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ŵr,P sum of positive example weights before in sorted list including the
current example in round r
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Abstract

An important task in visual recognition systems, aiming on the extraction and in-
terpretation of information in images or videos, is the detection of objects. In this
process, all instances of a specified object class are requested to be localized in the
visual input data. Object detection is essential for many applications that require a
more comprehensive scene understanding, like advanced driver assistance systems or
self-driving cars. The utilized object detectors are often created by machine learning
algorithms that follow the paradigm of learning from examples. In a computational
expensive training process, the algorithms learn the characteristics and visual ap-
pearance of the object class from training examples but the created detector has to
work very fast and efficiently. Frequently, the object characteristics are not directly
extracted from the observations but from a feature representation of the input data
that gives a guiding principle on how to identify distinctive structures.

This thesis addresses the problem of visual object detection based on machine-
learned classifiers. A distributed machine learning framework is developed to learn
detectors for several object classes creating cascaded ensemble classifiers by the
Adaptive Boosting algorithm. Methods are proposed that enhance several compo-
nents of an object detection framework to improve its performance:

At first, the thesis deals with augmenting the training data in order to improve
the performance of object detectors learned from sparse training sets. This problem
frequently arises in industrial applications when highly specialized detectors are
learned for e.g. quality assurance.

Secondly, methods are proposed to enhance the feature set that is utilized in the
detector learning and its application. Feature mining strategies are introduced in
order to create feature sets that are customized to the object class to be detected. By
adapting to distinctive object structures, more representative features are assembled
in a set of manageable size that enables an efficient detector learning. Furthermore,
a novel class of fractal features is proposed that allows to represent a wide variety
of shapes.

Thirdly, improvements are proposed to the post-processing that is performed after
applying the learned detector to further work up its output. Commonly, this involves
the assignment of confidences, merging detections that are very close to each other
and dropping detections having low confidence. A method is introduced that models
and combines internal confidences and uncertainties of the cascaded detector using
Dempster’s theory of evidence in order to increase the quality of the post-processing.

Keywords: Object Detection, Feature Mining, Fractal Features, Data Augmenta-
tion, Machine Learning, Adaptive Boosting, Distributed Computing
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Kurzfassung

Die Objektdetektion ist eine wichtige Teilaufgabe im maschinellen Sehen, welches
die Extraktion von Informationen aus Bildern oder Videos und deren Interpreta-
tion zum Ziel hat. Hierbei sollen sämtliche Instanzen einer Objektklasse in den
visuellen Eingangsdaten lokalisiert werden. Die Detektion von Objekten ist eine
elementare Voraussetzung für weitergehende Verfahren wie Fahrerassistenzsysteme
oder selbstfahrende Autos, die eine umfassendere Wahrnehmung ihrer Umgebung
erfordern. Die eingesetzten Objektdetektoren sind häufig durch maschinelle Lernal-
gorithmen erstellt worden, die dem Paradigma des Lernens anhand von Beispielen
folgen. Der Algorithmus lernt hierbei in einem rechenintensiven Trainingsprozess das
charakteristische Aussehen der Objektklasse anhand von Trainingsbeispielen. Der
erstellte Detektor hingegen muss sehr schnell und effizient arbeiten. Häufig werden
die Objektcharakteristiken nicht direkt aus den wahrgenommenen Eingangsdaten
sondern aus einer Merkmalsdarstellung extrahiert, die Richtlinien zur Identifizierung
markanter Strukturen vorgibt.

Diese Dissertation befasst sich mit der visuellen Objektdetektion durch maschinell
gelernte Klassifikatoren. Ein verteiltes maschinelles Lernsystem ist entwickelt wor-
den, um mit Hilfe des Adaptive Boosting Algorithmus Ensemble-Klassifikatoren für
unterschiedliche Objektklassen anzulernen. Es werden Verfahren zur Verbesserung
verschiedener Komponenten eines Objektdetektionssystems vorgestellt, um die De-
tektionsleistung des Gesamtsystems zu erhöhen:

Als Erstes beschäftigt sich diese Arbeit mit der Anreicherung der Trainingsdaten,
um die Leistung von Detektoren zu steigern, welche auf kleinen Trainingsmengen
angelernt werden. Diese Problematik tritt häufiger bei industriellen Anwendungen
auf, wenn hoch spezialisierte Detektoren beispielsweise für die Qualitätssicherung
erstellt werden sollen.

Der zweite Beitrag der Dissertation stellt Verfahren zur Verbesserung der Merk-
malsmengen vor, die beim Anlernen eines Detektors und während der Detektion
genutzt werden. Es werden Methoden zur gezielten Generierung von Merkmals-
mengen entwickelt. Hierdurch können die Merkmalsmengen an die Charakteristiken
der zu detektierenden Objektklasse angepasst werden, sodass eine Menge von aus-
sagekräftigeren Merkmalen entsteht, die gleichzeitig überschaubar ist und somit ein
effizientes Anlernen erlaubt. Weiterhin wird eine neue Klasse von Fraktalmerkmalen
vorgestellt, die vielfältige Strukturen repräsentieren kann.

Drittens werden Verbesserungen für die Detektionsnachverarbeitung entwickelt.
Üblicherweise werden den Detektionen in diesem Schritt Konfidenzen zugewiesen,
nah beieinander gelegene Detektionen verschmolzen und Detektionen mit niedriger
Konfidenz verworfen. Ein Verfahren wird vorgestellt, dass interne Konfidenzen und
Unsicherheiten der Detektorkaskade mit Hilfe der Evidenztheorie modelliert und
kombiniert, um die Qualität der Nachverarbeitung zu erhöhen.

Stichworte: Objektdetektion, Merksmalsextraktion, Fraktalmerkmale, Datenaug-
mentation, Maschinelles Lernen, Adaptive Boosting, Verteiltes Rechnen
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1 Introduction

Figure 1.1: Example image of detected persons and body parts, image from [51].

Motivation

Object detection is the process of finding all instances of a requested object class
and specifying their size and location. It is an essential task in computer vision
that has the goal to give machines the ability to perceive their environment in a
way humans do. Object detection is widely used in today’s machines and electronic
devices. Digital cameras e.g. use face detectors to control the auto-focus [121]
or to perform smile detection [152]. Furthermore, the detection of a person’s body
parts as illustrated in Figure 1.1 enables novel ways in Human-Computer Interaction
(HCI). Examples are current smart TVs that can be controlled by hand gestures
[87] or detectors that enable to scroll a display by eye movement while reading [117].
Several detectors for body parts might be combined for the analysis of scenes where
humans interact with each other. An example application is the automatic detection
of emergency events in crowded scenes by intelligent surveillance systems [67].

Object detectors are as well the basis for various Advanced Driver Assistance Sys-
tems (ADAS). Many of today’s new cars already provide detectors that are able
to recognize traffic signs. The European New Car Assessment Programme (Euro
NCAP) announced for 2016 to extend their car safety rating by the evaluation of
Autonomous Emergency Braking (AEB) systems that detect pedestrians and inter-
vene to prevent or weaken a collision [49].

But the development of autonomously driving cars requires a comprehensive scene
understanding that involves the detection of several different objects like the road
or lane, other cars, and pedestrians [48, 153] as illustrated in Figure 1.2.

Another field of application for object detectors is industrial production utilizing
object detection for quality assurance after the assembly line. Defective products
are automatically picked out when e.g. a visual inspection system detects a fault
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Figure 1.2: Example images of objects to be detected in street traffic. From top to
bottom: Road and lane detection [60]. Car detection [63]. Pedestrian detection [47]
(see Chapter 7).

[101].

Instead of directly designing a detector for each class of objects to be recognized,
often machine learning algorithms are utilized to learn classifiers from training ex-
amples. These algorithms autonomously construct a classifier in an in general com-
putational expensive and time-consuming learning phase.

Figure 1.3 presents the basic work flow of the detector learning and the detection
process. Machine learning algorithms for binary decisions commonly require a posi-
tive and a negative training set of sensor information (e.g. camera images) showing
and explicitly not showing the object, respectively. In addition, a feature set is
provided that gives the learning algorithm a guiding principle on how to distinguish
between objects. This principle, implied by the feature set, might be e.g. to analyze
edges [126] or to exploit intensity differences between image regions [145]. The most
simplest case is to consider pixel intensities as features. In that case, the size of the
set of features is equal to the number of pixels in an example image. But single pixel
values provide no information about their spatial neighborhood that is required e.g.
to exploit edges. As a consequence, more complex features are commonly necessary
that utilize spatial image neighborhoods. But such a feature set swiftly grows to

3

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


1 Introduction

positive and negative
training examples

features

evaluation and selection

(a) Detector learning (b) Detection process

Figure 1.3: Detector learning and detection process. (a) A face detector is learned
from training examples [1]. The feature set is evaluated on the examples and three
features are selected that split the training set in its positive and negative part with
a comparatively small error. (b) The learned detector is utilized to find a face. In a
sliding window approach, the detector window is scaled and shifted over the image
and the content of the window is classified.

huge sizes if any possible feature manifestation is considered.

The following example demonstrates this circumstance: A face detector should be
learned from training images of the size 24 × 24 pixels. The utilized feature type is
computed on quadratic image neighborhoods of different sizes that are allowed to
overlap. Starting from the largest neighborhood, the set of possible feature locations
consists of 1 feature of size 24 × 24 and 2 · 2 = 4 features of size 23 × 23 down to
24 · 24 = 576 features of size 1 × 1. Hence, even for such small training images,
1·1+2·2+. . .+24·24 = 4900 possible feature locations have to be evaluated. Despite
the fact that the smaller neighborhoods provide only little context information and
might be omitted, such feature sets can easily contain up to hundreds of thousands or
millions of elements if multiple structures (e.g. edges at different directions) should
be utilized per location and larger training examples are exploited.

The detector learning aims on identifying characteristic structures at specific lo-
cations with respect to the size of the training images. In this way, the size of the
training images as well specifies the detector window that defines the spatial neigh-
borhood that is analyzed in the detection process. A machine learning algorithm
might evaluate the complete feature set on every training example in order to select
the features utilized in the learned detector and to determine decision rules that
classify the detector input with respect to the feature responses. Hence, the size
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of the feature set is crucial for the computational costs and time required for the
detector learning.

Figure 1.3a illustrates the detector learning process that has the goal to find
features and associated decision rules that are able to split the training set in its
positive and negative part with a preferably small error. A positive training example
for faces is presented in the green frame while an example of the negative set is
marked by a red border. The magenta structure in the detector window represents a
feature that has been learned in a real detector training and demonstrates that the
eye region is especially important for face detection. In the following, two additional
features are learned and printed in blue and yellow. The detector learning is assumed
to be finished after three learned features so that the bottom right frame presents
the completed so-called ensemble classifier. This means that an ensemble of features
and decision rules classifies together if the detector window contains or not contains
an object.

The detection process is shown in Figure 1.3b. A so-called sliding window is
applied to find all instances of the object class in an image. For this, the detector
window is slided over the image and the ensemble classifier is evaluated on each
position. In order to find objects of different sizes, the detector window has to be
scaled as well. The green rectangle represents the position and scale of the detector
window at which the learned ensemble classifier has found a face.

A frequent requirement on a learned classifier is its efficient computation allowing
real-time detection. For this, it is very important that the utilized features can
be efficiently calculated. Although a learned detector consists of significantly less
features than present in the feature set, it has to be considered that these features
have to be computed many times during the detection process. Getting back to
the previous example of a face detector learning, that detector would operate with
a detector window of the size 24 × 24 pixels. It can be also assumed that this
matches the smallest scale on which the sliding window is applied. Supposed that
the sliding window is shifted in steps of two pixels on this scale, the number of
evaluated detector windows is ((512 − 24)/2)2 = 59536 solely on this scale for an
image of size 512 × 512 pixels as presented in Figure 1.3b.

The strategy of learning from examples has the inherent difficulty that appropri-
ate training and feature sets are crucial for the detection performance of the learned
detector. The set of positive training examples should preferably comprise the com-
plete variety of appearances of the object class. Likewise, the negative set is required
to provide a huge diversity of non-objects that can occur in the detection process.
The feature set has to represent the structures that are characteristic of the object
class. But the determination of this intrinsic structures is the purpose of the learn-
ing algorithm so that it is in general difficult to restrict the feature set a priori to
suitable features.

Another difficulty emerges from the high computational costs of the detector learn-
ing. The approach to alleviate the aforementioned problems by significantly expand-
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1 Introduction

ing the training and feature sets would quickly raise the computational costs such
that the detector training becomes impractical in reasonable time.

The cascaded object detector proposed by Viola and Jones [145] that is learned by
the Adaptive Boosting (AdaBoost) [56] algorithm has proofed to be a very efficient
method in several applications. Because of its clear structure and high efficiency and
hence enabled scope for enhancements, this work has been chosen to build upon the
Viola and Jones detector.

Contributions

The structure of the thesis and its chapters follow the work flow of the developed
object detection framework but for convenience the contributions are listed in a
slightly different order.

The training of an object detector by a machine learning algorithm is as previously
described in general a computational expensive task. The utilization of larger train-
ing sets tend to result in a higher performance of the learned detector. Likewise, the
quality of a detector can often be improved by enlarging the feature set and in this
way increasing the variability of available features. But both of these approaches
also strongly raise the computational costs and the time required for the detector
learning. This work pursues two strategies to respond to these disadvantages that
are listed in the following together with the remaining contributions:

� First, many subtasks in the used machine learning algorithm AdaBoost can
be performed in parallel so that a distributed machine learning framework
is developed based on the Message Passing Interface (MPI) to utilize a huge
amount of computing power. In this way, the overall computational costs are
not decreased but the required time can be considerably reduced.

� Second, feature mining is performed to create customized feature pools that
have a smaller size but provide a higher feature variability [44]. The saved com-
putational costs and time can then be reinvested in an additional customized
pool of complementary features to further increase the detection performance.
Experiments show the benefit of a mixed learning of object detectors from two
complementary feature types.

� In order to enrich the variety of shapes that the feature set resembles, a novel
class of features is proposed that utilizes space filling curves, a type of
fractals [46]. These fractals can be represented by special variants of integral
images so that the new features can be smoothly incorporated into classifier
learning together with rectangular Haar-like features [115].

� The problem of sparse training data is addressed that is not uncommon
in learning highly specialized detectors for e.g. industrial production. Sparse
training sets containing only a small amount of positive samples often result
in poor classification performance if a classier is learned from these examples.
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From a model of the positive object space obtained by a Principal Component
Analysis (PCA) [116], it can be observed that negative training images pro-
jected into the objects PCA space are often far away from the object class.
This broad boundary between the object classes in training can yield to a high
classification error of boosted classifiers on the test set. Hence, the basic idea
of the contribution [43] is to narrow the boundary by augmenting the training
set based on a obtained model.

� In order to find objects in an image, object detectors commonly apply a slid-
ing window that evaluates the image at various different positions and scales.
This frequently results in multiple detections of the same object at slightly
shifted and scaled positions that have to be reduced to a single detections in
a post-processing step denoted Non-Maximum Suppression (NMS). A method
for merging multiple detections is proposed [45] that utilizes Dempster-
Shafer Theory of Evidence (DS) [38, 137] to exploit confidences obtained
from internal variables of the cascaded detector. The evidence theory combines
in the process confidence and uncertainty information to compute an overall
confidence for detections that gives an appropriate measure to distinguish the
reliability of detections. In a second step, this confidence measure is employed
to improve the accuracy of a merged object’s position.

Structure of the Thesis

Figure 1.4 presents an overview on the structure of the thesis. The contents of the
individual chapters are summarized in the following:

Chapter 2: The chapter starts with an overview of related work in the context
of visual object detection using machine learning techniques. An introduction is
given on different strategies that are pursued to obtain features which represent the
visual appearance of objects. Then, concepts are discussed to learn classifiers from
examples by means of these features. Chapter 2 ends with an introduction of the
data sets and benchmarks that are utilized in this work and a description of their
specific properties.

Chapter 3: In this chapter, fundamentals of the thesis are introduced. A detailed
description of feature types is given that are well established in the task of visual
object detection and are taken as a basis for the feature mining methods proposed in
Chapter 7. The AdaBoost algorithm and the Viola and Jones detector are introduced
from which the object detection framework of this work is evolved. Unsupervised
methods for data analysis used in this thesis are described, namely cluster algorithms
and the PCA. At the end of the chapter, common performance measures for object
detectors are briefly discussed.
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Chapter 4: This chapter presents the distributed machine learning framework
that has been developed to utilize the huge amount of computing power that is
more than helpful for learning capable object detectors. The structure and parallel
work flow of the framework is briefly described. Further on, the requirements on
the software architecture are discussed and an insight in the implementation of the
framework is given.

Chapter 5: The problem of sparse training data is addressed that is not uncom-
mon in learning highly specialized detectors for e.g. industrial production. A method
to augment the training data is developed that rests upon a statistical analysis of
the positive object class. Chapter 5 is based on an already published conference
article that appeared in [43].

Chapter 6: In this chapter, a new class of features is introduced that utilizes
fractals to resemble a larger variety of shapes. Fractal structures are generated by
space filling curves that are incorporated into the objection detection framework by
special variants of integral images. This method has been published in a conference
article that appeared in [46].

Chapter 7: Feature mining approaches are introduced in Chapter 7 that aim at
the construction of more effective features while reducing the computational costs
of the classifier learning. Two complementary feature types are developed that are
customized to the object class by a generic approach and thus exploit on the one hand
coarse structures and on the other hand fine details. The obtained sets of customized
features provide a high variability in feature shapes but are comparatively small and
enable a fast learning. Parts of Chapter 7 have been published in a conference article
[44].

Chapter 8: This chapter presents an improvement of the Non-Maximum Suppres-
sion that is commonly performed in a post-processing step of object detectors. A
method for merging multiple detections is described that utilizes Dempster-Shafer
Theory of Evidence to combine confidence and uncertainty information obtained
from the cascaded detector to compute a confidence measure for detections that is
applied to refine the determined object position. Chapter 8 is based on previously
published conference article that appeared in [45].

Chapter 9: The thesis is concluded and the main contributions are summarized.
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Papers of the Author

Papers of the author that are relevant to main contributions of the thesis:

[43] Arne Ehlers and Florian Baumann and Ralf Spindler and Birgit Glasmacher
and Bodo Rosenhahn, PCA Enhanced Training Data for Adaboost, 14th Inter-
national Conference on Computer Analysis of Images and Patterns (CAIP),
2011

In this paper we propose to enhance the training data of boosting-based ob-
ject detection frameworks by the use of principal component analysis (PCA).
The quality of boosted classifiers highly depends on the image databases ex-
ploited in training. We observed that negative training images projected into
the objects PCA space are often far away from the object class. This broad
boundary between the object classes in training can yield to a high classi-
fication error of the boosted classifier in the testing phase. We show that
transforming the negative training database close to the positive object class
can increase the detection performance. In experiments on face detection and
the analysis of microscopic cell images, our method decreases the amount of
false positives while maintaining a high detection rate. We implemented our
approach in a Viola & Jones object detection framework using AdaBoost to
combine Haar-like features. But as a preprocessing step our method can easily
be integrated in all boosting-based frameworks without additional overhead.

[44] Arne Ehlers and Florian Baumann and Bodo Rosenhahn, Exploiting Object
Characteristics using Custom Features for Boosting-based Classification, 18th
Scandinavian Conference on Image Analysis (SCIA), 2013

Typical feature pools used to train boosted object detectors contain various
redundant and unspecific information which often yield less discriminative de-
tectors. In this paper we introduce a feature mining algorithm taking domain
specific knowledge into account. Our proposed feature pool contains rectan-
gular shaped features generated from an image clustering algorithm applied
on the mean image of the object training set. A combination of two such
spatially separated rectangular regions yields a set of features which have a
similar evaluation time like classical Haar-like features, but are much smarter
(automatically) selected and more discriminative since image correlations can
be more consequently exploited. Overall, training is faster and results in more
selective detectors showing improved precision. Several experiments demon-
strate the gain when using our proposed feature set in contrast to standard
features.

[45] Arne Ehlers and Björn Scheuermann and Florian Baumann and Bodo Rosen-
hahn, Cleaning Up Multiple Detections Caused by Sliding Window Based Ob-
ject Detectors, 18th Iberoamerican Congress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications (CIARP), 2013

Object detection is an important and challenging task in computer vision. In
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cascaded detectors, a scanned image is passed through a cascade in which all
stage detectors have to classify a found object positively. Common detection
algorithms use a sliding window approach, resulting in multiple detections
of an object. Thus, the merging of multiple detections is a crucial step in
post-processing which has a high impact on the final detection performance.
First, this paper proposes a novel method for merging multiple detections
that exploits intra-cascade confidences using Dempster’s Theory of Evidence.
The evidence theory allows hereby to model confidence and uncertainty in-
formation to compute the overall confidence measure for a detection. Second,
this confidence measure is applied to improve the accuracy of the determined
object position. The proposed method is evaluated on public object detection
benchmarks and is shown to improve the detection performance.

[46] Arne Ehlers and Florian Baumann and Bodo Rosenhahn, Boosted Fractal
Integral Paths for Object Detection, 10th International Symposium on Visual
Computing (ISVC), 2014

In boosting-based object detectors, weak classifiers are often build on Haar-
like features using conventional integral images. That approach leads to the
utilization of simple rectangle-shaped structures which are only partial suit-
able for curved-shaped structures, as present in natural object classes such
as faces. In this paper, we propose a new class of fractal features based on
space-filling curves, a special type of fractals also known as Peano curves.
Our method incorporates the new feature class by computing integral images
along these curves. Therefore space-filling curves offer our proposed features
to describe a wider variety of shapes including self-similar structures. By
introducing two subtypes of fractal features, three-point and four-point fea-
tures, we get a richer representation of curved and topology separated but
correlated structures. We compare AdaBoost using conventional Haar-like
features and our proposed fractal feature class in several experiments on the
well-known MIT+CMU upright face test set and a microscopy cell test set.

Other papers of the author resulting from side research projects:

[12] Florian Baumann and Katharina Ernst and Arne Ehlers and Bodo Rosen-
hahn, Symmetry Enhanced Adaboost, 6th International Symposium on Visual
Computing (ISVC), 2010

This paper describes a method to minimize the immense training time of the
conventional Adaboost learning algorithm in object detection by reducing the
sampling area. A new algorithm with respect to the geometric and accord-
ingly the symmetric relations of the analyzed object is presented. Symmetry
enhanced Adaboost (SEAdaboost) can limit the scanning area enormously,
depending on the degree of the objects symmetry, while it maintains the de-
tection rate. SEAdaboost allows to take advantage of the symmetric char-
acteristics of an object by concentrating on corresponding symmetry features
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during the detection of weak classifiers. In our experiments we gain 39% re-
duced training time (in average) with slightly increasing detection rates (up
to 2.4% and up to 6% depending on the object class) compared to the con-
ventional Adaboost algorithm.

[131] Björn Scheuermann and Arne Ehlers and Hamon Riazy and Florian Bau-
mann and Bodo Rosenhahn, Ego-Motion Compensated Face Detection on a
Mobile Device, IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2011

In this paper we propose face tracking on a mobile device by integrating an in-
ertial measurement unit into a boosting based face detection framework. Since
boosting based methods are highly rotational variant, we use gyroscope data
to compensate for the camera orientation by virtual compensation of the cam-
era ego-motion. The proposed fusion of inertial sensors and face detection has
been tested on Apple’s iPhone 4. The tests reveal that the proposed fusion
provides significant better results with only minor computational overhead
compared to the reference face detection algorithm.

[13] Florian Baumann and Arne Ehlers and Karsten Vogt and Bodo Rosenhahn,
Cascaded Random Forest for Fast Object Detection, 18th Scandinavian Con-
ference on Image Analysis (SCIA), 2013

A Random Forest consists of several independent decision trees arranged in
a forest. A majority vote over all trees leads to the final decision. In this
paper we propose a Random Forest framework which incorporates a cascade
structure consisting of several stages together with a bootstrap approach. By
introducing the cascade, 99% of the test images can be rejected by the first
and second stage with minimal computational effort leading to a massively
speeded-up detection framework. Three different cascade voting strategies
are implemented and evaluated. Additionally, the training and classification
speed-up is analyzed. Several experiments on public available datasets for
pedestrian detection, lateral car detection, and unconstrained face detection
demonstrate the benefit of our contribution.

[16] Florian Baumann and Jie Liao and Arne Ehlers and Bodo Rosenhahn, Mo-
tion Binary Patterns for Action Recognition, 3rd International Conference on
Pattern Recognition Applications and Methods (ICPRAM), 2014

In this paper, we propose a novel feature type to recognize human actions from
video data. By combining the benefit of Volume Local Binary Patterns and
Optical Flow, a simple and efficient descriptor is constructed. Motion Binary
Patterns (MBP) are computed in spatio-temporal domain while static object
appearances as well as motion information are gathered. Histograms are used
to learn a Random Forest classifier which is applied to the task of human
action recognition. The proposed framework is evaluated on the well-known,
publicly available KTH dataset, Weizman dataset and on the IXMAS dataset
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for multi-view action recognition. The results demonstrate state-of-the-art
accuracies in comparison to other methods.

[14] Florian Baumann and Arne Ehlers and Bodo Rosenhahn and Jie Liao, Com-
putation Strategies for Volume Local Binary Patterns applied to Action Recog-
nition, 11th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), 2014

Volume Local Binary Patterns are a well-known feature type to describe object
characteristics in the spatio-temporal domain. Apart from the computation of
a binary pattern further steps are required to create a discriminative feature.
In this paper we propose different computation methods for Volume Local
Binary Patterns. These methods are evaluated in detail and the best strat-
egy is shown. A Random Forest is used to find discriminative patterns. The
proposed methods are applied to the well-known and publicly available KTH
dataset and Weizman dataset for single-view action recognition and to the
IXMAS dataset for multi-view action recognition. Furthermore, a comparison
of the proposed framework to state-of-the-art methods is given.

