
Fortschritt-Berichte VDI

Stefan Widmann, M.Sc.,
Freudenberg

Nr. 856

Informatik/
Kommunikation

Reihe 10

Eine Daten spezifikations-
architektur

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Fortschritt-Berichte VDI

Eine Datenspezifikations-
architektur

Stefan Widmann, M.Sc.,
Freudenberg

Informatik/
Kommunikation

Nr. 856

Reihe 10

Black
M?rz 18, 2015 | 08:13:46

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

© VDI Verlag GmbH · Düsseldorf 2017
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627
ISBN 978-3-18-385610-7

Widmann, Stefan
Eine Datenspezifikationsarchitektur
Fortschr.-Ber. VDI Reihe 10 Nr. 856. Düsseldorf: VDI Verlag 2017.
328 Seiten, 91 Bilder, 42 Tabellen.
ISBN 978-3-18-385610-7, ISSN 0178-9627,
¤ 104,00/VDI-Mitgliederpreis ¤ 93,60.
Für die Dokumentation: Echtzeitsysteme – funktionale Sicherheit – sicherheitsgerichtete Echtzeit-
systeme – IEC 61508 – Mikroprozessorarchitekturen – Prozessorarchitekturen – Datentyparchi-
tekturen – Befähigungsarchitekturen – Datenfluss – Datenflussüberwachung

Die vorliegende Arbeit richtet sich an Ingenieure und Wissenschaftler in den Bereichen Mikro-
prozessorarchitektur und sicherheitsgerichtete Echtzeitsysteme. Sie beginnt mit der Identifikation
von 20 datenflussbezogenen Fehler- und Angriffsarten und evaluiert anhand dieser den Stand
von Wissenschaft und Technik. Anschließend wird eine neue Prozessorarchitektur, die Datenspe-
zifikationsarchitektur, vorgestellt, welche die in Vergessenheit geratenen Merkmale von Daten-
typarchitekturen stark erweitert und alle Dateneigenschaften in Form zusätzlicher Kennungen
untrennbar mit dem Datenwert verknüpft, überträgt, speichert und verarbeitet. Dies ermöglicht es
der neuen Architektur, alle 20 Fehler- und Angriffsarten zu erkennen. Die schlussendliche Gegen-
überstellung des Stands von Wissenschaft und Technik und der Datenspezifikationsarchitektur
zeigt die Überlegenheit der neuen Architektur und deren hervorragende Eignung für die Reali-
sierung sicherheitsgerichteter Anwendungen.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

Schriften zur Informations- und Kommunikationstechnik
Herausgeber:

Wolfgang A. Halang, Lehrstuhl für Informationstechnik
Herwig Unger, Lehrstuhl für Kommunikationstechnik

FernUniversität in Hagen

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Vorwort

Der Bedarf an sicherheitsgerichteten, programmgesteuerten (eingebetteten) Syste-
men aller Art ist hoch und steigt durch die zunehmende Automatisierung von Pro-
zessen kontinuierlich weiter an. Im Einklang damit wächst auch das gesellschaftliche
Sicherheitsbewusstsein. Weil die auf dem Markt vorherrschenden Prozessorarchi-
tekturen kaum Schutz gegen typische Programmierfehler und Malware-Attacken
bieten, hatte der Autor des vorliegenden Buches sich zur Aufgabe gemacht, auf-
bauend auf den allgemeinen Sicherheitsanforderungen gemäß der Norm IEC 61508
auf Maschinenebene eine völlig neue, von Grund auf auf Sicherheit hin ausgeleg-
te Rechnerarchitektur zu entwerfen, die eine Fülle von Programmierfehlern ohne
Software-Hilfe erkennen kann und daraufhin die Programmausführung abbricht.

Der Autor des 2014 unter dem Titel „Verfahren zur Kontrollflussüberwachung in si-
cherheitsgerichteten Rechensystemen“ in dieser Buchreihe mit der Nummer 832 er-
schienenen Bandes hatte sich bereits sehr eingehend mit der Sicherung des Kontroll-
flusses in sicherheitsgerichteten Echtzeitsystemen beschäftigt und beeindruckende
Ergebnisse vorgelegt. Allerdings stellen Kontrollflussfehler nur einen geringen Anteil
aller Programmfehler dar. Der weitaus größere Teil aller Fehler, die in programmge-
steuerten Digitalrechnern auftreten, sind Datenflussfehler, deren Überwachung und
Verhinderung sich deshalb Herr Widmann an dieser Stelle annimmt.

Datenflussfehler sind in höchstem Maße gefährlich, da sie insbesondere in der
von Neumann-Architektur, die die völlig beliebige Interpretation jedes Bitmusters
erlaubt, eine Vielzahl der technisch möglichen Reaktionen solcher Rechner auszu-
lösen vermögen. Durch während des Entwurfs eines Programms gemachte oder zur
Laufzeit auftretende Datenflussfehler kann sich auch der Kontrollfluss in unerwarte-
ter Weise verändern, so dass Befehle in unvorhergesehener und falscher Reihenfolge,
aber auch Daten, in denen keine Befehle codiert sind, als Befehle interpretiert und
ausgeführt werden. Durch Fehler in der Gerätetechnik, transiente Störungen, in-
termittierende Fehler oder permanente Ausfälle kann es dazu kommen, dass die
Bitmuster von Daten verändert werden. Sehr oft reicht eine einzige fehlerhafte Bit-
position aus, um eine völlig verschiedene Aktion auszuführen.

III

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Die von Herrn Widmann verfolgte Zielstellung ergibt sich unmittelbar aus dem un-
zureichenden Stand der Technik, und zwar gerätetechnische Fehlervermeidungs- und
-erkennungsmöglichkeiten zu schaffen, um damit datenflussbezogene Fehler und An-
griffe erkennen und die Einhaltung von Echtzeitbedingungen überwachen zu können.
Die vorgestellten Ergebnisse sind in allen Bereichen der elektronischen Datenver-
arbeitung anwendbar und dort wegen deren geringer Zuverlässigkeit auch dringend
erforderlich. Trotzdem ist das Werk aus Sicht der Automatisierungstechnik geschrie-
ben, weil Digitalrechner trotz der Unmöglichkeit, wirklich vertrauenswürdige Sicher-
heitsnachweise für programmgesteuerte Systeme zu führen, mehr und mehr auch für
sicherheitsgerichtete Anwendungen eingesetzt werden und dabei bewährte, oft inhä-
rent sichere gerätetechnische Lösungen ersetzen. Weiterhin sind im Anwendungsge-
biet sicherheitskritischer Echtzeitsysteme weder nicht zeitdeterministisch arbeitende
Verfahren hinnehmbar, noch dürfen Fehler erst nachträglich korrigiert werden.

Bemerkenswert an Herrn Widmanns wissenschaftlich-technischen Beiträgen ist ei-
ne Reihe von Aspekten. In ganzheitlicher Betrachtung von Hardware und Software
verfolgt er konzeptionell ein neuartiges Entwurfsparadigma, dass nämlich alle De-
skriptoren eines Datenspeicherelementes in untrennbarer Verknüpfung mit diesem
gespeichert, verarbeitet und übertragen sowie gerätetechnisch überprüfbar darge-
stellt werden sollen. Mit Hilfe solcher selbstbeschreibenden Daten können dann in
Hardware implementierte Überprüfungen die meisten datenflussbezogenen Fehler
in der Datenverarbeitung auch über Grenzen zwischen Systemkomponenten hinweg
aufdecken. Er liefert theoretische Beiträge, indem er die datenflussbezogenen Fehler-
und Angriffsarten analysiert und identifiziert, die Eigenschaften in sicherheitsge-
richteten Echtzeitsystemen gehaltener Daten zusammenstellt und darauf aufbau-
end seine Datenspezifikationsarchitektur entwirft, die die Dateneigenschaften mit
bisher unerreichter Aussagekraft abbildet. Und schließlich arbeitet er konstruktiv-
ingenieurmäßig, indem er für jedes angegebene Verfahren geeignete Implementie-
rungsmöglichkeiten vorschlägt und ihre jeweiligen Vor- und Nachteile diskutiert.

Der Preis, den Herr Widmann für die Sicherung des Datenflusses in Digitalrech-
nern bezahlt, ist erheblich erhöhter Speicherbedarf und dementsprechend größerer
Übertragungsaufwand, wohingegen der Umfang zusätzlicher Hardware für die Ver-
arbeitung der Datenkennungen gering ist. In Zeiten enormer Speicherkapazitäten
ist deutlich erhöhte Sicherheit diesen Preis jedoch unbestreitbar wert.

Hagen, im August 2017 Wolfgang A. Halang

IV

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Inhaltsverzeichnis

1 Einleitung 1
1.1 Beispiele für Auswirkungen von Fehlern 3

1.1.1 Selbstzerstörung der Ariane 5 3
1.1.2 Verlust der NASA-Sonde Mars Climate Orbiter 4
1.1.3 Bestrahlungsgerät Therac-25 4
1.1.4 Sicherheitslücke Heartbleed 5

1.2 Der Stand von Wissenschaft und Technik und dessen Nachteile . . . 6
1.2.1 Stand von Wissenschaft und Technik 6
1.2.2 Nachteile des Stands von Wissenschaft und Technik 7

1.3 Ziel der Arbeit . 8
1.4 Ergebnisse der Arbeit . 9
1.5 Aufbau der Arbeit . 11
1.6 Darstellung von Zahlen und Speichergrößen in der Arbeit 13

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung 14
2.1 Fehlerkategorien . 14
2.2 Fehlerquellen in Soft- und Hardware 15
2.3 Fehlerdichte in Software . 19
2.4 Datenflussbezogene Fehler- und Angriffsarten 20

2.4.1 Inkompatibilität von Operanden 21
2.4.2 Wertebereichsverletzungen und Genauigkeitsprobleme 21
2.4.3 Fehlerhafte Operationen . 22
2.4.4 Verletzung von Echtzeitbedingungen 23
2.4.5 Allgemeine Datenflussfehler 23
2.4.6 Datenverfälschung durch Fehler oder Störungen 25
2.4.7 Fehlerhafter Zugriff auf Daten 25
2.4.8 Hackerangriffe . 26
2.4.9 Zusammenfassung der identifizierten datenflussbezogenen

Fehler- und Angriffsarten . 27
2.5 Auswirkungen von Fehlern . 27
2.6 Fehlererkennung und -behandlung 30

V

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Inhaltsverzeichnis

2.6.1 Einnehmen und Halten eines sicheren Zustands 31
2.6.2 Anwendung von Redundanzmaßnahmen 31
2.6.3 Allmähliche Leistungsabsenkung 31

3 Stand von Wissenschaft und Technik 33
3.1 Konventionelle Architekturen . 34

3.1.1 Die x86-Architektur . 34
3.1.2 Die ARM-Architektur . 40
3.1.3 Integritätsprüfung durch ECC 41
3.1.4 Evaluation konventioneller Architekturen 42

3.2 Prozessoren für sicherheitsgerichtete Anwendungen 45
3.2.1 Aufbau der Prozessoren für sicherheitsgerichtete Anwendungen 45
3.2.2 Evaluation der Prozessoren für sicherheitsgerichtete Anwen-

dungen . 46
3.3 Datentyparchitekturen . 49

3.3.1 Beispiele von Datentyparchitekturen 50
3.3.2 Evaluation der Datentyparchitekturen 52

3.4 Datenstruktur- bzw. Deskriptorarchitekturen 54
3.4.1 Beispiele von Datenstruktur- bzw. Deskriptorarchitekturen . 54
3.4.2 Evaluation der Datenstrukturarchitekturen 55

3.5 Befähigungsarchitekturen . 55
3.5.1 Beispiele historischer Befähigungsarchitekturen 58
3.5.2 Beispiele moderner Befähigungsarchitekturen 60
3.5.3 Evaluation der Befähigungsarchitekturen 66

3.6 Datenflussarchitekturen . 66
3.6.1 Funktionsweise von Datenflussarchitekturen 68
3.6.2 Evaluation von Datenflussarchitekturen 69

3.7 Die inhärent sichere Mikroprozessorarchitektur ISMA 71
3.7.1 Aufbau der Datenspeicherelemente in ISMA 71
3.7.2 Evaluation von ISMA . 75

3.8 Application Data Integrity ADI bzw. Silicon Secured Memory SSM 77
3.8.1 Funktion von ADI bzw. SSM 77
3.8.2 Evaluation von ADI bzw. SSM 77

3.9 Dynamic Dataflow Verification DDFV 79
3.9.1 Funktion der dynamischen Datenflussprüfung 79
3.9.2 Evaluation der dynamischen Datenflussprüfung 80

3.10 Fehlererkennung durch AN(BD)-Kodierung 80
3.10.1 AN-Kodierung zur Integritätsprüfung von Datenspeicherele-

menten und arithmetischen Operationen 82

VI

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Inhaltsverzeichnis

3.10.2 ANB-Kodierung: Hinzufügen der Adressprüfung B 84
3.10.3 ANBD-Kodierung: Hinzufügen der Aktualitätsprüfung D . . 86
3.10.4 Realisierung der AN(BD)-Kodierung 87
3.10.5 Evaluation der AN(BD)-Kodierung 87

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten
Feldbussen . 91
3.11.1 Netzwerkprotokolle TCP/IP 91
3.11.2 Sicherheitsgerichtete Feldbusprotokolle 95
3.11.3 Evaluation der Datenflussüberwachung in Netzwerken und si-

cherheitsgerichteten Feldbussen 101
3.12 Zusammenfassung des Stands von Wissenschaft und Technik 104

3.12.1 Zusammenfassung der Fehlererkennungsmöglichkeiten 104
3.12.2 Zusammenfassende Kritik am Stand von Wissenschaft und

Technik . 108

4 Eine Datenspezifikationsarchitektur 111
4.1 Systemaufbau und Fehlerbehandlung 112

4.1.1 Grundlegender Systemaufbau technischer Prozesse 112
4.1.2 Aufbau eines auf einer Datenspezifikationsarchitektur basie-

renden Systems . 113
4.1.3 Fehlerbehandlung in einer Datenspezifikationsarchitektur . . 116

4.2 Sammlung relevanter Dateneigenschaften 119
4.3 Realisierung der Datenflussüberwachung 122

4.3.1 Einleitende Erläuterungen 122
4.3.2 Datenwert und dessen Genauigkeit 128
4.3.3 Wertebereich . 140
4.3.4 Datentyp . 148
4.3.5 Einheit . 161
4.3.6 Zugriffsrechte und Initialisierungsstatus 175
4.3.7 Quelle, Verarbeitungsweg und Ziel 184
4.3.8 Zeitschritt . 203
4.3.9 Frist . 220
4.3.10 Zykluszeit . 226
4.3.11 Integritätsprüfung und Adresse 239
4.3.12 Signatur und Adresse . 244
4.3.13 Redundante diversitäre arithmetisch-logische Einheit 253

4.4 Übersicht der Kennungen in Daten- und Befehlsspeicherelementen . 257
4.5 Übersicht der speziellen Register . 261
4.6 Pseudocode einer Instruktion . 261

VII

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Inhaltsverzeichnis

4.7 Anforderungen an die Systemkomponenten 272
4.7.1 Schnittstellen zu konventionellen Systemkomponenten 272
4.7.2 Hochpräzise synchronisierte Uhren 273

4.8 Konfiguration der Systemkomponenten 273
4.8.1 Konfiguration der Datenquellen 274
4.8.2 Konfiguration der Datenverarbeitungseinheiten 274
4.8.3 Konfiguration der Datensenken 276
4.8.4 Konfiguration der Systemüberwachungseinheit 277
4.8.5 Erkennung konfigurationsbezogener Inkonsistenzen 277

4.9 Anforderungen an Begutachtungen und Audits 278
4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchi-

tektur . 279
4.10.1 Erweiterung der Funktionsblöcke um Lebenszeichen und Dia-

gnose . 280
4.10.2 Verbesserung der Fehlererkennung durch zusätzliche Erweite-

rungen . 283
4.10.3 Weiterhin bestehende Einschränkungen 286

5 Evaluation der Datenspezifikationsarchitektur 287
5.1 Evaluation der Datenabbildung der DSA 287
5.2 Einordnung der entstandenen Architektur 290
5.3 Evaluation anhand der Fehlererkennungsmöglichkeiten 291
5.4 Evaluation anhand der Fehlerbeispiele 295

5.4.1 Selbstzerstörung der Ariane 5 295
5.4.2 Verlust der NASA-Sonde Mars Climate Orbiter 296
5.4.3 Bestrahlungsgerät Therac 25 296
5.4.4 Sicherheitslücke Heartbleed 296

5.5 Evaluation der Speicherausnutzung 298
5.5.1 Speicherausnutzung der Datenspeicherelemente 298
5.5.2 Speicherausnutzung der Befehlsspeicherelemente 301
5.5.3 Evaluation der Speicherausnutzung 304

6 Zusammenfassung und Weiterführungsmöglichkeiten 306
6.1 Zusammenfassung der Ergebnisse der Arbeit 306
6.2 Weiterführungsmöglichkeiten . 308

Literaturverzeichnis 310

VIII

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

Der Grad der Automatisierung technischer Prozesse steigt unaufhörlich, und mit
ihm auch die Verantwortung für Mensch, Umwelt und Investitionen, welche die da-
bei eingesetzten Datenverarbeitungssysteme tragen. Gute Beispiele dafür sind die
immer stärker in den Fokus rückenden „x-by-wire“-Systeme im Automobil- und
Avionikbereich, wobei das „x“ in automobilen Anwendungen z. B. für Lenkung
(„steer“), Bremsen („brake“) oder Schalten („shift“) stehen kann [89, 113] bzw.
in der Avionik für die Realisierung zahlreicher Steuerungsfunktionen in Flugzeugen
(„fly“) [2]. Zuverlässige, betriebsbewährte mechanische Systeme werden in zuneh-
mendem Maße durch Sensoren und Aktoren ersetzt, wobei mikroprozessorbasierte
Datenverarbeitungseinheiten die Sensorsignale verarbeiten und Steuersignale für die
Aktoren erzeugen. Die möglichen Folgen wurden beim Nissan Q50 im Jahr 2013 er-
sichtlich: Nach der Markteinführung des „ersten Serienfahrzeugs mit steer-by-wire
Technology“ [113] im August 2013 wurden die Fahrzeuge bereits im November 2013
in die Werkstätten zurückgerufen, da die Lenkung bei tiefen Temperaturen softwa-
rebedingt ausfallen konnte [88].

Ein weiteres Beispiel, das die steigende Verantwortung von Datenverarbeitungssy-
stemen im Automobilbereich illustriert, ist das autonome Fahren, also die Teilnah-
me eines Kraftfahrzeugs am öffentlichen Verkehr, ohne dabei durch einen Menschen
gesteuert zu werden. Zwei Firmen erregen dabei besonderes öffentliches Interesse:
Tesla mit dem System „Autopilot“ in den Fahrzeugmodellen Model S und Model
X [119] und Google mit dem Google Driverless Car, einem Projekt, das inzwischen
unter dem Namen Waymo weitergeführt wird [42].

Zusätzlich zur steigenden Verantwortung der Systeme nimmt die Komplexität der
in den Systemen eingesetzten Software stetig zu. Im Jahr 2006 gab Broy in [14] an,
dass die Software in einem Fahrzeug bis zu 10 Millionen Zeilen Code umfassen kann.
Bereits 2009 – also gerade einmal drei Jahre später – wird Broy in [17] dahingehend
zitiert, dass der Umfang nun auf bis zu 100 Millionen Zeilen Code angewachsen
sei. Eine weitere Erhöhung auf 200 bis 300 Millionen Codezeilen wurde 2008 in [96]
vermutet.

1

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

Auch die Komplexität der verwendeten Hardwaresysteme steigt: über 70 untereinan-
der kooperierende eingebettete Systeme wurden nach Broy 2006 in einem Fahrzeug
eingesetzt [14], drei Jahre später schon bis zu 100 [17]. Eine ähnliche Entwicklung
findet auf der Ebene der integrierten Schaltkreise statt: die Anzahl der Transi-
storen innerhalb eines Prozessors erreichte im Jahr 2015 1,3 Milliarden [107]. Die
fortschreitende Integration von immer größeren Anzahlen von Bauelementen inner-
halb integrierter Schaltkreise ist nur durch immer weiter reduzierte Strukturbreiten
möglich, wodurch die entstehenden Produkte immer empfindlicher gegenüber Um-
gebungseinflüssen wie z. B. Strahlung in Form von Neutronen werden, und das sogar
zunehmend auf Meereshöhe [8, 90].

All diese Faktoren wirken sich negativ auf die Fehlerwahrscheinlichkeit aus. Die so
entstehenden Fehler in Hard- und Software können, wenn sie nicht erkannt und ad-
äquat behandelt werden, zu gefährlichen Ausgabefehlern in sicherheitsgerichteten
Systemen führen. Daher ist es notwendig, Fehler weitestgehend zu vermeiden, und
trotz aller Vermeidungsmaßnahmen trotzdem auftretende Fehler so frühzeitig wie
möglich zu erkennen: idealerweise im Moment ihres Auftretens und nicht erst, wenn
ihre Auswirkungen (z. B. durch Vergleich von Ergebnissen oder Zwischenergebnis-
sen) sichtbar werden.

Konventionelle Prozessorarchitekturen sind vor allem auf maximalen Datendurch-
satz hin ausgelegt, nicht auf Einfachheit, Fehlervermeidung und -erkennung. Diese –
eigentlich ungeeigneten Systeme – kommen meist aus ökonomischen Gründen in den
beschriebenen Anwendungen zum Einsatz und werden als „commercial-off-the-shelf
(COTS)“ bezeichnet, also als „kommerzielle Produkte aus dem Regal“. Die Daten-
worte in den Speichern dieser Systeme enthalten neben dem eigentlichen Datenwert
keinerlei weiterführende Informationen, die dessen Eigenschaften beschreiben. In
solchen Architekturen und Systemen kann den steigenden Anforderungen und Feh-
lerwahrscheinlichkeiten nur durch weiter steigende Komplexität begegnet werden,
z. B. durch den Einsatz von softwarebasierter arithmetischer Kodierung wie Soft-
ware Encoded Processing (SEP) und Compiler Encoded Processing (CEP) [108].

Gollub hat sich in [41] der Frage gestellt, wie sich der Kontrollfluss innerhalb sicher-
heitsgerichteter Echtzeitsysteme mit möglichst einfachen Mitteln überwachen lässt.
In [118] wird jedoch davon gesprochen, dass 80 - 90 % aller Programmfehler Daten-
flussfehler sind und nur die verbleibenden 10 - 20 % auf Kontrollflussfehler entfallen.
Weiterhin ist eine reine Kontrollflussüberwachung nicht in der Lage, Fehler – z. B.
durch Inkompatibilitäten – bei der Verarbeitung von Datenwerten festzustellen,
besonders bei komponentenübergreifenden Datenflüssen. Datenflussüberwachungen

2

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.1 Beispiele für Auswirkungen von Fehlern

können jedoch – unter Verwendung selbstbeschreibender Daten – Fehler in der Da-
tenverarbeitung auch über Systemkomponenten hinweg aufdecken.

In der vorliegenden Arbeit wird eine leistungsfähige Architektur für die Überwa-
chung des Datenflusses bzw. der Datenflüsse innerhalb von sicherheitsgerichteten
Echtzeitsystemen vorgestellt.

1.1 Beispiele für Auswirkungen von Fehlern

Die folgenden Beispiele aus der Praxis zeigen die Auswirkungen von Fehlern, die
während Spezifikation, Entwurf oder Implementierung von Hard- oder Software
in ein System eingebracht wurden. Dabei wurden Beispiele gewählt, anhand derer
die Leistungsfähigkeit der in dieser Arbeit vorgestellten Fehlervermeidungs- und
-erkennungsmerkmale in der Evaluation besonders deutlich wird.

1.1.1 Selbstzerstörung der Ariane 5

Am Morgen des 4. Juni 1996 wurde nach [79] die Rakete Ariane 5, Flug 501, in Kou-
rou in Französisch-Guayana um 12:34 Uhr UTC gestartet. Nach etwa 37 Sekunden
normalen Flugs wich die Rakete vom Kurs ab und explodierte. Bei der Umwand-
lung einer 64-Bit-Gleitkommazahl in eine vorzeichenbehaftete 16-Bit-Ganzzahl war
es zu einer Überschreitung des Wertebereichs gekommen, weil die horizontale Ge-
schwindigkeit der Ariane 5 deutlich höher war als bei der Ariane 4. Der Fehler wur-
de durch das Inertiale Navigationssystem, engl. „Inertial Reference System SRI“,
als Operandenfehler erkannt und ein Diagnose-Bitmuster zusammen mit korrekten
Flugdaten an den Bordrechner gesendet, der das Bitmuster fehlerhafterweise als
Flugdaten interpretierte. In der Folge steuerte der Bordcomputer die Ablenkdüsen
voll aus, wodurch sich die Feststoffzusatztriebwerke von der Hauptstufe lösten und
die Selbstzerstörung der Rakete angestoßen wurde.

Bemerkenswert ist, dass sich der Softwarefehler aufgrund fehlender Diversität auf
die beiden redundanten Einheiten des Inertialen Navigationssystems identisch aus-
wirkte, worauf diese zeitgleich ausfielen und deshalb keine Umschaltung auf die
Reserveeinheit möglich war.

3

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

1.1.2 Verlust der NASA-Sonde Mars Climate Orbiter

Der Mars Climate Orbiter, kurz „MCO“, eine Sonde der NASA, sollte als Wetter-
satellit den Mars umrunden und gleichzeitig als Kommunikationsrelais für die im
Dezember 1999 geplante Mars Polar Lander Mission dienen [81]. Durch die Verwen-
dung inkompatibler Einheiten – eine Softwarekomponente rechnete in metrischen
SI-Einheiten, die andere in angloamerikanischen Maßeinheiten – war die Trägerra-
kete zum Zeitpunkt des Absetzens der Sonde im Marsorbit rund 170 km zu tief.
Das führte nach Ansicht der Untersuchungskommission dazu, dass die Sonde ent-
weder in der Marsatmosphäre verglühte oder diese wieder verließ und in den Raum
abdriftete [81].

1.1.3 Bestrahlungsgerät Therac-25

Das Therac-25 war ein für medizinische Zwecke genutzter linearer Teilchenbeschleu-
niger für onkologische Bestrahlungen [77]. Das durch eine PDP-11 gesteuerte Gerät
konnte einen Elektronenstrahl zur oberflächlichen Behandlung und Röntgenstrah-
lung zur Behandlung tieferer Gewebeschichten erzeugen. Während seines Einsatzes
von 1983 bis 1987 kam es zu sechs bekannt gewordenen, schweren Unfällen durch
Strahlungsüberdosen. Das Gerät hatte drei unterschiedliche Betriebsmodi:

• einen Testmodus, mit dessen Hilfe mittels einer Lichtquelle die korrekte Posi-
tionierung des Patienten simuliert werden konnte,

• den Elektronenstrahlmodus mit regelbarer Teilchenenergie von 5 bis 25 MeV
und einstellbarem Elektronenstrahlstrom, sowie

• den Röntgenmodus mit einer festen Teilchenenergie von 25 MeV und hohem
Elektronenstrahlstrom.

Eine drehbare Vorrichtung hatte die Aufgabe, abhängig vom gewählten Betriebs-
modus die jeweils notwendige Apparatur in den Strahl einzubringen:

• im Testmodus einen Metallspiegel,

• im Elektronenstrahlmodus Steuermagnete zur Ablenkung des Elektronen-
strahls und

• im Röntgenmodus eine Metallvorrichtung, die der Fokussierung des Elektro-
nenstrahls diente.

4

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.1 Beispiele für Auswirkungen von Fehlern

Im Röntgenmodus musste nach [97] eine gegenüber dem Elektronenstrahlmodus
über 100-fache Strahlendosis zur Erreichung der gewünschten Bestrahlungsergeb-
nisse erzeugt werden.

Die Analyse der Unfälle, des Gerätes und der darin verwendeten Software brachte
die folgenden Erkenntnisse [77]:

Während das Vorgängergerät Therac-20 noch zusätzliche hardwaretechnische Si-
cherheitseinrichtungen und mechanische Verriegelungen nutzte, wurden diese Maß-
nahmen beim Therac-25 durch eine reine Softwarelösung ersetzt – so groß war das
Vertrauen in die Software des Geräts.

Die Unfälle wurden dadurch ausgelöst, dass es bei entsprechender Nutzereingabe
am Steuermonitor aufgrund unzureichender Synchronisierungsmechanismen zu ei-
ner Vermischung vorhergehender und aktueller Betriebsparameter kommen konnte,
wodurch sich unzulässige Kombinationen von Bestrahlungsdosen, -zeiten und Ein-
stellung der in den Strahl eingebrachten Apparatur ergaben. Dadurch wurden die
betroffenen Patienten massiven Strahlungsüberdosen ausgesetzt, die bei einigen von
ihnen sogar zum Tod führten.

1.1.4 Sicherheitslücke Heartbleed

Im April 2014 wurde ein Fehler in der OpenSSL Kryptographiebibliothek bekannt,
der zur Folge hatte, dass Millionen Serversysteme umgehend aktualisiert werden
mussten [22]. Ein Fehler in einer speziellen Funktion innerhalb der Bibliothek, die
für ein zyklisches Lebenszeichen, den sogenannten Herzschlag, engl. „Heartbeat“,
genutzt werden sollte, erlaubte es, Speicherinhalte aus dem Speicher des Zielrechners
auszulesen, die hochsensible Daten über verschlüsselte Verbindungen enthielten.
Vom Namen der eigentlichen Funktion abgeleitet, wurde der Fehler auf den Namen
„Heartbleed“ getauft und mit einem entsprechenden Emblem versehen.

Der eigentliche Fehler bestand darin, dass es einem Angreifer möglich war, eine
geringe Anzahl an Zusatzbytes an einen Server zu senden und das Zurücksenden
von einer deutlich größeren Anzahl an Bytes zurückzufordern. Eine Plausibilitäts-
prüfung von Anzahl der gesendeten Bytes und der Anzahl der angeforderten Bytes,
die zurückgesendet werden sollten, erfolgte nicht. Auf diese Weise konnten Angreifer
die bereits erwähnten hochsensiblen Daten von anderen Kommunikationsverbindun-
gen empfangen. Exzellent veranschaulicht werden die Auswirkungen des Fehlers in
[134].

5

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

Bruce Schneier bezeichnet Heartbleed in [111] als „katastrophal“ und als „11“ auf
„einer Skala von 1 bis 10“.

1.2 Der Stand von Wissenschaft und Technik und
dessen Nachteile

Der für diese Arbeit relevante Stand von Wissenschaft und Technik soll hier kurz
umrissen und seine Nachteile bezogen auf die Erkennung von datenflussbezogenen
Fehler- und Angriffsarten vorgestellt werden.

1.2.1 Stand von Wissenschaft und Technik

Als Stand von Wissenschaft und Technik werden in dieser Arbeit die folgenden
Architekturen, Architekturmerkmale und Methoden betrachtet:

• die Schutzmechanismen der konventionellen Architekturen x86 im geschützten
und 64-Bit-Modus [4, 59], sowie ARM [7, 19, 20],

• auf sicherheitsgerichtete Systeme spezialisierte Prozessoren, die auf konventio-
nellen Architekturen beruhen, wie z. B. der auf der ARM-Architektur basie-
rende TI Hercules [120],

• in Vergessenheit geratene Rechnerarchitekturen wie Datentyp-, Datenstruktur-
und Befähigungsarchitekturen [1, 36, 39, 78],

• der Vollständigkeit halber Datenflussarchitekturen [39, 78], da ihr Name eine
entsprechende Spezialisierung auf Datenflüsse erahnen lässt,

• die in [125] vorgestellte inhärent sichere Mikroprozessorarchitektur ISMA,

• die Application Data Integrity ADI bzw. das Silicon Secured Memory des
SPARC M7 Prozessors,

• arithmetische Kodierung in Form der AN-Kodierung nach Brown [13] und der
Erweiterungen zur ANBD-Kodierung durch Forin in [38],

• die auf Signaturen beruhende dynamische Datenflussverifikation DDFV [85]
und

• die Datenflussüberwachung in Netzwerken [98, 100, 102] und sicherheitsgerich-
teten Feldbussen [54].

6

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.2 Der Stand von Wissenschaft und Technik und dessen Nachteile

Die Nachteile der genannten Architekturen und Verfahren werden im folgenden
Unterkapitel kurz umrissen.

1.2.2 Nachteile des Stands von Wissenschaft und Technik

Die konventionellen Architekturen x86 und ARM können trotz größter Bemühun-
gen, unter Nutzung komplexester Maßnahmen, einen maximalen Datendurchsatz
zu bieten, nur wenige datenflussbezogene Fehler- und Angriffsarten erkennen. Die
auf ihnen basierenden, für sicherheitsgerichtete Systeme spezialisierten Prozesso-
ren, wie z. B. der TI Hercules, sind in der Lage, mehr Fehlerarten aufzudecken, ba-
sierend auf Redundanz und gewissen Diversitätsarten. Datentyp-, Datenstruktur-
und Befähigungsarchitekturen fügen Speicherinhalten Kennungen hinzu, die hard-
wareverständlich die Inhalte des Speichers beschreiben, womit weitere Fehlerarten
erkennbar werden. Datenflussarchitekturen sind zwar auf die Bearbeitung von Da-
tenflüssen spezialisiert, sind aber nicht in der Lage, datenflussbezogene Fehler- und
Angriffsarten aufzudecken.

Das Fehlererkennungsmerkmal Application Data Integrity ADI des Oracle SPARC
M7 Prozessors, das später in Silicon Secured Memory SSM umbenannt wurde, fügt
Blöcken von 64 Byte Größe eine Versionskennung hinzu und nutzt Teile von Zeigern,
um dort eine erwartete Version zu hinterlegen. Dadurch können Fehler zwischen
der erwarteten und der tatsächlichen Version aufgedeckt werden. Das Verfahren
weist mehrere Nachteile auf: Versionen können nur für Datenblöcke, nicht jedoch
für einzelne Datenspeicherelemente vergeben werden, die erwarteten Versionen in
den Zeigern sind absolute Versionen und müssen durch die Software gesetzt werden
und die Versionskennungen werden nur zwischen Prozessor und Speicher verwendet,
nicht jedoch kommuniziert.

Die dynamische Datenflussprüfung DDFV erlaubt die signaturbasierte Prüfung der
Datenflüsse auf Registerebene, ist aber nicht in der Lage, in diese Prüfungen den
oder die Speicher einzubeziehen, geschweige denn systemweite Datenflüsse zu über-
wachen. Zudem kann eine Abweichung vom vorgesehenen Datenfluss erst am Ende
eines Überwachungsblocks und nicht im Moment des Auftretens erkannt werden.

Die arithmetische AN-Kodierung kann zusammen mit den Erweiterungen zur
ANBD-Kodierung einige wichtige Datenflussfehler erkennen, ist jedoch nur für be-
stimmte Operationen und Datentypen geeignet und verursacht erhöhten Laufzeitbe-
darf. Weiterhin sind die kodierten Datenspeicherelemente nicht mehr ohne weitere
Aufbereitung menschenlesbar, was die Fehlersuche erschwert.

7

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

Die Datenflussüberwachung in Netzwerken weist nur wenige Fehlererkennungsmerk-
male auf. Die Protokolle für sicherheitsgerichtete Feldbusse hingegen nutzen viele
Fehlererkennungsmaßnahmen, welche die Erkennung verschiedener Fehlerarten er-
möglichen. Allerdings wird nur die erfolgreiche Übertragung der Daten über die
verschiedenen Kommunikationsstrecken geprüft, nicht jedoch deren Weiterverarbei-
tung innerhalb der Datenverarbeitungseinheiten.

Allgemein fehlt eine systemweite, ganzheitliche Betrachtung von Daten, ihrer Ei-
genschaften und ihrer Wege durch ein System. Selbst wenn bestimmte Dateneigen-
schaften von der Software auf einer Systemkomponente lokal zur Laufzeit betrachtet
oder sogar überwacht werden, so werden diese getrennt von den eigentlichen Da-
ten verwaltet und die Information geht bei der Übertragung der Daten zwischen
verschiedenen Softwareprogrammen innerhalb der Systemkomponente, spätestens
jedoch bei der Übertragung der Daten an andere Systemkomponenten verloren. Die
Inkompatibilität von Operanden bezogen auf deren Datentyp kann durch Datentyp-
, Datenstruktur- und Befähigungsarchitekturen erkannt werden. Allerdings wird zur
Laufzeit und vor allem über die Grenzen der jeweiligen Komponente hinweg keine
Prüfung der Einheiten der Datenwerte vorgenommen. Die Hauptverantwortung für
die Fehlererkennung trägt meist die Software, was deren Komplexität und Fehler-
wahrscheinlichkeit weiter erhöht.

1.3 Ziel der Arbeit

Das Ziel dieser Arbeit ist die Identifikation relevanter datenflussbezogener Fehler-
und Angriffsarten und der Eigenschaften von Daten im Anwendungsbereich sicher-
heitsgerichteter Echtzeitsysteme, um

• einfache Fehlervermeidungs- und -erkennungsmöglichkeiten auf Hardware-
ebene,

• einfache Überwachungsmöglichkeiten von Echtzeitbedingungen durch die
Hardware selbst,

• ein Optimum an Fehlervermeidung und Erkennbarkeit verbleibender Fehler
und

• eine ganzheitliche Betrachtung eines gesamten Systems inklusive aller Hard-
und Software

8

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.4 Ergebnisse der Arbeit

zu erreichen, ohne dem Trend zur unnötigen weiteren Erhöhung der Komplexität
der eingesetzten Entwicklungswerkzeuge (z. B. Übersetzer) oder der entstehenden
Software zu folgen. Datentyp-, Datenstruktur- und Befähigungsarchitekturen ha-
ben sehr leistungsfähige Fehlererkennungsmerkmale hervorgebracht, und dies mit
einfachsten Mitteln. Es gilt, deren Merkmale zu nutzen und zu erweitern.

Feustel zitiert Iliffe in [37] dahingehend, dass die Eigenschaften von Datenfeldern
untrennbar von den eigentlichen Daten in den Feldern selbst unterzubringen seien,
anstatt in den auf die Daten der Felder zugreifenden Algorithmen. Diese Anforde-
rung bezog sich zunächst nur auf die in einem Datenfeld enthaltenen Datentypen
und die Anzahl der Elemente innerhalb des Felds. Diese Anforderung soll jedoch
für diese Arbeit zu folgendem Entwurfsparadigma erweitert werden:

Alle ein Datenspeicherelement beschreibenden Eigenschaften sollen untrennbar
mit diesem verknüpft, gespeichert, übertragen, verarbeitet und in einer
hardwareverständlichen und -überprüfbaren Form dargestellt werden.

Basierend auf diesem Ziel lassen sich die meisten datenflussbezogenen Fehler auf
einfache Weise durch hardwarebasierte Überprüfungen aufdecken.

1.4 Ergebnisse der Arbeit

Im Zuge dieser Arbeit ist eine neue Prozessorarchitektur entstanden, die aufgrund
der umfassenden, hardwareverständlichen Beschreibung von Dateneigenschaften als
Datenspezifikationsarchitektur bezeichnet wird. Die Beiträge der Arbeit zum Stand
von Wissenschaft und Technik sind dabei:

• die Identifikation von insgesamt 20 datenflussbezogenen Fehler- und Angriffs-
arten,

• eine umfassende Sammlung der Eigenschaften von Daten in sicherheitsgerich-
teten Echtzeitsystemen und

• die Vorstellung der auf Basis dieser Ergebnisse entwickelten Datenspezifika-
tionsarchitektur DSA, welche die identifizierten Dateneigenschaften in Form
von hardwareverständlichen Kennungen weit umfangreicher darstellt, als dies
bei bisherigen Architekturen der Fall war.

9

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

Die Neuheiten der Fehlererkennungsmerkmale der Datenspezifikationsarchitektur
DSA gegenüber dem Stand von Wissenschaft und Technik sind:

• die Definition von Messwertdatentypen in Form eines Werteintervalls zur Dar-
stellung fehlerbehaftete Werte, um die Fortpflanzung dieser Fehler bei der
Werteverarbeitung durch Intervallarithmetik verfolgen und eventuelle Genau-
igkeitsprobleme zu erkennen, zusammen mit speziellen Befehlen zur Prüfung
der Genauigkeit,

• eine Wertebereichskennung [131], die es erlaubt, einerseits eine Plausibilitäts-
prüfung beim Lesen eines Datenspeicherelements durchzuführen, indem ge-
prüft wird, ob der Datenwert innerhalb des spezifizierten Wertebereichs liegt,
andererseits beim Schreiben in ein Datenspeicherelement, das eine Wertebe-
reichsvorgabe enthält, um eine sofortige Prüfung des zu schreibenden Daten-
werts durch die Hardware zu ermöglichen,

• die Erweiterung der von Datentyparchitekturen bekannten Datentypkennung-
en [127] um von den nativen Datentypen abgeleitete Datentypen mit Spezi-
fikation der gestatteten Operationen, deren Eigenschaften von der Hardware
überwacht werden,

• eine Einheitenkennung [126], die die Einheit des Datenwerts eines Datenspei-
cherelements in Form von Potenzen der sieben SI-Basiseinheiten beschreibt
und umfassende Kompatibilitätsprüfungen bei der Nutzung von Operanden
gestattet; bei Multiplikationen und Divisionen wird die Einheit des Ergebnis-
ses durch die Hardware automatisch auf Basis der Potenzgesetze berechnet,

• eine Verarbeitungswegkennung [130], die beschreibt, wer die Daten erzeugt
hat, welche Stationen die Daten auf ihrem Weg von Datenquelle bis -senke
verarbeiten dürfen und wer die Daten schlussendlich entgegennehmen darf,

• eine Zeitschrittkennung [132], die – ähnlich einer Sequenznummer – beschreibt,
zu welchem diskreten Zeitpunkt der betroffene Datenwert generiert worden ist,
zusammen mit einer Erweiterung des Befehlssatzes um eine Kennung, die die
erwartete temporale Beziehung der Operanden einer Operation beschreibt,
welche durch die Hardware überprüft wird,

• eine Fristkennung [128], die es gestattet, den Gültigkeitszeitraum der Daten
einzugrenzen und die Verwendung von Daten nach Ablauf der Frist als Fehler
zu erkennen,

10

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.5 Aufbau der Arbeit

• eine Zykluszeitkennung [133], die beschreibt, innerhalb welcher zeitlicher Gren-
zen eine aktualisierte Version eines Datums erwartet wird, wodurch das Aus-
bleiben einer Werteaktualisierung ebenso wie zu frühe Aktualisierung von Wer-
ten als Fehler erkannt werden können, und

• eine Signaturkennung [129] für besonders anspruchsvolle Anwendungen wie
Chipkarten, bei denen der hohe Aufwand der kryptographischen Signatur jedes
einzelnen Datenspeicherelements zur Sicherstellung der Schutzziele Integrität
und Authentizität zu rechtfertigen ist,

• Datenportale in Form von Dateneingangs- und -ausgangsportalen, die es er-
möglichen, Daten mit Einbeziehung der Adresse in die Integritätsprüfung bzw.
Signatur zwischen Systemkomponenten zu übertragen; bei Nutzung einer kryp-
tographischen Signatur der Daten übernehmen die Dateneingangsportale zu-
sätzlich die Aufgabe der Prüfung der Signatur des Absenders und der Umsi-
gnierung mit dem eigenen geheimen Schlüssel und

• die Vorstellung einer Realisierungsmöglichkeit der Merkmale einer Datenspe-
zifikationsarchitektur DSA in Datenflussarchitekturen durch Erweiterung der
Verarbeitungseinheiten.

Mit Hilfe dieser und weiterer Merkmale, die dem Stand von Wissenschaft und Tech-
nik entsprechen, ist es der Datenspezifikationsarchitektur möglich, alle identifizier-
ten Fehler- und Angriffsarten zur Laufzeit zu erkennen und entsprechende Fehler-
behandlungsmaßnahmen einzuleiten, ohne dabei die Komplexität und den Laufzeit-
bedarf der Software signifikant zu erhöhen. Durch den Zwang, sich zum Zeitpunkt
der Spezifikation bzw. des Entwurfs hinreichend tief mit den Eigenschaften der in
einem System entstehenden und verarbeiteten Daten auseinanderzusetzen, wird ein
hohes Maß an Fehlervermeidung erreicht.

1.5 Aufbau der Arbeit

Zunächst erfolgt in Kapitel 2 eine detaillierte Vorstellung von Fehlern und deren Ent-
stehungsmechanismen, zusammen mit der Vorstellung von 20 identifizierten daten-
flussbezogenen Fehler- und Angriffsarten, anhand derer der Stand von Wissenschaft
und Technik, sowie die Ergebnisse dieser Arbeit bewertet werden. Einige Beispiele
für die Auswirkungen derartiger Fehler wurden bereits in Kapitel 1.1 vorgestellt.

