
Dietrich H.Fischer
Gesellschart fiir Mathematik und Datenverarbeitnng,
Darmstadt, Germany

Consistency Rules and
Triggers for Thesauri

Fischer, D.H.: Consistency rules and triggers for thesauri.
Int.Classif. 18(1991)NoA, p. 212-225, 11 refs.
From the point of view of an objectMoriented knowledge
representation language, desirable control functions for the­
sauri are discussed in relation to a recently published catalo­
gue. The background of this systems-analytical examination is
an experiment in prototyping a thesaurus maintenance system
for an existing thesaurus using general purpose object-orien­
ted tools. (Author)

1. Introductory Remarks Concerning Data Modelling
or Knowledge Representation
1.1 Preliminary Remarks

This paper is a written version of my talk "Modelling
thesauri on the basis of a frame system" given at the
August 1990 ISKO Seminar on "Thesaurus Software". I
was invited to give a talk on this topic as a follow-up to an
article published on an experiment in object -oriented
modelling of a conventional thesaurus (Rostek/Fischer,
1988). Apparently this report mainly drew attention
because the prototype offered an innovative graphical
interface. But the approach taken had other innovative
aspects which we likewise consider interesting. In this
paper, as in my talk at the seminar, I will focus on the
data model or knowledge-representation aspect and
especially deal with consistency rules for thesauri. In
order to understand the relevance of my topic for a
seminar on thesaurus software let us ask the following
question:

1.2 What Does Data Modelling Have to Do with
Software?
"For a long time, computer scientists have treated

software development as a task primarily concemed with
the constmction of programs and databases. Require­
ments gathering and design are generally treated as preli­
minary steps for which there are not the linguistic tools
necessary to make them Hequal patiners" in the software
development process. We believe that the integration of AI
and database research is leading to a new software deve­
lopment paradigm in which the software development is
viewed, above all, as a task of knowledge base constmc­
tion. We expect consequences of this shift to be of funda­
mental importance to all areas of computer science and
computer engineering. The KBMS notion will play a

212

catalytic role in effecting this shift." (Brodie/Mylopoulos
(1)).

This quotation already gives shape to my answer. The
process of requirements analysis should be better inte­
grated into the software development cycle, and in order
to achieve this, the gap between the system analysis
language and the programming language should be
narrowed or preferably eliminated. Paraphrases of this
motto are

Make your model description operational, or
make your system specification language a
programming language, or
build your application system by

describing all needed aspects of your model and
compiling this description of the model into an
operable system!

Such a programming language would deserve the
title of a knowledge-representation language. However,
the concept of a language seems to be too narrow, if we
imagine our application system not to be a self-sufficient
stand-alone system, but to be only one agent or resource
in an environment shared with others. Indeed, the ap­
proach needs a kind of knowledge-based software envi­
romnent.

At present, there are many pertinent systems which
may also properly be called development systems for
knowledge-directed applications. A list of names, classi­
fied as research and experimental systems, commercial
application development environments, or AI languages
is given in (1). Although a YES/NO-field of the list
informs on which systems incorporate DBMS concepts,
this can furnish no answer to the question as to when and
under what circumstances these or future development
systems will help to make the prototype into more than
a throwaway used for the design process only.

Present knowledge-representation languages are not
able to describe in a non-procedural and uniform language
all needed aspects of a complex computer application.
But the scope they cover will be enriched or extended
step by step. So data models have evolved into semantic
data models, which in turn are or will be superseded by
a variety of what may be called knowledge-representa­
tion models or languages.

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules for Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

1.3 What Should a Description of an Application
Model Comprise?
Traditional data models confine themselves more or

less to the description of data structure and mostly leave
the description of the desired or allowed processes on
this structure (the semantics) to conventional applica­
tion programming. Taking our object-oriented model­
ling tool (Rostek/Fischer (8)) and our experiments in
modelling as a background, a feasible task outline would
look like this:

Description of Structure:
Defmition of types/classes of the objects of
the domain of discourse,
definition of their attributes and relations
(which we uniformly call slots),
definition of views (substructures).

Description of Behaviour:
definition of constraints and triggers for the
creation or deletion of objects and updating
of their slots,
defmition of access paths,
definition of import/export converting (e.g.
supporting standards like SGML)

As we see it now, the task outline has to be further
extended by

definition of presentation styles for the objects,
definition of retrieval styles,
definition of editing styles

in order to configure different modes of the interactive
user interface.

1.4 Outline of the Class Structure of a Special
Thesaurus
In any case, the structure description will be the

backbone of the model to which any description of
behaviour must refer. Now, with respect to thesaurus
modelling what are its object classes and their structure?

The data strncture and its realization is the core of any data
management software and is kept secret by the software
developers. With respect to the data stlitctures of the
programs INDEX, PROTERM-T and TMS hardly any­
thing has been published (translated from C. Ritzier (5),
p. 47).

One reason for this may be that the terms and
concepts of the data structure of these systems are very
technical and intermingled with implementation aspects
regarding efficiency or ideosyncrasies of the tools used.
Even if the underlying model is of the relational kind
there is a gap between the cognitive model of a system
analyst (or knowledge engineer or domain expert) and
the list of relations or files needed (cf. (5), p. 57).

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules of Thesauri

The object-oriented approach of modelling is con­
stantly driven by the intuitive question: "What are the
objects of my information interest and what are their
attributes and relations?"

Of course, the main objects of the domain of discour­
se of a thesaurus maintenance system will be descriptors
and (probably) non-descriptors. And what then are their
attributes and relations? When we attempt to fmd names
for these classes and to further specify their attributes
and relations, we would have to abstract from all existing
thesauri. Not only is it difficnlt to fmd out what is valid for
all possible thesauri, but if we implement merely an
abstract model this does not take into account the
pecularities of existing thesauri.

Fortunately, in a so-called semantic data model we
have at our disposal the modelling principle of classifica­
tion (giving the possibibility to refer to classes and their
instances), as well as the principle of generalization. This
allows us to build a hierarchy of classes along which
property descriptions and behaviour can be inherited.
Thus the modelling task can start bottom up by descri­
bing one thesaurus in detail, and if others have to be
included, the common descriptions of corresponding
classes can be factored out to common superclasses. In
this way a more general model can evolve.

