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1. Introduction

According to Wheeler (2016: 2), machine learning is a “marriage of statistics
and computer science that began in artificial intelligence”. While statistics
deals with the question of what can be inferred from data given an appro-
priate statistical model, computer science is concerned with the design of
algorithms to solve a given computational problem that would be intractable
without the help of a computer.

Artificial intelligence and, specifically, machine learning have undergone
substantial developments in recent years that have led to a huge variety of
successful applications, most of which would not have been possible with al-
ternative approaches. In particular, advances in deep learning (i.e. machine
learning relying on deep neural networks) have revolutionized many fields,
leading, for instance, to impressive achievements in computer vision (e.g.
image classification, image segmentation, image generation), natural lan-
guage processing (semantic text understanding, text categorization and text
creation, automatic question answering) and reinforcement learning (agents
and games, high-dimensional optimization problems); cf. Sarker (2021) and
the references therein.

Moreover, deep learning is nowadays increasingly applied in multiple
scientific branches as an acceptable tool for conducting inference from sim-
ulated or collected data. For example, in the medical field, the development
of drugs (Ma et al. 2015) or the analysis of tomography (Bubba et al. 2019) are
enhanced with deep learning. In molecular simulations, ground-state prop-
erties of organic molecules are predicted (Faber et al. 2017), equilibrium
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energies of molecular systems are learnt (Noé et al. 2019) or multi-electron
Schrédinger equations are solved (Hermann/Schitzle/Noé 2020). Speaking
of which, the numerical treatment of high-dimensional partial differential
equations with neural networks has undergone vast improvements (E/Han/
Jentzen 2017; Niisken/Richter 2021), allowing for applications in almost all
sciences. In biology, cell segmentation and classification have been stud-
ied with certain convolutional neural networks (Ronneberger/Fischer/Brox
2015), in signal processing speech separation is approached with temporal
versions of these (Richter/Carbajal/Gerkmann 2020), and in finance rele-
vant stock pricing models are solved with deep learning (Germain/Pham/
Warin 2021). In remote sensing, temporal recurrent neural networks are for
instance used for crop classification (Rufiwurm/Korner 2018) and image seg-
mentation promises automatic understanding of the increasing amount of
available satellite data (Zhu et al. 2017). The list of successful deep learning
applications is long and there are many more fields in which they have made
significant contributions and still promise exciting advances that we shall
omit here for the sake of brevity.

It is probably fair to say that, like statistics, deep learning (or machine
learning in general) aims at drawing inferences from data. But unlike statis-
tics, it avoids being overly explicit regarding the underlying model assump-
tions. In statistics, either the model assumptions or the complete model are
set prior to making inferences, whereas the neural networks in deep learning
are mostly seen as black boxes that are essentially able to learn’ the model. In
this sense, deep learning delegates what Reichenbach (1949: §72, 374) called
the “problem of the reference class” to a computer algorithm, namely, the
problem of deciding what model class to use when making a prediction of
a particular instance or when assigning a probability to a particular event.
While this might be understandable — or even desirable — from the user’s
point of view, it poses risks and might bring dangerous side-effects:

« In most of the applied deep learning models, there is a lack of explain-
ability, meaning that even though their inference from data might work
well, the mechanisms behind the predictions are not well understood. As
the ambition in all sciences it to understand causal relationships rather
than pure correlations, this might neither be satisfying nor lead to fur-
ther deeper understandings in corresponding fields.

«  Without understanding the details of a model, potential robustness is-
sues might not be realized either. For example, who guarantees that
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certain deep learning achievements easily translate to slightly shifted
data settings and how can we expect neural network training runs to
converge consistently?

- TFinally, often the ambition of a prediction model to generalize to unseen
data is stated on an ‘average’ level and we cannot make robust statements
on unexpected events, which might imply dangerous consequences in
risk-sensitive applications. In general, there is no reliable measure for
prediction (un-)certainty, which might lead to blind beliefs in the model
output.

Even when it comes to the success stories of deep learning, many achieve-
ments and properties of the models can simply not be explained theoreti-
cally, e.g. why does one of the most naive optimization attempts, stochastic
gradient descent, work so well, why do models often generalize well even
though they are powerful enough to simply memorize the training data and
why can high-dimensional problems be addressed particularly efficiently?
Not only is it important from a practical point of view to understand these
phenomena theoretically, as a deeper understanding might motivate and
drive novel approaches leading to even more successful results in practice,
but it is also important for getting a grip on the epistemology of machine
learning algorithms. This then might also advance pure ‘trial and error’
strategies for architectural improvements of neural networks that some-
times seem to work mostly due to extensive hyperparameter finetuning and
favorable data set selections; cf. (Wang et al. 2019).

In this article, we will argue that relying on the tempting black box
character of deep learning models can be dangerous and it is important to
further develop a deeper mathematical understanding in order to obtain rig-
orous statements that will make applications more sound and more robust.
We will demonstrate that there are still many limitations in the application
of artificial intelligence, but mathematical analysis promises prospects that
might at least partially overcome these limitations. We further argue that,
if one accepts that explainable DL must not be understood in the sense of
the deductive-nomological model of scientific explanation, Bayesian prob-
ability theory can provide a means to explain DL in a precise statistical
(abductive) sense. In fact, a comprehensive theory should guide us towards
coping with the potential drawbacks of neural networks, e.g. the lack of
understanding why certain networks architectures work better than others,
the risk of overfitting data, i.e. not performing well on unseen data, or the
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lack of knowledge on the prediction confidences, in particular, leading to
overconfident predictions on data far from the training data set.

Even though we insist that understanding deep learning is a holistic
endeavor that comprises the theoretical (e.g. approximation) properties of
artificial neural networks in combination with the practical numerical al-
gorithms that are used to train them, we refrain from going beyond the
mathematical framework and exploring the epistemological implications of
this framework. The epistemology of machine learning algorithms is a rel-
atively new and dynamic field of research, and we refer to recent papers by
Wheeler (2016) and Sterkenburg/Griinwald (2021), and the references given
there.

1.1 Definitions and first principles

We can narrow down the definition of machine learning to one line by saying
that its main intention is to identify functions that map input data z € X
to output data y € Y in some good way, where X’ and ) are suitable spaces,
often identified with R¢ and R, respectively. In other words, the task is to
find a function f : X — Y such that

f(x) =y. @

To illustrate, let us provide two stereotypical examples that appear in prac-
tice. In a classification task, for instance, z € X could represent an image
(formalized as a matrix of pixels, or, in a flattened version, as a vector
ze€RYandy €Y ={1,..., K} could be a class describing the content of
the image. In a regression task, on the other hand, one tries to predict real
numbers from the input data, e.g. given historical weather data and multi-
ple measurements, one could aim to predict how much it will rain tomorrow
and y € Y = R>( would be the amount of rain in milliliters.

From our simple task definition above, two questions arise immediately:

1. How do we design (i.e. find) the function f?
2. How do we measure performance, i.e. how do we quantify deviations
from the desired fit in (1)?