11

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1 Einleitung

In Kapitel 3 werden die für diese Arbeit relevanten existierenden Architekturen und
Fehlererkennungsverfahren detailliert vorgestellt und auf Basis der datenflussbezo-
genen Fehler- und Angriffsarten evaluiert. Jede einzelne Fehlerart wird dabei in einer
Tabelle dahingehend bewertet, ob und in welchem Umfang sie durch die Merkmale
und Verfahren des jeweiligen Stands von Wissenschaft und Technik aufzudecken ist.
Dabei wird die Erkennbarkeit wie folgt bewertet:

• „nein“ bedeutet, dass die betroffene Fehler- bzw. Angriffsart nicht erkannt
werden kann,

• „begrenzt“ bedeutet, dass die betroffene Fehler- bzw. Angriffsart nur erkannt
werden kann, wenn besondere Bedingungen erfüllt werden, die im Text zur
Tabelle näher beschrieben werden,

• „(ja)“ bedeutet, dass die betroffene Fehler- bzw. Angriffsart zwar häufig er-
kannt werden kann, aber Einschränkungen existieren, die die Leistungsfähig-
keit der Erkennung oder Verarbeitung der Daten oder die Wahrscheinlichkeit
der Erkennung beschränken, wobei die Einschränkungen ebenfalls im Text zur
Tabelle beschrieben werden, während

• „ja“ bedeutet, dass die Fehler- bzw. Angriffsart ohne Einschränkungen durch
Merkmale oder Verfahren des Stands von Wissenschaft und Technik aufgedeckt
werden können.

Im Anschluss werden in Kapitel 4 die Eigenschaften von Daten in sicherheitsge-
richten Echtzeitsystemen gesammelt und eine Datenspezifikationsarchitektur vor-
gestellt, die den Daten diese Eigenschaften in hardwarelesbaren Kennungen hinzu-
fügt. Die einzelnen Merkmale der Architektur werden detailliert vorgestellt und –
analog zum Stand von Wissenschaft und Technik – in Bezug auf die Erkennbarkeit
der datenflussbezogenen Fehler- und Angriffsarten evaluiert.

Die Evaluation der Datenspezifikationsarchitektur erfolgt in Kapitel 5, wobei die
folgenden Gesichtspunkte getrennt betrachtet werden:

• die Art der Abbildung von Daten in einer Datenspezifikationsarchitektur im
Vergleich zu existierenden Lösungen,

• die Einordnung der Architekturart bezogen auf Datentyp-, Datenstruktur- und
Befähigungsarchitekturen,

• die Erkennbarkeit der in Kapitel 2 identifizierten datenflussbezogenen Fehler-
und Angriffsarten,

12

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

1.6 Darstellung von Zahlen und Speichergrößen in der Arbeit

• die Erkennbarkeit der Fehler, die zu den Auswirkungen der in Kapitel 1 vor-
gestellten Fehlerbeispiele aus der Praxis führten, und

• die Speicherausnutzung der Architektur.

Den Abschluss bilden eine Zusammenfassung der Beiträge dieser Arbeit und eine
Übersicht über die Weiterführungsmöglichkeiten in Kapitel 6.

1.6 Darstellung von Zahlen und Speichergrößen in
der Arbeit

In dieser Arbeit werden Zahlen in unterschiedlichen Darstellungsformen verwendet.
Dezimalzahlen werden dabei ohne zusätzliche Markierungen dargestellt, während
Zahlen in hexadezimaler Schreibweise – der Darstellungsform der Hochsprache C
folgend – mit dem Präfix „0x“ versehen werden. Bei binären Darstellungen kommt
nach dem Vorbild des Microsoft Assemblers MASM das Postfix „b“ zum Einsatz.
Als Beispiel sei hier die Zahl 23 in dezimaler, hexadezimaler und binärer Darstellung
gezeigt:

23 = 0x17 = 10111b

Speichergrößen werden in dieser Arbeit – der Norm IEC 80000-13:2008 [61] folgend –
mit den IEC-Präfixen zur Bezeichnung von Zahlen zur Basis 2 dargestellt:

1 KiB = 210 Byte = 10241 Byte = 1024 Byte
1 MiB = 220 Byte = 10242 Byte = 1048576 Byte
1 GiB = 230 Byte = 10243 Byte = 1073741824 Byte

13

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen,
-auswirkungen und -behandlung

In diesem Kapitel werden zunächst die Kategorisierung von Fehlern in Hard- und
Software, deren Ursachen und typische Fehlerdichten in offener und proprietärer
Software vorgestellt. Anschließend werden typische datenflussbezogene Fehler- und
Angriffsarten identifiziert, die im Betrieb eines sicherheitsgerichteten Echtzeitsy-
stems auftreten können. Den Abschluss des Kapitels bilden die Beschreibung mögli-
cher Auswirkungen von Fehlern, sowie die Erkennung und Behandlung auftretender
Fehler.

2.1 Fehlerkategorien

Hardwarefehler werden nach [68, 112] anhand der Art und Dauer ihres Auftretens
wie folgt kategorisiert:

• Permanente Fehler, engl. „permanent errors“ bzw. „hard errors“, sind Fehler,
die nach ihrem erstmaligen Auftreten bestehen bleiben, bzw. bereits von An-
fang an vorhanden sind. Dies sind meist Beschädigungen der Hardware, z. B.
durch Elektromigration, aber auch Spezifikations-, Entwurfs- und Implemen-
tierungsfehler.

• Intermittierende Fehler, engl. „intermittent errors“, sind Fehler, die in un-
regelmäßigen Abständen auftreten. Ursachen für derartige Fehler kann eine
instabile oder grenzwertig ausgelegte Hardware sein, die auf bestimmte Be-
triebsbedingungen fehlerhaft reagiert.

• Transiente Fehler, engl „transient errors“ bzw. „soft errors“, sind Fehler, die
zufällig verteilt für einen bestimmten Zeitraum auftreten und z. B. durch Strah-
lungseinflüsse ausgelöst werden [8, 90].

14

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.2 Fehlerquellen in Soft- und Hardware

Im Bereich der Software existieren keine transienten oder intermittierenden Fehler,
sie unterliegt keiner Alterung oder anderen von der Hardware bekannten Fehlerme-
chanismen. Daher sind alle Fehler, die sie enthält, permanenter Natur [44].

2.2 Fehlerquellen in Soft- und Hardware

In Abbildung 2.1, die aus [44] stammt, wird gezeigt, welche Fehlerursachen zu Feh-
lern führen können, die sich dann in Ausgaben des Systems auswirken. Der Mensch
kann dabei neben Bedienungsfehlern vor allem Software- und Hardwarefehler durch
Fehler in den Entwicklungsphasen Spezifikation, Entwurf und Implementierung ver-
ursachen. Weiterhin hat der Mensch Einfluss auf die Betriebsbedingungen des Sy-
stems. Diese können zusammen mit den Naturgesetzen Prozesse im System selbst
oder dessen Umwelt bewirken. In der Folge kann es zu Bauelementausfällen oder
Störsignalen kommen, die sich in Form von Hardwarefehlern manifestieren.

Fehler werden weder in der Software, noch in der Hardware eines Systems jemals
komplett vermieden werden können, da die Fehlerquellen so vielfältig sind. Da diese
in Abbildung 2.1 nicht in vollem Umfang ersichtlich sind, werden sie in Abbil-
dung 2.2 nochmals detaillierter dargestellt.

Im oberen Teil der Abbildung sind die typischen Entwicklungsphasen einer Software
zu sehen, während der untere Teil die Entwicklung der Hardware darstellt. Die Mit-
te der Abbildung bilden die Programmierung und Konfiguration, sowie der Betrieb
des aus Hard- und Software bestehenden Systems. Die möglichen Fehlerquellen wer-
den durch entsprechende Symbole bzw. Zeichenketten gekennzeichnet. Nicht alle im
Bild enthaltenen Zwischenschritte bzw. Werkzeuge werden im jeweiligen Projekt bei
dessen Realisierung zum Einsatz kommen.

Zunächst soll die Entwicklung der Software detaillierter betrachtet werden: während
den Entwicklungsphasen Spezifikation, Entwurf und Implementierung werden Feh-
ler allein durch den Menschen verursacht, angedeutet durch ein Menschensymbol.
Bei der anschließenden Übersetzung des entstandenen Quellcodes kommt wieder
der Faktor Mensch ins Spiel, allerdings nur indirekt über die Fehler, die durch die
gleiche Fehlerkette in den Übersetzer eingebracht wurden, gekennzeichnet durch ein
Menschensymbol und die Zeichenkette „SEIÜBL“, die für die Fehlerkette Spezifika-
tion - Entwurf - Implementierung - Übersetzer - Binder - Lader steht. Das Gleiche
gilt für den anschließenden Einsatz des Binders, engl. „Linker“, der das ausführbare
Programm erzeugt und dabei ggf. Betriebssystem-, Bibliotheks- oder Laufzeitkom-
ponenten in dieses einbindet. Zu beachten ist, dass Fehler der Hardware, auf der

15

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

Abbildung 2.1: Fehlerursachen nach [44]

16

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.2 Fehlerquellen in Soft- und Hardware

Abbildung 2.2: Kette von Fehlerquellen

17

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

das jeweilige Werkzeug zum Einsatz kommt, sich auch in Fehlern der entstehen-
den Software auswirken können, was durch die Symbole unterhalb der Zeichenkette
angedeutet wird. Wie in [44] angedeutet, können Fehler, die durch die ein Entwick-
lungswerkzeug ausführende Hardwareplattform in die erzeugte Software eingebracht
werden, durch eine mehrfach hintereinander ausgeführte Übersetzung mit Vergleich
der Ergebnisse aufgedeckt werden.

Ähnlich sieht es bei der Entwicklung der Hardware aus: je nachdem, ob, und wenn ja,
welche Entwicklungswerkzeuge zum Einsatz kommen, können Fehler direkt oder in-
direkt vom Menschen in der jeweiligen Entwicklungsphase verursacht werden. Denn
auch Hardwareentwurfs- und -synthesewerkzeuge sind Softwareprogramme von oft
sehr hoher Komplexität. Neben menschlichen Einflüssen können in der Fertigung
der Hardware weitere Fehler durch Fertigungs- und Umwelteinflüsse entstehen, an-
gedeutet durch die verschiedenen Symbole.

Die Software wird ggf. im Zuge eines Programmier- oder Konfigurationsvorgangs
unter Nutzung eines Programmiergeräts auf der Zielhardware gespeichert. Dieses
Programmiergerät ist wiederum selbst ein System bestehend aus Hardware und
ggf. Software und kann somit ebenfalls Fehler enthalten, die eine fehlerhafte Pro-
grammierung zur Folge haben können. Zwar kann ein Verifikationsschritt, bei dem
das Programm nach der Programmierung aus dem Speicher ausgelesen und mit dem
originalen Programm verglichen wird, grobe Programmierfehler aufdecken. Was da-
bei allerdings nicht erkannt werden kann, sind nicht hinreichend programmierte
Speicherzellen, die ihre Programmierung kurz- oder mittelfristig verlieren.

Auf der entstandenen Hardware wird das erzeugte Programm zur Ausführung ge-
bracht. Gegebenenfalls kommt hierbei eine weitere Software zum Einsatz: der La-
der, engl. „Loader“, der das Programm beispielsweise aus einem Festwertspeicher in
einen Ausführungsspeicher überträgt und womöglich notwendige Abhängigkeiten zu
Laufzeitbibliotheken auflöst. Diese letzte verbleibende Softwarefehlerquelle ist auch
der Grund dafür, dass bei der diversitären Rückwärtsanalyse statt des übersetzten
und gebundenen Programms ein Speicherabbild analysiert wird, um eventuelle Feh-
ler des Laders ebenfalls erkennen zu können [70]. Neben dem eigentlichen Programm
können auch weitere Softwarepakete auf der Hardware ausgeführt werden, wie bei-
spielsweise bestimmte Laufzeitumgebungen der eingesetzten Programmiersprache
oder ein Betriebssystem. Beide Beispiele sind ebenfalls der bereits erwähnten Feh-
lerkette SEIÜBL unterworfen. Eine weitere, häufig unterschätzte Fehlerquelle kann
die gegenseitige Beeinflussung von verschiedenen Softwarepaketen sein, die auf der
Hardware zum Ablauf gebracht werden, vor allem dann, wenn diese um nur begrenzt
verfügbare Ressourcen wie Speicher und Prozessor konkurrieren.

18

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.3 Fehlerdichte in Software

Bei der Ausführung des Programms unterliegt dieses keinem Verschleiß – wohl aber
die Hardware, die es interpretiert. Umwelteinflüsse wie Temperatur, elektrostatische
und elektromagnetische Einflüsse und verschiedene Arten von Strahlung können die
Inhalte von Speichern und Registern der Hardware verändern oder die Hardware
auch dauerhaft beschädigen. Die immer immer weiter reduzierten Strukturbreiten
in integrierten Schaltkreisen machen diese empfindlicher gegenüber derartigen Ein-
wirkungen von außen [8, 90].

Schlussendlich kann der Mensch durch Eingabe- oder Bedienungsfehler direkt Aus-
gabefehler verursachen, was idealerweise vom System erkannt werden sollte, ohne
gefährliche Ausgaben zu verursachen.

Die Übersetzer und die weiteren am Entwicklungsprozess von Software beteiligten
Werkzeuge werden von Programmierern oft als unfehlbar angenommen. Dabei ist
meist das Gegenteil der Fall, was an folgendem Beispiel verdeutlicht werden soll:

Die GNU Compiler Collection GCC – eine quelloffene Übersetzersammlung, die
besonders im Linux-Umfeld zum Einsatz kommt – bestand 2015 aus über 14 Mil-
lionen Codezeilen [74]. Bei einer Überprüfung der Übersetzersammlung wurde nach
[18] durch statische Codeanalyse die sehr geringe Fehlerquote von 0,202 Fehlern pro
1000 Zeilen Code ermittelt. Bei ungefähr 700000 überprüften Zeilen Code konn-
ten 140 Fehler aufgedeckt werden – die hoffentlich danach auch behoben wurden.
Die tatsächliche Anzahl an Fehlern dürfte natürlich noch höher liegen, da auch das
Prüfungsprogramm nur bestimmten Teil der Fehler identifizieren konnte.

Dabei ist zu beachten: selbst ein einziger Fehler kann sich in einem Übersetzer oder
Binder derart auswirken, dass gefährliche Fehler im entstehenden Programm erzeugt
werden. Auch kleine Fehler in der Software können gravierendste Auswirkungen
haben, was in [44] als „Unstetigkeit von Software“ bezeichnet wird.

2.3 Fehlerdichte in Software

Regelmäßig wird von der Firma Coverity durch Auswertung der Ergebnisse des
hauseigenen Werkzeugs zur statischen Codeanalyse ermittelt, wie hoch die durch-
schnittliche Fehlerdichte der untersuchten Software ist. Für das Jahr 2013 ergaben
sich dabei die in Tabelle 2.1 gezeigten Anzahlen von Fehlern pro 1000 Zeilen Code
für Programme, die in den Hochsprachen C oder C++ erstellt wurden [24].

19

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

Tabelle 2.1: Fehlerdichte in Fehlern pro 1000 Zeilen Code [24]

Softwareart Durchschnittliche Fehlerdichte
Quelloffene Software 0,59
Proprietäre Software 0,72

Anhand dieser Ergebnisse lässt sich schlussfolgern, dass quelloffene Software mit
0,59 Fehlern pro tausend Zeilen Quellcode – zumindest innerhalb der zugrundelie-
genden Stichprobenmenge – im Vergleich zu proprietärer Software mit 0,72 Fehlern
pro tausend Zeilen Quellcode als signifikant fehlerärmer angesehen werden kann.
Hier scheint das Entwicklungsparadigma der Offenlegung des Quellcodes Früchte
zu tragen.

2.4 Datenflussbezogene Fehler- und Angriffsarten

Zur Evaluation des Stands von Wissenschaft und Technik, der in Kapitel 3 vorge-
stellt werden wird, sollen typische, den Datenfluss in sicherheitsgerichteten Echt-
zeitsystemen betreffende Fehlerbilder dienen, die es zu erkennen gilt. Nach [118]
betreffen immerhin 80 - 90 % aller Fehler den Datenfluss und nur die verbleibenden
10 - 20 % den Kontrollfluss innerhalb eines Systems. Die identifizierten Fehlerarten
werden in die folgenden Kategorien eingeteilt:

• Inkompatibilität von Operanden

• Wertebereichsverletzungen und Genauigkeitsprobleme

• Fehlerhafte Operationen

• Verletzung von Echtzeitbedingungen

• Allgemeine Datenflussfehler

• Datenverfälschung durch Fehler oder Störungen

• Fehlerhafter Zugriff auf Daten

Da technische Prozesse auch in immer zunehmendem Maße das Ziel von Hackeran-
griffen werden, wie z. B. der Stuxnet-Wurm [72] gezeigt hat, sollen mögliche

• Hackerangriffe

die Betrachtung der datenflussbezogenen Problemfälle vervollständigen.

20

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.4 Datenflussbezogene Fehler- und Angriffsarten

2.4.1 Inkompatibilität von Operanden

Eine typische Fehlerquelle bei der Softwareentwicklung – besonders bei Zusam-
menschluss mehrerer Systemkomponenten – ist die Inkompatibilität von Operanden
bezogen auf die Art der Repräsentation der Datenwerte innerhalb der Datenspei-
cherelemente. In [103] wird darum gefordert, alle Funktionsparameter und Eingaben
an Schnittstellen daraufhin zu prüfen, ob die übergebenen Datenwerte den erwarte-
ten Datentyp besitzen. Entsprechende Fehler werden in [118] auf Systemebene als
„Konfigurationsfehler“ bezeichnet. Auch der Versuch, Code als Daten zu interpre-
tieren, ist als Inkompatibilität der Operanden zu werten.

Weiterhin kann es vorkommen, dass Operanden zur Verarbeitung herangezogen
werden, die nicht zueinander passende Einheiten besitzen. Die möglichen Auswir-
kungen eines solchen Fehlers wurden anhand des Verlusts des Mars Climate Orbiter
in Kapitel 1.1.2 vorgestellt [81].

2.4.2 Wertebereichsverletzungen und Genauigkeitsprobleme

In vielen Applikationen dürfen Datenwerte innerhalb eines Datenspeicherelements
nicht im gesamten durch den zugrunde liegenden Datentyp definierten Wertebereich
liegen, sondern nur in einem Teilbereich. In [103] wird daher verlangt, dass alle Ein-
gaben – in Form von Funktionsparametern oder Eingabedaten auf Schnittstellen
– darauf geprüft werden, ob sie innerhalb eines erwarteten, gültigen Wertebereichs
liegen. Der Versuch, außerhalb des zulässigen Bereichs liegende Datenwerte in ein
Datenspeicherelement zu schreiben, wird in [118] als „Wertzuweisungsfehler“ be-
zeichnet. Zum Fehlerbild der Wertbereichsverletzungen sind auch Unter- und Über-
läufe bei der Durchführung arithmetischer Operationen zu rechnen, die in [86] auf
Platz 24 der 25 gefährlichsten Softwarefehler geführt werden.

Die möglichen Auswirkungen derartiger Fehler wurden bei der Selbstzerstörung der
Ariane 5 (siehe Kapitel 1.1.1) ersichtlich, die die schlussendliche Konsequenz einer
Reihe von Fehlern war und mit einem Überlauf aufgrund zu großer Eingabewerte
begann.

In technischen Prozessen werden Prozessgrößen durch Sensoren erfasst und umge-
wandelt. Die so gewonnenen Messwerte unterliegen nach [117] stets einer gewissen
Messunsicherheit. Liegt die Genauigkeit von Messwerten oder deren Verarbeitungs-
ergebnissen nicht innerhalb spezifizierter Grenzen, können Probleme auftreten.

Die folgenden Fehlerszenarien können zu Genauigkeitsproblemen führen:

21

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

• Sensoren erzeugen ggf. in bestimmten Abschnitten ihres Messbereichs
Messwerte mit unterschiedlicher Genauigkeit. Wird dies beim Systementwurf
nicht entsprechend berücksichtigt, können ungenaue Messwerte zu Fehlern füh-
ren.

• Durch die Verarbeitung fehlerbehafteter Datenwerte ergeben sich durch Feh-
lerfortpflanzung Ergebnisse mit nicht tolerierbarer Ungenauigkeit.

• In einer Überlastungssituation können im Sinne der allmählichen Leistungsab-
senkung [45] alternative, ungenauere Ergebnisse liefernde Berechnungen ange-
wandt werden. So könnten aufgrund einer massiven Überlastsituation mehrere
hintereinander ausgeführte Alternativberechnungen Ergebnisse mit inakzepta-
bler Genauigkeit produzieren.

• Bei einem Geräteaustausch könnte ein Ersatzgerät ungenauere Messwerte er-
zeugen.

• Bei Umrüstungen könnten Sensoren in Messbereichen benutzt werden, in de-
nen sie größere Grenzfehler aufweisen, als für die Werteverarbeitung zulässig
wäre. Ein Beispiel für eine derartige Umrüstung oder Weiterverwendung in
anderen Systemen war die Nutzung bestimmter Systemkomponenten aus der
Ariane 4 in der Ariane 5, wodurch es zu Wertebereichsverletzungen kam [79].
Als Fehlerfall wären hier auch Genauigkeitsproblematiken denkbar.

• Ein Sensor könnte durch Alterung im Verlauf seiner Nutzung immer unge-
nauere Messwerte erzeugen.

2.4.3 Fehlerhafte Operationen

Bei der Verarbeitung der Daten in den arithmetisch-logischen Einheiten ALE der
Datenverarbeitungseinheiten kann es zu Berechnungsfehlern kommen. Diese müs-
sen rechtzeitig erkannt werden, bevor sie zu gefährlichen Ausgaben führen. Forin
beschreibt dabei in [38] die folgenden möglichen Fehlerarten:

• Die Operation wird mit einem oder mehreren falschen Operanden durchge-
führt, wodurch ein fehlerhaftes Ergebnis entsteht.

• Die Operation wird mit den korrekten Operanden, aber einem falschen Opera-
tor durchgeführt, wodurch ein – bezogen auf den falschen Operator korrektes,
jedoch auf die durchzuführende Operation – falsches Ergebnis entsteht.

22

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.4 Datenflussbezogene Fehler- und Angriffsarten

• Die Berechnung wird mit den korrekten Operanden und dem korrekten Ope-
rator durchgeführt, liefert jedoch ein inkorrektes Ergebnis.

2.4.4 Verletzung von Echtzeitbedingungen

Eine wesentliches Ziel bei der Datenverarbeitung in Echtzeitsystemen ist die Recht-
zeitigkeit, also die Reaktion auf Ereignisse innerhalb eines fest vorgegebenen Zeit-
raums. Werden Daten nicht innerhalb dieses Zeitraums verarbeitet, so werden sie
und alle aus ihnen abgeleiteten Ergebnisse nutzlos und ggf. kann ihre Verwendung
zu gefährlichen Ausgaben führen. Idealerweise wird ein Echtzeitsystem zeitgesteuert
realisiert [52, 53], Daten werden daher zyklisch erfasst und verarbeitet. Entsprechend
sollen sie in konstanten Zeitabständen innerhalb der im System vorhandenen Da-
tenverarbeitungseinheiten verarbeitet werden. Bleiben diese Daten aus, kann es zu
Fehlfunktionen des Systems kommen, besonders dann, wenn statt der aktualisierten
Daten unerkannt alte Datenstände verwendet werden.

In [27] werden die folgenden Zeitbedingungen innerhalb von Echtzeitsystemen iden-
tifiziert:

• eine maximale Bearbeitungszeit nach Auftreten eines Ereignisses,

• eine minimale Zeit zwischen zwei Ereignissen und

• eine maximale Zeit zwischen zwei Ereignissen.

Während meist nur die maximale Reaktionszeit auf ein Ereignis im Fokus der Ent-
wickler eines Echtzeitsystems steht, kann ein fehlerhafter Kommunikationsteilneh-
mer, der zu häufig Daten versendet, schwierig zu beherrschende Überlastsituationen
hervorrufen und ggf. Kommunikationsverbindungen blockieren.

2.4.5 Allgemeine Datenflussfehler

Unter dem Begriff „Allgemeine Datenflussfehler“ sollen einige Fehlerarten zusam-
mengefasst werden, die den Weg der Daten durch das System und innerhalb der
Quellen, Datenverarbeitungseinheiten und Senken betreffen.

23

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

2.4.5.1 Verlorengegangene Datenaktualisierungen

Wenn Schreibzugriffe auf Datenspeicherelemente fehlschlagen, z. B. durch Adres-
sierungsfehler, so enthalten diese nach dem fehlerhaften Schreibzugriff nicht den
erwarteten Datenstand. Diese Fehlerart wird von Forin als „lost update“, also „ver-
lorene Aktualisierung“ bezeichnet [38].

2.4.5.2 Synchronisationsfehler und unvollständige Datenübertragungen

Bei nebenläufigem Zugriff auf Daten besteht bei unzureichender Synchronisation
die Gefahr von Dateninkonsistenzen. Diese Art von Fehler wird in [118] als „Se-
rialisierungsfehler“ bezeichnet. Ein gutes Beispiel für die Auswirkungen eines sol-
chen Fehlers stellt das in Kapitel 1.1.3 vorgestellte medizinische Bestrahlungsgerät
Therac-25 dar. Durch Synchronisationsfehler kam es hierbei zu inkonsistenten Be-
handlungsparametern [77].

Ähnliche Auswirkungen haben unvollständige Datenübertragungen, bei denen ein
Teil eines Puffers mit neuen Daten gefüllt wird, die restlichen Datenspeicherelemente
jedoch aufgrund eines Fehlers ihren letzten Stand behalten.

Da beide Fehler zu inkonsistenten Datenständen führen, deren Interpretation ge-
fährliche Ausgaben verursachen kann, werden sie zusammengefasst.

2.4.5.3 Pufferunter- oder -überläufe

Die Unter- oder Überschreitung von Feld- und Puffergrenzen stellt einen häufigen
Datenflussfehler [66, 86, 103] dar, der unbeabsichtigte und schwer aufzudeckende
Veränderungen von Speicherinhalten mit schwerwiegenden Folgen nach sich ziehen
kann und daher in [86] auf Platz 3 der 25 gefährlichsten Programmierfehler einge-
ordnet wird. Die sich daraus ergebenden Probleme können teilweise so ausgenutzt
werden, dass Sicherheitslücken entstehen, die die informationstechnischen Schutz-
ziele gefährden. Ein gutes Beispiel einer solchen Sicherheitslücke ist der Heartbleed-
Fehler [22], der in Kapitel 1.1.4 detailliert vorgestellt wurde.

2.4.5.4 Fehlerhafter Datenfluss

Nicht immer werden Daten in einem System dem Pfad folgen, der in der Spezifikati-
on für sie vorgesehen war. Ein gutes Beispiel für einen fehlerhaften Datenfluss ist der

24

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.4 Datenflussbezogene Fehler- und Angriffsarten

Fehler der Ariane 5, der bereits in Kapitel 1.1.1 vorgestellt wurde: Diagnosedaten
wurden durch den Bordcomputer als Flugdaten interpretiert, die eigentlich durch
ein entsprechendes Fehlerbehandlungsprogramm bearbeitet werden sollten [79].

2.4.5.5 Duplizierte Daten

Durch Fehler im Datenfluss können einem System identische Datenstände mehr als
nur einmalig zur Verarbeitung angeboten werden. Diese Art von Fehler ist vor allem
aus dem Bereich der Kommunikationstechnik bekannt und wird z. B. in der Norm
IEC 61784-3 [54] für sicherheitsgerichtete Feldbuskommunikation als Fehlerart iden-
tifiziert.

2.4.6 Datenverfälschung durch Fehler oder Störungen

Daten können auf ihrem Weg durch das System, aber auch innerhalb der Daten-
quellen, Datenverarbeitungseinheiten und Senken durch auftretende transiente oder
permanente Fehler in Hardware, durch Störungen und auch Softwarefehler unbe-
absichtigt verändert werden. Daher ist es sinnvoll, derartige Fehler durch entspre-
chende Fehlererkennungsmaßnahmen aufzudecken. In der IEC 61508 [51–53] werden
entsprechende Fehlererkennungsmaßnahmen in Form von polynomialen Codes oder
Hamming-Kodierung gefordert. Diese Fehlerart ist streng von gezielt verfälschten
Daten durch Angreifer zu unterscheiden, bei der die Daten gezielt verändert werden.
Eine entsprechende Angriffsart wird in Kapitel 2.4.8 vorgestellt.

2.4.7 Fehlerhafter Zugriff auf Daten

Bei einer weiteren Art von Fehler wird auf Daten nicht in der Form zugegriffen, die
für sie vorgesehen war. Dazu zählen

• Zugriffe auf die falschen Daten, die nicht für die Verwendung durch die aktuell
ablaufende Programminstanz vorgesehen waren,

• fehlerhafte Schreibzugriffe auf Daten, die zwar zur aktuell ablaufenden Pro-
gramminstanz gehören, aber nicht hätten geschrieben werden dürfen, in [118]
als „Zuweisungsfehler bei schreibgeschützten Daten“ bezeichnet, und

• lesende Zugriffe auf Daten, die keine nutzbaren Werte enthalten, also z. B. nicht
initialisierte Variablen, was nach [118] einer der häufigsten Datenflussfehler ist.

25

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

Die beiden ersten Fehlerarten werden unter dem Begriff „Fehlerhafter Datenzugriff“
zusammengefasst, die dritte wird von diesen getrennt betrachtet.

2.4.8 Hackerangriffe

Im Juni 2010 wurde der Stuxnet-Wurm [72] entdeckt, der Siemens-Steuerungen
befiel und vermutlich das iranische Atomprogramm angreifen sollte, um die Uran-
anreichungszentrifugen durch falsche Betriebsparameter zu zerstören. Spätestens
seit diesem Zeitpunkt ist klar, dass technische Prozesse Angriffsziele von Hackern
werden können, z. B. im Zuge eines kriegerischen Akts. Daher gilt es, verschiedene
Angriffsarten zu identifizieren und technische Prozesse dagegen zu schützen.

Das Hauptaugenmerk liegt auf gesicherten Kommunikationsverbindungen und
der damit verbundenen Datenübertragungssoftware unter Nutzung sicherer
Authentifizierungs- und Verschlüsselungsmaßnahmen. Diese sind nicht Teil dieser
Arbeit und wurden z. B. in [109] bereits umfassend betrachtet.

Im Zuge dieser Arbeit sollen jedoch zwei Angriffsarten betrachtet werden, die trotz
gesicherter Kommunikationsverbindungen für Angreifer interessant sein können: die
gezielte Verfälschung von Daten und Wiedereinspielungsattacken.

2.4.8.1 Gezielte Verfälschung von Daten

Im Gegensatz zur Verfälschung von Daten durch auftretende Fehler im System kann
ein Angreifer versuchen, Daten gezielt zu manipulieren, um bestimmte Reaktionen
des Systems auf diese Daten zu provozieren. Darunter sind auch manipulierte Nach-
richten zu verstehen, bei denen ein Angreifer versucht, sich als gültiger Kommuni-
kationspartner auszugeben. Diese Art von Angriffen kann unterschiedlichen Zielen
dienen:

• der Ausspähung von Daten,

• dem Stören von Betriebsabläufen bis hin zur

• Auslösung von Fehlfunktionen.

Dass diese Art von Angriff eine reale Gefahr für die Anlage, bzw. ein ernstzunehmen-
des Ziel von Angreifern darstellt, wurde durch den bereits erwähnten Stuxnet-Wurm
hinreichend bewiesen [72].

26

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.5 Auswirkungen von Fehlern

2.4.8.2 Wiedereinspielungsattacken

Eine weitere zu berücksichtigende Angriffsart sind Wiedereinspielungsattacken, bei
denen ein Angreifer gültigen, ggf. verschlüsselten oder signierten Datenverkehr auf-
zeichnet, um ihn zu gegebener Zeit den Datenverarbeitungseinheiten als aktuelle
Daten zur Verarbeitung „anzubieten“. Dies erfolgt mit dem Ziel, den technischen
Prozess zu stören oder zu beeinflussen.

Ein entsprechendes Szenario könnte z. B. ein chemischer Prozess sein, bei dem ei-
ne Temperatur erfasst und zu einer Stellgröße für eine Heizung verarbeitet wird.
Würden hier gültige Datenpakete des Sensors mit niedriger Temperatur aufgezeich-
net und zu einem späteren Zeitpunkt an die Datenverarbeitungseinheit als aktuel-
le Sensordaten anstelle der echten Temperaturmesswerte gesendet, so könnte eine
Überhitzung des Prozesses provoziert werden.

2.4.9 Zusammenfassung der identifizierten datenflussbezogenen
Fehler- und Angriffsarten

Die 20 identifizierten datenflussbezogenen Fehler- und Angriffsarten werden in Ta-
belle 2.2 nochmals übersichtlich zusammengefasst. Anhand dieser Sammlung wird
die Leistungsfähigkeit bzgl. der Fehlererkennung bekannter Architekturen und Ver-
fahren und der in dieser Arbeit vorgestellten Datenspezifikationsarchitektur evalu-
iert.

2.5 Auswirkungen von Fehlern

In Kapitel 1.1 wurden bereits einige Auswirkungen von in der Praxis aufgetretenen
Fehlern in Form von Sach- oder Personenschäden vorgestellt. Doch nicht jeder Fehler
wirkt sich derart stark aus. In Abbildung 2.3, die auf [67] basiert und in [75] erweitert
wurde, werden die möglichen Auswirkungen von Fehlern dargestellt.

Ausgehend von einem fehlerfreien Zustand eines Prozessautomatisierungssystems
können ungefährliche Ausfälle auftreten, bei denen beispielsweise ein Anzeigeele-
ment ausfällt, die jedoch keine gefährlichen Auswirkungen haben. Fällt jedoch eine
Automatisierungsfunktion aus, so wird von einem sicherheitsbezogenen Ausfall ge-
sprochen, da die Sicherheit des automatisierten technischen Prozesses gefährdet sein
kann.

27

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

Tabelle 2.2: Sammlung datenflussbezogener Fehler- und Angriffsarten

Fehlerkategorie Fehlerart

Inkompatibilität von Operanden
Inkompatible Datentypen
Inkompatible Einheiten

Wertebereichsverletzungen und
Genauigkeitsprobleme

Wertebereichsunter- bzw. -überschreitung
Genauigkeitsproblem

Fehlerhafte Operationen
Falsche Operandenauswahl
Falsche Operatorauswahl
Fehlerhaftes Operationsergebnis

Verletzung von Echtzeitbedingungen
Fristüberschreitung
Zyklusunterschreitung
Zyklusüberschreitung

Allgemeine Datenflussfehler

Verlorengegangene Datenaktualisierung
Synchronisationsfehler oder unvollständi-
ge Datenübertragung
Pufferunter- oder -überläufe
Fehlerhafter Datenfluss (falsche Adressa-
ten, ...)
Duplizierte Daten

Datenverfälschung durch Fehler
oder Störungen

Durch Fehler oder Störungen verfälschte
Daten

Fehlerhafter Zugriff auf Daten
Fehlerhafter Datenzugriff (fehlende Zu-
griffsrechte)
Nutzung nicht initialisierter Daten

Angriffskategorie Angriffsart

Hackerangriffe
Gezielt verfälschte Daten
Wiedereinspielungsattacke

28

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.5 Auswirkungen von Fehlern

Abbildung 2.3: Auswirkung von Fehlern (nach [67] und [75])

29

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

Werden durch die fehlerhafte Automatisierungsfunktion keine falschen Steuersigna-
le ausgegeben, so handelt es sich um eine nicht sicherheitsbezogene Fehlfunktion.
Werden jedoch falsche Steuersignale in Folge des Ausfalls generiert, so handelt es
sich um eine sicherheitsbezogene Fehlfunktion. Hier ist zu unterscheiden, in welcher
Form sich die fehlerhaften Steuersignale auf den Prozess auswirken. In [75] wird
als Beispiel die Steuerung der Schranken an einem Bahnübergang herangezogen.
Bewirken die falschen Steuersignale ein Schließen der Schranken, obwohl derzeit
kein Zug den Bahnübergang passiert, liegt ein ungefährlicher Prozesszustand vor.
Würden sich die Schranken jedoch trotz eines nahenden Zuges aufgrund fehlerhafter
Steuersignale nicht schließen, würde ein gefährlicher Prozesszustand entstehen.

Ein gefährlicher Prozesszustand muss jedoch nicht immer einen Unfall zur Folge
haben. Wenn kein Verkehrsteilnehmer die Schienen im Bereich des Bahnübergangs
in dem Moment kreuzt, wenn der Zug diesen passiert, so wird kein Unfall eintreten
können. Kommt es jedoch zu einer Kollision, so können die Auswirkungen gerin-
ger Art sein, z. B. in Form geringer Sachschäden, aber es können ebenso Personen
verletzt oder sogar getötet werden. Neben Sach- und Personenschäden sind auch ne-
gative Auswirkungen auf die Umwelt möglich, wie beispielsweise bei auslaufenden
Kraft- oder Giftstoffen.

Da nach [75] beim Einsatz von Computern nie bestimmt werden kann, wie sich ein
Ausfall auswirkt, sind alle Ausfall- und Fehlerarten als sicherheitsbezogen anzuse-
hen. Wie bereits erwähnt, können bei Software selbst kleine Fehler extreme Auswir-
kungen haben, was in [44] als „Unstetigkeit von Software“ bezeichnet wird.

2.6 Fehlererkennung und -behandlung

Um auftretende Fehler behandeln zu können, müssen diese zunächst erkannt werden.
Dabei erfolgt die Fehlererkennung nach [44] durch die Prüfung mindestens zweier
Werte auf die Einhaltung der für diese Werte vorgesehenen Zusammenhänge. Wer-
den Abweichungen festgestellt, so ist von einem Fehler auszugehen. Auf erkannte
Fehler kann mit verschiedenen Maßnahmen zur Fehlerbehandlung reagiert werden,
von denen einige für diese Arbeit relevante Verfahren in den folgenden Unterkapiteln
beschrieben werden.

30

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2.6 Fehlererkennung und -behandlung

2.6.1 Einnehmen und Halten eines sicheren Zustands

Eine der wichtigsten Maßnahmen zur Behandlung auftretender Fehler ist das Ein-
nehmen und Halten eines sicheren Zustands, sofern für den jeweiligen technischen
Prozess ein solcher existiert. Typische Beispiele für technische Prozesse mit einem
sicheren Zustand sind nach [75]

• das Kraftfahrzeug, bei welchem der sichere Zustand der Stillstand ist; das
Fahrzeug wird also durch Abbremsen in diesen Zustand überführt,

• ein Kernreaktor, bei dem die Steuerstäbe in den Kern eingefahren werden, um
die Kettenreaktion zum Erliegen zu bringen.

Dagegen ist das Flugzeug während des Flugs ein Beispiel für einen technischen
Prozess, der keinen sicheren Zustand besitzt.

2.6.2 Anwendung von Redundanzmaßnahmen

Die Sicherheit technischer Prozesse ohne sicheren Zustand kann nach [75] nur da-
durch gewährleistet werden, dass diese eine sehr hohe Zuverlässigkeit aufweisen. Dies
wird meist dadurch realisiert, dass kritische Einheiten mehrfach, also redundant vor-
handen sind, so dass der Ausfall einzelner Einheiten toleriert und der sichere Betrieb
des jeweiligen Prozesses unter Nutzung der verbleibenden Einheiten aufrechterhal-
ten werden kann. Idealerweise sind die redundanten Einheiten diversitär ausgelegt,
um einen Ausfall mehrerer oder sogar aller Einheiten aufgrund derselben Fehlerur-
sache zu vermeiden. Als Beispiel für den Ausfall aller redundanten Einheiten eines
Systems aufgrund fehlender Diversität wurde in Kapitel 1.1.1 die Selbstzerstörung
der Ariane 5 beschrieben.

Ein Vergleicher vergleicht die Ausgaben der durch ihn zu überwachenden Einheiten
und führt bei Differenzen einen Mehrheitsentscheid durch. Die überstimmte Einheit
bzw. die überstimmten Einheiten werden dann als fehlerhaft angenommen.

2.6.3 Allmähliche Leistungsabsenkung

Stellt die Software während der Datenverarbeitung fest, dass es ihr nicht möglich
ist, die erforderlichen Ergebnisse innerhalb spezifizierter Zeitgrenzen zu berechnen,
so kann sie den Übergang in und das Halten eines sicheren Zustands auslösen,

31

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

2 Fehlerarten, -ursachen, -auswirkungen und -behandlung

sofern der jeweilige technische Prozess einen solchen besitzt. Eine andere Möglich-
keit der Reaktion auf Überlastsituationen ist nach [45] der Versuch, die gegebenen
Zeitgrenzen trotz der Überlastung durch die Suspendierung nicht unbedingt erfor-
derlicher Tasks oder die Ausführung alternativer Berechnungsmethoden mit ggf.
geringerer Genauigkeit der Ergebnisse einzuhalten. Die Anwendung der allmähli-
chen Leistungsabsenkung ist daher besonders für die Systeme sinnvoll, die entweder
keinen sicheren Zustand besitzen oder anderweitige hohe Anforderungen an ihre
Verfügbarkeit aufweisen.

32

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und
Technik

Die folgenden Methoden, Techniken und Architekturen werden mit ihren Merkma-
len zur Erkennung von datenflussbezogenen Fehlern in diesem Kapitel detailliert
vorgestellt:

• die Schutzmechanismen konventioneller Architekturen am Beispiel der x86-
Architektur im geschützten und 64-Bit-Modus, sowie der ARM-Architektur,

• auf sicherheitsgerichtete Systeme spezialisierte Prozessoren, die auf konventio-
nellen Architekturen beruhen, wie z. B. der TI Hercules,

• in Vergessenheit geratene Rechnerarchitekturen wie Datentyp-, Datenstruktur-
und Befähigungsarchitekturen, darunter auch moderne Entwicklungen wie
PUMP als Teil des SAFE-Projekts,

• der Vollständigkeit halber Datenflussarchitekturen, da ihr Name eine entspre-
chende Spezialisierung auf Datenflüsse erahnen lässt,

• die inhärent sichere Mikroprozessorarchitektur ISMA,

• die als ADI bzw. SSM bezeichnete Versionskennung des Oracle SPARC M7
Prozessors,

• arithmetische Kodierung in Form der ANBD-Kodierung, sowie

• die Datenflussüberwachung in Netzwerk- und sicherheitsgerichteten Feld-
busprotokollen.

Die jeweiligen Merkmale und Verfahren zur Fehlererkennung werden anhand der
Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten evalu-
iert.

33

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.1 Konventionelle Architekturen

Als Stand der Technik sollen zunächst konventionelle Architekturen vorgestellt wer-
den, also Architekturen, die millionenfach eingesetzt werden, aber keine oder nur
wenige spezielle Merkmale zur Fehlervermeidung und -erkennung aufweisen. Als
Beispiele für derartige Architekturen werden die sich am meisten im Einsatz be-
findlichen Architekturen x86 und ARM [50] detailliert betrachtet.

3.1.1 Die x86-Architektur

Die x86-Familie, die ihren Siegeszug mit dem 16-Bit Mikroprozessor 8086 im Jahr
1978 begonnen hat, ist mit ihrer von-Neumann-Architektur bis heute eine der meist-
genutzten Mikroprozessorfamilien [50]. Beginnend mit ersten Erweiterungen beim
80286 kam der geschützte Modus, engl. „Protected Mode“, mit dem 80386 in vollem
Umfang zum Einsatz. Der 80386 brachte nach [59] eine Erweiterung der allgemein
verwendbaren Register von 16 auf 32 Bit mit sich, ebenso eine Erweiterung des
Adressraums auf 32 Bit, daher also 4 GiB. Zusätzlich wurde eine Seitenverwaltung
im 80386 implementiert, die so die Realisierung von virtuellem Speicher ermöglich-
te. Neben Intel stellten und stellen auch Wettbewerber x86-kompatible Prozessoren
her, allen voran die Firma AMD. Diese war auch der Vorreiter bei der Einführung
von 64 Bit breiten Registern und eines entsprechenden Betriebsmodus [4]. Die Si-
cherheitsmerkmale des geschützten Modus und die Nachteile der Architektur sollen
in den folgenden Unterkapiteln näher erläutert werden.