[15] Florian Baumann and Fangda Li and Arne Ehlers and Bodo Rosenhahn,
Thresholding a Random Forest Classifier, 10th International Symposium on
Visual Computing (ISVC), 2014

The original Random Forest derives the final result with respect to the number
of leaf nodes voted for the corresponding class. Each leaf node is treated
equally and the class with the most number of votes wins. Certain leaf nodes
in the topology have better classification accuracies and others often lead to a
wrong decision. Also the performance of the forest for different classes differs
due to uneven class proportions. In this work, a novel voting mechanism
is introduced: each leaf node has an individual weight. The final decision
is not determined by majority voting but rather by a linear combination of
individual weights leading to a better and more robust decision. This method
is inspired by the construction of a strong classifier using a linear combination
of small rules of thumb (AdaBoost). Small fluctuations which are caused by
the use of binary decision trees are better balanced. Experimental results on
several datasets for object recognition and action recognition demonstrate that
our method successfully improves the classification accuracy of the original
Random Forest algorithm.

[17] Florian Baumann and Liu Wei and Arne Ehlers and Bodo Rosenhahn, Se-
quential Boosting for Learning a Random Forest Classifier, IEEE Winter Con-
ference on Applications of Computer Vision (WACV), 2015

This paper introduces a novel tree induction algorithm called sequential Ran-
dom Forest (sRF) to improve the detection accuracy of a standard Random
Forest classifier. Observations have shown that the overall performance of a
forest is strongly influenced by the number of training samples. The main idea
is to sequentially adapt the number of training samples per class so that each
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1 Introduction

tree better complements the existing trees in the whole forest. Further, we pro-
pose a weighted majority voting with respect to a class and tree specific error
rate for decreasing the influence of poorly performing trees. The sRF algorithm
shows competing results in comparison to state-of-the-art approaches using
two datasets for object recognition, two standard machine learning datasets,
and three datasets for human action recognition.

[18] Florian Baumann and Karsten Vogt and Arne Ehlers and Bodo Rosenhahn,
Probabilistic Nodes for Modelling Classification Uncertainty for Random For-
est, 14th IAPR International Conference on Machine Vision Applications,
(MVA), 2015

In this paper, we propose to enhance the original Random Forest algorithm by
introducing probabilistic nodes. Platt Scaling is used to interpret the decision
of each node as a probability and was initially developed for calibrating Sup-
port Vector Machines. Nowadays it is used to calibrate the output probabilities
of decision trees, boosted trees, or Random Forest classifiers. In comparison to
these approaches, we integrate the Platt Scaling calibration method into the
decision process of every node within the ensemble of decision trees. Regard-
ing the original Random Forest, the nodes serve as a guide to predict the path
through the tree until reaching a leaf node. In this paper, we interpret the
decision as a probability and incorporate more information into the decision
process. The proposed approach is evaluated using two well-known machine
learning datasets as well as object recognition datasets.

[123] Christoph Reinders and Florian Baumann and Björn Scheuermann and Arne
Ehlers and Nicole Mühlpforte and Alfred Effenberg and Bodo Rosenhahn,
On-The-Fly Handwriting Recognition using a High-Level Representation, 16th
International Conference on Computer Analysis of Images and Patterns (CAIP),
2015

Automatic handwriting recognition plays a crucial role because writing with a
pen is the most common and natural input method for humans. Whereas many
algorithms detect the writing after finishing the input, this paper presents a
handwriting recognition system that processes the input data during writing
and thus detects misspelled characters on the fly from their origin.

The main idea of the recognition is to decompose the input data into defined
structures. Each character can be composed out of the structures point, line,
curve, and circle. While the user draws a character, the digitized points of the
pen are processed successively, decomposed into structures, and classified with
the help of samples. The intermediate classification allows a direct feedback
to the user as soon as the input differs from a given character.

[19] Florian Baumann and Jie Liao andArne Ehlers and Bodo Rosenhahn, Recog-
nizing Human Actions using novel Space-time Volume Binary Patterns, Neu-
rocomputing Journal, 2016
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In this paper, we propose a novel feature type, namely Motion Binary Pat-
tern (MBP) and different computation strategies for the well-known Volume
Local Binary Pattern (VLBP). MBPs are a combination of VLBPs and Op-
tical Flow. By combining the benefit of both methods, a simple and efficient
descriptor is constructed. Motion Binary Patterns are computed in the spatio-
temporal domain while the motion in consecutive frames is described. Finally,
a feature descriptor is constructed by a histogram computation. Volume Lo-
cal Binary Patterns are a feature type to describe object characteristics in the
spatio-temporal domain. But apart from the computation of such a pattern
further steps are required to create a discriminative feature. These steps are
evaluated in detail and the best strategy is shown. For MBPs and VLBPs, a
Random Forest classifier is learned and applied to the task of human action
recognition. The proposed novel feature type and VLBPs are evaluated on
the well-known, publicly available KTH dataset, Weizman dataset and on the
IXMAS dataset for multi-view action recognition. The results demonstrate
challenging accuracies in comparison to state-of-the-art methods.
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2.1 Machine Learning for Visual Object Detection

This chapter begins with an introduction in feature provision strategies for learning
visual object detectors. An overview on machine learning techniques is presented
to explain the context of the methods proposed in this thesis. Further on, the data
sets and benchmarks are introduced that are utilized in this work to learn object
detectors based on the proposed contributions and to evaluate their performance.

2.1 Machine Learning for Visual Object Detection

The creation of classifiers for visual object detection is commonly performed by
learning from examples. For this, a machine learning algorithm is provided with
labeled training data that consists of examples of the objects to distinguish and
assigned class labels. The task of the machine learning algorithm is to learn the
underlying concept or characteristics of the object classes from the training examples
in order to distinguish between them.

The object classes are often not directly learned from the observations (e.g. images
in case of visual object detection) but with the help of features that give the learning
algorithm a guiding principle on how to determine their characteristics in order to
reduce the learning effort and the required amount of training data. This principle,
implied by the features, might be e.g. to analyze edges [126] or to exploit intensity
differences between image regions [145]. Hence, features are essentially functions
that, given some feature parameter, map from the domain of observations into the
codomain of feature values, the feature space. The goal of the machine learning
algorithm is then to find decision boundaries in the feature space to distinguish
between the object classes.

As illustrated by an example in Chapter 1, sets of more complex features can
swiftly reach tremendous sizes if any possible feature manifestation is considered.
So this would consequently lead to constraints reducing the variability of a feature
type because very huge feature sets cannot be processed during classifier learning in
reasonable time. But this problem as well gives the motivation for the development
of different strategies to create and provide feature pools that are small but offer a
huge variety of suitable features.

2.1.1 Feature Provision

The provision of features that are appropriate for the specific object class can have
a large impact on the achievable performance of a detection system. A variety of
strategies exist for feature provision to which four categories are specified as follows:

Deep learning Feature extraction is completely incorporated into the machine
learning process by deep learning. High-level features are thus evolved from low-level
by way of mid-level features. Recently, Convolutional Neural Networks (CNNs)
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2 Related Work and Data Sets

performing deep learning show great success in many applications since the required
tremendous computational resources and training data are available. Examples for
deep learning methods to which a performance comparison is given in Section 7.3
are in the domain of face detection [93, 52] and for pedestrian detection [136].

Expert feature design A contrary strategy is pursued by expert feature design.
Human experts thereby develop a model of the object class and features appropriate
to that specific domain. This approach is frequently taken in domains where espe-
cially an efficient and computationally inexpensive object detector is desired. An
example of such a domain and approach is pedestrian detection in which Zhang et
al. [159] recently present state-of-the-art performance.

Feature selection Dollár et al. [40] address two related research areas. Feature
selection methods that create a subset by choosing reasonable features from a large
feature pool and feature mining, i.e. deriving a model of an own entire feature space.
Feature selection strategies are divided by Blum et al. [23] into three categories: (i)
Embedded methods, such as AdaBoost [56] in which the feature selection mechanism
is incorporated into the machine learning algorithm. (ii) Filter methods assign a
score to features in order to filter out irrelevant information. In this way, Koller
and Sahami [81] propose a method for selecting a subset of features by eliminating
features providing little or no additional information. More recently, Appel et al. [7]
develop a method for pruning low-performing features for speed-up during Boosting
of decision trees that guarantees identical performance to a classical training. (iii)
Wrapper methods evaluate the quality of a feature subset by the performance of a
classifier learned from them.

Feature mining But Guyon and Elisseeff [66] argue that extracting a feature pool
directly from the data set usually yields to a better performance and a more discrim-
inative power. Feature mining addresses this task of exploiting domain knowledge
in constructing a customized feature set.

The methods in the previously specified categories are not mutually exclusive such
that [44] applies AdaBoost as an embedded feature selection method to a feature
pool constructed by feature mining.

Following these lines of research, Chapter 7 proposes a generic approach for dif-
ferent object domains that incorporates feature mining strategies to construct a
customized mixed pool of complementary features that are able to utilize coarse
object characteristics as well as fine object details.
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2.1 Machine Learning for Visual Object Detection

training
data

feature extraction
feature selection

classification

unsupervisedsupervised

clusteringgenerative models
discriminative

models

Figure 2.1: Overview on categories in machine learning techniques.

2.1.2 Learning Algorithms

A good flowchart defining categories for methods in pattern recognition is presented
by Webb in [151, p. 28]. Figure 2.1 shows a simplified variant of the flowchart that
is adjusted to give an overview on categories for machine learning methods used in
this thesis. Classification approaches are divided into two categories:

� Unsupervised methods exploit the training data without the prior knowledge of
associated class labels. These methods analyze the training data or a feature
space derived from it to create a partition of clusters. Section 3.3.1 briefly
introduces several clustering algorithms that are utilized in this work.

� Supervised methods learn from labeled training data so that a class label is
assigned to each example in the training data specifying its class membership.
These methods learn the unknown concept of the classes from their assigned
training examples. After learning, the algorithms predict for an unseen exam-
ple to which of the predefined classes it belongs.

Supervised methods can be further divided into generative and discriminative
models.

� Generative approaches aim to learn a model of the observations given by the
training data and the associated class labels. The joint probability p(x,y) =
p(x|y) · p(y) of the training samples x and the labels y is estimated. They are
generative because synthetic data points in the input space can be generated
by sampling from the model. The class label of unseen data is predicted by
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2 Related Work and Data Sets

using Bayes rules to compute the posterior probabilities

p(y|x) = p(x|y) · p(y)
p(x)

and selecting the class label y having the highest probability. The probabil-
ity p(x) for input data to occur is class independent in doing so and hence
irrelevant for classification. The joint probabilities are typically estimated by
choosing a model for the class densities and optimizing its parameter to fit to
the observations. Examples of supervised, generative models are Naive Bayes
classifier [125], Gaussian Mixture Models (GMMs) [36], and Hidden Markov
Models (HMMs) [11].

� Discriminative models learn to distinguish between object classes by directly
modeling the posterior probabilities p(y|x) from the training examples. Ex-
amples of supervised, discriminative approaches are Support Vector Machines
(SVMs) [32], Neural Networks [106], Random Forests [26], and AdaBoost.

As described in Section 2.1.1, AdaBoost is categorized as an embedded method
that also involves the feature selection block presented in Figure 2.1. Although not
used in the context of features in this work, the PCA introduced in Section 3.3.2
can be categorized as a feature extraction method or unsupervised learning.

Deep learning approaches, briefly described in Section 2.1.1, that are often per-
formed by CNNs bypass the feature selection / feature extraction block and work
directly on the training data.

This work applies besides cluster algorithms and PCA mainly AdaBoost as su-
pervised, discriminative method for classifier learning. AdaBoost is in the following
briefly compared with the related Bootstrap Aggregating (Bagging) [25] and Ran-
dom Forest methods:

Adaptive Boosting The AdaBoost algorithm creates an ensemble classifier, i.e.
a combination of multiple classifiers that give a collective decision. In a repetitive
procedure, AdaBoost adds classifiers to the ensemble that minimize a training error
with respect to a distribution on the training set that is maintained by the algorithm.
The distribution is adapted after each round based on the classification result of the
currently added classifier giving higher influence to misclassified training examples.
In this way, the algorithm prefers in the following rounds classifiers that correctly
classify these examples and consequently concentrates on harder training examples.
The final learned ensemble of classifiers gives a weighted majority decision in which
the influence of each classifier is based on its achieved training error. A detailed
description of AdaBoost is given in Section 3.2.1.

Bootstrap Aggregating Bagging proposed by Breiman [25] in 1996 is as well
as AdaBoost a meta-algorithm for machine learning in the sense that a learning
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method is performed several times to create an ensemble classifier. Bagging repet-
itively generates new smaller training sets of the same size by uniformly sampling
with replacement from the original training set. The sampling procedure ensures
that the generated training sets, denoted bootstrap samples, are independent and
identically distributed (i.i.d.). In this way, multiple versions of a predictor can be
learned from the bootstrap samples and combined in an aggregated predictor show-
ing improved accuracy. When predicting a class, the results of the multiple classifiers
are aggregated in a plurality vote.

Random Forest In 2001, Breiman [26] proposes Random Forests that combine
the concept of Bagging with the methods of Ho [71, 72] and Amit [5] to learn decision
trees from randomly selected features. A Random Forest is an ensemble of decision
trees that are learned from different bootstrap samples.

In addition, each tree is grown in a procedure that utilizes randomly selected
subsets of the complete feature set. Until a stopping criteria is fulfilled or every leaf
node of the tree is pure (i.e. all training examples assigned to the node are of the
same class), a tree is grown by selecting a random feature subset of the same size
for each non-pure leaf node and finding for each of these nodes the feature in the
subset that achieves the best split of the assigned training examples. For this, a
splitting function measures the level of impurity of the split. Each current non-pure
leaf node is then divided into two child nodes and its assigned training examples are
split according to the found feature and passed to its child nodes that are the new
leaf nodes to process.

The Random Forest classifies in a plurality vote in which each tree votes for its
most likely class with equal weight.

In own works, Baumann et al. [13, 15, 17, 18] propose to improve the performance
of Random Forests classifiers by incorporating concepts from Boosting algorithms.
Short introductions in the developed methods are given by the abstracts of papers
of the author presented in Chapter 1.

2.2 Data Sets and Benchmarks

In the following, a brief description of the data sets is given that are utilized in
this thesis. A distinction has to be made between pure data sets, that only provide
images of an object class, and benchmarks that contain a test set with corresponding
ground truth information for evaluation. Some data sets include as well a negative
training set of non-object images and benchmarks can also contain a training set.
Benchmarks may provide an evaluation tool for an uniform detector assessment or
define a evaluation methodology. Table 2.1 gives an overview of the properties of
the utilized data sets.
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Table 2.1: Properties of the utilized data sets. The number of positive and negative
training examples is presented as well as the properties of the provided test sets.

Data set
Training Testing

Evaluation tool
#Pos #Neg #Images #Objects

AT&T faces 400 - - - no
BioID faces [22] 1521 - - - no
MUCT faces [110] 3755 - - - no
GENKI-4K faces [1] 4000 - - - no

MIT+CMU faces [141] - - 130 511 no
FDDB faces [74] - - 2845 5171 yes

Cryo cells 250 350 - - no
UIUC cars [3] 550 500 108 139 yes

Daimler pedestrians [47] 15660 6744 1 21790 56492 yes 2

Figure 2.2: Examples of the AT&T face data set. Credits are given to AT&T Lab-
oratories Cambridge.

AT&T Face Database The AT&T face database contains ten different images
each of 40 people varying in the lighting, facial expressions, and facial details (glasses
/ no glasses). The images were taken against a dark homogeneous background with
the people in an upright, frontal position.
The field of view of the shown faces is fairly homogeneous such that no additional
alignment is performed. Credits are given to AT&T Laboratories Cambridge. Figure
2.2 presents some example images taken from the database.

BioID Face Database The BioID face database [22] consists of 1521 gray images
presenting 23 different test persons. The data set shows a variety of illumination,

1The negative training set consists of scene image containing no objects such that it can be used
to extract negative training samples.

2The Daimler benchmark itself does not provide an evalution tool but the tool of the CalTech
benchmark [42] has been extended to evaluate it.
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2.2 Data Sets and Benchmarks

Figure 2.3: Example images taken from the BioID face database [22]

Figure 2.4: Example images of the MUCT face data set [110]

background, and face size. It provides as well manually marked landmarks including
eye coordinates such that a automatic process can align the images to the eyes for
adding them to a face detection training set. Figure 2.3 shows some example images
of the BioID database.

MUCT Landmarked Face Database The MUCT landmarked face database
[110] contains 3755 faces with 76 manual landmarks. The images present 276 persons
of varying age and ethnicity and are acquired under ten different lightning setups
from five view angles. For the application in the face training set, the faces are
automatically aligned to the provided eye landmarks. Figure 2.4 presents example
images of the MUCT face database.

MPLAB GENKI Database, GENKI-4K Subset The MPLAB GENKI data-
base, GENKI-4K subset [1] contains 4000 images of faces under different facial ex-
pressions, lightning conditions, and geographical locations. All images are manually
aligned to the eye positions before adding them along with a mirrored copy to a face
training set. Hence, the positive face training set derived from the GENKI database
consists of 8000 face images. Examples taken from the GENKI-4K subset are shown
in Figure 2.5.

MIT+CMU Frontal Face Dataset The MIT+CMU frontal face dataset A+C
[141] consists of 130 gray-scale images containing 511 faces. The data set provides
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2 Related Work and Data Sets

Figure 2.5: Example images of the MPLab GENKI Database, GENKI-4K Subset
[1].

Figure 2.6: Example images taken from MIT/CMU frontal face data sets A,C [141].

ground truth coordinates of the contained faces in form of six facial landmarks in-
cluding the eyes. The eye coordinates and distance is utilized to compute the position
and scale of face bounding boxes that are matched against detector bounding boxes
to evaluate detection performance. The MIT+CMU data set does not provide an
evaluation tool. A Receiver Operating Characteristic (ROC) curve for evaluation is
thus created by adjusting an internal threshold controlling the detector’s selectivity.
Despite its age, this test set is still challenging. The image database is partially
noisy and blurred and contains several difficult samples like low-resolution images,
comics, line drawings, and a binary raster image. Figure 2.6 presents some example
images of the data set.

Face Detection Data Set and Benchmark The FDDB face detection bench-
mark [74] consists of 2845 images containing 5171 faces. An evaluation tool to
measure the detection performance is provided as well. The evaluation procedure
requires multiple detections to be merged to a single detection in advance and a
confidence value has to be assigned. A performance curve is then generated by
traversing all confidence values and calculating the True Positive Rate (TPR) and
total False Positives considering only merged detections that have a confidence that
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Figure 2.7: Example images of the Face Detection Data Set and Benchmark (FDDB)
with visualized face ground truth. The images are taken from the project website
[74].

Figure 2.8: Examples of the cryo cell data set. The first three images show unim-
paired cells while the last three images present non-cells or corrupted cells [43, 46].

is greater or equal than the currently selected confidence. The authors supply results
on the project web page [74] for different face detectors generated by this tool in
form of files that contain the point coordinates of the performance curves. Figure
2.7 presents some example images in which the provided ground truth face positions
are visualized.

Cryo Cell Data Set The cell data set is acquired during cryo-conservation and
as a result ice fronts are forming around the cells. The goal is to detect (and track)
the cells in videos. 250 images of cells and 350 images of non-cells are collected to
gain a reasonable database. Figure 2.8 shows some examples of this data set.

UIUC Image Database for Car Detection The UIUC image database for car
detection [3] consists of 1050 gray-scale training images containing 550 car and 500
non-car images. This database also provides test images and an evaluation tool
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2 Related Work and Data Sets

Figure 2.9: The UIUC dataset for lateral car detection [3]. The top row shows
examples of the positive training set. The other images are taken from the multi-scale
test set.

to automatically calculate precision and recall of an applied detector. To create
a complete performance curve, an internal threshold of the detector controlling its
selectivity is adjusted multiple times followed by an evaluation of the detector output
by the provided tool. The multi-scale test set is evaluated that consists of 108 test
images that contain 139 cars at different scales. Example images of the positive
training set and the multi-scale test set are presented in Figure 2.9.

Daimler Monocular Pedestrian The Daimler mono pedestrian detection bench-
mark dataset [47] offers a training set as well as a test set to evaluate the detection
performance. Example images are shown in Figure 2.10. The positive training set
consists of 15660 gray-scale pedestrian images. 6744 scene images that do not con-
tain pedestrians are provided to bootstrap the negative training set. The Daimler
mono pedestrian benchmark data set provides as well a test set of a 27-minute drive
through urban traffic captured from a moving vehicle. It is composed of 21790 im-
ages and 56492 labeled bounding boxes of comprised pedestrians. This test set can
be evaluated as well by the Caltech pedestrian detection benchmark [42]. But the
authors of the Caltech benchmark change the evaluation methodology of the Daim-
ler test set and provide adapted pedestrian annotations. A discussion of the selected
evaluation methodology is given in [42] and details of the changes to the Daimler test
set can be found on the project web page [42]. In order to present a comparison to
several other methods, the evaluation by the Caltech benchmark is selected in this
thesis. Example images of the positive training set and the test set are presented in
Figure 2.10.
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2.2 Data Sets and Benchmarks

Figure 2.10: Example images of Daimler mono pedestrian detection benchmark. The
top row shows examples of the positive training set. The other images are from the
test set of a 27-minute drive through urban traffic. The images are taken from [47].

27

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


Chapter

3Fundamentals

28

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


3.1 Common Features

This chapter presents fundamentals the thesis builds on. Common feature types
are introduced that are well established in machine learning for visual object detec-
tion. The supervised machine learning algorithm AdaBoost and the Viola and Jones
object detection framework are described in detail. Unsupervised methods for data
analysis are presented by means of cluster algorithms and the Principal Component
Analysis (PCA). Further, an introduction in performance measures for detectors is
given.

3.1 Common Features

In this section, two feature types are introduced that demonstrate good performance
and are widely used in several object detection tasks. The Haar-like features and
Histograms of Oriented Gradients (HOG) descriptors are explained as well as meth-
ods for their efficient computation using the integral image representation.

3.1.1 Haar-like Features

A very popular feature class are Haar-like features that, inspired by Haar basis
functions, have been introduced by Papageorgiou et al. [115]. Haar-like features
represent rectangular structures such that the feature is computed as the difference
of the sum of pixel intensities in two coherent rectangular regions. Commonly used
templates of Haar-like features consist of two, three, or four rectangles. The pos-
itively and negatively weighted rectangular regions have the same size in many of
these templates. If the sizes differ, the sum of pixel intensities have to be multiplied
by a factor to compensate for the difference. These feature templates are scaled
independently in both dimensions and shifted in the detection window to form an
overcomplete feature set. Lienhart and Maydt [96] enriched conventional Haar-like
feature sets by templates that are rotated by 45�. Figure 3.1a presents, except for
the last template, the Haar-like features that are defined by Lienhart and Maydt
[96] and are as well utilized in the face detector of Open Source Computer Vision
library (OpenCV) [24]. The last template in Figure 3.1a is defined by Viola and
Jones [145] as four-rectangle-feature.

Integral images One reason for the success of Haar-like features is their very
efficient computation using integral images as intermediate image representation
[145]. An integral image IInt is computed in a pre-processing step from an image I
by summing up its pixel intensities from top left to bottom right:

IInt(u,v) =
u′≤u∑
u′=0

v′≤v∑
v′=0

I(u′,v′) (3.1)

The sum of pixel intensities of an arbitrary upright rectangular image region, as
required in the computation of conventional Haar-like features, can then be deter-
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(a)

A B

C D

•1 •2

•3 •4

(b)

Figure 3.1: (a) Haar-like feature templates that are, except for the last template,
defined by Lienhart and Maydt [96] and are as well utilized in the OpenCV [24] face
detector. The last template is the four-rectangle-feature defined by Viola and Jones
[145]. A Haar-like feature is computed by subtracting the sum of pixel intensities of
the white rectangles from the sum of pixel intensities belonging to black rectangles.
(b) Computing the sum of pixel intensities of arbitrary rectangular areas in integral
images. The pixel sum in rectangular regionD in the original image can be calculated
from the pixel values at the corner points 1 to 4 in the corresponding integral image.

mined by accessing only four points in the integral image. Figure 3.1b presents an
example in which the sum of pixel intensities of the rectangle D is computed from
the pixel values at its corner points in the integral image representation:

D = IInt(u4,v4) − IInt(u3,v3) − IInt(u2,v2) + IInt(u1,v1) (3.2)

The corner point (u4,v4) in the integral image represents the sum of pixel intensities
of all rectangles A,B,C and D. Hence, the pixel values at the points (u2,v2) and
(u3,v3) have to be subtracted from IInt(u4,v4) and IInt(u1,v1) has to the be added
since the sum of pixel intensities in the rectangle A has been subtracted twice. Since
Haar-like features consist of adjacent rectangular regions that share corner points,
a Haar-like feature formed by two and three rectangles can be computed from 6
and 8 pixel values, respectively, and the four-rectangle-feature requires nine memory
accesses.

Additionally, Viola and Jones [146] suggest to perform a variance normalization of
the detection window in the detector learning and its application to achieve partial
invariance to changing lighting conditions. The variance of a random variable X is
defined in Equation (3.3) and can be transformed as in Equation (3.4) because of
the linearity of expected values E(X):

Var(X) = E[(X − E(X))2] (3.3)

= E(X2) − (E(X))2 (3.4)

Selecting the pixel of an image I as random variable and assuming a discrete uniform
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distribution, the variance of an image or detection window can be written as:

Var(I) = NPixel

NPixel − 1

(
1

NPixel

∑
I(u,v)2 −

( 1
NPixel

∑
I(u,v)

)2)

= 1
NPixel − 1

∑
I(u,v)2 − NPixel

NPixel − 1μI
2

, (3.5)

where NPixel denotes the number of pixels in the image or detection window and
μI is the arithmetic mean of its pixels. In the variance normalization, μI can be
computed using the integral image. But for the efficient computation of the sum
of squared pixels, an additional integral image has to be calculated from the image
squared.

Another rotated integral image is required to compute the set of rotated Haar-like
features. A detailed description of the computation procedure is given in [96].

3.1.2 Histograms of Oriented Gradients

Dalal and Triggs [35] introduce the Histograms of Oriented Gradients (HOG) de-
scriptor in human detection. They learn a linear SVM based on the HOG descriptor
that exploits gradient information. It is inspired by orientation histograms [54],
Scale-Invariant Feature Transform (SIFT) descriptors [100] and shape contexts [20].
The principle of their descriptor is to characterize object appearances only by the
distribution of local intensity gradient magnitudes and directions and without the
information of their precise location. Hence, the HOG descriptor is organized as
concatenated gradient histograms computed on a dense, overlapping grid of image
regions. Figure 3.2 visualizes the HOG descriptor for training examples of face, car,
and pedestrian data sets.

