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For once you have tasted flight you will walk the earth with your eyes
turned skywards, for there you have been and there you will long to return.

Leonardo da Vinci
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Abstract

Driver assistance systems have increasingly relied on more sensors for new functions. As
advanced driver assistance system continue to improve towards automated driving, new
methods are required for processing the data in an efficient and economical manner from
the sensors for such complex systems. The detection of dynamic objects is one of the
most important aspects required by advanced driver assistance systems and automated
driving. In this thesis, an environment model approach for the detection of dynamic ob-
jects is presented in order to realize an effective method for sensor data fusion. A scalable
high-level fusion architecture is developed for fusing object data from several sensors in a
single system, where processing occurs in three levels: sensor, fusion and application. A
complete and consistent object model which includes the object’s dynamic state, existence
probability and classification is defined as a sensor-independent and generic interface for
sensor data fusion across all three processing levels. Novel algorithms are developed for
object data association and fusion at the fusion-level of the architecture. An asynchronous
sensor-to-global fusion strategy is applied in order to process sensor data immediately
within the high-level fusion architecture, giving driver assistance systems the most up-to-
date information about the vehicle’s environment. Track-to-track fusion algorithms are
uniquely applied for dynamic state fusion, where the information matrix fusion algorithm
produces results comparable to a low-level central Kalman filter approach. The existence
probability of an object is fused using a novel approach based on the Dempster-Shafer evi-
dence theory, where the individual sensor’s existence estimation performance is considered
during the fusion process. A similar novel approach with the Dempster-Shafer evidence
theory is also applied to the fusion of an object’s classification. The developed high-level
sensor data fusion architecture and its algorithms are evaluated using a prototype vehicle
equipped with 12 sensors for surround environment perception. A thorough evaluation
of the complete object model is performed on a closed test track using vehicles equipped
with hardware for generating an accurate ground truth. Existence and classification per-
formance is evaluated using labeled data sets from real traffic scenarios. The evaluation
demonstrates the accuracy and effectiveness of the proposed sensor data fusion approach.
The work presented in this thesis has additionally been extensively used in several research
projects as the dynamic object detection platform for automated driving applications on
highways in real traffic.
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