflects the emergence of machine learning as
a key branch of AI—one that approaches intelligence by enabling machines
to learn from data and refine their performance over time, rather than rely
ing solely on manually programmed rules. A formal and well-posed definition
of learning is given by Tom Mitchell: “A computer program is said to learn from
experience E with respect to some task T and some performance measure P, if
its performance on T, as measured by P, improves with experience E.”4

This definition broadly defines learning as any automatic improvement
connected with experience. Historically, however, three distinct paradigms of
learning have emerged: supervised, unsupervised, and reinforcement learn
ing. Apart from involving different tasks and performance metrics, their main
underlying distinction lies in the amount of human supervision required,
which implicitly affects how and what kind of experience the system acquires.

Supervised learning assumes that a model’s predictions can be verified
against a human-defined ground truth, similar to checking answers at the
back of a math textbook after solving a problem. The system compares its
predictions with the correct answers, which must be explicitly provided.5 In
this case, experience consists of a collection of labelled examples—that is,
data accompanied by their correct outputs. In contrast, unsupervised learn
ing involves discovering patterns and structures in data without labels by
analyzing distributions and relationships within the dataset.6 Here, expe
rience is represented by the amount of unlabeled data, which enables the
detection of hidden structures and meaningful groupings. The third clas
sic learning paradigm is reinforcement learning, in which an agent learns
through trial and error, updating its behavior based on feedback from the
environment.7 In this case, experience is represented by the agent’s interac
tions with the environment, where it takes actions, observes new states, and

3 Tom Mitchell, Machine Learning (McGraw-Hill, 1997), xv.
4 Mitchell, Machine Learning, 2.
5 Mitchell, Machine Learning, 2; Trevor Hastie, Robert Tibshirani, and Jerome Fried

man, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.
(Springer, 2009).

6 Christopher Bishop, Pattern Recognition and Machine Learning (Springer, 2006). 
7 Richard S. Sutton and Andrew Barto, Reinforcement Learning: An Introduction (MIT Press,

1998). 

https://doi.org/10.14361/9783839430699-002 - am 13.02.2026, 14:58:55. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839430699-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


Elena Gavagnin: AI for Architects 31 

receives rewards or penalties. The more it interacts, the more it learns and im
proves. These three classic learning modalities closely resemble how humans 
learn. We can intuitively recognize parallels with instruction-based learn
ing,8 discovery/statistical learning,9 and operant conditioning.10 However, in 
humans, these learning modes are not strictly separate—they often blend, 
overlap, and influence each other in complex ways. 

In all cases, we have seen that the experience is represented by the data 
available, whether in the form of examples or interactions with an environ
ment. The need for data to enable learning naturally leads to the necessity 
of collecting and representing these data. Recording as much data as possible 
becomes central for AI, hence the well-known hype around Big Data & Co. 
The fact that learning requires data is not surprising—after all, the same 
applies to humans—but AI models require a strictly numerical representa
tion of information to perform computations. By having to define a way to 
“encode”—to represent—information numerically, it becomes clear that the 
choice of representation also influences the effectiveness of learning. 

One major shift in AI research has been the recognition that the way data 
are represented internally by a system significantly affects its ability to gen
eralize and transfer knowledge. Representational learning then emerged as a 
paradigm for automatically deriving abstract features.11 Rather than manually 
engineering which edges, shapes, or keywords are important, the system 
learns a latent space that captures the intrinsic salient patterns. A latent 
space is a compressed, abstract representation of data in a lower-dimensional 
space. One form of representational learning is self-supervision, in which 
models learn general features from raw data without human-provided labels. 
This is made possible by designing so-called pretext tasks, where the “labels” 

8 Robert M. Gagné, The Conditions of Learning and Theory of Instruction (Holt, Rinehart & 
Winston, 1965).  

9 Jerome S. Bruner, “The act of discovery,” Harvard Educational Review 31, no. 1 (1961): 21–32; 
Jenny R. Saffran, Richard N. Aslin, and Elissa L. Newport, “Statistical learning by 8- 
month-old infants,” Science 274 (1996): 1926–28. 

10 B. F. Skinner, The Behavior of Organisms: An Experimental Analysis (Appleton-Century- 
Crofts, 1938).  

11 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,” Nature 521 (2015): 
436–44, https://doi.org/10.1038/nature14539. 
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come automatically from the structure of the data itself. Autoencoders12 can be
considered an early approach in this direction: A network tries to reconstruct
its own input, effectively creating “labels” from the input itself. In modern
deep learning, language modeling (predicting the next word) also serves as
a self-supervised objective, since the data themselves provide the target (the
“next word”). Other examples of pretext tasks include predicting the context of
an image patch,13 colorizing a grayscale image,14 or reassembling jigsaw puz
zles.15 Representational learning represents a further step in that not only are
the model’s parameters learned, but also the input features themselves.