Dalal and Triggs [35] structure the extraction of their descriptor into five steps
and evaluate different methods in each case:

1. Gamma normalization can be performed in a first step but yields only mod-
est performance increase such that Dalal and Triggs [35] omit normalization
for their default detector.

2. Gradient computation is suggested to be performed without pre-smoothing
the image. The gradients are computed by centered [-1,0,1] one dimensional
(1D) point derivatives.

3. Orientation binning: The grid of image regions is set up from so-called cells
that have a size of 8 × 8 pixels for the default detector. The gradient direction
is computed for each pixel and votes weighted by the gradient magnitude
are accumulated into orientation bins identified by the gradient direction. It
is suggested to vote for nine bins of unsigned gradient directions in human
detection.

4. Normalization and descriptor blocks: For the compensation of local vari-
ations in illumination and contrast, normalization is performed on the basis of
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blocks that consist of 2 × 2 cells in the default detector.

5. Descriptor structure: The HOG descriptor consists of the concatenated his-
tograms that are normalized per block. The cells cover the complete detection
window in a grid and the blocks are suggested to be overlapping such that the
histogram of each cell is contained under different normalizations in four block
histograms.

(a)

(b) (c)

Figure 3.2: HOG descriptors visualized on training examples. The example images
belong to positive training sets for (a) face detection [1], (b) lateral car detection [3]
and (c) pedestrian detection [47].

Integral histograms Similar to Haar-like features, HOG descriptors can be com-
puted more efficiently using an integral image representation [89, 120]. For each
histogram bin selectable in the gradient computation in HOG cells, an integral his-
togram is constructed that adds up the magnitudes of gradients that have an ori-
entation associated with the respective bin. A histogram bin prior to normalization
referring to an arbitrary rectangular image region can then be calculated from the
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four corner points of the rectangle in the integral histogram.

3.1.3 From Features to Classifiers

As described in Section 2.1, features are essentially functions that, controlled by
some feature parameter, map the domain of observations into the feature space, the
codomain of feature values. The domain of observations are images for visual object
detection and in case of Haar-like features, described in Section 3.1.1, the codomain
of feature values is the set of real numbers R.

In order to create a classifier based on a feature, a machine learning algorithm
has to find a decision boundary in the corresponding feature space and to create
a decision rule for classification with respect to that boundary. The process of
classifier learning is illustrated in Figure 3.3 by an example taken from a true face
detector learning. For this, the response of a generalized Haar-like feature is analyzed
that is learned for a face detector presented in Chapter 7. The construction of the
generalized Haar-like feature is described in detail in Section 7.1 but at this point the
sole important property is that the feature maps as well to the set of real numbers
R. This feature γ is visualized in the upper left corner of Figure 3.3 and basically
computes, similar to Haar-like features, the difference between mean pixel intensities
of rectangular image regions. The feature has been selected as the first in the learning
of a face detector from the initial training set of 8004 positive and 2916 negative
examples and demonstrates that the difference between the dark eye region and
the brighter region of nose and forehead is characteristic of faces. Additionally, the
top row of Figure 3.3 presents samples x of the positive and negative training sets
together with a marker that is used to highlight the feature value γ(x) for each
sample in the diagram below.

The diagram presents the class-conditional densities of the positive and negative
set as a function of the feature value assuming that both classes have a Gaussian
distribution parametrized by the sample mean and sample variance computed from
the feature responses on the examples of the respective classes. This illustrated
method to learn a model of the observations given by the training data and the
associated class labels is an example of a generative approach as discussed in Section
2.1.2. On the basis of the model of Gaussian distributions, the blue dashed line in
the diagram can be observed as decision boundary for the positive and negative class
and a decision rule can be formulated to create a classifier based on the feature. The
blue solid line in the diagram marks the decision threshold θ that has been learned
in the true face detector training by the AdaBoost algorithm that belongs to the
discriminative approaches (see Section 2.1.2) and is described in detail in Section
3.2.1. This decision boundary learned by AdaBoost is able to classify 93.18% of
the training set correctly but it can be observed from the markers in the diagram
that the most right negative and the most left positive example in the top row are
misclassified.

The difference in the decision boundaries learned by the Gaussian model and
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feature
value: γ(x)

class label y = 0 class label y = 1

p(γ(x) | y = 0)

p(γ(x) | y = 1)

θ
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0.5

1

·10−2
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Figure 3.3: Construction of a classifier based on a feature. A generalized Haar-like
feature that is learned in a true face detector training is presented in the top left
corner. This feature basically computes the difference between mean pixel intensities
of rectangular image regions and returns a real number as feature value. The rest of
the top row shows samples of the negative and positive training set [1] together with
a marker that is used to highlight the corresponding feature value in the diagram
below. In a simple approach, the two classes are assumed to have Gaussian distri-
butions that are parametrized by the sample mean and sample variance computed
from the respective feature responses. The diagram presents the class-conditional
densities of the positive and negative set and the decision boundary obtained from
this model as blue dashed line as well as the boundary learned by AdaBoost in the
true training as blue solid line.

AdaBoost is a result of the different approaches, on the one hand a generative
method that assumes Gaussian distributions to learn the boundary and on the other
hand a discriminative method that finds the boundary based on the splitting of the
training examples.

3.2 Supervised Machine Learning

This section introduces Adaptive Boosting (AdaBoost) and the Viola and Jones
framework that utilizes this machine learning algorithm for visual object detection.
AdaBoost is a powerful technique to learn strong classifiers and enables the Viola
and Jones framework together with additional contributions to create very successful
object detectors that are real-time capable.
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3.2 Supervised Machine Learning

3.2.1 Adaptive Boosting

In 1984, Valiant [143] develops a model of learning in which a hypothesis or prediction
rule is to be learned from randomly chosen examples of a labeled training set that
represents an unknown concept. In case of learning classifiers for visual object
detection, the concept to be identified by the learning algorithm is the appearance
of one or multiple object classes. The learned hypothesis is demanded to correctly
classify with high probability new instances of the object class.

Following this methodology, Michael Kearns formulates in 1988 [79] the basic idea
of boosting algorithms. In his manuscript, Kearns states the question if the ability
of an efficient algorithm to learn under some assumptions [143] a hypothesis that is
just a little better than random guessing implies the existence of an algorithm that
creates a hypothesis of arbitrary accuracy. This problem is denoted hypothesis boost-
ing problem. Further, Kearns declares an algorithm that outputs the first-mentioned
weak hypothesis as weak learning algorithm while the algorithm that creates a hy-
pothesis of arbitrary accuracy is denoted strong learning algorithm. The idea of
combining several weak hypotheses to a strong hypothesis is later very well illus-
trated in the horse race example of Freund and Schapire [57]. The weak hypotheses
in Kearns’ manuscript [79] correspond in the example to simple rules of thumb that
an expert on horse racing might give for the result of a race. One very simple rule
might be to bet on the horse that recently won the most races. Obviously, not every
race is won by the same horse. But it is as well convincing that the above rule has
a better probability to predict the actual winning horse than random guessing. An
expert on horse racing might be able to give several of such simple rules of thumb.
Kearns’ question is in this context, if it is possible to combine these rules and eval-
uate them together to form a strong hypothesis that predicts the actual winning
horse with a high probability.

Schapire [127] proofed Kearns’ implication in 1990 by constructing a recursive
strong learning algorithm that runs a weak learner several times. Accordingly, a
learning algorithm that uses a different learning algorithm as a subroutine is called
a boosting algorithm. Following Schapire’s proof [127], further boosting algorithms
have been developed, e.g. [55]. Freund and Schapire [56] proposed in 1996 the
Adaptive Boosting (AdaBoost) algorithm that adaptively adjusts to the errors of
the learned weak hypotheses by generating distributions over the training set dur-
ing the boosting process. Algorithm 1 presents the pseudo code of the AdaBoost
algorithm in its first multi-class extension and is described in detail in the follow-
ing. As a boosting algorithm that follows the paradigm of learning from examples,
AdaBoost requires the input of a labeled training set S = {(x1,y1), . . . ,(xNS ,yNS )}
of NS training examples, each consisting of a training sample xi ∈ X and an as-
signed label yi ∈ Y = {1, . . . ,j} specifying the class of the sample, together with a
generic weak learning algorithm that is denoted by WeakLearn. The algorithm is
round-based such that WeakLearn is called several times in a non-recursive loop
and a third input parameter is the requested number of rounds NR.
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Algorithm 1: Adaptive Boosting algorithm AdaBoost.M1 in pseudo code.

Input:
(a) Set S = {(x1,y1), . . . ,(xNS ,yNS )} of NS training examples,

each consisting of a training sample xi ∈ X (e.g. an image) and an
assigned label yi ∈ Y = {1, . . . ,j} specifying the class of the sample.

(b) weak learning algorithm WeakLearn
(c) parameter NR specifying the number of training rounds

Initialize the distribution Wr(i) over the training set S as W1(i) = 1
NS

for all i.

For training round r = 1 to NR:

1. Determine hypothesis hr : X → Y by executing WeakLearn
given the distribution Wr.

2. Compute the error of hr: εr =
∑

i:hr(xi)�=yi

Wr(i).

If εr > 1
2 , then set NR = r − 1 and abort loop.

3. Set βr = εr

1−εr
.

4. Update distribution Wr:

Wr+1(i) = Wr(i)
Zr

×
⎧⎨
⎩βr if hr(xi) = yi

1 otherwise

with Zr as normalization constant that ensures Wr+1 to be a distribution.

Output the final strong hypothesis

H(x) = arg max
y∈Y

∑
r:hr(x)=y

log 1
βr

.

One key element of Adaptive Boosting is that the boosting algorithm governs a
distribution over the training set that is controlled by the weak learning algorithm
and adapted at the end of each learning round. The mechanism for adapting the
weight distribution is illustrated in Figure 3.4. The initial distribution W1 of the
first round over the set of NS training examples is defined uniform: W1(i) = 1

NS
for

all i.

In each training round r, AdaBoost provides WeakLearn with the actual distri-
bution Wr. WeakLearn is run with the task to compute a hypothesis hr : X → Y
that classifies a subset of the training set correctly which is associated with a high
probability with respect to Wr. More specifically, WeakLearn is instructed to find
the weak hypothesis hr that minimizes the training error

εr =
∑

i:hr(xi)�=yi

Wr(i) (3.6)
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(a) Round 1 (b) Round 2 (c) Round 3

Figure 3.4: Illustration of AdaBoost’s adaption of the weight distribution in the
first three training rounds for a two dimensional (2D) feature space. The algorithm
starts with an uniform distribution and learns in each round a decision boundary
presented as dashed line. The weights are adapted so that misclassified training
examples get higher influence in the following rounds resulting in different decision
boundaries. The strong hypothesis is given as a linear combination of all learned
decision boundaries.

with respect to the distribution Wr. The training error defined in Equation (3.6) is
simply the sum of weights handled by Wr that are assigned to training examples for
which the hypothesis hr predicts a wrong class label.

If the minimum achievable training error εr of some round r is greater than 1/2,
the series of training rounds is aborted and the algorithm combines only the weak
hypotheses h1 to hr−1 that were already computed to a final strong hypothesis H.
Freund and Schapire show in [56] that the training error of H drops to zero expo-
nentially fast if εr ≤ 1/2 holds true for all r = 1 . . . NR and the weak hypotheses
consistently achieve a training error only slightly better than 1/2. In the case of
binary classification (k = 2), this means that the weak hypotheses need to be only
slightly better than random guessing. Based on the training error εr achieved by
the actual weak hypothesis hr, a scaling term βr = εr

1−εr
is computed that maps the

allowed training error into the interval [0,1). βr is then used to adapt the weight
distribution W over the training set such that training examples that are misclas-
sified by the actual weak hypothesis get a higher probability with respect to W in
the following training round:

Wr+1(i) = Wr(i)
Zr

×
⎧⎨
⎩βr if hr(xi) = yi

1 otherwise
(3.7)

with Zr as normalization constant that ensures Wr+1 to be a distribution. More
precisely, Equation (3.7) reduces the weights of correctly classified training examples
by multiplying them with βr followed by a normalization over all training example
weights. The training error of a weak hypothesis has in this way a direct influence on
the strength of the weight adaption. Then the AdaBoost algorithm continues in the
next training round and runs WeakLearn to compute the subsequent hypothesis
hr+1 that minimizes the training error with respect to the updated distribution Wr+1.
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In this way, AdaBoost assigns higher weights to training examples that are difficult
to classify for WeakLearn and thus focuses on learning these hard examples.

After all requested training rounds have been accomplished, the algorithm com-
bines all weak hypotheses that were computed to a final strong hypothesis

H(x) = arg max
y∈Y

∑
r:hr(x)=y

log 1
βr

. (3.8)

The strong hypothesis decides in a weighted majority vote and outputs the class
label y that maximizes the sum of weights assigned to weak hypotheses predicting
that label. The weight of a weak hypothesis hr is set to log

(
1

βr

)
such that a higher

influence on the majority decision is given to weak hypotheses that achieved a lower
training error.

3.2.2 Viola and Jones Detection Framework

Viola and Jones proposed a very successful framework for real-time face detection
[145, 146] in 2001 that utilizes the AdaBoost algorithm in the classifier learning.
The Viola and Jones framework integrates several methods that contribute to its
success. The key contributions of the framework are:

� Utilization of Haar-like features and their fast computation using integral im-
ages (see Section 3.1.1)

� Application of AdaBoost in detector learning

� Definition of a efficient weak learning algorithm

� Introduction of a cascaded detector structure

A detailed description of Haar-like features is given in Section 3.1.1. The last three
contributions are thoroughly discussed in the following.

Boosting Algorithm

The object detector is learned by the AdaBoost variant for binary classification in a
slightly modified version of the original algorithm [57]. The pseudo code in Algorithm
2 presents the AdaBoost algorithm in the Viola and Jones framework. The following
description focuses on these modifications and differences to the multi-class variant
of AdaBoost presented in Section 3.2.1.

The AdaBoost algorithm in the Viola and Jones framework requires as well as the
previously described multi-class variant as inputs a labeled training set S, a weak
learning algorithm and the number of requested training rounds. For each training
sample xi ∈ X , the assigned label is defined as yi ∈ Y = {0,1} with yi = 0 for a
negative and yi = 1 for a positive example. But the distribution over the training
set S is initialized slightly different so that the probabilities of all positive and all
negative examples each add up to 1/2 while all positive and negative examples,
respectively have the same probability.
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3.2 Supervised Machine Learning

Algorithm 2: Viola and Jones Boosting algorithm in pseudo code.

Input:
(a) Set S of NS training examples,

each consisting of a training sample xi ∈ X and yi ∈ Y = {0,1}
with yi = 0 for a negative and yi = 1 for a positive example.

(b) weak learning algorithm that selects weak hypothesis h(x) = h(x,γ,ρ,θ),
with γ, ρ and θ as parameter that are determined to minimize the
classification error on the training set S.

(c) parameter NR specifying the number of training rounds

Initialize the distribution over the training set S as the weights
w1,i = 1

2NN
, 1
2NP

for yi = 0,1 respectively, where NN are the number of

negative and NP are the number of positive training examples.

For training round r = 1 to NR:

1. Determine best weak hypothesis hr(x) = h(x,γr,ρr,θr) that minimizes

the error εr = min
γ,ρ,θ

∑
i

wr,i|h(xi,γ,ρ,θ) − yi|
with respect to the distribution defined by the weights wr,i.

2. Set βr = εr

1−εr
.

3. Update the distribution of weights:
wr+1,i = wr,iβ

1−ei
r

with ei = 0 if the example xi is classified correctly and ei = 1 otherwise.
4. Normalize the weights to be a distribution:

wr+1,i = wr+1,i∑NS
j=1 wr+1,j

Output the final strong hypothesis

H(x) =
⎧⎨
⎩1 if

∑NR
r=1 αrhr(x) ≥ 1

2
∑NR

r=1 αr

0 otherwise

with αr = log 1
βr

.
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In each training round, the AdaBoost algorithm runs Viola and Jones’ weak learn-
ing algorithm to compute the best weak hypothesis hr : X → Y that minimizes the
training error

εr = min
γ,ρ,θ

∑
i

wr,i|h(xi,γ,ρ,θ) − yi| (3.9)

with respect to the distribution defined by the weights wr,i. Hence, the best weak
hypothesis is found to be hr(x) = h(x,γr,ρr,θr) with minimizers γr, ρr and θr. Viola
and Jones propose an efficient weak learning algorithm that computes hr(x) and
determines its minimizers. This weak learning algorithm is described in detail in the
next paragraph.

In binary classification, a weak learning algorithm is able to find in any case a
hypothesis with training error εr ≤ 1/2, because otherwise the inverse hypothesis
1−hr(x) would satisfy the error bound. Thus, the abort condition of the multi-class
algorithm can be omitted.

The update rules for the weight distribution use a slightly different notation ben-
efiting from the simpler case of binary classification but work exactly the same as
in the multi-class variant. The weights are first adapted such that the impact of the
correctly classified training examples is reduced:

wr+1,i = wr,iβ
1−ei
r (3.10)

with ei = 0 if the example xi is classified correctly and ei = 1 otherwise. Followed
by a normalization that ensures the weights to be a distribution:

wr+1,i = wr+1,i∑NS
j=1 wr+1,j

(3.11)

After the last training round, the AdaBoost algorithm outputs a final strong
hypothesis

H(x) =
⎧⎨
⎩1 if

∑NR
r=1 αrhr(x) ≥ 1

2
∑NR

r=1 αr

0 otherwise
(3.12)

with αr = log 1
βr
.

Hence, the strong hypothesis that predicts the correct class label with high ac-
curacy is a linear combination of NR weak hypotheses that performs a weighted
majority decision. The weights αr of the weak hypotheses give higher influence
in the weighted majority vote to hypotheses that caused a smaller training error.
The strong hypothesis predicts a positive object class if the weak hypotheses voting
for the positive class are associated with at least half of the sum of all hypothesis
weights.
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3.2 Supervised Machine Learning

Weak Learning Algorithm

Viola and Jones’ weak learner computes a hypothesis that is characterized by a
feature γ, polarity ρ and threshold θ. The weak hypothesis is defined as

h(x,γ,ρ,θ) =
⎧⎨
⎩1 if ργ(x) < ρθ

0 otherwise
(3.13)

so that the feature response γ(x) is compared to a threshold θ and the polarity
ρ ∈ {−1,1} controls the direction of the inequality. The objective of the weak
learning algorithm is in each training round r to determine the parameter γr, polarity
ρr and threshold θr that minimizes the training error given by Equation (3.9). The
feature γr is in this process selected from a feature set that has to be provided to the
weak learner. Viola and Jones propose to exploit an overcomplete set of Haar-like
features as described in Section 3.1.1. The weak learning algorithm selects the error
minimizing feature, threshold and polarity in an efficient procedure that is described
in the following with an example of learning a strong hypothesis for two training
rounds.

Hypothesis Learning Example

The setup for the strong hypothesis learning by the Viola and Jones framework is
defined as follows:

Input: The training set is assumed to consist of a positive set P = {x1,x2,x3,x4}
containing four training samples and a negative set N = {x5,x6,x7,x8,x9} of five
samples.

The weak learner is provided with a example feature set consisting of only two
features γa and γb.

The requested number of training rounds is set to NR = 2.

Initialization: The training example weights wr,i are initialized according to Al-
gorithm 2 so that

w1,1 = w1,2 = w1,3 = w1,4 = 1
8

and

w1,5 = w1,6 = w1,7 = w1,8 = w1,9 = 1
10 .

Training: In the following, the sum of weights assigned to all positive training
examples in round r is denoted

wr,P =
∑

i:xi∈P
wr,i (3.14)
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and the sum of all negative example weights of round r is given by

wr,N =
∑

i:xi∈N
wr,i (3.15)

Hence, the initialization yields w1,P = 0.5 and w1,N = 0.5.
The weak learning algorithm creates for each feature in the feature set a list that is

sorted by the feature response γ(x) to the training samples. These lists are presented
in Table 3.1 for the two training rounds of the hypothesis learning example.

For each element in the lists, the algorithm computes the sum of positive example
weights before and including the current example ŵr,P and the sum of negative
example weights before and including the current example ŵr,N . The training error
that the corresponding feature γ generates, if a decision threshold θ that splits the
training set is put between the current and next feature value, is then computed as

ε = min (ŵr,P + (wr,N − ŵr,N ),ŵr,N + (wr,P − ŵr,P)) . (3.16)

The first term represents here the error that is generated if all training examples
after the threshold are classified as positive. The second contrary computes the
error when labeling all training examples before the threshold as positive. Hence,
the polarity ρ of a potential weak hypothesis is defined by which term minimizes ε.

The training error εr generated by the best weak hypothesis hr of round r is
thus given by the minimum ε over all sorted lists. The feature creating the list
that minimizes ε is selected as γr by the weak learning algorithm and the other two
minimizers of h(x) can be obtained as well from this list. In this way, the weak
learner computes the best weak hypothesis hr by a single pass through all lists.

This learning procedure is in the following illustrated by the previously defined
learning example with the help of Table 3.1.

Round 1: The sorted lists created for both features γa and γb of the feature set are
presented on top of each other in Table 3.1. The first column shows the sorted feature
values and the second column lists the training sample for which the feature value
is assumed. Positive training samples are printed in blue and negative samples in
red. The following five columns present the values that the weak learning algorithm
evaluates in the first round when it passes the sorted lists. The weak learner also
considers the sum of all positive example weights wr,P and the sum of all negative
example weights wr,N that are independent of the feature and thus listed in the
headline of the training round. When passing the list of the first feature γa, the
minimum training error of this feature is found to be 0.325 in the upper half of
the columns M and M ′ that are shorthand symbols for the minimizing terms in
Equation (3.16). This value is stored as potential minimum error together with the
threshold and polarity that are required to define the weak classifier based on this
feature. After that the next list is evaluated and, in this case of only two features,
the minimum training error of the first round is found as ε1 = 0.3 for the feature
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3.2 Supervised Machine Learning

Table 3.1: Weak learning example with two features for two rounds. M and M ′ are
shorthand symbols for the minimizing terms of ε. Positive training examples are
printed in blue while negative examples are red. The minimum training error εr and
decision threshold θr found by the weak learner are marked green. The weights of
the misclassified examples that contribute to the error are marked gray.

M = ŵr,P + (wr,N − ŵr,N ), M ′ = ŵr,N + (wr,P − ŵr,P)

Round r=1: Round r=2:
w1,P = 0.5, w1,N = 0.5 w2,P = 0.357, w2,N = 0.643

Feature γa

γa(x) X w1,i ŵ1,P ŵ1,N M M ′ w2,i ŵ2,P ŵ2,N M M ′

10 x8 0.1 0 0.1 0.4 0.6 0.167 0 0.167 0.476 0.524
20 x3 0.125 0.125 0.1 0.525 0.475 0.089 0.089 0.167 0.565 0.435
30 x6 0.1 0.125 0.2 0.425 0.575 0.167 0.089 0.334 0.398 0.602
40 x9 0.1 0.125 0.3 0.325 0.675 0.167 0.089 0.501 0.231 0.769

50 x1 0.125 0.25 0.3 0.45 0.55 0.089 0.178 0.501 0.32 0.68
60 x7 0.1 0.25 0.4 0.35 0.65 0.071 0.178 0.572 0.249 0.751
70 x4 0.125 0.375 0.4 0.475 0.525 0.089 0.267 0.572 0.338 0.662
80 x2 0.125 0.5 0.4 0.6 0.4 0.089 0.356 0.572 0.427 0.573
90 x5 0.1 0.5 0.5 0.5 0.5 0.071 0.356 0.643 0.356 0.644

Feature γb

γb(x) X w1,i ŵ1,P ŵ1,N M M ′ w2,i ŵ2,P ŵ2,N M M ′

11 x3 0.125 0.125 0 0.625 0.375 0.089 0.089 0 0.732 0.268
22 x9 0.1 0.125 0.1 0.525 0.475 0.167 0.089 0.167 0.565 0.435
33 x6 0.1 0.125 0.2 0.425 0.575 0.167 0.089 0.334 0.398 0.602
44 x1 0.125 0.25 0.2 0.55 0.45 0.089 0.178 0.334 0.487 0.513
55 x8 0.1 0.25 0.3 0.45 0.55 0.167 0.178 0.501 0.32 0.62
66 x2 0.125 0.375 0.3 0.575 0.425 0.089 0.267 0.501 0.409 0.591
77 x4 0.125 0.5 0.3 0.7 0.3 0.089 0.356 0.501 0.498 0.502

88 x7 0.1 0.5 0.4 0.6 0.4 0.071 0.356 0.572 0.427 0.573
99 x5 0.1 0.5 0.5 0.5 0.5 0.071 0.356 0.643 0.356 0.644

γb and marked green in Table 3.1. The decision threshold can be read off the table
as to be γb(x4) = 77 < θ1 ≤ γb(x7) = 88. Because the minimum is obtained
from column M ′, the polarity is determined as ρ1 = 1 together with the threshold
θ1 = (77 + 88)/2 = 82.5 so that the best weak hypothesis of the first round is
according to Equation (3.13) defined as

h1(x) =
⎧⎨
⎩1 if γb(x) < 82.5

0 otherwise
.

Hence, the error ε1 = 0.3 is the sum of the weights w1,6, w1,8 and w1,9 of the mis-
classified examples x6, x8 and x9 marked in gray. The scaling factor is computed
as

β1 = ε1

1 − ε1
= 0.3

1 − 0.3 = 3
7 = 0.429
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3 Fundamentals

based on the error and used to weight the weak hypothesis h1 in the strong hypothesis
H and to adapt the training examples after Equations (3.10) and (3.11).

Thus, the weights of the misclassified examples remain

w′
1,6 = w′

1,8 = w′
1,9 = 1

10

while the weights of the correctly classified examples are decreased before normal-
ization to

w′
1,1 = w′

1,2 = w′
1,3 = w′

1,4 = 1
8 · β1 = 1

8 · 3
7 = 3

56
and

w′
1,5 = w′

1,7 = 1
10 · β1 = 1

10 · 3
7 = 3

70 .