3.1.1.1 Der geschützte Modus

Im Gegensatz zum Real-Modus, engl. „Real Mode“, in dem nahezu keine Sicher-
heitsmerkmale durch die Prozessorhardware unterstützt werden, sind im geschütz-
ten Modus, engl. „Protected Mode“, mehrere dieser Merkmale verfügbar. Nach [59]
ist zunächst zwischen Segmentierung und Seitenverwaltung zu unterscheiden. Adres-
sen innerhalb eines Segments werden nach [84] als virtuelle Adressen bezeichnet. Bei
der Segmentierung werden Deskriptoren angelegt, die neben der Basisadresse eines
Segments im Speicher auch dessen Größe und die Eigenschaften der im Segment ent-
haltenen Befehle oder Daten beschreiben. Unterschieden werden dabei Befehls- und
Datendeskriptoren. Während die Inhalte eines Befehlssegments grundsätzlich nicht
beschreibbar sind, sind die Inhalte eines Datensegments grundsätzlich nicht ausführ-
bar. Für Befehlssegmente kann im Deskriptor bestimmt werden, ob die enthaltenen

34

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.1 Konventionelle Architekturen

Befehle lesbar sind, analog dazu kann für Datensegmente ausgewählt werden, ob
die enthaltenen Daten beschreibbar sind. Neben diesen Mitteln zur Beschreibung
der Lage, der Größe und der Rechte beim Zugriff auf ein Segment, enthält der De-
skriptor auch die Angabe einer Privilegierungsstufe, die minimal notwendig ist, um
auf die Inhalte eines Segments zugreifen zu dürfen. Diese Privilegierungsstufe wird
durch einen Wert zwischen null und drei angegeben, wobei die Null der höchsten
Stufe und dem größten Satz an Rechten entspricht. Dabei wird häufig die Darstel-
lung in Form von Ringen gewählt, wie in Abbildung 3.1 nach [84] zu sehen. Als
Anwendungsbeispiele, wie die Privilegierungsstufen oder -ringe den einzelnen Be-
standteilen einer Softwareumgebung zuzuordnen sind, wird in [59] vorgeschlagen,
das Betriebssystem mit den höchsten Rechten in Stufe 0, hardwarenahe Treiber in
Stufe 1, Schnittstellen von Treibern zu Anwendungen und Betriebssystemdienste in
Stufe 2 und Anwendungsprogramme in Stufe 3 einzuordnen. In der Praxis werden
jedoch oft nur die Privilegierungsstufen 0 und 3 genutzt, wie z. B. beim Betriebssy-
stem Linux [10]. Neben dem Zugriff auf entsprechend privilegierte Segmente wurde
ab dem 80386 auch der Befehlssatz in verschiedene Privilegierungsgruppen unter-
teilt, um zu verhindern, dass Code eines Segments mit geringer Privilegierungsstufe
sich einfach selbst höhere Rechte erteilt. Wird eine solche privilegierte Operation
von Code mit geringer Privilegierungsstufe ausgeführt, wird ein Ausnahmefehler
generiert.

Die Seitenverwaltung liegt hierarchisch gesehen unter der Segmentierung. Sie sorgt
dafür, dass die Adressen, die sich innerhalb eines Segments ergeben (Basis des Seg-
ments + Adressabstand eines bestimmten Elements innerhalb des Segments) zu-
nächst als logische Adressen interpretiert werden, die mit der physikalischen Lage
eines Elements im Speicher nicht mehr direkt in Verbindung zu bringen sind. Die
Seitenverwaltung übernimmt die Übersetzung der logischen Adresse in eine physi-
kalische Adresse, wie in Abbildung 3.2 gezeigt. Bei der Seitenverwaltung existieren
ebenfalls Privilegierungs- und Rechtebeschreibungen für die jeweiligen Seiten. Dabei
sind, im Gegensatz zur Segmentierung, nur noch zwei Privilegierungsstufen vorhan-
den: eine privilegierte und eine Benutzerstufe. Code, der in einem Ring-3-Segment
ausgeführt wird, kann nur auf Seiten mit Benutzerstufe zugreifen. Bei den Zugriffs-
rechten kann eine Seite als nur-lesbar markiert werden, nach [59] sind jedoch alle
Seiten zunächst lesbar und enthaltene Speicherworte sind als ausführbarer Code
interpretierbar. Bis zur Einführung des sog. NX-Bits war es nicht möglich, Spei-
cherseiten in der Seitenverwaltung als nicht-ausführbar zu deklarieren, es gab also
keine Möglichkeit, den Versuch, Daten als Instruktionen zu interpretieren, mittels
der Seitenverwaltung als Fehler zu erkennen.

35

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Obwohl mit der Segmentierung starke Sicherheitsmerkmale zur Verfügung gestellt
werden, wird in der Praxis in den dominantesten Betriebssystemen Microsoft Win-
dows [84] und Linux [10] ein flaches Speichermodell eingesetzt, wie es auch schon
in [59] vorgeschlagen wurde. Dabei werden Befehls- und Datensegmente mit der-
selben Basisadresse und maximalen Limits angelegt, üblicherweise auch mit ma-
ximalen Rechten, wodurch der gesamte Speicher und die gleichen Speicherinhalte
über die Befehls- und Datensegmentdeskriptoren angesprochen werden können. In
Abbildung 3.3 werden die vier dafür angelegten Segmentdeskriptoren im Betriebs-
system Linux nach [10] dargestellt. Für das Betriebssystem hat ein solches flaches
Speichermodell den Vorteil, dass viel einfacher auf die Inhalte des Speichers eines
Anwendungsprozesses zugegriffen werden kann und z. B. ein Ladeprogramm die Be-
fehle der Anwendung einfach als Daten in den Speicher der Anwendung schreibt,
die dann als Befehle interpretiert werden. Andererseits werden die Sicherheitsme-
chanismen der Segmentierung dadurch fast komplett ausgehebelt, es bleiben nur
noch die Sicherheitsmerkmale der Seitenverwaltung bestehen.

Zusätzlich zu den bislang beschriebenen Mechanismen können die Rechte für die
Ein- und Ausgabe über E/A-Anschlüsse, die über die dedizierten Befehle IN und
OUT angesprochen werden, für Anwendungscode eingeschränkt werden.

Abbildung 3.1: Die vier Privilegierungsstufen in Ringdarstellung

36

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.1 Konventionelle Architekturen

Abbildung 3.2: Umsetzung einer virtuellen zu einer physikalischen Adresse

Abbildung 3.3: Die vier Segmente für Betriebssystem und Anwendungen bei Linux

37

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.1.1.2 Der 64-Bit-Betriebsmodus

Der von AMD eingeführte 64-Bit-Betriebsmodus, engl. „Long Mode“ genannt, er-
möglicht die native Nutzung von 64 Bit breiten Registern und eines entsprechend
großen Adressraums zusammen mit neuen, auf die Registerbreite und Adressraum-
größe abgestimmten Instruktionen, dem AMD64-Befehlssatz [4]. Zusätzlich wurde
die Anzahl der allgemeinen Register von 8 auf 16 erhöht. Die Segmentierung und
die mit ihr verbundenen Sicherheitsmerkmale, die im geschützten Modus angebo-
ten werden, sind im 64-Bit-Betriebsmodus nicht vorhanden, es ist daher nur ein
flaches Speichermodell möglich. Es bleiben somit nur die Sicherheitsmerkmale der
Seitenverwaltung übrig.

3.1.1.3 Moderne sicherheitstechnische Erweiterungen der x86-Architektur

Neben der bereits erwähnten Einführung des NX-Bits in der Seitenverwaltung, das
es erlaubt, Speicherseiten als nicht ausführbar zu kennzeichnen, wurden von Intel
jüngst zwei weitere Ansätze zur Erhöhung der Systemsicherheit eingeführt, die hier
kurz vorgestellt werden sollen:

• die Memory Protection Extensions (kurz „MPX“) und

• die Control-flow Enforcement Technology (kurz „CET“).

Während MPX die Fehlererkennung der x86-Architektur in Bezug auf die Erken-
nung von Pufferüber- und -unterläufen verbessert, dient CET einzig der Aufdeckung
von Kontrollflussanomalien, wie sie bei gezielten Angriffen zur Ausnutzung von Si-
cherheitslücken in Software auftreten. CET ist daher unerheblich für den Stand von
Wissenschaft und Technik für diese Arbeit, wird jedoch trotzdem kurz umrissen, da
damit gezeigt werden kann, dass weiterhin erheblicher Bedarf an neuen Sicherheits-
mechanismen in x86-Architekturen besteht, um Sicherheitslücken durch typische
Softwarefehler zu erkennen.

3.1.1.3.1 Memory Protection Extensions MPX

Die Memory Protection Extensions MPX von Intel dienen – wie der Name be-
reits andeutet – der Erweiterung der existierenden Speicherschutzmechanismen der
x86-Architektur [47]. Dabei werden zusätzliche Instruktionen und Register zur Be-
reichsprüfung durch den Prozessor zur Verfügung gestellt, um eine häufige und
gefährliche Art von Softwarefehlern [66, 86, 103] aufdecken zu können: Pufferüber-

38

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.1 Konventionelle Architekturen

bzw. -unterläufe, also das Lesen oder Schreiben über die unteren oder oberen Gren-
zen eines Puffers hinaus. Da viele Sicherheitslücken in Softwareprogrammen auf
diese Art von Fehlern zurückzuführen sind, werden diese in [86] auf Platz 3 der 25
gefährlichsten Softwarefehler geführt.

Der Aufwand zur Nutzung der neuen Funktionalitäten ist nicht unerheblich: für den
Programmierer besteht der Aufwand zwar nur darin, den Übersetzer dazu anzuwei-
sen, MPX zu nutzen, auf Maschinenbefehlsebene ist der Zusatzaufwand allerdings
beträchtlich:

In [47] wird eine Funktion einmal mit und einmal ohne MPX-Unterstützung über-
setzt und die sich dabei ergebenden Maschinenbefehle verglichen (die beiden fol-
genden Auflistungen sind direkt [47] entnommen und in Hinsicht auf die Lesbarkeit
bearbeitet worden).

00000000004006e0 <dog_letter>:
4006e0: 48 63 ff movslq %edi,%rdi
4006e3: 0f b6 87 43 10 60 00 movzbl 0x601043(%rdi),%eax
4006ea: c3 retq

Maschinencode des Beispiels ohne Nutzung von MPX

0000000000400750 <dog_letter>:
400750: 66 0f 1a 05 f8 08 20 00 bndmov 0x2008f8(%rip),%bnd0
400758: 48 63 ff movslq %edi,%rdi
40075b: 48 8d 87 67 10 60 00 lea 0x601067(%rdi),%rax
400762: f3 0f 1a 00 bndcl (%rax),%bnd0
400766: 66 0f 1a 0d e2 08 20 00 bndmov 0x2008e2(%rip),%bnd1
40076e: f2 0f 1a 08 bndcu (%rax),%bnd1
400772: 0f b6 87 67 10 60 00 movzbl 0x601067(%rdi),%eax
400779: f2 c3 bnd retq

Maschinencode des Beispiels mit Nutzung von MPX

Mit den beiden bndmov-Anweisungen werden die Speicherbereichsgrenzen des Da-
tenfelds in ein Bereichsregister geladen und mittels bndcl bzw. bndcu wird der
Index vor dem eigentlichen Zugriff auf das Datenfeld daraufhin überprüft, ob er
sich innerhalb der Feldgrenzen befindet. Es lässt sich feststellen, dass die Funktion

39

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

ohne Nutzung von MPX aus gerade einmal 3 Instruktionen mit einer Gesamtgrö-
ße von 11 Byte besteht, während die Variante mit Nutzung von MPX bereits 8
Instruktionen verwendet und beachtliche 42 Byte belegt.

3.1.1.3.2 Control-flow Enforcement Technology CET

Die Erweiterung Control-flow Enforcement Technology CET von Intel soll die Aus-
nutzung von Sicherheitslücken erschweren, die durch Programmierfehler entstehen
und eine Veränderung des vorhergesehenen Kontrollflusses des fehlerhaften Pro-
gramms zulassen [60].

Dazu kommen nach [60] zwei neue Merkmale zum Einsatz:

• ein Schattenstapelspeicher, auf dem die Rücksprungadressen bei Funktionsauf-
rufen zusätzlich abgelegt werden und bei Rückkehr zur aufrufenden Funktion
mit jenen auf dem eigentlichen Stapelspeicher verglichen werden und

• die Prüfung, ob indirekte Sprung- und Unterprogrammaufrufbefehle als Ziel
ein vorhergesehenes Sprung- bzw. Aufrufziel haben, indem dort eine neue Pseu-
doinstruktion erwartet wird, die „Endbranch“ genannt wird.

Während die Prüfung der Sprung- und Unterprogrammaufrufziele sehr einfach zu
realisieren ist, ist die Realisierung des Schattenstapelspeichers deutlich aufwendiger.
So wurde z. B. ein neues Bit in der Seitenverwaltung eingeführt, um zu erreichen,
dass die Speicherbereiche, die Schattenstapelspeicher enthalten, vor Zugriffen durch
– möglicherweise bösartigen – Nutzercode geschützt werden. Dies ist notwendig,
da ansonsten entsprechender Schadcode neben der Manipulation des eigentlichen
Stapelspeichers lediglich noch die Inhalte des Schattenstapelspeichers entsprechend
anpassen müsste, um unerkannt sein Ziel zu erreichen.

3.1.2 Die ARM-Architektur

Im Gegensatz zu x86-Prozessoren stellt das Unternehmen ARM Ltd. keine eigenen
Prozessoren her, sondern vergibt Fertigungslizenzen an Chiphersteller, die dann die
vorgefertigten Prozessorentwürfe in ihre Produkte integrieren [20]. Die Prozessoren
sind auf besonders niedrige Leistungsaufnahme hin optimiert und kommen z. B. bei
eingebetteten Systemen und Mobiltelefonen in großer Zahl zum Einsatz [50].

Ein ARM-Prozessor bietet bis zu 9 verschiedene Betriebsmodi, von denen die Modi
Supervisor (für Betriebssysteme), System (für privilegierte Anwendungen) und User
(für Anwendungen) relevant sind [7, 12].

40

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.1 Konventionelle Architekturen

Nach [7] gibt es bei ARM-Prozessoren keine Segmentierung, wodurch nur ein fla-
ches Speichermodell implementierbar ist. Die Schutzmechanismen basieren daher
allein auf der Seitenverwaltung, wobei seit der Prozessorgeneration ARMv6 ein dem
NX-Bit der x86-Prozessoren äquivalentes XN-Bit, engl. „eXecute Never“, zur Ver-
hinderung der Ausführung von Daten implementiert ist. Interessant ist der Hinweis
in [7], dass nicht alle ARM-Prozessoren eine Division durch Null als Ausnahmefeh-
ler melden, sondern als Ergebnis eine Null zurückgeben. ARM-Prozessoren haben,
je nach Typ [19], eine der von-Neumann- oder Harvard-Architektur entsprechende
Speicheranbindung, also einen gemeinsamen Bus für Befehle und Daten oder zwei
getrennte Busse.

3.1.3 Integritätsprüfung durch ECC

Im Serverumfeld und gelegentlich auch in Mikroprozessoren für den Einsatz in ein-
gebetteten Systemen kommen Integritätsprüfungsmechanismen für Daten zum Ein-
satz, anhand derer geprüft werden kann, ob die in einem Datenspeicherelement
enthaltenen Daten korrekt sind. Dabei werden die Daten bei Schreibvorgängen mit
einer Fehlererkennungs- und ggf. sogar -korrekturkodierung versehen und dann im
Arbeitsspeicher abgelegt. Beim Lesen wird die Integrität der Speicherinhalte anhand
dieser Kodierung geprüft und im Fehlerfall

• bei reinen Fehlererkennungskodierungen ein Ausnahmefehler generiert bzw.

• bei Fehlerkorrekturkodierung eine Korrektur der Daten vorgenommen oder –
falls dies nicht möglich ist – ein Ausnahmefehler generiert.

Bei Servern, die auf der x86-Architektur basieren, handelt es sich um eine Im-
plementierung eines Erweiterten-(72,64)-Hamming-Codes [68], die „ECC“ genannt
wird und für „Error Correction Code“ steht.

Die Integrität von Datenspeicherelementen wird dabei nur zwischen Speichercon-
troller und Arbeitsspeicher geprüft, wie in Abbildung 3.4 dargestellt. Ein Speicher-
controller errechnet die entsprechenden Integritätsprüfungsbits, fügt sie den Daten
hinzu, überträgt die Daten mitsamt den Prüfbits in den Arbeitsspeicher, liest diese
zum Zeitpunkt der Verwendung wieder aus dem Arbeitsspeicher, prüft die Inhal-
te auf Integrität unter Zuhilfenahme der Prüfbits und reicht die Inhalte dann an
den Prozessor weiter, jedoch ohne die Fehlererkennungs- oder -korrekturkodierung.
Eine durchgängige Integritätsprüfung, die auch die Verbindung zwischen Speicher-
controller und Prozessor und innerhalb des Prozessors die Verarbeitung in dessen

41

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Registern einschließt – wie sie bei später in dieser Arbeit vorgestellten Architekturen
zum Einsatz kommt – wird nicht angewendet.

Abbildung 3.4: Abdeckungsbereich der Integritätsprüfung in konventionellen Architekturen

3.1.4 Evaluation konventioneller Architekturen

Der sog. „von-Neumann-Flaschenhals“ schränkt die Leistungsfähigkeit der x86-
Architektur ein, weil sequentiell auf Befehle und die dazugehörigen Daten zuge-
griffen werden muss. Um die Leistungsfähigkeit zu steigern, wurden hochkomplexe
Mechanismen eingeführt, wie zum Beispiel mehrere Ebenen von Verdecktspeichern,
engl. „Caches“, um Speicherzugriffe zu beschleunigen und Sprungvorhersagen oder
die Ausführung von Anweisungen in einer vom Maschinencode abweichenden Rei-
henfolge, engl. „Out of Order Execution“, um Pipeline-Blockaden zu vermeiden und
den Durchsatz zu optimieren [9, 84]. Der Beweis der Korrektheit dieser Mechanismen
ist aufgrund ihrer hohen Komplexität sehr aufwendig. Der Einsatz der Verdecktspei-
cher und die Nutzung von virtuellem Speicher beeinträchtigen die Vorhersagbarkeit
des zeitlichen Verhaltens eines x86-Systems.

In konventionellen Architekturen werden Daten nur in Form ihres Datenwerts darge-
stellt und alle weiteren Eigenschaften des Datenwerts werden implizit bei der Verar-
beitung durch die Anwendung entsprechender Befehle angenommen. Zugriffsrechte
werden losgelöst von den eigentlichen Daten über Sicherheitsmechanismen wie Seg-
mentierung und Seitenverwaltung mit den Datenspeicherelementen verknüpft.

Die Segmentierung bringt ein hohes Maß an Komplexität in der Verwaltung durch
das Betriebssystem mit sich, weshalb auf sie in flachen Speichermodellen verzich-
tet wird. Dies stellt, neben der fehlenden Unterscheidung von Code und Daten

42

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.1 Konventionelle Architekturen

durch den Befehlsprozessor selbst, durch die Möglichkeit, Daten in flachen Spei-
chermodellen als Befehle auszuführen, ein großes Problem dar. So bleiben nur die
Sicherheitsmerkmale der Seitenverwaltung übrig, die bis zur Einführung des NX-
Bits, einem englischen Akronym für „No eXecute“, in der Seitenverwaltung nicht
erlaubten, Seiten als nicht ausführbar zu kennzeichnen. Der 64-Bit-Modus verzichtet
auf die ohnehin nicht oder nur ansatzweise genutzten Sicherheitsmerkmale der Seg-
mentierung und bietet nur ein flaches Speichermodell und die Sicherheitsmerkmale
der Seitenverwaltung an.

Die Nachteile der ARM-Architektur sind im Wesentlichen mit denen der x86-
Architektur identisch. Bei ARM-Modellen mit einer Speicheranbindung nach der
Harvard-Architektur gibt es natürlich keine Geschwindigkeitseinbußen beim Zugriff
auf Befehle und Daten und die Gefahr, Daten als Befehle zu interpretieren, ist
dadurch nicht gegeben.

Die Hersteller derartiger Prozessoren versuchen sich bei maximalen Taktfrequen-
zen, Anzahl der Kerne und Angaben über die pro Sekunde ausgeführten Instruktio-
nen (z. B. MIPS – „million instructions per second“) bzw. Gleitkommaoperationen
(z. B. FLOPS – „floating point operations per second“) gegenseitig zu übertrump-
fen. Für dieses Muskelspiel wurde – wie bereits oben angedeutet – eine Vielzahl
von Verfahren zur Erhöhung der genannten Kennzahlen entwickelt, statt sich auf
die Entwicklung einfacher, sinnvoller und lesitungsfähiger Fehlervermeidungs- und
-erkennungsmaßnahmen zu konzentrieren. Entsprechend können nur die wenigsten
Fehlerarten erkannt werden, wie sich anhand der Erkennbarkeit der 20 in Kapitel 2.4
vorgestellten Fehler- und Angriffsarten in Tabelle 3.1 klar erkennen lässt.

3.1.4.1 Evaluation der x86-Architektur

Die x86-Architektur zeigt sich anhand Tabelle 3.1 wenig leistungsfähig bezogen auf
die erkennbaren Fehlerarten. Während im geschützten Modus noch die Instruktion
bound verfügbar war, um Wertebereichsunter- bzw. -überschreitungen durch zusätz-
liche Softwareprüfungen zu ermöglichen, wurde dieser im modernen 64-Bit-Modus
entfernt. Damit kann diese Fehlerart nur als begrenzt erkennbar bewertet werden.

Pufferunter- und -überläufe können mit dem neuen MPX-Schutzmerkmal zuverläs-
sig erkannt werden, aber die Kosten in Form von Codegröße und Ausführungszeit
sind hoch.

Werden Daten durch Störungen verfälscht, kann dies beim Einsatz von ECC-
Speichern erkannt werden. Allerdings werden nur die Inhalte des Arbeitsspeichers

43

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.1: Fehlererkennung durch x86 und ARM

Fehlerart x86 ARM
Inkompatible Datentypen nein nein
Inkompatible Einheiten nein nein
Wertebereichsunter- bzw. -überschreitung begrenzt (bound) nein
Genauigkeitsproblem nein nein
Falsche Operandenauswahl nein nein
Falsche Operatorauswahl nein nein
Fehlerhaftes Operationsergebnis nein nein
Fristüberschreitung nein nein
Zyklusunterschreitung nein nein
Zyklusüberschreitung nein nein
Verlorengegangene Datenaktualisierung nein nein
Synchronisationsfehler oder unvollständige
Datenübertragung nein nein

Pufferunter- oder -überläufe (ja) (MPX) nein
Fehlerhafter Datenfluss (falsche Adressa-
ten, . . .) nein nein

Duplizierte Daten nein nein
Durch Fehler oder Störungen verfälschte
Daten begrenzt (ECC) begrenzt (ECC)

Fehlerhafter Datenzugriff (fehlende Zu-
griffsrechte) begrenzt begrenzt

Nutzung nicht initialisierter Daten nein nein
Angriffsart
Gezielt verfälschte Daten nein nein
Wiedereinspielungsattacke nein nein

44

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.2 Prozessoren für sicherheitsgerichtete Anwendungen

und die Datenverbindung zum Speichercontroller dadurch geprüft, Fehler in Prozes-
sorregistern würden dadurch z. B. nicht aufgedeckt. Da ECC-Speicher zudem nicht
in allen Systemen eingesetzt werden kann, kann diese Fehlerart ebenfalls nur als
begrenzt erkennbar bewertet werden.

Fehlerhafte Datenzugriffe können nur im Rahmen der groben Segmentierungs- und
Seitenverwaltungsmechanismen erkannt werden. Auch hier ist nur eine begrenzte
Fehlererkennungsmöglichkeit gegeben.

3.1.4.2 Evaluation der ARM-Architektur

Die ARM-Architektur schneidet bei der Betrachtung der erkennbaren Fehler sogar
noch schlechter als die x86-Architektur ab, wie in Tabelle 3.1 ersichtlich.

Beim Einsatz von ECC-Speichern können Datenverfälschungen in Speichern und auf
dem Weg bis zur Paritätsprüfung aufgedeckt werden. Wie bei der x86-Architektur
werden aber auch hier wesentliche Teile der Datenverarbeitung innerhalb des Pro-
zessors nicht in die Prüfung einbezogen. Fehlerhafte Datenzugriffe können durch die
Seitenverwaltung nur in grober Granularität aufgedeckt werden. Beide Fehlerarten
können daher nur als begrenzt erkennbar bewertet werden.

3.2 Prozessoren für sicherheitsgerichtete
Anwendungen

Neben den bereits vorgestellten konventionellen Architekturen x86 und ARM gibt
es Mikroprozessoren, die zwar auf konventionellen Architekturen basieren, jedoch
speziell für den Einsatz in sicherheitsgerichteten Anwendungen vorgesehen sind.
Da Aufbau, Funktionsumfang und Sicherheitsmerkmale dieser Prozessoren deutlich
vom bisher vorgestellten Stand der Technik abweichen, werden die Prozessoren für
sicherheitsgerichtete Anwendungen hier getrennt vorgestellt und evaluiert.

3.2.1 Aufbau der Prozessoren für sicherheitsgerichtete
Anwendungen

Als Beispiele für auf konventionellen Architekturen basierende Prozessoren für
sicherheitsgerichtete Anwendungen sollen drei wichtige Vertreter vorgestellt wer-
den:

45

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

• TI Hercules (basierend auf ARM Cortex-R) [120]

• NXP MPC (basierend auf PowerPC e200) [91]

• Infineon AURIX (basierend auf TriCore) [58]

Betrachtet man die Prozessoren im Detail, so stellt man fest, dass sie alle sehr ähnli-
che Fehlererkennungsmerkmale aufweisen, obwohl die Kerne drei unterschiedlichen
Architekturen entstammen. Diese Merkmale – auch wenn sie nicht alle in jedem der
Prozessoren zur Anwendung kommen – sind:

• Redundanz: Im sog. „Lockstep-Modus“ arbeitet ein redundanter Prozessorkern
basierend auf den gleichen Eingabedaten wie ein Hauptkern und die Ausgaben
beider Kerne werden verglichen

• Räumliche Diversität: Der redundante Kern ist auf dem Prozessor möglichst
weit vom Hauptkern entfernt

• Räumliche Diversität: Der redundante Kern ist gegenüber dem ersten Kern
gedreht

• Zeitliche Diversität: Der redundante Kern arbeitet n Takte versetzt gegenüber
dem ersten Kern

• Entwurfsdiversität: Infineon wirbt in [58] damit, dass der zweite Kern diversi-
tär gegenüber dem ersten entworfen worden sein soll

• Prüfung der Datenintegrität: Nutzung einer Integritätsprüfung in Form eines
ECC in Festwert- und Arbeitsspeichern, sowie bei Datenübertragung über die
internen Datenbusse

• Adressierungsfehler: Die Adresse von Daten oder Instruktionen ist Teil der
Datenintegritätsprüfung, wie in der IEC 61508-2 [51] gefordert

In Abbildung 3.5 wird der Lockstep-Modus der beiden ARM-Cortex-R-Kerne des
TI Hercules mit räumlicher und zeitlicher Diversität dargestellt.

3.2.2 Evaluation der Prozessoren für sicherheitsgerichtete
Anwendungen

Im Vergleich zu den nicht sicherheitsgerichteten konventionellen Architekturen x86
und ARM sind die auf sicherheitsgerichtete Anwendungen spezialisierten Prozes-
soren in der Lage, weitere Arten der 20 in Kapitel 2.4 aufgelisteten Fehler- und

46

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.2 Prozessoren für sicherheitsgerichtete Anwendungen

Abbildung 3.5: Zwei Kerne im Lockstep-Modus des ARM Cortex-R (nach [120])

Angriffsarten zu erkennen und entsprechende Reaktionen einer sicherheitsgerichte-
ten Anwendung auszulösen. Die Erkennbarkeit der Fehler- und Angriffsarten wird
in Tabelle 3.2 gezeigt.

Durch in den Prozessoren integrierte Zeitüberwachungseinheiten – engl. „Watch-
dogs“ – können in begrenztem Umfang Verletzungen zeitlicher Bedingungen erkannt
werden, wenn auch nur in begrenztem Umfang, da sie für gesamte Verarbeitungs-
zyklen und nicht auf feingranularer Basis einzelner Datenworte definierbar sind.

Die Datenintegritätsprüfung durch ECC wurde gegenüber den nicht sicherheitsge-
richteten Prozessorvarianten deutlich umfangreicher realisiert. Neben den verschie-
denen Speichern werden nun auch die Datenbusse in die Prüfung mit einbezogen.
Allerdings bleiben die Register von dieser Prüfung ausgenommen, wodurch Daten-
verfälschungen auf Registerebene durch die Redundanz aufgedeckt werden müssen.
Wie auch bei den nicht sicherheitsgerichteten Prozessorvarianten sind Daten, die
durch den Prozessor von außen eingelesen oder nach außen ausgegeben werden,
nicht mit einer Integritätsprüfung versehen, dies muss durch die Software realisiert
werden. Durch die Einbeziehung der Adressen in die Integritätsprüfung – wie in
der IEC 61508-2 [51] gefordert – können auch Adressierungsfehler innerhalb des
Prozessors aufgedeckt werden.

47

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.2: Fehlererkennung durch Prozessoren für sicherheitsgerichtete Anwendungen

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl ja
Falsche Operatorauswahl ja
Fehlerhaftes Operationsergebnis ja
Fristüberschreitung begrenzt (Watchdog)
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten (ja) (ECC)
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) begrenzt
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

48

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.3 Datentyparchitekturen

Die Stärken der redundanten Prozessorkonfiguration zeigen sich im Bereich der Er-
kennung fehlerhafter Datenverarbeitungsergebnisse. Durch den Vergleich der Aus-
gaben beider Prozessorkerne können falsche Operanden, falsche Operatoren und
Fehler des Ergebnisses der Datenverarbeitung sicher aufgedeckt werden. Es gilt je-
doch zu bedenken, dass beide Kerne die identische Software ausführen, wodurch im
Falle eines Softwarefehlers die Redundanzmaßnahmen wirkungslos werden, da beide
Kerne das gleiche, jedoch falsche Ergebnis generieren würden. Durch entsprechende
Gestaltung der eingesetzten Software, z. B. unter Nutzung diversitärer Tasks, kann
diesem Problem begegnet werden. Beim TI Hercules sind die beiden Prozessorkerne
identisch aufgebaut, also nicht diversitär realisiert [120]. Im Falle eines Entwurfs-
oder Implementierungsfehlers würden beide Prozessoren die identischen fehlerhaften
Ergebnisse liefern, die dann durch den Vergleicher nicht aufgedeckt werden könnten.
Dies ist beim Infineon AURIX laut [58] nicht der Fall, da hier auf Entwurfsebene
der zweite Kern diversitär entwickelt worden sein soll.

3.3 Datentyparchitekturen

Feustel beschreibt in [36] die Vorteile einer Rechnerarchitektur, bei der Speicherwor-
te zusätzliche Informationsbits, sogenannte Kennungen oder Kennungsbits, zur Be-
schreibung ihrer Inhalte mit sich führen und daher als engl. „Tagged Architectures“
bezeichnet werden, was man grob übersetzt als „Architektur mit Beschriftungen“
verstehen könnte. Diese Art von Architektur wird nach Giloi [39] im Deutschen Da-
tentyparchitektur genannt. Die Vorteile solcher Architekturen liegen auf der Hand
[36, 87]:

• Daten sind selbstbeschreibend.

• Befehle und Daten weisen sich als solche aus, wodurch es z. B. nicht möglich
ist, Daten versehentlich als Code zu interpretieren.

• Fehlerhafte Verwendung von Daten, also z. B. Operanden mit inkompatiblen
Datentypen, kann durch die Hardware erkannt werden.

• Befehle können ein auf die verwendeten Datentypen der Operanden angepas-
stes Verhalten aufweisen, wodurch dedizierte Befehle, die beschreiben, ob die
Operanden z. B. als Ganz- oder Gleitkommazahlen zu interpretieren sind, über-
flüssig werden.

49

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

• In gewissem Umfang können Übersetzer einfacher und fehlerärmer werden, da
ihnen nicht mehr die Auswahl der zu den jeweiligen Datentypen passenden
Instruktionen obliegt.

Den genannten Vorteilen steht der erhöhte Speicherverbrauch gegenüber, da die
Beschreibungsbits zusammen mit den eigentlichen Daten im Speicher abgelegt wer-
den müssen. Ein weiterer Nachteil besteht darin, dass konventionelle Architekturen
nicht darauf ausgelegt sind, Datentypkennungen zu nutzen und zu prüfen. Nach [39]
ist es dennoch möglich, in konventionellen Architekturen eine Typenkennung zu im-
plementieren, indem man das BEBOP-Verfahren anwendet. Dieses basiert auf der
Einteilung des Speichers in n Teilbereiche für n verschiedene Datentypen. Ein Teil
der Adresse eines Objekts wird daher einen Teilbereich des Speichers und damit den
Datentyp identifizieren. Großer Nachteil des Verfahrens ist jedoch der verschwen-
derische Umgang mit dem vorhandenen Speicher. Zudem ist die Datentypkennung
damit nur auf dem impliziten Weg des Ablageorts im Speicher mit dem Daten-
wert verbunden, wodurch die Information z. B. beim Datenaustausch mit anderen
Programmen oder Systemkomponenten verloren geht und getrennt vom Datenwort
übermittelt und verwaltet werden muss.

3.3.1 Beispiele von Datentyparchitekturen

Als Vertreter reiner Datentyparchitekturen werden hier der Großrechner TR 4 der
Firma Telefunken und, als exotisches Beispiel, der Experimentierrechner CP1 der
Firma Kosmos vorgestellt.

3.3.1.1 TR 4 von Telefunken

Kommerziell, historisch

Der Großrechner TR 4 von Telefunken, hergestellt nach [104] in den Jahren 1962
bis 1968, arbeitete nach [1] mit Lochstreifen, Lochkarten und Magnetbandspeichern
und implementierte einige wirkungsvolle Sicherheitsmerkmale. Jedes Speicherwort
umfasste 52 Bit, wovon 2 Bit den Inhalt der restlichen 50 Bit so ergänzten, dass der
Inhalt jedes Speicherworts durch drei teilbar wurde. Diese Dreierprobenbits waren
für den Programmierer nicht zugänglich. Vor Verwendung eines Speicherworts wur-
de die Prüfung auf Teilbarkeit durch Drei durch das sog. Dreierproben-Prüfwerk

50

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.3 Datentyparchitekturen

durchgeführt. Bei einem Fehler wurde ein Dreierprobenfehler (DP-Alarm) gene-
riert und somit eine Integritätsprüfung der Speicherinhalte und von Teilen der Da-
tenverarbeitungseinheit vorgenommen. Des Weiteren besaß jedes Speicherwort eine
Typenkennung, die durch 2 weitere Bits realisiert wurde. Dadurch konnten vier
verschiedene Arten von Speicherworten unterschieden werden:

• 0 - Gleitkommazahlen

• 1 - Festkommazahlen

• 2 - Einadressbefehle

• 3 - alphanumerische Zeichen

Stieß der Befehlsprozessor auf ein Speicherwort, das er ausführen sollte, mit einer
Typenkennung ungleich zwei, sollten Instruktionsworte als Daten interpretiert wer-
den oder wurden Befehle auf die falsche Art von Daten angewandt, so wurde nach
[1] ein sog. Typenkennungsalarm ausgelöst. Ab 1968 wurde der TR 4 nach [104]
durch seinen deutlich leistungsfähigeren Nachfolger, den TR 440, abgelöst, der die
gleichen Sicherheitsmerkmale wie sein Vorgänger aufwies.

3.3.1.2 Experimentiercomputer CP1 von Kosmos

Kommerziell, wenn auch nur als Lernspielzeug und nicht im industriellen Rahmen,
historisch

Der Kosmos Computer Praxis CP1, gezeigt in Abbildung 3.6, war ein in den frühen
1980er Jahren hergestellter Experimentiercomputer, um nach [69] Kindern, Jugend-
lichen und Erwachsenen Mikroelektronik und Computertechnik spielerisch näher zu
bringen. Auf Basis eines Intel 8049 Mikrocontrollers aus der MCS-48-Familie wur-
de eine virtuelle Maschine realisiert, die auf einer assemblernahen Sprache durch 24
verschiedene Instruktionen 01.000 bis 24.00x programmiert werden konnte. Der CP1
wird hier als Beispiel im Umfeld von Großrechnern und leistungsfähigen konventio-
nellen Architekturen vorgestellt, da er ebenfalls eine einfache und doch hochfunk-
tionale Art der Typenkennung implementierte, die Befehle von Daten unterschied:
Nach [69] begann jeder Befehl, wie bereits erwähnt, mit einer Befehlskennung zwi-
schen 01 und 24, wohingegen Daten immer die Kennung 00 besaßen. Der Versuch,
Daten als Befehle auszuführen, führte zur Generierung des Ausnahmefehlers F 002.
Ebenso wurde der Versuch, Befehle durch Datenverarbeitungsbefehle als Daten zu
behandeln, durch den CP1 erkannt und der Ausnahmefehler F 005 erzeugt. Traten

51

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

bei den arithmetischen Operationen Addition und Subtraktion Über- bzw. Unter-
läufe auf, führten diese zum Programmabbruch aufgrund des Fehlers F 006.

Abbildung 3.6: Kosmos CP1 mit Erweiterungsmodulen

3.3.2 Evaluation der Datentyparchitekturen

Die Fehlererkennbarkeit von Datentyparchitekturen basierend auf den in Kapitel 2.4
vorgestellten 20 Fehler- und Angriffsarten wird in Tabelle 3.3 dargestellt.

Datentyparchitekturen ermöglichen die Erkennung von Inkompatibilitäten der Da-
tentypen von Operanden durch die explizite, hardwareverständliche Spezifikation
der Datentypen innerhalb der Datenspeicherelemente selbst. Die Prüfung der Kom-
patibilität erfolgt in der Hardware parallel zur Ausführung der eigentlichen Operati-

52

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.3 Datentyparchitekturen

Tabelle 3.3: Fehlererkennung durch Datentyparchitekturen

Fehlerart Erkennbarkeit
Inkompatible Datentypen ja
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten ja (IP)
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten begrenzt
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

IP: Integritätsprüfung

53

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

on und verursacht damit keine zusätzlichen Kosten bezogen auf den Laufzeitbedarf
des Codes.

Einige Realisierungen von Datentyparchitekturen bieten Integritätsprüfungen von
Speicherelementen an, meist in Form von Paritätsbits. Im Gegensatz zu konventio-
nellen Architekturen erfolgt die Integritätsprüfung dabei nicht durch den Speicher-
controller, sondern bei der Nutzung der Speicherelemente im Prozessorkern parallel
zur Ausführung der Operation. Daher kann diese Fehlerart als voll erkennbar an-
gegeben werden, sofern eine Integritätsprüfung IP durch die Architektur angeboten
wird.

Lesender Zugriff auf Datenspeicherelemente, die keine gültigen Daten enthalten,
können dann durch Datentyparchitekturen aufgedeckt werden, wenn die Datentyp-
kennung des nicht initialisierten Datenspeicherelements nicht mit der erwarteten
Datentypkennung übereinstimmt. Daher ist diese Fehlerart als begrenzt erkennbar
zu bewerten.

3.4 Datenstruktur- bzw. Deskriptorarchitekturen

Können neben elementaren Datentypen auch Datenstrukturen durch zusätzliche
Beschreibungsinformationen für die Hardware lesbar markiert und identifiziert wer-
den, spricht man nach [39] von einer Datenstrukturarchitektur. Zur Beschreibung
von Datenstrukturen definiert Giloi in [39] das sog. DRAMA-Prinzip, wobei DRA-
MA für „Descriptor Referenced Autonomous Memory Access“ steht. In Form von
Vektordeskriptoren werden Datenstrukturen charakterisiert, wobei ein Vektorde-
skriptor durch das 3-Tupel

Vektordeskriptor := (Typkennung, Basisadresse, Elementanzahl)

dargestellt wird, wodurch der Datentyp der in der Struktur enthaltenen Elemen-
te, die Basisadresse der Struktur im Speicher und die Anzahl der Elemente inner-
halb der Struktur festgelegt werden. Architekturen, die Deskriptoren auf Ebene der
Hardware unterstützen, werden in [78] als Deskriptorarchitekturen bezeichnet.

3.4.1 Beispiele von Datenstruktur- bzw.
Deskriptorarchitekturen

Als Beispiel für Datenstruktur- oder Deskriptorarchitekturen wird hier der Bur-
roughs B5000 vorgestellt.

54

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

Kommerziell, historisch

Der Großrechner B5000, produziert von Burroughs ab 1961, hatte nach [82] 48 Bit
breite Datenworte mit einem Datentypbit, engl. „tag bit“. Dieses Bit spezifizierte,
ob ein Speicherwort Daten oder Befehle enthielt. Ab dem Nachfolger B6000 wurden
drei Datentypbits in 51 Bit breiten Datenworten eingesetzt. Neben dieser Datentyp-
kennung kamen Deskriptoren für Datenfelder zum Einsatz, die es erlaubten, sichere
Felder mit Bereichsprüfung durch die Hardware zu implementieren. Ein Paritätsbit
diente der Integritätsprüfung der Speicherworte.

3.4.2 Evaluation der Datenstrukturarchitekturen

Die Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten
durch die Fehlererkennungsmerkmale von Datenstrukturarchitekturen wird in Ta-
belle 3.4 gezeigt.

Gegenüber den bei Datentyparchitekturen gezeigten Fehlererkennungsmöglichkei-
ten bieten Datenstrukturarchitekturen die zusätzliche Fähigkeit, durch die hard-
wareverständliche Beschreibung von Datenstrukturen wie z. B. Datenfeldern sichere
Feldzugriffe zu gestatten und dabei auftretende Fehler sofort zu erkennen. Die dazu
notwendigen Prüfungen können durch die Hardware parallel zur Ausführung des
eigentlichen Datenzugriffs ausgeführt werden. Dies erlaubt die zuverlässige Erkenn-
barkeit von Pufferunter- und -überläufen.

3.5 Befähigungsarchitekturen

Um Objekte im Speicher vor unberechtigtem Zugriff zu schützen, können nach
[39, 78] so genannte Befähigungen, engl. „Capabilities“, eingesetzt werden. In [39]
werden Elemente, die auf ein bestimmtes Objekt zugreifen möchten, also z. B. Re-
chenprozesse, als Subjekte bezeichnet. Die Zugriffsrechte eines jeden Subjekts auf
die vorhandenen Objekte können nach [39] in Form einer Zugriffsrechte- oder Ob-
jektschutzmatrix dargestellt werden, siehe Abbildung 3.7. Die Zeilen der Matrix
werden dabei als Befähigungslisten, engl. „capability lists“, und die Spalten als Zu-
griffslisten, engl. „access lists“ bezeichnet.

Während Giloi [39] eine Befähigung als 2-Tupel der Form

Befähigung := (Objektidentifikator, Zugriffrechte)

55

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.4: Fehlererkennung durch Datenstrukturarchitekturen

Fehlerart Erkennbarkeit
Inkompatible Datentypen ja
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe ja
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten ja (IP)
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten begrenzt
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

IP: Integritätsprüfung

Abbildung 3.7: Zugriffsrechtematrix zum Schutz von Objekten (nach [39])

56

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

darstellt, wählt Levy [78] eine graphische Repräsentation, wie in Abbildung 3.8
gezeigt. Der Objektidentifikator ist dabei entweder ein Zeiger auf das Objekt oder
ein eindeutiger Bezeichner des Objekts.

Architekturen, die Befähigungen auf Ebene der Hardware unterstützen, werden
von Levy [78] Befähigungsarchitekturen oder auch befähigungsbasierte Systeme ge-
nannt. Diese Befähigungen ersetzen ungeschützte Zeiger auf die eigentlichen Objek-
te und verbinden diese mit der Erteilung bestimmter Zugriffsberechtigungen an ein
Subjekt [39]:

• keinerlei Zugriff,

• nur lesenden Zugriff,

• nur schreibenden Zugriff oder

• lesenden und schreibenden Zugriff.

Auch die Ausführbarkeit kann nach [78] ein zusätzliches Zugriffsrecht darstellen.
Neben der in Abbildung 3.8 gezeigten Möglichkeit, Befähigungen als eigenständige
Elemente im Speicher zu hinterlegen, besteht nach [39] auch die Möglichkeit, diese
direkt im Objekt zu hinterlegen.

Abbildung 3.8: Aufbau einer Befähigung (nach [78])

Befähigungen dürfen nur durch das Objekt selbst oder eine privilegierte Instanz,
z. B. das Betriebssystem, vergeben und verwaltet werden, damit sich Subjekte nicht
selbst Zugriff auf Objekte verschaffen können [39, 78, 87]. Dazu werden die Befä-
higungen entweder in privilegierten Segmenten oder, wenn Datentypkennungen zur
Verfügung stehen, entsprechend gekennzeichnet, wodurch die Hardware bei Zugriff
auf die Befähigungen die Berechtigung des Zugriffs prüfen kann [39].

57

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.5.1 Beispiele historischer Befähigungsarchitekturen

Als Beispiele für historische Befähigungsarchitekturen sollen hier drei verschiedene
Systeme vorgestellt werden. Während das System/360 von IBM recht rudimentäre
und sehr einfache Schutzmechanismen bot, war die Komplexität der hierarchischen
Befähigungsstrukturen des CAP Computers und des Intel iAPX 432 hoch bzw. sogar
sehr hoch.

3.5.1.1 System/360 von IBM

Kommerziell, historisch

Das System/360, eine Großrechnerfamilie von IBM, hergestellt in den Jahren 1965
bis 1977, diente nach [49] zur Bearbeitung kommerzieller, wissenschaftlicher, kom-
munikationstechnischer und steuerungstechnischer Aufgaben. Zur Integritätsprü-
fung wurde nach [49] jedem Byte ein Paritätsbit mit ungerader Parität zugeord-
net, das nicht durch die laufenden Programme beeinflussbar war. Bei einem Pari-
tätsfehler wurde ein entsprechender Alarm ausgegeben. Überläufe von arithmeti-
schen Operationen wurden nach [49] durch einen Alarm gemeldet. Nach [92] imple-
mentierten manche Modelle einen Isolationsmechanismus durch Bereitstellung eines
4 Bit breiten Schutzschlüssels im Programmstatuswort PSW und der Einteilung des
Hauptspeichers in 2 KiB große Blöcke. Jedem Block konnte ein bestimmter Schlüs-
sel zugeordnet werden. Beim Zugriff durch ein Programm wurde der Schlüssel des
angesprochenen Speicherblocks mit dem Schutzschlüssel im PSW verglichen. Bei
Nichtübereinstimmung wurde ein Ausnahmefehler generiert. Einer der Nachfolger
des System/360, das System/38, wird von [78] als erster bedeutender kommerzieller
Vertreter der Befähigungsarchitekturen genannt.