Relating to question 1, it is common to rely on parametrized functions
f(z) = fo(x), for which a parameter vector § € RP specifies the actual
function. Artificial neural networks (ANNs) like deep neural networks are
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examples of such parametrized functions which enjoy specific beneficial
properties, for instance in terms of approximation and optimization as we
will detail later on. The characterizing feature of (deep) neural networks is
that they are built by (multiple) concatenations of nonlinear and affine-linear
maps:

Definition 1.1 (Neural network, e.g. Berner et al. 2021; Higham/Higham 2019)
We define a feed-forward neural network @, : R — R™ with L layers by

®,(x) = Aro(Ap—10(---o(Arx +b1)--+) +br—1) + br, @)

with matrices 4; € R™*™ -1 vectors b; € R™,1 <[ < L, and a nonlinear
activation function ¢ : R — R that is applied componentwise. Clearly,
no = d and nr, = m, and the collection of matrices A; and vectors b;, called
weights and biases, comprises the learnable parameters 6.

In practice, one often chooses o(x) = max{z,0} or o(z) = (1 +e )7},
since their (sub)derivatives can be explicitly computed and they enjoy a uni-
versal approximation property (Barron 1993; Cybenko 1989).

Even though the organization of an ANN in layers is partly inspired
by biological neural networks, the analogy between ANNs and the human
brain is questionable and often misleading when it comes to understanding
the specifics of machine learning algorithms, such as its ability to general-
ize (Geirhos et al. 2018), and it will therefore play no role in what follows.
We rather regard an ANN as a handy representation of the parametrized
function fy that enjoys certain mathematical properties that we will discuss
subsequently. (Note that closeness in function space does not necessarily
imply closeness in parameter space and vice versa as has been pointed out
in Elbrachter/Berner/Grohs 2019: Sec. 2). Clearly, alternative constructions
besides the one stated in Definition 1.1 are possible and frequently used,
depending on the problem at hand.

1.2 Probabilistic modelling and mathematical perspectives

Now, for actually tuning the parameter vector 6 in order to identify a good fit
as indicated in (1), the general idea in machine learning is to rely on training
data (@n,yn)A=1 C X x ). For this, we define a loss function £ : ) x Y —
R>¢ that measures how much our predictions, i.e. function outputs f(z,),
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deviate from their targets y,. Given the training sample, our algorithm can
now aim to minimize the empirical loss

La(f) = 5 D2 L), ya) ®

i.e. an empirical average over all data points. Relating to question 2 from
above, however, it turns out that it is not constructive to measure approx-
imation quality by how well the function f can fit the available training
data, but rather to focus on the ability of f to generalize to yet unseen data.
To this end, the perspective of statistical learning theory assumes that the
data is distributed according to an (unknown) probability distribution P on
X x Y. The training data points z, and y, should then be seen as real-
izations of the random variables X and Y, which admit a joint probability
distribution, so

(X,Y)~P. 4)

We further assume that all pairs (x,,y») are distributed identically and
independently from one another (i.i.d.). The expectation over all random
(data) variables of this loss is then called expected loss, defined as

L(f) =E(f(X), V)], )

where the expectation E [-] is understood as the average over all possible
data points (X,Y). The expected loss measures how well the function f
performs on data from P on average, assuming that the data distribution does
not change after training. It is the general intention in machine learning to
have the expected loss as small as possible.

Example 1.2 To fix ideas, let us consider a toy example in d = 1. We assume
that the true function is given by f(z) = sin(2wz) and that the data z is
distributed uniformly on the interval [0, 2]. In Figure 1 we display the func-
tion f along with N = 100 randomly drawn data points (z,, yn)A—1, Where
yn is once given by the deterministic mapping y, = f(z») and once by
the stochastic mapping y,, = f(xn) + nn, where 1, ~ N(0,0.01) indicates
noise, by denoting NV (11, 0%) a normal (i.e. Gaussian) distribution with mean
 and variance o%. The stochastic mapping induces the probability measure
PP, i.e. the joint distribution of the random variables (X,Y) € X x ), which
we plot approximately in the right panel. Note that (even for simple toy
problems) [P can usually not be written down analytically.
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Figure 1: We plot a given function f(z) = sin(27x) (in gray) along with data points
(in orange) given either by a deterministic or stochastic mapping in the first two pan-
els. The right panel shows an approximation of the measure IP for the stochastic case.
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For a further analysis, let us give names to three different functions that
minimize a given corresponding loss (assuming for simplicity that all min-
ima are attained, even though they may not be unique):

fB e argmin L(f), f*cargminl(f), fn €argminln(f). (6)
feEM(X,Y) fer feF

The first quantity, 7, is the theoretically optimal function among all math-
ematically reasonable (or: measurable) functions (cf. Appendix B), denoted
here by the set M(X,Y), the second quantity, f*, is the optimal function
in a specified function class F (e.g. the class of neural networks), and the
third quantity, fx, is the function that minimizes the empirical error on the
training data.

With regard to the second quantity above, finding a suitable function
class F requires balancing two conflicting goals: on the one hand, the func-
tion class should be sufficiently rich to enjoy the universal approximation prop-
erty, i.e. the ability to represent any theoretically optimal function fZ up to
a sufficiently small approximation error that is still considered acceptable.!
On the other hand, the function class should not be overly complex, in order
to avoid overfitting which may lead to a function f (e.g. a classifier) that
poorly generalizes beyond known data.

Let us make this point more precise, and let us say that we have some
training algorithm that has produced a function f on the training data
(@, yn)N_1 (see Appendix A for details).

1 What is considered an acceptable approximation error depends on the problem at
hand.
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We can decompose the deviation of the function f from the theoretically
optimal solution fZ into four different terms that correspond to three dif-
ferent error contributions — generalization, optimization and approximation
error:

L(f) = L(fP) = L(f) — LN () + Ln(f) — Ln(f7)

generalization error optimization error
FLN() = L)+ L) = £(F7) -

generalization error approximation error

Specifically, if we set f = fx, the above decomposition reveals what is
known as the bias-variance tradeoff, namely, the decomposition of the total
error (as measured in terms of the loss) into a contribution that stands for
the ability of the function f* € F to best approximate the truth f? (bias)
and a contribution that represents the ability to estimate the approximant
f* from finitely many observations (variance), namely”

L(fn) = L(fP) = L) —LF) + L) = L(fP).

estimation error (variance)  approximation error (bias)

We should stress that it is not fully understood yet in which cases overfitting
leads to poor generalization and prediction properties of an ANN as there
are cases in which models with many (nonzero) parameters that are per-
fectly fitted to noisy training data may still have good generalization skills;
cf. (Bartlett et al. 2020) or Section 2.1 below for further explanation.

