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Kurzfassung

Die Elektrodialyse (ED) wird in industriellen Anwendungen als Trennprozess zur Entsalzung von
Brack- und Meerwasser sowie zur Isolation von Siuren und Metallen eingesetzt (Huang et al.,
2007, Valero and Arbos, 2010). Hierbei werden Ionenaustauschermembranen (IEM) und ein von
Arbeitselektroden induziertes elektrisches Feld eingesetzt, um einen ladungsselektiven Transport
ionischer Spezies zu ermdglichen. Die Intensitit dieser lokalen Transportprozesse ionischer Spezies
in einem elektrischen Feld bestimmt mafsgeblich den spezifischen Energieverbrauch und damit das
6konomische Potential des Prozesses (Strathmann, 2004).

Obwohl der ED-Prozess bereits seit Jahrzehnten industriell genutzt wird, sind wichtige Mech-
anismen der zugrundeliegenden Transportprozesse noch weitestgehend unverstanden (Nikonenko
et al., 2010, Strathmann, 2010). Dadurch ist nur sehr begrenzt grundlegendes Wissen zum
Prozessverhalten verfiigbar, insbesondere wenn der Prozess zur Behandlung komplexer Elek-
trolytlosungen, wie z.B. Meerwasser, eingesetzt wird. Zudem fehlt eine geeignete Wissensba-
sis fiir einen systematischen konzeptionellen Entwurf von ED-Prozessen, insbesondere in neuen
Anwendungsbereichen.

Die bestehenden Limitationen im Hinblick auf das Verstdndnis der zugrunde liegenden Mecha-
nismen sind besonders ausgeprigt, wenn das dynamische Verhalten in transient betriebenen ED-
Prozessen betrachtet wird. Der transiente Betrieb von ED-Prozessen wird als viel versprechende
Option zur Steigerung der Effizienz von ED-Prozessen angesehen (Malek et al., 2013, Strath-
mann, 2010). Das diesbeziigliche Potential ist jedoch noch weitestgehend unklar, da der Einfluss
dynamischer Phianomene auf die Intensitét des Stofftransports weitestgehend unverstanden ist.

Das stark begrenzte Prozessverstdndnis ist zum einen auf die starke Kopplung der verschiede-
nen dem Prozess zugrunde liegenden Mechanismen zuriickzufithren. Hierdurch kann es nur in
einer systematischen umfassenden Analyse unter Beriicksichtigung aller wesentlichen Phidnomene
und Wechselwirkungen gelingen, tiefgreifendes Prozessverstindnis aufzubauen. Zum anderen sind
Elektrodialysesysteme iiblicherweise durch eine sehr kompakte Bauform charakterisiert. Diese
stellt eine bedeutende Herausforderung fiir eine experimentelle Analyse der zugrunde liegenden
Mechanismen dar.

Die Identifikation detaillierter mechanistischer Modelle fiir Elektrodialyseprozesse kann einen
wesentlichen Beitrag zu einem tieferen Versténdnis der zugrunde liegenden Transportprozesse
und des Prozessverhaltens leisten (Kuppinger et al., 1995). Zielgerichtete Simulationsstudien
und Sensitivitdtsanalysen ermdglichen die Analyse wichtiger Zusammenhénge zwischen zugrunde
liegenden lokalen Phénomenen und dem integralen Prozessverhalten. Dariiber hinaus kénnen die

identifizierten Modelle als Basis fiir optimierungsbasierte Ansitze zum Entwurf und zur Steuerung
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von Elektrodialyseprozessen genutzt werden.

Bislang verfolgte Ansétze zur Modellierung von ED-Prozessen sind tiberwiegend durch stark
vereinfachende Annahmen gekennzeichnet. So werden in der Regel quasi-stationére Verhilt-
nisse vorausgesetzt und die Beschreibung von Transportprozessen auf eine ortliche Koordinate
beschrinkt (Kraaijeveld et al., 1995, Visser, 2001). Insbesondere die Beschrinkung auf quasi-
stationdre Verhiltnisse macht diese Modelle ungeeignet zur Beschreibung transienter Elektrodial-
yseprozesse. Ein umfassendes Prozessmodell, welches iiber eine rigorose dynamische Beschreibung
der zugrunde liegenden Transportprozesse insbesondere das dynamische Prozessverhalten akkurat
beschreiben kann, ist nicht verfiigbar.

In dieser Arbeit wird ein integrierter modellbasierter und experimenteller Ansatz verfolgt, um
einen Zugang zu einem tiefgreifenden Verstdndnis der zugrunde liegenden Transportprozesse in
transienten ED-Prozessen zu eréffnen. Ein wesentliches Ergebnis ist hierbei die Entwicklung
eines mechanistischen Prozessmodells fiir transiente ED-Systeme. Hierbei wird die bisherige
Einschrinkung auf pseudo-stationdres Verhalten durch die Ausarbeitung einer adidquaten dy-
namischen Beschreibung der zugrunde liegenden Transportprozesse iiberwunden. Dariiber hin-
aus wird die eindimensionale Beschreibung der Transportprozesse durch das Zugrundelegen einer
mehrdimensionalen Beschreibung des Stofftransports verallgemeinert. Damit wird es erstmalig
moglich, transiente Elektrodialyseprozesse mit einem dynamischen mechanistischen Prozessmod-
ell zu beschreiben.

Um der Komplexitit des Prozesses und der zugrunde liegenden Phinomene Rechnung zu tragen,
werden wesentliche Voraussetzungen fiir die Entwicklung des generalisierten Prozessmodells sys-
tematisch erarbeitet. Hierbei werden zunéchst in einer experimentellen Analyse mit einer transient
betriebenen Elektrodialyseanlage die wesentlichen Merkmale des dynamischen Prozessverhaltens
ermittelt. Dabei werden erstmalig auch die Sensitivitdten des dynamischen Prozessverhaltens im
Hinblick auf wesentliche Steuer- und Auslegungsgrofen des Prozesses systematisch analysiert.

