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SYMBOLE

Mechanische Parameter
Symbol Einheit Bezeichnung

D12 N m−1 s−1 mechanische Dämpfung
d N m−1 s−1 mechanische Dämpfung als Modellparameter
d kg m−3 Stoffdichte

C12 N m−1 mechanische Drehfedersteifigkeit
c N m−1 mechanische Drehfedersteifigkeit als Modellparameter

kF N A−1 Kraftkonstante des Motors
m1 kg Masse
ΘA kg m2 Massenträgheit Arbeitsmaschinenseite
ΘM kg m2 Massenträgheit Motorseite
λ - Verhältnis von Motor- zu Summenträgheit

ΘSum kg m2 Summenträgheit des Antriebsstrangs
G N m−2 Schubmodul

ωMax rad Resonanzfrequenz des ZMS
ωMin rad Anti-Resonanzfrequenz des ZMS
RMax dB Betrag der Übertragungsfunktion des ZMS für ω = ωMax

RMin dB Betrag der Übertragungsfunktion des ZMS für ω = ωMin
dW mm Wellendurchmesser
dL mm Wellenlänge
rZ mm Zylinderradius
hZ mm Zylinderhöhe
ξC N Coulombscher Reibungskoeffizient
ξV N/rad sec Viskoser Reibungskoeffizient

Grundlagen Antriebstechnik
Symbol Einheit Bezeichnung

UE V Effektivwert d. Spannung in Erregerwicklung
U1a V Effektivwert d. Spannung in der Statorwicklung a

u1a(t) V Momentanwert d. Spannung in der Statorwicklung a
U1b V Effektivwert d. Spannung in der Statorwicklung b

u1b(t) V Momentanwert d. Spannung in der Statorwicklung b
U1c V Effektivwert d. Spannung in der Statorwicklung c
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Symbole

Symbol Einheit Bezeichnung
u1c(t) V Momentanwert d. Spannung in der Statorwicklung c

IE A Strom in Erregerwicklung
I1a A Strom in der Statorwicklung a
I1b A Strom in der Statorwicklung b
I1c A Strom in der Statorwicklung c
Ψd Wb Verketteter magnetischer Fluss in Längsrichtung

ΨPM Wb Fluss der Permanentmagnete
Ψq Wb Verketteter magnetischer Fluss in Querrichtung
Ld H Induktivität in d-Richtung
Lq H Induktivität in q-Richtung
ΩL rad/ sec Elektrische Kreisfrequenz
ΩM rad/ sec Mechanische Kreisfrequenz

PKlemmen W An die Klemmen der elektrischen Maschine abgegebene Wirk-
leistung.

Pel,mech W An die Klemmen der elektrischen Maschine abgegebener
Anteil an mech. Leistung

Pel,v W An die Klemmen der elektrischen Maschine abgegebener
Anteil an Verlustleistung

Zp - Polpaarzahl
Ud V Spannung in Längsrichtung
∼
Ud V Entkoppelte Spannung in Längsrichtung
Uq V Spannung in Querrichtung
∼
Uq V Entkoppelte Spannung in Querrichtung
Id A Statorstrom in Längsrichtung
ID A Strom in Längsrichtung der Dämpferwicklung
Id,r A Sollwert des Statorstroms in Längsrichtung
M H Gegeninduktivität im Motor
IQ A Strom in Querrichtung der Dämpferwicklung
Iq,r A Sollwert des Statorstroms in Querrichtung

ΩK rad/ sec Kreisfrequenz des Rotors in Bezug zum Stator
βK rad Elektrischer Winkel des Rotors bezogen auf den Stator.
ΩL rad/ sec Kreisfrequenz des Rotors in Bezug zum Stator
βL rad Elektrischer Winkel des Rotors bezogen auf den Stator.
~ΨS

1 Wb Statorfluss im ortsfesten Statorkoordinatensystem
~ΨL

1 Wb Statorfluss im Rotorkoordinatensystem
~US

1 V Allgemeine Spannung in vektorieller Form, zum Beispiel in
Motorwicklung

~uS
1 A Allgemeiner momentaner Strom in vektorieller Form, zum

Beispiel in Motorwicklung
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Symbole