The sum of the adapted weights is

∑
i

w′
1,i = 3 · 1

10 + 4 · 3
56 + 2 · 3

70 = 84 + 60 + 24
280 = 168

280 = 3
5

and the example weights are normalized before the second training round to

w2,6 = w2,8 = w2,9 =
1
10∑

i w′
1,i

= 1
10 · 5

3 = 1
6 ≈ 0.167

w2,1 = w2,2 = w2,3 = w2,4 =
3
56∑

i w′
1,i

= 3
56 · 5

3 = 5
56 ≈ 0.089

and

w2,5 = w2,7 =
3
70∑

i w′
1,i

= 3
70 · 5

3 = 1
14 ≈ 0.071 .

Round 2: The sum of weights of all positive and negative training examples is
computed for the second round to

w2,P = w2,1 + w2,2 + w2,3 + w2,4 = 4 · 5
56 = 5

14 ≈ 0.357

and

w2,N = w2,6 + w2,8 + w2,9 + w2,5 + w2,7 = 3 · 1
6 + 2 · 1

14 = 9
14 ≈ 0.643 .

The weak learner passes the sorted lists for the second round again and computes
the last four columns of Table 3.1 in this process. Due to the adapted example
weights, the minimum training error is achieved in this round by feature γa and
found as ε2 = 0.231 in column M such that the polarity is set to ρ1 = −1.
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3.2 Supervised Machine Learning

The best weak hypothesis of the second round is thus obtained from Table 3.1 as

h2(x) =
⎧⎨
⎩1 if − 1 · γa(x) < −1 · 45

0 otherwise
.

The scaling factor of the second round is computed as

β2 = ε2

1 − ε2
= 0.231

1 − 0.231 ≈ 0.300

but the example weights are not adapted because the last requested training round
NR = 2 is finished.

Output: The learned weak hypotheses are weighted in the final strong hypothesis
by factors αr = log 1

βr
that give higher influence to weak hypotheses that achieved

lower training errors. The final strong hypothesis is computed according to Equation
(3.12) as the weighted majority decision

H(x) =
⎧⎨
⎩1 if 0.368 · h1(x) + 0.529 · h2(x) ≥ (0.368 + 0.529)/2 = 0.4485

0 otherwise

Memory consumption The selection of the best weak hypothesis in the learning
algorithm is efficient, because the sorted lists need only to be created in the first
training round. This creation requires the computation of all features for all training
examples and sorting the results. The sorted lists are represented in Table 3.1 by
the first two columns. The example weights can be determined from a global map
of feature identifiers to feature labels and currently associated weights that is stored
only once per training round but is accessed by all sorted lists. All other columns
in Table 3.1 contain temporary values that are calculated while the weak learner
passes the list and don’t have to be stored. Besides the sorted lists and the map of
feature values, only the current minimum training error and the parameter of the
corresponding weak hypothesis are saved during the weak learning algorithm.

But the training of object detectors that show a high performance in real scenarios
readily involves hundreds of thousands or up to millions of features and tens of
thousands of training examples. Roughly 25000 examples are considered in each
training round of the face detectors learned for this work. The evaluated feature set
contains in some cases up to almost four million features.

Based on eight bytes to store a feature identifier and value, all sorted lists would
consume 4000000·25000·(4 bytes+4 bytes) = 800 gigabytes. This requirement easily
exceeds the memory capacity of conventional computer workstations but deleting the
sorted lists from memory after use and recomputing them in the following training
round massively increases the computational costs.

A strategy to solve this problem that is pursued in this thesis is to parallelize the
classifier learning on a distributed computing cluster. The weak learning algorithm
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Stage
1

Stage
2

Stage
3

Stage
4

Rejected sub-windows

Post-
Processing

Sub-windows scanned
from scene images

P P P P

N N N N

Figure 3.5: Classifier cascade: Evaluated sub-window have to be positively classified
(P) and passed by all cascade stages to be considered as a found object. Each cascade
stage can reject a sub-window if it is negatively classified (N) and thus prevents its
processing by the following stages.

allows the parallelization in terms of features such that each computing node only
evaluates a subset of training examples. In this way, not only the computational
demands but also the memory consumption is distributed in the computing cluster.

As part of this thesis, a distributed machine learning framework has been devel-
oped that is briefly described in Chapter 4.

Cascaded Detector

Viola and Jones furthermore propose to arrange strong hypotheses in a classifier
cascade. The motivation is to take into account that a sliding window based detec-
tor in general is confronted with a very large amount of negative sub-windows while
only a small quantity of sub-windows show the object to be detected. Because of
this ratio, it is most important for a fast object detector to rapidly handle negative
samples. Another insight is that it is possible to learn strong hypotheses that can
reject a moderate percentage of negative samples while preserving nearly all posi-
tive samples very efficiently, meaning that they only consist of relatively few weak
hypotheses. Such strong hypotheses are utilized in a classifier cascade as illustrated
in Figure 3.5.

Every evaluated sub-window has to be positively classified and passed by all strong
hypotheses, in the following denoted cascade stages, to be considered as a found
object. Each cascade stage definitely rejects a sub-window if it is negatively classified
and thus prevents its processing by the following stages. Sub-windows that have
passed several stages are in general more similar to the positive object class, making
the classification problem of later stages harder. The complexity of strong hypotheses
increases in later stages for this reason. But the classifier cascade is very efficient
because most sub-windows are rejected in earlier stages and only few have to be
processed by the more complex stages.

In practice, roughly at least half of all negative sub-windows are rejected in each
stage allowing for real-time object detection.
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3.2 Supervised Machine Learning

Cascade learning The training procedure for a classifier cascade has to reflect the
concept that only negative samples that are miss-classified by all previous stages are
presented to the following stage. Hence, a strong hypothesis in a classifier cascade
is never confronted with negative samples that are correctly classified by one of
its preceding stages. So it is not necessary for such a strong hypothesis to learn
to distinguish these rejected negative samples from the positive object class. As
a consequence, examples in the negative training set that are correctly classified
after learning a cascade stage can be removed from the set before training the next
stage. Then the negative training set has to be replenished with examples that are
pertinent to the stage to be learned. The so far learned cascaded classifier is therefore
applied to unseen negative examples and only False Positives (FPs) are added to
the negative training set. This procedure is called a bootstrap strategy [140]. The
negative training set for later cascade stages consists due to the bootstrap strategy
of examples that are mostly very similar to the positive examples and thus hard to
learn. The complexity of later cascade stages increases as a result.

Algorithm 3 presents Viola and Jones’ method to learn a classifier cascade. During
learning, Algorithm 2 is run several times to create a cascade of strong hypotheses
that satisfies a desired overall detection performance. Hence, the input of the algo-
rithm contains in addition to the training examples the maximum acceptable false
positive rate f per stage and minimum detection rate per stage t. These input pa-
rameter control the classification performance of each single cascade stage and thus
have an effect on their complexity. An additional input parameter is the requested
overall False Positive Rate (FPR) of the cascade FTarget controlling the number of
learned stages.

In this way, the outer loop of Algorithm 3 continues to learn further cascade stages
as long as FTarget is not fulfilled on condition that each stage maintains a minimum
detection rate of t. This means that the miss rate in each stage is restricted but
the loss of True Positive (TP) detections is expected to grow for longer classifier
cascades.

The inner loop of the algorithm consists of the round-based training of Algorithm
2 with the difference that the training is not finished after a certain number of rounds
but a specified classification performance has to be accomplished.

More precisely, the so far trained classifier cascade, including the currently learned
stage, is evaluated on a validation set of unseen examples after each round of learn-
ing a strong hypothesis. The training of the currently learned stage is completed
if its decision threshold τ can be adjusted such that the stage contributes to the
performance of the cascade by fulfilling the required minimum detection rate t and
maximum acceptable false positive rate f per stage. If a stage is finished but the
False Positive Rate (FPR) achieved on the validation set by the complete cascade
does not satisfy FTarget, the bootstrapping is performed to update the negative train-
ing set before the next cascade stage is learned. Viola and Jones propose a slightly
different bootstrap strategy such that the negative set is erased and completely re-
plenished by bootstrapped examples.
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Algorithm 3: Viola and Jones cascade algorithm in pseudo code.

Input:
(a) Training set of positive examples P and negative examples N
(b) Parameter f , t defining per stage the acceptable maximum false

positive rate and minimum detection rate, respectively.
(c) Parameter FTarget specifying the desired overall false positive rate

Initialize
(a) the false positive rate of the learned cascade F0 = 1.0
(b) the true positive or detection rate of the learned cascade T0 = 1.0
(c) the number of the current cascade stage i = 0

While Fi > FTarget:
1. Set i = i + 1
2. Set NRi

= 0 and Fi = Fi−1.
3. While Fi > f · Fi−1:

i. Set NRi
= NRi

+ 1
ii. Learn a classifier with NRi

features from the training data P and N .
iii. Evaluate performance of current cascade by determining

Fi and Ti on a validation set.
iv. Decrease decision threshold τi of the i-th strong classifier until the

current classifier cascade has a detection rate of at least t × Ti−1
(this also affects Fi).

4. Set N = ∅
5. If Fi > FTarget then evaluate the current cascade detector on the set of

non-face images and put any false detections into the set N .

Output:
Learned classifier cascade given by a set {Hs(x) : s ∈ 1 . . . NS = i}
of strong classifiers Hs(x) (or stages) that each contain NRs weak classifiers
with

Hs(x) =
⎧⎨
⎩1 if

∑NRs
r=1 αrshrs(x) ≥ τs

0 otherwise

and αrs = log 1
βrs

.
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3.2 Supervised Machine Learning

The output of Algorithm 3 is the learned classifier cascade represented by a set
{Hs(x) : s ∈ 1 . . . NS} of NS stages or strong hypotheses Hs(x) that each contain
NRs weak classifiers with

Hs(x) =
⎧⎨
⎩1 if

∑NRs
r=1 αrshrs(x) ≥ τs

0 otherwise
(3.17)

and αrs = log 1
βrs

.

Figure 3.6 presents a flowchart illustrating the cascade learning process of the
object detection framework that has been developed as part of this thesis.

Figure 3.6: Flowchart illustrating the process of learning a cascaded classifier.
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3.2.3 Margin Analysis

Shortly after the publication of the AdaBoost algorithm research has been started
to examine its classification performance. As the consideration of only the training
error is not sufficient to estimate the test error of AdaBoost, Schapire et al. [130]
proposed the margin as a measure of the confidence in the algorithms classification.
They defined the classification margin of a training example (xi,yi) as the difference
between the sum of the weights of the weak classifiers voting for the correct object
class and the maximal sum of weights assigned to an incorrect class

margin(xi,yi) =
∑

r:hr(xi)=yi

α′
r − arg max

y∈Y\yi

∑
r:hr(xi)=y

α′
r (3.18)

with α′
r = αr∑NR

j=1 αj

.

As the weights α′
r are normalized to sum up to one, the margin is defined in the

range [−1,1] and a positive value implies a correct decision. Hence a large positive
margin represents a confident correct classification.

Evaluated on the complete training set a margin distribution can be derived.
Schapire et al. observed that, due to its adaption of the training example weights,
AdaBoost proceeds very aggressive in reducing the amount of training examples
having a small margin. For this reason the AdaBoost learning algorithm can reduce
the test error even after the training error has reached zero.

In the last decade, much research has been done in estimating the test error subject
to the margin and in finding a boundary based on the minimum margin and other
training parameter. But more recent research [90] indicates as well that considering
the minimum margin is not sufficient to estimate the generalization capabilities of
a boosted classifier and that the complete margin distribution has to be taken into
account.

The distribution of margins over a complete training set can be visualized as a
cumulative distribution giving a more detailed description of the training success
than the training error by itself. Given the restricted domain [-1,1], the cumulative
distribution represents for each value in this range the fraction of training examples
whose margin is at most equal to the value. Figure 3.7 presents an example of a
cumulative distribution. By definition of the margin, a value of -1 means that all
weak hypotheses hr of the boosted classifier vote with their associated weight α′

r

for a wrong label and a margin of 1 is achieved when all hypotheses vote correctly.
Hence, a margin of 0 represents the decision boundary if the weighted majority of
the strong hypothesis classifies a training example correctly. From the cumulative
margin distribution in Figure 3.7, it can be observed that about 14 percent of the
training set is misclassified by the strong hypothesis learned after 2 training rounds.
This fraction of wrongly classified examples is reduced to nearly zero after learning
100 rounds. The alteration of the curve shapes with increasing rounds demonstrates
that AdaBoost focuses in learning to reduce the amount of examples having a small
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3.2 Supervised Machine Learning

Figure 3.7: Cumulative margin distribution of face training set after 2, 5, 10, and
100 rounds of training.

margin. The fraction of examples with a very high margin also decreases as a side
effect such that the curves intersect. But this allows the AdaBoost algorithm to
continue to learn even after the training error has reached zero.

3.2.4 Variants of Boosting Algorithms

Since the introduction of AdaBoost, much research has been done to analyze its
abilities as a learning algorithm and to identify strengths and weaknesses in order to
propose improved variants. This section gives a brief overview on several directions
of advancement. Schapire presents in [128] a summary on different perspectives that
have been applied to provide an understanding of AdaBoost.

One approach is to analyze its learning capabilities with respect to the margins of
the training examples. The margin analysis is described in Section 3.2.3 and used
in this thesis to evaluate the training success in some experiments.

Another approach is to view AdaBoost as a procedure to minimize a loss function.
In this way, a perspective on the learning algorithm is given that is auxiliary for the
comparison and development of boosting variants. A slightly different notation is
used for the AdaBoost algorithm in this section in order to provide a more convenient
formula for the loss function. Differing from Section 3.2.2, the label of a training
example for binary classification is specified as yi ∈ Y = {−1, + 1} with yi = −1
for a negative and yi = +1 for a positive example. Since the weak hypothesis is
defined as hr : X → Y = {−1, + 1}, the training error to be minimized by the weak
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hypothesis is set slightly different as

εr = min
γ,ρ,θ

∑
i

wr,i · 1
2 · |h(xi,γ,ρ,θ) − yi| (3.19)

The strong hypothesis for predicting the class label then computes the sign of the
weighted combination of the weak hypotheses

H(x) = sign

⎛
⎝NR∑

r=1
αrhr(x)

⎞
⎠ = sign (F (x)) . (3.20)

AdaBoost can be interpreted as a forward stagewise additive model that approxi-
mates the solution by sequentially adding new basis functions without adjusting the
parameters and coefficients of the previously added basis functions [70]. The basis
functions are the weak hypotheses and the additive model minimizes an exponential
loss function [59, 70, 128]:

J(F ) =
∑

i

e−yiF (xi) (3.21)

Following this line of research, Friedman et al. propose LogitBoost [59] that directly
minimizes the logistic loss:

J(F ) =
∑

i

ln
(
1 + e−2yiF (xi)

)
(3.22)

The loss functions can be minimized with the help of another perspective on boost-
ing algorithms as iterative functional gradient descent algorithms [104]. By this, e.g.
the AnyBoost algorithms [104] minimize a cost functional by gradient descent that
chooses linear combinations of elements, the weak hypotheses, of an inner product
function space. Gentle AdaBoost [59] proposes an improvement to the gradient de-
scent of AdaBoost by adaptive Newton steps obtained from the minimization of a
weighted squared error at each step. As a consequence, the strength of the gradient
descent and thus the weight assigned to a single hypothesis is bounded. Exceeding
hypothesis weights resulting from outliers in the training data might otherwise have
a detrimental effect on the generalization error [129].

An alternative optimization strategy is to choose loss functions that can be for-
mulated as linear programs. Demiriz et al. [37] introduce LPBoost that directly
maximizes the minimum margin by solving a linear programming problem. More
recently, Warmuth et al.[150] propose an improved variant that additionally satisfies
a logarithmic iteration bound by adding a relative entropy regularization.

3.3 Data Analysis

This section presents an introduction in unsupervised machine learning techniques
that are jointly utilized in this thesis together with the supervised learning strategies
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Q2Q1
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I(u)
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Watersheds

Flooding

Igrad

Figure 3.8: Illustration of the basic principle of watershed segmentation. A gradient
image Igrad, shown in the left figure, is interpreted as a topographic relief. The
relief is flooded from water sources Q located at the local minima of the relief as
illustrated in the right figure that represents the horizontal cut through the center of
the left image. Barriers, denoted as watersheds, are build at positions where waters
originated from different sources meet. Images taken from [27].

presented in Section 3.2. The methods for data analysis, that are described in the
following, explore the data in an unsupervised process in order to discover knowledge
about the structure of the data. Section 3.3.1 presents cluster algorithms and Section
3.3.2 briefly describes the Principal Component Analysis (PCA).

3.3.1 Cluster Analysis

As part of this work, a distributed machine learning framework is developed that
follows the training procedure explained in Section 3.2.2. The weak hypotheses are
learned from sets of features that represent image regions or gradient informations
similar to the common features described in Section 3.1. Feature mining strate-
gies are introduced in Chapter 7 in order to create feature sets that are adapted to
characteristic structures of the object class to be detected. This process involves
the image segmentation of the training data that is performed by the cluster algo-
rithms presented in the following. Additionally, cluster algorithms are utilized for
the Non-Maximum Suppression in the post-processing of the object detector.

Watershed The watershed method was first formulated in 1978 by Digabel and
Lantuéjoul [39, 84] followed by numerous improvements and modifications. In this
work, the watershed algorithm of Fernand Meyer [108] is utilized for image segmen-
tation. The basic principle of the algorithm can be very intuitively described and is
illustrated in Figure 3.8:

The gradient image of a gray scale image is computed and interpreted as a topo-
graphic relief so that pixel values in the gradient image are considered as altitude
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u

v

Figure 3.9: Basic principle of the meanshift algorithm. Starting from a data point,
the mean in a local window is computed and the window is shifted to that mean.
This procedure is repeated until the mean converges to a local area of highest density.
Image taken from [27].

information. In the following, the relief is flooded starting from water sources placed
at each local minima of the relief. At the positions where waters originated from
different sources meet, barriers are put into place that separate the water basins.
These barriers are called watersheds and represent the boundaries of segmented im-
age regions that are oriented along edges in the original image. This procedure might
result in an oversegmentation if too many local minima are found as water sources.
A gradient image might be as well obtained from a binary edge image. The strength
of segmentation can then be controlled by the sensitivity of the edge detector. The
gradient image is derived from the edge image by a distance transform that replaces
the value of each pixel by its distance to the nearest edge pixel. The complement
to the transformed image represents the topographic relief that is flooded by the
watershed method.

Meanshift The meanshift algorithm was originally proposed in 1975 [61] as mode-
seeking procedure that finds the maxima of a density function. The principal concept
of the meanshift algorithm is illustrated in Figure 3.9. For the application as cluster
algorithm, the data points to be clustered are assumed to be sampled from a prob-
ability density function. Starting from a data point, the algorithm searches for a
mode, a local maximum of the density function. For that reason, the weighted mean
is computed in a local window around the data point given by a kernel function and
the window is shifted to this mean. In this way, the window is moved in the direction
of the maximum increase in density. This procedure is repeated until the window
converges to a local maxima of the density function. The size of the window is in
the process controlled by a bandwidth parameter of the kernel. A cluster is then
given by the set of all data points that converge to the same mode. An advantage of
meanshift clustering over k-means, that is described in following, is that the number
of clusters needs not to be specified in advance. The selected bandwidth parameter
steers the method such that a smaller bandwidth tends to result in a higher number
of defined clusters.

Comaniciu and Meer [31] proposed in 2002 a method for image segmentation based
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(a) (b) (c) (d)

Figure 3.10: Iterations of the standard k-means algorithm. (a) k cluster centers
(colored squares) are randomly selected as initialization. (b) Data points are assigned
to the cluster center that is in the shortest distance. The line segments of the Voronoi
diagram based on the cluster centers are shown as dashed lines. (c) All cluster centers
are shifted to the mean coordinates of all data points belonging to the corresponding
cluster. (d) The data points are reassigned based on the updated cluster centers.
Step (c) and (d) are repeated until the cluster assignment converges.

on the meanshift algorithm.

K-means The standard algorithm of k-means clustering, also referred to as Lloyd’s
algorithm, was developed by Stuart P. Lloyd in 1957 but it was first published
by Lloyd in 1982 [98]. A more efficient version of the algorithm was proposed by
Hartigan and Wong in 1979 [69].

In the case of a discrete set of data points, the objective of k-means clustering
is to assign each data point to one of k clusters such that the sum of all squared
distances between data points and the center or mean of their associated cluster is
minimized. The data points are in this way partitioned to minimize the intra-class
variance. The number k of requested clusters is in the process an input parameter
of the algorithm.

Several improved variants of the algorithm exist that e.g. enhance the initial se-
lection of the cluster means. In the following, the standard algorithm that randomly
initializes the means is briefly described and illustrated in Figure 3.10.

Starting from an initial selection of means (see Figure 3.10a), repeatedly all data
points are assigned to the mean that is in the shortest distance (see Figures 3.10b and
3.10d) and the means are updated to be the centroids of the data points assigned to
each cluster (see Figure 3.10c). These steps are repeated until the cluster assignment
and thus the means converge. Due to the random initialization, the algorithm is not
deterministic.

Regarding images, the data points can represent pixel and the distances to the
cluster centers might be computed as distance of pixel values in color space and/or
the spatial distance of the pixel’s position in the image.
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Figure 3.11: Examples of image segmentations created by the SLIC superpixel algo-
rithm [2]. The SLIC algorithm has been parametrized to segment each image into
superpixels of approximately 64, 256, and 1024 pixels size from top left to bottom
right. The images are taken from [2].

Superpixel The concept of superpixels is originally developed by Ren and Malik
[124] as a local, coherent and structure preserving over-segmentation. The Sim-
ple Linear Iterative Clustering (SLIC) [2] superpixel algorithm is closely related to
k-means clustering such that it assigns the image pixel in an iterative procedure
to a priorly specified number of superpixels. The assignment is based on a dis-
tance measure that is defined in the five-dimensional space of the pixels’ color vector
in CIELAB color space and the pixel position in image coordinates. Figure 3.11
presents examples of superpixel segmentations created by the SLIC algorithm.

A disadvantage of the iterative procedure in SLIC is that even after convergence
superpixels can be separated into not connected small fragments. Hence, SLIC has
to perform a post-processing that enforces connectivity but does not provide an
optimal solution.

The superpixel algorithm of Schick et al. [132] uses a different optimization proce-
dure so that the problem of not connected fragments does not occur. Furthermore,
the algorithm allows to transparently control the compactness of the superpixels.

In this work, the algorithm of Schick et al. [132] is applied for superpixel segmen-
tation.

3.3.2 Principal Component Analysis

The Principal Component Analysis (PCA) is utilized in this thesis for a statistical
analysis of the positive object class. A method is proposed in Chapter 5 to augment
sparse training data with respect to the analysis.
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A PCA [116] transforms (possibly) correlated variables into linearly uncorrelated
variables called principal components by applying an orthogonal transformation.
The transformation is designed in such a fashion that the first axis (principal com-
ponent) represents the highest amount of data variation, whereas the other following
orthogonal axes are sorted in a decreasing order, depending on the amount of vari-
ance. A PCA is simply computed as a singular value decomposition of a data matrix
or by an eigendecomposition of a covariance matrix generated from a data set that
for the method proposed in Chapter 5 consists of the positive training images. The
eigenvectors are derived in this work from a singular value decomposition of the
covariance matrix. Since that covariance matrix is symmetric and positive semidef-
inite, the obtained eigenvectors are identical to those provided by a PCA and also
the order of the corresponding eigenvalues is the same.

Similar to the notations in [142], n-dimensional data points x1 . . . xNP ∈ P are
assumed and the mean of the data points is computed as

Ψ = 1
NP

NP∑
i=1

xi (3.23)

Further, xi = xi − Ψ is defined to be the difference to the mean vector that shifts
the data in this way towards the origin. The matrix X = [x1, . . . , xNP ] contains the
difference vectors of the data, so that the covariance matrix of the data points is
given as

C = 1
NP

NP∑
i=1

xixT
i (3.24)

∝ XXT (3.25)

A singular value decomposition C = UΣV T of the covariance matrix C allows to
compute the principal components of the data. Note that the computation of XT X
can be much more efficient if less data points are available than the dimension of the
data (see [142] for details). This happens e.g. when images are encoded as vector
and only a few images (e.g. a couple hundred) are available. Then U needs to be
multiplied by X and rescaled to get the eigenvectors and the first s eigenvectors can
be used for approximation of the space.

Figure 3.12 shows two simple examples in which the missing parts of a corrupted
face and cell image (not contained in the training data) has been reconstructed with
the help of the PCA of a data set by performing a subspace projection. As can be
seen, the position of the nose and mouth as well as the cell boundaries have been
reconstructed fairly well.

There exist many extensions and modifications about PCA-methods for data clus-
tering. In Chapter 5, Kernel Principal Component Analysis (KPCA) [134] methods
are applied as well. The idea for KPCA is to employ a mapping φ(x) on the data to
lift the input to a higher dimensional space, in which the subspace can be approxi-
mated more easily. Since the higher dimensional space can become very large, they
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Figure 3.12: Missing data estimation of face image (on the left) and a cell image (on
the right). No blending was performed and it is shown that the mouth and nose as
well as the cell structure is well approximated. The reconstruction of the cell to the
right is based on a Kernel Principal Component Analysis (KPCA). For this kind of
data, it seems to approximate the cell boundaries slightly better [43].

key idea behind KPCA is to avoid the explicit computation of φ and to work with
a kernel k(xi,xj) = 〈φ(xi),φ(xj)〉 = φ(xi)T φ(xj). The covariance matrix C then
becomes

C = 1
NP

NP∑
i=1

φ(xi)φ(xi)T (3.26)

which is again split and normalized after a Singular Value Decomposition (SVD),
C = UΣV T . In this thesis, two standard kernels are used, namely

k1(xi,xj) = − exp((xi − xj)2/(σ)2)

with σ = 1 and
k2(xi,xj) = (xT

i xj)2.

Depending on the selected kernel and its non-linear mapping, the KPCA allows
to structure the data set along principal components that are not available in the
linear approach of the PCA.

3.4 Detector Performance Measures

This section discusses commonly used measures to evaluate the performance of object
detectors for the binary classification problem.