A practical challenge of any function approximation and any learning
algorithm is to minimize the expected loss by only using a finite amount
of training data, but without knowing the underlying data distribution P.
In fact, one can show there is no universal learning algorithm that works
well for every data distribution (no free lunch theorem). Instead, any learning

2 Here we loosely understand the word ‘truth’ in the sense of empirical adequacy fol-
lowing the seminal work of van Fraassen (1980: 12), which means that we consider the
function fB to be empirically adequate, in that there is no other function (e.g. clas-
sifier or regression function) that has a higher likelihood relative to all unseen data
in the world; see also Hanna (1983). The term ‘truth’ is typical jargon in the statistical
learning literature, and one should not take it as a scientific realist’s position.
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algorithm (e.g. for classification) with robust error bounds must necessarily
be accompanied by a priori regularity conditions on the underlying data dis-
tribution, e.g. (Berner et al. 2021; Shalev-Shwartz/Ben-David 2014; Wolpert
1996).3

Let us come back to the loss decomposition (7). The three types of errors
hint at different perspectives that are important in machine learning from
a mathematical point of view:

1. Generalization: How can we guarantee generalizing to unseen data while
relying only on a finite amount of training data?

2. Function approximation: Which neural network architectures do we
choose in order to gain good approximation qualities (in particular in
high-dimensional settings)?

3. Optimization: How do we optimize a complicated, nonconvex function,
like a neural network?

Besides these three, there are more aspects that cannot be read off from
equation (7), but turn out to become relevant in particular in certain practical
applications. Let us stress the following two:

4. Numerical stability and robustness: How can we design neural networks
and corresponding algorithms that exhibit some numerical stability and
are robust to certain perturbations?

5. Interpretability and uncertainty quantification: How can we explain
the input-output behavior of certain complicated, potentially high-
dimensional function approximations and how can we quantify uncer-
tainty in neural network predictions?

In this article, we will argue that perspectives 4 and 5 are often over-
looked, but still in particular relevant for a discussion on the limitations
and prospects in machine learning. Along these lines, we will see that there

3 As a consequence, deep learning does not solve Reichenbach’s reference class problem
or gives any hint to the solution of the problem of induction, but itis rather an instance
in favor of the Duhem-Quine thesis, in that any learning algorithm that generalizes
well from seen data must rely on appropriate background knowledge (Quine 1953: 44);
cf. Sterkenburg (2019).
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are promising novel developments and ideas that advance the aspiration to
put deep learning onto more solid grounds in the future.

The article is organized as follows. In Section 2 we will review some
aspects of neural networks, admittedly in a very a non-exhaustive man-
ner, where in particular Sections 2.1-2.3 will correspond to perspectives 1-3
stated above. Section 3 will then demonstrate why (non-)robustness issues
in deep learning are particularly relevant for practical applications, as il-
lustrated by adversarial attacks in Section 3.1. We will argue in Section 3.2
that successful adversarial attacks on (deep) neural networks require careful
thinking about worst-case analyses and uncertainty quantification. Section
3 therefore relates to perspectives 4 and 5 from above. Next, Section 4 will
introduce the Bayesian perspective as a principled framework to approach
some of the robustness issues raised before. After introducing Bayesian neu-
ral networks, we will discuss computational approaches in Section 4.1 and
review further challenges in Section 4.2. Finally, in Section 5 we will draw a
conclusion.

2.  Deep neural networks: oddities and some specifics

One of the key questions regarding machine learning with (deep) neural
networks is related to their ability to generalize beyond the data used in
the training step (cf. perspective 1 in Section 1.2). The idea here is that a
trained ANN applies the regularities found in the training data (i.e. in past
observations) to future or unobserved data, assuming that these regularities
are persistent. Without dwelling on technical details, it is natural to under-
stand the training of a neural network from a probabilistic viewpoint, with
the trained ANN being a collection of functions, that is characterized by a
probability distribution over the parameter space, rather than by a single
function. This viewpoint is in accordance with how the training works in
practice, since training an ANN amounts to minimizing the empirical loss
given some training data, as stated in equation (3), and this minimization
is commonly done by some form of stochastic gradient descent (SGD) in
the high-dimensional loss landscape*, i.e. batches of the full training set are
selected randomly during the training iterations (see also Appendix A). As

4 Theempirical risk Jn (6) = L (fo), considered as a function of the parameters € is
often called the loss landscape or energy landscape.
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a consequence, the outcome of the training is a random realization of the
ANN and one can assign a probability distribution to the trained neural
network.

2.1 Generalization, memorization and benign overfitting

If we think of the parametrized function that represents a trained neural
network as a random variable, it is natural to assign a probability measure
Q(f) to every regression function f. So, let Q% = Q(f?) be the target
probability distribution (i.e. the truth), Q* = Q(f™) the best approximation,
and Qn = Q(fn) the distribution associated with the N training points
that are assumed to be randomly drawn from P. We call f(t) € F the
function approximation that is obtained after running the parameter fitting
until time ¢ (see Section 2.3 and Appendix A below for further details) — f(t)
therefore models the training for a specified amount of training iterations.
Ideally, one would like to see that Q(f(t)) resembles either the truth Q”
or its best approximation Q* as the training proceeds; however, it has been
shown that trained networks often memorize (random) training data in that
Yang/E 2022: Thm. 6

Jlim Q(f(£) = Q-

In this case, the training lets the model learn the data which amounts to
memorizing facts, without a pronounced ability to generate knowledge. It
is interesting to note that this behavior is consistently observed when the
network is trained on a completely random relabelling of the true data,
in which case one would not expect outstanding generalization capabilities
of the trained ANN (Zhang/Bengio, et al. 2021). Finally, it so happens that
Q(f(t)) does not converge to Q, in which case it diverges and thus gives
no information whatsoever about the truth.

A phenomenon that is related to memorizing the training data and that
is well known in statistical learning is called overfitting. It amounts to the
trained function fitting the available data (too) well, while not generalizing to
unseen data, as illustrated in the bottom left panel of Figure 2. The classical
viewpoint in statistics is that when the function has far more parameters
than there are data points (as is common with deep neural networks) and
if the training time is too large, overfitting might happen, as illustrated in
Figure 3. An indication of overfitting can be that the generalization error is
strongly growing while the empirical risk is driven almost to zero. To prevent
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Figure 2: Different examples of good and bad fits in the classical regression scheme:
While a perfect fit to the training data may either lead to a high-fidelity model on the
training data that has no (upper left panel) or very little (lower left panel) predictive
power, underfitting leads to a low-fidelity model on the training data (upper right
panel). A good fit (lower right panel) is indicated by a compromise between model-
fidelity and predictive power.
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this, an alternative to increasing the number of training steps, ¢, while the
training data remains the same, is early stopping. It has been shown (e.g.
Yang/E 2022: Cor. 7) that the empirical distribution can be close to the truth
(in which case the ANN generalizes well), if the training is stopped after a
sufficiently long, but not too long training phase. Figure 3 shows the typical
shape of the discrepancy between the trained network and the truth.
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Figure 3: Traditional risk curve: schematic sketch of the gen-
eralization error of a generic deep neural network for a fixed
amount of training data as a function of the training time t;
see (Yang/E 2022) for details.

generalization error

training time

However, it turns out that there are also cases of benign overfitting, in
which an ANN shows remarkable generalization properties, even though
it is essentially fitting the noise in the training data. The phenomenon of
benign overfitting, also known by the name of double descent, describes the
empirical observation that the generalization error, as measured by the true
risk, decreases again as the number of parameters is increased — despite
severe overfitting (see Figure 4). Note that there is not contradiction between
the double descent phenomenon and the traditional U-shaped risk curve
shown in Figure 3 as they hold under different circumstances and the double
descent requires pushing the number of parameters beyond a certain (fairly
large) threshold.