3.5.1.2 CAP Computer

Akademisch, historisch

Nach [78] konnte nach 6 Jahren der Entwicklung 1976 der CAP Computer an der
Cambridge University in Betrieb genommen werden. Jeder Prozess in CAP führt
eine Liste mit Befähigungen mit sich, mit deren Hilfe auf die damit verknüpften
Objekte zugegriffen werden kann. Zur Manipulation der Befähigungen standen de-
dizierte Befehle zur Verfügung. Sowohl Daten als auch Befehle wurden in Objekten
gekapselt. Der Zugriff auf die eigentlichen Objekte konnte nur nach Überwindung
von mehreren Indirektionsstufen stattfinden. Um diesem Nachteil entgegenzuwirken,

58

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

wurden Verdecktspeicher, engl. „Caches“, implementiert, die z. B. bereits ausgewer-
tete Befähigungen zwischenspeicherten [78].

3.5.1.3 Intel iAPX 432

Kommerziell, historisch

Die Firma Intel brachte 1981 nach [39, 78, 87] den objektorientierten iAPX 432
Mikroprozessor auf den Markt, dessen herausragendes Merkmal die Unterstützung
bestimmter Betriebssystemfunktionen wie

• Prozessverwaltung,

• Interprozesskommunikation,

• Betriebsmittelverwaltung und

• Verwaltung der Laufzeitumgebung

durch die Hardware darstellte, die durch Befähigungen geschützt werden. Dazu
wurde nach [39] eine Hierarchie von Zugriffsbereichen bzw. Objekten definiert, die
in Abbildung 3.9 dargestellt werden.

Abbildung 3.9: Vom Intel iAPX 432 durch die Hardware unterstützte Objekte (nach [39])

Nach [39] stand dem kommerziellen Erfolg des iAPX 432 trotz seiner umfassenden
Leistungsmerkmale seine ineffiziente Rechenleistung im Weg, da der Zugriff auf jedes
Speicherobjekt über mindestens 8 Indirektionsstufen erfolgte. In [23] werden die
Auswirkungen der Komplexität der iAPX-432-Architektur auf seine Rechenleistung
umfassend diskutiert.

59

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.5.2 Beispiele moderner Befähigungsarchitekturen

Die Befähigungsarchitekturen erleben – nachdem sie wie Datentyp- und Datenstruk-
turarchitekturen in Vergessenheit geraten waren – in den letzten 10 Jahren eine Art
Renaissance, die Leistungsfähigkeit ihrer Fehlererkennungsmerkmale wurde „wie-
derentdeckt“. Dabei konzentriert sich die Forschung auf die Datensicherheit, engl.
„IT security“, also darauf, wer in welcher Form auf bestimmte Daten zugreifen darf.
Einige wichtige Vertreter dieser modernen Befähigungsarchitekturen sollen hier in
unterschiedlichem Detailgrad vorgestellt werden.

3.5.2.1 The Loki tagged memory architecture

Akademisch, modern

In [135], einer Veröffentlichung aus dem Jahr 2008, wird Loki beschrieben, eine
Befähigungsarchitektur, bei der zum Zweck der Isolation verschiedener virtueller
Maschinen im Speicher ein Sicherheitsmonitor als Zwischenschicht zwischen den
Betriebssystemen der virtuellen Maschinen und dem Speicher eingefügt wird. Jedem
32 Bit breiten Speicherwort wird ein ebenfalls 32 Bit breiter Beschreiber zugewiesen.
Das System wurde mit Hilfe eines synthetisierbaren SPARC-Kerns auf einem FPGA
implementiert und das UNIX-ähnliche Betriebssystem HiStar auf die Architektur
portiert.

3.5.2.2 Capability Hardware Enhanced RISC Instructions CHERI

Akademisch, modern

Das CHERI-Projekt der Universität Cambridge [123] ist dabei, eine Architektur zur
Isolation von Anwendungen zu entwickeln, die feingranulare Isolation von Objekten
im Prozessadressraum anbieten soll. Die Architektur wird in Form eines 64-Bit
MIPS-Kerns auf einem FPGA evaluiert, als Betriebssystem kommt u.a. FreeBSD
zum Einsatz.

3.5.2.3 lowRISC

Akademisch, modern

Das lowRISC-Projekt [11] der Universität Cambridge wurde 2014 ins Leben geru-
fen, mit dem Ziel, eine Architektur zu etablieren, die eine hohe Immunität gegen

60

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

Fehler bzw. Fremdeinflüsse bezüglich des Kontrollflusses aufweist. Um dieses Ziel
zu erreichen, sollen Datentypkennungen verwendet werden, die es der Hardware er-
lauben, bei Zugriff auf ein Datenwort zu prüfen, ob der jeweilige Zugriff zulässig ist.
Die zwei Bits, die für diese Kennungen vorgesehen sind, teilen dem Prozessor die in
Tabelle 3.5 dargestellten Zugriffsrechte mit.

Tabelle 3.5: Datentypkennungen von lowRISC

Kennungsbits Bedeutung
00b jede Art von Zugriff ist gestattet
01b Generierung eines Ausnahmefehlers bei lesendem Zugriff
10b Generierung eines Ausnahmefehlers bei schreibendem Zugriff

11b Generierung eines Ausnahmefehlers bei lesendem oder schrei-
bendem Zugriff

Eine der wichtigsten Funktionen ist dabei nach [11] der Schutz bestimmter Daten-
strukturen auf dem Stapelspeicher, die bei typischen Pufferüberläufen unbemerkt
überschrieben würden, z. B. die Rücksprungadresse. Diese sollen daher durch ent-
sprechende Kennungen als weder les- noch schreibbar oder zumindest nur-lesbar
deklariert werden, wodurch die Hardware fehlerhafte Zugriffe als solche erkennen
und eine entsprechende Reaktion auslösen kann. Bei den in lowRISC eingesetz-
ten Kennungsbits handelt es sich nicht um eine Datentypbeschreibung der in den
Speicherworten enthaltenen Daten. Stattdessen werden die Zugriffsrechte auf feinst-
granularer Ebene pro Speicherwort festgelegt.

Obwohl bei lowRISC keine eigenständigen Befähigungsobjekte im Speicher angelegt
und verwaltet werden, so ist die Architektur trotzdem als Beispiel für eine Befähi-
gungsarchitektur zu erachten, da die Zugriffsrechte auf feinstgranularer Ebene für
jedes Speicherelement – und damit Objekt – im Speicher durch die zwei Kennungs-
bits hardwareverständlich spezifiziert und durch die Hardware überwacht werden.

3.5.2.4 SAFE

Akademisch / kommerziell / militärisch, modern

Das SAFE-Projekt [106] ist ein durch die für militärische Forschungsprojekte verant-
wortliche US-amerikanische Behörde Defense Advanced Research Projects Agency,

61

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

kurz DARPA, gefördertes Projekt, das 2010 gestartet wurde und zum Ziel hat, ei-
ne auf Datensicherheit spezialisierte Architektur unter Nutzung der Merkmale von
Befähigungsarchitekturen zu entwickeln [28].

3.5.2.4.1 Aufbau der Speicherelemente in SAFE

SAFE verwendet eine einheitliche Speicherelementgröße in Speichern, Verdecktspei-
chern („Caches“) und Registern von 128 Bit für Befehle und Daten. Der Aufbau
dieser Elemente wird in [21] beschrieben und in Abbildung 3.10 dargestellt.

Abbildung 3.10: Aufbau der Speicherelemente in SAFE (nach [21])

Die Speicherelemente werden – da die Kennungen „untrennbar“ mit den eigentlichen
Daten oder Befehlen verbunden sind – als „Atome“ bezeichnet. Die obersten 5 Bit
identifizieren die „atomic group“, die eine Datentypkennung darstellt, wie sie von
Datentyparchitekturen her bekannt ist. Neben verschiedenen Zeigerarten können
durch die Datentypkennung Gleitkommazahlen, Ganzzahlen, uninitialisierte Da-
ten und Befehle spezifiziert werden [32]. Es folgt eine 59 Bit breite Kennung, die
verschiedenste Überprüfungen erlaubt, die durch die programmierbare Metadaten-
verarbeitungseinheit, engl. „Programmable Unit for Metadata Processing PUMP“,
verarbeitet werden [31]. Die verbleibenden 64 Bit entfallen auf die eigentlichen im
Speicherelement enthaltenen Daten oder Instruktionen. Befähigungen werden durch
„fat pointers“, also zu Deutsch „fette Zeiger“, realisiert, die neben der Adresse, auf
die sie verweisen, noch Angaben über die Basis und die Grenzen des Speicherbe-
reichs auf bzw. in den sie zeigen, beinhalten [21].

3.5.2.4.2 Funktionsweise von PUMP

Die programmierbare Metadatenverarbeitungseinheit, engl. „Programmable Unit
for Metadata Processing PUMP“, erlaubt es der Software eines SAFE-Systems, die
59 Bit breite Kennung innerhalb aller Speicherelemente für die Definition beliebiger
Regeln zu verwenden, die bei der Verwendung der betroffenen Speicherelemente
geprüft werden sollen. Um die Begrenzung der Kennungen auf 59 Bit aufzuheben, ist
es möglich, Zeiger auf erweiterte Kennungsfelder im Systemspeicher mit beliebiger

62

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

Länge in der Kennung eines Speicherelements unterzubringen. Wichtig ist, dass die
besagte Kennung nicht durch die Hardware interpretiert wird, sondern die Hardware
diese auf der Suche nach der für die Kennung anzuwendenden Regel als Eingabe
nutzt.

Die softwaredefinierten Regeln werden als Funktion

Regel := (K[Programmzählerregister],
K[aktuelle Instruktion],
K[Operand in Register 1],
K[Operand in Register 2],
K[gelesener Speicherinhalt])

�→
(K[Programmzählerregisterneu],
K[Zieloperand in Register 3 bzw. ein Zielspeicherelement],
boolesche Aussage über Gestattung der Operation)

festgelegt, wobei K[Komponentenname] jeweils die Kennung einer an der Ausfüh-
rung einer Operation beteiligten Komponente zurückliefert. Als Ergebnisse liefert
die Funktion die neue Kennung für das Programmzählerregister, einen Wert, der
– abhängig von der durchzuführenden Operation – in ein Ergebnisregister oder ein
Zielspeicherelement geschrieben werden soll, und eine boolesche Aussage darüber, ob
die Operation an sich durchgeführt werden darf, zurück. Wird die Ausführung durch
die Regel abgelehnt, so wird ein Ausnahmefehler generiert, wodurch die Software
eine entsprechende Fehlerbehandlungsroutine ausführen kann. In [33] wird vorge-
schlagen, z. B. den betroffenen Softwareprozesses zu beenden oder sichere Werte
zurückzugeben.

Die Regeln werden zur beschleunigten Bearbeitung in einem Verdecktspeicher zur
Speicherung der PUMP-Regeln – engl. „PUMP rule cache“ – zwischengespeichert.
Die Hardware versucht nun bei der Ausführung jeder Instruktion in besagtem Ver-
decktspeicher eine Regel zu finden, die den Eingabedaten der Funktion in Form des
Tupels

Eingabedaten := (K[Programmzählerregister],
K[aktuelle Instruktion],
K[Operand in Register 1],
K[Operand in Register 2],
K[gelesener Speicherinhalt])

entspricht. Wird eine entsprechende Funktion im Verdecktspeicher gefunden, so
werden ihre Ausgabedaten

63

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Ausgabedaten := (K[Programmzählerregisterneu],
K[Zieloperand in Register 3 bzw. ein Zielspeicherelement],
boolesche Aussage über die Gestattung der Operation)

direkt aus dem Verdecktspeicher übernommen, ohne nochmals eventuell durch die
Kennungen indizierte erweiterte Kennungen im Systemspeicher auszuwerten. Wird
keine zum Eingabedatentupel passende Funktion gefunden, so ruft der Prozessor
eine Softwareunterbrechungroutine auf, die dann ihrerseits alle Eingabekennungen
und die ggf. durch die Kennungen indizierten erweiterten Kennungen im Systemspei-
cher evaluiert und die Ausgaben der Funktion setzt [33]. Die Eingabedaten werden
zusammen mit den Ausgabedaten anschließend von der Prozessorhardware in den
Verdecktspeicher übernommen, um beim nächsten Auftreten des identischen Ein-
gabedatentupels die Ausgaben ohne die Notwendigkeit des Aufrufs der Softwareun-
terbrechungroutine nutzen zu können.

3.5.2.4.3 Einsatzszenarien von PUMP

Als Einsatzszenarien von PUMP werden

• Datentypkennungen nach dem Vorbild typischer Datentyp- bzw. -strukturar-
chitekturen [31, 33],

• abgeleitete Datentypen [31, 32],

• Befähigungen zur Regelung von Zugriffen auf Speicherobjekte, nach Vorbild
von Befähigungsarchitekturen [31],

• Speicherschutz und -isolation [31, 33],

• Kontrollflussüberwachung [31, 33] und

• Färbungen [31, 33], engl. „Taints“, mit deren Hilfe sich ungeprüfte und damit
potenziell gefährliche Nutzereingaben markieren lassen,

vorgeschlagen, wobei durch den flexiblen Aufbau der PUMP-Kennungen auch be-
liebige Kombinationen dieser Merkmale möglich sind.

64

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.5 Befähigungsarchitekturen

3.5.2.4.4 Evaluation von SAFE

SAFE ist aufgrund der Verwendung der „fetten Zeiger“ als Befähigungarchitektur
zu klassifizieren. Die Verwendung der Kennungen ist – im Gegensatz zu anderen
modernen Befähigungsarchitekturen – durchgängig: sie sind in allen Speichern, Ver-
decktspeichern und Registern vorhanden und nicht nur in Teilen der datenspeichern-
den und -verarbeitenden Instanzen.

PUMP ist – trotz seiner großen Flexibilität, also der Möglichkeit, verschiedenste
Kennungsarten zu realisieren – als softwarebasiertes Kennungssystem von erhöh-
ter Komplexität zu verstehen, da die Hardware hier nur die Zwischenspeicherung
der Regelfunktionen und die Anwendung der Ergebnisse dieser Funktionen vor-
nimmt, die Software jedoch die Kennungen interpretieren und eine entsprechende
Regelfunktion generieren muss. Weiterhin schwächt die Notwendigkeit des Aufrufs
einer Softwarefunktion beim Antreffen einer bislang nicht zwischengespeicherten
Regelfunktion die Vorhersagbarkeit des zeitlichen Verhaltens des Systems. Auch
wenn nach einer gewissen Zeit nach Start eines Systems alle bislang benötigten Re-
gelfunktionen im Regelverdecktspeicher zwischengespeichert sein sollten, ist davon
auszugehen, dass

• mit steigender Anzahl an zwischenzuspeichernden Regelfunktionen der Ver-
decktspeicher zu einem bestimmten Zeitpunkt voll ist und dann selten genutz-
te Regelfunktionen aus diesem entfernt werden müssen, um Platz für die neuen
Regelfunktionen zu schaffen und

• selten auftretende Kombinationen aus Kennungen im entscheidenden Moment
nicht zwischengespeichert sein werden.

Durch die Möglichkeit, beliebig große erweiterte Kennungen im Speicher abzulegen,
können zwar viele verschiedene Kennungsarten realisiert und neue Kennungsarten
ohne Hardwareänderungen hinzugefügt werden, es ist jedoch zu berücksichtigen,
dass die Kombination mehrerer verschiedener Kennungsarten zu einer beträchtli-
chen Anzahl verschiedener Regelfunktionen führt. Weiterhin können mit PUMP
keine Kennungen realisiert werden, die dynamische Komponenten wie die Zeit ein-
beziehen, also z. B. Fristen.

Dadurch, dass die Hardware nur die Kennungen mit den ggf. darin enthaltenen
Zeigern auf erweiterte Kennungsstrukturen im Speicher zum Auffinden der gültigen
Regelfunktion nutzt, nicht jedoch die erweiterten Kennungen im Speicher einbezieht,
kann es zu Inkonsistenzen kommen, wenn die erweiterten Kennungen verändert wer-
den, im Regelverdecktspeicher aber noch die nun veralteten Regelfunktionen gespei-
chert sind und angewendet werden. Bei jeder Änderung der erweiterten Kennungen

65

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

wäre es also notwendig, alle betroffenen Regelfunktionen aus dem Verdecktspeicher
zu löschen bzw. den gesamten Regelverdecktspeicher zu löschen, mit entsprechenden
zeitlichen Auswirkungen für die erneute Evaluation der betroffenen bzw. aller Ken-
nungen durch die Software, bis die benötigten Regeln wieder im Verdecktspeicher
zwischengespeichert sind.

Noch größer ist die Gefahr von Inkonsistenzen, wenn Daten zwischen Systemen oder
Systemkomponenten übertragen werden, da

• zusätzlich zum eigentlichen Datenspeicherelement die an anderen Stellen im
Speicher abgelegten erweiterten Kennungen ebenfalls übertragen, im Speicher
der Zielkomponente abgelegt und die Zeiger innerhalb der Kennungen der Da-
tenspeicherelemente dann entsprechend angepasst werden müssten und

• die Interpretation der verschiedenen Kennungsarten durch die Software in allen
beteiligten Komponenten identisch sein muss, da in der Hardware der Kompo-
nenten kein Wissen über die Bedeutung der Kennungen vorliegt. Entsprechend
können auch Fehler bzgl. der Deutung der Kennungsinhalte durch die Hard-
ware nicht erkannt werden.

3.5.3 Evaluation der Befähigungsarchitekturen

Wie auch bei den vorhergehenden Architekturarten werden die Befähigungsarchi-
tekturen auf Basis der 20 in Kapitel 2.4 identifizierten Fehler- und Angriffsarten
bewertet. In Tabelle 3.6 wird das Ergebnis dieser Bewertung dargestellt.

Zusätzlich zu den Fehlererkennungsmöglichkeiten der Datenstrukturarchitekturen
bieten Befähigungsarchitekturen die Möglichkeit, durch die hardwareverständliche
Beschreibung von Zugriffsrechten von Subjekten auf Objekte eine feingranulare und
effektive Prüfung von festgelegten Zugriffsrechten durchzuführen. Die dazu notwen-
digen Prüfungen können durch die Hardware parallel zur Ausführung des eigent-
lichen Datenzugriffs ausgeführt werden. Dies erlaubt die Erkennung fehlerhafter
Datenzugriffe und im begrenzten Umfang auch die Aufdeckung falscher Datenflüsse
im System, falls die Zugriffsrechte dabei mit übertragen werden.

3.6 Datenflussarchitekturen

Datenflussarchitekturen unterscheiden sich grundlegend von konventionellen kon-
trollflussorientierten Architekturen und lassen durch ihre Bezeichnung vermuten,

66

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.6 Datenflussarchitekturen

Tabelle 3.6: Fehlererkennung durch Befähigungsarchitekturen

Fehlerart Erkennbarkeit
Inkompatible Datentypen ja
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe ja
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten ja (IP)
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) ja
Nutzung nicht initialisierter Daten begrenzt
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

IP: Integritätsprüfung

67

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

neben der Spezialisierung auf Datenflüsse auch entsprechende Fehlererkennungs-
maßnahmen zu bieten. Darum soll diese Form der Architektur an dieser Stelle vor-
gestellt werden.

3.6.1 Funktionsweise von Datenflussarchitekturen

Datenflussarchitekturen weichen in ihrem Aufbau grundsätzlich von kontrollflussori-
entierten Architekturen ab: sie besitzen keinen Befehlszeiger und keinen programm-
oder komponentenweiten Arbeitsspeicher. Sie bilden den Aufbau von Datenfluss-
graphen in natürlicher Weise als vernetzte Funktionsblöcke ab, wie dies z. B. von
Funktionsplänen speicherprogrammierbarer Steuerungen bekannt ist. Jeder Funk-
tionsblock weist eine bestimmte Anzahl von Ein- und Ausgängen auf. Eine Neube-
rechnung der Ausgabewerte erfolgt nach [39], wenn an jedem Eingang eine Marke,
engl. „Token“, und damit ein zu verarbeitender Operand anliegt.

In Abbildung 3.11 wird ein Datenflussgraph gezeigt, der das Ergebnis z der Glei-
chung

z = (w + v) · (x − y)

berechnet.

Abbildung 3.11: Beispiel eines Datenflussgraphen mit 3 Funktionsblöcken

68

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.6 Datenflussarchitekturen

Bei der Berechnung des Ergebnisses z kommen drei Funktionsblöcke zum Einsatz: in
Funktionsblock FB 1 wird die Addition der anliegenden Operanden realisiert, in FB
2 die Subtraktion und in FB 3 die Multiplikation. Während eine kontrollflussorien-
tierte Architektur die Addition und die Subtraktion sequenziell, also nacheinander
ausführen muss, kann hier eine datenflussorientierte Architektur die Berechnungen
in den Funktionsblöcken FB 1 und FB 2 parallelisiert ausführen und somit früher
das Ergebnis z berechnen.

Grundsätzlich werden nach [39] zwei Arten von Datenflussarchitekturen unterschie-
den:

• statische Datenflussarchitekturen, bei denen die vorhandenen Prozessoren bzw.
Verarbeitungseinheiten bestimmten Operationen fest zugeordnet sind und

• dynamische Datenflussarchitekturen, bei denen die Marken gesammelt wer-
den und von einer Steuerungseinheit auf die vorhandenen Prozessoren bzw.
Verarbeitungseinheiten verteilt werden, die dann die gewünschte Operation
ausführen.

Eine Datenflussarchitektur setzt nicht zwingend die Verwendung spezialisierter Pro-
zessoren voraus, die die Merkmale einer Datenflussarchitektur nativ unterstützen.
Es können konventionelle Mikroprozessoren eingesetzt werden, die dann die Daten-
flüsse zwischen den Funktionsblöcken steuern und die Berechnungen innerhalb der
Funktionsblöcke in gewohnter Weise sequenziell abarbeiten. Ein Beispiel dafür ist
der Einsatz des Intel 8088 – einer aus Kostengründen nur mit einem 8-Bit-Datenbus
ausgestatteten Variante des Intel 8086 – in [76].

3.6.2 Evaluation von Datenflussarchitekturen

Datenflussarchitekturen haben den Vorteil eines problemorientierten Architek-
turaufbaus, d. h. sie sind auf die Aufgabe spezialisiert, Daten entgegenzunehmen,
diese zu verarbeiten und die Ergebnisse auszugeben, ohne dabei den Umweg über
kontrollflussorientierte Datenverarbeitungskonstrukte gehen zu müssen. Weiterhin
erlaubt die feingranulare Unterteilung der Datenverarbeitungsaufgaben einen hohen
Grad an Parallelisierung, da theoretisch alle parallel ausführbaren Datenverarbei-
tungsschritte auch tatsächlich zeitlich simultan ausgeführt werden können.

Allerdings bieten Datenflussarchitekturen keine spezialisierten Fehlererkennungs-
maßnahmen, die Fehler im Datenfluss erkennen könnten. Daher ergibt sich keine
Erkennbarkeit der in Kapitel 2.4 vorgestellten 20 Fehler- und Angriffsarten, wie in

69

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.7: Fehlererkennung durch Datenflussarchitekturen

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten nein
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

70

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.7 Die inhärent sichere Mikroprozessorarchitektur ISMA

Tabelle 3.7 gezeigt wird. Bei statischen Datenflussarchitekturen können einige der
Fehlerarten theoretisch gar nicht auftreten, als Beispiel sei hier die Verwendung
nicht initialisierter Variablen genannt. Dies könnte entsprechend in der Tabelle ver-
merkt werden. Allerdings ist davon auszugehen, dass bei dynamischen Datenflussar-
chitekturen durch das Sammeln der Marken und der dynamischen Verteilung von
auszuführenden Operationen an die universellen Verarbeitungseinheiten wieder alle
genannten Fehlerarten auftreten können. Daher sollen alle Fehler- und Angriffsarten
weiterhin als nicht erkennbar klassifiziert werden.

Ein Vorschlag für die Gestaltung einer Datenflussarchitektur, die die genannten
Fehler- und Angriffsarten in großem Umfang erkennen kann, wird in Kapitel 4.10
unterbreitet.

3.7 Die inhärent sichere Mikroprozessorarchitektur
ISMA

In [125] wurden auf Basis von Normanforderungen aus der IEC 61508 [51–53] und
verschiedenen Quellen zu häufigen Ursachen von Softwarefehlern 23 Anforderun-
gen gewonnen, die an eine inhärent sichere Mikroprozessorarchitektur zu stellen
sind. Zur Erfüllung dieser Anforderungen wurde auf Basis der bereits beschriebe-
nen, in Vergessenheit geratenen Architekturarten Datentyp-, Datenstruktur- und
Befähigungsarchitekturen eine neue Architektur vorgestellt, die weit über bekannte
Ansätze hinausgeht. Sie ist konventionellen Architekturen in Bezug auf die Erfül-
lung der genannten Anforderungen deutlich überlegen, wie in Abbildung 3.12 gut
zu erkennen ist.

Die x86-Architektur erfüllt nur 5 der 23 Anforderungen komplett, die ARM-
Architektur sogar nur 4, während ISMA 22 der Anforderungen voll erfüllt.

3.7.1 Aufbau der Datenspeicherelemente in ISMA

Bei ISMA besitzen alle Befehls- und Datenspeicherelemente, sowie alle Registerin-
halte den in Abbildung 3.13 gezeigten identischen Grundaufbau. Die Speicherele-
mente haben eine einheitliche Breite von 128 Bit, wobei 64 Bit für Sicherungs- und
Verwaltungsdaten und 64 Bit auf die eigentlichen Daten bzw. Operandenadressen
entfallen.

71

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Abbildung 3.12: Gegenüberstellung von ISMA, x86 und ARM

Abbildung 3.13: Aufbau aller Speicherelemente und Registerinhalte bei ISMA

72

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.7 Die inhärent sichere Mikroprozessorarchitektur ISMA

Die Sicherungs- und Verwaltungsdaten, detailliert dargestellt in Abbildung 3.14,
enthalten

• einen Erweiterten-(128,120)-Hamming-Code H zur Integritätsprüfung,

• die Angabe der Modul- und Funktionsnummer, MN und FN, der die Daten
oder Instruktionen innerhalb der Software zugeordnet sind,

• den Elementbeschreiber EB, der den genauen Typ und weitere Eigenschaften
des Speicherelements identifiziert und

• basierend auf dem jeweiligen Speicherelementtyp entweder einen Befehlscode,
eine Datentyp- oder eine Registerkennung.

Abbildung 3.14: Aufbau der Sicherungs- und Verwaltungsdaten

Der Elementbeschreiber EB spezifiziert weitere Eigenschaften des Speicherelements,
sowie der darin enthaltenen Daten. Sein Aufbau wird in Abbildung 3.15 gezeigt. Der
Speicherelementtyp ST gibt an, ob es sich bei dem vorliegenden Speicherelement
um ein Befehls-, ein Datenspeicherelement oder einen Registerinhalt handelt. Das
Zugriffsrechtebit ZR legt fest, ob schreibend auf die enthaltenen Daten zugegriffen
werden darf. Der Initialisierungsstatusbeschreiber IS gibt an, ob ein Speicherelement
gültige Daten enthält, die gelesen werden können. Nur für Befehlsspeicherelemente
wird die Sprungzielmarkierung SZ genutzt, die angibt, ob das jeweilige Speicherele-
ment ein gültiges Ziel eines Sprungs ist.

ISMA bietet keine Merkmale zur Nutzung von Unterbrechungen an, um ein Höchst-
maß an zeitlicher Vorhersagbarkeit zu bieten. Zur Verwaltung auftretender externer
Ereignisse und generierter interner Zeitereignisse, sowie zur Überwachung der Be-
arbeitungsfristen der jeweiligen Ereignisse nutzt ISMA eine vom Hauptprozessor
getrennte Ereignisverwaltungseinheit EVE, dargestellt in Abbildung 3.16.

73

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Abbildung 3.15: Aufbau des Elementbeschreibers EB

Abbildung 3.16: Aufbau der Ereignisverwaltungseinheit EVE

74

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.7 Die inhärent sichere Mikroprozessorarchitektur ISMA

Diese nutzt verschiedene Listen zur Verwaltung der internen und externen Ereignis-
se, sowie zur Überwachung der Einhaltung von deren Fristen nach deren Eintreten.

Der Hauptprozessor fragt in regelmäßigen Abständen bei der EVE an, ob Ereignisse
seit der letzten Abfrage aufgetreten sind und erhält ggf. den Ereignisidentifikator
des Ereignisses mit der kürzesten verbleibenden Frist zusammen mit der Angabe
der verbleibenden Bearbeitungszeit.

3.7.2 Evaluation von ISMA

Da ISMA nicht speziell für die Datenflussüberwachung entworfen wurde, kann sie
nur 5 der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten erkennen, wie in
Tabelle 3.8 dargestellt. Die Inkompatibilität der Datentypen von Operanden kann
durch die Datentypkennung DT erkannt werden.

Fristüberschreitungen bei der Bearbeitung aufgetretener interner und externer Er-
eignisse werden durch die EVE zwar erkannt, es werden jedoch keine Übertragungs-
und Verarbeitungszeiten innerhalb der Sensoren oder Aktoren betrachtet, sondern
nur die Bearbeitungszeit innerhalb von ISMA selbst, weshalb diese Fehlerart als nur
begrenzt erkennbar aufgeführt wird. Pufferunter- und -überläufe – also Zugriffe auf
Datenfelder mit Indizes, die außerhalb der Feldgrenzen liegen – werden durch die
Nutzung von Felddatentypen mit dedizierten Feldzugriffsbefehlen durch die Hard-
ware bei Prüfung des Feldindex erkannt. Fehlerhafter Datenfluss, z. B. durch Adres-
sierungsfehler bei Datenübertragungen oder Speicherzugriffen kann durch ISMA nur
dann erkannt werden, wenn die Modul- und Funktionsnummern MN und FN, die
Datentypkennungen DT oder das Zugriffsrechtebit ZR den Fehler aufdecken, daher
wird diese Fehlerart als begrenzt erkennbar angegeben. Durch Störungen verfälsch-
te Daten können innerhalb der Fehlererkennungsgrenzen des (128,120)-Hamming-
Codes H zuverlässig erkannt werden. Zugriffe auf Daten, für die einem Softwaremo-
dul die notwendigen Zugriffsrechte fehlen, kann ISMA durch die Prüfung der in den
Daten angegebenen Modul- und Funktionsnummern MN und FN, sowie das Zu-
griffsrechtebit ZR erkennen. Versuche, lesend auf Datenspeicherelemente zuzugrei-
fen, die keine gültigen Daten enthalten, werden durch das Initialisierungsstatusbit
IS aufgedeckt.

75

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.8: Fehlererkennung durch ISMA

Fehlerart Erkennbarkeit
Inkompatible Datentypen ja
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung begrenzt
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- und -überläufe ja
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten ja
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) ja
Nutzung nicht initialisierter Daten ja
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

76

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.8 Application Data Integrity ADI bzw. Silicon Secured Memory SSM

3.8 Application Data Integrity ADI bzw. Silicon
Secured Memory SSM

Oracle stellte 2014 eine neue Generation der SPARC-Prozessoren vor, den SPARC
M7 [95]. Dieser beinhaltet als besonderes neues Merkmal die Application Data In-
tegrity, kurz ADI [93], bei der Datenblöcke mit Versionsnummernkennungen ver-
sehen werden, die durch die Hardware überprüft werden können. Es handelt sich
daher beim SPARC-M7-Prozessor um eine „Tagged Memory“ Architektur, also ei-
ne Architektur mit Kennungen. Da die Versionskennung keine Datentypkennung
darstellt, passt der deutsche Begriff „Datentyparchitektur“ hier nicht richtig, wes-
halb der SPARC M7 hier getrennt von den Datentyparchitekturen vorgestellt wird.
ADI wurde 2015 in Silicon Secured Memory, kurz SSM, umbenannt [43]. In dieser
Arbeit sollen jedoch beide Bezeichnungen erwähnt werden, da ADI in bestehender
Literatur erwähnt wird, so z. B. in [114].

3.8.1 Funktion von ADI bzw. SSM

Bei ADI bzw. SSM kann die Software für Datenblöcke mit einer Größe von 64 Byte
im Speicher sogenannte „Versionsnummern“ festlegen, also eine Kennung, die den
Versionsstand der Daten angibt [93]. Die Kennung hat dabei eine Breite von 4 Bit
[116]. In den zum Speicherzugriff genutzten Zeigern wird der erwartete Versions-
stand der Daten spezifiziert. Bei lesenden oder schreibenden Zugriffen auf die Da-
tenspeicherelemente über diese Zeiger prüft die Hardware, wie in Abbildung 3.17
dargestellt, ob die in der Versionskennung der Daten angegebene Versionsnummer
mit der in den zum Datenzugriff verwendeten Zeigern spezifizierten Versionsnummer
übereinstimmt. Ist dies nicht der Fall, so wird ein Ausnahmefehler generiert.

3.8.2 Evaluation von ADI bzw. SSM

Durch das Hinzufügen von Versionskennungen zu Datenblöcken von 64 Byte Größe
kann ADI bzw. SSM gegenüber konventionellen Architekturen zusätzliche Fehler
aufdecken. In Tabelle 3.9 wird die Erkennbarkeit der 20 in Kapitel 2.4 identifizierten
Fehler- und Angriffsarten durch ADI bzw. SSM dargestellt.

ADI bzw. SSM kann durch die Versionskennungen in den Datenblöcken

• Synchronisierungsfehler und unvollständige Datenübertragungen,

77

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Abbildung 3.17: Funktionsweise von ADI bzw. SSM (nach [93])

Tabelle 3.9: Fehlererkennung durch ADI bzw. SSM

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung (ja)
Synchronisationsfehler oder unvollständige Datenübertragung (ja)
Pufferunter- oder -überläufe (ja)
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten (ja)
Durch Fehler oder Störungen verfälschte Daten nein
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

78

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.9 Dynamic Dataflow Verification DDFV

• Pufferunter- und -überläufe,

• duplizierte Daten und

• die Nutzung nicht initialisierter Daten

als Fehler erkennen. Da die Prüfung der Versionsangabe der Daten mit der im Zeiger
spezifizierten erwarteten Version parallel zur Ausführung des Lese- oder Schreibbe-
fehls erfolgt, entsteht kein oder nur ein kleiner zusätzlicher Laufzeitbedarf beim
Einsatz von ADI bzw. SSM. In [43] wird die Erkennbarkeit des Heartbleed-Fehlers
durch ADI bzw. SSM beworben, der in dieser Arbeit in Kapitel 1.1.4 vorgestellt wur-
de. Ein Nachteil von ADI bzw. SSM ist die Notwendigkeit, die Versionsstände in den
Daten durch Software zu setzen. Durch die Angabe des absoluten erwarteten Versi-
onsstands in den Zeigern ist es nicht direkt möglich, relative temporale Beziehungen
zwischen Datenspeicherelementen zu prüfen. Deswegen muss die Software bei jeder
Änderung des erwarteten Versionsstands diesen in allen verwendeten Zeigern neu
setzen. Ein weiterer Nachteil ist die Spezifikation der Version für 64 Byte lange Da-
tenblöcke [93], wodurch es nicht möglich ist, kleineren Dateneinheiten, also z. B.
einzelnen Datenworten eine Versionskennung zuzuweisen. Aufgrund dieser Nachtei-
le wurden die entsprechenden Fehlerarten als erkennbar, aber mit Einschränkungen
bewertet.

3.9 Dynamic Dataflow Verification DDFV

Die dynamische Datenflussprüfung, engl. „Dynamic Dataflow Verification DDFV“,
ist ein hardwareunterstütztes signaturbasiertes Fehlererkennungsverfahren, dass
2007 in [85] vorgestellt wurde.

3.9.1 Funktion der dynamischen Datenflussprüfung

Bei der dynamischen Datenflussprüfung wird ein Programm in kleine Einheiten zer-
legt, innerhalb derer der Datenfluss durch die Register überwacht wird. Am Anfang
eines jeden Datenblocks steht dabei eine spezielle Instruktion, die dem Prozessor
den Abschluss der bisherigen überwachten Programmeinheit und den Beginn der
neuen anzeigt. Gleichzeitig führt dieser Befehl die erwartete Datenflusssignatur für
die nun beginnende zu überwachende Programmeinheit mit sich. Diese erwartete Si-
gnatur wird am Ende der Programmeinheit, also beim Antreffen der nächsten Spe-
zialinstruktion, durch den Prozessor mit der während der Ausführung berechneten

79

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Signatur verglichen. Bei fehlender Übereinstimmung liegt ein Fehler im Datenfluss
vor und ein Ausnahmefehler wird generiert.

In die Signatur fließen die Identifikatoren der ausgeführten Instruktionen sowie der
dabei verwendeten Register ein. Somit kann dieses Verfahren fälschlicherweise aus-
geführte Instruktionen und fehlerhafte Registernutzung aufdecken.

3.9.2 Evaluation der dynamischen Datenflussprüfung

In [85] wird gezeigt, dass die Implementierung der dynamischen Datenflussprüfung
nur moderate Anpassungen am Prozessorkern nötig macht. Die Programmausfüh-
rung wird nur um wenige Prozent gegenüber der Ausführungszeit ohne Datenfluss-
überwachung verlangsamt. Durch die feingranulare Prüfung des Datenflusses wer-
den in einem Großteil des Prozessors auftretende Fehler aufgedeckt. Die Bewertung
anhand der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten wird in Tabel-
le 3.10 dargestellt.

DDFV erlaubt die zuverlässige Erkennung der Nutzung falscher Operatoren und Re-
gisterinhalte in arithmetischen Operationen. Allerdings fehlt die Einbeziehung von
Arbeitsspeicherinhalten und der Datenübermittlung über Systemteile hinweg. Das
Verfahren kann z. B. einen Fehler, bei dem ein Schreibvorgang in den Arbeitsspei-
cher fehlschlägt, also den Verlust der Aktualisierung eines Datenspeicherelements,
nicht feststellen, sondern nur, ob in einem überwachten Codefragment die richtigen
Operationen auf die richtigen – in Registern liegenden – Operanden angewendet
wurde. Daher können diese Fehlerarten nur als begrenzt erkennbar gewertet wer-
den. Verzichtet man bei der Realisierung einer Prozessorarchitektur auf die Nutzung
arithmetischer Register, wie es in [115] zur Vereinfachung der Übersetzer gefordert
wurde, so erweist sich DDFV als nutzlos, da es nicht über die Registerebene hinaus
anwendbar ist. Weiterhin hat die DDFV auch den Nachteil, den Gollub in [41] bei
Signaturverfahren zur Kontrollflussüberwachung identifizierte: erst am Ende eines
überwachten Instruktionsblocks kann ein aufgetretener Fehler erkannt werden und
damit ggf. erst einige Takte später.

3.10 Fehlererkennung durch AN(BD)-Kodierung

Eine sehr leistungsfähige Kodierung zur Erkennung von Fehlern bei der Verarbei-
tung von Daten ist die ANBD-Kodierung. Dabei handelt es sich um eine arithme-
tische Kodierung basierend auf der Arbeit von Brown [13], die als AN-Kodierung

80

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.10 Fehlererkennung durch AN(BD)-Kodierung

Tabelle 3.10: Fehlererkennung durch DDFV

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl ja
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten nein
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

81

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

bekannt ist. Forin erweiterte diese Kodierung in [38] für den Vital Coded Pro-
cessor VCP um die Adressprüfung B und die Aktualitätsprüfung D zur ANBD-
Kodierung.

3.10.1 AN-Kodierung zur Integritätsprüfung von
Datenspeicherelementen und arithmetischen
Operationen

Bei der AN-Kodierung werden Variablenwerte mit dem Faktor A multipliziert, wo-
durch das kodierte Ergebnis in der Regel die doppelte Bitbreite der Variable auf-
weist. Von der Wahl von A hängt der mit der AN-Kodierung erreichbare minimale
Hamming-Abstand MHD ab [108]. Die Kodierung ist mathematisch sehr einfach
und wird durchgeführt, indem das gewählte A auf den Variablenwert x multipliziert
wird, wodurch man die kodierte Variable xc erhält.

xc = A · x

Ist ein kodiertes Wort korrekt, wurde also nicht verfälscht, so ist der Rest der Divi-
sion des kodierten Werts durch das gewählte A Null.

xc = A · x ≡ 0 mod A

Ist diese Bedingung nicht erfüllt, so liegt eine Verfälschung des kodierten Worts
vor oder ein Fehler in der arithmetischen Einheit, die zur Prüfung herangezogen
wurde.

AN-Kodierung von arithmetischen Operationen

Neben der reinen Integritätsprüfung von kodierten Worten ist es mittels der AN-
Kodierung weiterhin möglich, die Korrektheit von arithmetischen Operationen zu
verifizieren. Dabei werden alle Operanden einer arithmetischen Operation entspre-
chend kodiert und nach Durchführung der Operation kann das Ergebnis analog zur
Prüfung der Integrität verifiziert werden, indem der Rest der Division des Ergeb-
nisses durch A geprüft wird.

82

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.10 Fehlererkennung durch AN(BD)-Kodierung

AN-Kodierung von Additionen und Subtraktionen

Die Durchführung von Additionen und Subtraktionen erfolgt, indem die kodierten
Operanden summiert bzw. voneinander subtrahiert werden. Wenn die Operation
ohne Fehler durchgeführt wurde, dann ergibt das Ergebnis modulo A Null.

xc ± yc = A · x ± A · y = A(x ± y) ≡ 0 mod A

AN-Kodierung von Multiplikationen

Auch bei der Multiplikation werden einfach die kodierten Operanden multipliziert
und das Ergebnis kann ebenfalls durch Prüfung der Bedingung, ob es modulo A

Null ergibt, überprüft werden.

xc · yc = A · x · A · y = A2 · x · y ≡ 0 mod A

Alternativ kann auf die Kodierung des zweiten Operanden verzichtet werden, um
die Bitbreite des Ergebnisses klein zu halten, ohne dabei die Prüfbarkeit des Er-
gebnisses einzuschränken. Allerdings ist dann natürlich keine Integritätsprüfung des
betroffenen Operanden vor der Multiplikation mehr möglich.

xc · y = A · x · y ≡ 0 mod A

AN-Kodierung von Divisionen

Die Division von AN-kodierten Operanden weicht von den bisherigen Beispielen ab:
Wenn beide Operanden kodiert sind, wird bei der Durchführung der Division die
Integritätsprüfung A abdividiert und das Ergebnis liegt somit unkodiert vor. Weder
Korrektheit des Ergebnisses, noch dessen Integrität können geprüft werden.

xc

yc
= A · x

A · y
= x

y
�≡ 0 mod A

Um die Verifikation des Ergebnisses zu ermöglichen, kann z. B. nur ein Operand
kodiert werden.

xc

y
= A · x

y
= A · x

y
≡ 0 mod A

83

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.10.2 ANB-Kodierung: Hinzufügen der Adressprüfung B

Um zu prüfen, ob die richtigen Operanden für eine arithmetische Operation her-
angezogen wurden, schlug Forin in [38] vor, die Adresse bzw. eine Signatur B des
Operanden dem kodierten Datenwert in Form einer Addition hinzuzufügen. Ein
entsprechendes Merkmal kommt im Vital Coded Processor VCP zum Einsatz.

xcANB = A · x + Bx

Die Prüfung, ob das vorhergehende Ablegen eines Datenworts und das Lesen dessel-
ben zu einem späteren Zeitpunkt korrekt funktioniert haben, also z. B. keine Adres-
sierungsfehler aufgetreten sind, erfolgt, indem vor Division durch A die erwartete
Adresse bzw. Signatur Bx von xc abgezogen wird.

xcANB − Bx = (A · x + Bx) − Bx = A · x ≡ 0 mod A

Alternativ kann natürlich auch geprüft werden, ob die Bedingung

xcANB ≡ Bx mod A

erfüllt ist.

Sollte durch einen Adressierungsfehler ein falscher Operand, in nachfolgender Glei-
chung z, geladen worden sein, so wird dieser Fehler durch

zcANB − Bx = (A · z + Bz) − Bx = A · x + Bz − Bx �≡ 0 mod A

oder alternativ

zcANB ≡ Bz �= Bx mod A

aufgedeckt.

84

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.10 Fehlererkennung durch AN(BD)-Kodierung

ANB-Kodierung von arithmetischen Operationen

Auch die ANB-Kodierung kann dazu verwendet werden, die Korrektheit von arith-
metischen Operationen zu überprüfen. Im Gegensatz zur reinen AN-Kodierung müs-
sen dabei ggf. – je nach durchzuführender Operation – nach der Durchführung der
Operationen Korrekturen vorgenommen werden, um das Ergebnis so aufzubereiten,
dass die typischen Prüfmöglichkeiten bestehen.