Obl'ct 0
Synopse O

SlkFrame (slkCreatlonlnfo slkDup!Jcates sfklndexlng sfkKey
sfkMessages sfkNames slkSlatus
SfkSubAspeCls sfkSuperAspect
sfkUnresolvedReferences sfkUnresolvedSlotPaths)

SfkConceplNode (IndexIngs subnels lann)

IZConcept (engllshDenotallon germanDenolatlon scopeNole
IntroductlonNote canceUallonNole cat90 cat90lnverse
cal91 cat91lnverse cat92 cat921nverse thesaurusPart)

IZOeserlptor (UFhldeUSEsoow UFsoowUSEhlda
UFshowUSEshow descrlptOrNr elemanlOf
catS1 calS2 cat53 cal54 BT NT AT)

JZOescrlptorPool (elements)
JZNonDeseriplor ()

JZComplexConeept (decompositions)
IZSynonym (USEhldeUFshow USEshowUFhide

USEshowUFsoow)

SIkTupie 0

IlTupl. 0
IZRelatlon ()

IZVerslonRelatlon (dale)
IZSupplementOrReplacementRelallon

(cat90 cat90lnverse)
IZSupplemenlRelation (ca191 Cal91lnverse)
IZReplaeementRelation (cat92 eat921nvers)

IzoeeomposltlonRelaUon (ealS1lnvers eatS21nverse
cal53lnverse cal54Jnverse decomposltionOf)

IZNote (date prlntFlfter noteFor)
IZlnlroductlonNote ()
IZCsncellationNole ()

Fig. 1: A Class Hierarchy for the IZ-Thesaurus

Even when describing a singlen specific thesaurus
this principle of generalization can be usefully applied. I
confme myself to a model of the IZ-Thesaurus (3). Fig.
1 illustrates a possible class hierarchy for this thesaurus.

Behind the bold-faced class names of Fig. 1 the slot

213

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

names (attribute or relation names) of the given class
are listed in parentheses. (Note: They are also known to
and valid in their corresponding subclasses.) Some of
them may be self-explanatory like BT or RT (denoting
the descriptor-descriptor relation 'broader term' and
'related term'), while others like 'cat51' will be obscure.
In any case these are just slot names, which need further
specification in order to define their semantics.

Actually, the classes listed have or may have many
more slots: The slots listed are only those which really
store explicit object references or data. The additional
slots mentioned, which we call virtual slots, are defined

. using the real slots; an example might be the relation
RTG (related term generic) which links sibling terms
with respect to the hierarchy relation. This example is
resumed below.

The specialties of the class structure presented and
their slots need not be discussed here; instead, let us
approach the question of how the laws of their behaviour
on update, i.e. their semantics, can be expressed.

1.5 Consistency Rules, Constraints and Triggers
Laws can. be expressed in the form of rules or of

constraints. One may say that a rule has an if-clause and
a then-clause while a constraint expresses an unconditio­
ned requirement. If in addition we take into account an
authority that watches for violations and cares for law
enforcement we speak of a 'trigger' representing the rule
or constraint. For such a trigger it needs to be defined
when the rule or constraint it represents is checked, and
if it represents a constraint, what to do if the check
returns false. While rules and constraints may well be
considered to belong to the world of a logical formalism,
triggers can be seen as their incarnation in a world of
actors.

There are triggers not representing rules or con­
straints, but only performing some action (e.g. keeping a
record) that is triggered by some event. In the object­
oriented approach taken here, all rules or constraints
areinterpreted or implemented as triggers. In our repre­
sentation system we usc 'demon' as a synonym for
'trigger'. In addition, we use it as a generic term compri�
sing rules and constraints. A demon is defined by an
action; rules and constraints are demons which also have
a condition. A rule's action gets performed if its condi�
tion is true. On the other hand, a constraint's action gets
performed if its condition is false. Let us give some
examples.

In order to define that e.g. the slot named BT
represents a descriptor�descriptor relation we can ex­
press this by specifying that its range (or image) is the
class IZDescriptor. This is a simple and standard exam­
ple of expressing a constraint for the thesaurus. Implicit-
1y, it is also a description of behaviour: On the basis of
this description the system is able to protect a descriptor
against getting e.g. a non-descriptor as a broader term by
an update operation. So in any case, the system takes
some extra action (by default or by special definition),

214

e.g. enforcing a premature end of the update operation
and giving notice of this range violation.

A pertinent example of a trigger not checking any­
thing, but performing a side effect to preserve consisten­
cy, is the automatic update of inverse relationships. For
instance, the inverse relation to 'broader term' is 'narro�
wer term'. One may argue that this need not be expres­
sed as a trigger. It would be sufficient to state the
following rule: If the system knows that a relationship 'a
BT b' holds, then it also knows that 'b NT a' holds and
vice versa. Again, this is expressing a rule in the style of
logic. The object-oriented representation approach seems
to be more concrete with respect to knowledge organi­
sation or even implementation: The vivid concept of a
trigger here entails the idea of a constructive action (that
cannot be postponed for a long time): If a relationship 'a
BTb' is established (or revoked) by an update operation,
then automatically the relationship 'b NT a' is also
established (or revoked) and vice versa.

1.6 More about the Background and Purpose of this
Paper
Now we can finish our introductory remarks which

developed a tutorial setting for the rest of this paper.
This will deal more specifically or technically with con­
sistency rules for thesauri and demonstrate how we
express them in our object-oriented model in such a
manner that the description is compilable into a proto­
type. The general-purpose knowledge-representation
tool used for this task is now called SFK (Smalltalk
Frame Kit). It is a module added to the Smalltalk
programming environment. One of its applications
(coupled with a general browser module and other
associated tools) is an experimental single-user thesau�
rus maintenance system tailored to the IZ-Thesaurus. It
is operable on all workstations running
Objectworks \Smalltalk (e.g. on Sparc-Workstations,
Macintosh or 386-processor-based PC). We take it here
as an example for the approach outlined above. Our
primary intention was to explore requirements, con­
cepts and problems of an object-oriented knowledge­
representation language faced with a practicai applica­
tion, which had been conceived and designed as a genui­
ne hypertext component in an author's hypertext envi­
ronment already some years ago (6).

In the meantime we learned about the project A TLAS­
Pflesaurus (10, 11). Its author Willenborg also develo­
ped a thesaurus maintenance system on an object �orien­
ted basis. His approach differs from ours mainly with
respect to the following points: He built a dedicated
thesaurus software (using Smalltalk/V, available for the
80286-processor), without the necessity to consider the
pecularities of an existing thesaurus, because the users
seem to create concept nets from scratch according to
the evolving needs of the ATLAS project.

The guideline of the following discussion will be a
catalogue of required structuring and control functions
for thesauri which was published in (9), p. 86-91. This

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules for The&auri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

MA. thesis of Dorothee Sick deals with thesauri in
general and gives an in-depth analysis of the thesaurus
software package INDEX (4). Although the version of
INDEX with which Dorothee Sick experimented has
become obsolete such that special assertions on shortco­
mings of INDEX will or may no longer be valid, her work
was valuable to compare my analysis and description of
the domain with the questions she posed to the software
package.

The following discussion of her catalogue of consi­
stency control functions is my way to express apprecia­
tion of her work, although as a result of this discussion I
will show the matter to be more complex in some
aspects. Furthermore, although I follow her headlines in
this paper I do not back up her terminology or systema­
tics with respect to consistency rules. Ritzier's «5), p.
102) four point list of "all consistency rules" is contained
in that of Dorothee Sick or with respect to point 4 ("Non­
Descriptors must not participate in more than one
relationship.") is not valid in general.

In the following my translation of the heading terms
of Sick's catalogue of consistency control functions is put
into quotes. In general, she explains the meaning of the
terms by an example; so do I.