True Positive Rate (TPR) or recall The TPR is also referred to as recall
or sensitivity. It represents the proportion of positive samples that are correctly
classified

True Positive Rate = Recall = NTP

NP

(3.27)

with NTP denoting the number of True Positive (TP) detections and NP the total
number of positive objects that have to be detected in a test set.
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On the contrary, the quota of misclassified positive samples is denoted as miss
rate and given by

Miss rate = 1 − TPR = 1 − NTP

NP

(3.28)

Precision The precision measures the fraction of all positively classified samples
that are correctly classified as such

Precision = NTP

NTP + NFP

(3.29)

with the number of False Positive (FP) detections given as NFP.

False Positive Rate (FPR) The FPR measures the percentage of negative sam-
ples that are wrongly classified as positive

False Positive Rate = NFP

NN

(3.30)

with NN denoting the total number of negatives in the test set. But the determi-
nation of NN is problematic in the task of visual detection of objects in images.
Often a sliding window is used to extract samples from a scene image in order to
classify them. Hence, the number of negatives provided to the classifier depends
on the parametrization of the sliding window. Furthermore, NN is complicated to
compute in practice because test sets in general specify some neighborhood in space
and scale around the true object position in which a detection is considered as True
Positive (TP). But the number of samples in this neighborhood depends as well on
the parametrization of the sliding window and has to be subtracted from the total
number of sliding window samples for a exact computation of NN. Commonly, the
number of samples in these neighborhoods is considerably smaller than the total
number of samples such that the latter is chosen to be NN to simplify matters. A
FPR that is computed with respect to the sliding window samples is also denoted
as False Positives Per Window (FPPW).

An alternative measure that avoids the problematic dependency on the sliding
window is False Positives Per Image (FPPI) representing the ratio of NFP to the
number of scene images in the test set.

F-measure (F1) The F-measure or F1 score is the harmonic mean of precision
and recall:

F1 = 2 · Precision · Recall
Precision + Recall

= 2 · NTP

NP + NTP + NFP

(3.31)
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Detector performance curves In order to evaluate the performance of a detector
on a test set, it is often not sufficient to consider a single value as quality measure.
Commonly, a performance curve is generated instead that allows a more detailed
analysis of the detection characteristic. A performance curve can be created by
adjusting an internal parameter controlling the detector’s selectivity. In this way,
the detection rate of a detector can be raised or lowered having the side effect that
in general the FPR increases or decreases as well. The detection results of multiple
detector runs with different parametrization are in doing so consolidated in a single
curve. Some benchmarks provide evaluation tools that do not allow multiple detector
runs in order to create a performance curve. Instead, these benchmarks specify a
evaluation methodology that commonly requires that the detector generates a list of
detections with an assigned confidence value. A performance curve is then generated
by traversing all confidence values and identifying TPs and FPs considering only
detections that have a confidence that is greater or equal than the currently selected
confidence.

An example of such curves is the Receiver Operating Characteristic (ROC) that
presents the True Positive Rate as a function of the False Positive Rate. The com-
parison of sliding window based detectors using ROC curves holds the problem that
the FPR and more specific NN is highly dependent on the parameter that controls
the sample density of the sliding window as previously described. Hence, the FPR,
also denoted as False Positives Per Window (FPPW), is frequently substituted with
False Positives Per Image (FPPI) or the total number NFP of FPs.

Figure 3.13a shows an example of the latter variant of a detector performance
curve and illustrates the advantages over a single-valued quality measure. Though
the blue curve is obviously showing the least performance, the decision if the black
or red curve demonstrates a better performance is application specific. If False
Positive detections are not permitted, the black curve should be preferred, while the
red curve is more appropriate when a high True Positive Rate is desired and False
Positive detections are acceptable. It is difficult to represent this distinction in a
single-valued measure.

Figures 3.13b and 3.13c present the same detection results as in Figure 3.13a but
use different performance measures. Precision and recall are utilized in Figure 3.13b
showing a similar appearance but the blue curve demonstrates that performance
curves based on the precision can be less smooth. Figure 3.13c illustrates the de-
tection results in the same way as the Caltech pedestrian detection benchmark [42]
presenting the miss rate as a function of False Positives Per Image.

Log-average miss rate The Caltech pedestrian detection benchmark uses the
log-average miss rate to represent an entire detector performance curve in the variant
shown in Figure 3.13c by a single reference value. It is essentially the average of miss
rates corresponding to nine FPPI rates that are evenly spaced in log-space in the
interval 10−1 to 100 [42].
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3.4 Detector Performance Measures
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Figure 3.13: Detector performance curves representing the same detection results.
The results are artificial examples supposing that 100 object have to be detected in
100 images. Different numbers of TP and FP detections are assumed for the three
detectors and the performance measures are computed accordingly. The performance
curves present (a) the True Positive Rate as a function of the total number NFP of
FPs, (b) Recall as a function of 1 - Precision, and (c) the miss rate as a function of
False Positives Per Image.
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This chapter gives a brief introduction in the distributed machine learning frame-
work that has been developed as part of this work.

One topic of this thesis is the research on new feature types that are applied in
the learning of object detectors. Hence, Chapter 7 introduces two complementary
feature types and demonstrates the benefit of learning a mixed detector that utilizes
them. But a mixed learning makes specific demands on the software architecture
of a machine learning framework written in C++ as the feature objects should be
runtime polymorph. Especially in distributed systems that have no shared memory,
a sophisticated design is required to dynamically dispatch the methods provided by
the feature objects.

The machine learning framework is written in C++ and transparently handles
different feature types in a distributed system as the objective in development has
been to build a generic framework that is able to process a wide range of scalar and
vector-valued feature types.

In the following, the structure of the developed distributed framework is presented
and the mechanisms to organize a massive parallel object detector learning are de-
scribed. Furthermore, a brief insight into the class architecture of the framework
is given in terms of runtime polymorphism, efficient computation and distributed
computing.

The distributed machine learning framework is able to parallelize the training of
an object detector on a computer cluster. The MPI and in particular the Open-
MPI [62] library is used for inter-node communication. OpenMPI is accessed by
the Boost.MPI [65] library that provides are more convenient interface to MPI and
above all applies Boost.Serialization [122] to support the transmission of complex
user-defined data types and C++ Standard Library types. The inter-node commu-
nication is controlled by a communication layer that implements a signal and slots
mechanism using message queues. In that way, program objects are allowed to asyn-
chronously communicate among distributed computing nodes. A hybrid model of
parallel programming is implemented such that shared memory multiprocessing on
each computing node is accomplished by the Open Multi-Processing (OpenMP) API
[112]. The topology of the computing cluster designates one node the elevated posi-
tion as master node that coordinates the machine learning task and assigns working
packages to the worker nodes. To simplify communication, messages are only trans-
mitted from the master node to the worker nodes and vice versa but not between
worker nodes. Figure 4.1 presents the structure of a cluster consisting of the master
node and two worker nodes.

The master node mainly controls the machine learning task and does hardly any
computation. Each node possesses an algorithm state machine that implements the
machine learning algorithm and an instruction object that enables every software
component to communicate with the master node. The machine learning task is
parallelized on the worker nodes applying multiple threads but a shared memory.
In this way, all threads on each machine share one training object pool that are
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4 Distributed Machine Learning Framework

Figure 4.1: Simplified structure of a computing cluster consisting of the master node
and two worker nodes. All inter-node messages are handled by a communication
layer incorporating Boost.MPI and OpenMPI. Each node contains an algorithm
state machine, an automatically synchronized training object pool and an instruction
handler. Each algorithm state machine is thread-parallelized having thread-local
feature pools that are directly supplied with features by the feature factory of the
master node.

automatically synchronized with the pool on the master node. The parallelization
of the machine learning task is performed on feature level such that every thread
possesses its own feature pool that is directly provided with features by the feature
factory of the master node. A global ID generator in the master node takes care
that every object in the distributed memory system is clearly recognizable.

The framework is designed with a strong emphasis on generic programming trans-
parently handling different feature types. To maintain program efficiency, static
typing is applied where possible and dynamic typing when needed [107]. From the
feature base class four intermediate base classes are inherited that differ in the type
of the return value computed by the feature. To support a wide range of possible
features, the specified return types are integer and double scalar as well as vector
of integers and vector of doubles. The implemented features classes are then in-
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ScalarIntFeatureBundle ScalarIntFeature

ScalarDoubleFeature

TwoRecFeature

ScalarDoubleFeatureBundle

VectorIntFeatureBundle

VectorDoubleFeatureBundle
KeyPointHOGFeature::RectangularRegion

FeatureBundle Feature

VectorIntFeature

VectorDoubleFeature

KeyPointHOGFeature

TwoRecFeature::RectangularRegion

Figure 4.2: Class diagram showing the organization of feature objects in Feature-

Bundle. FeatureBundle contain only features of homogeneous type to the effect
that their return value is of the same type. FeatureBundles as well as feature
objects are therefore derived from four base classes each that declare virtual meth-
ods having the specific return type. The TwoRecFeature and KeypointHOGFeature

have the same return value type and base class. Both provide the rectangular image
region on which they are computed as a subclass object.

herited from one of these intermediate base classes. The usage of dynamic typing
is reduced by the introduction of feature bundles that are objects containing only
homogeneous feature types to the effect that their return value is of the same type.
Thus four different subclasses of feature bundles are inherited as well representing
the return types of their contained features. In that way, feature computation can
be performed by a feature bundle calling a virtual method of the containing fea-
tures that they have inherited from their intermediate base class. Dynamic typing
is applied on the level of feature bundles by a virtual method that is declared in the
feature bundle base class and triggers the computation of all features contained in a
bundle. This virtual method returns a Boost.Variant [58] data type. Boost.Variant
is a generic union container that can include any kind of type taken from a prede-
fined set of possible types. Here the predefined types as well represent the different
return types of the feature classes. The explicit value that a Boost.Variant contains
can be checked and retrieved at run-time realizing dynamic typing. In that way, the
computation of features is independent of the explicit feature class transparently
handled by calling this virtual method of the feature bundle class. The computa-
tional overhead is little as dynamic typing is only required once per feature bundle.
Figure 4.2 shows the classes involved in the computation of the features types used
in this work. The previously described virtual methods have been omitted in the
class diagram because their signature is too long for presentation.

For a generic framework that transparently processes arbitrary feature object
types, run-time polymorphism of these objects is essential. This can be achieved
in C++ by accessing objects of a subclass type by means of pointers to a common
base class and calling virtual functions declared in that base class. The application
of pointer is obviously problematic in a distributed memory environment but the
Boost.Serialization library allows to solve this problem. Boost.Serialization is able
to follow the base class type pointers and to serialize the derived subclass object with-
out slicing it to its base class. By this, polymorph object types can be transmitted
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4 Distributed Machine Learning Framework

via MPI among cluster nodes without knowing the exact data type at compile time.
Such polymorph objects are organized by the machine learning framework in object
pools that access them by means of pointers to their common base class PoolObject.
To allow deep copies of these run-time polymorph data types, a clone interface is
implemented. The PoolObject base class declares a virtual method PoolObject*

clone() that is overwritten in the derived classes by a method having a covari-
ant return type: DerivedClass* clone() . In that way, the overwritten clone()

methods ensure that complete deep copies of objects are created which exact data
type is unknown at compile time. In addition, the PoolObject base class inherits
an object of type ObjectId that is set by the ID generator of the master node to
clearly identify every PoolObject in the computing cluster. The architecture of the
object pool together with the PoolObject base class and as an example its derived
TrainingImage subclass is presented in Figure 4.3. The TrainingImage subclass
implements the clone interface and therefore overwrites the virtual clone() method
with its own having a covariant return type.
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PoolObject
# objId : ObjectId
+ PoolObject()
+ ~ PoolObject()
+ clone() : PoolObject*
+ GetId() : ObjectId
+ Modify(requestedMod : 
     boost::shared_ptr<ObjectModi cation>)
+ GetPoolStorageId() : PoolStorageId
+ SetPoolStorageId(assignedId : PoolStorageId)
+ SetFeatureTypeId(featId : FeatureTypeId)
+ GetFeatureTypeId() : FeatureTypeId
- serialize(ar : Archive&, version : const unsigned int)

ObjectPool
+ preprocess_Mutex : std::mutex
- IndexOfContainedObjects : std::map<ObjectId, 

typename boost::ptr_list<PoolObject>::iterator>
- ContainedObjects : boost::ptr_list< PoolObject >
- TransactionsSinceSync : TransactionLog
- poolMsgTag : unsigned int
+ ObjectPool()
+ ObjectPool(msgTag : unsigned int)
+ SetMessageTag(msgTag : unsigned int)
+ GetSize() : unsigned int
+ SaveToDisk( lename : string)
+ LoadFromDisk( lename : string) : PoolStorageId
+ AddObject(newObject : PoolObject*)
+ GetBeginOfObjects() : typename boost::ptr_list<PoolObject>::iterator
+ GetEndOfObjects() : typename boost::ptr_list<PoolObject>::iterator
+ DeleteObjectById(objId : ObjectId)
+ GetObjectById(objId : ObjectId) : PoolObject*
+ ModifyObjectById(objId : ObjectId, 

objectModi cation : boost::shared_ptr<ObjectModi cation>)
+ ReplayReceivedLog(receivedLog : TransactionLog&)
+ SyncWithMasterPool()

TrainingImage
+ originalImg : cimg_library::CImg< unsigned char >
+ weight : double
+ label : unsigned char
+ preprocessStorage : std::unordered_map< FeatureTypeId, boost :: shared_ptr < PreprocessedObject > >
+ TrainingImage()
+ ~ TrainingImage()
+ TrainingImage(srcImg : cimg_library::CImg< unsigned char >&)
+ TrainingImage(srcImg : cimg_library::CImg< unsigned char >&, label : unsigned char, initialWeight : double)
+ TrainingImage( leName : const char* const)
+ TrainingImage( leName : const char* const, label : unsigned char, initialWeight : double)
+ TrainingImage( leName : const char* const, poolId : PoolStorageId)
+ clone() : TrainingImage*
+ Modify(requestedMod : boost::shared_ptr< ObjectModi cation >)
- serialize(ar : Archive&, version : const unsigned int)

Figure 4.3: Class diagram presenting the object pool architecture. TrainingIm-

ages as well as feature objects are organized in ObjectPool components. They are
therefore derived from the base class PoolObject that declares besides others a clone
interfaces and unique ObjectId. To ensure run-time polymorphism, the ObjectPool
handles pointers to the PoolObject base class.
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Figure 5.1: Example images of SMDs. Top row: Good components that are prop-
erly soldered. Bottom row: Examples of missing or defective components that are
wrongly placed or have faulty solder joints.

This chapter deals with the problem of sparse training data that is not uncommon
e.g. in industrial applications. Especially classifiers for quality assurance are con-
fronted with the objective to detect very rare occurrences with a high TPR. But also
a high precision is desired since every production sample that is wrongly classified
as defective results in an economic damage. An example application in quality as-
surance is the visual inspection of Surface-Mount Devices (SMDs) placed on circuit
boards shown in Figure 5.1 in which boards with defective components have to be
picked out after the assembly line.

Sparse training sets containing only a small amount of positive samples, that rep-
resent the object class to be detected, often result in poor classification performance
if a classifier is learned from these examples. The Principal Component Analysis
(PCA) described in Section 3.3.2 allows to obtain a model of the positive object
space. In case of sparse training sets, it can be observed that negative training
images projected into the objects PCA-space are often far away from the object
class. This broad boundary between the object classes in training can yield to a
high classification error of boosted classifiers on the test set.

Hence, the basic idea of the following approach is to narrow the boundary by
augmenting the training set based on a model obtained from a PCA in order to
improve the detection performance. This chapter is based on a published conference
article [43].

Prior Work

The face detection method of Turk and Pentland [142] demonstrated that an object
space, learned by a PCA from a training set of face images, provides a suitable
model for face detection and recognition. The idea behind a PCA-space of objects
is to learn a global subspace from training data which span the object variations
as principal components in a high-dimensional vector space. In order to detect or
recognize objects, a input image is projected into the learned subspace and distances
to the training data in that space are evaluated [142]. Subsequently, other variants
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to learn an object space like Independent Component Analysis (ICA) [10] or KPCA
[134], described in Section 3.3.2, have also been proposed for face detection and
recognition.

In the case of boosting-based object detectors, other approaches exploit the rep-
resentation in an object space by means of features that are evaluated in that space
[157, 4]. But a drawback of these approaches are the computational costs since all
input images need to be projected in the object space for the detection process.

Contribution

The method proposed in this chapter is inspired by the capabilities of an evaluation
in object space as presented in the prior work but intends to avoid the projection in
the object space during detection. So the key contribution described in Section 5.1
is to modify and augment the training data of the non-objects in such a way that
they are closer to the PCA-space of objects and therefore to cause a much smaller
margin (see Section 3.2.3) at the start of training. This is in some way contrary
to approaches in semi-supervised learning [88] in which the negative training class
is raised at the boundary being opposite to the object class. Overall, it allows to
train a much more selective classifier, especially if only a sparse amount of training
data is available. Since the training data is enhanced prior to the classifier learning,
the method is self-contained such that it is also applicable for e.g. other boosting
variants presented in Section 3.2.4.

5.1 Training Data Augmentation

Often, negative training examples are not always well chosen to differ between ob-
jects and non-objects. This is mainly due to the fact that the non-object space is
significantly larger and more complex than the positive examples. Basically, the non-
objects can be seen as the complementary space to the learned PCA object space.
Therefore, its variability is hard to reflect in the training data. The idea is to bring
the training data close to the PCA-space. This can simply be done by projecting
the negative training examples onto the trained PCA-space and then shifting it back
towards the non-object space with a scale λ ∈ [0 . . . 1]:
Let U s = U(1 : n,1 : s), s ≤ n be the upper left matrix of U stemming from

C = UΣV T and let Λ ∈ N be an example of the non-object class. The shift of Λ
towards Λs being closer to the object space can simply be done by computing

Proj = UT
s · (Λ − Ψ) (5.1)

Rec = U s · Proj + Ψ (5.2)

Λs = Rec + λ(Λ − Rec) (5.3)

Note that U is an unitary matrix and thus U s describes the inverse projection of UT
s .

In case of the more efficient computation mentioned in Section 3.3.2 this property
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5.2 Experimental Results

Figure 5.2: Morphing a non-object towards the PCA-learned object space. Top row:
Example morph for a face space. Bottom row: Example morph for a cell space [43].

is not given and instead a pseudoinverse has to be used. Obviously, λ = 0 yields the
projection on the PCA-space, whereas λ = 1 leads to the training example itself. So
λ steers the amount on how much the example is shifted towards the object space.
In the following experiments, projection strength parameter λ = 0.3, 0.5, and 0.7 are
applied.

Figure 5.2 shows two non-object examples which are morphed with different
weighting factors towards their object space, namely a non-face towards face space
in the top row and a defective cell towards cell space in the bottom row. The middle
images are non-objects which are much better suited to learn a boundary between
the positive and negative classes in the boosting framework.

5.2 Experimental Results

First, experiments are conducted for face detection using the AT&T Face Database.
The second set of experiments is performed on microscopic images from the cryo
cell data set. Both data sets are described in Section 2.2 and divided into a training
and validation set using a 67/33 ratio. Crowther and Cox [33] illustrated that
especially for small bases a split containing only a small part for validation is not
recommendable. They suggested to select a ratio between 50/50 and 70/30.

Figure 5.3 shows in the top row example images of non-faces and non-cells. The
middle row shows morphed images towards the trained PCA-space. These images
are then used for training to find a more selective classifier. The bottom row shows
positive example images of faces and cells of the used databases.

5.2.1 Experiments on Face Detection

Using the approach described in Section 5.1, four different training sets are gener-
ated containing the object/non-object examples and morphed non-object examples
with λ = 0.3, 0.5 and 0.7. A strong classifier is learned for all four data sets by
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5 Learning from Sparse Training Data

Figure 5.3: Top row: Example images of non-faces and non-cells. Middle row: Mor-
phed images towards the trained PCA-space. These images are either used to find a
more selective classifier. Bottom row: Example faces and cells of the used data sets
[43].

AdaBoost as described in Section 3.2.1 using Haar-like features that are introduced
in Section 3.1.1. The impact of the classification confidences during training on the
test error is subject to the margin theory that is briefly described in Section 3.2.3.
In the following, margin distributions are evaluated while learning classifiers from
the original and an augmented training set in order to analyze the training success.

Margin Analysis

Figure 5.4a presents the cumulative margin distributions after different training
rounds for the original training set consisting of face and non-face images. In Figure
5.4b, margin distributions are shown when learning a classifier from the face data
set using PCA-enhanced non-faces with λ = 0.3. The impact of the learning process
of AdaBoost on the margin distributions is clearly noticeable in both figures. The
amount of training examples having a small margin is in both cases strongly reduced
during training. Roughly after 10 rounds, the training error reaches zero as all
examples images have a positive margin and hence are correctly classified. Then the
AdaBoost algorithm further concentrates on the training examples that are hard to
classify and continues to reduce the number of training examples that are correctly
classified with only low confidence.

But it is also observable that it is more difficult to classify the morphed training
set. After 5 training rounds the boosted classifier for the morphed set makes almost
twice as much wrong decisions compared to the classifier boosted on the original
training set. Also about 15% and 30% of the training examples on the morphed set

72

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


5.2 Experimental Results

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.00 -0.50 0.00 0.50 1.00

Cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

Margin of original training set

5 rounds

10 rounds

20 rounds

40 rounds

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.00 -0.50 0.00 0.50 1.00

Cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

Margin of PCA30 training set

5 rounds

10 rounds

20 rounds

40 rounds

(b)

Figure 5.4: Cumulative margin distributions (a) of the original face training set after
5, 10, 20, and 40 rounds, (b) of the morphed training set. The negative object class
has been morphed using λ = 0.3. [43]

have a margin smaller than 0.2 and 0.56, respectively. In comparison, for the original
set the smallest 15% have a margin below 0.32 and the margins of the smallest 30%
do not exceed 0.62.
After 40 training rounds the boosted classifier for the morphed training set has

caught up in the lower region of the margin distribution. The minimum margin
amounts roughly to 0.26 in both cases and the progress of the cumulative distri-
butions is similar showing only a slightly steeper slope for the morphed training
set.

As discussed in Section 3.2.3, the margin distribution in training has been found
to be an indicator for the quality of a classifier in terms of its test error. Hence,
the result of the PCA-enhanced training to achieve a similar margin distribution
starting from an adverse one can be interpreted as a higher training success. So the
AdaBoost classifiers learned from PCA-enhanced training data can be expected to
achieve superior performance in the test phase.

Detection Performance

In the following, the experimental results for the test set are presented. Figure
5.5a shows the ROC curves of multiple classifiers varying the decision threshold for
detecting faces as described in Section 3.4. The red curve represents the classifier
based on the original data set, whereas the other curves show the performance of
the classifiers using PCA-enhanced images for training. Overall, the curves show
that the classifiers which have been learned from an augmented training set are
more selective in detecting faces so that good TPRs are achieved while maintaining
a lower FPR.
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Figure 5.5: (a) ROC curve for the face data set using different thresholds of boost-
ing with the original data (red) and using PCA-enhanced non-faces with different
λ-values (0.3, 0.5, and 0.7). The PCA-enhanced data reveals a much more selective
performance. (b) ROC curve for the cell data set.

5.2.2 Experiments on Cell Data Set

For the cell data set, a KPCA-method [134] is used for augmenting the training data
in order to demonstrate that the method on PCA-enhancement of training data is not
restricted to a specific method for subspace learning. The KPCA utilizes a selectable
kernel function as described in Section 3.3.2. For the following experiments, two
standard kernel functions are selected:

k1(xi,xj) = − exp((xi − xj)2/(σ)2) (5.4)

with σ = 1 and
k2(xi,xj) = (xT

i xj)2 (5.5)

The KPCA-enhanced training data leads for both kernels to an increased perfor-
mance of the detection rate which is shown in the ROC curves in Figure 5.5b. E.g.
for a TPR of 96.3%, the KPCA-enhanced training data with k1 yields a classifier
that produces a FPR of 1%, whereas the original data produces a FPR of 6%. The
KPCA-enhanced training data with k2 yields similar performance in producing a
TPR of 95.5% with no FPs.

5.3 Discussion

This chapter introduces an approach to enhance (sparse) training data for boosting-
based object detectors to achieve a higher detection performance. Using PCA, the
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5.3 Discussion

negative training examples are shifted in PCA-space near to the positive training
class. The trained classifier achieves a lower classification error being more selective
in detection. Experiments on face detection and microscopic cell images showed
that the method decreases the FPR of the boosted classifier. The variable strength
of the transformation allows for a trade-off between TPR and FPR. But in all ex-
periments, the proposed method managed to significantly lower the amount of FPs
without reducing the TPR.

The PCA is a linear method that, having this restriction, might not be able to
efficiently structure some data sets of high complexity. The kernel functions of
the KPCA incorporate non-linearity into the method and hence a KPCA with an
appropriate kernel function might be more effective for such data sets.

PCA methods are computational expensive if big data sets should be analyzed.
For image data, the dimensionality of the data points is commonly very high since
each image is represented by a high-dimensional vector. In case of only few data
points, the trick to reduce the dimension, reported in Section 3.3.2, can be applied in
order to reduce the computational efforts for PCA. For data sets consisting of many
high-dimensional data points, an approach can be to first cluster the data set (see
Section 3.3.1) and then to perform the PCA only on the set of cluster centroids.
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Chapter

6Fractal Integral Paths
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(a) (b)

Figure 6.1: Fractal structures in: (a) Romanesco broccoli. This picture is retouched
for presentation in this work. The original version is part of Wikimedia Commons
and has been released into public domain by its author, Jon Sullivan. (b) Snowflakes.
Image is part of Wikimedia Commons and in the public domain due to its age.

In this chapter and the following Chapter 7, new feature types are developed for
machine-learned object detection. A widely used feature type for object detection
is the Haar-like feature described in Section 3.1.1. But this approach leads to the
utilization of simple rectangle-shaped structures which are only partial suitable for
curved-shaped structures. Additionally, these rectangular features are often designed
for small detector basis windows and training sets that mostly contain low-resolution
object details. So that features having rough shapes are sufficient to describe its gross
characteristics.

In contrast, the new feature type of this chapter is designed to represent fine object
details that have a wider variety of shapes. It is inspired by fractal structures that
are present in natural objects e.g. in the romanesco broccoli or snowflakes shown in
Figures 6.1a and 6.1b.

Hence, a new class of fractal features denoted by Fractal Integral Paths is proposed
that bases on space-filling curves, a special type of fractals also known as Peano
curves. This chapter has been previously published as a conference article [46].