ANB-Kodierung von Additionen und Subtraktionen

Bei Additionen und Subtraktionen entsteht ein kodiertes Ergebnis, das als Signatur
B die Summe bzw. die Differenz der beiden Signaturen der Operanden trägt.

zcANB = xcANB ± ycANB = (A · x + Bx) ± (A · y + By) = A(x ± y) + Bx ± By

An dieser Stelle tritt eine Schwierigkeit bzgl. der ANB-Kodierung zu Tage: Soll der
B-Anteil des Ergebnisses zcANB wirklich der Adresse des Zieldatenspeicherelements
entsprechen, so muss Bx ± By durch eine Korrektur in Bz umgewandelt werden.
Wird Bx ± By dagegen als Signatur betrachtet, die nicht der Adresse des Daten-
speicherelements entsprechend muss, so muss die erwartete Signatur im Programm
in irgendeiner Weise gespeichert werden, da sie sich nicht aus zcANB oder seiner
Position im Speicher ableiten lässt.

ANB-Kodierung von Multiplikationen

Bei der Multiplikation werden Korrekturen des Ergebnisses notwendig, da sich

zcANB = xcANB · ycANB = (A · x + Bx) · (A · y + By)
= A2 · x · y + A · x · By + A · y · Bx + Bx · By

statt der erwarteten Form

zcANB = A · x · y + Bx · By

ergibt.

85

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

ANB-Kodierung von Divisionen

Für ANB-kodierte Operanden sind für die Division keine sinnvollen Lösungen be-
kannt, außer der Verwendung einer Schleife, innerhalb derer die Division durch eine
Reihe kodierter Subtraktionen abgebildet wird [108]. Allgemein gelten Divisionen
von ANB-kodierten Operanden als nicht durchführbar [108, 122]. Deswegen wird in
manchen Implementierungen einer der Operanden vor Durchführung der Division
auf die AN-kodierte Form reduziert [108].

3.10.3 ANBD-Kodierung: Hinzufügen der
Aktualitätsprüfung D

Ein weiteres Merkmal, welches Forin in [38] als Merkmal des Vital Coded Proces-
sor VCP vorstellte, war das Hinzufügen eines Zeitstempels Dt zur kodierten Zahl,
wodurch sich als kodierte Form von x

xcANBD = A · x + Bx + Dxt

ergibt.

Durch die Prüfung der Gleichung

xcANB − Bx − Dxt = (A · x + Bx + Dxt) − Bx − Dxt = A · x ≡ 0 mod A

bzw.

xcANBD = A · x + Bx + Dxt ≡ Bx + Dxt mod A

können die Integrität des Datenworts, das Heranziehen des richtigen Datenworts mit
der Adresse bzw. Signatur Bx und die Version des Datenworts mittels Dxt überprüft
werden.

ANBD-Kodierung von arithmetischen Operationen

Für die Verwendung ANBD-kodierter Operanden in arithmetischen Operationen
gelten die bereits bei der ANB-Kodierung vorgestellten Bedingungen inklusive der
Notwendigkeit der Korrektur der Ergebnisse und der Schwierigkeiten bei der Durch-
führung von Divisionen.

86

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.10 Fehlererkennung durch AN(BD)-Kodierung

3.10.4 Realisierung der AN(BD)-Kodierung

Die Realisierung der AN(BD)-Kodierung ist in verschiedenen Ausprägungen mög-
lich. Neben der manuellen Implementierung aller notwendigen Schritte im Quellcode
eines Programms – von der Kodierung der Operanden über die Durchführung der
kodierten arithmetischen Operationen bis hin zur Prüfung der Ergebnisse – wurden
von Schiffel in [108] zwei automatisierte Nutzungsverfahren der ANB(D)-Kodierung
vorgestellt:

• Software Encoded Processing SEP, bei dem ein bereits übersetztes Programm,
welches keine arithmetische Kodierung verwendet, durch einen Interpreter
ausgeführt wird, der die Operanden arithmetischer Operationen vorab ANB-
kodiert und die Ergebnisse überprüft und

• Compiler Encoded Processing CEP, bei dem die ANBD-Kodierung durch den
Übersetzer während der Übersetzung des Quellcodes in das entstehende Pro-
gramm eingebracht wird.

Bei SEP sorgt alleine die indirekte Ausführung des Programms durch einen Inter-
preter dafür, dass sich die benötigte Ausführungszeit auf mindestens das 900-Fache
erhöht, teilweise sogar deutlich mehr [108]. Die Nutzung der ANB-Kodierung durch
den Interpreter verlangsamt die Bearbeitung nochmals um den Faktor 2 bis 25
[108].

Wird die Kodierung nicht zur Laufzeit durch den Interpreter in ein Programm ein-
gebracht, sondern bei CEP bereits durch den Übersetzer zur Übersetzungszeit in
das Programm eingefügt, fällt der zusätzliche Laufzeitbedarf deutlich geringer aus.
Je nach Stimulus beträgt die Ausführungszeit das Doppelte bis hin zum über 500-
Fachen der Laufzeit des unkodierten Programms [108]. Dabei nutzt CEP Instruk-
tionen, die speziell für die angewendete Form der Kodierung erweitert wurden.

3.10.5 Evaluation der AN(BD)-Kodierung

Ein Vorteil der AN(BD)-Kodierung ist die Möglichkeit des Einsatzes auf gewöhn-
licher Hardware, ohne spezielle Hardwaremerkmale zu erfordern. Diesem Vorteil
stehen jedoch deutliche Nachteile gegenüber:

• Bei der Wahl der Werte B und D besteht die Einschränkung, dass B + D < A
gelten muss, um die beschriebenen Prüfungsvorschriften nicht zu beeinflussen.

87

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

• Die kodierten Werte sind nicht mehr ohne Umrechnung menschenlesbar, was
die Fehlersuche erschwert.

• Werden keine automatisierten Verfahren wie SEP oder CEP eingesetzt, so
entsteht ein hoher Aufwand bei der Implementierung und dem Testen der
Kodierung, der in jedem Projekt erneut zu betreiben ist.

• Beim Einsatz des Compiler Encoded Processing CEP erzeugt der Übersetzer
schwer verständlichen Maschinencode, wodurch die diversitäre Rückwärtsana-
lyse erschwert wird.

• Die Kodierung verursacht deutlich erhöhten Laufzeitbedarf, z. B. durch die
teilweise notwendigen Korrekturen der Ergebnisse nach der Verarbeitung [108].

• Die Kodierung ist nur für vorzeichenbehaftete und vorzeichenlose Ganzzahl-
datentypen geeignet und nicht für Gleitkommazahlen [108].

• Die Kodierung ist nur für bestimmte Operationen geeignet [108, 122]: Addi-
tionen, Subtraktionen, Multiplikationen und logische Operationen. Divisionen
sind nur bei AN-Kodierung verwendbar. Schiffel hat in [108] Vorschläge unter-
breitet, auch bisher nicht oder nur mit Einschränkungen nutzbare Operatio-
nen – teilweise unter Schwächung der Fehlererkennungsmöglichkeiten – kodiert
auszuführen, so z. B. die Division.

• Die B- bzw. D-Signaturen müssen – sofern sie sich nicht vom Operanden selbst
ableiten lassen, was bei der B-Signatur ggf. die Adresse des Operanden sein
kann – zusätzlich zu den kodierten Daten gespeichert und verwaltet werden,
um die Integrität der Daten und die Richtigkeit von Operationsergebnissen
prüfen zu können.

In Tabelle 3.11 wird die Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler-
und Angriffsarten durch die AN(BD)-Kodierung gezeigt.

Aufgrund der beschriebenen Nachteile werden alle erkennbaren Fehlerarten mit ei-
nem „(ja)“ bewertet, also als erkennbar, jedoch mit Einschränkungen. Die detail-
lierte Beschreibung der Erkennbarkeit der verschiedenen Fehler- und Angriffsarten
der AN-, ANB- und ANBD-Kodierung erfolgt in den folgenden Unterkapiteln.

3.10.5.1 Evaluation der AN-Kodierung

Die beiden durch die AN-Kodierung erkennbaren Fehlerarten – mit den bereits
erwähnten Einschränkungen – sind fehlerhafte Operationsergebnisse und Verfäl-

88

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.10 Fehlererkennung durch AN(BD)-Kodierung

Tabelle 3.11: Fehlererkennung durch AN(BD)-Kodierung

Fehlerart AN ANB ANBD
Inkompatible Datentypen nein nein nein
Inkompatible Einheiten nein nein nein
Wertebereichsunter- bzw. -überschreitung nein nein nein
Genauigkeitsproblem nein nein nein
Falsche Operandenauswahl nein (ja) (ja)
Falsche Operatorauswahl nein (ja) (ja)
Fehlerhaftes Operationsergebnis (ja) (ja) (ja)
Fristüberschreitung nein nein nein
Zyklusunterschreitung nein nein nein
Zyklusüberschreitung nein nein nein
Verlorengegangene Datenaktualisierung nein nein (ja)
Synchronisationsfehler oder unvollständige Daten-
übertragung nein nein (ja)

Pufferunter- oder -überläufe nein begrenzt (ja)
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein nein nein
Duplizierte Daten nein nein nein
Durch Fehler oder Störungen verfälschte Daten (ja) (ja) (ja)
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein nein nein
Nutzung nicht initialisierter Daten begrenzt (ja) (ja)
Angriffsart
Gezielt verfälschte Daten nein nein nein
Wiedereinspielungsattacke nein nein nein

89

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

schungen der Daten durch Störungen. Die Erkennung der Nutzung nicht initiali-
sierter Daten ist bei AN-Kodierung nur möglich, wenn die keine nutzbaren Daten
enthaltenden Datenspeicherelemente mit einem Datenwert gefüllt werden, der kein
Vielfaches von A ist. Mit Nullen vorbelegte Werte werden nicht als ungültig erkannt,
da

0 ≡ 0 mod A

die Bedingungen eines gültigen Datenspeicherelements erfüllt.

3.10.5.2 Evaluation der ANB-Kodierung

Zusätzlich zur Erkennung fehlerhafter Operationsergebnisse und der Verfälschung
von Daten durch Störungen, kann die ANB-Kodierung die Auswahl falscher Operan-
den oder Operatoren aufdecken. Zudem wird es einfacher, Datenspeicherelemente
ohne gültige Datenwerte so vorzubelegen, dass die Bedingung

xc ≡ Bx mod A

nicht erfüllt wird, um bei der Verarbeitung der ungültigen Daten diese als solche
zu erkennen. Rein theoretisch könnten auch Pufferunter- oder -überläufe durch die
ANB-Kodierung erkannt werden, wenn für verschiedene angrenzende Felder oder
Puffer unterschiedliche B-Signaturen zum Einsatz kommen, darum wird diese Feh-
lerart als begrenzt erkennbar bewertet.

3.10.5.3 Evaluation der ANBD-Kodierung

Die ANBD-Kodierung erweitert die Fehlererkennung der ANB-Kodierung um
die Erkennung verlorengegangener Datenaktualisierungen, Synchronisationsfehler
und unvollständiger Datenübertragungen. Werden falsche Daten im Zuge eines
Pufferunter- oder -überlaufs gelesen, so kann dieser Fehler dann erkannt werden,
wenn die Adresssignatur B oder die Zeitstempelsignatur D nicht den erwarteten
Werten entsprechen. Bei entsprechenden fehlerhaften Schreibzugriffen außerhalb
von Feld- oder Puffergrenzen kann erst bei einem später erfolgenden Lesen der
überschriebenen Werte der Fehler aufgedeckt werden.

90

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

3.11 Datenflussüberwachung in Netzwerken und
sicherheitsgerichteten Feldbussen

Die Datenflüsse innerhalb eines Echtzeitsystems haben Ähnlichkeit mit jenen in
Netzwerken. Datenübertragungsprotokolle, die zur Kommunikation über Netzwer-
ke genutzt werden, sind darauf spezialisiert, Daten von einem Teilnehmer zu einem
anderen zu übermitteln und dabei – je nach dabei verwendetem Protokoll – eine be-
stimmte Menge an Fehlererkennungs- und -toleranzmaßnahmen anzuwenden. Daher
liegt es nahe, einige Netzwerkprotokolle und deren Methoden zur Datenflussüber-
wachung genauer zu betrachten.

Vorgestellt werden in diesem Kapitel als Stand der Technik

• das konventionelle Netzwerkprotokoll IP und das darauf aufsetzende verbin-
dungsorientierte Protokoll TCP und

• Netzwerkprotokolle, die für sicherheitsgerichtete Feldbuskommunikation ent-
wickelt wurden.

3.11.1 Netzwerkprotokolle TCP/IP

Netzwerkprotokolle werden nach dem OSI-Referenzmodell („Open System Inter-
connection Model“) [63] entsprechend ihrer Funktion im Kommunikationsablauf
klassifiziert. Dieses OSI-Modell wird in Abbildung 3.18 dargestellt und definiert
7 Protokollschichten, von denen nicht alle innerhalb einer Kommunikationssitzung
zum Einsatz kommen müssen.

Zwei wichtige Protokolle sollen hier vorgestellt werden:

• das Internetprotokoll IP in Version 4, definiert in RFC 791 [98], das der Ver-
mittlungsschicht zuzuordnen ist und

• das verbindungsorientierte Transportkontrollprotokoll TCP, definiert in
RFC 793 [100], dass die Transportschicht in der Kommunikation bildet und
somit oberhalb des IP-Protokolls angesiedelt ist.

Die für diese Arbeit relevanten, der Datenflussüberwachung dienenden Merkmale
der IP- und TCP-Protokolle sind

• Prüfsummen in den verschiedenen Protokollschichten,

• Überwachung der Paketlebenszeit,

91

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Abbildung 3.18: OSI-Schichtenmodell (nach [63])

• Spezifikation der Quell- und Zieladressen der Kommunikationsteilnehmer und

• Sequenznummern,

die in den folgenden Unterkapiteln detaillierter vorgestellt werden.

3.11.1.1 Prüfsummen

Zur Verifikation der Integrität der übertragenen Daten werden in Netzwerken die
Datenpakete in den verschiedenen Protokollschichten mit Prüfsummen versehen.
Teilweise werden sogar mehrere unabhängige Prüfsummen für verschiedene Teile
eines Datenpakets verwendet, wie z. B. die Kopfprüfsumme innerhalb des in Abbil-
dung 3.19 dargestellten Paketkopfs des Internetprotokolls Version 4 [98].

3.11.1.2 Paketlebenszeit

Im Internetprotokoll IP Version 4, kurz IPv4, wird jedem Datenpaket, das über
ein Netzwerk gesendet wird, eine Paketlebenszeit, engl. „Time To Live TTL“, in
dem entsprechenden Feld TTL im Paketkopf zugeordnet, wie in Abbildung 3.19
dargestellt. Nach [98] ist es dabei vorgesehen, dass jede Station, die ein Paket an-
nimmt und weiterreicht, die Anzahl der für diesen Vorgang benötigten Sekunden
vom TTL-Wert abzieht, minimal jedoch den Wert 1, auch wenn die Bearbeitung
des Pakets eine kürzere Zeitspanne in Anspruch nahm. Erreicht TTL den Wert 0,
so wird das Datenpaket verworfen und eine entsprechende Fehlermeldung über das

92

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

Abbildung 3.19: Paketkopf des Internetprotokolls Version 4 (nach [98])

ICMP-Protokoll [99] an den Absender des Pakets gesendet, wodurch dieser Kenntnis
über die Zeitüberschreitung erhält. Die Abbildung 3.20 zeigt den Verlauf des Wertes
im Feld TTL während der Übermittlung eines Paketes in einem Netzwerk, einmal
ohne und einmal mit Fehlerfall. Nach [101] liegt der aktuell empfohlene Wert, der
in das TTL-Feld eingetragen werden soll, bei 64.

Abbildung 3.20: Verlauf des TTL-Werts, oben ohne und unten mit Fehlerfall

Durch die geringe zeitliche Auflösung des Werts im Feld TTL in ganzen Sekunden
und die Vorgabe, immer mindestens eine Sekunde als Bearbeitungszeit abzuziehen,
gibt der vom Absender in TTL eingetragene Wert nach [98] lediglich eine maximale
Übermittlungszeit für ein Paket vor. In der Praxis ist diese Art der Laufzeitüberwa-
chung kaum zur Realisierung einer Frist im Sinne der Echtzeitverarbeitung nutzbar.
In der Nachfolgeversion, dem Internetprotokoll Version 6, kurz IPv6, wurde das Feld
aus diesem Grund auch in „Hop Limit“, also übersetzt in etwa „Begrenzung der

93

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Anzahl an Zwischenstationen“ umbenannt [102], was die auch bereits in Version 4
realisierte Funktionalität wesentlich treffender beschreibt.

3.11.1.3 Quell- und Zieladresse

In jedem Datenpaket, das über ein Netzwerk gesendet werden soll, werden Quell-
und Zieladresse, also die Adressen von Absender und Empfänger des Datenpakets
angegeben, wie in Abbildung 3.19 ersichtlich ist.

3.11.1.4 Sequenznummern

Das Transport Control Protocol, kurz TCP, ist ein verbindungsorientiertes Proto-
koll, das zur Überwachung des Datenflusses Sequenznummern in den Protokollköp-
fen einsetzt [100], wie in Abbildung 3.21 gezeigt. Dadurch wird es dem Empfänger
ermöglicht, eintreffende Pakete in die vom Sender beabsichtigte Reihenfolge zu brin-
gen und – in Bezug auf diese Arbeit wesentlich wichtiger – zu erkennen, ob Pakete
verlorengegangen sind.

Abbildung 3.21: Sequenznummer im Paketkopf des Transportkontrollprotokolls (nach [100])

94

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

3.11.2 Sicherheitsgerichtete Feldbusprotokolle

Die internationale Norm IEC 61784-3 [54] beschreibt die generellen Anforderun-
gen an die Protokolle sicherheitsgerichteter Feldbusse bzgl. Fehlererkennung und
-behandlung. Die einzelnen standardisierten sicherheitsgerichteten Feldbussysteme
werden in Unternormen der IEC 61784-3 im Detail beschreiben. Diese sogenannten
„Profile“ werden in Tabelle 3.12 aufgelistet.

Tabelle 3.12: Sicherheitsgerichtete Feldbusprofile nach IEC 61784-3 [54]

Profil Feldbusbezeichnung Unternorm
Profilfamilie 1 FOUNDATION Feldbus IEC 61784-3-1
Profilfamilie 2 CIP IEC 61784-3-2

Profilfamilie 3 PROFIBUS, PROFINET
(PROFIsafe)

IEC 61784-3-3

Profilfamilie 6 INTERBUS IEC 61784-3-6
Profilfamilie 8 CC-Link IEC 61784-3-8
Profilfamilie 12 EtherCAT IEC 61784-3-12
Profilfamilie 13 Ethernet POWERLINK IEC 61784-3-13
Profilfamilie 14 EPA IEC 61784-3-14
Profilfamilie 17 RAPIEnet (IEC 61784-3-17 in Arbeit)
Profilfamilie 18 SafetyNET p Feldbus IEC 61784-3-18

Einer der wichtigsten Inhalte der IEC 61784-3 ist die Beschreibung typischer Fehler-
fälle, die ein sicherheitsgerichteter Feldbus aufdecken und behandeln können muss.
Diese sind:

• Datenverfälschung durch Störungen

• Wiederholung von Nachrichten

• Veränderung der Nachrichtenreihenfolge

• Verlust von Nachrichten

• Verzögerung von Nachrichten über ein vertretbares Maß hinaus, also unter
Verletzung der Echtzeitbedingungen

• Einfügung von Nachrichten von unbekannten Quellen

95

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

• Maskerade von Nachrichten, bei der eine nicht sicherheitsgerichtete Nachricht
durch Fehler als sicherheitsgerichtete Nachricht erscheint

• Adressierungsfehler, d. h. Nachrichten werden vom falschen Empfänger emp-
fangen und ggf. verarbeitet

Weiterhin beschreibt die Norm einige Erkennungsmethoden, die vorgeschlagen wer-
den, um die genannten Fehler aufzudecken. Diese Methoden sind:

• Nutzung einer Sequenznummer

• Nutzung von Zeitstempeln

• Überwachung der Zeit zwischen dem Eintreffen zweier Nachrichten; bei Über-
schreitung dieser Zeit ist von einem Fehler auszugehen

• Gegenseitige Authentifizierung von Sender und Empfänger über eine einein-
deutige logische Adresse

• Bestätigungsnachrichten zur Bestätigung des korrekten Empfangs von Nach-
richten

• Nutzung von Integritätsprüfungen zur Aufdeckung von Datenverfälschungen

• Gezielte Mehrfachversendung der identischen Nachricht unter Nutzung ver-
schiedener Integritätsprüfungsmethoden, ggf. unter Nutzung redundanter
Kommunikationskanäle

• Nutzung verschiedener Integritätsprüfungsmethoden, wenn über einen Bus si-
cherheitsgerichtete und nicht-sicherheitsgerichtete Daten übermittelt werden

Welche Fehlerarten die einzelnen Erkennungsmethoden nach [54] erkennen können,
wird in Tabelle 3.13 gezeigt.

Diese vorgeschlagenen Erkennungsmerkmale werden in den einzelnen Profilfamilien
unterschiedlich eingesetzt, meist kommt nur eine Untermenge der vorgeschlagenen
Merkmale zum Einsatz, ggf. auch in modifizierter Form. Die detaillierte Beschrei-
bung, welche der Fehlererkennungsmerkmale zum Einsatz kommen und wie sie reali-
siert werden, erfolgt in der jeweiligen Unternorm, die die betreffende Protokollfamilie
beschreibt.

Im Detail sollen nun zwei sicherheitsgerichtete Feldbussysteme vorgestellt werden,
die unterschiedliche Fehlererkennungsmerkmale nutzen: PROFIsafe, das mit Te-
legrammen mit Sequenznummern arbeitet, und CIP Safety, welches Zeitstempel
einsetzt.

96

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

Tabelle 3.13: Fehleraufdeckung durch die vorgestellten Methoden (nach [54])

Se
qu

en
zn

um
m

er

Z
ei

ts
te

m
pe

l

Z
ei

tb
ed

in
gu

ng
en

A
ut

he
nt

ifi
zi

er
un

g

B
es

tä
ti

gu
ng

In
te

gr
it

ät
sp

rü
fu

ng

R
ed

un
da

nt
e

N
ac

hr
ic

ht
en

V
er

sc
hi

ed
en

e
In

te
gr

it
ät

s-
pr

üf
un

ge
n

Datenverfälschung x x
Nachrichtenduplikat x x x
Sequenzfehler x x x
Nachrichtenverlust x x x
Verzögerung x x
Einfügung von Nachrichten x x x x x
Maskerade x x x
Adressierungsfehler x

3.11.2.1 PROFIsafe

PROFIsafe ist ein Kommunikationsprofil für PROFIBUS und PROFINET, welches
in der Unternorm IEC 61784-3-3 [56] beschrieben wird. Darin wird u.a. festgelegt,
welche der in der IEC 61784-3 [54] beschriebenen Fehlererkennungsmechanismen
angewendet und wie diese im Detail realisiert werden. Aktoren und Sensoren wer-
den als „F-Device“ und Datenverarbeitungseinheiten als „F-Host“ bezeichnet. Ein
entsprechendes sicherheitsgerichtetes System ist in Abbildung 3.22 dargestellt.

Sensoren und Aktoren werden bei PROFIsafe als „F-Devices“ bezeichnet, Daten-
verarbeitungseinheiten, die die Sensorsignale verarbeiten und Stellgrößen für die
Aktoren generieren, als „F-Hosts“.

Abbildung 3.22: Systemaufbau mit PROFIsafe

97

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Die im PROFIsafe-Protokoll eingesetzten Fehlererkennungsmerkmale werden in Ta-
belle 3.14 dargestellt.

Tabelle 3.14: Fehlererkennungsmerkmale von PROFIsafe (nach [56])

Se
qu

en
zn

um
m

er

Z
ei

ts
te

m
pe

l

Z
ei

tb
ed

in
gu

ng
en

A
ut

he
nt

ifi
zi

er
un

g

B
es

tä
ti

gu
ng

In
te

gr
it

ät
sp

rü
fu

ng

R
ed

un
da

nt
e

N
ac

hr
ic

ht
en

V
er

sc
hi

ed
en

e
In

te
gr

it
ät

s-
pr

üf
un

ge
n

Datenverfälschung x
Nachrichtenduplikat x
Sequenzfehler x
Nachrichtenverlust x x x
Verzögerung x x
Einfügung von Nachrichten x x x x
Maskerade x x x x
Adressierungsfehler x
Speicherfehler in Netzwerk-
geräten

x

Eine Sequenznummer mit einer Breite von 24 Bit erlaubt es dem Empfänger, zu
erkennen, ob er die Nachrichten in der korrekten Reihenfolge erhalten hat, eine
Nachricht dupliziert wurde oder verlorengegangen ist. Dabei wird diese Sequenz-
nummer nicht übertragen, sondern in jedem der Teilnehmer selbst verwaltet und
daher als „virtuelle Sequenznummer VCN“ bezeichnet. Lediglich ein Bit, das bei
jeder Nachricht den Zustand wechselt, wird mitgesendet. Zur Überprüfung, ob eine
Nachricht vom Sender mit der vom Empfänger erwarteten Sequenznummer verse-
hen wurde, beziehen beide Teilnehmer die VCN in die Berechnung der Prüfsummen
mit ein. Eine Abweichung der Sequenznummer des Senders von der erwarteten Se-
quenznummer des Empfängers wird dadurch bei der Überprüfung der Prüfsumme
eines Datenpakets aufgedeckt. In jedem Kommunikationsteilnehmer läuft ein Über-
wachungszeitgeber, engl. „watchdog“, für die Überwachung der Übertragungszeiten,
der mit einer maximalen Frist konfiguriert wird. Diese Frist wird als „F_WD_Time“

98

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

bezeichnet. Beim Eintreffen einer gültigen Nachricht mit einer neueren Sequenznum-
mer werden diese Zeitgeber zurückgesetzt und die Frist somit erneuert. Läuft die
Frist eines dieser Überwachungszeitgeber ab, so wechselt die betroffene Einheit in
einen vorkonfigurierten sicheren Zustand. Weitere Überwachungszeitgeber kommen
in den Teilnehmern zum Einsatz, um die Datenverarbeitung innerhalb der Gerä-
te zeitlich zu überwachen. Die einzelnen zum Einsatz kommenden Fristen sind in
Abbildung 3.23 dargestellt. Für die verschiedenen Geräte werden dabei jeweils ma-
ximale Bearbeitungszeiten und zwischen den Geräten maximale Übertragungszeiten
festgelegt. Aus der Summe der gezeigten Zeiten und der zeitlichen Auslösung der
Überwachungszeitgeber ergibt sich die Sicherheitsreaktionszeit, innerhalb derer auf
einen Fehler reagiert werden kann.

Abbildung 3.23: Fristen der Überwachungszeitgeber (nach [56])

Allen Teilnehmern werden spezielle Adressen zugewiesen, die „F-Adressen“ genannt
werden und die nur innerhalb der sicherheitsgerichteten Kommunikation Anwen-
dung finden. Sie dienen der Authentifizierung der Kommunikationsteilnehmer, die
dadurch feststellen können, ob empfangene Daten vom erwarteten Absender stam-
men. Wie bei der virtuellen Sequenznummer werden die F-Adressen dabei nicht
in den Datenpaketen eingebettet, sondern gehen ebenfalls nur in die Prüfsummen-
berechnung ein, wodurch ein falscher Adressat anhand der Prüfsummen die fehl-
geleiteten Daten als solche identifizieren kann. Verschiedene Prüfsummenverfahren
erlauben es, nicht sicherheitsgerichtete und sicherheitsgerichtete Daten zu unter-
scheiden und Verfälschungen der Daten aufzudecken.

99

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

3.11.2.2 CIP Safety

CIP Safety ist ein sicherheitsgerichtetes Feldbusprotokoll, welches auf dem Common
Industrial Protocol CIP basiert und in der Unternorm IEC 61784-3-2 [55] spezifiziert
wird. Wie auch bei PROFIsafe definiert die Unternorm unter anderem, welche der
in der IEC 61784-3 [54] vorgeschlagenen Fehlererkennungsmerkmale in CIP Safety
zur Anwendung kommen sollen und wie diese genutzt werden. Diese werden in
Tabelle 3.15 gezeigt.

Tabelle 3.15: Fehlererkennungsmerkmale von CIP Safety (nach [55])
Se

qu
en

zn
um

m
er

Z
ei

ts
te

m
pe

l

Z
ei

tb
ed

in
gu

ng
en

A
ut

he
nt

ifi
zi

er
un

g

B
es

tä
ti

gu
ng

In
te

gr
it

ät
sp

rü
fu

ng

R
ed

un
da

nt
e

N
ac

hr
ic

ht
en

V
er

sc
hi

ed
en

e
In

te
gr

it
ät

s-
pr

üf
un

ge
n

Datenverfälschung x x
Nachrichtenduplikat x x x
Sequenzfehler x x x
Nachrichtenverlust x x x
Verzögerung x x
Einfügung von Nachrichten x x x x
Maskerade x x x x x
Adressierungsfehler x x

Jede Nachricht, nicht jedoch jedes Datenspeicherelement innerhalb der Nachricht,
wird von einer Datenquelle mit einem Zeitstempel versehen, der die Entstehungs-
zeit der Nachricht angibt. Da der Empfänger der Nachricht ein maximales Alter
einer Nachricht erwartet, können entsprechende Fehlerarten wie z. B. Nachrichten-
verzögerung und Sequenzfehler aufgedeckt werden. Zur Abstimmung der Zeitbasen
zwischen den Kommunikationsteilnehmern sieht CIP Safety entsprechende Synchro-
nisationsmechanismen vor, um regelmäßig Abweichungen der in den Geräten ein-
gesetzten Taktgeneratoren zu kompensieren. Zur Sicherstellung, dass Daten von
den erwarteten Absendern stammen, wird in die Prüfsummen der Datenpakete ein

100

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

Identifikator des Absenders einberechnet. Ein Empfänger, der ein fehlgeleitetes Da-
tenpaket erhält, wird hier den falschen Identifikator zur Prüfsummenberechnung
heranziehen, wodurch die Prüfsumme als ungültig identifiziert wird. Über Konfi-
gurationsdateien wird den Kommunikationsteilnehmern mitgeteilt, welche Daten
versendet oder empfangen werden sollen.

3.11.3 Evaluation der Datenflussüberwachung in Netzwerken
und sicherheitsgerichteten Feldbussen

Die Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten
durch TCP/IP- und die ausgewählten sicherheitsgerichteten Feldbusprotokolle wird
in Tabelle 3.16 gezeigt.

Ein grundlegendes Problem der Fehlererkennungsmechanismen von Kommunikati-
onsprotokollen ist der Wirkungsbereich der jeweiligen Fehlererkennungsmethoden,
da sie nur der Prüfung der fehlerfreien Datenübertragung über die Kommunikations-
strecke dienen, wie in Abbildung 3.24 dargestellt. Die entsprechenden zusätzlichen
Informationen werden vor Versand der Daten an diese angehängt und nach Empfang
und Prüfung wieder entfernt.

Abbildung 3.24: Prüfungsbereich des Datenflusses in Netzwerken

In den folgenden Unterkapiteln werden die TCP/IP- und sicherheitsgerichteten
Feldbusprotokolle getrennt evaluiert.

3.11.3.1 Evaluation der Netzwerkprotokolle TCP/IP

Die Paketlebenszeit in Form der zulässigen Anzahl von Zwischenstationen ermög-
licht keine feingranulare Prüfung von Echtzeitbedingungen. Weiterhin wird der
Empfänger nicht über den Zeitablauf und damit den Paketverlust informiert, son-
dern nur der Sender, weshalb keine der echtzeitbezogenen Fehlerarten als erkennbar
eingestuft werden kann. Die im TCP-Protokoll eingesetzte Sequenznummer erlaubt

101

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Tabelle 3.16: Fehlererkennung durch TCP/IP- und sicherheitsgerichtete Feldbusprotokolle

Fehlerart TCP/IP PROFIsafe CIP
Safety

Inkompatible Datentypen nein nein nein
Inkompatible Einheiten nein nein nein
Wertebereichsunter- bzw.
-überschreitung

nein nein nein

Genauigkeitsproblem nein nein nein
Falsche Operandenauswahl nein nein nein
Falsche Operatorauswahl nein nein nein
Fehlerhaftes Operationsergebnis nein nein nein
Fristüberschreitung nein (ja) (ja)
Zyklusunterschreitung nein nein nein
Zyklusüberschreitung nein (ja) (ja)
Verlorengegangene Datenaktualisierung (ja) (ja) (ja)
Synchronisationsfehler oder unvollstän-
dige Datenübertragung (ja) (ja) (ja)

Pufferunter- oder -überläufe nein nein nein
Fehlerhafter Datenfluss (falsche Adres-
saten, . . .) (ja) (ja) (ja)

Duplizierte Daten (ja) (ja) (ja)
Durch Störungen oder Fehler verfälsch-
te Daten ja ja ja

Fehlerhafter Datenzugriff (fehlende Zu-
griffsrechte) nein nein nein

Nutzung nicht initialisierter Daten nein nein nein
Angriffsart
Gezielt verfälschte Daten nein begrenzt begrenzt
Wiedereinspielungsattacke nein begrenzt begrenzt

102

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

das Aufdecken verlorengegangener und duplizierter Datenpakete, jedoch ist keine
Prüfung möglich, ob die Daten innerhalb der Quelle auch wirklich aktualisiert wur-
den. Unvollständige Übertragungen können durch die Längenangaben in den Pa-
ketköpfen und die Prüfsummen erkannt werden. Die Quell- und Zieladressen erlau-
ben keine Prüfung des Wegs der Daten durch ein gesamtes System, sondern nur
auf den einzelnen Kommunikationsstrecken zwischen den Systembestandteilen. So
könnten Daten, die zwar korrekt von einem Sensor zu einer Datenverarbeitungsein-
heit transportiert wurden, innerhalb dieser nach Verarbeitung zu einer Stellgröße
jedoch durch einen Fehler nicht an den richtigen Aktor gesendet wurden, nicht als
fehlgeleitet erkannt werden. Die Kommunikationssoftware würde den falschen Ak-
tor durch seine entsprechende Zieladresse als gültigen Adressaten ausweisen. Durch
Störungen verfälschte Daten können durch die Verwendung der verschiedenen Prüf-
summen erkannt werden.

3.11.3.2 Evaluation der sicherheitsgerichteten Feldbusprotokolle

Die beiden sicherheitsgerichteten Feldbusprotokolle PROFIsafe und CIP Safety ha-
ben trotz ihrer unterschiedlichen Fehlererkennungsmechanismen – PROFIsafe ver-
wendet Sequenznummern und Überwachungszeitgeber, CIP Safety dagegen Zeit-
stempel und maximales Alter von Nachrichten – einen sehr ähnlichen Umfang an
erkennbaren Fehlerarten.

PROFIsafe kann durch die verschiedenen Überwachungszeitgeber die Verletzung
von Fristen erkennen, ebenso die Überschreitung einer definierten maximalen Zy-
kluszeit. Verlorengegangene Datenaktualisierungen und Duplizierung von Daten
werden durch die verwendeten virtuellen Sequenznummern aufgedeckt. Unvollstän-
dige Datenübertragungen können durch die eingesetzten Prüfsummen erkannt wer-
den. Fehlgeleitete Daten werden anhand der Nichtübereinstimmung der F-Adressen
identifiziert. Die verwendeten Prüfsummen sorgen dafür, dass durch Störungen ver-
fälschte Daten als solche erkannt werden können. Durch Einsatz der virtuellen Se-
quenznummer und der F-Adressen, die in die Berechnung der Prüfsummen ein-
gehen, jedoch nicht in den Datenpaketen eingebettet werden, wird es Angreifern
erschwert, die Daten zu verfälschen, weil dazu die betreffenden Parameter bekannt
sein müssten. Für Wiedereinspielungsattacken wäre es zusätzlich notwendig, die kor-
rekten virtuellen Sequenznummern aufzuzeichnen. In [3] wird jedoch gezeigt, dass es
trotzdem möglich ist, die über PROFIsafe übermittelten sicherheitsgerichteten Da-
ten unbemerkt zu verändern. Daher werden beide Attacken als begrenzt erkennbar
klassifiziert.

103

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Bei CIP Safety können Fristüberschreitungen dadurch erkannt werden, dass der
Empfänger das Alter einer Nachricht anhand ihres Zeitstempels ermittelt und es
mit einem maximal zulässigen Alter vergleicht. Nicht rechtzeitig eintreffende und
verlorengegangene Datenpakete werden dadurch erkannt, dass das Alter der letzten
erfolgreich empfangenen Nachricht eine vorab festgelegte Grenze überschreitet. In
begrenztem Umfang lassen sich dadurch auch Duplikate bereits empfangener Nach-
richten erkennen, da diese einen entsprechend alten Zeitstempel tragen, wodurch bei
entsprechendem Nachrichtenalter die maximale Altersgrenze der Daten überschrit-
ten wird. Fehlgeleitete Datenpakete können daran erkannt werden, dass die in die
Prüfsummenberechnung einbezogenen Identifikatoren von Sender und Empfänger
die Überprüfung der Prüfsumme fehlschlagen lassen. Durch Störungen verfälschte
Daten können durch die Prüfsummen bis auf eine geringe Restfehlerwahrscheinlich-
keit aufgedeckt werden. Die Einbeziehung verschiedener Faktoren in die Berechnung
der Prüfsummen der Pakete erlaubt eine begrenzte Sicherheit von CIP Safety gegen-
über gezielter Veränderung von Paketinhalten, da ein Angreifer zunächst alle in die
Prüfsummenberechnung einbezogenen Daten in Erfahrung bringen muss, bevor er
Pakete erfolgreich manipulieren kann. Kann er die Prüfsummen nicht selbst berech-
nen, so sind auch Widereinspielungsattacken ausgeschlossen, da die Empfänger die
aufgezeichneten und wieder eingespielten Datenpakete anhand der Zeitstempel als
veraltet erkennen würden. Da die Faktoren für einen Angreifer jedoch ermittelbar
sein dürften, können beide Attacken nur als begrenzt erkennbar gewertet werden.

3.12 Zusammenfassung des Stands von Wissenschaft
und Technik

Der vorgestellte Stand von Wissenschaft und Technik soll nun noch einmal zusam-
menfassend betrachtet werden, um dessen Grenzen und Nachteile bzgl. der Erken-
nung von Fehlern und Angriffen aufzuzeigen.

3.12.1 Zusammenfassung der Fehlererkennungsmöglichkeiten

In Tabelle 3.17 wird noch einmal zusammengefasst dargestellt, welche der 20 iden-
tifizierten Fehler- und Angriffsarten durch die vorgestellten Verfahren und Archi-
tekturen erkannt werden können. Details zu den Bewertungen sind den jeweiligen
ausführlichen Beschreibungen zu entnehmen.

104

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.12 Zusammenfassung des Stands von Wissenschaft und Technik

Ta
be

lle
3.

17
:Z

us
am

m
en

fa
ss

un
g

de
rF

eh
ler

er
ke

nn
un

g
du

rc
h

di
e

vo
rg

es
te

llt
en

Ve
rfa

hr
en

un
d

Ar
ch

ite
kt

ur
en

Fe
hl

er
-

bz
w

.
A

ng
ri

ffs
ar

t
x8

6,
A

R
M

SG
P

D
T

,
D

S,
B

A
D

FA
IS

M
A

A
D

I
SS

M
A

N
B

D
D

D
F

V
T

C
P

/I
P

P
R

O
F

Is
af

e,
C

IP
Sa

fe
ty

In
ko

m
pa

tib
le

D
at

en
ty

pe
n

-
-

+
-

+
-

-
-

-
-

In
ko

m
pa

tib
le

Ei
nh

ei
te

n
-

-
-

-
-

-
-

-
-

-
W

er
te

be
re

ich
sv

er
le

tz
un

g
©

x8
6

-
-

-
-

-
-

-
-

-
G

en
au

ig
ke

its
pr

ob
le

m
-

-
-

-
-

-
-

-
-

-
Fa

lsc
he

O
pe

ra
nd

en
-

+
-

-
-

-
(+

)
B

D
©

-
-

Fa
lsc

he
O

pe
ra

to
re

n
-

+
-

-
-

-
(+

)
B

D
+

-
-

Fe
hl

er
ha

fte
O

pe
ra

tio
n

-
+

-
-

-
-

(+
)

B
D

-
-

-
Fr

ist
üb

er
sc

hr
ei

tu
ng

-
©

-
-

©
-

-
-

-
(+

)
Zy

kl
us

un
te

rs
ch

re
itu

ng
-

-
-

-
-

-
-

-
-

-
Zy

kl
us

üb
er

sc
hr

ei
tu

ng
-

-
-

-
-

-
-

-
-

(+
)

Ve
rlo

re
ng

eg
.A

kt
ua

lis
ie

r.
-

-
-

-
-

(+
)

(+
)

D
-

(+
)

(+
)

Sy
nc

hr
on

isa
tio

ns
fe

hl
er

un
d

un
vo

lls
t.

Ü
be

rt
ra

gu
ng

en
-

-
-

-
-

(+
)

(+
)

D
-

(+
)

(+
)

Pu
ffe

ru
nt

er
-o

de
r

-ü
be

rla
uf

(+
)

x8
6

-
+

D
S

-
+

(+
)

(+
)

D
-

-
-

Fe
hl

er
h.

D
at

en
flu

ss
-

©
©

B
A

-
©

-
-

©
(+

)
(+

)
D

up
liz

ie
rt

e
D

at
en

-
-

-
-

-
(+

)
-

-
(+

)
(+

)
D

ur
ch

St
ör

un
ge

n
od

er
Fe

h-
le

r
ve

rfä
lsc

ht
e

D
at

en
©

(+
)

+
-

+
-

(+
)

A
N

-
+

+

Fe
hl

er
h.

D
at

en
zu

gr
iff

(fe
h-

le
nd

e
Zu

gr
iff

sr
ec

ht
e)

©
©

+
B

A
-

+
-

-
-

-
-

N
ich

t
in

iti
al

isi
er

te
D

at
en

-
-

©
-

+
(+

)
(+

)
B

D
-

-
-

G
ez

ie
lte

Ve
rfä

lsc
hu

ng
-

-
-

-
-

-
-

-
-

©
W

ie
de

re
in

sp
ie

lu
ng

sa
tt

ac
ke

-
-

-
-

-
-

-
-

-
©

Fe
hl

er
er

ke
nn

un
g:

-n
ic

ht
m

ög
l.,

©
be

gr
en

zt
m

ög
l.,

(+
)

m
it

Ei
ns

ch
rä

nk
un

ge
n

m
ög

l.,
+

m
ög

l.;
SG

P:
Pr

oz
es

so
re

n
fü

r
sic

he
rh

ei
ts

ge
ric

ht
et

e
A

nw
en

du
ng

en
,D

T
,D

S,
B

A
:D

at
en

ty
p-

,-
st

ru
kt

ur
-,

B
ef

äh
ig

un
gs

ar
ch

ite
kt

ur
en

,D
FA

:D
at

en
flu

ss
ar

ch
ite

kt
ur

en

105

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Die konventionellen Architekturen x86 und ARM nutzen komplexeste Maßnahmen
zur Erzielung eines maximalen Datendurchsatzes, können jedoch nur wenige der
identifizierten Fehler- und Angriffsarten aufdecken. Die vorhandenen Fehlererken-
nungsmaßnahmen wie Segmentierung und Seitenverwaltung können Zugriffsrechte
nur für größere Dateneinheiten wie Seiten oder ganze Segmente vergeben. Die Zu-
griffsrechte werden zudem unabhängig von den durch sie geschützten Daten verwal-
tet. Die auf konventionellen Architekturen basierenden Prozessoren für den Einsatz
in sicherheitsgerichteten Systemen, wie z. B. der TI Hercules, können durch den
Einsatz verschiedener Redundanz- und Diversitätsarten zwar mehr Fehlerarten im
Bereich fehlerhafter Operationen und Datenverfälschungen erkennen, jedoch reichen
diese Maßnahmen nicht aus, was durch die Anzahl der nicht aufdeckbaren Fehler-
arten ersichtlich wird.

Datentyp-, -struktur- und Befähigungsarchitekturen fügen Speicherinhalten Ken-
nungen hinzu, die hardwareverständlich die Inhalte des Speichers beschreiben, wo-
mit weitere Fehlerarten wie z. B. inkompatible Datentypen und die Verletzung von
Zugriffsrechten auf feinstgranularer Ebene erkennbar werden. Allerdings werden nur
wenige Dateneigenschaften in Kennungen abgebildet, wodurch weiterhin viele Feh-
lerarten nicht aufgedeckt werden können.