2. Structural Consistency
2.1 Maintenance of Inverse Relationships

It is an acknowledged standard of thesaurus software
to maintain inverse relationships such as BT and NT. Of
course this means that

the inverse relationship is established whenever the
corresponding relationship is established, and

the inverse relationship is removed whenever the
corresponding relationship is removed.

Dorothee Sick deals with the first consistency rule
under the heading "control of incomplete references"
and with the second one under "control of dangling
references (Blindverweise)". With respect to binary
relationships SFK can treat these rules uniformly just by
declaring one relation to be the inverse of the other, e.g.
by defining for the moment

IZDescriptor slot: #BT)
inverseSlot: #NT; . . .

It has to be pointed out here that SFK (being a
general tool) does not know predefined thesaurus rela­
tions, but the application-specific relations or attributes
have to be defined for the application classes (IZDesc­
riptor denotes one of them). The slot definition compri­
ses several facets (constraint and trigger facilities); so far
we only mentioned the 'inverseSlot' facet. In the course
of discussing Sick's catalogue we will introduce some
more facets.

Int. Classif. 18(1991)No.4
Fischer - Consistency Rules of Thesauri

Furthermore, we note that any slot (if not explicitly
restricted or defmed with other value collections) is set
valued.

From both points it follows that SFK has no limita­
tions with respect to structuring requirements.

Finally we note that incompleteness of n-ary rela­
tions with n > 2 will be treated separately below.

2.2 'Control of Inadmissible Relationships'
Dorothee Sick makes the distinction between direct

and implicit relationships dealing separately with:

control of inadmissible direct one-to-many
relationships,
control of implicit horizontal relationships,
control of implicit vertical relationships,
control of circular relationships.

The meanings of these terms will become clear in the
following examples. As will be seen, there is no need for
SFK to make this distinction between direct and implicit
(inferrable) relationships with regard to update control.

A straightforward way to control the allowed values
of a relation is to defme the range of the relation. In SFK
full computability is at hand to define the range. The
most simple range expression is just the name of the
class of the allowed values. For example,

(IZDescriptor slot: #RT)
range: IZDescriptor; . .

states that RT is a relation in the set of instances of the
class IZDescriptor, i.e. with domain IZDescriptor and
range IZDescriptor.

Relations in a set are often mathematically characte­
rized by properties such as reflexivity /irreflexivity, sym­
metry /antisymmetry and transitivity. So we can state e.g.
that the relation RT is irreflexive and symmetric. But
symmetry is already expressed by stating that the slot
R T is inverse to itself.

(IZDescriptor slot: #RT)
range: IZDescriptor;
inverseSlot: #RT;
relationalProperti�s: #(irreflexive); . . ,

The hierarchy relation is irreflexive too, but in addi­
tion it must be 'strong' intransitive and acyclic (which
implies irreflexivity). Strong intransitivitity demands that
no short cut must exist in the hierarchy relation, i.e. a
descriptor must not simultaneously be a direct and an
indirect narrower (broader) term of another descriptor.
Acyclicity demands that a descriptor must not be its own
direct or indirect narrower (broader) term. In SFK these
consistency constraints can be simply stated by

(IZDescriptor slot: #BT)
range: IZDescriptor;
inverseSlot: #NT;
relationalProperties: #(acyclic stronglntransitive); ...

215

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Fulltext searcblng
(up to May 1986 also used for: Freetext
searchh1g)
VaJ1t�xt8uch�

BT Information retrieval
R T Freetext searching
R T Fulltext database
R T Search strategy

* Freetext searching
(Introduced: May 1986)

_wa�p!ementedBy (up to: May 1986

Rt --:- only used: Fulltext searching) :. ___ Fl\1It�xt8uch� �--""""'.>t".dd'----
BT information retrieval
R T Fulltext searching
RT Search strategy

Fig. 2: An Example of Coexisting Descriptor-Descriptor Relationships

Museology
lI,fuseumswesen

Museum documentation
11,1 useumsdokumen ta: tJon

USE

UFC �

a

Fig. 4: A Net View of the Exemple shown in Fig. 3

216

UFC

Object documentation
Db {ektdokumen ta: tion

Int. Classif. 18(1991)No.4
Fischer - Consistency Rules for Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

So far we have already dealt with the control of
"implicit vertical and of circular relationships" which
Sick had missed with respect to INDEX.

It seems that under the heading "control of inadmis­
sible direct one-to-many relationships" Sick as well as
Ritzier claim that for any two given thesaurus entries
maximally one thesaurus relationship between them
may be valid. E.g., if two descriptors are stated to be
related terms (i.e. relationship RT holds), then they
must not be related by a hierarchy relationship (i.e.
relationship BT or NT must not hold).

But if a thesaurus relation is just a relation between
thesaurus entries, one cannot accept that thesaurus
entries must not participate in more than one relations­
hip. That law would not be true in the model of the IZ­
Thesaurus (see Fig. 2). It shows an example relationship
of the version relation 'was supplemented by / supple­
ments', which coexists with an RT-relationship, saying
that the descriptor "Fulltext searching" was supplemen­
ted by the descriptor "Freetext searching" in May 1986,
being -- since that date -- one of its related terms.

Seemingly the model could be made simpler without
loss of information by adding a time stamp attribute to
the thesaurus relations storing the date of linking. There
would then be no need for an extra supplement-relation.
However, there is still another version relation to be
represented in the IZ-Thesaurus, i.e. the replacement
relation, which cannot be modelled in such a simple way.

Whether or not simultaneous coexisting relations­
hips between two entries can be avoided by the model
structure, it seems to be better to be able to control by
definition which relationships shall be forbidden to coexist,
i.e. which shall be incompatible. This would be a general
control feature useful for any domain.

With SFK we are able to express, that e.g. a relations­
hip RT excludes the coexistence with a BT- or NT­
relationship by stating

(IZDescriptor slot: #RT)
exclusiveSlotValuesAt: #(BT NT); . . .

(IZDescriptor slot: #8T)
exclusiveSlotValuesAt: #(NT RT); . . .

The above expression 'exclusiveSlotValuesAt: .. .' does
not explicitly express what the response of the system
will be when one tries to violate this law. Of course the
standard reaction might be to signal an error and to roll
back the update operation, but one could also imagine a
different update style where the conflicting existing
relationship is removed and the new one is established.
In SFK this kind of behaviour can be expressed by

exclusiveSlotValuesAt: #(BT NT)
ifFalse: #updatcj . . .

Another possibility would be to refer dynamically to
the actual editing style.

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules of Thesauri

Under the heading "Control of Implicit Horizontal
Relationships" Sick recalls the reader of the following
rule: Do not establish an RT-relationship if an RTG­
relationship already exists or vice versa; i.e. descriptors
which are siblings with respect to the hierarchy relation
shall not be connected additionally with respect to the
association relation because this special kind of associa­
tion can then be inferred.

In that respect we can treat direct and indirect
(inferred) relationships uniformly by derming:

(IZDescriptor slot: #RT)
exclusiveSlotValuesAt: #(BT NT RTG); . . .