It has been conjectured that this phenomenon is related to a certain
low rank property of the data covariance; nevertheless a detailed theoretical
understanding of the double descent curve for a finite amount of training
data is still lacking as the available approximation results cannot be ap-
plied in situations in which the number of parameters is much higher than
the number of data points. Interestingly, double descent has also been ob-
served for linear regression problems or kernel methods, e.g. (Bartlett et al.
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2020; Mei/Montanari 2021). Thus it does not seem to be a unique feature
of ANNs; whether or not it is a more typical phenomenon for ANNs is an
open question though (Belkin et al. 2019); see also Opper et al. (1990) for an
early reference in which the double descent feature of ANNs has been first
described (for some models even multiple descent curves are conjectured,
Chen et al. 2021; Liang/Rakhlin/Zhai 2020).

Figure 4: Risk curve with benign overfitting: highly over-
parametrized ANNs often exhibit the double descent phe-
nomenom when the number of parameters exceeds the num-
ber of data points. The leftmost vertical dashed line shows
the optimal model complexity (for given observation data),
beyond which the model is considered overparametrized.
The rightmost vertical dashed line marks the interpolation
threshold at which the model can exactly fit all data points.
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2.2 Curse of dimensionality

An important aspect of function approximation (and therefore related to
perspective 2 stated in Section 1.2) is the question of how complicated the
function fy or, equivalently, how rich the function class F needs to be. This
becomes particularly interesting if the state space is high-dimensional and
a notorious challenge is known as the curse of dimensionality. It describes the
phenomenon that approximating a target function f” or the correspond-
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ing probability distribution Q¥ = Q(f”) when X is high-dimensional (i.e.
when the number of degrees of freedom is large) requires a huge amount
of training data to determine a regression function f, that is able to ap-
proximate the target. As a rule of thumb, approximating a function f” on
X = R or the associated probability measure Q® with an accuracy of ¢
needs about

N = ¢ UD 8)

sample points in order to determine roughly the same number of a priori un-
known parameters 6, thereby admitting an exponential dependence on the
dimension.’ It is easy to see that the number of parameters needed and the
size of the training set become astronomical for real-world tasks. As an ex-
ample, consider the classification of handwritten digits. The MNIST database
(Modified National Institute of Standards and Technology database) contains
a dataset of about 60000 handwritten digits that are stored in digital form
as 28 x 28 pixel greyscale images (LeCun 1998). If we store only the greyscale
values for every image as a vector, then, the dimension of every such vector
will be 282 = 784. By today’s standards, this is considered a small system,

yet it is easy to see that training a network with about 107%*

parameters
and roughly the same number of training data points is simply not feasible,
especially as the training set contains less than 10° data points.

In practice, the number of ANN parameters and the number of data
points needed to train a network can be much smaller. In some cases, this
inherent complexity reduction present in deep learning can be mathemat-
ically understood. Clearly, when the target function is very smooth, sym-
metric or concentrated, it is possible to approximate it with a parametric
function having a smaller number of parameters. The class of functions that
can be approximated by an ANN without an exponentially large number
of parameters, however, is considerably larger; for example, Barron-regular
functions that form a fairly large class of relevant functions can be approx-
imated by ANNs in arbitrary dimension with a number of parameters that
is independent of the dimension (Barron 1993: Thm. 3); there are, moreover,
results that show that it is possible to express any labelling of N data points
in R by an ANN two layers and in total p = 2N + d parameters (Zhang/

5 Here we use the Landau notation ©2(d) to denote a function of d that asymptotically
grows like ad for some constant > 0; oftenax = 1, 2.
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Bengio, et al. 2021: Thm. 1); cf. (DeVore/Hanin/Petrova 2021). In general,
however, the quite remarkable expressivity of deep neural networks with a
relatively small number of parameters and even smaller training sets is still
not well understood (Berner et al. 2021: Sec. 4).°

2.3 Stochastic optimization as implicit regularization

Let us finally discuss an aspect related to the optimization of ANNs (cf.
perspective 3 in Section 1.2) that interestingly offers a connection to func-
tion approximation as well. Here, the typical situation is that no a priori
information whatsoever about the function class to which fZ belongs is
available. A conventional way then to control the number of parameters and
to prevent overfitting is to add a regularization term to the loss function that
forces the majority of the parameters to be zero or close to zero and hence
effectively reduces the number of parameters (Tibshirani 1996). Even though
regularization can improve the generalization capabilities, it has been found
to be neither necessary nor sufficient for controlling the generalization error
(Géron 2017). Instead, surprisingly, there is (in some situations proveable)
evidence that SGD introduces an implicit regularization to the empirical risk
minimization that is not present in the exact (i.e. deterministic) gradient de-
scent (Ali/Dobriban/Tibshirani 2020; Roberts 2021). A possible explanation
of this effect is that the inexact gradient evaluation of SGD introduces some
noise that prevents the minimization algorithm from getting stuck in a bad
local minimum. It has been observed that the effect is more pronounced
when the variance of the gradient approximation is larger, in other words:
when the approximation has a larger sampling error (Keskar et al. 2016). A
popular, though controversial explanation is that noisier SGD tends to favor

6 Here, ‘relatively small’ must be understood with respect to the dimension of the train-
ing data set. An ANN that was successfully trained on MNIST data may still have
several hundred millions or even billions of parameters; nevertheless, the number
of parameters is small compared to what one would expect from an approximation
theory perspective, namely 10784, However, it is large compared to the minimum
number of parameters needed to fit the the data, which in our example would be
p = 260000 + 784 = 120784, hence an ANN with good generalization ca-
pacities is typically severely overfitting, especially if we keep in mind that the effective
dimension of the MNIST images that contains about 90% black pixels is considerably
smaller.
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wider or flatter local minima of the loss landscape that are conventionally as-
sociated with better generalization capabilities of the trained ANN (Dinh et
al. 2017; Hochreiter/Schmidhuber 1997). How to unambigously characterize
the ‘flatness’ of local minima with regard to their generalization capacities,
however, is still an open question. Furthermore, it should be noted that too
much variance in the gradient estimation is not favorable either, as it might
lead to slower training convergence, and it will be interesting to investigate
how to account for this tradeoff; cf. (Bottou/Curtis/Nocedal 2018; Richter
et al. 2020).