Die programmierbare Metadatenverarbeitungseinheit PUMP des SAFE-Projekts,
welches den Befähigungsarchitekturen zuzuordnen ist, ist in der Lage, verschieden-
ste Kennungsarten mit nahezu beliebiger Länge zu verwenden. Diese Kennungen
sind nur teilweise untrennbar mit dem jeweiligen Datenspeicherelement verbunden,
erweiterte Kennungen können getrennt von den Daten im Speicher abgelegt sein.
Die Hardware übernimmt bei PUMP nur die Zwischenspeicherung und das Suchen
der zutreffenden Kennungsregeln im Zwischenspeicher, sowie die Anwendung dersel-
ben. Bislang nicht zwischengespeicherte Kennungsregeln müssen von der Software
auf der Basis von Unterbrechungen evaluiert und an die Hardware übergeben wer-
den. Die Hardware wendet diese Regeln ohne Wissen um deren Bedeutung an und
es besteht die Gefahr von Inkonsistenzen bei der Übertragung der Datenspeicher-
elemente und bei Änderung der erweiterten Kennungen im Speicher. Dynamische
Einflüsse wie die Zeit können nicht in die Kennungen einbezogen werden, weshalb
z. B. Fristen in PUMP nicht realisiert werden können.

Die auf die Bearbeitung von Datenflüssen spezialisierten Datenflussarchitekturen
enthalten keine spezialisierten Fehlererkennungsmerkmale und sind dadurch nicht
in der Lage, entsprechende Fehler oder Angriffe zu erkennen.

Die inhärent sichere Mikroprozessorarchitektur ISMA kann mehr Fehlerarten als
konventionelle Architekturen erkennen, ist jedoch nicht auf die Erkennung daten-

106

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.12 Zusammenfassung des Stands von Wissenschaft und Technik

flussbezogener Fehler spezialisiert. Der Fokus von ISMA liegt auf der strikten Iso-
lation von Datentypen, der Anwendung von umfassenden Prüfungen bei der Ty-
pumwandlung, der Verwendung von Kontrollflussprüfungen und dem nicht durch
die Software zugreifbaren Stapelspeicher.

Das durch Oracle im SPARC M7 Prozessor eingeführte Fehlererkennungsmerkmal
Application Data Integrity ADI, später umbenannt in Silicon Secured Memory SSM,
fügt Datenblöcken von 64 Byte Größe und Zeigern eine Versionskennung hinzu, die
beim Datenzugriff miteinander verglichen werden. Obwohl das Verfahren mehre-
re Fehlerarten, darunter die Aufdeckung verlorengegangener Datenaktualisierungen
und Synchronisationsfehler, aufdecken kann, weist es wesentliche Nachteile auf: die
Versionskennungen können nur für Datenblöcke, nicht jedoch für einzelne Daten-
speicherelemente vergeben werden und die in den Zeigern hinterlegten Versionen
sind absolute Angaben und müssen durch die Software gesetzt und bei jeder Versi-
onsänderung durch diese aktualisiert werden.

Die arithmetische AN-Kodierung kann zusammen mit den Erweiterungen zur
ANBD-Kodierung einige wichtige Datenflussfehler wie z. B. falsche Operanden,
falsche Operationen und fehlerhafte Operationsergebnisse sowie verlorengegange-
ne Datenaktualisierungen erkennen, ist jedoch nur für bestimmte Operationen und
Datentypen geeignet und verursacht erhöhten Laufzeitbedarf. Weiterhin sind die
kodierten Datenspeicherelemente nicht mehr ohne weitere Aufbereitung menschen-
lesbar, was die Fehlersuche erschwert.

Die dynamische Datenflussprüfung DDFV erlaubt die signaturbasierte Prüfung der
Datenflüsse auf Registerebene, bezieht aber keine Speicherinhalte in die Prüfung
mit ein und kann keine Datenübertragungen überprüfen.

Die Kommunikationsprotokolle TCP/IP weisen nur wenige Merkmale zur Erken-
nung von Datenflussfehlern auf, die sich speziell auf die Integrität des Datenflusses
beziehen, nicht jedoch auf dessen Inhalte. Die Protokolle für sicherheitsgerichtete
Feldbusse wenden mehr Fehlererkennungsmaßnahmen an, besonders im Bereich der
Zeitüberwachung. Allerdings wird jeweils nur sichergestellt, dass die Inhalte erfolg-
reich und zeitgerecht über die jeweilige Kommunikationsstrecke übertragen werden.
Dazu werden den zu übertragenden Daten zusätzliche Informationen hinzugefügt,
die nach der Übertragung wieder von diesen getrennt werden. Die beiden sicherheits-
gerichteten Feldbusprotokolle PROFIsafe und CIP Safety weisen gewisse Vorkehrun-
gen gegen die gezielte Manipulation von Dateninhalten und Wiedereinspielungsat-
tacken auf. In beiden Protokollen werden verschiedenste Faktoren in die Bildung
der Paketprüfsummen einbezogen, die dem Angreifer nicht bekannt sein sollten,
wodurch die Manipulation der Dateninhalte erschwert wird. Die Sequenznummer

107

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

bei PROFIsafe und die Zeitstempel bei CIP Safety verhindern Wiedereinspielungs-
attacken, da die Datenpakete von den Empfängern als veraltet identifiziert werden
können. Allerdings wurde in [3] erläutert, wie sich durch Aufzeichnung des Netz-
werkverkehrs die unbekannten Prüfsummenbestandteile von PROFIsafe ermitteln
lassen. Dadurch ist es einem Angreifer möglich, die Daten unbemerkt zu verändern.
Für CIP Safety gelten ähnliche Bedingungen.

3.12.2 Zusammenfassende Kritik am Stand von Wissenschaft
und Technik

Obwohl einige interessante Fehlererkennungsverfahren bekannt sind, fehlt eine sy-
stemweite, ganzheitliche Betrachtung von Daten, ihrer Eigenschaften und ihrer We-
ge durch ein System. Selbst wenn bestimmte Dateneigenschaften von der Software
auf einer Systemkomponente lokal zur Laufzeit betrachtet oder sogar überwacht
werden, so werden diese getrennt von den eigentlichen Daten verwaltet und die In-
formation geht bei der Übertragung der Daten zwischen verschiedenen Softwarepro-
grammen innerhalb der Systemkomponente, spätestens jedoch bei der Übertragung
der Daten an andere Systemkomponenten verloren. Die Hauptverantwortung für
die Fehlererkennung trägt meist die Software, was deren Komplexität und Fehler-
wahrscheinlichkeit weiter erhöht. Zudem müssen derartige, in Software realisierte
Fehlererkennungsmaßnahmen in jedem Projekt erneut spezifiziert, entworfen, im-
plementiert und getestet werden.

Bei der AN(BD)-Kodierung werden die Fehlererkennungsmaßnahmen zwar direkt
mit den Daten verbunden und gehen bei deren Übertragung nicht verloren. Al-
lerdings ist sie nur auf bestimmte Datentypen und Operationen anwendbar und
erfordert teils großen Laufzeitaufwand.

Datentyp-, -struktur- und Befähigungsarchitekturen bilden einige wenige Datenei-
genschaften in Kennungen in hardwareles- und -überprüfbarer Form zusätzlich zum
Datenwert ab und erlauben somit einfache und die Laufzeit kaum verlängernde
Prüfungen. Diese Kennungen sind untrennbar mit den Datenwerten verbunden und
werden mit diesen gespeichert, übertragen und verarbeitet. Allerdings bilden die
genannten Architekturen zu wenige Dateneigenschaften in Kennungen ab, wie sich
anhand der nicht erkennbaren Fehler- und Angriffsarten erkennen lässt.

Die Realisierung von Fehlererkennungsmerkmalen in Hardware in Form von Ken-
nungen weist einige Vorteile gegenüber Softwareimplementierungen auf:

108

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3.12 Zusammenfassung des Stands von Wissenschaft und Technik

• Im Gegensatz zu Softwareimplementierungen müssen hardwarebasierte Feh-
lererkennungsmaßnahmen nur einmalig spezifiziert, entworfen, implementiert
und getestet werden.

• Die Prüfung von in den Kennungen spezifizierten Eigenschaften erfolgt im Ide-
alfall ohne zusätzlichen Zeitaufwand durch parallelisierte Prüfungsstrukturen
innerhalb der Prozessorhardware: die Prüfungen werden vom Zeitbereich in
die Hardware verschoben, wie in Abbildung 3.25 angedeutet.

• Da alle Eigenschaften eines Datenspeicherelements in diesem selbst beschrie-
ben werden, ist inhärente Atomarität gegeben, d. h. es können sich keine In-
konsistenzen innerhalb von Datenspeicherelementen z. B. als Folge von Unter-
brechungen ergeben.

• Die Eigenschaften der Daten gehen beim Datenaustausch mit anderen Pro-
grammen oder Systemkomponenten nicht verloren oder müssen getrennt von
den Daten übermittelt werden, d. h. es können sich auch hier keine Inkonsi-
stenzen ergeben.

Abbildung 3.25: Verschiebung sequentieller Prüfungen in die Hardware

Der wesentliche Nachteil der Nutzung von Kennungen in den Datenspeicherele-
menten ist der erhöhte Speicherbedarf, der sich durch die größeren Datenspeicher-
elemente ergibt. In der Vergangenheit mag dieser „verschwenderische Umgang mit

109

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

3 Stand von Wissenschaft und Technik

Speicher“ aufgrund der kleinen verfügbaren Speichergrößen und des hohen Prei-
ses noch Relevanz gehabt haben. Jedoch kann ein solches Argument angesichts der
heute verfügbaren Speicherkapazitäten zu immer geringeren Preisen keinen Bestand
mehr haben. Der Vorteil, Fehler

• mit einfachsten Mitteln,

• zum frühestmöglichen Zeitpunkt, idealerweise bei deren Entstehung,

• in großem Umfang auch in einkanaligen Systemen

erkennen zu können, wiegt den Zusatzbedarf an Speicher auf.

110

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine
Datenspezifikationsarchitektur

In diesem Kapitel wird eine neuartige Mikroprozessorarchitektur vorgestellt, die
aufgrund ihrer umfassenden hardwareverständlichen Spezifikation von Dateneigen-
schaften als

Datenspezifikationsarchitektur

bezeichnet wird und datenflussbezogene Fehlervermeidung und -erkennung in einem
deutlich höheren Ausmaß als bisher bekannte Architekturen bietet.

In diesem Kapitel wird zunächst der Systemaufbau eines auf den Merkmalen einer
Datenspezifikationsarchitektur DSA basierenden Systems vorgestellt. Dazu wird die
grundlegende Struktur technischer Prozesse mit konventionellen und intelligenten
Sensoren betrachtet und darauf aufbauend ein DSA-System ohne und mit Ein-
satz von Redundanz beschrieben. Es folgt die Sammlung von Eigenschaften von
in sicherheitsgerichteten Echtzeitsystemen erzeugten, verarbeiteten und genutzten
Daten. Anschließend wird erläutert, wie diese in Form von Kennungen den Daten
untrennbar hinzugefügt werden und welche Fehler- und Angriffsarten damit erkannt
werden können. Die vorgestellten Kennungen werden dann nochmals übersichtlich
zusammengefasst. Die Pseudocodeauflistung einer einfachen Instruktion zeigt den
Umfang der durch die Hardware durchgeführten Prüfungen. Weitere Inhalte des Ka-
pitels sind die Beschreibung von Anforderungen, die an die einzelnen Komponenten
eines DSA-Systems gestellt werden, die Konfiguration der Systemkomponenten und
die Vorstellung von Anforderungen an Begutachtungen und Audits, z. B. im Zuge
von Zertifizierungsmaßnahmen.

111

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.1 Systemaufbau und Fehlerbehandlung

In diesem Unterkapitel wird zunächst der grundlegende Systemaufbau eines tech-
nischen Prozesses gezeigt, um anschließend den Aufbau eines die Merkmale einer
Datenspezifikationsarchitektur DSA nutzenden Systems vorzustellen. Dabei wird
ebenfalls erläutert, wie in den entsprechenden Systemen Fehler erkannt und behan-
delt werden können.

4.1.1 Grundlegender Systemaufbau technischer Prozesse

Zum Verständnis der Darstellungen und Erläuterungen in dieser Arbeit soll an
dieser Stelle noch einmal ein technischer Prozess – gleich welcher Art, ob chemischer
Prozess oder Steuerung der Bremse in einem Fahrzeug – ganz allgemein vorgestellt
werden. In Abbildung 4.1 wird die Grundstruktur eines solchen Prozesses gezeigt.

Abbildung 4.1: Technischer Prozess mit herkömmlichen Sensoren

112

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.1 Systemaufbau und Fehlerbehandlung

Auf der linken Seite ist der eigentliche technische Prozess symbolisch dargestellt.
In diesen sind Sensoren eingebracht, die bestimmte Größen des Prozesses erfassen,
in ein analoges Spannungs- oder Stromsignal umwandeln und an die Datenverar-
beitungseinheit oder mehrere dieser Einheiten weiterleiten. Bei der Verarbeitung
der Sensordaten werden Stellgrößen berechnet, die anschließend an die Aktoren
weitergeleitet werden, die dadurch den technischen Prozess beeinflussen. In sicher-
heitsgerichteten Anwendungen werden die Aktorausgaben – wie in der Abbildung
gezeigt – zurückgelesen, um sie mit der vorgegebenen Stellgröße zu vergleichen und
somit Fehlfunktionen der Aktoren aufdecken zu können.

Heutzutage kommen immer häufiger sogenannte intelligente Sensoren zum Einsatz
[105]. Diese beinhalten neben der Messgrößenerfassung und -umwandlung gleichzei-
tig eine Mikroprozessoreinheit, die eine Vorverarbeitung der Daten vornimmt und
diese über störsichere digitale Kommunikationsverbindungen wie z. B. Feldbusse an
die Datenverarbeitungseinheiten übermittelt [105]. Damit erübrigen sich die meisten
störanfälligen analogen Signalleitungen und es ergibt sich der in Abbildung 4.2 dar-
gestellte Systemaufbau. Die erfassten Sensorsignale, die Stellgrößen für die Aktoren
und ggf. auch die zurückgelesenen Aktorausgaben werden dabei über eine einzige
Feldbusleitung übertragen.

Im Allgemeinen werden die Prozessgrößen zyklisch erfasst und ausgewertet, ebenso
werden die Stellgrößen zyklisch an die Aktoren übermittelt. Während konventionelle
Sensoren ihre analogen Ausgangsgrößen kontinuierlich den Datenverarbeitungsein-
heiten oder externer Peripherie zur Verfügung stellen und diese dann zyklisch eine
Analog-Digitalwandlung vornehmen, können intelligente Sensoren ihre Messgrößen
direkt zyklisch erfassen und z. B. über einen Feldbus den Datenverarbeitungseinhei-
ten zur Verfügung stellen.

4.1.2 Aufbau eines auf einer Datenspezifikationsarchitektur
basierenden Systems

Je nachdem, ob ein technischer Prozess einen sicheren Zustand besitzt, und den
jeweiligen Anforderungen an die Verfügbarkeit des Systems, kann dessen Auslegung
ein- oder mehrkanalig erfolgen, z. B. durch Anwendung geeigneter Redundanzmaß-
nahmen. Für beide Fälle werden in den beiden folgenden Unterkapiteln exemplari-
sche Systemaufbauten vorgestellt.

113

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.2: Technischer Prozess mit intelligenten Sensoren

4.1.2.1 Systemaufbau ohne Redundanz

In Abbildung 4.3 wird der Aufbau eines auf den Merkmalen einer Datenspezifikati-
onsarchitektur DSA aufbauenden Systems gezeigt.

An den technischen Prozess – links im Bild – sind diverse intelligente Sensoren
und Aktoren angeschlossen. Die Sensoren sind mit der Datenverarbeitungseinheit
DVE verbunden und senden ihre Sensorsignale an diese. Zeitgleich übermitteln sie
ein Lebenszeichen LZ an die DVE, anhand dessen diese die fehlerfreie Funktion des
jeweiligen Sensors erkennen kann. Stellt ein Sensor einen Fehler fest, so stellt er um-
gehend die Generierung des Lebenszeichens ein. Die DVE erkennt diesen Zustand
und kann entsprechend reagieren, indem sie den Betrieb basierend auf den verblei-
benden Sensoren fortsetzt oder den Übergang in einen sicheren Zustand auslöst. Die
DVE verarbeitet die empfangenen Sensorsignale zu Steuersignalen für die Aktoren
und reicht diese an die ausfallsicherheitsgerichtet gestaltete Systemüberwachungs-
einheit SÜE weiter, die diese an die Aktoren weiterleitet und die von den Aktoren
zurückgelesenen Steuersignale auswertet. Die SÜE empfängt und überwacht weiter-
hin Lebenszeichen von der DVE und den Aktoren. Stellt sie einen Fehlerzustand
innerhalb des Systems fest, da

114

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.1 Systemaufbau und Fehlerbehandlung

Abbildung 4.3: Aufbau eines DSA-Systems ohne Redundanz

115

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

• ein rückgelesenes Steuersignal nicht mit dem gesendeten übereinstimmt oder

• ein Aktor bzw. die Datenverarbeitungseinheit kein Lebenszeichen mehr gene-
riert,

so kann die SÜE den Übergang in und das Halten eines sicheren Zustands auslösen,
indem sie entsprechende Steuersignale an die Aktoren sendet.

Über Rücksetzsignale R kann die SÜE die Aktoren und die DVE beim Systemstart
oder im Fehlerfall zurücksetzen. Die DVE gibt dieses Signal an die angeschlossenen
Sensoren weiter.

4.1.2.2 Systemaufbau mit Redundanz

Besitzt ein technischer Prozess keinen sicheren Zustand oder es bestehen anderweiti-
ge erhöhte Anforderungen an die Verfügbarkeit des jeweiligen Systems, so ist dieses
mit hinreichenden Redundanzmaßnahmen auszulegen. Ein entsprechendes System
mit n-facher Redundanz, also mit n Datenverarbeitungseinheiten DVE 1 bis n, wird
in Abbildung 4.4 gezeigt. Dabei ist zu beachten, dass ohne den Einsatz sinnvol-
ler Diversitätsarten ein Ausfall mehrerer Datenverarbeitungseinheiten aufgrund der
gleichen Fehlerursache droht, wie es z. B. bei der Ariane 5 der Fall war, wie in
Kapitel 1.1.1 beschrieben.

In dem dargestellten redundanten System vergleicht die Systemüberwachungsein-
heit SÜE die von den Datenverarbeitungseinheiten DVE 1 bis DVE n gelieferten
Steuersignale S miteinander und kann im Falle von Abweichungen entweder – sofern
vorhanden – den Wechsel in und das Halten eines sicheren Zustands auslösen oder
den Betrieb auf Basis eines Mehrheitsentscheides fortsetzen. Weiterhin überwacht
die SÜE die Lebenszeichen LZ der einzelnen DVE, um bei deren Ausbleiben ähnli-
che Schritte wie bei Abweichungen der Steuersignale einzuleiten. Die überstimmte
Einheit oder überstimmten Einheiten bzw. die Einheit oder die Einheiten, die kein
LZ mehr generieren, da sie einen Fehler festgestellt haben, können u. U. mit Hilfe
des Rücksetzsignals R neu gestartet werden, um die vollständige Funktionalität des
Systems wiederherzustellen.

4.1.3 Fehlerbehandlung in einer Datenspezifikationsarchitektur

Die Behandlung erkannter Fehler in einer Datenspezifikationsarchitektur wird in
diesem Unterkapitel erläutert. Dabei wird zwischen Fehlern, die bei der Verarbei-
tung der Daten erkannt werden, und typischen Übertragungsfehlern unterschieden,

116

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.1 Systemaufbau und Fehlerbehandlung

Abbildung 4.4: Aufbau eines DSA-Systems mit n-facher Redundanz

117

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

da letztere vergleichsweise häufig auftreten und entsprechend toleriert werden müs-
sen.

4.1.3.1 Behandlung von bei der Datenverarbeitung erkannten Fehlern

Wird ein Fehler innerhalb einer Systemkomponente erkannt, so wird ein Ausnah-
mefehler generiert. In konventionellen Architekturen wird daraufhin in der Regel
eine Softwarebehandlungsroutine für die betreffende Fehlerart aufgerufen und die
Behandlung des Fehlers damit der Software überlassen. Bei der in Kapitel 3.7 vorge-
stellten inhärent sicheren Mikroprozessorarchitektur ISMA [125] wird bei der Gene-
rierung eines Ausnahmefehlers hingegen die Programmausführung abgebrochen und
die Erzeugung des Lebenszeichensignals eingestellt. Die übergeordnete Systemüber-
wachungseinheit erkennt durch Beobachtung des Lebenszeichens oder der Lebens-
zeichen Ausfälle der überwachten Datenverarbeitungseinheiten und kann dann – je
nach Systemaufbau – den Wechsel in und das Halten eines sicheren Zustands her-
beiführen oder den Betrieb des Systems basierend auf den eventuell verbleibenden
redundanten Datenverarbeitungseinheiten aufrechterhalten.

Eine entsprechende Reaktion auf erkannte Fehler soll auch ein auf den Merkmalen
einer Datenspezifikationsarchitektur basierendes System aufweisen. Dabei stellen
die Datenverarbeitungseinheiten die Erzeugung ihres Lebenszeichensignals neben
der Erkennung von Fehlern auch dann ein, wenn das Lebenszeichen eines der ange-
schlossenen Sensoren ausbleibt.

Bei der Beschreibung der Fehlererkennungsmechanismen der in dieser Arbeit vorge-
stellten Datenspezifikationsarchitektur wird jeweils angegeben, unter welchen Um-
ständen ein Ausnahmefehler generiert wird, der die beschriebene Fehlerbehandlung
nach sich zieht.

4.1.3.2 Behandlung von Übertragungsfehlern

Bei der Übertragung von Daten können diese durch Fehler und Störungseinflüsse
verfälscht werden. Ein Merkmal für die Qualität der Übertragung bzw. der Über-
tragungsstrecke ist dabei die sogenannte Bitfehlerrate – engl. „bit error rate BER“
–, die sich aus der Anzahl der fehlerhaften Bits einer übertragenen Menge an Bits
nach

BER = Anzahl fehlerhaft übertragener Bits
Gesamtzahl der übertragenen Bits

118

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.2 Sammlung relevanter Dateneigenschaften

berechnet [64]. Auf durch entsprechende Fehlererkennungsmaßnahmen erkannte Da-
tenübertragungsfehler auf den Kommunikationsstrecken

• zwischen den Sensoren und den Datenverarbeitungseinheiten DVE,

• zwischen verschiedenen Datenverarbeitungseinheiten DVE,

• zwischen Datenverarbeitungseinheiten DVE und der Systemüberwachungsein-
heit SÜE und

• zwischen der Systemüberwachungseinheit SÜE und den Aktoren

könnte ebenfalls mit der Generierung eines Ausnahmefehlers reagiert und das Sy-
stem – sofern vorhanden – in einen sicheren Zustand gebracht werden. Da Bitfehler
bei der Übertragung von Daten über Kommunikationsleitungen jedoch verhältnis-
mäßig häufig auftreten, wie sich an den aus [64] entnommenen Angaben in Tabel-
le 4.1 erkennen lässt, hätte dies äußerst ungünstige Auswirkungen auf die Verfügbar-
keit des betroffenen Systems. Sinnvoller ist es daher, dem Sender der als fehlerhaft
identifizierten empfangenen Daten die fehlerhafte Übertragung mitzuteilen und ein
erneutes Senden der betroffenen Daten anzufordern.

Tabelle 4.1: Typische Bitfehlerraten nach [64]

Übertragungsmedium Typische Bitfehlerrate

Analoge Fernsprechleitungen 10−5

Digitale Übertragungsleitungen 10−6 bis 10−7

Koaxialkabel 10−9

Glasfaserkabel 10−12

4.2 Sammlung relevanter Dateneigenschaften

In den gängigen Architekturen werden Daten meist einzig durch den Datenwert re-
präsentiert. Alle weiteren Eigenschaften der Datenwerte ergeben sich nur implizit
durch die Art des Zugriffs und der Verwendung. Eine Ausnahme bilden hier die

119

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

großteils in Vergessenheit geratenen Datentyp-, -struktur- und Befähigungsarchi-
tekturen, die weitere Dateneigenschaften untrennbar mit den Daten verbinden und
auf diese Weise sehr einfache und leistungsfähige hardwarebasierte Fehlererkennung
ermöglichen. Aber selbst diese Architekturen spezifizieren nur wenige Eigenschaften
der Daten, wie Datentyp und Zugriffsrechte. Entsprechend wenige datenflussbezo-
gene Fehler- und Angriffsarten lassen sich mit dem Stand von Wissenschaft und
Technik erkennen, wie die Auswertung in Kapitel 3.12 gezeigt hat.

Dabei gibt es wesentlich mehr Dateneigenschaften, die es zu berücksichtigen gilt.
Tritt man einen Schritt zurück und löst sich von den bekannten Ansätzen und Me-
chanismen, dann lassen sich die folgenden Eigenschaften von Datenwerten identifi-
zieren, die im Besonderen bei sicherheitsgerichteten Echtzeitsystemen eine wichtige
Rolle spielen:

• der Datenwert W,

• die Genauigkeit GE des Datenwerts W, da jeder Messwert einer entsprechen-
den Messunsicherheit unterliegt,

• der Wertebereich WB, innerhalb dessen sich der Datenwert W befinden darf,

• der Datentyp DT des Datenwerts, der das Format bzw. die Darstellung von
W und WB spezifiziert,

• die Einheit EI des Datenwerts W, angegeben in vorzeichenbehafteten Potenzen
der SI-Basiseinheiten,

• die Zugriffsrechte ZR auf das Datenspeicherelement, die Lesbarkeit, Schreib-
barkeit und Rechtebesitzer identifizieren,

• der Initialisierungsstatus IS, anhand dessen geprüft werden kann, ob das Da-
tenspeicherelement lesbare Daten enthält, also initialisiert ist,

• die Herkunft bzw. Quelle Q eines Datenwerts, also die Aussage darüber, wer
die Daten erzeugt hat, z. B. welcher Sensor,

• der Verarbeitungsweg VW, der spezifiziert, welche Verarbeitungseinheiten oder
Programmteile ein Datenwert durchlaufen darf,

• das Ziel oder die Ziele Z, also die Angabe, welche Senke oder welche Senken die
Datenwerte nach ihrer Verarbeitung schlussendlich entgegennehmen werden,
z. B. ein Aktor oder mehrere Aktoren,

• den diskreten Entstehungszeitpunkt bzw. Zeitschritt ZS, z. B. die Nummer
eines diskreten Abtastzeitpunkts,

120

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.2 Sammlung relevanter Dateneigenschaften

• die Frist FR, also der Zeitpunkt, bis zu der die Daten zur Verarbeitung ver-
wendet werden dürfen,

• die Zykluszeit ZY, bestehend aus einem frühesten und einem spätesten zulässi-
gen Zeitpunkt, innerhalb derer zyklisch erzeugte Daten des nächsten diskreten
Zeitschritts in der Verarbeitungseinheit oder Senke zur Verfügung stehen müs-
sen,

• die Adresse oder ein Identifikator der Daten AD zur Erkennung von Adressie-
rungsfehlern,

• die Integritätsprüfung IP, anhand derer geprüft werden kann, ob die Daten
korrekt übertragen und verarbeitet wurden, z. B. durch entsprechende Fehler-
erkennungskodierung und

• die kryptographische Signatur S, die die Prüfung der Authentizität des Daten-
speicherelements erlaubt.

Wie bereits im Einführungskapitel erwähnt, wird Iliffe in [37] von Feustel dahinge-
hend zitiert, dass die Eigenschaften von Datenfeldern explizit und untrennbar von
den eigentlichen Daten in den Feldern selbst enthalten sein sollen, anstatt durch die
Art des Zugriffs auf die Felder und die Verwendung der enthaltenen Daten impli-
ziert zu werden. Auch wenn sich diese Anforderung zunächst nur auf die Datentypen
und die Anzahl der Elemente innerhalb von Datenfeldern bezog, soll sie jedoch zu
dem folgenden zentralen Entwurfsparadigma für eine Datenspezifikationsarchitek-
tur verallgemeinert werden:

Alle ein Datenspeicherelement beschreibenden Eigenschaften sollen untrennbar
mit diesem verknüpft, gespeichert, übertragen, verarbeitet und in einer
hardwareverständlichen und -überprüfbaren Form dargestellt werden.

Diesem Ansatz folgend, ergibt sich somit für ein Datenspeicherelement, welches in
einer Datenspezifikationsarchitektur DSA neben dem Datenwert W auch Angaben
zu den genannten weiteren Dateneigenschaften enthält, die folgende Tupeldarstel-
lung:

D := (W, GE, WB, DT, EI, ZR, IS, Q, VW, Z, ZS, FR, ZY, AD, IP, S)

Im Verlauf dieser Arbeit werden an einigen Stellen Optimierungen der Dateneigen-
schaften vorgenommen und z. B. bestimmte Eigenschaften zusammengefasst. Ein

121

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Beispiel dafür ist die in der IEC 61508-2 [51] vorgeschlagene Integration der Daten-
adresse AD in die Integritätsprüfung IP, wodurch dedizierte AD-Kennungen unnötig
werden und Adressierungsfehler trotzdem zuverlässig aufdeckbar sind.

4.3 Realisierung der Datenflussüberwachung

Im Folgenden soll aufgezeigt werden, auf welche Weise eine entsprechend gestalte-
te Datenspezifikationsarchitektur den Datenfluss innerhalb eines gesamten Systems
anhand der identifizierten Dateneigenschaften überwachen kann. Besonders wichtig
ist es dabei, Systemkomponenten nicht als unabhängige Subsysteme zu betrachten
und isoliert zu spezifizieren, sondern das System als große Einheit zu sehen, inner-
halb derer die Datenflüsse einen vorher festgelegten Pfad – z. B. von den Sensoren
durch eine oder mehrere Datenverarbeitungseinheiten bis hin zu den Aktoren –
durchlaufen sollen. Wieso sollte nicht bereits ein intelligenter Sensor einen von ihm
gelieferten Datenwert mit einer entsprechenden Markierung versehen, die angibt,
welcher „Endkunde“ – also z. B. ein Aktor – die Daten schlussendlich nach ihrer
Verarbeitung entgegennehmen wird?

Bevor die Einbettung der einzelnen Dateneigenschaften in den Datenspeicherele-
menten vorgestellt wird, soll zunächst erläutert werden, wie diese im Einzelnen
beschrieben werden.

4.3.1 Einleitende Erläuterungen

Zum besseren Verständnis der folgenden Unterkapitel sollen an dieser Stelle zu-
nächst die Gliederung der Vorstellung der einzelnen Dateneigenschaften und die
Darstellung der Kennungen und ggf. vorhandener Teilkennungen in den Daten- und
Befehlsspeicherelementen erläutert werden. Anschließend wird erklärt, wie die Pseu-
docodeauflistungen aufgebaut sind, die zur Veranschaulichung von Prüfungen durch
die Hardware und der Funktionalität von Befehlen genutzt wird. Weiterhin wird der
in ISMA [125] geprägte Begriff der Formatierung von Datenspeicherelementen und
dessen Relevanz im Rahmen dieser Arbeit umrissen.

4.3.1.1 Gliederung der Vorstellungen

Die identifizierten Eigenschaften der Daten in sicherheitsgerichteten Echtzeitsy-
stemen, die in den Datenspeicherelementen explizit in hardwareles-, -prüf- und

122

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

-verarbeitbaren Kennungen abgelegt werden sollen, werden in den folgenden Unter-
kapiteln detailliert vorgestellt. Einige Eigenschaften werden dabei in einer Kennung
zusammengefasst. Die Erläuterungen gliedern sich in

• eine Kurzbeschreibung der Dateneigenschaft bzw. der Dateneigenschaften,

• die Abbildung der Eigenschaft oder der Eigenschaften in einer Kennung inner-
halb eines Datenspeicherelements und der eventuell dazugehörigen Kennung
innerhalb eines Befehlsspeicherelements und speziellen Registern,

• die unter Nutzung der jeweiligen Kennung durchgeführten Prüfungen zur Feh-
lererkennung,

• die Erläuterung, wie die Inhalte der vorgestellten Kennung von Ergebnissen
von Operationen ermittelt und gesetzt werden,

• die zur Verwaltung der entsprechenden Kennung vorgesehenen Befehle,

• die Präsentation von Anwendungsbeispielen zur Veranschaulichung der Ver-
wendung der Kennung zur Fehlererkennung,

• die Vorstellung existierender Möglichkeiten oder alternativer bzw. neuer Vor-
schläge zur Spezifikation der Dateneigenschaft oder Dateneigenschaften in
Hochsprachen und

• die Evaluation der auf Basis der Kennung und der vorgestellten Prüfungen
erkennbaren Fehler- und Angriffsarten aus Kapitel 2.4,

wobei nicht alle aufgeführten Gliederungspunkte bei allen Kennungen vorhanden
sind.

4.3.1.2 Darstellung der Kennungen in Daten- und
Befehlsspeicherelementen

Eine Kennung wird in den Erläuterungen in dem in Abbildung 4.5 gezeigten For-
mat vorgestellt. Dabei wird der Kennungsname – im Beispiel AB – innerhalb der
Kennung angegeben.

Einige der Kennungen sind in mehrere Teilkennungen untergliedert, wie in Abbil-
dung 4.6 dargestellt. Im Falle des Beispiels wären das die Teilkennungen AB, CD
und EF. Der Name der ersten Teilkennung stimmt absichtlich mit dem Namen der
Gesamtkennung überein, da dies bei manchen Kennungen vorkommt.

123

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.5: Beispielkennung AB in einem Datenspeicherelement

Abbildung 4.6: Aufbau der Beispielkennung AB im Datenspeicherelement

Die Kennungen innerhalb von Befehlsspeicherelementen werden identisch zu jenen
der Datenspeicherelemente dargestellt, wie in Abbildung 4.7 gezeigt. Im Beispiel
wurde der zur Beispielkennung AB im Datenspeicherelement identische Name AB
für die Beispielkennung gewählt, da beide Kennungen zusammenhängen.

Abbildung 4.7: Beispielkennung AB in einem Befehlsspeicherelement

Auch die Kennungen innerhalb von Befehlsspeicherelementen können in Teilken-
nungen unterteilt sein. Im in Abbildung 4.8 dargestellten Beispiel sind dies die
Teilkennungen XY und ZA.

Im Text wird die Kennung mit ihrem Namen gefolgt von ihrer Abkürzung genannt.
In formalen Darstellungen wird nur die Abkürzung genutzt.

4.3.1.3 Nutzung von Pseudocode zur Veranschaulichung der Funktion von
Prüfungen und Befehlen

Die Vorstellungen der durchgeführten Prüfungen und der Befehle zur Verwaltung
der Kennungen werden zum besseren Verständnis durch Auflistungen in Pseudoco-
de ergänzt. Prüfungen, die die Hardware bei Zugriffen auf Datenspeicherelemente
durchführt, werden mit dem Namen der Prüfung eingeleitet, wie in der folgenden
Auflistung gezeigt.

124

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.8: Aufbau der Beispielkennung AB im Befehlsspeicherelement

Prüfung_<Name der Prüfung> :=

<Auflistung der durchgeführten Prüfungen>

Werden Kennungen des Ergebnisses einer Operation durch diese auf bestimmte
Werte gesetzt, so kommen zur Veranschaulichung ebenfalls Pseudocodeauflistungen
zum Einsatz.

Setzen_<Name der Kennung>_in_Ergebnis :=

<Erläuterung des Setzens der entsprechenden Kennung>

Die Beschreibung von Befehlen beginnt mit der Abkürzung des Befehls und einer
Auflistung der Namen seiner Operanden.

<Befehlsname> <Operandennamen> :=

<Erläuterung der Funktionalität>

Die bei einer Prüfung einbezogenen Datenspeicherelemente werden – je nach Art des
Zugriffs – als „Quelle“ oder „Ergebnis“ bezeichnet, während bei der Beschreibung
eines Befehls die jeweiligen Operandenbezeichnungen verwendet werden. Weiterhin
bezeichnet „Ergebnis“ ebenfalls die Ergebnisse von durchgeführten Operationen, die
die arithmetisch-logische Einheit ALE aus den Operanden berechnet hat.

Zur einfachen Beschreibung der durchgeführten Prüfungen und Befehle werden ver-
schiedene Funktionen definiert. Diese sind:

• W([<Operandenname>]) liefert den Datenwert W des Operanden zurück,

• <Kennungsname>([<Operandenname>]) liefert den Inhalt der angegebenen
Kennung des Operanden zurück,

125

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

• <Kennungsname>.<Teilkennungsname>([<Operandenname>]) liefert den
Inhalt der angegebenen Teilkennung des Operanden zurück und

• [<Operandenname>] liefert den gesamten Inhalt eines Datenspeicherelements
zurück, was z. B. im Zuge der Integritätsprüfung genutzt wird.

Die beschriebenen Funktionen können auch zum Referenzieren der Kennungen bzw.
deren Teilkennungen innerhalb der Befehlsspeicherelemente verwendet werden. Dies
wird durch

• <Kennungsname>([Befehl]) bzw.

• <Kennungsname>.<Teilkennungsname>([Befehl])

dargestellt. Neben Kennungen in Daten- und Befehlsspeicherelementen kommen zur
Fehlererkennung bei der Abbildung von Dateneigenschaften auch spezielle Register
zum Einsatz. Diese werden im Pseudocode analog zu den Kennungen verwendet,
wobei

• [<Registername>] den gesamten Inhalt des referenzierten Registers und

• [<Registername>.<Teilregistername>] den Inhalt des spezifizierten Teil-
registers

zurückliefern.

Zuweisungen werden durch die Nutzung des Zuweisungsoperators „:=“ gekennzeich-
net:

• W([<Operandenname>]) := x setzt den Datenwert W des angegebenen Ope-
randen auf den Wert x,

• <Kennungsname>([<Operandenname>]) := y setzt den Inhalt der angege-
benen Kennung auf den Wert y,

• <Kennungsname>.<Teilkennungsname>([<Operandenname>]) := z setzt
den Inhalt der angegebenen Teilkennung auf den Wert z,

• [<Operandenname_1>] := [<Operandenname_2>] überträgt sämtliche In-
halte von einem in den anderen Operanden,

• [<Registername>] := a weist dem angegebenen Register den Wert a zu und

• [<Registername>.<Teilregistername>] := b legt den Wert b im spezi-
fizierten Teilregister ab.

126

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Die beschriebene Art der Darstellung von Prüfungen und Befehlen mit der Nutzung
der Kennungen von Operanden und Befehlen werden in den zwei folgenden Aufli-
stungen gezeigt. Stellt die Hardware bei der Ausführung einer Prüfung oder eines
Befehls einen Fehler fest, so wird ein Ausnahmefehler generiert, in den Auflistungen
dargestellt durch „Generierung_Ausnahmefehler“.

Bei der Prüfung Prüfung_Beispiel wird die Einhaltung verschiedener Bedingungen
verifiziert. Die Inhalte der Teilkennungen AB.AB, AB.CD und AB.EF des Quellda-
tenspeicherelements müssen in vorgegebenen Beziehungen zueinander stehen. Stellt
die Hardware fest, dass eine der Bedingungen nicht eingehalten wird, so wird ein
Ausnahmefehler generiert.

Prüfung_Beispiel :=

WENN AB.AB([Quelle]) �= AB.CD([Quelle]) DANN
Generierung_Ausnahmefehler;

SONST
WENN AB.CD([Quelle]) > AB.EF([Quelle]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

Der Befehl XYZ besitzt die drei Operanden A, B und C und die Kennung AB, die
die Teilkennungen XY und ZA enthält.

XYZ A, B, C :=

WENN AB.AB([A]) < AB.CD([B]) ∨ AB.EF([B]) > AB.XY([Befehl]) DANN
Generierung_Ausnahmefehler;

SONST
W([C]) := W([A]) + W([B]);
AB.AB([C]) := AB.AB([A]) + AB.AB([B]);

ENDEWENN

Vor der Ausführung der eigentlichen Funktion des Befehls XYZ, werden verschiedene
Prüfungen der Inhalte der Teilkennungen der drei Operanden und einer Teilkennung
des Befehls vorgenommen. Schlägt eine der Prüfungen fehl, so wird ein Ausnahme-
fehler generiert. Ansonsten wird dem Datenwert von C die Summe der Datenwerte

127

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

von A und B zugewiesen. Zusätzlich wird die Teilkennung AB.AB von C auf die
Summe der Inhalte der Teilkennungen AB.AB der Operanden A und B gesetzt.

Neben gängigen mathematischen Operatoren kommen in den Pseudocodeauflistun-
gen auch die logischen Operationen

• bitweise Disjunktion, dargestellt durch „ODER“,

• bitweise Konjunktion, dargestellt durch „UND“ und

• bitweise Antivalenz, dargestellt durch „EXODER“

vor.

4.3.1.4 Begriff der Formatierung von Speicherelementen

ISMA [125] versieht alle Datenspeicherelemente, die durch ein Programm genutzt
werden sollen, beim Programmstart mit einer Ausgangskonfiguration, bei der z. B.
der Datentyp DT auf „undefiniert“ und der Initialisierungsstatusbeschreiber IS auf
0, also „nicht initialisiert“, gesetzt werden. Damit kann sichergestellt werden, dass
die Datenspeicherelemente zu jedem Zeitpunkt verwertbare Informationen enthalten
und nicht z. B. nach einem Neustart Werte des letzten Programmablaufs oder gar
zufällige Werte enthalten. Dieser Vorgang des Setzens einer Ausgangskonfiguration
wird bei ISMA Formatierung genannt.

Im Gegensatz zu konventionellen Architekturen, bei denen Zieldatenspeicherele-
mente keinerlei Prüfungen vor der Wertzuweisung unterzogen werden – es werden
höchstens die Zugriffsberechtigungen anhand der Adresse durch Segmentierung oder
Seitenverwaltung geprüft –, können bei formatierten Zieldatenspeicherelementen zu-
sätzliche Prüfungen durch die Hardware einer Datenspezifikationsarchitektur vor-
genommen werden. Ein gutes Beispiel dafür ist die Prüfung, ob das Ergebnis einer
Operation innerhalb des Wertebereichs des Zieldatenspeicherelements liegt.

Diese Möglichkeit der Durchführung weiterer Prüfungen im Rahmen von Zuweisun-
gen soll auch innerhalb der Datenspezifikationsarchitektur verwendet werden.

4.3.2 Datenwert und dessen Genauigkeit

Die in technischen Prozessen erfassten Prozessgrößen unterliegen stets einer gewis-
sen Messunsicherheit [117]. Daher ist davon auszugehen, dass die von Sensoren zur

128

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Verfügung gestellten Datenwerte W eine bestimmte Genauigkeit GE aufweisen und
die Genauigkeit eine grundlegende Eigenschaft dieser Datenwerte darstellt.

Nach [117] wird ein Messwert x durch

x = xBest ± δx

dargestellt, wobei xBest als „Bestwert“ oder „bester Schätzwert“ bezeichnet wird
und δx den absoluten Fehler der Messung spezifiziert. Der Fehler der Messung kann
auch in relativer Form als

δx

|xBest|

angegeben werden.

4.3.2.1 Realisierung des Datenwerts W

Statt – wie bei konventionellen Architekturen üblich – einen Datenwert W als ein-
zelne Zahl anzugeben, soll dieser in einer Datenspezifikationsarchitektur DSA als
Intervall formuliert werden, welches die Genauigkeit des Werts durch die Intervall-
grenzen abbildet. Diese ergeben sich durch das Addieren bzw. Subtrahieren des
absoluten Fehlers δx vom Bestwert xBest.

Damit ergibt sich für den Datenwert W die Darstellung

W := (Wmin,Wmax),

wobei Wmin und Wmax die Intervallgrenzen definieren und somit die Genauigkeit
des Datenwerts wiedergeben. In den Datenspeicherelementen wird der Datenwert
im Datenwertfeld W spezifiziert, wie in Abbildung 4.9 dargestellt. Zusätzlich ist die
Datentypkennung angedeutet, die den Aufbau und den Datentyp der im Datenwert-
feld W enthaltenen Datenwerte angibt. Details zur Datentypkennung DT werden im
Kapitel 4.3.4 erläutert. An dieser Stelle reicht jedoch das Wissen über deren grobe
Bedeutung aus.

Konventionelle Datentypen, die keiner Messunsicherheit unterliegen und deren Da-
tenwert nicht als Intervall, sondern als einzelner Datenwert gespeichert werden,
nutzen nur die unteren 64 Bit des Datenwertfelds W, wie in Abbildung 4.10. Die
oberen 64 Bit sind reserviert und sollen – dem Vorbild von ISMA [125] folgend –
mit einem alternierenden Bitmuster gefüllt werden.

129

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.9: Datenwertfeld W in Datenspeicherelementen

Abbildung 4.10: Aufbau des Datenwertfelds W bei konventionellen Datentypen

Bei Messdatentypen wird der Datenwert in Form eines Intervalls angegeben, wo-
für im Datenwertfeld W die beiden Intervallgrenzen Wmin und Wmax spezifiziert
werden. Abbildung 4.11 veranschaulicht den sich dadurch ergebenden Aufbau des
Datenwertfelds W.