Eine weitere zentrale Voraussetzung fiir eine erfolgreiche Modellentwicklung ist eine verléssliche
mathematische Charakterisierung samtlicher Modellteile und des finalen generalisierten Prozess-
modells. Eine besondere Rolle nehmen hierbei die verwendeten Stofftransportmodelle ein, da sie
im Wesentlichen die Komplexitéit des Gesamtmodells bestimmen. Hierbei ist zu beriicksichtigen,
dass die Charakterisierung der in bisherigen Arbeiten verwendeten stark vereinfachten Stofftrans-
portmodelle aufgrund ihrer einfachen Struktur keine besondere Herausforderung darstellt. Der
Charakterisierung der in dieser Arbeit zugrunde gelegten detaillierten Stofftransportmodelle in
Form von Systemen partieller differential-algebraischer Gleichungen (PDAE) muss jedoch beson-
dere Beachtung geschenkt werden (Martinson and Barton, 2001a, Neumann and Pantelides, 2008).
Vor diesem Hintergrund besteht ein wesentlicher Beitrag in der Entwicklung einer neuen Methode
zur Charakterisierung und Reformulierung allgemeiner PDAE Systeme. Die Grundlage bildet
dabei das Konzept der Analyse und Reduktion der differentiellen Indices von PDAE Systemen.

Die neue Methode zur Charakterisierung und Reformulierung von PDAE Systemen bildet die
Grundlage fiir die Entwicklung detaillierter Modelle zur dynamischen Beschreibung der lokalen

Stofftransportprozesse. Das Ziel ist hierbei, Modelle zu erhalten, die zum einen durch einen
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hohen Detaillierungsgrad charakterisiert sind und sich zum anderen durch einen strukturellen
Autbau auszeichnen, der fiir allgemeine numerische Verfahren geeignet ist. Hierdurch kénnen
die Stofftransportmodelle effizient fiir die Entwicklung des generalisierten Prozessmodells genutzt
werden.

Ein Schwerpunkt der Entwicklung des finalen generalisierten Prozessmodells ist die Integra-
tion verschiedener Teilmodelle in einer geeigneten hierarchischen Modellstruktur. Eine wichtige
Mafgabe ist hierbei, dass verschiedene Prozesskonfigurationen effizient abgebildet werden kénnen.
Dies ermoglicht im Rahmen dieser Arbeit einen ersten Vergleich mit Daten aus unterschiedlichen
Experimenten. Hierbei kann gezeigt werden, dass das entwickelte Modell insbesondere das tran-
siente Betriebsverhalten qualitativ gut abbilden kann. Eine systematische Analyse der Modell-
pradiktion fiir unterschiedliche Betriebsmoden zeigt zudem, dass das Modell wichtige Zusammen-
hénge zwischen integralem Prozessverhalten und zugrunde liegenden Transportprozessen aufzeigen
kann.

Abschliefend werden die im Prozessmodell zugrunde gelegten Transportmodelle vor dem Hin-
tergrund einer weiteren Erhdhung des Detaillierungsgrades betrachtet. Hierbei wird das Ziel
verfolgt, langfristig die rigorose Beschreibung des Stofftransports mit einer detaillierten dreidi-
mensionalen Beschreibung der Hydrodynamik zu koppeln. Dafiir wird derzeit in einem inter-
disziplindren Forschungsvorhaben ein effizientes Softwaretool zur numerischen Behandlung der
hochgradig detaillierten Modelle auf Hochstleistungsrechnern entwickelt. Weit vorangeschritten
ist hierbei die Entwicklung eines Tools zur numerischen Strémungssimulation auf der Basis des
Lattice-Boltzmann-Ansatzes. Dies ermdglicht insbesondere eine Betrachtung der Einfliisse ge-
ometrischer Auslegungsgrofien auf die Prozesseffizienz. Die quantitativen Beziehungen zwischen
Kenngrofen der Prozesseffizienz und der Vielzahl von Auslegungsgrofen konnen effizient in ein-
fachen algebraischen Modellen abgebildet werden. Fiir die Identifikation solcher Modelle aus
den detaillierten Simulationsergebnissen wird im Rahmen dieser Arbeit ein systematischer Ar-
beitsprozess entwickelt. Dieser auf optimierungsbasierten Methoden beruhende Ansatz wird am
Beispiel der Identifikation algebraischer Druckverlustmodelle aus detaillierten Simulationsergeb-
nissen demonstriert.

Mit dem hier verfolgten integrierten Ansatz einer modellbasierten und experimentellen Analyse
wird ein wesentlicher Beitrag zu einem besseren Versténdnis transient betriebener Elektrodialy-
seprozesse geleistet. Insbesondere das entwickelte dynamische Prozessmodell auf der Basis detail-
lierter mehrdimensionaler Transportmodelle ermdglicht es, das experimentell gemessene integrale
transiente Prozessverhalten systematisch zu analysieren. Durch den Einsatz vorwiegend rigoroser
Modelle und universeller Paradigmen der Modellbildung sind die Ergebnisse dieser Arbeit in einem
weiten Rahmen iibertragbar auf &hnliche elektrochemische Prozesse wie Brennstoffzellen oder
Batterien. Dariiber hinaus sind die entwickelten Methoden zur Analyse und Reformulierung von
PDAE-Systemen sowie zur effizienten Identifikation algebraischer Modelle aus detaillierten Simu-

lationsergebnissen auch aufserhalb des Anwendungsfeldes von Elektromenbranverfahren nutzbar.
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