Example 2.1 To illustrate the implicit regularization of an overfitted ANN
by SGD, we consider the true function f(z) = sin(27z) and create N =
100 noisy data points according to y, = f(zn) + 0.157,, where x, is
uniformly distributed in the interval [0, 27] (symbolically: z,, ~ U(]0,2]))
and 7, ~ N(0,1). We choose a fully connected NN with three hidden
layers (i.e. L = 4), each with 10 neurons.

Once we train with gradient descent and once we randomly choose a
batch of size N, = 10 in each gradient step. In Figure 5 we can see that
running gradient descent on the noisy data leads to overfitting, whereas
stochastic gradient descent seems to have some implicit regularizing effect.

Figure 5: We consider a fully connected neural network (blue) that has been trained on
N = 100 noisy data points (orange), once by gradient descent and once by stochastic
gradient descent, and compare it to the ground truth function (grey).
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We have provided a potpourri of aspects related to the three perspectives gen-
eralization, function approximation and optimization, demonstrating subtleties
of deep learning that have partly been understood with the help of rigorous
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mathematical analysis, while still leaving many open questions for future
research. In the following, let us move towards perspectives 4 and 5 that
we have stated in Section 1.2. In particular, the following chapter will argue
that relying on classical statistical learning theory might not be sufficient in
certain practical applications and additional effort and analysis are needed
in order to make deep learning more robust.

3. Sensitivity and (non-)robustness of neural networks

So far we have measured the performance of prediction models in an ‘av-
erage sense. In particular we have stated the goal of a machine learning
algorithm to minimize the expected loss

L(f) = Ele(f(X),Y)], ©)

where the deviations between predictions and ground truth data are aver-
aged over the (unknown) probability distribution P. Statements from sta-
tistical learning theory therefore usually hold the implicit assumption that
future data comes from the same distribution and is hence similar to that
encountered during training (cf. Section 1.2). This perspective might often
be valid in practice, but falls short of atypical data in the sense of having
a small likelihood, which makes such an occurence a rare event or a large
deviation. Especially in safety-critical applications one might not be satisfied
with average-case guarantees, but rather strives for worst-case analyses or
at least for an indication of the certainty of a prediction (which we will come
back to in the next section). Moreover, it is known that models like neural
networks are particularly sensitive with respect to the input data, implying
that very small, barely detectable changes of the data can drastically change
the output of a prediction model — a phenomenon that is not respected by
an analysis based on expected losses.

3.1 Adversarial attacks

An extreme illustration of the sensitivity of neural networks can be noted in
adversarial attacks, where input data is manipulated in order to mislead the
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algorithm.” Here the idea is to add very small and therefore barely noticeable
perturbations to the data in such a way that a previously trained prediction
model then provides very different outputs. In a classification problem this
could for instance result in suggesting different classes for almost identi-
cal input data. It has gained particular attention in image classification,
where slightly changed images can be misclassified, even though they ap-
pear identical to the original image for the human eye, e.g. (Brown et al.
2017; Goodfellow/Shlens/Szegedy 2014; Kurakin/Goodfellow/Bengio 2018).

Adversarial attacks can be constructed in many different ways, but the
general idea is usually the same. We discuss the example of a trained clas-
sifier: given a data point = € R? and a trained neural network fy, we add
some minor change § € R? to the input data z, such that fo(x +6) predicts
a wrong class. One can differentiate in targeted and untargeted adversarial
attacks, where either the wrong class is specified or the misclassification to
any arbitrary (wrong) class is aimed at. We focus on the former strategy as
it turns out to be more powerful. Since the perturbation is supposed to be
small (e.g. for the human eye), it is natural to minimize the perturbation 4 in
some suitable norm (e.g. the Euclidean norm or the maximum norm) while
constraining the classifier to assign a wrong label § # y to the perturbed
data and imposing an additional box constraint. In the relevant literature
(e.g. Szegedy/Zaremba et al. 2014), an adversarial attack is constructed as
the solution to the following optimization problem:

minimize ||5]| subject to fo(x4+6) =7 and z+6€[0,1]*. (10)

Note that we have the hidden constraint fy(x) = y, where y # y and the
input variables have been scaled such that = € [0, 1]%. In order to have an
implementable version of this procedure, one usually considers a relaxation
of (10) that can be solved with (stochastic) gradient descent-like methods in
d; see e.g. (Carlini/Wagner 2017).

Roughly speaking, generating an adversarial attack amounts to doing a
(stochastic) gradient descent in the data rather than the parameters, with the

7 This desire to mislead the algorithm is in accordance with Popper’s dictum that we are
essentially learning from our mistakes. As Popper (1984: 324) mentions in the semi-
nal speech Duldsamkeit und intellektuelle Verantwortlichkeit on the occasion of receiv-
ing the Dr. Leopold Lucas Price of the University of Tiibingen on the 26th May 1981: “[..]
es ist die spezifische Aufgabe des Wissenschaftlers, nach solchen Fehlern zu suchen.
Die Feststellung, daf eine gut bewihrte Theorie oder ein viel verwendetes praktisches
Verfahren fehlerhaft ist, kann eine wichtige Entdeckung sein.”
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aim of finding the closest possible input Z to = that gets wrongly classified
and to analyze what went wrong.®

Example 3.1 (Adversarial attack to image classification) Let us provide an
example of an adversarial attack in image classification. For this we use
the Inception-v3 model from (Szegedy/Vanhoucke et al. 2016), which is pre-
trained on 1000 fixed classes. For the image in the left panel of Figure 6
a class is predicted that seems close to what is in fact displayed. We then
compute a small perturbation 6, displayed in the central panel, with the
goal of getting a different classification result. The right panel displays the
perturbed image x + ¢, which notably looks indistinguishable from the orig-
inal image, yet gets classified wrongly with the same Inception-v3 model.
The displayed probabilities are the so-called softmax outputs of the neural
network for the predicted classes and they represent some sort of certainty
scores.

Figure 6: The original image of Thomas Bayes in the left panel gets reasonably clas-
sified (“cloak”), whereas the right picture is the result of an adversarial attack and
therefore gets misclassified (as “mosque”).