Abbildung 4.11: Aufbau des Datenwertfelds W bei Messwertdatentypen

In Tabelle 4.2 werden die vorzeichenlosen und -behafteten Ganzzahldatentypen, so-
wie die Gleitkommadatentypen mit einfacher und doppelter Genauigkeit von ISMA
[125] gezeigt. Aus Platzgründen werden dabei die verschiedenen Bitbreiten einer
Datentypart in einer Zeile zusammengefasst. In der letzten Spalte sind die Kürzel
der zugehörigen Messwertdatentypen aufgeführt. So ist z. B. der zum konventionel-
len Ganzzahldatentyp GZ8 mit 8 Bit Breite äquivalente Messwertdatentyp dabei
GZM8, wobei die beiden Intervallgrenzen jeweils im Wertebereich zwischen 0 und
28-1 liegen können.

4.3.2.2 Arithmetische Operationen mit Messwertdatentypen

Operationen von Operanden, die nicht aus der Menge der Messwertdatentypen
stammen und somit keiner Messunsicherheit unterworfen sind, werden auf gewohn-
te Weise berechnet. Sind an einer Operation jedoch Messwertdatentypen beteiligt,
gelten die Verarbeitungsregeln der Intervallarithmetik, die in den folgenden Unter-
kapiteln kurz vorgestellt werden und auf [65] basieren. Details zu Optimierungs-

130

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Tabelle 4.2: Konventionelle und Messwertdatentypen

Datentyp Bitbreite Erläuterung
zugehöriger

Messwertdaten-
typ

GZ{8,16,32,64} {8,16,32,64} Ganzzahl zwischen 0
und 2{8,16,32,64}-1

GZM{8,16,32,64}

VGZ{8,16,32,64} {8,16,32,64}
Vorzeichenbehaftete
Ganzzahl zwischen
-2{7,15,31,63} und

2{7,15,31,63}-1

VGZM{8,16,32,64}

GKZ{8,16,32,64} {32,64}

Gleitkommazahl mit
{einfacher,doppelter}
Genauigkeit zwischen

±2{-126,-1022} und
±(1-2{-24,-53})·2{128,1024}

GKZM{8,16,32,64}

möglichkeiten, Rundungen und ein Vorschlag zur Hardwarerealisierung können [65]
bzw. der IEEE-Norm 1788 [57] für Intervallarithmetik entnommen werden.

4.3.2.2.1 Addition

Wird zu einem Operanden mit Messwertdatentyp ein Operand ohne Messunsicher-
heit addiert, so wird dieser jeweils auf die untere bzw. die obere Intervallgrenze
addiert, um die Intervallgrenzen des Ergebnisses zu erhalten. Aus der Berechnung
ist auch ersichtlich, dass das Ergebnis der Berechnung wiederum einen Messwert-
datentyp besitzt.

Wmin,Erg = Wmin,Quelle_1 + WQuelle_2
Wmax,Erg = Wmax,Quelle_1 + WQuelle_2

Bei der Addition zweier Operanden, die beide Messwertdatentypen besitzen, werden
jeweils die Minima und Maxima addiert, um den minimalen und den maximalen
Datenwert für das Werteintervall des Ergebnisses zu berechnen.

Wmin,Erg = Wmin,Quelle_1 + Wmin,Quelle_2
Wmax,Erg = Wmax,Quelle_1 + Wmax,Quelle_2

131

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.2.2.2 Subtraktion

Ist an einer Subtraktion ein Operand beteiligt, der keinen Messwertdatentyp besitzt,
so sind zwei Fälle zu unterscheiden, je nachdem, ob Subtrahend oder Minuend den
Messwertdatentypen entstammen. Besitzt der Minuend einen Messwertdatentyp, so
wird der Datenwert des Subtrahenden jeweils von der unteren bzw. oberen Intervall-
grenze abgezogen, um die Intervallgrenzen des Ergebnisses zu erhalten. Wie auch
bei der Addition besitzt das Ergebnis der Subtraktion einen Messwertdatentyp.

Wmin,Erg = Wmin,Quelle_1 − WQuelle_2
Wmax,Erg = Wmax,Quelle_1 − WQuelle_2

Besitzt der Subtrahend einen Messwertdatentyp, so errechnet sich die untere In-
tervallgrenze des Ergebnisses, indem vom Datenwert des Minuenden die obere In-
tervallgrenze des Subtrahenden abgezogen wird. Die obere Intervallgrenze des Er-
gebnisses entsteht durch Subtraktion der unteren Intervallgrenze des Subtrahenden
vom Datenwert des Minuenden.

Wmin,Erg = WQuelle_1 − Wmax,Quelle_2
Wmax,Erg = WQuelle_1 − Wmin,Quelle_2

Bei der Subtraktion von Operanden, die beide Messwertdatentypen besitzen, wird
zur Berechnung des minimalen Datenwerts des Ergebnisses die obere Grenze des
Subtrahenden von der unteren Intervallgrenze des Minuenden abgezogen. Der ma-
ximale Datenwert des Ergebnisses errechnet sich durch Subtraktion der unteren
Grenze des Subtrahenden von der oberen Grenze des Minuenden.

Wmin,Erg = Wmin,Quelle_1 − Wmax,Quelle_2
Wmax,Erg = Wmax,Quelle_1 − Wmin,Quelle_2

4.3.2.2.3 Multiplikation

Bei Multiplikationen wird unterschieden, ob nur einer oder beide Operanden einen
Messwertdatentyp und damit eine Intervalldarstellung besitzen, da im ersten Fall
weniger Berechnungen notwendig sind. Bei einer Multiplikation, bei der einer der
Operanden einen Messwertdatentyp besitzt, werden die Produkte der Intervallgren-
zen dieses Operanden mit dem Datenwert des zweiten Operanden multipliziert. Das

132

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

niedrigere Ergebnis wird als untere, der höhere als obere Intervallgrenze des Ergeb-
nisses genutzt.

Wmin,Erg = min(Wmin,Quelle_1 · WQuelle_2, Wmax,Quelle_1 · WQuelle_2)
Wmax,Erg = max(Wmin,Quelle_1 · WQuelle_2, Wmax,Quelle_1 · WQuelle_2)

Bei der Multiplikation zweier Operanden, die beide Messwertdatentypen besitzen,
werden die Permutationen der Intervallgrenzen der Quelloperanden gebildet und das
Minimum und das Maximum ihrer Multiplikationsergebnisse als Intervallgrenzen
des Ergebnisses genutzt.

Wmin,Erg = min(Wmin,Quelle_1 · Wmin,Quelle_2, Wmin,Quelle_1 · Wmax,Quelle_2
Wmax,Quelle_1 · Wmin,Quelle_2, Wmax,Quelle_1 · Wmax,Quelle_2)

Wmax,Erg = max(Wmin,Quelle_1 · Wmin,Quelle_2, Wmin,Quelle_1 · Wmax,Quelle_2
Wmax,Quelle_1 · Wmin,Quelle_2, Wmax,Quelle_1 · Wmax,Quelle_2)

4.3.2.2.4 Division

Auch bei der Division ist zu unterscheiden, ob nur einer der Operanden oder beide
einen Messwertdatentyp besitzen, da auch hier weniger Berechnungden notwendig
sind, wenn ein Operand keine Intervalldarstellung besitzt. Besitzt der Dividend
einen Messwertdatentyp, so werden die Divisionen der unteren bzw. oberen Inter-
vallgrenze des Dividenden durch den Datenwert des Divisors berechnet. Das niedri-
gere Ergebnis wird als untere, das höhere als obere Intervallgrenze des Ergebnisses
verwendet.

Wmin,Erg = min
⎛
⎝Wmin,Quelle_1

WQuelle_2
,
Wmax,Quelle_1

WQuelle_2

⎞
⎠

Wmax,Erg = max
⎛
⎝Wmin,Quelle_1

WQuelle_2
,
Wmax,Quelle_1

WQuelle_2

⎞
⎠

Besitzt nur der Divisor einen Messwertdatentyp, so erfolgt die Berechnung analog
zu den obigen Gleichungen.

133

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Wmin,Erg = min
⎛
⎝ WQuelle_1

Wmin,Quelle_2
,

WQuelle_1
Wmax,Quelle_2

⎞
⎠

Wmax,Erg = max
⎛
⎝ WQuelle_1

Wmin,Quelle_2
,

WQuelle_1
Wmax,Quelle_2

⎞
⎠

Wie auch bei der Multiplikation von Messwertdatentypen werden bei der Division
von zwei Messwertdatentypen besitzenden Operanden die Permutationen der Inter-
vallgrenzen der Quelloperanden gebildet und das Minimum und das Maximum ihrer
Divisionen als Intervallgrenzen des Divisionsergebnisses genutzt.

Wmin,Erg = min
⎛
⎝Wmin,Quelle_1

Wmin,Quelle_2
,

Wmin,Quelle_1
Wmax,Quelle_2

,
Wmax,Quelle_1
Wmin,Quelle_2

,
Wmax,Quelle_1
Wmax,Quelle_2

⎞
⎠

Wmax,Erg = max
⎛
⎝Wmin,Quelle_1

Wmin,Quelle_2
,

Wmin,Quelle_1
Wmax,Quelle_2

,
Wmax,Quelle_1
Wmin,Quelle_2

,
Wmax,Quelle_1
Wmax,Quelle_2

⎞
⎠

Ein grundsätzliches Problem stellt der Fall dar, dass der Divisor einen Messwert-
datentyp aufweist und im spezifizierten Werteintervall die Null enthält. Auch Ver-
gleichsoperationen erweisen sich als kompliziert. Vorschläge zur Behandlung dieser
Fälle würden den Rahmen dieser Arbeit sprengen, weshalb hier nur auf [65] und
[57] verwiesen wird.

4.3.2.3 Befehle zur Verwaltung des Datenwerts W

Neben dem Setzen des Datenwerts durch Zuweisungen ermöglicht die Angabe des
durch die Genauigkeit des Datenwerts definierten Intervalls des Datenwerts die Prü-
fung, ob der Datenwert bestimmten Anforderungen an seine Genauigkeit gerecht
wird.

Zur Prüfung, ob ein Datenwert vom Datentyp Messwert einen maximalen vorgegebe-
nen relativen Grenzfehler aufweist, kann der Befehl Prüfe Relative Genauigkeit PRG
genutzt werden. Zunächst wird geprüft, ob das durch B indizierte zu prüfende Da-
tenspeicherelement einen Messwertdatentyp besitzt. Ist dies nicht der Fall, so gilt die
zu prüfende Bedingung automatisch als erfüllt. Handelt es sich um einen Messwert in
Intervalldarstellung, so wird unterschieden, ob die Intervallgrenzen als Gleitkomma-
oder Ganzzahl formuliert sind. Bei einem gleitkommabasierten Messwertdatentyp
wird die obere Intervallgrenze mit dem durch A indizierten Gleitkommafaktor mul-
tipliziert. Bei ganzzahlbasierten Messwertdatentypen wird die obere Intervallgrenze

134

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

mit dem durch B indizierten Faktor in Festkommadarstellung multipliziert, wobei
dieser das Format Q0.(Bitbreite des Faktordatentyps) aufweist, also 0 Bit für den
Vorkommaanteil und sämtliche Bits des Festkommawerts für den Nachkommateil
genutzt werden. Das Ergebnis der jeweiligen Multiplikation definiert die kleinste zu-
lässige untere Intervallgrenze und wird mit der unteren Intervallgrenze verglichen.
Liegt diese unterhalb des Ergebnisses, wird ein Ausnahmefehler ausgelöst. Der Be-
fehl führt den Faktor also in zwei Operanden in zwei verschiedenen Darstellungen
mit sich, um die Prüfung von gleitkomma- und ganzzahlbasierten Messwertdaten-
typen ohne Datentypumwandlungen zu gestatten.

In den folgenden Pseudocodeauflistungen wird durch DT.DT() der Datentyp eines
Operanden zurückgeliefert. Die Funktion ω() liefert die Bitbreite eines Datentyps
zurück, was für die Korrektur des Ergebnisses bei der Festkommaarithmetik not-
wendig ist.

PRG A, B, C :=

WENN DT.DT([C]) ∈ Messwertdatentypen DANN
WENN DT.DT([A]) /∈ Gleitkommadatentypen DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN DT.DT([B]) /∈ Ganzzahldatentypen DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.DT([C]) ∈ gleitkommabasierte_Messwertdatentypen DANN
WENN Wmax([C]) · W([A]) > Wmin([C]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
WENN Wmax([C]) · W([B]) SHR ω(DT.DT([B])) > Wmin([C]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN
ENDEWENN

Während der Befehl Prüfe Relative Genauigkeit PRG in den meisten Anwendun-
gensfällen bevorzugt werden wird, soll ein weiterer Befehl die Verifikation eines

135

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

maximalen absoluten Grenzfehlers erlauben. Dieser Befehl wird Prüfe Absolute Ge-
nauigkeit PAG genannt und prüft – analog zu PRG – zunächst, ob es sich beim durch
B indizierten Zieldatenspeicherelement um einen gleitkommabasierten Messwertda-
tentyp handelt. Entsprechend findet ein Vergleich mit dem durch A indizierten
Gleitkomma- bzw. dem durch B indizierten Ganzzahlvergleichswert statt.

PAG A, B, C :=

WENN DT.DT([C]) ∈ Messwertdatentypen DANN
WENN DT.DT([A]) /∈ Gleitkommadatentypen DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN DT.DT([B]) /∈ Ganzzahldatentypen DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.DT([C]) ∈ gleitkommabasierte_Messwertdatentypen DANN
WENN Wmax([C]) - Wmin([C]) > 2 · W([A]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
WENN Wmax([C]) - Wmin([C]) > 2 · W([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN
ENDEWENN

4.3.2.4 Prüfung der Wertegenauigkeit in Hochsprachen

Zur Nutzung der vorgestellten Befehle zur Prüfung der Genauigkeit wird für die
Hochsprache C die Einführung zweier intrinsischer Funktionen vorgeschlagen. Die
erste intrinsische Funktion,

__assert_absolute_accuracy(<Variablenname>,<absoluter Fehler>),

dient der Prüfung der Genauigkeit der angegebenen Variable anhand des spezifizier-
ten absoluten Fehlers, um den der ideale Messwert nach oben oder unten abweichen

136

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

darf. Der Übersetzer wandelt den Funktionsaufruf in die Nutzung des Befehls Prüfe
Absolute Genauigkeit PAG um.

Zur Prüfung der Genauigkeit einer Variable unter Nutzung der Angabe eines zuläs-
sigen relativen Fehlers wird die intrinsische Funktion

__assert_relative_accuracy(<Variablenname>,<relativer Fehler>)

vorgeschlagen, die vom Übersetzer in den Befehl Prüfe Relative Genauigkeit PRG
überführt wird. Dabei rechnet dieser den angegebenen relativen Fehler in einen
Faktor – abhängig vom Datentyp der Variable – in Festkomma- bzw. Gleitkomma-
darstellung um, der von der Hardware zur Multiplikation mit der oberen Wertgrenze
genutzt werden kann.

Ein Einsatzbeispiel beider Funktionen wird in der folgenden Auflistung gezeigt.
Im Beispiel darf var_a einen maximalen absoluten Grenzfehler von ± 7 aufweisen,
während var_b einen maximalen relativen Grenzfehler von ± 10 % aufweisen darf.

__assert_absolute_accuracy(var_1, 7);
__assert_relative_accuracy(var_2, 10);

4.3.2.5 Spezifikation von fehlerbehafteten Werten in Hochsprachen

Die Spezifikation fehlerbehafteter Werte wird zunächst am Beispiel der Hochsprache
NewSpeak [25] gezeigt. Anschließend wird ein Vorschlag für die Hochsprache C
vorgestellt.

4.3.2.5.1 Fehlerbehaftete Werte in NewSpeak

Die Hochsprache NewSpeak [25] erlaubt die Deklaration von auf Gleitkommada-
tentypen basierenden fehlerbehafteten Variablen. Dabei kann sowohl ein absoluter,
als auch ein relativer Fehler spezifiziert werden. Das gezeigte Beispiel wurde der
genannten Quelle entnommen und zeigt die Deklaration der Variable x, die einen
relativen Fehler von ± 10-8 aufweist.

x: Float {0..100}±{Rel 10−8}

137

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.2.5.2 Vorschlag zur Spezifikation fehlerbehafteter Werte in C

Für die Hochsprache C wird eine Erweiterung der Variablendeklaration um das
Schlüsselwort measurement vorgeschlagen, um dem Übersetzter anzuzeigen, dass
eine Variable einen Messwertdatentyp besitzen soll. Die Wertzuweisung erfolgt durch
die neuen intrinsischen Funktionen

• __value_intervall(<untere Grenze xmin>,<obere Grenze xmax>),
durch die ein Werteintervall direkt spezifiziert werden kann,

• __value_absolute_error(<xBest>,< δx>), welche das zu setzende Werte-
intervall indirekt auf Basis des besten Schätzwertes xBest und des absoluten
Fehlers δx beschreibt, sowie

• __value_relative_error(<xBest>,< δx
|xBest| >), mittels derer das Wertein-

tervall indirekt durch den besten Schätzwert xBest und die Angabe des relati-
ven Fehlers δx

|xBest| festgelegt wird.

Während der Übersetzer die durch __value_intervall() spezifizierten Intervall-
grenzen direkt in eine Variable des entsprechenden Datentyps eintragen kann, muss
er bei den beiden indirekten Festlegungen die Intervallgrenzen zunächst berechnen.
Das folgende Beispiel verdeutlicht die Nutzung der intrinsischen Funktionen.

measurement unsigned int x = __value_intervall(0,2);
measurement unsigned int y = __value_absolute_error(200,7);
measurement float z = __value_relative_error(300.0,3.2);

In der ersten Zeile des Beispiels wird eine Variable x als vorzeichenloser ganzzahl-
basierter Messwertdatentyp deklariert und ihre Intervallgrenzen werden auf Wmin
= 0 und Wmax = 2 gesetzt. Die Variable y soll den gleichen Datentyp haben und
der Übersetzer berechnet aus den beiden Angaben die Intervallgrenzen Wmin = 193
und Wmax = 207. Die Variable z soll einen gleitkommabasierten Messwertdatentyp
besitzen und der Übersetzer weist ihr die Intervallgrenzen Wmin = 290.4 und Wmax
= 309.6 zu.

Die vorgestellten intrinsischen Funktionen können auch im Rahmen von Termen
genutzt werden, wie das folgende Beispiel zeigt.

x = y + (measurement unsigned int) __value_absolute_error(30,2);

138

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Dabei wird x die Summe von y und dem Wert 30±2 zugewiesen. Damit ergeben
sich für x nach der Zuweisung des Ergebnisses unter Nutzung des im obigen Bei-
spiel für y festgelegten Werteintervalls der fehlerbehaftete Wert von 230±9 mit den
Intervallgrenzen Wmin = 221 und Wmax = 239.

4.3.2.6 Evaluation des Datenwerts W

Der Einsatz der vorgestellten Intervallarithmetik erlaubt zusammen mit den vor-
geschlagenen Befehlen zur Prüfung erwarteter Genauigkeiten die Erkennung von
Genauigkeitsproblemen, wie es in Tabelle 4.3 gezeigt wird.

Tabelle 4.3: Fehlererkennung durch Intervallarithmetik

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem ja
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten nein
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

139

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.3 Wertebereich

Nicht immer darf ein Datenwert alle Werte annehmen, die sich im Wertebereich
des zugrundeliegenden Datentyps befinden, was im Besonderen an Schnittstellen
zwischen Systemkomponenten und bei Funktionsparametern wichtig ist. Die Selbst-
zerstörung der Ariane 5 (siehe Kapitel 1.1.1) nahm ihren Anfang, weil es zu einem
Überlauf bei einer Berechnung aufgrund zu großer Werte kam. Deshalb überwacht
z. B. die Hochsprache NewSpeak [25] zur Übersetzungszeit die Wertebereiche von
Variablen, um Wertebereichsverletzungen aufdecken zu können. Falls derartige Prü-
fungen auch zur Laufzeit vorgesehen werden, müssen diese durch die Software vor-
genommen werden.

4.3.3.1 Realisierung der Wertebereichskennung WB

Die Einführung der Wertebereichskennung WB gestattet es verarbeitenden Instan-
zen, zu erkennen, ob der Datenwert eines Datenspeicherelements innerhalb spezifi-
zierter Grenzen liegt. Die Wertebereichskennung WB wird dazu einem Datenspei-
cherelement hinzugefügt, wie in Abbildung 4.12 dargestellt.

Abbildung 4.12: Datenspeicherelement mit Wertebereichskennung WB und Datenwert W

Dabei wird das zulässige Wertebereichsintervall durch das Tupel

WB := (WBunten,WBoben)

beschrieben, wobei WBunten die zulässige Untergrenze und WBoben die Obergrenze
des Datenwerts W des jeweiligen Datenspeicherelements angibt, wodurch sich der
in Abbildung 4.13 gezeigte Aufbau der Wertebereichskennung WB ergibt.

Abbildung 4.13: Aufbau der Wertebereichskennung WB

140

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Der Datentyp beider Grenzwerte entspricht dem des Datenwerts W, der in der
Datentypkennung DT definiert wird. Dadurch wird klar, dass für beide Grenzwerte
jeweils die Bitbreite des Datentyps mit der größten Bitbreite vorzusehen ist, bei
64 Bit breiten Ganzzahlen wäre für die Wertebereichskennung eine Bitbreite von
2 · 64 Bit, also 128 Bit zu reservieren.

Der zulässige Wertebereich kann durch den Übersetzer teilweise automatisch gesetzt
werden, z. B. für Enumerationen, die nur einen festgelegten Wertebereich besitzen.

4.3.3.2 Prüfung auf Wertebereichsverletzungen anhand der
Wertebereichskennung WB

Anhand der Wertebereichskennung kann die Hardware einer Datenspezifikationsar-
chitektur DSA die Gültigkeit eines Datenwerts überprüfen. Während beim lesenden
Zugriff lediglich der im Datenspeicherelement enthaltene Datenwert W auf Plausibi-
lität geprüft werden kann, kann die Hardware beim schreibenden Zugriff anhand des
im Zieldatenspeicherelement als zulässig definierten Wertebereichs prüfen, ob der zu
schreibende Datenwert gültig ist, also innerhalb des Wertebereichs liegt. Dies kann
z. B. für die Prüfung von Funktionsparametern, Rückgabewerten und Stellgrößen
genutzt werden. Es muss daher die Bedingung

W ∈ [[WBunten];[WBoben]]

erfüllt sein. Wichtig ist weiterhin, dass der in der Wertebereichskennung WB spezi-
fizierte Wertebereich des Datenwerts eine Teilmenge des Wertebereichs des zugrun-
deliegenden Datentyps sein muss, also dass

[WBunten;WBoben] ⊆ WB(Datentyp)

erfüllt ist. Trifft mindestens eine der beiden Bedingungen nicht zu, so generiert die
Hardware einen Ausnahmefehler.

Prüfung_WB_Lesezugriff :=

WENN DT.DT([Quelle]) ∈ Messwertdatentypen DANN
WENN [Wmin([Quelle]);Wmax([Quelle])] � WB([Quelle]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
WENN W([Quelle]) /∈ WB([Quelle]) DANN

Generierung_Ausnahmefehler;

141

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

ENDEWENN
ENDEWENN

WENN WB([Quelle]) � WB(DT.DT([Quelle])) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Prüfung_WB_Schreibzugriff :=

WENN DT.DT([Ergebnis]) ∈ Messwertdatentypen DANN
WENN [Wmin([Ergebnis]);Wmax([Ergebnis])] � WB([Ziel]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
WENN W([Ergebnis]) /∈ WB([Ziel]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN WB([Ziel]) � WB(DT.DT([Ziel])) DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.3.3 Befehle zur Verwaltung der Wertebereichskennung WB

Zum Setzen des Wertebereichs eines Datenspeicherelements wird der Befehl Set-
ze Wertebereich SWB definiert. Dabei stellt die Hardware zunächst sicher, dass
die durch A und B indizierten Werte ein gültiges Intervall spezifizieren. Eine wei-
tere Prüfung stellt fest, ob der zu setzende Wertebereich des Datenspeicherele-
ments eine Teilmenge des Wertebereichs des zugrundeliegenden Datentyps des durch
C indizierten Datenspeicherelements darstellt. Schlägt eine dieser Prüfungen fehl,
wird ein Ausnahmefehler generiert. Andernfalls wird der Wertebereich in die Fel-
der WBunten und WBoben der Wertebereichskennung WB des Zieldatenspeicher-
elements eingetragen. An dieser Stelle wird im Pseudocode auch kurz vorgegriffen:
DT.DT([Operand]) liefert den Datentyp des Operanden zurück.

142

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

SWB A, B, C :=

WENN W([A]) ≤ W([B]) DANN
WENN [W([A]);W([B])] ⊆ WB(DT.DT([C])) DANN

WB.WBunten([C]) := W([A]);
WB.WBoben ([C]) := W([B]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN
SONST

Generierung_Ausnahmefehler;
ENDEWENN

Weiterhin wird der Befehl Prüfe Einen Operanden PEO eingeführt, der keine Ände-
rung am Operanden vornimmt, sondern nur lesend auf diesen zugreift und dabei ver-
schiedene mit dem Lesen des Operanden verknüpfte Prüfungen seiner Kennungsin-
halte vornimmt. Damit hat der Befehl die Funktion einer Assertion, also eines reinen
Prüfbefehls. Er wird bei verschiedenen Kennungen erwähnt und die durchgeführten
Prüfungen – jeweils mit dem Fokus auf die aktuell vorgestellte Kennung – erläutert.
Die Durchführung weiterer Prüfungen wird durch „...“ angedeutet. Für die Wertebe-
reichskennung WB wird für den durch A indizierten Operanden sichergestellt, dass
der Datenwert innerhalb des durch die Kennung spezifizierten Wertebereichs liegt
und dieser Wertebereich eine Teilmenge des Basisdatentyps darstellt.

PEO A :=

...
WENN DT.DT([A]) ∈ Messwertdatentypen DANN

WENN [Wmin([A]);Wmax([A])] � WB([A]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
SONST

WENN W([A]) /∈ WB([A]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

143

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN WB([A]) � WB(DT.DT([A])) DANN
Generierung_Ausnahmefehler;

ENDEWENN
...

4.3.3.4 Spezifikation von Wertebereichen in Hochsprachen

Die Spezifikation zulässiger Wertebereiche für Variablen, Funktionsparameter und
-rückgabewerte oder Datentypen wird zunächst anhand der Hochsprachenbeispie-
le Ada, Pascal und NewSpeak gezeigt. Im Anschluss werden entsprechende Vor-
schläge für die Hochsprache C unterbreitet. Neben der Überführung der zulässigen
Wertebereiche in die Wertebereichskennungen WB der betroffenen Variablen sollen
die Übersetzer selbstverständlich auch bereits zur Übersetzungszeit auf Basis der
Wertebereichsspezifikationen mögliche Wertebereichsverletzungen erkennen und die
Erstellung eines entsprechend fehlerhaften Programms abbrechen.

4.3.3.4.1 Wertebereichsdefinition in Ada

Die Hochsprache Ada erlaubt die Definition von Datentypen mit einem einge-
schränkten Wertebereich [121].

type column is range 1 .. 72;

Eine solche Begrenzung des zulässigen Wertebereichs kann der Übersetzer mittels
des Befehls Setze Wertebereich SWB in die Wertebereichkennungen WB der Varia-
blen, die auf dem jeweiligen Datentyp basieren, übertragen.

4.3.3.4.2 Wertebereichsdefinition in Pascal

In Pascal können Wertebereichseinschränkungen durch sogenannte „Subrange“-
Datentypen vorgenommen werden. Ein entsprechendes Beispiel wird in [40] ge-
zeigt.

TYPE Month = 1 .. 12;

144

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

In [80] werden neben der Vorstellung von Sprachmitteln zur Spezifikation von Ein-
heiten von Variablen auch Vorschläge bzgl. der Begrenzung des gültigen Werte-
bereichs von einheitenbehafteten Datentypen unterbreitet. Der genannten Quelle
entstammt auch das unten gezeigte Beispiel.

TYPE Energy = 0 MeV .. 1e3 MeV;

Ein für eine Datenspezifikationsarchitektur DSA angepasster Übersetzer kann die-
se Wertebereichsdefinitionen in die Wertebereichskennung WB unter Nutzung des
Befehls Setze Wertebereich SWB eintragen.

4.3.3.4.3 Wertebereichsdefinition in NewSpeak

In der Sprache NewSpeak [25] kann bei der Definition von Typen und Variablen ein
Wertebereich festgelegt werden. Dies geschieht durch Angabe des zugrundeliegenden
Datentyps gefolgt von der Spezifikation des zulässigen Wertebereichs in geschweiften
Klammern, wie in der folgenden Abbildung gezeigt.

Type BOOL = Bit{0..1}
Type CHAR = Byte{0..255}

Auf Basis dieser Definition können die Variablen durch die Anwendung des Befehls
Setze Wertebereich SWB mit einer entsprechenden Wertebereichskennung WB ver-
sehen werden.

4.3.3.4.4 Vorschlag zur Wertebereichsdefinition in C

Zur Definition zulässiger Wertebereiche wird für die Hochsprache C ein Attribut
definiert, welches

__range_of_values(<unterer_Wert>,<oberer_Wert>)

genannt wird. Die Festlegung gültiger Wertebereiche könnte bei der Definition von

• Variablen,

• Funktionsparametern und

• Funktionsrückgabewerten

145

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

angewendet werden. Die zwei folgenden Auflistungen in C zeigen exemplarisch die
Anwendung der neuen Funktion. Im ersten Beispiel wird eine vorzeichenbehaftete
Variable definiert, deren Wertebereich auf das Intervall [5;231] begrenzt werden
soll.

void funktion_y(void)
{

int __range_of_values(5,231) variable_x;
}

In der zweiten Auflistung wird eine Funktion definiert, deren vorzeichenbehafteter
Parameter im Intervall [9;16] liegen muss und einen vorzeichenbehafteten Rückga-
bewert im Intervall [-3;4] zurückgeben soll.

int __range_of_values(-3,4) f_x(int __range_of_values(9,16) par_x)
{

...
}

Weiterhin kann ein Übersetzer bei Enumerationen – bei C über das Schlüsselwort
enum – automatisch den Wertebereich der Variablen des Enumerationstyps begren-
zen.

Der Übersetzer kann eine Variable mit eingeschränktem Wertebereich dadurch rea-
lisieren, dass er die Wertebereichskennung WB des mit der Variablen verknüpften
Datenspeicherelements mit Hilfe des Befehls Setze Wertebereich SWB vor deren
Nutzung setzt. Eine automatische Prüfung des Wertebereichs von Übergabepara-
metern kann dadurch realisiert werden, dass diese direkt in formatierte Datenspei-
cherelemente mit gesetzter Wertebereichskennung WB gespeichert oder in solche
übertragen werden. Analog dazu können die Rückgabewerte in formatierte Daten-
speicherelemente mit entsprechender Wertebereichseinschränkung gespeichert wer-
den. Bei den entsprechenden Zuweisungen kann die Hardware automatisch sicher-
stellen, dass der zu speichernde Wert innerhalb des spezifizierten Wertebereichs
liegt.

146

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.3.5 Evaluation der Wertebereichskennung WB

Die durch die Nutzung einer Wertebereichskennung aufdeckbaren Fehlermechanis-
men der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten werden in Tabel-
le 4.4 gezeigt.

Tabelle 4.4: Fehlererkennung durch die WB-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung ja
Genauigkeitsproblem begrenzt
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl begrenzt
Fehlerhaftes Operationsergebnis begrenzt
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe begrenzt
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

Die Wertebereichskennung erlaubt bei lesendem und schreibendem Zugriff die Prü-
fung, ob der im Datenspeicherelement enthaltene Datenwert W bzw. der in das
Datenspeicherelement zu schreibende Datenwert innerhalb des durch die Wertebe-
reichskennung definierten gültigen Intervalls liegt. Ist dies nicht der Fall, wird ein
Ausnahmefehler generiert. Ungenaue Datenwerte können als Fehler erkannt werden,
wenn mindestens eine der Intervallgrenzen des Datenwerts außerhalb des spezifi-

147

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

zierten zulässigen Wertebereichs liegt. In begrenztem Umfang können mittels der
Wertebereichskennung Fehler aufgedeckt werden, die zur Nutzung falscher Operan-
den, falscher Operatoren oder zu gänzlich falschen Operationsergebnissen führen,
allerdings nur dann, wenn die Ergebnisse dabei die Wertebereichsgrenzen der jewei-
ligen Zieldatenspeicherelemente verletzen. Pufferunter- oder -überläufe können auf
die gleiche Weise erkannt werden, falls Wertebereichsverletzungen auftreten. Wird
der Datenwert W innerhalb eines Datenspeicherelements durch eine Störung derart
verändert, dass er außerhalb des gültigen Wertebereichs liegt, kann dieser Fehler
bei lesendem Zugriff aufgedeckt werden. In gewissen Grenzen kann auch der lesen-
de Zugriff auf Datenspeicherelemente, die keine gültigen Werte enthalten, also nicht
initialisiert sind, dadurch erkannt werden, dass hier explizit ein Datenwert außer-
halb des Wertebereichs vorbelegt wird. Ein Lesezugriff würde dann zur Generierung
eines Ausnahmefehlers führen.

4.3.4 Datentyp

Die explizite Angabe des Datentyps des in einem Datenspeicherelement enthalte-
nen Datenwerts erlaubt es, Inkompatibilitäten bei der Verwendung von Daten zu
erkennen, die durch verschiedenste Fehlerursachen hervorgerufen werden können.
Diese Ursachen reichen von Spezifizierungs- bis hin zu Hardwarefehlern. Die expli-
zite und hardwareverständliche Angabe des Datentyps DT des Datenwerts W ist
das grundlegende, namensgebende Merkmal der in Kapitel 3.3 vorgestellten Daten-
typarchitekturen.

4.3.4.1 Typische Datentypen in verschiedenen Architekturen

In der Vergangenheit wurden durch Datentyp-, Datenstruktur- und Befähigungsar-
chitekturen verschiedene Datentypen nativ unterstützt und in den jeweiligen Da-
tentypkennungen unterschieden. Dazu wird den Datenwerten in den Datenspei-
cherelementen eine entsprechende Datentypkennung DT hinzugefügt, wie in Ab-
bildung 4.14 dargestellt.

Abbildung 4.14: Datenspeicherelement mit Datentypkennung DT und Datenwert W

148

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Die inhärent sichere Mikroprozessorarchitektur ISMA [125] gestattet neben der ge-
nerellen Unterscheidung von Code und Daten die Spezifikation von

• Bitfeldern,

• vorzeichenlosen und -behafteten Ganzzahlen,

• Gleitkommazahlen,

• Datenfelddeskriptoren, Feldelementen und Feldindizes,

• Zeichen und

• relativen bzw. absoluten Zeitangaben,

je nach Datentyp in verschiedenen Bitbreiten zwischen 1 und 64 Bit. Weitere native
Datentypen diverser Datentyparchitekturen waren nach [36] z. B.

• komplexe Zahlen,

• Vektoren,

• einfach und doppelt verkettete Listen,

• Stapel,

• Ereignisse und

• Semaphoren.

Einige Befähigungsarchitekturen verwendeten einen dedizierten Datentyp zur Defi-
nition von Befähigungsobjekten im Speicher, um diese vor unberechtigtem Zugriff zu
schützen und nur privilegierten Programminstanzen wie z. B. einem Betriebssystem
zugänglich zu machen.

In Kapitel 4.3.2 wurden die Messwertdatentypen zur Spezifikation fehlerbehafteter
Messwerte vorgestellt, welche die hier beschriebenen Datentyparten ergänzen.

149

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.4.2 Hardwarebasierte Unterstützung abgeleiteter Datentypen

Als Erweiterung gegenüber bestehenden Datentyparchitekturen soll es in einer Da-
tenspezifikationsarchitektur ermöglicht werden, durch die Hardware überwachte ab-
geleitete Datentypen auf Grundlage der bekannten Basisdatentypen zu definieren.
Dies erlaubt eine erweiterte Isolation ausgewählter Daten und eine noch weiter ver-
besserte Fehlererkennung durch die Hardware der Datenspezifikationsarchitektur.

Die Ableitung neuer Datentypen auf Basis bestehender Datentypen wird auf Pro-
grammiersprachenebene z. B. in [118] beschrieben, inklusive der Möglichkeiten der
Einschränkung des Wertebereichs. In einer Veröffentlichung bzgl. PUMP als Teil des
SAFE-Projekts [32] wird vorgeschlagen, abgeleitete Datentypen in Kennungen zu
beschreiben, aber die Realisiserung wird nicht detailliert beschrieben. Als Anwen-
dungsbeispiel wird dabei in [32] die Isolation der zwei ganzzahlbasierten abgeleiteten
Datentypen „Kontonummer“ und „Datum“ genannt.

In dieser Arbeit wird für eine Datenspezifikationsarchitektur DSA jedoch eine kon-
krete Realisierung und zeitgleich eine Erweiterung dieser Ansätze vorgeschlagen,
indem für die abgeleiteten Datentypen Einschränkungen bzgl.

• Datentypumwandlungen,

• arithmetischen Operationen,

• Schiebebefehlen und

• bitweisen logischen Operationen

definiert werden können, die auf Datenspeicherelementen mit einem entsprechen-
den abgeleiteten Datentyp ausgeführt werden dürfen. Dabei können die zulässigen
Operationen gegenüber dem zugrundeliegenden Basisdatentyp nur eingeschränkt,
aber nicht erweitert werden. Es können also keine Rechte zu einem abgeleiteten
Datentyp hinzugefügt werden, die der Basisdatentyp nicht gewährt. Wird versucht,
gegen diese Regelung bei der Definition eines abgeleiteten Datentyps zu verstoßen,
wird dies durch die Hardware als Fehler erkannt und die Programmausführung mit
der Generierung eines Ausnahmefehlers abgebrochen. Ein solcher Fehler in der Da-
tentypdefinition läge z. B. bei Anwendung der in ISMA [125] vorgestellten Regeln
bzgl. der Handhabung von Datentypen vor, wenn versucht würde, arithmetische
Operationen auf Bitfeldern oder logische Operationen auf Ganzzahl- oder Gleit-
kommadatentypen zu gestatten.

150

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.4.3 Realisierung der hardwarebasierten abgeleiteten Datentypen

Die Realisierung würde – wie in Abbildung 4.15 dargestellt – dadurch erfolgen,
dass zusätzlich zur bekannten Datentypkennung DT eine Subdatentypkennung SDT
und eine typbezogene Berechtigungskennung TB zu jedem Datenspeicherelement
hinzugefügt werden. Wird in der SDT-Kennung eine Null angegeben, wird kein
abgeleiteter Datentyp definiert und es gelten die datentypbezogenen Regeln des
Basisdatentyps. Wird die SDT-Kennung auf einen Wert ungleich Null gesetzt, so
gelten die datentypbezogenen Regeln des Basisdatentyps mit den Einschränkungen,
die in der TB-Kennung spezifiziert werden.

Abbildung 4.15: Aufbau der erweiterten Datentypkennung DT

4.3.4.4 Prüfung der Datentypkompatibilität anhand der
Datentypkennung DT

Bei der Durchführung von Operationen stellt die Hardware der Datenspezifikati-
onsarchitektur zunächst die allgemeine Kompatibilität der Datentypen der an der
Operation beteiligten Operanden sicher, indem sie die Basisdatentypen DT der
Datentypkennung DT auf Gleichheit überprüft. Auch die Subdatentypen SDT der
Operanden müssen identisch sein. In den Typberechtigungen TB beider Operanden
muss die durchzuführende Operation als zulässig ausgewiesen sein. Aus Platzgrün-
den werden im folgenden Pseudocodebeispiel die Operation als Op, die Operanden
als Q_1 und Q_2 und die Bitmasken als Bitm abgekürzt.

Prüfung_Operation :=

WENN DT.DT([Q_1]) �= DT.DT([Q_2]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

151

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN DT.SDT([Q_1]) �= DT.SDT([Q_2]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.TB([Q_1]) UND DT.TB([Q_2]) UND Bitm(Op) �= Bitm(Op) DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.4.5 Befehle zur Verwaltung der Datentypkennung DT

Der Befehl Setze Typ ST zur Festlegung des Datentyps eines Datenspeicherelements
ist von der inhärent sicheren Mikroprozessorarchitektur ISMA [125] her bekannt.
Da die Datentypkennung gegenüber ISMA zur Definition abgeleiteter Datentypen
und der erlaubten Operationen erweitert wurde – ISMA benutzte hier nur die Spezi-
fikation des Datentyps ST –, muss auch der Befehl entsprechend angepasst werden.
Zunächst wird der Basisdatentyp, der durch A indiziert wird, auf Gültigkeit ge-
prüft. Ist er gültig, wird er in die Datentypkennung DT des durch D indizierten
Zieldatenspeicherelements eingetragen.

Anschließend wird der durch B indizierte Subdatentyp in das Zieldatenspeicher-
element eingefügt. Im letzten Schritt stellt die Hardware sicher, dass die durch C
indizierten zu setzenden Typberechtigungen eine Teilmenge der für den Basisdaten-
typ geltenden Rechte sind. Ist dies der Fall, so werden die Typberechtigungen TB
in das Zieldatenspeicherelement übernommen. Schlägt eine der Prüfungen fehl, so
wird ein Ausnahmefehler generiert.

ST A, B, C, D :=

WENN W([A]) ∈ Gültige_Datentypen DANN
DT.DT([D]) := W([A]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN

DT.SDT([D]) := W([B]);

152

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

WENN TB(DT.DT([A])) UND W([C]) = W([C]) DANN
DT.TB([D]) := W([C]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Ebenfalls von ISMA bekannt ist der Befehl Ändere Typ ÄT zur expliziten Daten-
typumwandlung. Dazu wendet ISMA einen umfangreichen Satz von Regeln an, die
jedoch nicht im Fokus der Beschreibung dieses Befehls liegen. Hier soll das Augen-
merk auf die Prüfung gerichtet werden, ob eine Typumwandlung für den abgeleite-
ten Datentyp überhaupt zulässig ist. Der Befehl ÄT soll den im durch A indizierten
Quelldatenspeicherelement enthaltenen Datenwert mit dem Datentyp DT.DT([A])
in den Datentyp DT.DT([B]) des durch B indizierten Zieldatenspeicherelements um-
wandeln und in diesem speichern. Zunächst erfolgt eine Prüfung, ob die gewünschte
Datentypumwandlung für das Tupel (DT.DT([A]),DT.DT([B])) überhaupt zulässig
ist, wobei der bereits erwähnte, umfangreiche Regelsatz zur Anwendung kommt.
Anschließend wird sichergestellt, dass die Operation Datentypänderung in den Ty-
pberechtigungen des Quelldatenspeicherelements gestattet wurde. Erst dann erfolgt
die eigentliche Datentypumwandlung und das Ablegen des umgewandelten Daten-
werts im durch B indizierten Zieldatenspeicherelement. Im Falle des Fehlschlagens
einer der Prüfungen wird ein Ausnahmefehler generiert.

ÄT A, B :=

WENN Typänderung_erlaubt(DT.DT([A]), DT.DT([B])) DANN
WENN DT.TB([A]) UND Bitmaske(ÄT) = Bitmaske(ÄT) DANN

[B] := Datentypumwandlung([A], DT.DT([B]));
SONST

Generierung_Ausnahmefehler;
ENDEWENN

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Analog zum Befehl Prüfe Einen Operanden PEO, der in Kapitel 4.3.3.3 vorgestellt
wurde, wird ein Befehl zur Prüfung von zwei Operanden mit dem Namen Prüfe Zwei
Operanden PZO bereitgestellt, der beide Operanden liest und die typischen beim
Lesen von Operanden durchgeführten Prüfungen durchführt. Auch dieser stellt –

153

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

ebenso wie der Befehl PEO – eine Assertion dar, also einen reinen Prüfbefehl, der
die Operanden nicht verändert und kein Ergebnis außer der Sicherstellung der an-
gegebenen Zusammenhänge liefert. Der Befehl PZO wird bei mehreren Kennungen
referenziert und es wird jeweils angegeben, welche – auf die aktuelle Kennung be-
zogenen – Prüfungen durch ihn durchgeführt werden. Die Durchführung weiterer
Prüfungen wird durch „...“ angedeutet. Bezogen auf die Datentypkennung DT wird
die Gleichheit der Daten- und Subdatentypen beider Operanden sichergestellt.

PZO A, B :=

...

WENN DT.DT([A]) �= DT.DT([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.SDT([A]) �= DT.SDT([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

...

4.3.4.6 Beispiele für die Nutzung hardwarebasierter abgeleiteter
Datentypen

Ein gutes Beispiel für den Nutzen abgeleiteter Datentypen in Verbindung mit der
WB-Eigenschaft ist die Zahlendarstellung im BCD-Format. Dabei wird jede Stelle
einer Dezimalzahl in einem eigenständigen Byte im Zahlenbereich 0 bis 9 abgebildet.
Es ist daher naheliegend, bei der Verwendung von BCD-Daten in einem Software-
projekt einen von 8 Bit breiten Ganzzahlen abgeleiteten Datentyp zu definieren und
durch die WB-Kennung dessen zulässigen Wertebereich auf 0 bis 9 festzulegen, wo-
durch es der Hardware möglich wird, den Datenwert W des Datenspeicherelements
gegen diese Wertgrenzen zu prüfen und so Fehler sofort aufzudecken.