Symbol Einheit Bezeichnung
~UL

1 V Statorspannung in vektorieller Form bezogen auf das Rotor-
system

U1β V Komponente der Statorspannung
u1β V Komponente der Statorspannung als Momentanwert
U1α V Komponente der Statorspannung
u1α V Komponente der Statorspannung als Momentanwert
βS

U1 rad Winkel der Statorspannung bezogen auf das Statorsystem
~I1 A Allgemeiner Strom in vektorieller Form, zum Beispiel in

Motorwicklung
I1A A Komponente des Statorstroms
I1β A Komponente des Statorstroms
I1α A Komponente des Statorstroms
~IS

1 A Vektorieller Statorstrom bezogen auf das ortsfeste Statorko-
ordinatensystem

βS
I1 rad Winkel des Stroms bezogen auf das Statorsystem

ΩS
1 rad/ sec Winkelgeschwindigkeit bezogen auf das Statorsystem

~IL
2 A Rotorstrom in vektorieller Form, zum Beispiel in Motorwick-

lung
~IL

1 A Statorstrom in vektorieller Form bezogen auf das Rotorsys-
tem

~IK
1 A Allgemeiner Strom in vektorieller Form, zum Beispiel in

Motorwicklung
βK rad Winkel des Stroms bezogen auf das Statorsystem

L2 H Rotorinduktivität
MMα N m Beschleunigungsmoment der Mechanik
MMi N m Inneres Drehmoment des Motors
Mr N m Reibmoment aus der Mechanik
R2 Ω Rotorwiderstand
Up V Polradspannung
L1 H Statorinduktivität
R1 Ω Statorwiderstand
TD sec elektrische Ankerzeitkonstante über das Längsteil des Rotors
TQ sec elektrische Ankerzeitkonstante über das Querteil des Rotors
G - Effektivwert der allg. komplexen Zeitfunktion

Parameter der Signalflusspläne
Symbol Einheit Bezeichnung

ϕ rad Drehwinkel
ϕA rad Drehwinkel der Antriebsseite
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Symbole

Symbol Einheit Bezeichnung
ϕM rad Drehwinkel der Motorseite
ϕr rad Sollwert des Drehwinkels
ϕ̇r rad/ sec Sollwert der Winkelgeschwindigkeit
ϕ̈ rad/ sec2 Winkelbeschleunigung

ϕ̇A rad/ sec Winkelgeschwindigkeit der Antriebsseite
ϕ̇M rad/ sec Winkelgeschwindigkeit der Motorseite

TPWM sec Abtastzeit des Stromrichters
fR(·) Nm sec /rad Funktion zur Beschreibung des Reibverhaltens

Tt sec Totzeit des Stromrichters
Te sec Ersatzzeitkonstante des Stromregelkreises
Tu sec Ersatzzeitkonstante des Stromrichters
KP A/U Proportionalverstärkung des PID Reglers
TN s Nachstellzeit des PID Reglers
TV s Vorhalt des PID Reglers

TN,d sec Nachstellzeit des PI-Drehzahlreglers
KP,d A/U min Proportionalverstärkung des Drehzahlreglers
K

′
P,d - Proportionalverstärkung des Drehzahlreglers normiert

KP,i V A−1 Proportionalverstärkung des Stromreglers
TN,i sec Nachstellzeit des PI-Stromreglers

Übertragungsfunktionen
Symbol Einheit Bezeichnung
GBP(s) - Übertragungsfunktion eines Bandpasses
GR,ϕ(s) - Übertragungsfunktion des Lagereglers
GR,ω(s) - Übertragungsfunktion des Drehzahlreglers

Go,ϕ - Übertragungsfunktion des offenen Lageregelkreises
Gw,ϕ(s) - Führungsübertragungsfunktion des Lageregelkreises
GN(s) - Übertragungsfunktion von Notch Filtern
Gs(s) - Übertragungsfunktion der Regelstrecke

GAA(s) - Übertragungsfunktion der Lastseite mit Wirkung auf die
Lastseite

GAM(s) - Übertragungsfunktion der Lastseite mit Wirkung auf die
Motorseite

Gel(s) - Übertragungsfunktion des elektrischen Teils der Regelstrecke
GMA(s) - Übertragungsfunktion des mechanischen Teils der Regelstre-

cke mit Wirkung auf die Lastseite
GMA,e(s) - Übertragungsfunktion des elastischen Anteils der mechani-

schen Übertragungsfunktion mit Wirkung auf die Lastseite
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Symbole