Input image Perturbation Adversarial example

Predicted class: cloak Predicted class: mosque
Probability: 67.30% Probability: 97.48%

8 Again, quoting Popper (1984: 325): “Wir mussen daher dauernd nach unseren Fehlern
Ausschau halten. Wenn wir sie finden, miissen wir sie uns einpragen; sie nach allen
Seiten analysieren, um ihnen auf den Grund zu gehen.”
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3.2 Including worst-case scenarios and marginal cases

Adversarial attacks demonstrate that neural networks might not be robust
with respect to unexpected input data and the next question naturally is
how this issue can be addressed. In fact, multiple defense strategies have
been developed in recent years in order to counteract attacks, while it is
noted that a valid evaluation of defenses against adversarial examples turns
out to be difficult, since one can often find additional attack strategies af-
terwards that have not been considered in the evaluation (Carlini/Athalye
et al. 2019). One obvious idea for making neural networks more robust is to
integrate adversarial attacks into the training process, e.g. by considering
the minimization

minE %rgg(f(fa(X +4),Y)|, 1)

where A = {6 : ||6]| < e} is some specified perturbation range (Madry et
al. 2018; Wang et al. 2019). Depending on the application, however, conver-
gence of this min-max problem can be cumbersome. At present, the study
of adversarial attacks is a prominent research topic with many questions
still open (e.g. the role of regularization (Roth/Kilcher/Hofmann 2020)), and
it has already become apparent that principles that hold for the average
case scenario might not be valid in worst-case settings anymore; cf. (Ilyas
et al. 2019: Sec. 4). To give an example, there is empirical evidence that
overfitting might be more harmful when adversarial attacks are present, in
that overparametrized deep NNs that are robust against adversarial attacks
may not exhibit the typical double descent phenomenon when the training
is continued beyond the interpolation threshold (cf. Figure 4); instead they
show a slight increase of the generalization risk when validated against test
data, i.e. their test performance degrades, which is at odds with the obser-
vations made for standard deep learning algorithms based on empirical risk
minimization (Rice/Wong/Kolter 2020).

Another way to address adversarial attacks is to incorporate uncertainty
estimates in the models and hope that those then indicate whether per-
turbed (or out of sample) data occurs. Note that the question as to whether
some new data is considered typical or not (i.e. an outlier or a marginal
case) depends on the parameters of the trained neural network which are
random, in that they depend on the random training data. As a principled
way of uncertainty quantification we will introduce the Bayesian perspec-
tive and Bayesian Neural Networks (BNNs) in the next section. We claim
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that these can be viewed as a more robust deep learning paradigm, which
promises fruitful advances, backed up by some already existing theoretical
results and empirical evidence. In relation to adversarial attacks, there have
been multiple indications of attack identifications (Rawat/Wistuba/Nicolae
2017) and improved defenses (Feinman et al. 2017; Liu et al. 2018; Zim-
mermann 2019) when relying on BNNs. In fact, there is clear evidence of
increasing prediction uncertainty with growing attack strength, indicating
the usefulness of the provided uncertainty scores. On the theoretical side, it
can be shown that in the (large data and overparametrized) limit BNN pos-
teriors are robust against gradient-based adversarial attacks (Carbone et al.
2020).

4.  The Bayesian perspective

In the previous chapter we demonstrated and discussed the potential non-
robustness of neural networks related, for example, to small changes of input
data by adversarial attacks. A connected inherent problem is that neural
networks usually dow't know when they don’t know, meaning that there is no
reliable quantification of prediction uncertainty.” In this chapter we will
argue that the Bayesian perspective is well suited as a principled framework
for uncertainty quantification, thus holding the promise of making machine
learning models more robust; see (Neal 1995) for an overview.

We have argued that classical machine learning algorithms often act as
black boxes, i.e. without making predictions interpretable and without indi-
cating any level of confidence. Given that all models are learnt from a finite
amount of data, this seems rather naive and it is in fact desirable that al-
gorithms should be able to indicate a degree of uncertainty whenever not
‘enough’ data have been present during training (keeping in mind, however,
that this endeavor still leaves certain aspects of interpretability such as post-
hoc explanations (Du/Liu/Hu 2019: Sec. 3)) open. To this end, the Bayesian
credo is the following: we start with some beforehand (a priori) given uncer-
tainty of the prediction model f. In the next step, when the model is trained

9 Freely adapted from the infamous 2002 speech of the former U.S. Secretary of Defense,
Donald Rumsfeld: “We [...] know there are known unknowns; that is to say we know
there are some things we do not know. But there are also unknown unknowns — the
ones we don't know we don’t know.”
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on data, this uncertainty will get ‘updated’ such that predictions ‘close’ to al-
ready seen data points become more certain. In mathematical terms, the
idea is to assume a prior probability distribution p(#) over the parameter
vector 6 of the prediction model rather than a fixed value as in the classical
case. We then condition this distribution on the fact that we have seen a
(xn’ yn)rjyzl .

The computation of conditional probabilities is governed by Bayes’ the-
orem, yielding the posterior probability p(6|D), namely by

p(D|0)p(0)
p(D)

training data set D =

p(0|D) = (12)

where p(D\Q) is the likelihood of seeing data D given the parameter vector

6 and p(D) = [, p(
evidence, assurmg that p(0|D) is indeed a probability density. The posterior

(D, 0)d0 is the normalizing constant, sometimes called
probability can be interpreted as an updated distribution over the parame-

ters given the data D. Assuming that we can sample from it, we can then
make subsequent predictions on unseen data x by

0= [

,0U) are i.i.d. samples drawn from the Bayesian posterior

p(6|D)d 13)

N ng(k)

where 6 ...
p(0|D), i.e. we average predictions of multiple neural networks, each of
which having parameters drawn from the posterior distribution.

Figure 7: We display the evaluation of a BNN by showing its mean prediction func-
tion (in dark blue) and a set of two standard deviations from it (in light blue), com-
pared to the ground truth (in gray). Our BNN is either untrained (left) or has seen
N =

training.

5 (in the central panel) or N = 100 data points (in right panel) during
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Example 4.1 (BNN based on different amounts of data) Let us say we want to
learn the function f(z) = sin(27z) and have a certain amount of training
data D = (', yn)h—; available, where the label is given by v, = f(zn)+7n,
with noise 7, ~ N(0,0.01). Intuitively, the fitted neural network should be
closer to the true function as well as more certain in its predictions the more
data points are available. We consider a BNN trained with a mean field vari-
ational inference attempt and a Gaussian prior on the parameters (see next
section for details). In Figure 7 we display the mean prediction function as
defined in (13) as well as a confidence set defined by two standard deviations
on the sample predictions. In the left panel we display the evaluation be-
fore training, i.e. without relying on any available data points, and note that
the average prediction function is rather arbitrary and the uncertainty rather
high, as expected. The central panel repeats the same evaluation, where now
the BNN is trained on N = 5 data points. We can see an improved predic-
tion function and a decreased uncertainty. Finally, the right panel displays
a BNN trained on N = 100 data points, where now the mean prediction
function is quite close to the true function and the uncertainty almost van-
ishes close to the data points, yet remains large wherever no training data
was available. The BNN is therefore able to output reasonable uncertainty
scores, depending on which data was available during training.

41 Bayesian neural networks in practice

Even though simple at first glance, the Bayes formula (12) is non-trivial from
a computational point of view and can in almost all cases not be computed
analytically. The challenging term is p(D), for which, given the nested struc-
ture of neural networks, the integral has to be approximated numerically.
Classical numerical integration, however, is infeasible too, due to the high
dimension of the parameter vector §. We therefore have to resort to alter-
native attempts that aim to approximate the posterior distribution p(6|D).