In the IZ-Thesaurus the RTG-relationis not mentio­
ned and the above constraint does not hold in general!
Therefore we propose that the properties of the rela­
tions should not be built-in features of the software, but
that they could be specified in a modular way.

2.3 Excursus on Virtual Relations
In the SFK-model we can derme the inferrable or

virtual relation R TG on the basis of the real relations BT
and NT by the following definition:

(IZDescriptor slot: #RTG)
use: (SlotPath - #BT - #NT);
relationalProperty: #irreflexive;
readOnly.

This dermition states that the values at slot RTG of a
descriptor can be accessed by reading first the values at
its slot BT and then collecting all the values at their slots
NT which are different from the descriptor where the
reading operation had started (relational property irre­
f1exive excludes it).

So it would be simple to change IZ's policy with
regard to RT and RTG: We merely need to define
exclusivity as we did above and execute the following
statement:

IZDescriptor al!Frames do: [:descriptor I
«descriptor at: #RTG) ' (descriptor at: #RT)

do: [:value I descriptor at: #RT remove: value))

which says that for all descriptors which have values in
the intersection of the set of related and RTG-related
values, these values must be removed from the slot RT.
In this way redundant information is removed, but can
be inferred on demand for display or printing.

In the same way I will show how to introduce the
virtual relation 'top term' or IT of which - as Sick
noticed - is not contained in INDEX:

(IZDescriptor slot: #01181)
use: (SlotPath - #BT);
relationalProperties: #transitive;
readOnly.

217

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

(IZDescriptor slot: #TT)
use: (SlotPath - #allBT

I [:f : s :value : t I (value at:#BT) isEmptyJ);
readOnly.

First a relation 'allBT' is defined to be the transitive
closure ofBT, then TT is defined to be the relation allBT
restricted to those values which do not have a broader
term.

Ifwe further define the relation 'is-indirect -broader­
term' by

(IZDescriptor slot: #indirectBT)
use: (SlotPath - #BT - #allBT);
readOnly.

we can express strong intransitivity (no-short-cut pro­
perty) of the BT relation by stating the exclusiveness of
the relations BT and 'indirectBT'.

2.4 Control of Incomplete Relationships
Here we deal with n-ary thesaurus relations with n >

2, and these relations are a crucial touchstone for any
thesaurus or other software package.

As examples for these relations Sick mentions the
history relations 'splitting' or 'union', where e.g different
concepts (e.g. countries) are splitted or united.

In the IZ-Thesaurus the following non-binary rela­
tions are used:

The decomposition relation, which decomposes a
complex concept (a non-descriptor) into
(minimally) two descriptors,

Two version relations:
'was supplemented by' (e.g. "up to Aug. 85

also used for . . . ")
'was replaced by'(e.g. "since Aug. 85 used . . . ")

Object documentation
Objektdolcumemation

UFC Museum documentation

USE Museologyj
Object documentation

RT Data documentation
RT Documentation
RT Documentation of pictures
RT Object classification

Museology
Museumswesen

UFC Museum documentation

USE Museology;
Object documentation

Musewn documentation

USE Museologyj
Object documentation

Fig. 3: Example of a Decomposition Relationship (In the
printed IZ-Thesaurus the UFC-relationship for 'Museology' is
not shown because of spatial neighbourhood to 'Museum
documentation')

218

In the following I confme myself to an in-depth
analysis of the decomposition relation. For an example
relationship taken from the IZ-Thesaurus see Fig.3. The
conceptual structure of this relationship presented in a
net view is shown in Fig. 4. The German labels of the
decomposition relation are BK (Benutze Kombination)
at the side of the complex non-descriptor versus KB
(Benutzt in Kombination» at the descriptors side. The
English notations are USE (the same as for simple non­
descriptors) and UFC respectively.

Let us ask and answer some simple questions:

- May a complex concept be decomposed into more
than two descriptors? Accidentally or not, there is
no such comph;x non-descriptor in the IZ-The­
saurus. But let us assume that it may be allowed.

-Maya descriptor participate in more than one decOln­
position definition? Actually this is true for the
IZ-Thesaurus.

So the 'degree' of the decomposition relation is
many-to-many. An SFK-slot represents a set valued
function. Therefore, the decomposition relation seems
to be definable by two slots in each of the participating
classes.

But the matter may be more complicated: The
decomposition relation would have to be a set valued
relation (Le. no function as defined in mathematics), if a
complex concept may have more than one decomposi­
tion, i.e. if not only "simple" non-descriptors (represen­
ted in our model by class IZSynonym), but even complex
non-descriptors may be homonyms.

Layout
(up to September 1986 used: Layout of publlcaUona)

USE Descriptor denoting the medium;
Design

Fig. 5: Example of a Homonymous Complex Term

A closer look at the IZ-Thesaurus shows that in fact
there is one disguised candidate, cf. Fig. 5. The words
"Descriptor denoting the medium" actually denote a
pool of descriptors, whose members are not given
explicitly but must be searched for by an intelligent
lookup in the thesaurus. Therefore, the answer to the
question whether homonymous complex concepts may
exist is: Yes!

As a consequence, in order to represent the set
valued relation USE-UFC in SFK we need a class
IZDecompositionRelatioll, whose instances represent
decomposition definitions. These decomposition defini­
tions (represented in our model by class IZOecomposi­
tionRelation) will be intermediate objects ('fat links')
between a complex concept and the descriptors. In the
conceptual view of Fig. 4 the point of splitting of slot-

Int. Classif. 18(1991)No.4
Fischer - Consistency Rules of Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

arrow USE is nothing but an instance of the class
IZDecompositionRelation. If we change the presenta­
tion style of this node we get a picture as shown in Fig. 6
which will be further explained in the following.
First, let me summarize: Each decomposition definition
must have

exactly one complex concept as owner of the
definition,
minimally two descriptors into which the defined
complex concept shall be decomposed,

if not, the definition has to be treated as 'object non
grata'.

If I shift from natural language to SFK the defini­
tions of all slots needed to install the decomposition
relation for the participating classes IZComplexCon­
cept, IZDecompositionRelation and IZDescriptor read
as follows:

(IZComplexConcept slot: #USE) "the BK relation"
range: IZDecompositionRelation;
inverseSlot: #decompositionOf;
minCardinality: 1; ...

(IZDecompositionReiation slot: #decompositionOf)
range: IZComplexConcept:;
inverseSlot: #VSE;
minCardinality: 1;
maxCardinality: 1
componentSlot.

(IZDecompositionRelation slot: #decornposeInto)
range: IZDescriptor;
inverseSlot: #UFCdefinitions;
minCardinality: 2;
componentSlot.

(IZDescriptor slot: #UFCdefinitions)

range: IZDecompositionRelation;
inverseSlot: #decomposeInto.

(IZDescriptor slot: #UFC) "the KB relation"
use:
(SlotPath - #UFCdefinitions -#decompositionOl);
readOnly.