Symbol Einheit Bezeichnung
GMM,e(s) - Übertragungsfunktion des elastischen Anteils der mechani-

schen Übertragungsfunktion mit Wirkung auf die Motorseite
GM3(s) - Übertragungsfunktion der Motorseite auf die Antriebsseite
GM,s(s) - Übertragungsfunktion des starren Anteils der mechanischen

Übertragungsfunktion
GMM(s) - Übertragungsfunktion des mechanischen Teils der Regelstre-

cke mit Wirkung auf Motorseite
GR,i(s) - Übertragungsfunktion des Strom PI-Reglers

Identifikation von ZMS
Symbol Einheit Bezeichnung

G A Ausgang des Zweipunktreglers
M̂Mα N m Identifiziertes Beschleunigungsmoment der Mechanik
ωO U/ min Oberer Umschaltpunkt des Zweipunktreglers
T∆ sec Periodendauer des Dreieckssignals
ωU U/ min Unterer Umschaltpunkt des Zweipunktreglers
X̄ - Erwartungswert einer Stichprobe
gZP - Güte der Identifikation aus dem Relay-Feedback-Experiment

ANF-Algorithmus
Symbol Einheit Bezeichnung

aP
k - Bandpassfilterparameter im Nennerpolynom
bP

k - Bandpassfilterparameter im Zählerpolynom
aS

k - Bandsperrfilterparameter im Nennerpolynom
bS

k - Bandsperrfilterparameter im Zählerpolynom
∆f Hz Aktueller Frequenzstützstellenabstand der aktuellen Iteration

p
∆fMD Hz Mindestabstand zwischen zwei Maxima
∆fNB Hz Umgebung um ein Maximum
u[n] - Diskrete Eingangssignalfolge
fEnde Hz Endfrequenz

k - Index der aktuellen Frequenzstützstelle
N - Anzahl zu verarbeitender Messwerte
n - Index des aktuellen Messwerts

fIter Hz Frequenz in der aktuellen Iteration
L - Maximale Anzahl Maxima im Speicher

P [k] W Leistung an der Stelle k
PNB[k] W Mittlere Leistung der Umgebung
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Symbole

Symbol Einheit Bezeichnung
PRel[k] - Relative Leistung an der Stelle k bezogen auf eine Umgebung

PRel[k − 1] - Relative Leistung an der Stelle k-1 bezogen auf eine Umge-
bung. Bei der Maximumsuche ist die Stelle k-1 das Maximum,
die Stellen k und k-2 die benachbarten Stützpunkte

PRel[k − 2] - Relative Leistung an der Stelle k-2 bezogen auf eine Umge-
bung

ε - Schwellwert für die Maximumsdetektion
fStart Hz Startfrequenz
∆ωBP rad/ sec Normierte Breite des Bandpass

xP - Stützstelle des Maximums
P (xP) - Leistung des Maximums

p1,l - 1. Polynomparameter für ŷl

pn,l - n. Polynomparameter für ŷl

p1,r - 1. Polynomparameter für ŷr

pn,r - n. Polynomparameter für ŷr

xl - Stützstelle links vom Maximum
xr - Stützstelle rechts vom Maximum
ŷl - Approximierte Funktion links neben Maximum
ŷr - Approximierte Funktion rechts neben Maximum

∆ωN rad/ sec Breite des Notch-Filters
gN - Tiefe des Notch-Filters in normierter Darstellung
Ω - digitale Kreisfrequenz
ω0 rad/ sec analoge Kreisresonanzfrequenz

ΩRes - Absolute digitale Kreisresonanzfrequenz
rxx - Autokorellationsfolge des Signals x

Sxx - Z-Transformierte der AKF von rxx

x[n] - Zeitdiskrete Signalfolge der Länge N
XN [k] - Zeitdiskrete DFT-Transformierte der Signalfolge x, Länge N
Hk(z) - Übertragungsfunktion
WN - "Twiddle-Faktor" einer DFT zur Länge N