An asymptotically exact method for creating samples from any (suit-
able) probability distribution is called Hamiltonian Monte Carlo (also: Hy-
brid Monte Carlo), which is based on ideas from Statistical Physics and the
observation that certain dynamical systems admit an equilibrium state that
can be identified with the posterior probability that we seek to compute
(Neal 2011). For our purposes this attempt seems to be a method of choice
when aiming for high approximation quality; however, it does not scale well
to high dimensions and is therefore practically useless for state-of-the-art
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neural networks. A similar idea is to exploit the so-called Langevin dynam-
ics in combination with subsampling of the data points (Welling/Teh 2011;
Zhang/Cooper/De Sa 2020). This method scales much better, but it is biased
since the data subsampling perturbs the stationary distribution. A quite dif-
ferent attempt is called dropout, which builds the posterior approximation
into the neural network architecture and implicitly trains multiple models
at the same time (Gal/Ghahramani 2016). Finally, another popular method
is based on variational inference, where the true posterior is approximated
within a family of simpler probability densities, e.g. multidimensional Gaus-
sians with diagonal covariance matrices (Blundell et al. 2015). Depending on
the approximation class, this method scales well, but approximation quality
cannot be guaranteed.

Each of the methods mentioned above has advantages and disadvan-
tages and many questions are still open. As a general remark, there is in-
deed repeated evidence that, ignoring the approximation challenges for the
moment, the Bayesian framework works well in principle for quantifying
the prediction uncertainties of neural networks. Additionally, there are in-
dications, based on empirical studies (Izmailov et al. 2021), that the overall
model performance might be improved when relying on predictions from
BNNs in contrast to deterministic ANNs. On the other hand, many of the
approximation steps that lead to a BNN are not well understood theoreti-
cally, and one can demonstrate empirically that they often lead to posterior
approximations that are not accurate, e.g. (Foong et al. 2019). Some of those
failures seem to be due to systematic simplifications in the approximating
family (Yao et al. 2019). This phenomenon gets more severe, while at the
same time harder to spot, when the neural networks are large, i.e. when the
parameter vector is very high-dimensional. An accepted opinion seems to be
that whenever BNNs do not work well, then it is not the Bayesian paradigm
that is to blame, but rather the inability to approximate it well (Gal/Smith
2018). At the same time, however, there are works such as (Farquhar/Smith/
Gal 2020) that claim that for certain neural network architectures simplified
approximation structures get better the bigger (and in particular the deeper)
the model is.

42 Challenges and prospects for Bayesian Neural Networks

The previous section sought to argue that there is great potential in using
BNNs in practice; however, many questions, both from a theoretical and
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practical point of view, are still open. A natural formulation of BNNs can be
based on free energy as a loss function that has been discussed in connection
with a formal account of curiosity and insight in terms of Bayesian inference
(see Friston et al. 2017): while the expected loss or risk in deep learning can
be thought of as an energy that describes the goodness-of-fit of a trained
ANN to some given data (where minimum energy amounts to an optimal
fit), the free energy contains an additional entropy term that accounts for the
inherent parameter uncertainty and has the effect of smoothing the energy
landscape. The result is a trade-off between an accurate fit, which bears the
risk of overfitting, and reduced model complexity (i.e. Occanr’s razor). From
the perspective of statistical inference, e.g. (Jose/Simeone 2021), the free
energy has the property that its unique minimizer in the space of probability
measures is the sought Bayesian posterior (Hartmann et al. 2017). Selecting
a BNN by free energy minimization therefore generates a model that, on
average, provides the best explanation for the data at hand, and thus it can
be thought of as making an inference to the best explanation in the sense
of Harman (1965); cf. also (McAuliffe 2015).

Evidently, the biggest challenge seems to be a computational one: how
can we approximate posterior distributions of large neural networks both
well and efficiently? But even if the minimizer or the Bayesian posterior can
be approximated, the evaluation of posterior accuracy (e.g. from the shape
of the free energy in the neighborhood of the minimizer) is still difficult and
one usually does not have clear guarantees. Furthermore, neural networks
keep getting larger and more efficient methods that can cope with ever
higher dimensionality are needed. Regarding the benefits of BNNS, there is
an open debate on how much performance gains they actually bring in prac-
tice; cf. (Wenzel et al. 2020). Uncertainty quantification, on the other hand,
is valuable enough to continue the Bayesian endeavor, eventually allowing
for safety-critical applications or potentially improving active and continual
learning.

5.  Concluding remarks

The recent progress in artificial intelligence is undeniable and the related
improvements in various applications are impressive. This article, however,
provides only a snapshot of the current state of deep learning, and we have
demonstrated that many phenomena that are intimately connected are still
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not well understood from a theoretical point of view. We have further ar-
gued that this lack of understanding not only slows down further system-
atic developments of practical algorithms, but also bears risks that become
in particular apparent in safety-critical applications. While inspecting deep
learning from the mathematical angle, we have highlighted five perspectives
that allow for a more systematic treatment, offering already some novel ex-
planations of striking observations and bringing up valuable questions for
future research (cf. Section 1.2).

We have in particular emphasized the influence of the numerical meth-
ods on the performance of a trained neural network and touched upon the
aspect of numerical stability, motivated by the observation that neural net-
works are often not robust (e.g. with respect to unexpected input data or
adversarial attacks) and do not hold any reliable measure for uncertainty
quantification. As a principled framework that might tackle those issues, we
have presented the Bayesian paradigm and in particular Bayesian neural net-
works, which provide a natural way of quantifying epistemic uncertainties.
In theory, BNNs promise to overcome certain robustness issues and many
empirical observations are in line with this hope; however, they also bring
additional computational challenges, connected mainly to the sampling of
high dimensional probability distributions. The existing methods addressing
this issue are neither sufficiently understood theoretically nor produce good
enough (scalable) results in practice such that a persistent usage in applica-
tions is often infeasible. We believe that the theoretical properties of BNNs
(or ANNs in general) cannot be fully understood without understanding the
numerical algorithms used for training and optimisation. Future research
should therefore aim at improving these numerical methods in connection
with rigorous approximation guarantees.

Moreover, this article argued that many of the engineering-style im-
provements and anecdotes related to deep learning need systematic math-
ematical analyses in order foster a solid basis for artificial intelligence™.
Rigorous mathematical inspection has already led to notable achievements
in recent years, and in addition to an ever enhancing handcrafting of neural

10  This view addresses the skeptical challenge of Ali Rahimi who gave a presentation at
NIPS Conference in 2017 with the title “Machine learning has become alchemy”. Ac-
cording to Rahimi, machine learning and alchemy both work to a certain degree, but
the lack of theoretical understanding and interpretability of machine learning models
is major cause for concern.
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network architectures, the continuation of this theoretical research will be
the basis for further substantial progress in machine learning. We therefore
conclude with a quote from Vladimir Vapnik (1999: X), one of the founding
fathers of modern machine learning: “I heard reiteration of the following
claim: Complex theories do not work, simple algorithms do. [...] I would
like to demonstrate that in this area of science a good old principle is valid:
Nothing is more practical than a good theory.”
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Appendix
A. Training of artificial neural networks

Let F be the set of neural networks fy = @, of a certain predefined topology
(i.e. with a given number of concatenated activation functions, interconnec-
tion patterns, etc.) that we want to train. Suppose we have N data points
(z1,y1), .- -, (z~n,yn) where, for simplicity, we assume that y, = f(z») is
deterministic. For example, we may think of every x,, having a unique label
yn = *1. Training an ANN amounts to solving the regression problem

fo(zn) = yn

foralln =1,..., N. Specifically, we seek 6 € © that minimizes the empir-
ical risk (also: loss landscape)

1 N
Tn(0) = 3 D" U fo(n). )

over some potentially high-dimensional parameter set ©." There are few
cases in which the risk minimization problem has an explicit and unique
solution if the number of independent data points is large enough. One such
case in which an explicit solution is available is when f(z) = " z is linear

11 Recall that we call the empirical risk J when considered as a function of parameters
0 and L when considered as a function of functions.
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and I(z,y) = |z — y|?® is quadratic. This is the classical linear regression
problem.