Minimal cardinality constraints -- as expressed above
-- are treated by SFK (if not otherwise declared) as soft
constraints, i.e. they are only checked on removal of a
value, and on violation result in a warning, but do not
induce a rollback. The SFK-method componentSlot
tightens the soft constraint and makes it a hard con­
straint such that SF!(installs for any decomposition
relation instance a deletion dependence from its consti­
tuting concepts (its components). In other words, the
decomposition relation object is automatically deleted,
i.e. all references to it are deleted, whenever a remove
operation violates the minimal cardinality constraint or
whenever any terminating (main transaction', in which
such an instance was created, detects that the related

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules for Thesauri

minimal cardinality constraint is not fulfilled. This gua­
rantees that there is no 'incomplete relationship' as
understood by Sick!

On the other hand, (if we do not add further behavi­
our descriptions) we do allow that there may exist
complex concepts which do not have a decomposition
definition. However, if we also interpret a download of
an alleged complete thesaurus or an editor's terminal
session as a 'transaction', then our patience with respect
to the existence of complex concepts violating their
minimal cardinality constraint may be wearing thin at
the end of that transaction.

Consequences are: First, there may be constraints
that need a short term reaction lest we are drowned in
inconsistencies, and second, the system must be able to
tolerate incompleteness of information or even inconsi­
stencies until the complex task is finished or alternatively
give us cooperative reminders when appropriate.

I used the term transaction, an important concept
from database management systems. Indeed, such a
mechanism is needed for thesaurus software. SF!(sup­
ports only one transaction feature, i.e. the 'atomicity': A
procedure is said to be 'atomic' if it is done completely
satisfying all hard constraints or alternatively does not
leave any footprints.

SFK can support this kind of atomicity property of
complex operations on the object net. Even filling a slot
internally is a complex procedure which consists of
several suboperations which are programmed descripti­
vely by the application designer when he defines the slot
facets at the class level. E.g. adding a value to a slot
(instance level) is an atomic procedure in SFK. Further­
more, creating frames and updating some of their slots
can be encapsulated in SFK and thus installed as an
atomic operation. One way to do this is to define a slot
(real or virtual) which accepts all input of the complex
operation. Filling such a slot may be compared to telling
the whole story to the porter or the receptionist who then
seemingly makes all arrangements for you although he
passes the information to the pertinent experts who
really do the job; finally he gives a response to you:
Committed, not committed, or committed 'with some
proviso (e.g. unfulfilled soft constraints).

In order to illustrate this, we resume our small-sized
example: Let us assume that the user is just editing the
descriptor 'Museology' and that the definition given by
the string 'Museum documentation USE Museology;
Object documentation' needs to be added to the thesau­
rus. This is exactly the situation on batch input from the
IZ-Text file (there may even be more information to add
with respect to the decomposition relation or complex
concept, cf. Fig. 7, at category 51). If you look also at Fig.
3 you will see that the definition to add just seems to be
the value at slot UFC! But according to the above
definition the slot UFC is a read-only slot not accepting
any input.

219

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

UF

Museum documentation
lvfuseumsdo 'umentation

.-�-
aDecompositionRelation

C

UFCd'''/ �n"It."
/ ��to d',"""'�

'/ Object documentation Museology Ob{ektdokumentation Museumswesen '

Fig. 6: A more detailed Net View of the Decomposition Relationship shown in Fig. 4

Museum documentation
JI,fuseumsdokumentation

! . . d··���rtlOn'

d"omP\� nOf

o

i� ..
. a1'. .at61ID� .

Museology Object documentation Must9umswt9sen ObJektdokumt9ntatJon

Fig. 8: The Real Storage Structure of the Decomposition Relation Example

220 Int. Classif. 18(1991)No.4
Fischer - Consistency Rules of Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

+++
IO'D0312++
20*Information Retrieva1++
21i1tInfonnation retrieval++
30*Recherchieren++
40"'Freitextsuche++
40*Recherc:heergebnis++
40*Recherchestrategie++
40*Volltextsuche++
50"'1nfonnationswiedergewinnung++
50"'Retrieva1++
51*Retrievalspracbe=Information Retrieval; Kommandosprache

?bis ++'Febr. 86 benutzt %Kommandosprache%?++
6O"'Infonnation Retrieval System++
6O*Infonnationsvermittlung++
6O·Recherche++
6O'SDl++
70·Vorgang der rnaschinenunterst tzten Suche in Darenbanken++
90'bis Mai 86 benutzt: %MaschineUe Recherche%++
+++

Fig. 7: Example of IZ-Text-File Record Format

Now let us change the definition of slot UFC:

(IZDescriptor slot: # UFC)
use:
(SlotPath - #UFCdefinitions - #decompositionOf);
virtualSlotInputCompilingFromStringByRule:

#UFCdecompositionDefinition

Thereby we install a "porter" or "receptionist" at the
slot: The SFK-method virtualSlotinputCompilingFrom­
StringByRule: defines two 'demons' for the slot: One is
called on adding a string at the slot and the other on
removing a string from the slot. Let us explain the demon
called on adding (which io fact is an 'iosteadAdd-de­
mon'): Instead of adding this string to the slot's value
collection, it parses and transforms the input striog into
frame objects according to a grammar tool attached to
the class. The parsing process has access to the object
net, so some actions of the grammar, referenced by
UFCdecompositionDefmition, find or create objects
from accepted parts of the strings, e.g. retrieve or on
absence generate the complex concept 'Museum docua
mentation' and the descriptor 'Object documentation';
furthermore, an instance of IZDecompositionRelation
is generated and the two descriptors are added at its
pertioent slot 'decomposeInto'; finally this defmition
object is added at the slot USE of the complex concept
'Museum documentation'. If the parsing process fails or
some of the mentioned slot addings (subtransactions) of
the 'insteadAdd-demon' fail, this is signalled to the main
transaction which then rolls back.

This style of referencing an ATN-like grammar is at
least a compact kind of procedural application program­
ming. One benefit ofthis style is its modularization of the
description of the model into classes, slots, slot facets,
grammars, rules and transforming/mapping actions.
Downloading the whole thesaurus from a text file as
shown in Fig. 7 can be written as a (long) transaction in
a very compact and modular way as a sequence of

Int. Classif. 18(1991)No.4
Fischer - Consistency Rules of Thesauri

subtransactions, which may also be used io ioteractive
update operations.

In our example an explicit slot filling at the instances
of the 'link' -class IZDecompositionRelation can and
should be made a reserved task for the system. The user
communicates with the system by mouse selections or
striog ioput for whole transactions.

The asymmetry with respect to slots USE and UFC
introduced above can to a certain extent be elimioated if
we allow for the striog ioput format e.g. 'Museology;
Object documentation' and add the followiog definition
at slot USE of class IZComplexConcept:

inputCompilingFromStringByRule:
#USEdecompositionDefinition

Then it is even possible to add a complete definition at
the real slot USE. The SFK-method

inputCompilingFromStringByRule:

defines an ioput conversion routioe which io spite of the
range definition of the respective slot preliminarily re­
ceives strings as slot ioput. In contrast to the demons for
slot UFC the referenced parsiog and compiliog process
does not play the role of an 'instead-demon', but is a
special kind of a 'beforeAdd-demon' that generates and
delivers the relation iostance (which references the two
descriptors) to be added at slot USE.