Stabilitätsanlayse
Symbol Einheit Bezeichnung

VGr- - Amplitudenreserve bei negativem Phasengradienten
ωP- rad/ sec Kreisfrequenz der Amplitudenreserve bei negativem Phasen-

gradienten
VGr+ - Amplitudenreserve bei positivem Phasengradienten
ωP+ rad/ sec Kreisfrequenz der Amplitudenreserve bei positivem Phasen-

gradienten
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Symbole

Symbol Einheit Bezeichnung
γ - Verhältnis der Nachstellzeit eines PID-Reglers im Verhältnis

zum Startwert
κ - Verhältnis der Reglerverstärkung eines PID-Reglers im Ver-

hältnis zum Startwert
ν - Verhältnis von Nachstell- und Vorhaltzeit des PID-Reglers

PR - Phasenreserve
ωPM rad/ sec Kreisfrequenz, bei der die Phasenreserve gemessen wird.

ξ - Verhältnis der Notch-Filtermittenfrequenz im Verhältnis zur
zu dämpfenden Resonanzfrequenz

Sonstiges
Symbol Einheit Bezeichnung

fs Hz Abtastfrequenz (allgemein)
Ts sec Abtastzeit (allgemein)

TSet sec Anregelzeit des Reglers
B rad/ sec Bandbreite eines schwingfähigen Systems (allgemein)
Q - Güte eines schwingfähigen Systems (allgemein)
ω rad/ sec Kreisfrequenz (allgemein)
sp - Polstelle einer charakteristischen Gleichung (allgemein)
eϕ U Lageabweichung

econst
ϕ U Lageabweichung bei konstanter Verfahrbewegung
edyn

ϕ U Lageabweichung bei dynamischer Verfahrbewegung
eω U/ min Drehzahlabweichung
T1 sec Allgemein: Größte Zeitkonstante
Tσ sec Allgemein: Summe aller kleineren Zeitkonstanten
VS - Allgemein: Gesamte Streckenverstärkung
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KURZFASSUNG

D iese Arbeit leistet einen Beitrag zum industrietauglichen Einsatz von Identifikations-
algorithmen von Regelstrecken, die am Beispiel einer Produktionsmaschine gezeigt

werden. Dabei wird das Relay-Feedback-Experiment, welches mit einem Nelder-Mead-
Optimierungsalgorithmus gekoppelt ist mit einem neu entwickelten Scanning-Verfahren
verglichen. Dies wird an zwei unterschiedlichen Maschinen validiert. Ziel beider Verfahren
ist, Resonanzfrequenzen mit dominierendem Streckeneinfluss zu identifizieren, sodass diese
mit Notch-Filtern gedämpft werden können.

Das Scanning-Verfahren berechnet das Leistungsdichtespektrum des Drehzahlistwerts, wel-
ches für die automatische Identifikation der benötigten Notch-Filterparameter benutzt
wird. Im Vergleich zum Relay-Feedback-Experiment wird nicht in das bestehende Rege-
lungssystem eingegriffen, sodass es dadurch zum Beispiel auch bei endlagenbeschränkten
sowie bei schwerkraftbehafteten Maschinenachsen einsetzbar ist. Da die Identifikation beim
Scanning-Verfahren im geschlossenen Regelkreis durchgeführt wird, wird die Resonanz-
frequenz verfälscht bestimmt. Dies wird in der Arbeit sowohl theoretisch als auch unter
praktischen Gesichtspunkten betrachtet und bewertet. Die Anzahl der Resonanzfrequenzen
ist dabei nicht an eine Modellordnung gekoppelt.

Die Messungen werden an serienmäßig eingesetzten Maschinen, die weltweit im Einsatz sind,
direkt auf dem Frequenzumrichter auf einem Signalprozessor unter Echtzeitanforderungen
umgesetzt. Das Scanning-Verfahren ist daher derart gestaltet, dass dieses echtzeitfähig mit
wenig Ressourcen lauffähig ist. Die Wirksamkeit der automatisch eingemessenen Notch-Filter
wird sowohl im Zeit- als auch Frequenzbereich nachgewiesen. Dazu werden Gütefunktionale
benutzt, um Metriken zu entwerfen, die diese Wirksamkeit aufzeigen. Durch das Einführen
des Gütefunktionals wird die Parametrierung von Notch-Filtern auf ein Optimierungspro-
blem zurückgeführt.
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