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Leistung des Maximums

1. Polynomparameter fir g

n. Polynomparameter fiir ¢

1. Polynomparameter fiir g,

n. Polynomparameter fir ¢,

Stiitzstelle links vom Maximum

Stiitzstelle rechts vom Maximum

Approximierte Funktion links neben Maximum
Approximierte Funktion rechts neben Maximum

Breite des Notch-Filters

Tiefe des Notch-Filters in normierter Darstellung

digitale Kreisfrequenz

analoge Kreisresonanzfrequenz

Absolute digitale Kreisresonanzfrequenz
Autokorellationsfolge des Signals z

Z-Transformierte der AKF von r,,

Zeitdiskrete Signalfolge der Lénge N

Zeitdiskrete DFT-Transformierte der Signalfolge x, Lange N
Ubertragungsfunktion

"Twiddle-Faktor" einer DFT zur Lénge N

Stabilitatsanlayse

Symbol
Var-

wp-

VGr+
Wp

XIV

Einheit

rad/ sec

rad/ sec

Bezeichnung

Amplitudenreserve bei negativem Phasengradienten
Kreisfrequenz der Amplitudenreserve bei negativem Phasen-
gradienten

Amplitudenreserve bei positivem Phasengradienten
Kreisfrequenz der Amplitudenreserve bei positivem Phasen-
gradienten
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Symbole

Symbol Einheit
y -

K -
v -
PR -
WpM rad/ sec
¢ -
Sonstiges
Symbol Einheit
s Hz
T sec
Tset sec
B rad/ sec
Q -
w rad/ sec
Sp -
€y U
6;0n5t U
i U
€ U/ min
T, sec
T, sec
Vs -

Bezeichnung

Verhéltnis der Nachstellzeit eines PID-Reglers im Verhéltnis

zum Startwert

Verhaltnis der Reglerverstarkung eines PID-Reglers im Ver-

haltnis zum Startwert

Verhaltnis von Nachstell- und Vorhaltzeit des PID-Reglers

Phasenreserve
Kreisfrequenz, bei der die Phasenreserve gemessen wird.

Verhéltnis der Notch-Filtermittenfrequenz im Verhéltnis zur

zu dampfenden Resonanzfrequenz

Bezeichnung

Abtastfrequenz (allgemein)

Abtastzeit (allgemein)

Anregelzeit des Reglers

Bandbreite eines schwingféhigen Systems (allgemein)
Giite eines schwingfiahigen Systems (allgemein)
Kreisfrequenz (allgemein)

Polstelle einer charakteristischen Gleichung (allgemein)
Lageabweichung

Lageabweichung bei konstanter Verfahrbewegung
Lageabweichung bei dynamischer Verfahrbewegung
Drehzahlabweichung

Allgemein: Grofite Zeitkonstante

Allgemein: Summe aller kleineren Zeitkonstanten
Allgemein: Gesamte Streckenverstérkung
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KURZFASSUNG

D iese Arbeit leistet einen Beitrag zum industrietauglichen Einsatz von Identifikations-
algorithmen von Regelstrecken, die am Beispiel einer Produktionsmaschine gezeigt
werden. Dabei wird das Relay-Feedback-Experiment, welches mit einem Nelder-Mead-
Optimierungsalgorithmus gekoppelt ist mit einem neu entwickelten Scanning-Verfahren
verglichen. Dies wird an zwei unterschiedlichen Maschinen validiert. Ziel beider Verfahren
ist, Resonanzfrequenzen mit dominierendem Streckeneinfluss zu identifizieren, sodass diese

mit Notch-Filtern geddmpft werden kénnen.

Das Scanning-Verfahren berechnet das Leistungsdichtespektrum des Drehzahlistwerts, wel-
ches fiir die automatische Identifikation der benotigten Notch-Filterparameter benutzt
wird. Im Vergleich zum Relay-Feedback-Experiment wird nicht in das bestehende Rege-
lungssystem eingegriffen, sodass es dadurch zum Beispiel auch bei endlagenbeschriankten
sowie bei schwerkraftbehafteten Maschinenachsen einsetzbar ist. Da die Identifikation beim
Scanning-Verfahren im geschlossenen Regelkreis durchgefithrt wird, wird die Resonanz-
frequenz verfilscht bestimmt. Dies wird in der Arbeit sowohl theoretisch als auch unter
praktischen Gesichtspunkten betrachtet und bewertet. Die Anzahl der Resonanzfrequenzen

ist dabei nicht an eine Modellordnung gekoppelt.

Die Messungen werden an serienméfig eingesetzten Maschinen, die weltweit im Einsatz sind,
direkt auf dem Frequenzumrichter auf einem Signalprozessor unter Echtzeitanforderungen
umgesetzt. Das Scanning-Verfahren ist daher derart gestaltet, dass dieses echtzeitfihig mit
wenig Ressourcen lauffihig ist. Die Wirksamkeit der automatisch eingemessenen Notch-Filter
wird sowohl im Zeit- als auch Frequenzbereich nachgewiesen. Dazu werden Giitefunktionale
benutzt, um Metriken zu entwerfen, die diese Wirksamkeit aufzeigen. Durch das Einfiithren
des Giitefunktionals wird die Parametrierung von Notch-Filtern auf ein Optimierungspro-

blem zurtickgefiihrt.
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