Implicitly, we now have explained the tools and
methods used to map ioput text to structured objects.
There is an ergonomic need not to free the editiog user
from rigid field and subfield filliog, and then let him edit
the thesaurus on views as presented io the figures sho­
wing the official text view (Fig. 3, 9, 10) according to a
WYSIWYG-style (What You See Is What You Get).

Let liS resume listiog the constraiots for the decom­
position relation: We allowed complex concepts to have
more than one decomposition definition; but of course if
there is more than one definition the definitions should
be different! But: When are decomposition definitions
different or equal? Let us look at the following examples:

or

Museum documentation
USE Museology; Object Documentation

Museum documentation
USE Museology; Documentation

Scarchtree
USE Interactive videotext; Search strategy

Searchtree
USE Interactive videotext; Search strategy;

Classification system

Considering these examples we realize that we need
to be able

to define equality or compatibility of complex
objects in a flexible way,
to define what shall be done when two objects are
detected to be equal or compatible in an update operation.

221

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

As a solution to this problem we add the following two
value equality specifications to the description of slot
USE of class IZComplexConcept:

valueEqualityCheckOn: #(decomposeInto)
ifTrue: #rollBack;

This definition refers to the slot named #decompo­
seInto dermed above for class IZDecompositionRela­
tion. It says that if a candidate definition has the same
decomposition into descriptors as one of the already
known definitions then the candidate value is deleted.

valueEqualityCheckBy: [:f :s :candYalue :t I I oldYalue I
oldYalue : � t oldYalue.
« oldYalue at: #decomposeInto)

includesAll: (candYalue at: #decomposeInto»
or:[(candYalue at: #decomposeInto)
includesAll: (oldYalue at: #decomposeInto)]]

ifTrue: #warning.

This equality-check demon examines whether the
candidate definition has an overlapping decomposition
with any of the known (old) definitions. If the answer is
yes, the demon does not cause a rollback of the adding
operation, but adds a warning note to the complex
concept that it has overlapping decomposition defini­
tions. Then this complex concept can later be edited e.g.
as a result to a query asking for any warning note objects.

We now conclude our investigation of the decompo­
sition relation. Actually, the IZ's use of it is even more
complex because for each participant (descriptor or
complex non-descriptor) in such a definition there is a
binary valued attribute encoding whether this partici­
pant will show the definition when it is printed in the
official thesaurus. In addition, the downloading process
from the original text format needs a kind of unification
process on these values because the full information
comes from different places of the text file and even
contradicting encodings are possible and have to be
checked. All these subtleties have been represented with
relative ease in the SFK-model.

For those who still want to learn more details: In our
model the show jhide-information for each participant
of the definition is represented by different slots accor­
ding to category numbers used by IZ (cf. example record
format of Fig. 7). Also look back to Fig. 1. The slot USE
of IZComplexConcept defined above is an alias for the
real slot 'decompositions' while the slot 'UFCdefini­
tions' of IZDescriptor is a union of the real slots 'cat51',
'cat52', 'cat53', and 'cat54'; their respective real inverse
slots at IZDecompositionRelation are 'cat51Invcrse' to
'cat54Inverse' which arc virtually united by the slot
'decomposeInto'. Figures 4 and 6 (which are hardcopy­
ies from the screen) show a view of something which has

the real structure as presented in Fig.S.

222

3. Domain Specific Constraints
What Dorothee Sick calls "logical consistency" we

call "domain specific constraints". Her examples for this
point are apparently related to special check procedures
of the INDEX software. All INDEX thesaurus entries
may have predefined fields called 'group', 'facette', 'class
of word' and 'language'. The admissibility of a thesaurus
relationship between two entries can be controlled
depending on identical or different values of these fields
belonging to the two candidate neighbours. E.g. a trans­
lation relationship is permitted only if the two entries
have different values in the 'language' field. And a syno­
nymy or quasisynonymy relationship is permitted only if
the corresponding values of all four fields are identical,
whatever they are.

We just give an example for a simple constraint which
does not seem to be checkable by such a special control
mechanism: If you think of the thesaurus entry attributes
'date of introduction' and 'date of cancellation' then for
all entries the date of introduction has to be earlier than
the date of cancellation. SFK expresses such a constraint
simply by specifying 'range conditions' as follows:

(lZConcept slot: #dateOl1ntroduction)

range:
Date & [:lheEntry :givenYalue I I d I

(d : � theEntry dateOfCancellation) isUnknown
or: [d > givenYalueJl

(IZConcept slot: #dateOrcancellation)

range:
Date & [:theEntry :givenYalue I I d I

(d : � theEntry dateOl1ntroduction) isUnknown
or: [d < givenYalueJl

The range definition here specifies that the values of
these slots (attributes) must be dates (instances of a class
Date) and fulfill the test coded between the brackets. It
simply states that the date of cancellation (introduction)
is unknown or greater (lesser). The demand to be an
instance of class Date is itself the constraint that the
presented value is a well formed date, which can under­
stand a test procedure ' < ' Of ' > ' according to date
semantics. Such a date is not a string, which would
respond to a test like ' < ' in quite a different way than a
date (lexicographic order versus time order). In order to
be able to present a string denoting a date as a value to
these slots we can attach to them a converting procedu­
re. Furthermore, we would like to point out that the slots
must not have more than one value. So a more refined
specification of slot 'dateOfIntroduction' reads like this:

(IZConcept slot: #dateOl1ntroduction)
minCardinality: 1; maxCardinality: 1 ;
range:

Date & [:theEntry: givenYalue I I d I
(d : � theEntry dateOfCancellation) isUnknown

or: [d > given Yalue II
inputConvertingFrom: String by: [:givenString I

Date readFrom: givenString]

Int. Classif. 18(1991)NoA
Fischer - Consistency Rules for Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Of course in addition one could demand that each
descriptor should have an introduction date, then the
formulation of the cancellation date would be simpler.
Or one could define a kind of default value if it is not
stored explicitly. So we would get

(IZConcept slot: #dateOtlntroduction)

minCardinality: 1; maxCardinality: 1;
range: Date & [:theEntry :givenValue I

theEntry dateOfCancellation > givenValueJ
inputConvertingFrom: String by: [:givenString I

Date readFrom: givenString];
ifNeeded: [IZConcept defaultDateJ.

The cancellation dates even introduce other con­
straints: E.g. for a cancelled descriptor establishing
additional thesaurus relations must be prohibited, i.e.
cancelling means to 'freeze' the descriptor (not to throw
it away). Such a behaviour may better be handled by a
kind of version mechanism, althougb this can also be
simulated by simple SFK-procedures attached to the
slots (so called 'demons'). Another solution would be to
model mutation, and for that purpose introduce new
classes for cancelled terms. This enables providing them
with a behaviour of their own.