Prior Work

Research is done in various parts of object detection frameworks to improve its
performance. Zhang et al. [156] present a well structured survey of advances in face
detection. They categorize developments into variations of the learning algorithm
as discussed in Section 3.2.4 and advances in the extraction of features (see Section
3.1). In the advances of feature extraction, many different types of features based
on histograms [149], binary patterns [158], or edges [126] have been developed.

But a notable field of research is also the improvement of the Haar-like features,
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6 Fractal Integral Paths

(a) (b) (c)

Figure 6.2: (a) Illustration of the Peano-Hilbert curve traversing a face image [141].
(b) Example of a selected fractal feature in training. Image taken from [141]. (c)
Microscopic cell with selected fractal feature [46].

e.g. the extension by rotated Haar-like features [96] introduced in Section 3.1.1.
Pham et al. developed polygonal Haar-like features [118] to increase the variety of
shapes that a feature can represent. In this way, many improved Haar-like features
rely on combinations of multiple rectangular structures in order to maintain the fast
feature computation using integral images.

In contrast, the proposed method replaces the rectangular structures of conven-
tional Haar-like features by a new class of fractal features that are able to adopt
to curved-shaped structures. But conforming with Haar-like features, the fractal
features as well utilize an intermediate image representation to allow for an efficient
computation.

Contribution

This chapter proposes and evaluates a new integral image representation based on
space-filling curves to explore fine non-rectangular structures. Three types of fractal
features are introduced based on the Peano-Hilbert-, Gosper-, or E-Curve. Preceding
the feature extraction, integral images traversing along these fractal curves are cal-
culated. In that way, only two memory references are required to represent complex
fractal structures by computing the sum of pixel intensities covered by that struc-
ture. Similarly to Haar-like features, the difference between pixel intensities in two
image regions builds a feature. Utilizing three points on the fractal curve, a feature
can exploit two adjacent fractal structures. The end point of the first path segment
is here as well the starting point of the second path segment. Four-point features
represent non-cohesive image regions defining separated fractal path segments.

The novel fractal feature class is evaluated on the well-established MIT+CMU
frontal face dataset introduced in Section 2.2 and compared to standard Haar-like
features. In addition to face detection, the fractal features are applied to microscopic
cell data, see Section 2.2 and Figures 2.8 and 6.2c. In Figure 6.2a is exemplary shown
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6.1 Boosted Fractal Integral Paths

(a) Conventional (b) Hilbert (c) Gosper (d) E-Curve

Figure 6.3: Normalized integral images traversing different paths on a homogeneous
image [46].

how the Peano-Hilbert fractal curve traverses an image plane. Figure 6.2b presents
a feature formed by the Gosper curve and selected by AdaBoost for face detection.

To summarize, the contributions in this chapter are:

� A novel fractal feature class is developed.

� Three-point and four-point features allow for a richer representation.

� The new method is evaluated in the field of face and microscopic cell detection.

6.1 Boosted Fractal Integral Paths

Boosted fractal integral paths are based on the Viola and Jones object detection
framework introduced in Section 3.2.2. The novel class of fractal features is described
in detail in this section.

6.1.1 Fractals

Following [9], a fractal is ”a rough or fragmented geometric shape that can be split
into parts, each of which is (at least approximately) a reduced-size copy of the whole”.
Such a property is also called self-similarity so that a pattern observed in one scale
can often be found on other scales. There exist many examples in nature which
demonstrate the beauty and importance, but also frequent appearance of fractals,
e.g. in crystals, in snow flakes, or plants such as the romanesco broccoli (see Figures
6.1a and 6.1b). Hence, it is assumed that fractals can provide a good description for
structures in all natural images including the test sets of faces and microscopic cells
employed in this work.
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6.1.2 Fractal Features

So the motivation is to take advantage of that common appearance of fractal struc-
tures by the feature set provided to the learning algorithm. Hence, the proposed class
of features utilizes a special type of fractal curves to compute fractal integral images
along these curves. Conventional integral images are constructed as described in
Section 3.1.1 by summing up pixel intensities from the upper left to the lower right
corner of an image.

Similarly, the fractal integral images integrate the pixel intensities of a 2D image
plane along the fractal curve. Figure 6.3 displays the conventional integral image
used for Haar-like features and the fractal integral images following three different
fractal curves. These integral images have been normalized and computed on a
homogeneous image. Precalculated integral images provide the benefit that only
few references into the integral image are required to compute the sum of pixel
intensities in a region of the original image. In that way, pixel sums of arbitrary
rectangular regions can be calculated by accessing four points in the conventional
integral image (see Section 3.1.1). In contrast, differences between two pixels in the
fractal integral image represent the sum of pixels covered by diverse fractal structures
having a huge variability of shapes including self-similar structures. According to
Haar-like features, a fractal feature is as well calculated as the difference of the sums
of pixel intensities in two image regions. These regions are defined by sampling
numerous positions on the fractal integral path and build the feature set for the
AdaBoost machine learning algorithm.

6.1.3 Fractal Properties

To appropriately construct the integral image, it is desirable that the followed fractal
path traverses every pixel in the image exactly once. This property is given by
space-filling curves also referred to as Peano curves. One member of this type of
fractal curves is the Peano-Hilbert curve. Like other space-filling curves, it has
the property of creating a 1D representation of a 2D image while preserving its
proximity relationship better than a raster scan. Thus, the Peano scan is examined
for texture analysis and image compression due to its improved autocorrelation [6,
34, 83, 119, 114]. The integral image shown in Figure 6.3b illustrates the proximity
of the Peano-Hilbert curve as each quadrant is completely traversed before the next
quadrant is entered.

Several space-filling curves are known but not all of them are suited for fractal
integral paths. Fractals that base on tree structures as H tree fractals cannot be
used. The difference of two pixels of an integral image computed on this tree is
not as required in any case the sum of pixels of the original image along the fractal
path that connects these two points. The Z-order curve has applications similar
to the Peano scan, but the Peano-Hilbert curve is preferred in this work due to
its better preservation of proximity. The E-Curve is favored over the Moore curve
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6.1 Boosted Fractal Integral Paths

(a) Hilbert curve (b) Gosper curve (c) E-Curve

Figure 6.4: Fractal curves used to traverse image plane and to define fractal struc-
tures exploited in feature computation [46].

(a) 1. iteration (b) 2. iteration (c) 3. iteration (d) 4. iteration

Figure 6.5: First four iterations of the Peano-Hilbert curve. [46]

because its shape has compared to the Moore curve a stronger difference to the
Peano-Hilbert curve. Space-filling curves that are closed curves like the Sierpinski
curve are not suited as well. They could be split, defining a start and an end point,
but the property of the conventional integral image that the start and end point are
at different sides of the image plane would be lost. The Gosper curve is chosen as a
third fractal for the proposed method.

Figure 6.4 illustrates the selected fractal curves. The Gosper curve is not a space-
filling curve in terms of the definition given above as it traverses approximately every
sixth pixel of the 2D image a second or third time. But due to the locality of the
curve, this yields only some slightly enlarged features in which the corresponding
pixels are weighted two or three times. As the feature selection process is performed
by the AdaBoost algorithm with respect to the minimization of the classification
error (see Sections 3.2.1 and 3.2.2) the disparity of those fractal features is accept-
able. The Gosper curve is selected because of its different shape containing angles
that are multiples of 60 degrees. This leads also to an non-square outer boundary.
Hence, an inner part of the curve is clipped as the fractal path has discontinuities
at its boundary. Similar to the disparities in features, this discontinuities are also
tolerable due to the feature selection process.
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6.1.4 Construction of Fractals

Fractal curves can be build using a Lindenmayer System (L-System). The biologist
Aristid Lindenmayer defined in 1968 a mathematical model to simulate the growth
of multi-cellular organisms [97]. He developed a system of string replacement rules
which are applied in parallel to recursively create an output string. The L-System
grammar is defined by a tuple G = (V ,ω,R), where

� V is the alphabet of the system,

� ω is a string of symbols from V and defines the initial state,

� R defines a set of production rules. Each rule consists of the predecessor, a
string of symbols from V , and the successor, the string of symbols from V the
predecessor is replaced by.

In contrast to a formal grammar the production rules of a L-System are in parallel
applied in each iteration of the system. The alphabet V consists of constant symbols
that are not substituted by the production rules and variables that are replaced
and thus can be found on the left hand side of the rules. In this application of
constructing a small set of space-filling curves, context-free L-Systems are used in
which the production rules only refer to an individual symbol and do not take its
neighboring symbols into account. Interpreted as turtle graphics, the output of a
L-System can be used to construct fractals. In turtle graphics, a so-called turtle bot
draws by executing a queue of simple instructions, like draw line, turn left, and turn
right. The length of one line segment and the angle to turn is often given as global
parameter that can be a function of the iteration depth. Thus, each constant in the
alphabet of the L-System represents a command for the turtle bot.

The Peano-Hilbert curve for example can be described by the following L-System:

� V = {X,Y, + ,−},

� ω = X,

� R :
⎧⎨
⎩X → +Y F − XFX − FY +

Y → −XF + Y FY + FX− ,

where F instructs the turtle bot to draw a line of length 1, + to rotate anticlockwise
by 90� and − to rotate clockwise by 90�. X and Y are variables and thus do not
represent commands to the bot. Figure 6.5 shows the first four iterations of the
Peano-Hilbert curve starting at an initial angle of 0�. Similarly, the Gosper curve
and the E-Curve can be constructed by slightly more complex L-Systems that are
specified in Appendix A. The first iterations of the Gosper curve and E-Curve are,
respectively, presented in Figure A.1 and A.2

6.1.5 Feature Types

In order to describe diverse structures, two different types of features are imple-
mented for each fractal, three- and four-point features. Their specific name refers
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6.2 Experimental Results

(a) E-Curve feature (b) Hilbert feature (c) Gosper feature

(d) E-Curve feature (e) Hilbert feature (f) Gosper feature

Figure 6.6: Examples of fractal features found in training [46]. Images from [22].

to the property that the calculation of these fractal features requires only three and
four memory references, respectively. Three-point features represent two adjacent
integral path segments and thus give preferences to cohesive regions. Similarly, the
Haar-like features presented in Section 3.1.1 only describe connected areas but re-
quire in the case of a two-rectangle feature six memory references. Additionally,
four-point features are defined that represent separated regions that better conform
to diverse structures.

6.2 Experimental Results

The proposed fractal features are evaluated for face detection and the detection of
microscopic cells.

6.2.1 Face Detection

The face detectors are learned from 1022 gray level images showing 340 individuals
taken from the BioID face database [22], the MUCT face database [110], and the
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Figure 6.7: ROC curves showing the detection performance on the MIT+CMU
frontal face dataset. Classifiers consisting of fractal features are compared to conven-
tional Haar-like features (Rectangles) and a mixed classifier of Peano-Hilbert fractals
and Haar-like features.

AT&T database of faces that are introduced in Section 2.2.

Example images taken from these data sets are presented in Figures 2.2, 2.3, and
2.4. In an automatic process, the faces are localized with respect to the given eye
positions. The extracted images are then aligned and zoomed to a common scale
resulting in a final patch resolution of 128 × 128 pixels.
The three types of fractal features and, for comparison, Haar-like features have been
trained for 46 rounds. Figure 6.6 presents some fractal features selected in the
training process. These boosted classifiers are evaluated on the MIT+CMU frontal
face dataset A and C [141].

Figure 6.7 presents the detection performances in ROC curves. The fractal fea-
tures and Haar-like features (Rectangles) show different characteristics. On the one
hand the Haar-like features demonstrate better results in the high precision range
and are at some point outperformed by the Hilbert fractals. On the other hand the
fractal features achieve higher TPRs.

In a second experiment, the characteristics of rectangle and fractal features are
combined. Hence, the Hilbert fractals are selected, as they achieved the best results
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6.2 Experimental Results

on the microscopic cell test set (see Table 6.1), and incorporated into a combined
rectangle-fractal framework. The training success of the combined framework is com-
pared in Figure 6.8 to the corresponding homogeneous frameworks. The combined
framework shows less fluctuations in the detection rates during training, indicat-
ing that the different characteristics of fractal and rectangle features stabilize the
combined training. Figure 6.8d demonstrates despite some fluctuations the overall
improvement of the combined classifier compared to a pure Haar-like classifier.
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Figure 6.8: (a)-(c) Detection rates showing training success in face detection vs.
amount of training rounds. (d) Difference in detection rates of Rectangles+Hilbert
and Rectangles only vs. amount of rounds, presenting the benefit of mixed training.

Additionally, experiments are conducted on degraded and modified versions of
the training data to give an analysis of the strengths and weaknesses of the different
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Figure 6.9: (a) Detection rate on training face images with lowered contrast. (b)
Detection rate on rotated training face images. For visual clarity a middle section
of the x-axis, showing most differences, is presented in both figures.

feature classes. Figure 6.9a illustrates the detection rates achieved on the positive
training set when its contrast is degraded. Controlled by a parameter between 0 and
1 the appearance of each training image is transformed, respectively, between the
original image having the expected contrast and a homogeneous mean image with
minimal contrast. In Figure 6.9b the influence of rotation is shown. The training
images are therefor rotated up to 45� prior to the detection process. It can be
observed that especially in case of low contrast the application of fractal features
can improve the detection performance. In case of strong rotations the rectangle
features perform better. These observations indicate that fractal features fit closer
to curve-shaped object structures. The closer fitting can result in an improved
robustness to contrast changes but can also lead to a higher sensitivity to rotations.

The overall performance of the tested detection framework is not as high compared
to very sophisticated face detectors as the focus of the research is on the impact
of features and the comparison of the new feature class to conventional Haar-like
features. Hence, a basic, non-cascaded boosting framework is intentionally selected
and additional pre- or post-processing steps are relinquished like e.g. canny pruning
in OpenCV [24] to increase the detector’s performance. Another reason for the
performance gap is the discrepancy in the properties of the training set and the
MIT+CMU data set. The new feature class is designed and trained to adapt to
various fine structures present in higher image resolutions that are common these
days. In contrast, the well-known MIT+CMU test set contains several low-resolution
images which do not provide fine details like the training set.
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Figure 6.10: ROC curve showing the detection performance on the microscopic cell
data set.

6.2.2 Microscopic Cell Detection

Additional experiments are conducted using microscopic cell images, see Figure 2.8.
This data set is divided into a training and validation set using a 67/33 ratio following
the suggestion of Crowther and Cox [33] for small data sets.

Classifiers are learned for Haar-like, Hilbert-, Gosper-, and E-Curve features. Ta-
ble 6.1 presents the results of classifiers trained in 50 rounds. The results illustrate
that the fractal features and above all the Hilbert curve increases the detection
performance specified by the F-measure (F1) defined in Section 3.4.

Table 6.1: Results of microscopic cell data detection. Hilbert curve achieves the best
result.

Application Feature class F1 score

Microscopic cell data Rectangles 95.89%
Microscopic cell data Hilbert curve 97.27%
Microscopic cell data Gosper curve 96.33%
Microscopic cell data E-Curve 96.33%
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Figure 6.11: Detection rates showing training success in microscopic cell detection
vs. amount of training rounds.
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6.3 Discussion

The ROC curves in Figure 6.10 illustrate that the fractal features, except for
the E-Curve, slightly outperform the Haar-like features. The Gosper curve clearly
reaches first a TPR of 100%. The dependency of the detection rate from the number
of training rounds is illustrated in Figure 6.11. In earlier rounds of the training, the
detection rates of the fractals (see Figures 6.11b, 6.11c, 6.11d) are more stable having
less fluctuation. Figure 6.11a shows that the rectangles reach with less classifiers
100% True Negative Rate (TNR) but the TPR decreases to 93.69%. But in the
following rounds, the detection rates of the rectangle features highly fluctuate.

6.2.3 Training and Computing Time

Due to precalculated fractal paths, the training time between conventional and frac-
tal features does not differ. Furthermore, the classical and fractal integral image
computation is an initial process at the beginning of the algorithm. But there are
some differences in the validation process using a sliding window. For the classical
Haar-like features, it is sufficient to compute the integral image once for each scale
and cut out sub-windows at arbitrary positions. In contrast using fractal features,
the fractal integral image needs to be computed for every sub-window. Despite pre-
calculated fractal paths the validation time, applying a sliding window, is slower.
But this disadvantage could be overcome for example by programmable hardware
like Field-Programmable Gate Arrays (FPGAs).

6.3 Discussion

This chapter introduces a new type of features for object detection which describe
fractal structures that enable to better adapt to curved-shaped objects. Experiments
in the domains of face detection and the detection of cells during cryo-conservation
showed the improved detection performance of the fractal feature class.

Indeed, the usefulness of the fractal integral paths highly depend on the object
classes to be detected. E.g. artificial objects, such as cars or manufactured parts
might be better detected with rectangular features. But especially for high-resolution
images of natural object classes, the fractal curves lead to a noticeable improvement
with only minor algorithmic modifications.

By doing this, the proposed method can be easily incorporated in several boosting
frameworks using integral image representations.

89

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


Chapter

7Multi-Feature Mining

for Detector Learning

90

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


Chapter 7 deals with feature mining methods to generate feature sets for object
detection that are customized to the object class in an automatic process that iden-
tifies characteristic structures. The motivation is to provide features to a machine
learning algorithm which are more suitable for distinguishing the object. An addi-
tional advantage of such customized feature sets is their reduced size because sets of
higher order features can swiftly reach sizes that cannot be processed during classi-
fier learning in reasonable time if any possible feature manifestation is considered.
This consequently leads to constraints reducing the variability of a feature type.

In case of Haar-like features (see Section 3.1.1), only a small set of feature tem-
plates that represent coherent rectangular regions is commonly defined and then
scaled and translated to generate the feature set. Without that restriction to vari-
ations of feature templates the number of possible pairs of rectangular regions in a
training image would be excessive. But such a feature set build from templates still
contains a very large number of irrelevant and redundant features. It completely
neglects the available domain knowledge given by characteristic structures of the
positive training set. Feature mining addresses the task of extracting this knowledge
in constructing a customized feature set.

This chapter is partly based on a published conference article [44].

Contributions

Section 7.1 presents a feature mining method to build a set of generalized Haar-like
features based on information given by the positive training set. By exploiting do-
main knowledge, the portion of redundant and irrelevant information in the created
feature set is significantly smaller compared to a conventional overcomplete set of
Haar-like as described in Section 3.1.1. In return, this allows to loosen constraints
on the variability of the Haar-like features. The size of the derived new feature set
is drastically decreased but it is shown to be more discriminative, allowing a higher
training success when learning an object detector using AdaBoost.

As a generalized type of Haar-like features, computation can be further on per-
formed efficiently using integral images, essentially calculating intensity differences
between local areas. Hence, this feature type utilizes coarse object characteristics
represented by image areas but ignores fine object structures and shapes that seem
to be especially vital in the domain of pedestrian detection since intensity differences
between areas suffer e.g. from the variability induced by different clothing.

In order to observe as many different object characteristics as possible it is con-
ducive to employ sets of multiple feature types that are complementary in their
analyzed object structures. But this approach consequently holds the drawback of
increasing the computational costs of classifier learning. Feature mining weakens this
drawback by constructing manageable and efficient feature sets and thus promotes
to enrich the overall pool of features by a complementary feature set exploiting fine
structures. Therefore, a new type of customized features is introduced in Section
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7 Multi-Feature Mining for Detector Learning

7.2 that bases on HOG descriptors (see Section 3.1.2) and is extracted as well from
the positive object class.

Several experiments demonstrate a strong benefit in the number of required fea-
tures and detection performance if two complementary feature types are enabled
to strengthen each other. For this, the machine learning algorithm is allowed in a
mixed training to freely select and combine features of different types in contrast
to a separate training where a set consisting of only one feature type is provided.
Figure 7.1 presents the first learned stage in each case for mixed pedestrian, face,
and car detectors.

In summary, the contributions of this chapter are as follows:

� Exploiting domain knowledge given by the object class to construct customized
feature sets in boosting-based object detection.

� Introduction of two complementary feature sets utilizing coarse object charac-
teristics and fine object structures.

� The approach leads to a much smaller but more distinguishing mixed feature
set.

Prior Work

Dollár et al. [40] propose several strategies to explore a very large feature space
and identify meaningful features that are used to model the mined feature space
incorporating a metric to measure the feature quality. A method for scene text
recognition has been recently developed by Lee et al. [86] that extracts a feature
space more directly from the image data of the object domain. In order to build a
more efficient feature space from HOG features that commonly utilize the complete
image plane by a grid of overlapping regions, Lee et al. develop a mid-level feature
pooling algorithm that automatically learns a discriminative feature space from a
set of randomly generated image sub-regions.

Instead of randomly sampling image regions, Section 7.1 proposes to extract do-
main knowledge by image segmentation in order to construct a pool of generalized
Haar-like features.

Many methods e.g. [41, 89, 78] demonstrate that it is beneficial to utilize not
only one but multiple feature types that represent different object characteristics.
Benenson et al. present in a recent survey [21] a good overview on the mix of feature
types in various pedestrian detection methods. One of the most applied feature types
are HOG features and adapted variants [160, 76, 85, 86].

In the following sections, the two complementary feature types are described and
the feature mining methods to create pools customized to the object class are illus-
trated.
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7.1 2Rec Features

HL HOG HL

HOG

HL

HOG

Figure 7.1: Learned features in the first stage of mixed pedestrian, face, and car
detectors. The utilized feature types are generalized Haar-like (HL) features and
HOG based features exploiting gradient information. Both feature types are pro-
posed in this chapter along with the feature mining methods to generate feature
pools customized to the object class. The two left-most images present the learned
features of the first cascade stage of the mixed pedestrian detector. It consists of one
generalized Haar-like feature and five HOG based features. The features are shown
in separate images for more visual clarity. The remaining images present in the same
way the first learned stage of the mixed frontal face and lateral car detector.

7.1 2Rec Features

The feature mining approach to create the first feature type aims on identifying
rectangular image regions that are distinctive for the object class. The response
computed by the feature is essentially the difference of the mean pixel intensities of
such two regions so that the feature is called 2Rec feature. More specifically, the
detection window is in addition variance normalized to achieve partial invariance
to changing lighting conditions as proposed by Viola and Jones [146]. In contrast
to conventional Haar-like features these rectangular regions are not required to be
coherent but can be spatially separated. 2Rec features are therefore generalized
Haar-like features that allow for a higher variability of represented shapes. The
acquisition of domain knowledge in the feature mining process heavily restrains the
amount of irrelevant and redundant data in the feature pool. By this, a feature pool
is created that has a smaller size compared to conventional Haar-like features but is
more distinguishing [44].

The mean image of the positive training set is analyzed for frontal face and lateral
car detection in [44] to acquire domain knowledge for the pool of 2Rec features.
Multiple watershed segmentations of the mean image are created using different
parameterizations to generate a combined set richer in segments of varying size
and position. These segmented areas are subsequently approximated by rectangu-
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(a) (b) (c) (d)

Figure 7.2: Example images for face detection illustrating the construction of rect-
angular regions for 2Rec features. (a) Mean image of the positive face training set.
(b) Exemplary watershed segmentation of the mean face. For the creation of the
complete 2Rec feature pool, multiple watershed segmentations are applied varying
the number of segments. (c) and (d) Examples of rectangular regions approximated
to segments taken from the watershed segmentation. Images from [1]

lar regions to preserve the fast and efficient computation using the integral image
representation. In order to create rectangles that approach the watershed segments
in terms of covered region, the rectangles’ center positions and dimensions are com-
puted, respectively, as the mean and twice the standard deviations of the coordinates
of all pixels belonging to a segment.

Figure 7.2 presents examples of watershed segments and fitted rectangular regions
for the face data set.

The complete pool of 2Rec features is then assembled from all 2-combinations of
the approximated rectangles.

In the domain of pedestrian detection, the inner class variability is very high due
to different body poses and viewing angles. For this reason, the mean image of
the positive training set is not an appropriate source for characteristic structures
of pedestrians since their variability cannot be represented. Furthermore, the dis-
tinctive regions in pedestrian images like limb segments are comparatively small.
Superpixel methods, as described in Section 3.3.1, that aim on local, structure pre-
serving over-segmentations are thus more appropriate for pedestrian images. The
superpixel segmentation of Schick et al. [132] additionally regulates the compactness
of the superpixels and allows for a better separation of individual body parts. Hence,
a different method is proposed to create the pool of 2Rec features customized for
the pedestrian data set. Instead of segmenting the mean image, distinctive regions
are identified in 20 images randomly selected from the positive training set. The
superpixel algorithm is then parameterized to create 18 superpixels in each image
in order to derive a reasonable set of characteristic regions. Due to the compactness
property of the superpixel algorithm of Schick et al. [132], the rectangular regions
approximated in the same way as for the watershed segmentation cover only small
center regions of the superpixels. Therefore, an additional larger rectangle is fitted
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7.2 Keypoint HOG Features

Figure 7.3: Superpixel label masks and approximated rectangular regions. Two
rectangles of different size are fitted to each superpixel printed as solid and dashed
lines. Pedestrian images from [47].

to each superpixel. The dimensions of the larger rectangle are set to be three times
the standard deviation of the x-coordinates and y-coordinates of all pixels belonging
to the superpixel. Figure 7.3 shows some examples of pedestrian images, the cre-
ated superpixel label masks, and the approximated rectangular regions. The smaller
fitted rectangles are printed as solid and the larger rectangles as dashed lines.

7.2 Keypoint HOG Features

The second feature type is constructed to supplement 2Rec features that represent
coarse structures of the object class. Finer object details should be utilized such that
a derivation based approach is selected. The proposed Keypoint HOG (KPHOG)
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feature and the feature mining approach to generate it are heavily inspired by HOG
descriptors [35] and SIFT features [99, 100]. But it is also considered that the
developed feature has to be efficient with computational costs similar to Haar-like
and 2Rec features.

Instead of utilizing a dense overlapping grid of HOG descriptors as proposed by
Dalal and Triggs [35], a feature mining method is applied to locate and evaluate
single HOG descriptors at distinctive image positions. This significantly decreases
the number of computed HOG descriptors. Moreover in contrast to a grid structure,
HOG descriptors can be evaluated as well on different scales without raising the
computational costs too much.