Interestingly, the concept of representational learning finds an evocative,
if more artistic, parallel in the Dear Data project.16 

In this collaborative experiment, two designers collected personal data on
aspects of their daily lives—ranging from coffee consumption to emotional
states—and transformed those raw measurements into hand-drawn visualiza
tions. Although not algorithmic, Dear Data demonstrates how the process of
deciding what to collect and how to depict it can provide emergent insights. In
AI-based representational learning, a similar but automated process unfolds
at scale: data of various forms (images, text, sensor readings) are mapped onto
multi-dimensional latent spaces that encode higher-level semantics within the
data.

One of the advantages of having an abstract, multi-dimensional latent rep
resentation of a data point (e.g., an image) is that it transforms the original
form (an array of pixels) into a more general encoding that captures distin
guishing features and contextual meaning. Such a general representation be

12 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning representa
tions by back-propagating errors,” Nature 323 (1986): 533–36, https://doi.org/10.1038/3
23533a0.

13 Carl Doersch, Abhinav Gupta, and Alexei A. Efros, “Unsupervised visual representation
learning by context prediction,” in Proceedings of the IEEE International Conference on Com
puter Vision (ICCV) (2015), 1422–30, https://link.springer.com/chapter/10.1007/978-3-31

9-46466-4_5.

14 Richard Zhang, Phillip Isola, and Alexei A. Efros, “Colorful image colorization,” in Euro
pean Conference on Computer Vision (ECCV) (2016), 649–66, https://link.springer.com/ch

apter/10.1007/978-3-319-46487-9_40.

15 Mehdi Noroozi and Paolo Favaro, “Unsupervised learning of visual representations by
solving jigsaw puzzles,” in European Conference on Computer Vision (ECCV) (2016), 69–84,
https://link.springer.com/chapter/10.1007/978-3-319-46466-4_5.

16 Giorgia Lupi and Stefanie Posavec, Dear Data (Princeton Architectural Press, 2016).
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comes universal and transcends data-domain boundaries—such as text ver
sus visual data—since these representations can be put in mutual relation and
jointly trained. Contrastive multimodal learning models (e.g., CLIP17) operate
on multiple data modalities within this shared latent space, enabling them to
learn representations that capture semantic parallels across different formats.
As a result, they can generate captions for images or produce images from
text. Another peculiar aspect is that in latent spaces learned by neural networks
(especially in large-scale models), semantically-related items tend to be close
together. Sampling near a known point produces outputs that share seman
tic meaning or structural appearance qualities, which is the idea at the basis
of generative AI.

Fig. 4: Giorgia Lupi & Stefanie Posavec, Dear Data, 2016

The euphoric advancements and remarkable successes of the described ap
proaches—originally driven by the quest for intelligence and the ambition to
build learning machines—can give the impression that modern AI is capable
of almost anything. However, this is not (yet) the case. Asked, for example, to

17 Alec Radford et al., “Learning transferable visual models from natural language super
vision,” in Proceedings of the International Conference on Machine Learning (ICML) (2021),
https://arxiv.org/abs/2103.00020.
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distinguish which hand rests on Psyche’s head in Canova’s Psyche Revived by Cu
pid’s Kiss, most visual-language models fail to provide the correct answer—a
situation that, until recently, also applied to Leonardo’s Mona Lisa.

Fig. 5: Antonio Canova, Psyche Revived by Cupid’s Kiss, 1787

When faced with the same question, humans naturally answer from the
perspective of the person whose hand it is, not from that of the observer. In
other words, the right hand of a person is never referred to as the left one just
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because it appears on the left side from an observer’s point of view. This, how
ever, is not always the case for AI models. The surprising shortcomings in tasks 
that come naturally to humans—such as social and spatial cognition, espe
cially perspective-taking—highlight an important gap. This ability, deeply con
nected to our innate sense of physical presence, our embodied experience of 
space, and our awareness that others have bodies both different from and sim
ilar to our own, invites deeper reflection on AI within an architectural context. 

What does it truly mean to feel the space and immerse ourselves in it as well 
as in the people around us? And is this a prerequisite to achieve truly intelligent 
machines? 
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