For ANNs, an explicit solution is neither available nor unique, and an
approximation to fn ~ f* must be computed by an suitable iterative nu-
merical method. One such numerical method is called gradient descent

Ok+1 =0k —mVJIN(Or), k=0,1,2,3,...,

where 1o, 11,72 is a sequence of step sizes, called learning rate, that tends
to zero asymptotically. For a typical ANN and a typical loss function, the
derivative (i.e. the gradient)

N
VIn(0) = 1 S Vallfoea),un)
n=1

with respect to the parameter 6 can be computed by what is called backprop-
agation, essentially relying on the chain rule of differential calculus; see, e.g.
(Higham/Higham 2019). Since the number of training points, N, is typically
very large, evaluating the gradient that is a sum of N terms is computa-
tionally demanding, therefore the sum over the training data is replaced by
a sum over a random, usually small subsample of the training data. This
means that, for fixed 6, the derivative V.Jy(0) is replaced by an approxi-
mation V.J; ~(0) that is random; the approximation has no systematic error,
i.e. it equals the true derivative on average, but it deviates from the true
derivative by a random amount (that may not even be small, but that is
zero on average). As a consequence, we can rewrite our gradient descent as
follows:

9k+1:9k_77kvjN(9k)+§k7 k=0,1,2,3,..., (14)

where ¢, is the random error invoked by substituting V.Jx (6) with J (6).
Since j, is unknown as it depends on the true derivative V.Jx (6) at stage
k that cannot be easily computed, the noise term in (14) is ignored in the
training procedure, which leads to what is called stochastic gradient descent
(SGD):

Ori1 =0k —eVIn(0k), k=0,1,2,3,.... (15)
Since the right hand side in (15) is random by virtue of the randomly chosen

subsample that is used to approximate the true gradient, the outcome of
the SGD algorithm after, say, ¢ iterations will always be random.
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As a consequence, training an ANN for given data and for a fixed number
of training steps, ¢, multiple times will never produce the same regression
function fy, but instead a random collection of regression functions. This
justifies the idea of a trained neural as a probability distribution Q(f(¢)) =
Q(fo(ty) rather than unique function f(t) = fo(;) that represents its random
state after ¢ training steps.

We should stress that typically, SGD does not converge to the optimal so-
lution (if it converges at all), but rather finds a suboptimal local optimum (if
any). From the perspective of mathematical optimization, it is one of the big
mysteries of deep learning that despite being only a random and suboptimal
solution, the predictions made by the resulting trained network are often
suprisingly good Berner et al. 2021: Sec. 1.3. In trying to reveal the origin
of this phenomenon, SGD has been analyzed using asymptotic arguments,
e.g. (Li/Tai/E 2017, 2019; Mandt/Hoffman/Blei 2015). These methods rely on
limit theorems, e.g. (Kushner/Yin 2003), to approximate the random noise
term in (14), and they are suitable to understand the performance in the
large data setting. However, they are unable to adress the case of finite, not
to mention sparse training data. Recently, the finite data situation has been
analyzed using backward error analysis, and there is empirical evidence that
SGD incorporates an implicit regularization which favors shallow minimiza-
tion paths that leads to broader minima and (hence) to more robust ANNs
(Barrett/Dherin 2020; Smith et al. 2021; Soudry et al. 2018).

B. Optimal prediction and Bayes classifier

For prediction tasks, when the ANN is supposed to predict a quantity y € R
based on an input = € R¢, the generalization error is typically measured in
the sense of the mean square error (MSE), with the quadratic loss

Uf(@),y) = (fa) —y)*.

Let
1, z>0
sgn(z) =40, 2=0
-1, z<0

be the sign function. Then, for the binary classification tasks, with y €
{—1,1} and a classifier f(z) = sgn(h(z)) for some function h: R¢ — R
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the quadratic loss reduces to what is called the o-1loss (up to a multiplicative
constant):

0, flx)=y
1, else.

if(f(w),y) = 1(— oo, (yh(z)) = {

In this case £(f) = P(Y # f(X)) is simply the probability of misclassifi-
cation. We define the regression function

g9(z) = E[Y[X = z]

to be the conditional expectation of Y given the observation X = z. Then,
using the properties of the conditional expectation, the MSE can be decom-
posed in a Pythagorean type fashion as

E[(f(X) = Y)*] = E[(f(X) - g(X) + g(X) = V)]
= E[(f(X) = 9(X))*] + 2E[(f(X) — g(X))(9(X) = V)]
+E[(9(X) —Y)’]
= E[(f(X) — 9(X))*] + El[(g(X) - ¥)?].

The cross-term disappears since, by the tower property of the conditional

expectation,
E[(f(X) — g(X))(g(X) = Y)] = E[E[(f(X) — g(X))(9(X) — V)| X]]
=E[E[(f(X) — g(X))g(X)|X]]
—E[E[(f(X) — g(X))Y[X]]
(

As a consequence, we have for all functions f:
L(f) = EB[(f(X) — g(X))*] + E[(9(X) = Y)?] = E[(9(X) — Y)?]

where equality is attained if and only if f = g. The findings can be summa-
rized in the following two statements that hold with probability one:*

12 If a statement is said to hold with probability one or almost surely, this means that it is
true upon ignoring events of probability zero.
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Transgressing the Boundaries

(1) The regression function is the minimizer of the MSE, i.e. we have g =
fB, with unique

B(z) € argmin E[(f(X)-Y)?].
FEM(X,Y)

(2) The MSE can be decomposed as
L(f) =E[(f(X) —E[Y|X])*] + L~

where the Bayes risk £L* = L(f?) measures the variance of Y for given
X = z around its optimal prediction

fB(x) =E[Y|X = 1].

The reasoning carries over to the classification task with Y € {-1,1}, in
which case

gx)=PY =1X=2)-PY =-1X ==z

and the optimal classifier or Bayes classifier can be shown to be

) > B(

B

=-1|X =x)

P (x) = sgn(g(x)) = z — X =2)

> P(Y
<P(Y
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