The feature mining approach to create Keypoint HOG (KPHOG) features aims on
identifying keypoints that are distinctive for the object class similar to the localiza-
tion of SIFT descriptors. But with respect to the application of KPHOG features in
a sliding window based object detector, a search for scale-space extrema as in SIFT
is not necessary. The sliding window of a detector is applied on different image scales
such that all learned features are scaled as well and the associated keypoints have
not to be invariant to multiple scales.

In the proposed method, keypoints that are distinctive for the object class are
localized on multiple scales by a Harris corner detector [68] that is applied to a
Gaussian image pyramid. A collection of 25 images is randomly selected from the
positive training set and a Gaussian image pyramid is created for each image by
reducing it as long as a basis HOG region of 16×16 pixels fits into the down-scaled
pyramid image. The pyramid images of every image in the collection is then searched
for 20 corner points using the Harris corner detector. All corner points belonging
to images of the same pyramid level are clustered by the k-means algorithm [98] to
gain 50 clusters for each pyramid scale. The cluster centers are taken as potential
keypoints and are stored together with the down-scaling factor of their associated
pyramid level and the number of elements in the cluster. This list of keypoints on
multiple scales is then sorted by the cluster sizes and the keypoints belonging to the
largest clusters are taken as center positions of the KPHOG features.

The number of added keypoints has been set as a parameter to 25 for frontal
faces and lateral cars and to 50 for the pedestrian data set. In addition, the above
procedure to extract keypoints from random subsets of the positive training data is
repeated once for cars and four times for pedestrians to further enrich the feature
set.

A KPHOG feature is specified on a quadratic image region around a keypoint such
that its size is given by the dimension of the basis HOG region multiplied by the
down-scaling factor of the associated pyramid level. Figure 7.4 presents KPHOG
regions on multiple scales identified for pedestrian, face, and car data sets.

In order to create a very efficient feature, several simplifications have been incorpo-
rated compared to other HOG based features. Thus, the KPHOG feature represents
a single bin in a histogram of oriented gradients over the quadratic regions around
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(a)

(b)

(c)

Figure 7.4: Multi-scale KPHOG regions identified in the feature mining procedure.
(a) Regions extracted from the pedestrian data set. The complete set of regions
utilized in the detector learning is considerably larger such that only every 25th
keypoint region is visualized. (b) The complete set of keypoint regions used in face
detector training. (c) Every 5th keypoint region extracted from the UIUC car data
set.
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Figure 7.5: KPHOG feature learned in the first stage of the mixed pedestrian detector
shown on an example image. (a) The keypoint location identified in the feature
mining procedure and its surrounding quadratic region is plotted as dashed red
lines. The learned KPHOG feature represents the depicted gradient orientation bin
in the upper left quadrant. (b) Oriented gradients computed on the keypoint region
in the example image. The bin selected by the machine learning algorithm is marked
red. (c) Presentation as concatenated histogram of all quadrants.
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7.3 Experimental Results

the keypoints. In contrast to a SIFT descriptor, the orientation assignment and
transformation relative to that orientation is omitted. The computed gradient his-
togram is inspired by the HOG descriptor of Dalal and Triggs such that the region
around the keypoints is divided into 2×2 cells. A separate histogram having 9 bins
is calculated for each area covered by a cell. These bins represent unsigned gradient
orientations evenly spaced over 0� to 180�. The magnitudes of gradients orientated
in the corresponding directions are added up in the bins. Using the integral image
representation, these histograms over rectangular regions can be efficiently computed
using integral histograms [89, 120]. The construction of 9 integral images for the
values of the histogram bins enables the efficient calculation of a single bin for any
rectangular image region by only four memory accesses. The histogram of all four
cells in a keypoint region are concatenated to a histogram of 36 bins. Dalal and
Triggs suggest to normalize the HOG descriptor over such a block of cells. A L1
normalization is used in the proposed KPHOG feature that can be as well efficiently
computed on an integral image. Therefore, a tenth integral image is created adding
up all histogram bins such that the KPHOG feature can be computed by only eight
image access operations.

The complete pool of KPHOG features consists of all histogram bins on all key-
point regions identified in the feature mining procedure and the feature response is
the normalized value of such a single histogram bin.

Figure 7.5 illustrates a KPHOG feature learned in the first stage of the mixed
pedestrian detector.

7.3 Experimental Results

This section evaluates the performance of each feature type and the impact of a
mixed application of both feature types. Object detectors are learned in the domains
of frontal face, lateral car, and pedestrian detection.

7.3.1 Face Detection

The face detectors are learned on the MPLab GENKI Database, GENKI-4K Subset
[1] from the Machine Perception Laboratory in California. Figure 2.5 presents some
example images of the data set.

Training Comparison of 2Rec and Haar-like Features

This section analyzes the training processes when learning from a customized set of
2Rec features, obtained from the feature mining method proposed in Section 7.1, in
comparison to conventional Haar-like features.
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(a) (b)

Figure 7.6: Cumulative margin distributions with detail view of face training set
after 2, 5, 10, and 100 rounds in case of (a): 2Rec features, (b): Haar-like features.

Training success In the first experiment, statistics of the training process are col-
lected to analyze the training success of classifiers employing 2Rec features compared
to conventional Haar-like features. Single-stage classifiers are trained to measure the
progress of the margin distribution (see Section 3.2.3) on the training set.

Figure 7.6a and 7.6b show the cumulative margin distribution of a 2Rec classifier
and a Viola and Jones classifier after different rounds in training. In case of the
2Rec classifier the best feature is selected from a pool of only 44732 features while
the Haar-like feature pool supplies 4.61 · 106 features. Nevertheless, the training
algorithm is able to select more discriminative features out of the smaller pool of
2Rec features. This can in particular be observed on the red margin curves in Fig-
ure 7.6. These curves present the margin distribution after two rounds in training
using solely 2Rec features or Haar-like features. The values of the cumulative dis-
tributions at a margin of −1 shows that the amount of training examples that have
been misclassified by both learned classifiers derived after two training rounds is
significantly higher in case of Haar-like features. Similarly, both learned Haar-like
classifiers classify approximately 52% of the training examples correctly, whereas
both 2Rec classifiers decide correctly for roughly 74% of the training set.

In other words, the more shallow progress for low margins of the 2Rec feature
curves compared to the Haar-like feature curves after equal training rounds demon-
strates that the 2Rec classifiers are not only classifying a bigger part of the training
set correctly but also that these decisions are more clearly. This advantage persists
during training. After 100 training rounds the combined 2Rec classifier shows at the
zero margin position, in contrast to the Haar-like classifier, no misclassified training
examples anymore.

Hence, the margin analysis of the training process demonstrates that in com-
parison to conventional Haar-like features the feature mining approach proposed in
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Section 7.1 creates a set of clearly more distinguishing features leading to a superior
boosted classifier. Furthermore, the customized feature set is considerably smaller
and thus allows for a much faster training.

Training time The benefit of the proposed method in processing time in the
feature selection of the training phase is obvious. Referring to the previously reported
sizes of the feature pools, the Haar-like feature space is 103-times bigger than the
2Rec feature space. The feature selection process scales nearly optimal using feature
pools of different sizes. Due to the constant computation overhead, a slight reduction
in efficiency per feature of 3.84% is measured on a single multi-core workstation when
processing the smaller pool of 2Rec features. This yields a total training speed-up
of 99.04-times using 2Rec features. The sizes of the training sets and the measured
speed-up are listed in Table 7.1.

Table 7.1: Properties of the evaluated sets of conventional Haar-like features and
2Rec features. The sizes of the feature sets and the measured training speed-up are
presented.

Feature set Size of set Size ratio Training speed-up
Haar-like features 4.610000 103 1
2Rec features 44732 1 99.04

Detectors Learned from Customized Features

For the following experiments, the object detectors have been learned by the dis-
tributed machine learning framework introduced in Chapter 4. Despite the mas-
sively parallelized computation in the developed framework, the training of capable
objector detectors is still very time-consuming as large quantities of training data
have to be processed. Since the customized 2Rec features demonstrated superior
training success along with a significant speed-up in training (see Table 7.1), the
conventional Haar-like features have been omitted in favor of 2Rec features for all
detectors presented in the remainder of this chapter.

Detection performance For the face detectors learned on customized features
by the distributed framework, the feature mining methods described in Section 7.1
and 7.2 extract from the positive set two feature pools consisting of 27495 approxi-
mated rectangle features (2Rec) and 936 KPHOG features, respectively. The initial
negative training set contains 2916 non-face images and an additional set of 19774
scene images showing no faces is provided for sampling new negative training images
in the bootstrap phase. Three cascaded face detectors are learned employing solely
2Rec or KPHOG features as well as a mixed detector utilizing both feature classes.
Each stage of the cascaded detector is trained until it achieves a target true positive
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Table 7.2: Training statistic for face detection. The number of features are presented
that are required to achieve the target rates of each cascade stage.

Cascade stage 1 2 3 4 5 6 7 8 9
No. of 2Rec 5 16 19 31 47 69 85 123 145

No. of KPHOG 8 8 10 13 15 17 21 26 32
No. of Mixed 5 7 8 10 12 15 16 19 24

Percentage of 2Rec 40% 29% 13% 20% 17% 7% 19% 16% 17%

Cascade stage 10 11 12 13 14 15 16 17
mixed
cont.

No. of 2Rec 186 248 353 411 538 621 852 942 11 (0%)
No. of KPHOG 37 50 62 78 100 145 179 ≥4106 10 (80%)
No. of Mixed 27 32 41 46 56 59 72 83 -

Percentage of 2Rec 26% 16% 24% 22% 29% 34% 31% 36% -

rate of 99.5% while maintaining a true negative rate of at least 60%. All correctly
classified negative training examples are removed from the training set after each
completed stage. The negative training set is then supplemented with 10000 new
images that have been found as false positives by applying the detector of the so
far completed cascade stages to the bootstrap set. In that way, the negative set
assigned to the machine learning algorithm consists in later stages of increasingly
harder training examples.

Table 7.2 presents the number of required features in the cascade stages of each
face detector. For the mixed detector, the percentages of selected 2Rec features are
listed as well. Figure 7.7 shows the cumulated sums of required features after each
stage. The KPHOG features demonstrate to require clearly less features in each
stage compared to 2Rec features to fulfill the target rates. In total 801 KPHOG
features are selected in 16 stages compared to 3749 2Rec features. But the machine
learning algorithm is not able to achieve the target rates in the 17th stage solely using
KPHOG features. The learning of the KPHOG based detector has been aborted in
the 4106th training round of the 17th stage while the 2Rec based detector completes
this stage employing 942 features. Please note, that the negative training sets after
the first stage are not identical for different detectors due to the application of
the in each case currently learned detector during bootstrapping. An interesting
additional experiment is to continue the training of both detectors that contain only
a single feature class with the mixed feature set after the 16th cascade stage. The
continued mixed training clearly demonstrates how well 2Rec features, exploiting
coarse object characteristics, and KPHOG features, utilizing fine object structures,
supplement each other. The 17th stage that the 2Rec detector completes using 942
features can be fulfilled by only eleven KPHOG features. Similarly the non-fulfilled
17th stage of the KPHOG detector can be completed in only ten mixed training
rounds selecting eight 2Rec and two KPHOG features. Consequently, an entirely
mixed training massively reduces the number of required features to in total 449
after 16 stages.

First, the FDDB face detection benchmark [74] is evaluated. Table 7.3 compares,
relative to the 2Rec detector, the reduction factor of the required features in the
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Figure 7.7: Required features in the face detectors. Cumulated sum of features
contained in face detectors after each detector cascade stage. The KPHOG based
detector requires considerably less features compared to the 2Rec based detector.
But a mixed detector further on significantly reduces the number of features.

learned detector cascades with the resulting speed-up on the FDDB test set when
computing the detector cascades from the integral images. The measured speed-ups
are significantly below the reduction factors and indicate that the 2Rec detector is
nevertheless very efficiently rejecting candidate sub-windows in early cascade stages.
Figure 7.8 presents some example images of detected faces.

Figure 7.9 presents a performance comparison of the differently learned cascaded
detectors on the FDDB test set. The result of the OpenCV Viola&Jones detector is
additionally given as a baseline and the performance of a more extensively trained
mixed detector is shown. The performance curves of the three different 16-stage de-
tectors demonstrate that the KPHOG features clearly outperform the 2Rec features

Table 7.3: Improvement of learned detectors relative to the 2Rec detector for face
detection. The reduction factor of the number of features required in the detector
cascade are presented and the measured speed-ups in computing the detector cascade
from the integral images are given.

Improvement relative to 2Rec detector 2Rec KPHOG Mixed
Reduction factor of required features 1 4.68 8.35
Speed-up of cascade computation 1 1.97 2.55
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Figure 7.8: Example images of detected faces in the FDDB data set [74]. It contains
many crowded scenes that are challenging because of very small or partly occluded
faces as well as faces in multiple poses.
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Figure 7.9: Performance curves showing the detector quality on the FDDB data
set. A comparison of the three differently learned cascaded detectors is given. The
performance of the OpenCV Viola and Jones detector is shown as a baseline and
the results of a more extensively trained mixed detector is presented as well. The
detector solely containing KPHOG features demonstrates on this data set better
results than the 2Rec based detector. But the mixed detector presents comparable
performance utilizing significantly less features.
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Figure 7.10: Performance curves showing the detection quality of the mixed detector
in comparison to state-of-the-art methods on the FDDB data set. Legend titles
are in accord with the performance curves presented on the FDDB web page. The
rank of the mixed detector is below the top tier of face detection methods but still
remarkable for an efficient, light-weight detector that is learned on frontal faces and
only requires gray-scale images. The competing methods are in part considerably
more complex, e.g applying CNNs or incorporating multiple views, 3D models, face
alignment, or occlusion handling.
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in this benchmark. The mixed detector shows a detection quality that is similar to
the KPHOG features. But as previously described, the mixed detector can achieve
this performance by utilizing significantly less features.

A comparison to state-of-the-art methods is given in Figure 7.10. The more ex-
tensively trained mixed detector presents a performance below the top tier of face
detection methods. But its performance is still remarkable as the detector is very
efficient and light-weight. The mixed detector is learned on frontal faces and requires
only gray-scale images. Many competing methods are in contrast considerably more
complex, e.g applying CNNs or incorporating multiple views, three dimensional (3D)
models, face alignment, or occlusion handling.

The second face detection benchmark is the MIT+CMU frontal face dataset [141].
Some example images of detected faces are shown in Figure 7.11 and Figure 7.12
presents the results on this benchmark.

The ROC curves are generated by adjusting the classification thresholds of the
cascaded detectors. The comparison of the three 16-stage detectors shows a different
result. Here, the 2Rec detector outperforms the KPHOG detector. The reasons for
the lower performance of the KPHOG detector are likely the contained low-resolution
and blurred images that do not provide sufficient fine structures. But the mixed
detector even so achieves results equal to the leading 2Rec detector by utilizing
massively less features.

Hence, the evaluation of both face detection benchmarks demonstrates that the
mixed training of both complementary feature types enables a more robust detec-
tor. In addition, the mixed detector is more efficient as it utilizes significantly less
features.
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Figure 7.11: Examples images of detected faces in the MIT+CMU benchmark [141].
This data set contains several difficult test images that are noisy, blurred, or show
faces illustrated by comics and line drawings.
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Figure 7.12: ROC curves showing the detection performance on the MIT+CMU
data set. A comparison of the three differently learned cascaded detectors is given.
The results of a more extensively trained mixed detector is presented as well. The
detector solely containing 2Rec features demonstrates on this data set better results
than the KPHOG based detector. But the mixed detector presents comparable
performance utilizing significantly less features.
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Table 7.4: Training statistic for car detection. The number of features are presented
that are required to achieve the target rates of each cascade stage.

Cascade stage 1 2 3 4 5 6 7 8 9
No. of 2Rec 9 5 4 8 11 19 26 31 43

No. of KPHOG 5 5 7 7 9 11 12 15 18
No. of Mixed 4 5 7 7 9 9 9 10 11

Percentage of 2Rec 50% 0% 0% 0% 11% 22% 0% 40% 9%

Cascade stage 10 11 12 13 14 15 16 17
mixed
cont.

No. of 2Rec 50 66 83 109 139 131 170 197 -
No. of KPHOG 19 19 24 27 32 31 42 48 -
No. of Mixed 10 14 16 15 15 20 21 25 -

Percentage of 2Rec 30% 36% 13% 13% 20% 30% 19% 24% -

7.3.2 Lateral Car Detection

Three lateral car detectors solely utilizing 2Rec or KPHOG features as well as a
mixed detector are learned on the UIUC image database for car detection [3]. Figure
2.9 presents example images of the car database. Each stage of the learned cascaded
detector is completed when the target true positive rate of 99.5% and the target true
negative rate of 60% are fulfilled. Similar to the face detector training, all correctly
classified negative training examples are removed from the negative training set
when completing a detector stage. Afterwards, 5000 new negative training images
are extracted from a set of 19774 scene images showing no cars.

The number of required features for car detectors solely employing 2Rec and
KPHOG features and for a mixed car detector are listed in Table 7.4. The car
database is easier to learn compared to faces such that significantly less features are
required in all detectors. But again it can be observed that clearly fewer KPHOG
features than 2Rec features are required. A mixed learning utilizing both features
types in addition strongly reduces the overall number of features. In total after
17 stages, the 2Rec based detector requires 1101 features while the KPHOG based
detector requires 331 features. A mixed training further reduces the total number
of features to 207. Table 7.5 compares, relative to the 2Rec detector, the reduction
factor of the required features in the learned detector cascades with the resulting
speed-up on the car test set when computing the detector cascades from the inte-
gral images. The measured speed-ups for car detection are also below the reduction
factors but not as clearly as for face detection. This indicates that the early cas-
cade stages of the 2Rec detector are in comparison to face detection less efficient in
rejecting candidate sub-windows. Some example images of detected cars in the test
set are shown in Figure 7.13.

Figure 7.14 presents the results on the UIUC car database. The three 17-stage
detectors achieve similar detection performances in this benchmark. The KPHOG
based detector reaches a slightly higher recall but the mixed detector shows similar
results using significantly less features. Hence, the mixed detector proves to be the
most efficient detector in the car database in accordance to the other experiments.
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Table 7.5: Improvement of learned detectors relative to the 2Rec detector for car
detection. The reduction factors of the number of features required in the detector
cascade are presented and the measured speed-ups in computing the detector cascade
from the integral images are given.

Improvement relative to 2Rec detector 2Rec KPHOG Mixed
Reduction factor of required features 1 3.33 5.32
Speed-up of cascade computation 1 2.80 3.11

Figure 7.13: Example detections in the UIUC lateral car dataset [3].
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Figure 7.14: Performance curves showing the detection quality on the UIUC cars
database. A comparison of the three differently learned cascaded detectors is given.
All detectors demonstrate a comparable high performance on this easier benchmark.
But the mixed detector utilizes significantly less features, similar to the experimental
results on face and pedestrian detection.
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Table 7.6: Training statistic for pedestrian detection. The number of features are
presented that are required to achieve the target rates of each cascade stage.

Cascade stage 1 2 3 4 5 6 7 8 9
No. of 2Rec 16 44 96 182 364 579 932 1030 1752

No. of KPHOG 9 17 26 39 59 93 133 199 268
No. of Mixed 6 11 21 30 47 68 88 111 150

Percentage of 2Rec 17% 18% 14% 27% 19% 19% 23% 22% 25%

Cascade stage 10 11 12 13 14 15 16 mixed cont.
No. of 2Rec 1805 1940 1885 1958 1740 1926 823 15 (0%)

No. of KPHOG 367 503 687 816 1142 1260 1339 153 (75%)
No. of Mixed 224 286 377 405 437 534 543 -

Percentage of 2Rec 29% 33% 37% 42% 39% 45% 45% -

7.3.3 Pedestrian Detection

Similar to the face detector training described in Section 7.3.1, pedestrian detectors
are learned that (i) solely utilize approximated rectangle features (2Rec), (ii) solely
utilize KPHOG features (KPHOG), and (iii) combine both feature types in a mixed
detector. The Daimler mono pedestrian benchmark dataset [47] offers the training
data required by the machine learning algorithm. Each cascade stage is learned to
achieve a target true positive rate of 99.5% and a target true negative rate of 60%.
The bootstrap phase works as described in Section 7.3.1 with the difference that
15000 new negative training images are added. Table 7.6 presents the number of
selected features in the learning of the pedestrian detectors.

In common with the face and lateral car detectors requires the KPHOG based
detector clearly less features than the 2Rec based detector. A mixed training of
both feature types furthermore strongly reduces the number of required features.
For 16 completed stages, the 2Rec detector requires 17072 features, the KPHOG
detector 6957 features and the mixed detector 3338 features. In compliance with
the experiments of Enzweiler and Gavrila [47] in their paper on the Daimler mono
pedestrian benchmark, a saturation of the detector performance is observed after
learning 16 cascade stages. The given bootstrap set of non-pedestrian images is
most likely exhausted after that learning progress causing as well the decline of
required features in the last learned cascade stage of the 2Rec based detector.

The experiment of repeating the last stage of both detectors, that contain only a
single feature class, by a mixed learning demonstrates again the ability of both fea-
ture classes to complement each other. The last stage of the 2Rec detector consisting
of 823 features can be completed as well by only 15 KPHOG features. Instead of ap-
plying exclusively 1339 KPHOG features, the last stage of the KPHOG detector can
be learned using 153 mixed features containing 114 2Rec and 39 KPHOG features.

Table 7.7 compares, relative to the 2Rec detector, the reduction factor of the
required features in the learned detector cascades with the resulting speed-up on the
Daimler test set when computing the detector cascades from the integral images.
The mixed detector cascade is able to perform this computation on average in less
than 40 milliseconds on a standard desktop computer when using a detector setting
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Table 7.7: Improvement of learned detectors relative to the 2Rec detector for pedes-
trian detection. The reduction factors of the number of features required in the
detector cascade are presented and the measured speed-ups in computing the detec-
tor cascade from the integral images are given.

Improvement relative to 2Rec detector 2Rec KPHOG Mixed
Reduction factor of required features 1 2.45 5.11
Speed-up of cascade computation 1 4.58 5.75

that applies, compared to the setting utilized in the benchmark, a slightly coarser
sampling and stricter classification threshold. In contrast to face and car detection,
the measured speed-ups are even higher than the reduction factors. This clearly
indicates that 2Rec features on its own are not well suited for pedestrian detection.
Figure 7.15 presents some example images of detected pedestrians in the Daimler
test set.

Figure 7.16 presents a performance comparison of the differently learned cascaded
detectors. Additionally, results of the VJ [146] and HOG [35] detectors are given as
baselines and the performance of a more extensively trained mixed detector is shown.
The performance curves of the three different 16-stage detectors demonstrate that
the KPHOG features clearly outperform the 2Rec features in pedestrian detection.
But the mixed detector shows a detection quality that is superior to the KPHOG
based detector although it utilizes significantly less features.

Figure 7.17 compares the mixed detector (2Rec+KPHOG 20S) of 2Rec and KPHOG
features to the best methods on the Daimler test set listed by the Caltech bench-
mark. Since the Daimler test set is gray-scale, only the subset of detection algorithms
that do not rely on color information can be taken into consideration. The mixed
2Rec and KPHOG detector shows the best results together with the MLS [111] detec-
tor and outperforms methods using a variety of different feature types and learning
algorithms. MLS learns mid-level features based on low-level HOG features by a
boosting framework. The other methods in comparison are LatSvm-V2 [53] apply-
ing deformable part-based models, ConvNet [136] based on a convolutional neural
network, RandForest [102] that additionally exploits context information and Mul-
tiFtr+Motion [148] that incorporates optical flow information using previous frames.

Benenson et al. give in [21] a categorization of all detectors that are present in
the Caltech benchmark at the time of July 2014.

114

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


7.3 Experimental Results

Figure 7.15: Example images of detected pedestrians in the Daimler Mono Pedestrian
Detection benchmark [47]. The detections are evaluated and marked according to
the criterion defined by the Daimler benchmark. Black bounding boxes visualize the
ground-truth of optional pedestrians, that are to small to be a mandatory detection,
or mark cyclist instead of pedestrians. Blue bounding boxes present the ground-truth
of mandatory pedestrians. Detections that have been successfully matched to a
ground-truth pedestrian are marked in green. Please note that the detector has
been parametrized to detect only pedestrians big enough to be mandatory in order
to avoid unnecessary false positive detections. For this reason, part of the smaller
pedestrians might be detected as well when searched for.
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Figure 7.16: Performance curves showing the detector quality on the Daimler Mono
Pedestrian data set. A comparison of the three differently learned cascaded detectors
is given. The performance of the VJ [146] and HOG [35] detectors are shown as base-
lines and the results of a more extensively trained mixed detector (2Rec+KPHOG 20S)
is presented as well. The detector solely containing KPHOG features demonstrates
on this data set significantly better results than the 2Rec based detector. But the
mixed detector presents superior performance utilizing significantly less features.
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Figure 7.17: Performance curves showing the detector quality on the Daimler Mono
Pedestrian data set. The mixed 2Rec+KPHOG 20S detector shows the best results
together with the MLS [111] detector and outperforms methods using a variety of
different feature types and learning algorithms.
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Figure 7.18: Example images taken from the negative training sets of the face detec-
tors learned in Section 7.3.1. Top row: Images from the negative set of the mixed
detector after 19 learned cascade stages. Middle row: Images of the 2Rec detec-
tor after 16 learned stages. Bottom row: Images of the KPHOG detector after 16
learned stages.

7.3.4 Insights into the Training Process

This section gives an insight into the process of learning the face, car, and pedes-
trian detectors. For this, example images are presented that have been extracted
from the negative training sets that are utilized for learning the last stage of the
respective cascaded detectors. The negative sets for later cascade stage are updated
during training by the bootstrap strategy described in Section 3.2.2. As a result,
they contain only training images that are classified by all preceding stages as the
object class to be detected. Since the negative training set is visualized, the ex-
amples are supposed to be increasingly similar to the positive examples for later
stages but should not contain any true instance of the object class. Examples of the
detector training are presented for faces in Figure 7.18, for cars in Figure 7.19 and
for pedestrians in Figure 7.20. The negative sets from training the face detectors
and in particular the car detectors reveal that the utilized sets of bootstrap images
accidentally contain positive examples. These flaws are undesired and should have
a negative effect on the performance of the learned detectors.