4. Typos and Duplicates
Dorothee Sicks's heading term 'input control' does

not explicitly say what is controlled, but at best when
control is exhibited. In fact, Sick treats the problem of
avoiding duplicate entries of terms (descriptors or non­
descriptors) and the problem of creating entries with
misspelt term names. In other words, we address the
identity problem of a representation system: The ultima­
te aim is to get a one-to-one-correspondence between
world objects and their representations in the system.
The problem arises when the input conversion action
results in more than one representation in the system for
one external object, or only one representation for
different external objects, or a representation not refe­
rencing any external object.

The last case is equal to the problem of misspelled
term names that are not hits for other existing term
names. It could be tackled with some expense using a
spelling checking device. There is another possibility to
handle the problem, if there is redundancy to be exploi­
ted. For example, when the IZThesaurus is downloa­
dedfrom the text file (cf. Fig. 7), which is grouped into
descriptor records, any descriptor frame created gets
the status 'filedIn' only when and if its description has
been processed. However, it does not get this status if it
has been created when the system processes a reference
to the descriptor within another descriptor's record. If
any reference to descriptors was a typing error, then
after completing the download there exist descriptors
not having the status 'fileln', and they can easily be found
by a qUery. Such a control was not feasible for non­
descriptors because there were no separate redundant

Int. Classif. 18(1991)No.4
Fischer - Consistenq Rules of Thesauri

descriptions of them in the original IZ text file.
A further device exploiting redundancy can be instal­

led in SFK by counting the number of times a relations­
hip between terms is stated: When a user tells the system
that descriptor A is narrower than B and later, in a
redundant way (as in the download process mentioned
above) the system is told that descriptor B is broader
thanA, then the system recognizes redundance and ends
the operation prematurely. Depending on the user­
defined editing style, it can also display a message:
"Relationship ,., already known!", as the inverse relation
has already been installed on the first event. Instead of or
in addition to emitting the message a counter for this
relationship could be increased by one. In order to
install such a device we would have to model all relations
using link classes, i.e. representing each relationship by
a frame which is deletion-dependent from the nodes (the
concepts) it connects. An example for such a link class
was given when I treated the decomposition relation.

A simplistic way of controlling duplicates is to
prevent the user from creating a duplicate. For example,
the user gets a blank input form where first of all the key
property 'denotation' has to be filled in. Before the user
can key in any further potentially conflicting data, the
system searches for already existing data belonging to
the key, and if found, fills it into the input form.

But things look different, when e.g. in a batch process
a duplicate is filed in which was created independently
such that data of the duplicates have to be merged. For
such cases SFK allows to define merge rules.

Authorliy flle
(up 10 January 1983 used:

ConetruC1lon of antrlMj Dlreclory)
Authority RIB

UF Name authority file
UF Subject authorHy file

Authorliy File
nur benulzen fOr den Aufbau von verbindlichen Dalaien,
z. B. KOrperschaftsdatelen. Zellschriftendateien etc.
(bis Januar 1983 benutzt:.Aneetzungj Verzelchnl.)
Authority file

BF Name authority Ille
BF Subject authorHy file

Fig. 9: Example of English/German Twins

And what about the scope of the key control? It has
to cover descriptors and non-descriptors. Things get
even more complex with a multilingual thesaurus if we
are not satisfied with crutches like uppercase for Ger­
man and lowercase for English terms or addings for
homograph resolution (d. (9) , p. 78 and 108). Confer
Fig. 9, which is taken from the IZ-Thesaurus and where
the fIrst entry is the English entry and the second is its
German twin. This shows that the key must have a clear
scope which may pertain to several classes. It would help
to have 'language' as a second key attribute.

223

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

+ Workplace design
(since August 1986 use: Furnishing.; Place of work)
Arbeitsplatzgestaltung

• Search tree
(up to May 1986 used:

Interactive vldeotexj Search st,ategy)
Suchbaum

RT Interactive videotex
RT Search strategy
RT User support

Fig. 10: Example of Term Mutations

A wholly different feature could complicate our
simplistic view of the world: Let us look at Fig. 10 which
again shows two entries from the IZ-Thesaurus: The
cross in front of the bold-faced entry name "Workplace
design" indicates that this is a cancelled descriptor, and
the following text informs us that in August 1986 this
descriptor was replaced by the combination of "Furnis­
hing" and "Place of work". In fact, by that declaration
the cancelled descriptor was replaced by a so-called
complex concept with the same denotation. In other
words, the descriptor "Workplace design" was changed
into a non-descriptor, specifically a ' complex non-des­
criptor, which refers to minimally two descriptors by the
decomposition relation. The second example "Search
tree" on the other hand was changed in May 1986 from
a complex non-descriptor into a descriptor. (It is reaso­
nable to conserve this mutation information if it cannot
be guaranteed that the documents indexed using this
thesaurus have been reindexed after the thesaurus was
updated.)

The question here is: Shall the cancelled entry with
all its data still be accessible as an older version? Can
thesaurus administrators make profitable use of on-line
search in older versions of the thesaurus which have the
same conceptual net space as the actual version, i.e. are
not held in different fIles? In such a space the coexistence
e.g. of a cancelled descriptor and a living non-descriptor
with equal denotation would have to he tolerated. Again,
this would be a good reason to have separate classes for
cancelled terms and to modify the schema shown in Fig.
1!

There is a third argument for being more tolerant
with respect to duplicates: Think of cooperative thesau­
rus or lexicon writing: It may be useful before "imprima­
tur" that for comparison and discussion purposes in­
compatible and rivalling entries should be allowed.

From this discussion it follows that duplicate control
in the sense that all duplicates are simply rejected
apparently is a demand or device too rigid for an advan­
ced thesaurus or terminology system.

The experiences gained from modelling the IZ-

224

Thesaurus have not only influenced the further develop­
ment of SFK, but are also applied to a comprehensive
model of a terminology lexicon (2). Key control for
complex keys was implemented in such a way that
duplicates, triplettes, etc. may be allowed, but are well
controlled. In the lexicon model the system maintains a
homograph number in addition to an intellectually con­
trolled homograph resolution term. It is possible to
download several subnets (e.g. thesauri from different
sources) into one common model with or without mer­
ging the information according to the actual downloa­
ding style.

SFK does not yet have the language to specify these
editing or retrieval styles in a general and ergonomic
way. Furthermore, the object presentation in different
styles still needs conventional programming. SFK does
not offer concurrent updating and still waits for an
interface to a database system in order to manage more
than a few thousand terms. The browsers, i.e. the user
interface tools for browsing and updatingthe instances
are still in the first prototype stage.

5. Conclusion
We have argued in this paper that even dedicated

thesaurus software needs flexibility and extensibility to
deal with special constraints or rules of the domain
which emerge when the model approaches a richer real
world or when users ask for more 'intelligence' exhibited
by the system. To be more general, software construc­
tion should be based on compilable, readable and main­
tainable descriptions of the structure and update beha­
viour of the domain of discourse. We explained some
already operable steps in this direction.