It is important to note that the presented examples are selected with respect
to human perception such that the positive classification by the preceding stages is
comprehensible for some of the examples. But the negative sets contain as well image
that show no similarity to the positive examples for a human observer. The reason for
their occurrence is the strongly different perception provided by features. Vondrick
et al. give in [147] a very nice insight into the perception of HOG features. They
illustrate that in scenes that are too dark for the perception of human eyes, HOG
features are still able to observe structures due to their invariance to illumination
changes and their amplification of gradients. But this amplification has also the
effect that in some cases very homogeneous or noisy image regions wrongly have
an appearance similar to the object class in the perception of features and thus are
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7.3 Experimental Results

Figure 7.19: Example images taken from the negative training sets of the car detec-
tors learned in Section 7.3.2 after 16 learned cascade stages. Top row: Images from
the negative set of the mixed detector. Middle row: Images of the 2Rec detector.
Bottom row: Images of the KPHOG detector.

collected by the bootstrap process in the negative training set.

Figure 7.18 presents negative examples from the mixed face detector training in the
top row, examples from training the 2Rec detector in the middle row and examples
from training the KPHOG detector in the bottom row. The examples demonstrate
that the mixed detector fails on animal faces. Faces of human statues and a line
drawing of a face are positively classified as well but it might be not clear to which
class these examples should belong. The 2Rec detector shows a similar attitude but
seems to be more focused on the eye and mouth region so that similar structures at
the corresponding positions can deceive it. In contrast, the KPHOG detector seems
to place more importance on the shape of faces.

The layouts of Figure 7.19 and 7.20 are the same as for the face detector examples.
All car detectors suffer from the flaws of the bootstrap set so that true car images
are very prominent in the negative set. Apart from that, the detectors fail on other
vehicles like planes and helicopters that naturally have a similar aerodynamic shape.
In addition, the 2Rec detector is irritated by different kinds of grid structures. The
bootstrap set for the training of pedestrian detectors is flawless. The negative sets
contain some examples that might be recognized as pedestrians at first glance. Other
examples include structures that are similar to human legs or contain objects that
roughly have the shape of a pedestrian. But a clear difference in the precedence of
structures cannot be observed for the different detectors.
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Figure 7.20: Example images taken from the negative training sets of the face detec-
tors learned in Section 7.3.3. Top row: Images from the negative set of the mixed
detector after 19 learned cascade stages. Middle row: Images of the 2Rec detec-
tor after 15 learned stages. Bottom row: Images of the KPHOG detector after 15
learned stages.

7.4 Discussion

This chapter proposes a generic approach to create feature pools customized to var-
ious object classes for learning boosting-based object detectors. The introduced
feature mining strategies enable the combined utilization of two complementary fea-
ture classes that provide a high inner-class variability. But their customization to
the object class renders the feature pools manageable and allows for a fast detec-
tor learning. A parallelized training in a distributed machine learning framework
furthermore strongly reduces the time to learn a detector.

In-depth experiments demonstrate that a mixed learning of complementary fea-
tures not only results in a more robust detector but also increases its efficiency as
significantly less features are required. The learned detectors show competitive or
state-of-the-art results in the domains of frontal face, lateral car, and pedestrian
detection.
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8 Non-Maximum Suppression using Dempster’s Theory of Evidence

This chapter addresses the post-processing in a object detection framework. In
cascaded detectors, an image is passed through a cascade in which all stage detectors
have to classify a found object positively. For this purpose, detectors commonly
apply a sliding window which scans the scene image on shifted positions and varied
scales. This frequently results in multiple detections of an object at slightly shifted
and scaled positions. In a post-processing step, these multiple detections have to be
combined to determine the final object position and scale.

Prior Work

Often only little effort is spend on detection merging and simple methods are applied.
Although this subtask has a strong impact on the overall accuracy of the detection
framework and the results achieved in benchmarks. E.g., Viola and Jones in [146]
merge all overlapping detection windows to one detection. But this approach easily
leads to worse results in case of increasing numbers of detections, in particular if
detections on large scales are involved. Everingham et al. [50] thus reported in the
Pascal VOC Challenge that the measured average precision steeply dropped for all
participating methods when they tightened the tolerances for correct detections on
the “car” class.

In this chapter, a novel method for merging multiple detections is proposed. The
Dempster-Shafer Theory of Evidence (DS) is applied to combine confidence values
similar to Real AdaBoost [129] and uncertainty information that is available in a
cascaded detector. In this way, intra-cascade information is exploited in an improved
merging of multiple detections during post-processing. Huang et al.[73] introduced a
nested classifier to inherit classification confidences in detection cascades. But their
approach is confined to the classification step and requires a retraining.

Contribution

The contribution of this chapter can be summarized as follows:

� First, a novel method is proposed for merging multiple detections that exploits
intra-cascade confidences using Dempster’s Theory of Evidence. The evidence
theory allows in the process to model confidence and uncertainty information
to compute the overall confidence measure for a detection. It is shown that the
proposed confidence gives an appropriate measure to distinguish the reliability
of detections.

� Second, this confidence measure is applied to improve the accuracy of the
determined object position by refining the position and scale of merged detec-
tions. Figure 8.1 illustrates this process of Non-Maximum Suppression (NMS)
that finds a more accurate object position.

� The proposed method is evaluated on public object detection benchmarks and
is shown to improve the detection performance.
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8.1 Merging Multiple Detections based on Dempster’s Theory

Figure 8.1: Synthetic example illustrating the position refinement in Non-Maximum
Suppression (NMS). The red bounding box represents the average position of all
detections while the yellow bounding box marks a more accurate position that could
be obtained from assigned detection confidences. Image from [141].

� As a post-processing step, the proposed method is easily applicable in other
object detection frameworks without the need of retraining the object classi-
fiers. Hence, other object detectors could benefit from the proposed detection
merging.

8.1 Merging Multiple Detections based on

Dempster’s Theory

In this section, the proposed strategies on merging detections are described in detail.
The required methods of machine learning, object detection and evidence theory are
briefly discussed in advance.

8.1.1 Cascaded Classifier

The object detection framework used in this work utilizes a cascaded classifier as
introduced by Viola and Jones, see Section 3.2.2 and Figure 3.5. Each stage of this
cascaded classifier consists of a strong classifier that is created using the AdaBoost
machine learning algorithm. Hence in a cascade of NS stages, NS strong classifiers
have to decide positively for a scanned sub-window x to be classified as an object.
Any of these candidate sub-windows is then further processed in the post-processing
step in which the merging of multiple detections is done.

Each strong classifier Hs(x) = ∑NRs
r=1 αrshrs(x), s ∈ 1 . . . NS is composed of an

ensemble of NRs weak classifiers hrs which have been selected in the training phase
of the AdaBoost algorithm (see Algorithm 3 and Equation (3.17)). Each weak
classifier returns 0 or 1 in case of a negative or positive classification, respectively.
These ensembles decide in a weighted majority vote in which each weak classifier
hrs supports its decision by an assigned weight αrs that represents the classification
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8 Non-Maximum Suppression using Dempster’s Theory of Evidence

error of that weak classifier in training. Thus, the maximum positive classification
of a strong classifier is given by Hs,max = ∑NRs

r=1 αrs and the decision threshold of

AdaBoost is the weighted majority τs = 1
2

∑NRs
r=1 αrs.

AdaBoost’s decision threshold aims at a low error rate on the training set without
differentiating between positive and negative training examples. But due to the
rejection opportunity of each cascade stage, a very high TPR is primarily desired.
Hence according to Algorithm 3, a subsequently adjusted threshold τs is used to
maintain a very high TPR accepting an also high FPR.

8.1.2 Dempster-Shafer Theory of Evidence

This section briefly describes Dempster’s theory of evidence. It is utilized in the pro-
posed method to model intra-cascade decision confidences and uncertainties. The
Dempster-Shafer Theory of Evidence was introduced in 1968 by A. P. Dempster [38]
and later in 1976 expanded by G. Shafer [137]. The Evidence theory can be inter-
preted as a generalization of Bayesian theory that directly allows the representation
of uncertainty and inaccuracy information. The key element of the evidence theory
is the definition of a mass function on a hypotheses set Ω. Let a hypotheses set be
denoted by Ω and composed of n single mutually exclusive subsets Ωi written as
Ω = {Ω1, Ω2, . . . , Ωn}. For each element A of the power set ℘(Ω) a mass function
m(A) is defined that expresses the proportion of all evidence assigned to this hypoth-
esis. Hence, the mass function m represents a degree of confidence and is defined as
m : ℘(Ω) → [0,1]. Furthermore, the following conditions have to be fulfilled by the
mass function:

(i) m(∅) = 0 (ii)
∑

An⊆Ω
m(An) = 1 . (8.1)

Mass functions in evidence theory describe the totality of belief as opposed to
Bayesian probability functions. This belief can be associated with single and com-
posed sets of hypotheses allowing for a higher level of abstraction. The so-called
additivity rule p(A) + p(A) = 1 is in contrast to Bayesian theory not generally
valid in Dempster-Shafer Theory of Evidence. This means that if m(A) < 1, the
remaining evidence 1 − m(A) does not necessarily claim its negation A.

Dempster’s Rule of Combination

In order to combine information from different stages of the detection cascade, Demp-
ster’s rule of combination is applied. Dempster’s rule combines two mass functions
that are defined within the same frame of discernment but belong to independent
bodies of evidence. Let m1 and m2 be two mass functions associated to such inde-
pendent bodies of evidence. Then Dempster’s rule defines the new body of evidence
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by the mass function

m(A) = m1(A) ⊗ m2(A) =

∑
B∩C=A

m1(B)m2(C)

1 − ∑
B∩C=∅

m1(B)m2(C)
. (8.2)

The denominator in Equation (8.2) works as a normalization factor that ignores the
conflicting evidence. Hence, Dempster’s rule of combination focuses on the measure
of agreement between two bodies of evidence. Dempster’s rule is associative and
thus can be used to iteratively combine evidences obtained from arbitrary number
of classifiers.

8.1.3 Joint Confidence based on Dempster-Shafer

In the proposed application of joining intra-cascade confidences, the frame of dis-
cernment is defined as Ω = {TP,FP} containing the set of hypotheses supporting
a True Positive (TP) or a False Positive (FP) decision. The uncertainty of each
cascade stage s is modeled by ms(Ω) with respect to its size:

ms(Ω) = 1 − NRs∑NS
s=1 NRs

(8.3)

This leads to a higher belief into stages that consist of larger number of weak clas-
sifiers.

The mass functions, expressing the proportion of evidence of a stage s, for TP or
FP decisions are defined by:

ms(TP ) = Hs(x) − τs

Hs,max − τs

(1 − ms(Ω)), (8.4)

ms(FP ) =
(

1 − Hs(x) − τs

Hs,max − τs

)
(1 − ms(Ω)) (8.5)

This results in higher stage confidence when the difference between the response
of the strong classifier and the decision threshold grows. Using Dempster’s rule of
combination the stage confidences for a detection Di are joined by

mDi
(TP ) = m1(TP ) ⊗ m2(TP ) ⊗ . . . ⊗ mNS

(TP ) (8.6)

to gain an overall detection confidence.

8.1.4 Confidence-based Detection Merging

Merging of multiple detection commonly takes place in the post-processing step of
an object detection framework. The position and scale information of the candidate
sub-windows has to be processed to determine the true object location.
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8 Non-Maximum Suppression using Dempster’s Theory of Evidence

(a) (b) (c)

Figure 8.2: Example images showing detections of the proposed method on the three
evaluated data sets: (a) MIT+CMU [141], (b) FDDB [74], and (c) UIUC lateral car
database [3].

In this work, the candidate detections are first clustered using the Meanshift
algorithm [30, 31] as the number of true objects and thus desired clusters is unknown
in advance. The i-th candidate detection is hereby defined as a four-dimensional
vector Di = (ui,vi,ιi,κi)
 which represents the combined position (ui,vi)
 and scale
(ιi,κi)
 in u and v-dimension. The set of n candidate detections is partitioned by
the Meanshift algorithm in four-dimensional space into a family of subsets L =
{L1,L2, . . . ,Lj} of j ≤ n candidate detection clusters L that are pairwise disjoint.
The merged detections are then set as the cluster centers of the j clusters in L and
a simple confidence of the j-th cluster is given by its cluster size |Lj|.
To improve the performance of the object detector, this chapter proposes two

enhancements to the detection merging. First, the detection confidences given by
Equation (8.6) are exploited to define the Dempster-Shafer based confidence of the
j-th cluster as Γj = ∑

Di∈Lj
mDi

(TP ). Second, these confidences of detections asso-
ciated to one cluster are utilized to refine the position and scale of the cluster center.
In this way, the Dempster-Shafer refined position/scale of the j-th cluster is defined
by:

D′
j = 1

Γj

∑
Di∈Lj

DimDi
(TP ) (8.7)

8.2 Experimental Results

In this section, cascaded classifiers are applied by a sliding window to data sets for
face and lateral car detection. The acquired multiple detections are post-processed
using different merging strategies and results are presented for the Face Detection
Data Set and Benchmark (FDDB), the MIT+CMU face data set and the UIUC car
data set described in Section 2.2. Figure 8.2 exemplary shows detections found by
the proposed method in the evaluated data sets.
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Figure 8.3: Performance curves presenting the detector quality on FDDB [74] for
different approaches on merging multiple detections. Confidence calculation and po-
sition/scale refinement based on Dempster-Shafer (DS) is compared to Meanshift-
based confidence and position/scale (MS) as well as mixed approaches using
Dempster-Shafer only for confidence and position/scale. The performance of the
Viola and Jones implementation in OpenCV is presented as a baseline result. The
shown range is (a) up to saturation and (b) a detailed view.

8.2.1 Face Detection

For the detection of faces, a classifier is trained on the MPLAB GENKI database,
GENKI-4K subset introduced in Section 2.2. The obtained strong cascaded classifier
consists of 10 stages and 593 weak classifiers in total.

Experiments Incorporating Confidence

The first experiments are conducted using the Face Detection Data Set and Bench-
mark. The inspection of the detection confidence enables the separate evaluation
of two contributions in the proposed approach: The confidence computation based
on Dempster-Shafer theory of evidence and the position and scale refinement using
these confidences.

Figure 8.3 presents the detection results for different strategies on merging multiple
detections. The performance of the Viola and Jones detector in OpenCV, supplied
by the FDDB project page, is presented as a baseline result. But the primary topic
of this work is the impact of the pre-processing step of multiple detection merging
and not the comparison to different object detection methods. The proposed method
(DS) is compared to an approach that only exploits the preceding Meanshift cluster-
ing (MS). For this, the number of detections forming each cluster is utilized as the
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Figure 8.4: (a) ROC curve presenting the detection performance on the MIT+CMU
frontal face database. The effect of the position/scale refinement using Dempster-
Shafer is compared to Meanshift clustering in the case of loosened and stricter ground
truth tolerances. Additionally results when omitting multiple detection merging are
presented. (b) Performance curve presenting the detector quality on the UIUC
lateral car database. The effect of the additional position/scale refinement using
Dempster-Shafer is compared to merging multiple detections by Meanshift cluster-
ing.

confidence value. In addition, the results of two mixed approaches are presented that
use Dempster-Shafer solely for confidence calculation or position/scale refinement.
The detailed view in Figure 8.3b demonstrates that, although the same detector is
used, the performance can be significantly improved by about 5% in terms of True
Positive Rate. It can be also observed from the blue curve in Figure 8.3b that the
proposed confidence computation causes the biggest part of the improvement. This
demonstrates that the Dempster-Shafer confidence gives an appropriate measure
to distinguish the reliability of detections. The position/scale refinement slightly
improves the detection performance, indicating that the trained classifier is not de-
tecting symmetrically around the true object location. The proposed refinement can
correct that bias presenting improved results in the green curve of Figure 8.3b.

Experiments on Position/Scale Refinement

Additional experiments are performed on the MIT+CMU frontal face database. This
test set gives ground truth information on the position and scale of the faces but
no evaluation tool is provided. Hence, the evaluation against ground truth is done
by a built-in function of the detection framework that governs the ROC curve by a
threshold multiplier in the detection process instead of exploiting confidence values.
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8.3 Discussion

For this reason, Figure 8.4a shows only the impact of the position/scale refinement.
In addition, results for completely omitting the post-processing are presented as the
built-in evaluation does not require the merging of multiple detections. The general
benefit of the post-processing can be observed from the improved results compared
to the approach without merging multiple detections. During the merging process
detection outliers are suppressed that are outside the ground truth tolerances. The
detector performance only slightly benefits from the position/scale refinement. This
is partly a consequence of the properties of the MIT+CMU frontal face database
that contains many very small faces but provides no subpixel accuracy in the ground
truth data. As the accuracy of the detections position and scale has no influence
on the ROC curve as long as they are inside the tolerances, additional results for
stricter tolerances are presented by the curves labeled as strict. These curves reveal
a slight improvement due to the proposed position/scale refinement even on this
unfavourable test set.

8.2.2 Lateral Car Detection

To evaluate an additional object class, experiments are conducted on the UIUC lat-
eral car database. Figure 8.4b compares the detection results achieved when merging
multiple detections by Meanshift clustering and the proposed position/scale refine-
ment using Dempster-Shafer confidences. The evaluation tool does not consider
detection confidences but requires multiple detections to be merged to a single de-
tection in advance. Hence, a concentration on only the impact of the position/scale
refinement is predetermined. In this experiment, that utilizes a different object
class, an improvement of the detection performance can be observed due to the po-
sition/scale refinement. This indicates that the car classifier as well does not detect
symmetrically around the true object location but introduces a bias that can be
rectified by the proposed method.

8.3 Discussion

This chapter presents a novel method for merging multiple detections which exploits
classification information available in cascaded detectors. Two enhancements are
proposed. First, Dempster-Shafer theory of evidence is applied to model a confidence
measure which incorporates intra-cascade decision confidences and uncertainties.
Second, a method is presented to refine the position and scale of merged detections
based on these confidence measures. These methods can be easily integrated in
existing detection frameworks to improve performance without retraining of typical
cascaded detectors. Results are presented for a recent benchmark on unconstrained
face detection (FDDB), the MIT+CMU face and the UIUC car database. The
refinement of position and scale solely results in a slight improvement in detection
performance. In addition, the proposed confidence measure shows an improvement of
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5% in TPR for applications that consider detection confidences. This demonstrates
that Dempster-Shafer Theory of Evidence is a powerful technique to model and
exploit intra-cascade confidences.
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9 Conclusion

Summary

This thesis addresses the problem of visual object detection based on machine-
learned classifiers. A distributed machine learning framework has been developed
to train detectors for several object classes creating cascaded ensemble classifiers by
the Adaptive Boosting (AdaBoost) algorithm.

Methods are proposed that enhance several components of an object detection
framework to improve its performance. An approach for augmenting the training
data is introduced in order to increase the performance of the learned detector.
Improvements to the utilized features are proposed by feature mining methods that
create feature sets customized to the object class. Additionally, a novel class of
fractal feature is introduced. The detector post-processing is enhanced by a novel
method that performs the Non-Maximum Suppression.

The proposed methods have been published at CAIP, SCIA, ISVC and CIARP.

Contributions

The major contributions of this dissertation are summarized in the following.

Learning from sparse training data: Detectors learned from training sets that
contain only a small amount of positive samples often show only poor classifica-
tion performance. In Chapter 5, a method is proposed that addresses this problem
by augmenting the sparse training data. The key idea is to narrow the boundary
between the positive and negative object class in order to constrain the AdaBoost
algorithm to learn a more selective classifier. Hence, the training set is augmented
based on a statistical model obtained from a Principal Component Analysis of the
positive object class.

Fractal features: Chapter 6 proposes a novel type of features that comprise a
wide variety of shapes by utilizing fractal structures. A special class of fractals,
space filling curves, allows a smooth incorporation in a machine learning framework
that processes Haar-like features since the fractal curves are stored in special in-
tegral image representations. Similar to Haar-like features, the fractal features are
efficiently computed from the integral images.

Feature mining: In Chapter 7, generic methods are introduced to customize the
feature pool to the specific object class that should be detected. Results are pre-
sented for frontal face, lateral car, and pedestrian detection. This approach addresses
the problem that learning an object detector is in general computational expensive
and very time-consuming. During detector learning, the AdaBoost algorithm eval-
uates the complete feature pool on the set of training images so that the training
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complexity is greatly influenced by the size of the feature pool. The proposed meth-
ods allow to construct feature sets that are smaller but contain more distinctive
features.

Two types of customized features are introduced in Chapter 7 that are complemen-
tary in exploiting image intensities of coarse structures as opposed to local gradient
information:

2Rec features are generalized Haar-like features that are constructed to exploit
characteristic image regions of the object class based on image segmentation. They
represent a much wider variety of shapes compared to conventional Haar-like features
since associated image regions are not constraint to be coherent but can be arbitrarily
located. Due to the customization to the object class, the utilized pool of 2Rec
features is significantly smaller compared to Haar-like features enabling a much
faster and more successful detector training.

Keypoint HOG (KPHOG) features are customized to the object class by locating
distinctive keypoints on multiple scales by a Harris corner detector. Gradient direc-
tions and magnitudes are exploited in local histograms based on regions around the
the keypoints. In this way, KPHOG features represent fine object structures and
are well suited to supplement 2Rec features.

A mixed learning that utilizes a feature pool consisting of both feature types is
shown to create a superior detector that achieves higher detection performance and
is more robust to noisy or low resolution image data. Additionally, the number of
required features in the detector is strongly reduced by exploiting complementary
features.

Dempster-Shafer based Non-Maximum Suppression: Commonly, object de-
tectors perform a Non-Maximum Suppression (NMS) during post-processing to merge
multiple detections of a single object to one final detection. Chapter 8 introduces
a NMS method that models detection confidences and uncertainty using Dempster-
Shafer Theory of Evidence. Several internal variables obtained from the detector
cascade are combined by the evidence theory and incorporated to improve the posi-
tion accuracy and overall confidence of merged detections.

Distributed machine learning framework: In order to utilize the huge amount
of computing power that is required for learning high-performance object detectors,
a distributed machine learning framework has been developed that parallelizes the
detector learning on a computer cluster. Chapter 4 gives a brief introduction in the
architecture of the framework that has been designed with a strong emphasis on
generic programming allowing to transparently process different feature types.
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9 Conclusion

Future Work

This thesis concludes in the following with a short discussion on future research.

A distributed machine learning framework has been developed as part of this work
with a strong focus on generic programming in its architecture. This allows the
framework to embed other machine learning algorithms as well as to transparently
process different feature classes.

A field for future research is to apply concepts that are effective in other machine
learning algorithms. In own works, Baumann et al. [13, 15, 17, 18] propose to im-
prove the performance of Random Forests classifiers by incorporating concepts from
Boosting algorithms. The cascade structure of the detector and the corresponding
bootstrap strategy in learning is adapted to Random Forests in [13]. A weighting
scheme inspired by AdaBoost is incorporated in [15], assigning individual weights
to leaf nodes based on the tree topology and implementing a weighted majority de-
cision in the forest. A different weighted majority voting with respect to class and
tree specific error rates is proposed in [17].

The experiments in this thesis showed that a mixed detector learning that jointly
utilizes complementary feature classes can significantly improve the detector’s per-
formance, robustness, and efficiency, meaning that the number of required features
in the detector is reduced.

Recently, deep learning approaches, mostly performed by Convolutional Neural
Networks, demonstrate very good results in many computer vision tasks [138, 77,
133]. Instead of learning from the feature responses to the training data, deep
learning operates directly on the input data. The first layers of a trained CNN then
represent structures comparable to conventional features. In the sense of transfer
learning, these layers are frequently assumed to be universally usable and kept when
learning for other visual recognition tasks [113]. Furthermore in recent research,
these structures are extracted from CNNs and provide as features to other machine
learning algorithms [138, 28].

Hence, a promising approach is to incorporate such CNN features in the developed
framework for a joint detector learning. This strategy might be especially interesting
for automotive applications that enable only very limited computational resources.
In this way, capable features obtained from deep learning can be utilized in the
efficient environment of a cascaded detector.
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Appendix

ALindenmayer Systems

Defining Fractal Integral Paths

135

https://doi.org/10.51202/9783186855107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:37:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186855107


A Lindenmayer Systems Defining Fractal Integral Paths

A.1 L-System Defining Gosper Curve

� V = {X,Y, + ,−},

� ω = FX,

� R :
⎧⎨
⎩X → X + Y F + +Y F − FX − −FXFX − Y F+

Y → −FX + Y FY F + +Y F + FX − −FX − Y
,

where F instructs the turtle bot to draw a line of length 1, + to rotate anticlockwise
by 60� and − to rotate clockwise by 60�. The nonterminal symbols X and Y are
ignored by the turtle bot.

Figure A.1 presents the first iterations of the Gosper curve drawn by the turtle
bot using the instructions of the previously defined L-System.

(a) 1. iteration (b) 2. iteration (c) 3. iteration (d) 4. iteration

Figure A.1: First four iterations of the Gosper curve.

A.2 L-System Defining E-Curve

� V = {X,Y, + ,−},

� ω = X,

� R :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X → XXY + Y X − XY + Y + X − −Y XX − Y + +X −
−Y XX − −Y + +X − Y + Y + +X − X − −Y Y + +

Y → XXY + Y X − X − Y XY Y + +XY X − Y Y + +XY +
X − X − −Y + Y + +X − X − −Y Y

,

� Rfinal :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X → FF + F + F − F − F + F + FF − F − FFF + F −
F − FF − F + FF + F + F − F − FF+

Y → FF + F + F − F − FF − F + FF + F + F − FFF +
F + FF − F − F + F + F − F − FF−

,

where F instructs the turtle bot to draw a line of length 1, + to rotate anticlockwise
by 90� and − to rotate clockwise by 90�. The set R of production rules is applied
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A.2 L-System Defining E-Curve

iteratively to construct the symbol string that represents the fractal structure. In one
final replacement step, the set Rfinal is used to substitute the nonterminal symbols
by command strings for the turtle bot.

The output of the turtle bot is presented in Figure A.2 for the first iterations of
the E-Curve defined in the preceding L-System. Since the production rules of the
E-Curve are more complex, it grows much faster than the Gosper curve.

(a) 1. iteration (b) 2. iteration (c) 3. iteration

Figure A.2: First three iterations of the E-Curve.
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[84] C. Lantuéjoul. La squelettisation et son application aux mesures topologiques
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