Acknowledgement
I thank my colleagues Wiebke Mohr and Lothar Rostek
for valuable comments.

Notes
1 Those who will compare it with the hierarchy presented in
Rostek/Fischer (7) will not only find different names (English
instead of German), but also differences in structure. Let us
take it just as an example of a 'schema' modification showing
that the process of structure design is an evolutionary process.
I will indicate at some points in this paper that a more
elaborate, presumably preferable representation can be given.
This concerns versions and multilingualily. The IZ-Thesaurus
is in principle monolingual; a translation exists which except
for two terms represents a onewtowone relation. In the meantiw
me we have designed a model for a multilingual lexicon that has
many more classes (2).

'

2 In standard data modelling terms the denotation of the
entries has to be declared to be a key attribute or key slot in
order to control the uniqueness of its values.

Int, Classif. lS(1991)NoA
Fischer - Consistency Rules for Thesauri

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

References
(1) Brodie, M, L., Mylopulos, 1.: Knowledge Bases and Data­
bases: Semantic vs. Computational Theories of Information.
In: Ariav, G., Clifford, J. (Eds.): New Directions for Database
Systems, Norwood (NJ): Ablex 1986, p,186-218
(2) Fischer, D., Mohr, W.: LexikonRRedaktion: eine HerausR
forderung fuer ComputerRAssistenz beim Publizieren. In: Der
GMD-Spiegell '91, StAugustin: Ges, f.Math, u, Datenverarb,
mbH (GMD) Marz 1991, p, 40-45
(3) Ges, f. Inform, u, Dokum, mbH: Deskriptorenliste zum
Bereich Informationswissenschaft und Rpraxis: Stand: Juti 1987,
Bearbeitung: Infonn.zentrum f. Inform.wiss. u. -praxis (lZ)
FrankJurt: GID, 1987, p,109
(4) Lukas, E,: INDEX - ein Programm zur Erstellung von
Worterbiichern und Dokumentationssprachen auf Personal­
Computern, In: Nachr, Dok. 39(1988)p.253-256
(5) RitzIer, c.: Vergleichende Untersuchungvon PC-Thesau­
rusprogrammen. Diplomarbeit, Fachhochschule Darmstadt,
Fachbereich Inform, u, Dok. (1989)132 p,
(see also Int.Classif.17(1990)No.3/4, p,138-147)
(6) Rostek, L., Fischer, D.: An Author's workstation: visions,
views and activities, In: Miller, J, (Ed.): Protext II: Proc, 2nd
Int. ConL on Text Processing, 23-25 Oct., Dublin, Dun Loag­
haire; Dublin: Boole Press 1985, p, 82-95
(7) Rostek, L., Fischer, D,: Objektorientierte Modellierung
eines Thesaurus auf der Basis eines Frame-Systems mit graphiR

scher Benutzerschnittstelle, In: Nachr,Dok, 39(1988)p, 217-
226
(8) Rostek, L., Fischer, D,: SFK: A Smalltalk Frame Kit -
Concepts and Use. To appear.
(9) Sick, D,: Aufbau und Pflege komplexer nattirlichsprachig
basierter Dokumentationssprachen (Thesauri): Aktuelle
Tendenzen und kritischeAnalyse einer ausgewahlten autono­
men Thesaurus-Software flir Personal-Computer (PC). MA­
AbschluBarbeit, Fachrichtung Informa.wiss. Univ.des Saar­
landes, Saarbriicken (1989), 136 p,
(10) Willenborg, J.: Ptlesaurus - ein Systemzur Erstellung und
Weiterentwicklung von Thesauri. Diplomarbeit, Januar 1991,
Techn. UniversiUit Berlin, Fachbereich Informatik, Gruppe
Wissensbasierte Systeme (WSB), Franklinstr. 28/29, 1000
Berlin 10, 97 p,

After having finished this paper I received:
(11) Mengel, A.: Thesaurusrelationen, Konsistenz, Inferenz
und Interdependenz. Forschungsbericht Nr. 91-5, Techn.
Universitat Berlin, Interdiszipliniires Forschungsprojekt A TIAS,
Hardenbergstr, 28, D-l000 Berlin 12, 22 p,

Author's address:
Dietrich H. Fischer, Gesellschaft flir Mathematik und Daten­
verarbeitung mbH, Institut flir Integrierte Publikations- und
Informationssysteme (GMD-IPSI), Dolivostr, 15, D-6100
Darmstadt

Int, Classif. 18(1991)NoA

Reports and
Communications

Towards the Construction of a Thesanrns on the Ita­
lian Business History: An Announcement

Within the cultural program carried out by the
Milan Chaunber of Commerce in collaboration with the
Foundation ASSI, work on the construction of a thesau­
rus on the Italian business history has begun, The teaun
of 5 collaborators comprise R,BERTELLI and
E.ROMANO from the Milan Chaunber of Commerce,
B,BEZZA and P A,TONINELLI from the Fondazione
ASSI in Milan and MAR RIGONI, a Consultant in
Library and Information Science.

When building a thesaurus on the Italian business
history, the peculiarities of the economic growth in Italy,
and consequently, of the organization of the entrepre­
neural, managerial -and manufacturing activities are to
be taken into account. Unlike Great Britain, the USA
and Germany, where productive units have evolved
following a sufficiently linear process (faunily-run units,
joint-stocK companies, vertical and/or horizontal inte­
gration, large-sized companies), in the past decades in
Italy, traditionally "archaic" entrepreneural organiza­
tions (e,g, small-sized firms, family-run firms) have
shown new vitality and coexist with more advanced
forms of enterprises, such as public companies, or origi­
nal forms, such as foreign-Italian holdings and state­
owned companies, In the context of these peculiarities,
all the organized forms of production, distribution and
services which have characterized the Italian economy
since the industrial revolution must be taken into ac­
count.

The thesaurus structure will be in conformity with
the ISO 2788 Standard, The TINTERM software, deve­
loped by IME Ltd (London) has been selected for the
automatic processing of terms and their relationships.

The selection of terms is being done by the Com­
mittee following literary warrant. Due to the complexi­
ty of business history and its still unformal settlement,
being an "in fieri" discipline and at the center of a
"crossroad" where economic history, economics, indu­
strial and finance economy, business administration,
sociology converge, the opportunity to adopt a faceted
structure is under evaluation to better derme the com­
plex interdependence of "preferred" terms.

An "in vivo" test at the end of the work is foreseen
to be carried out in a special section of the Milan
Chaunber of Commerce library dedicated to the Italian
business history, MArrigoni (abridged)

Address: Dr .Mariagrazia Arrigoni, Camera di Commercio
Industria,Artigianato eAgricoltura, Biblioteca, Via MeravigIi
9/B, 1-20123 Milano,

225
Fischer - Consistency Rules of Thesauri / Reports and Communications

https://doi.org/10.5771/0943-7444-1991-4-212 - am 21.01.2026, 09:38:27. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/0943-7444-1991-4-212
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