Ein Beispiel für den sinnvollen Einsatz der Einschränkung zulässiger Operatio-
nen auf einem abgeleiteten Datentyp wäre der Datentyp „Fehlercode“. Dieser wür-
de auf einem vorzeichenlosen Ganzzahldatentyp mit einer passenden Bitbreite

154

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

basieren und die Ausführung arithmetischer Operationen würde untersagt wer-
den – so wäre z. B. die Bedeutung des Ergebnisses der Addition der Fehlercodes
FEHLER_PAPIERSTAU und FEHLER_TEMPERATUR_ZU_HOCH völlig un-
klar.

4.3.4.7 Spezifikation abgeleiteter Datentypen in Hochsprachen

Die meisten Hochsprachenübersetzer bieten Sprachmittel zur Definition abgeleiteter
Datentypen. Für die Hochsprache C kann ein Übersetzer bei entsprechenden Typ-
deklarationen automatisch Subdatentypen definieren, bei denen die Hardware der
Datenspezifikationsarchitektur die Einhaltung der festgelegten Regeln überwachen
soll.

• Enumerationen (Aufzählungstypen) mit enum erlauben einerseits die Definiti-
on eines neuen abgeleiteten Datentyps und zeitgleich die Einschränkung des
zulässigen Wertebereichs.

• Typdefinitionen mit typedef erlauben die Definition abgeleiteter Datentypen.

enum name {wert_1, ..., wert_n};

typedef <Basisdatentyp> <neuer_Typname>;

Nach dem Entwicklungsprinzip der minimalen Rechte – engl. „Principle of Least Pri-
vilege“ – sollen bei fehlender Angabe von zulässigen Operationen auf dem abgeleite-
ten Datentyp sämtliche Operationen untersagt werden, dem Typberechtigungsfeld
TB der Datentypkennung DT daher der Wert Null zugewiesen werden. Berechti-
gungen können dann explizit über ein Attribut zugeteilt werden. Dafür wird

__type_rights(<Liste zugelassener Funktionen>)

vorgeschlagen. Als mögliche zuzulassende Operationsgruppen werden

• Datentypumwandlungen – typeconversion –,

• arithmetische Operationen – arithmetic –,

• Schiebe- und Rotationsbefehle – shiftrotate – und

• bitweise logische Operationen – logical –

155

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

vorgesehen. Der Übersetzer sorgt dann beim Anlegen von Variablen des abgeleiteten
Datentyps dafür, dass durch Nutzung des Befehls Setze Typ ST neben dem Basis-
datentyp und dem Identifikator des Subdatentyps auch die angegebenen Berechti-
gungen im Typberechtigungsfeld TB der Datentypkennung DT gesetzt werden.

Dies ergibt die in der folgenden Auflistung beispielhaft gezeigte Typdeklaration, bei
der ein von den vorzeichenlosen Ganzzahlen abgeleiteter neuer Datentyp definiert
wird, auf dem nur arithmetische Operationen durchgeführt werden dürfen, jedoch
keine Datentypumwandlungen, Schiebe- oder Rotationsbefehle und auch keine bit-
weisen logischen Operationen.

typedef unsigned int __type_rights(arithmetic) neuer_Datentyp;

4.3.4.8 Eine alternative Realisierung der Definition abgeleiteter
Datentypen

Eine weitere Realisierungsmöglichkeit der hardwareverständlichen Definition ab-
geleiteter Datentypen mit Einschränkung der zulässigen Operationen wäre deren
Bekanntgabe durch die Software bei Programmstart. Dabei werden die Informatio-
nen

• Identifikator des neuen abgeleiteten Datentyps DTIDneu,

• Identifikator des zugrundeliegenden Basisdatentyps DTIDBasis,

• die für den neuen abgeleiteten Datentyp zu setzenden Typberechtigungen
TBneu, also die Definition der erlaubten Operationen, und

• der zulässige Wertebereich des abgeleiteten Datentyps WBneu

zum Informationstupel

NDT := (DTIDneu, DTIDBasis, TBneu, WBneu)

zusammengestellt und beim Programm- oder Systemstart an die Hardware über-
mittelt. Bevor die Hardware die Definition des neuen abgeleiteten Datentyps in
eine Datentypdefinitionstabelle DDT aufnimmt, in der auch alle Basisdatentypen
spezifiziert werden, führt sie die folgenden Prüfungen durch:

• DTIDneu /∈ DDT, d. h. der Identifikator des neuen Datentyps darf noch nicht
benutzt worden sein, also weder für die Definition eines Basisdatentyps, noch
für abgeleitete Datentypen,

156

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

• DTIDBasis ∈ DDT, d. h. der Identifikator des zugrundeliegenden Basisdaten-
typs muss existent sein,

• TBneu ⊆ TBBasis, d. h. die Typberechtigungen dürfen die zulässigen Opera-
tionen gegenüber den für den Basisdatentyp zugelassenen Operationen nur
einschränken, nicht jedoch erweitern,

• WBneu ⊆ WBBasis, d. h. der Wertebereich des abgeleiteten Datentyps muss
eine Teilmenge des Wertebereichs des Basisdatentyps sein.

Diese alternative Lösung zur Definition abgeleiteter Datentypen hat die folgenden
Vorteile gegenüber der ersten Realisierungsmöglichkeit:

• die Datentypkennung DT besteht wie bei den bekannten Datentyparchitek-
turen weiterhin nur aus dem Datentypidentifikator, da die restlichen Informa-
tionen in der Datentypdefinitionstabelle DDT in der Hardware abgelegt sind,

• durch die Spezifikation des für den abgeleiteten Datentyp zulässigen Wertebe-
reichs kann dieser bereits auf Typdefinitionsebene eingeschränkt werden, die
Wertebereichskennung WB wird damit entweder überflüssig oder kann für ei-
ne detailliertere Einschränkung genutzt werden, ohne einen neuen Datentyp
definieren zu müssen.

Allerdings verstößt diese alternative Realisierungsmöglichkeit gegen das in Kapi-
tel 4.2 definierte Entwicklungsparadigma, nach dem alle die Daten beschreibenden
Informationen in diesen selbst enthalten sein sollen. Bei der Übermittlung von Da-
ten besteht die Gefahr von Inkonsistenzen, da die Informationen getrennt von den
Daten gespeichert werden und damit in anderen Programmen oder Systemkompo-
nenten genau identisch definiert werden müssen. Daher ist die erste Lösung bei der
Realisierung einer Datenspezifikationsarchitektur zu bevorzugen.

4.3.4.9 Realisierung sicherer Felder

Zur Erkennung von Pufferunter- und -überläufen sollen in einer Datenspezifikati-
onsarchitektur DSA die von Datenstrukturarchitekturen bekannten sicheren Felder
durch Nutzung von Felddeskriptoren und dedizierten Feldzugriffsbefehlen realisiert
werden. Dabei wird die Realisierung an jene von ISMA [125] angelehnt. Da für sie die
Verwendung von speziellen Datentypkennungen unerlässlich ist, werden die sicheren
Felder an dieser Stelle oberflächlich vorgestellt. Details sind [125] zu entnehmen.

ISMA definiert drei Datentypen, die zur Realisierung sicherer Datenfelder notwendig
sind:

157

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

• Felddesktriptoren,

• Feldeelemente und

• Feldindizes.

In Abbildung 4.16 wird der Aufbau eines Datenfelds im Speicher gezeigt. Den
Anfang eines Datenfelds bildet dabei ein Felddeskriptor, dessen Aufbau in Abbil-
dung 4.17 dargestellt ist, der die Anzahl der im Datenfeld enthaltenen Feldelemente
und deren Datentyp – genannt Felddatentyp FDT – beschreibt.

Abbildung 4.16: Aufbau eines Datenfelds im Speicher

Abbildung 4.17: Aufbau eines Felddeskriptors

Der direkte Zugriff auf Feldelemente wird von der Hardware anhand der Daten-
typkennung Feldelement als fehlerhaft erkannt und führt zur Generierung eines
Ausnahmefehlers.

Prüfung_Zugriff :=

WENN DT.DT([Quelle]) ∈ {Felddeskriptor,Feldelement} DANN
Generierung_Ausnahmefehler;

ENDEWENN

Nur über die dedizierten Feldzugriffsbefehle Lade Aus Feld LAF und Speichere In
Feld SIF kann auf ein Datenfeld zugegriffen werden. Der Verlauf des Zugriffs wird
in Abbildung 4.18 veranschaulicht.

158

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.18: Zugriff auf Datenfelder über dedizierte Feldzugriffsbefehle

Vor dem eigentlichen Zugriff prüft die Hardware, ob der angegebene Feldindex auf
ein Feldelement zeigt, also innerhalb der Feldgrenzen liegt. Ist dies nicht der Fall,
wird ebenfalls ein Ausnahmefehler generiert. Weitere Prüfungen, wie beispielsweise,
ob das Feldelement lesbare Daten enthält oder ob Schreibzugriffe gestattet sind,
werden erst später in dieser Arbeit erläutert und daher hier nicht erwähnt.

LAF A, B, C :=

WENN DT.DT([A]) = Felddeskriptor DANN
WENN W([B]) < Anzahl_Feldelemente([A]) DANN

W([C]) := W([A + 1 + W([B])]);
SONST

Generierung_Ausnahmefehler;
ENDEWENN

SONST
Generierung_Ausnahmefehler;

ENDEWENN

4.3.4.10 Evaluation der Datentypkennung DT

Mittels der Datentypkennung lassen sich von den 20 in Kapitel 2.4 vorgestellten
Fehler- und Angriffsarten die in Tabelle 4.5 gezeigten Fehler erkennen.

159

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Tabelle 4.5: Fehlererkennung durch die Datentypkennung DT

Fehlerart Erkennbarkeit
Inkompatible Datentypen ja
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl begrenzt
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe ja
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten begrenzt
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

160

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Die Verwendung von Operanden mit inkompatiblen Datentypen kann durch den
Vergleich ihrer Datentypkennungen in jedem Fall erkannt werden. Das Heranziehen
eines falschen Operanden kann nur dann erkannt werden, wenn der falsche Ope-
rand einen inkompatiblen Datentyp aufweist. Ebenso kann die Verwendung eines
falschen Operators erkannt werden, falls dieserdurfch die Typberechtigungen TB
als nicht zulässig markiert wurde. Durch die Implementierung sicherer Felder mit
dedizierten Feldzugriffsbefehlen – dem Vorbild der Datenstrukturarchitekturen fol-
gend – können Pufferunter- bzw. -überläufe sicher aufgedeckt werden. Fehlgeleitete
Daten werden dann als solche erkannt, wenn deren Datentypen von den erwarte-
ten Datentypen abweichen. Durch Störungen verfälschte Daten können nur dann
erkannt werden, wenn die Störung den Inhalt der Datentypkennung betrifft. Die
Nutzung nicht initialisierter Daten kann dann erkannt werden, wenn entsprechen-
den Datenspeicherelementen ohne lesbaren Datenwert W ein spezieller Datentyp
zugewiesen wird, der den Inhalt als ungültig ausweist. Diese Vorgehensweise findet
z. B. bei ISMA Anwendung, indem die betreffenden Datenspeicherelemente mit dem
Datentyp „undefiniert“ versehen werden [125]. Bei einem Lesezugriff auf ein derart
markiertes Datenspeicherelement wird ein Ausnahmefehler generiert. Durch die De-
finition abgeleiteter Datentypen lassen sich Daten noch feingranularer voneinander
unterscheiden, mit dem Vorteil einer erweiterten Isolation der Daten und einer noch
weiter verbesserten Fehlererkennung. Diese Verbesserung wird in der Tabelle jedoch
nicht sichtbar.

4.3.5 Einheit

In [48] wird darauf hingewiesen, dass die Festlegung der Einheiten von Operan-
den innerhalb von Softwareprogrammen nur unzureichend erfolgt, obwohl bereits
1986 für Ada und Pascal in [80] und NewSpeak in [26] entsprechende Vorschläge
unterbreitet wurden. Auf Hardwareebene wurde die Notwendigkeit der hardwarever-
ständlichen Spezifikation der Einheiten von Datenwerten bislang völlig vernachläs-
sigt, obwohl inkompatible Einheiten in der Vergangenheit schon zu schwerwiegenden
Sachschäden wie z. B. dem Verlust des Mars Climate Orbiter MCO geführt haben
(siehe Kapitel 1.1.2).

4.3.5.1 Realisierung der Einheitenkennung EI

Zur Aufdeckung der versuchten Verarbeitung von Datenwerten mit inkompatiblen
Einheiten sollen alle Datenspeicherelemente, die in einer Datenspezifikationsarchi-

161

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

tektur erzeugt oder verarbeitet werden, mit einer Einheitenkennung EI versehen
werden, wie in Abbildung 4.19.

Abbildung 4.19: Datenspeicherelement mit Einheitenkennung EI und Datenwert W

Diese Einheitenkennung EI gibt die Einheit des Datenwerts in Form der vorzeichen-
behafteten Potenzen der sieben SI-Basiseinheiten [94]

• Länge l in Meter m,

• Masse m in Kilogramm kg,

• Zeit t in Sekunden s,

• Stromstärke I in Ampere A,

• Temperatur T bzw. θ in Kelvin K,

• Stoffmenge n in Mol mol und

• Lichtstärke Iv bzw. J in Candela cd.

Somit lässt sich die Einheit eines Datenwerts als Tupel der vorzeichenbehafteten
Potenzen dieser sieben Basiseinheiten

EI := (l, m, t, I, T, n, Iv)

darstellen und es ergibt sich der in Abbildung 4.20 gezeigte Aufbau der Einheiten-
kennung EI.

Abbildung 4.20: Aufbau der Einheitenkennung EI

162

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

In Abbildung 4.21 werden zwei Beispiele gezeigt, deren Datenwerte W identisch
sind und daher in einer konventionellen Architektur – aufgrund der fehlenden hard-
wareverständlichen Beschreibung der Einheit der Datenwerte – nicht voneinander
zu unterscheiden wären:

30 m
s und 30 s−1 = 30 Hz

Abbildung 4.21: Beispiele für die Einheitenkennung EI

Eine konventionelle Architektur würde bei einem Vergleich der beiden Werte fälsch-
lich deren Gleichheit feststellen, obwohl beide Werte unterschiedliche Einheiten be-
sitzen.

Für die Einheitenkennung EI wird bei der Realisierung in Hardware eine bestimmte
Anzahl an Bits für jede SI-Einheit zur Darstellung der entsprechenden Potenz dieser
Einheit vorgesehen. Somit existieren positive und negative Wertebereichsgrenzen für
die darstellbaren Einheiten eines Datenwerts. Bei der Definition der Einheiten von
Datenwerten kann der Übersetzer zur Übersetzungszeit erkennen, dass die Einheit
nicht in der zur Verfügung stehenden Anzahl von Bits darstellbar ist und damit den
Übersetzungsvorgang mit einer entsprechenden Fehlermeldung beenden. Es existiert
daher eine durch die realisierte Hardware vorgegebene Limitierung der darstellbaren
Einheiten, die durch die Software nicht beeinflusst werden kann.

Um die Einheit eines Operanden bzw. die Einheiten mehrerer Operanden direkt bei
ihrer Verwendung prüfen zu können, werden die Befehlsspeicherelemente ebenfalls
mit einer Einheitenkennung EI ausgestattet, wie in Abbildung 4.22 gezeigt.

Abbildung 4.22: Einheitenkennung EI in Befehlsspeicherelementen

163

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Diese Einheitenkennung EI innerhalb der Befehlsspeicherelemente besteht aus dem
Präsenzbit P und den beiden Einheitenspezifikationen EIA und EIB für die Prüfung
von bis zu zwei Operanden, wodurch sich der in Abbildung 4.23 dargestellte Aufbau
der Kennung ergibt. Die anhand der Kennung durchgeführten Prüfungen werden
im nächsten Unterkapitel detailliert vorgestellt.

Abbildung 4.23: Aufbau der Einheitenkennung EI in Befehlsspeicherelementen

4.3.5.2 Prüfung der Einheiten von Operanden anhand der
Einheitenkennung EI

Anhand der Einheitenkennung EI lässt sich bei Additionen, Subtraktionen und Ver-
gleichsoperationen sicherstellen, dass alle Operanden die identischen Einheiten auf-
weisen. Auf diese Weise kann der sprichwörtliche Vergleich von Äpfeln mit Birnen
sehr einfach durch die Hardware der Datenspezifikationsarchitektur als Fehler er-
kannt werden.

Prüfung_Addition = Prüfung_Subtraktion = Prüfung_Vergleich :=

WENN EI([Quelle_1]) �= EI([Quelle_2]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Durch Nutzung der in der Einheitenkennung EI der Befehle spezifizierten erwarte-
ten Operandeneinheiten können die Einheiten der Operanden bei lesendem Zugriff
geprüft werden. Die folgenden Pseudocodeauflistungen zeigen die durchzuführen-
den Prüfungen für einen bzw. zwei Quelloperanden. In beiden Fällen wird zunächst
geprüft, ob das Präsenzbit P innerhalb der Einheitenkennung EI der Befehle die
Prüfung der Operandeneinheit bzw. Operandeneinheiten verlangt.

164

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Prüfung_Lesezugriff_ein_Quelloperand :=

WENN EI.P([Befehl]) = 1 DANN
WENN EI([Quelle_1]) �= EI.EIA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

Prüfung_Lesezugriff_zwei_Quelloperanden :=

WENN EI.P([Befehl]) = 1 DANN
WENN EI([Quelle_1]) �= EI.EIA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN
WENN EI([Quelle_2]) �= EI.EIB([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

4.3.5.3 Setzen der Einheitenkennung EI in Ergebnissen von Operationen

Bei Multiplikationen und Divisionen berechnet die Hardware die sich ergebende
Einheit des Ergebnisses basierend auf den Potenzgesetzen. In Abbildung 4.24 wird
die Multiplikation zweier Beispielwerte gezeigt, wobei die Prozessorhardware eine
Addition der einzelnen Potenzen der EI-Kennung beider Operanden vornimmt und
somit ohne Beteiligung der Software die Einheit des Ergebnisses errechnet. Bei
einer Division, dargestellt in Abbildung 4.25, nimmt die Prozessorhardware eine
entsprechende Subtraktion der einzelnen Potenzen vor.

Die Berechnung der Einheit des Ergebnisses wird in den zwei folgenden Pseudoco-
deauflistungen gezeigt. Die Hardware prüft dabei, ob bei der Berechnung der Poten-
zen der Einheiten Unter- bzw. Überläufe auftreten und generiert in einem solchen
Fall einen Ausnahmefehler. Aus Platzgründen wird Ergebnis als Erg abgekürzt.

165

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.24: Multiplikation zweier Beispielwerte

Abbildung 4.25: Division zweier Beispielwerte

166

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Setzen_und_prüfen_EI_in_Ergebnis_Multiplikation :=

WIEDERHOLE ∀ i ∈ EI
EI.i([Erg]) := EI.i([Quelle_1]) + EI.i([Quelle_2])
WENN Unterlauf(EI.i([Erg])) ∨ Überlauf(EI.i([Erg])) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWIEDERHOLE

Setzen_und_prüfen_EI_In_Ergebnis_Division :=

WIEDERHOLE ∀ i ∈ EI
EI.i([Erg]) := EI.i([Quelle_1]) - EI.i([Quelle_2])
WENN Unterlauf(EI.i([Erg])) ∨ Überlauf(EI.i([Erg])) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWIEDERHOLE

4.3.5.4 Befehle zur Verwaltung der Einheitenkennung EI

Um Datenquellen das Setzen der Einheit eines Datenwerts zu ermöglichen, wird der
Befehl Setze Einheit SEI definiert.

SEI A, B :=

WIEDERHOLE ∀ i ∈ EI
WENN EI.i �= 0 DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWIEDERHOLE

EI([B]) := W([A]);

Dabei wird zunächst geprüft, ob alle Potenzen der SI-Basiseinheiten in der Einhei-
tenkennung EI des durch B indizierten Zieldatenspeicherelements den Wert Null

167

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

besitzen. Diese Prüfung wird durchgeführt, um Manipulationen der Einheit eines
Datenwerts zu verhindern, da es sonst möglich wäre, „unangenehme Einheiten“ zu
„korrigieren“. Anschließend wird der durch A indizierte Wert in die Einheitenken-
nung EI des Zieldatenspeicherelements eingetragen. Schlägt die beschriebene Prü-
fung der Einheitenkennung fehl, so wird ein Ausnahmefehler generiert.

Um auch eine explizite Prüfung der Gleichheit der EI-Kennungen von Datenspei-
cherelementen zu ermöglichen, ohne dabei wie bei Vergleichsoperationen zugleich
die Datenwerte zu vergleichen, wird der Befehl Vergleiche Einheit VEI verwendet.
Dieser vergleicht die Einheitenkennung EI der beiden durch A und B indizierten
Datenspeicherelemente und löst im Falle der Nichtübereinstimmung der Einheiten
einen Ausnahmefehler aus.

VEI A, B :=

WENN EI([A]) �= EI([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Zur Verifikation der Einheit einzelner Operanden, ohne diese mit der Einheit eines
anderen Operanden zu vergleichen, wird der Befehl Prüfe Einheitenkennung Direkt
PEID genutzt. Dieser prüft, ob die Einheitenkennung EI des durch A indizierten
Datenspeicherelements mit dem durch B indizierten Wert übereinstimmt. Ist dies
nicht der Fall, wird ein Ausnahmefehler generiert.

PEID A, B :=

WENN EI([A]) �= W([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Bei den beiden Befehlen VEI und PEID handelt es sich um Assertionen, also rei-
ne Prüfbefehle, die keine Änderung der Operanden hervorrufen, aber im Falle der
Nichterfüllung der zu prüfenden Bedingungen einen Ausnahmefehler generieren.
Diese Befehle können also dazu genutzt werden, die Gleichheit der Einheiten von
Operanden bzw. die Korrektheit der Einheit eines Operanden sicherzustellen, um
Folgefehler aufgrund falscher Einheiten zu verhindern.

168

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Statt der beschriebenen Befehle kann auch der in Kapitel 4.3.3.3 vorgestellte Be-
fehl Prüfe Einen Operanden PEO zur Prüfung der Einheit des Operanden gegen
die in der Einheitenkennung EI des Befehlsspeicherelements genutzt werden. Wenn
das Präsenzbit der Einheitenkennung des Befehlsspeicherelements eine gültige zu
prüfende Einheit markiert, so werden die Inhalte der Einheitenkennung EI des
Operanden mit denen der Teilkennung EIA der Einheitenkennung EI des Befehls-
speicherelements verglichen. Bei Nichtübereinstimmung wird ein Ausnahmefehler
generiert.

PEO A :=

...
WENN EI.P([Befehl]) = 1 DANN

WENN EI([A]) �= EI.EIA([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN
...

Sollen die Einheiten von zwei Operanden geprüft werden, so ist dies durch den Ein-
satz des in Kapitel 4.3.4.5 definierten Befehls Prüfe Zwei Operanden PZO möglich.
Die Prüfung erfolgt dabei analog zu den beim Befehl Prüfe Einen Operanden PEO
durchgeführten Prüfungen.

PZO A, B :=

...
WENN EI.P([Befehl]) = 1 DANN

WENN EI([A]) �= EI.EIA([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
WENN EI([B]) �= EI.EIB([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN
...

169

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.5.5 Spezifikation der Einheiten von Operanden in Hochsprachen

Zur Spezifikation von Einheiten gibt es Ansätze für die verschiedensten Hochspra-
chen, darunter z. B.

• C [16],

• F# [30],

• Haskell [15, 34],

• Java [29],

• NewSpeak [26],

• Pascal und Ada [80] und

• PEARL [48].

Ein Hochsprachenübersetzer kann die Spezifikation der Einheiten der Variablen un-
ter Nutzung des Befehls Setze Einheit SEI in deren Einheitenkennung EI übertragen.
Da es dem Programmierer in einigen Sprachen möglich ist, eigene Einheiten zu de-
finieren, die nicht auf den SI-Einheiten basieren, müssen diese zur Abbildung in der
Einheitenkennung EI in Potenzen der sieben SI-Basiseinheiten überführt werden. Ist
dies nicht möglich, so soll die Variablendefinition als fehlerhaft abgelehnt werden.
Keinesfalls sollten entsprechende Definitionen stillschweigend akzeptiert werden, um
die Variablen dann mit der Einheit 1 zur Laufzeit zu spezifizieren und damit die
Sicherheitsmechanismen der Datenspezifikationsarchitektur DSA zu umgehen.

In den folgenden Unterkapiteln werden einige Beispiele für die Spezifikation der
Einheiten von Variablen gezeigt, wobei auch schnell deutlich wird, dass hier ver-
schiedenste Ansätze existieren. Für die Hochsprache C wird eine zu den Vorschlägen
zur Definition weiterer Dateneigenschaften in dieser Arbeit passende Spezifikations-
möglichkeit vorgestellt.

4.3.5.5.1 Einheitenspezifikation in F#

In der Programmiersprache F# werden nach [30] Einheiten durch das Schlüssel-
wort [<Measure>] deklariert und diese dann in spitze Klammern den Variablen
hinzugefügt. Dies wird in der folgenden Auflistung gezeigt, die auf Basis von [30]
erstellt wurde.

170

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

[<Measure>] type m (* meter *)
[<Measure>] type s (* second *)
[<Measure>] type kg (* kilogram *)
[<Measure>] type N = (kg * m)/(s^2) (* Newtons *)
[<Measure>] type Pa = N/(m^2) (* Pascals *)

let v_1 = 3.1<m/s>
let v_2 = 2.7<m/s>
let x_1 = 0.2<m>

4.3.5.5.2 Einheitenspezifikation in Java

In [29] wird eine Erweiterung der Hochsprache Java zur Nutzung von Einheiten vor-
geschlagen. Dabei können mit Hilfe des Schlüsselworts dimension Dimensionstypen
definiert werden. Dies wird in der aus [29] stammenden Auflistung gezeigt.

dimension Length (meter);
dimension Mass (kilogram);
dimension Time (second);
dimension ElectricCurrent (Ampere);
dimension Temperature (Kelvin);
dimension AmountOfSubstance (mole);
dimension LuminousIntensity (Candela);

double *Time t;
double *Time t = 18.3*second;
double *Length s = 64.2*meter;

4.3.5.5.3 Einheitenspezifikation in Pascal

Einheiten können bzw. könnten in der Hochsprache Pascal nach [80] durch das
Schlüsselwort UNIT deklariert werden und anschließend bei der Variablendefiniti-
on einfach hinter die Variablen geschrieben werden. Damit wäre die Spezifikation
der Einheiten für den Programmierer sehr einfach. Die Veranschaulichung in der
folgenden Auflistung entstammt – mit leichten Modifikationen – [80].

171

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

UNIT g; (* mass *)
cm; (* length *)
sec D’ (* time *)
cents; (* money *)

Distance := 10 km;
Density := 10.0 g|cm3
I := 11.5 eV * ChargeTarget;

4.3.5.5.4 Einheitenspezifikation in PEARL

Nach den in [48] gemachten Vorschlägen sollen Einheiten in PEARL-90 durch

/*+U= <Einheit>*/

bzw. im objektorientierten PEARL-2020 durch

DCL <Variablenname> INV <Dimension>

spezifiziert werden. Die folgende Auflistung als Beispiel für die Einheitendefinition
in PEARL-90 wurde [48] entnommen.

DCL Current INV FLOAT INIT (12.0) /*+ U = mA */;
DCL Inductance INV FLOAT INIT (2.5) /*+ U = uH */;
DCL Length_cm INV FLOAT INIT (1.0) /*+ U = cm */;
DCL Windings INV FIXED INIT (10) /*+ U = 1 */;
DCL Resistance INV FLOAT INIT (5.0) /*+ U = Ohm */;

4.3.5.5.5 Ein neuer Vorschlag für die Hochsprache C

Die Spezifikation der Einheit einer Variablen könnte – den weiteren Vorschlägen zur
Definition von Variablenattributen in dieser Arbeit folgend – durch Einführung des
neuen Attributs

__unit(<EinheitˆPotenz,EinheitˆPotenz,...>)

erfolgen. Die Potenz einer in der Liste nicht aufgeführten Basiseinheit wird mit Null
und die einer ohne Potenz angegebenen Basiseinheit mit Eins angenommen. In der
folgenden Auflistung wird eine Variable definiert, die die Einheit m

s besitzt.

172

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

int __unit(m,s^-1) variable_a;

4.3.5.6 Evaluation der Einheitenkennung

Aufgrund der Vorarbeiten hinsichtlich der Spezifikation der Einheiten von Variablen
in Hochsprachen fällt die Realisierung der Einheitenkennung einfach aus. Der Über-
setzer muss die jeweiligen Einheiten beim Übersetzungsvorgang nur noch in den
Datenworten hinterlegen. Die Hardware kann anhand der Kennung bei bestimm-
ten Operationen, wie z. B. Zuweisungen, Additionen, Subtraktionen, aber auch ggf.
Zeichenketten und Bitfeldern die Kompatibilität der Operanden überprüfen und In-
kompatibilitäten sofort erkennen und eine entsprechende Reaktion auslösen. Bei an-
deren arithmetischen Operationen wie Multiplikationen und Divisionen werden die
Einheiten der Operanden entsprechend der durchzuführenden Operation verarbeitet
und dem Ergebnis zugewiesen. Hat das Zieldatenspeicherelement eine vordefinierte
Einheit, kann die Gleichheit der Einheit des Ergebnisses mit der des Zieldatenspei-
cherelements durch die Hardware geprüft werden.

Natürlich könnte während der Entwicklung eines Systems auf die Anwendung der
Einheitenkennung verzichtet werden, indem die Daten einfach nicht mit entspre-
chenden Einheitenangaben versehen werden. Das könnte jedoch einerseits vom
Übersetzer erzwungen werden, andererseits ist eine solche Umgehung des Sicher-
heitsmerkmals bei einer Codebegutachtung im Verlauf einer Zertifizierung sehr ein-
fach zu identifizieren und sollte zur Ablehnung der Zertifizierung führen.

Bezogen auf die 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten gestattet
die EI-Kennung die Aufdeckung der in Tabelle 4.6 gezeigten Fehlerarten.

Die EI-Kennung erlaubt die Erkennung von Inkompatibilitäten von Operanden, die
auf nicht zueinander passenden Einheiten beruhen. Sollten sich durch die jeweili-
ge Fehlerart inkompatible Einheitenkennungen der Operanden ergeben, können in
begrenztem Umfang mittels der EI-Kennung ggf. auch weitere Fehlerarten erkannt
werden:

• falsche Operandenauswahl, wenn die falschen Operanden unerwartete Einhei-
ten besitzen,

• falsche Operatorauswahl, z. B. eine Addition statt einer Multiplikation, wobei
bei nicht identischen Einheiten der Operanden der Fehler aufgedeckt würde,

173

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Tabelle 4.6: Fehlererkennung durch die EI-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten ja
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl begrenzt
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) begrenzt
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

174

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

• fehlerhafter Datenfluss, wenn die fehlgeleiteten Daten von den Erwartungen
abweichende Einheiten aufweisen und

• durch Störungen verfälschte Daten, wenn die Verfälschung die Einheitenken-
nung betrifft.

Die Verwendung nicht initialisierter Daten kann durch die EI-Kennung aufgedeckt
werden, wenn die betroffenen Datenspeicherelemente eine unerwartete Einheiten-
kennung aufweisen. Zur Erhöhung der Wahrscheinlichkeit, dass ein entsprechender
Zugriffsfehler aufgedeckt werden kann, ist es sinnvoll, uninitialisierten Datenspei-
cherelementen eine besonders ungewöhnliche Einheitenkennung zuzuweisen, z. B.
die maximalen oder minimalen Potenzen in allen SI-Basiseinheiten.

4.3.6 Zugriffsrechte und Initialisierungsstatus

Durch die Dateneigenschaft Zugriffsrechte ZR kann innerhalb einer Systemkompo-
nente spezifiziert werden, wer auf das jeweilige Datenspeicherelement Zugriff haben
darf und ob dieser nur lesend oder auch schreibend erfolgen darf. Nach dem Vorbild
der Befähigungsarchitekturen handelt es sich bei dieser Dateneigenschaft also um
eine Befähigung, die das Geheimnisprinzip und die Kapselung von Befehlen und
Daten realisiert.

Eine weitere Dateneigenschaft, die den Zugriffsrechten zuzuordnen ist, ist der In-
itialisierungsstatus IS, der beschreibt, ob ein Datenspeicherelement lesbare Daten
enthält. Die Nutzung nicht initialisierter Variablen stellt nach [118] einen der häu-
figsten Datenflussfehler dar.

4.3.6.1 Realisierung der Zugriffsrechtekennung ZR

Zur Spezifikation der Zugriffsrechte ZR und des Initialisierungsstatus IS wird den
Datenspeicherelementen eine Zugriffsrechtekennung ZR hinzugefügt, wie in Abbil-
dung 4.26 dargestellt.

Abbildung 4.26: Datenspeicherelement mit Zugriffsrechtekennung ZR und Datenwert W

175

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Während in Befähigungsarchitekturen derjenige Zugriff auf Daten hat, der die da-
zugehörige Befähigung besitzt [39, 78], verwendet ISMA eine Mikrosegmentierung,
wodurch Daten und Befehle feinstgranular einzelnen Funktionen zugeordnet und
vor fehlerhaftem Zugriff geschützt werden können [125]. Dazu wird der Programm-
speicher, wie in Abbildung 4.27 gezeigt, in Programmmodule und diese wiederum
in einzelne Funktionen unterteilt. Diese Unterteilung entspricht idealerweise der
Aufteilung des Programms bzw. der Programme im Quellcode. Jedes Modul wird
durch eine Modulnummer MN identifiziert, die innerhalb einer Systemkomponen-
te eindeutig ist. Ebenso werden alle Funktionen durch eine modulweit eindeutige
Funktionsnummer FN beschrieben, wodurch sich eine Funktion durch das Tupel
(MN,FN) in einer Systemkomponente eindeutig identifizieren lässt. Diese Mikroseg-
mentierung soll für die Datenspezifikationsarchitektur DSA übernommen werden.

Neben der Zuordnung von Daten und Befehlen zu einer bestimmten Funktion, kann
in der Zugriffsrechtekennung auch vermerkt werden, ob auf den in einem Datenspei-
cherelement enthaltenen Datenwert W nur lesend oder auch schreibend zugegriffen
werden darf. Dies wird durch den Schreibrechtebeschreiber SR spezifiziert.

Die Zugriffsrechtekennung ZR beinhaltet die beschriebenen Komponenten

• Modulnummer MN,

• Funktionsnummer FN,

• Schreibrechtebeschreiber SR und

• Initialisierungsstatus IS,

wodurch sich der in Abbildung 4.28 dargestellte Aufbau ergibt.

Um eine Prüfung der Zugehörigkeit von Daten und Befehlen zur aktuell ausge-
führten Funktion im aktuellen Programmmodul zu ermöglichen, bietet ISMA zwei
Register an, die bei der DSA im in Abbildung 4.29 gezeigten Zugriffsrechteregister
ZRR zusammengefasst werden.

Dieses Register besteht aus den zwei Teilregistern Aktuelle Modulnummer AMN
und Aktuelle Funktionsnummer AFN, wie in Abbildung 4.30 dargestellt. Die Inhalte
der Register werden von der Hardware bei Funktionsaufrufen automatisch gesetzt
und bei jedem Zugriff auf Daten- und Befehlsspeicherelemente mit den Inhalten der
Zugriffsrechtekennung ZR verglichen. Auf diese Weise kann jederzeit sichergestellt
werden, dass nur die zur aktuellen Funktion gehörenden Befehle ausgeführt und die
der Funktion zugeordneten Daten gelesen bzw. geschrieben werden können.

176

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.27: Mikrosegmentierung bei ISMA

Abbildung 4.28: Aufbau der Zugriffsrechtekennung ZR

Abbildung 4.29: Zugriffsrechteregister ZRR im Registersatz der DSA

177

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.30: Aufbau des Zugriffsrechteregisters ZRR

Das genaue Vorgehen zur Prüfung der in der Zugriffsrechtekennung ZR spezifizierten
Eigenschaften wird im folgenden Unterkapitel detailliert vorgestellt.

4.3.6.2 Prüfung der Zugriffsrechte anhand der Zugriffsrechtekennung ZR

Bei jedem Zugriff überprüft die Hardware einer Datenspezifikationsarchitektur
DSA, ob die in den Teilregistern Aktuelle Modulnummer AMN und Aktuelle Funkti-
onsnummer AFN des Zugriffsrechteregisters ZRR spezifizierten Modul- und Funkti-
onsnummern der gerade ausgeführten Programmfunktion mit denen des zu lesenden
oder zu schreibenden Datenspeicherelements identisch sind. Wird auf ein Daten-
speicherelement zugegriffen, dass nicht zur aktuell ausgeführten Funktion gehört,
so wird durch die DSA ein Ausnahmefehler generiert.

Prüfung_Zugriff :=

WENN ZR.MN([Quelle]) �= [ZRR.AMN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.FN([Quelle]) �= [ZRR.AFN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

Vor jedem Schreibzugriff wird geprüft, ob das Zieldatenspeicherelement beschrieben
werden darf, wozu das Zieldatenspeicherelement zuerst gelesen und der Schreibrech-
tebeschreiber SR innerhalb der Zugriffsrechtekennung ZR ausgewertet wird. Hat
dieser den Wert Null, wodurch das Zieldatenspeicherelement des Schreibzugriffs als
nur-lesbar markiert ist, so wird ein Ausnahmefehler generiert.

178

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Prüfung_Schreibzugriff :=

WENN ZR.SR([Quelle]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

Bei jedem lesenden Zugriff auf ein Datenspeicherelement prüft die Hardware der Da-
tenspezifikationsarchitektur DSA, ob das Datenspeicherelement verarbeitbare Da-
ten enthält, indem sie den Inhalt der Initialisierungsstatusbeschreibers IS auswer-
tet. Ergibt diese Auswertung, dass ein Programm soeben versucht hat, Daten zu
verarbeiten, denen vorab kein sinnvoller Wert zugewiesen wurde, so wird ein Aus-
nahmefehler generiert.

Prüfung_Lesezugriff :=

WENN ZR.IS([Quelle]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.6.3 Befehle zur Verwaltung der Zugriffsrechtekennung ZR

Zum Setzen des Besitzers initialisierter lokaler Variablen bietet ISMA den Befehl
Setze Elementbesitzer SEB an, der nur während der Initialisierungsphase eines Sy-
stems angewendet werden kann. Er kann sowohl auf einzelne Datenspeicherelemen-
te, als auch auf Felddeskriptoren angewendet werden. Dabei werden Modul- und
Funktionsnummer in der Zugriffsrechtekennung ZR des durch B indizierten Daten-
speicherelements bzw. aller Elemente des durch B indizierten Datenfelds auf die in
A spezifizierten Werte gesetzt. Die Funktion FG([Operand]) liefert dabei die Feld-
größe aus dem Felddeskriptor zurück und der Index hinter dem Operandennamen
gibt die zu nutzenden Bitpositionen an.

SEB A, B :=

WENN DT([B]) = FD DANN
ZR.MN([B]...[B + FG([B])]) := A.31...A.16;
ZR.FN([B]...[B + FG([B])]) := A.15...A.0;

179

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

SONST
ZR.MN([B]) := A.31...A.16;
ZR.FN([B]) := A.15...A.0;

ENDEWENN

Der Befehl Setze Nur-Lesbar SNL ist ebenfalls von ISMA bekannt und dient dem
Löschen der Schreibrechte eines Datenspeicherelements. Dabei wird der Schreib-
rechtebeschreiber SR der Zugriffsrechtekennung ZR des durch A indizierten Daten-
speicherelements auf Null gesetzt.

SNL A :=

ZR.SR([A]) := 0;

Soll ein Feldelement als nur-lesbar markiert werden, kann der Befehl Setze Feldele-
ment Nur-Lesbar SFNL angewandt werden. Dieser setzt – analog zum Befehl SNL
– den Schreibrechtebeschreiber SR der Zugriffsrechtekennung ZR des durch A und
B indizierten Feldelements auf Null.

SFNL A, B :=

ZR.SR([B + 1 + W([A])]) := 0;

In ISMA wurde der Befehl Lösche Initialisierungsstatusbeschreiber LI definiert, um
den Initialisierungsstatus IS eines Datenspeicherelements zurücksetzen zu können.
Damit ist es möglich, Daten als nicht mehr lesbar zu markieren, was z. B. bei Puffern,
denen Daten entnommen werden, der Erkennung von Lesezugriffen dient, bei denen
nicht mehr gültige Daten verarbeitet werden sollen. Bei der Ausführung des Befehls
wird der Initialisierungsstatusbeschreiber IS in der Zugriffsrechtekennung ZR des
durch A indizierten Zieldatenspeicherelements auf den Wert Null gesetzt.

LI A :=

ZR.IS([A]) := 0;

Zum Rücksetzen des Initialisierungsstatusbeschreibers von Feldelementen dient der
Befehl Lösche Initialisierungsstatusbeschreiber eines Feldelements LFI analog zum

180

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Befehl LI. Dabei wird der Initialisierungsstatusbeschreiber IS in der Zugriffsrechte-
kennung ZR des durch A und B indizierten Feldelements auf Null gesetzt.

LFI A, B :=

ZR.IS([B + 1 + W([A])]) := 0;

Der in Kapitel 4.3.3.3 eingeführte Befehl Prüfe Einen Operanden PEO kann auch zur
Prüfung der Zugriffsrechte eingesetzt werden. Dabei werden – neben weiteren durch
„...“ angedeuteten Prüfungen – die in der folgenden Auflistung gezeigten Prüfungen
eines lesenden Zugriffs durchgeführt. Dabei wird sichergestellt, dass der durch A
indizierte Operand zum aktuellen Programmmodul und zur aktuellen Programm-
funktion gehört. Weiterhin wird anhand des Initialisierungsstatusbeschreibers IS
sichergestellt, dass das Datenspeicherelement lesbare Daten enthält.

PEO A :=

...

WENN ZR.MN([A]) �= [ZRR.AMN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.FN([A]) �= [ZRR.AFN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.IS([A]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

...

4.3.6.4 Spezifikation von Zugriffsrechten in Hochsprachen

Die Modul- und Funktionsnummernfelder MN und FN müssen in Hochsprachen
nicht manuell definiert werden. Entwicklungswerkzeuge wie Übersetzer oder Binder

181

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

können die Modulnummern auf Basis von Programmeinheiten oder Quelltextdateien
vergeben. Gleiches gilt für die in Programmmodulen enthaltenen Funktionen, für
die die Werkzeuge die Funktionsnummern automatisiert generieren können.

Zur Definition nur-lesbarer Daten bietet die Hochsprache C das Schlüsselwort const
an. Soll die Schreibbarkeit während der Laufzeit geändert werden, kann eine neue
intrinsische Funktion genutzt werden. Dafür wird

__set_readonly(<Variablenname>)

vorgeschlagen. Der Übersetzer überführt diese Funktion in Abhängigkeit von der
Art der Variable in den Befehl Setze Nicht Lesbar SNL oder Setze Feldelement
Nicht Lesbar SFNL.

Der Initialisierungsstatusbeschreiber wird durch die Hardware der Datenspezifikati-
onsarchitektur automatisch gesetzt, sobald durch einen Schreibzugriff lesbare Daten
in ein Datenspeicherelement geschrieben wurde. Um bei verbrauchenden Lesevor-
gängen, wie z. B. dem Abrufen von Pufferinhalten die betroffenen Datenspeicher-
elemente als nicht initialisiert bzw. ungültig zu markieren, kann ebenfalls eine neue
intrinsische Funktion eingeführt werden. Diese könnte mit

__set_not_initialized(<Variablenname>)

bezeichnet werden. Je nach Art der Variable wird der Übersetzer dann den Befehl
Lösche Initialisierungsstatus LI oder Lösche Feldelement Initialisierungsstatus LFI
in das Programm einfügen. Die folgende Auflistung zeigt beispielhaft den Einsatz der
beiden intrinsischen Funktionen zur Modifikation der Eigenschaften einer Variable
bzw. eines Feldelements.

__set_readonly(x);
__set_not_initialized(feld_y[z]);

4.3.6.5 Evaluation der Zugriffsrechtekennung ZR

Die Erkennbarkeit der 20 in Kapitel 2.4 identifizierten Fehler- und Angriffsarten
durch die Zugriffsrechtekennung ZR wird in Tabelle 4.7 dargestellt.

Das Heranziehen falscher Operanden kann nur dann erkannt werden, wenn diese
anderen Programmmodulen oder -funktionen zugeordnet sind, bei Schreibzugriffen
keine Schreibrechte aufweisen oder bei Lesezugriffen keine lesbaren Daten enthalten.
Pufferunter- bzw. -überläufe können ebenfalls nur dann erkannt werden, wenn eine

182

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Tabelle 4.7: Fehlererkennung durch die ZR-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler und unvollständige Datenübertragung nein
Pufferunter- oder -überläufe begrenzt
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Störungen oder Fehler verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) ja
Nutzung nicht initialisierter Daten ja
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

183

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

der genannten Bedingungen erfüllt ist. Werden Daten durch Störungen verfälscht,
dann kann die ZR-Kennung dies aufdecken, wenn die durch die Störung verursachten
Bitfehler die Bits der ZR-Kennung betreffen. Fehlerhafter Datenzugriff auf nicht zur
aktuellen Programmfunktion des aktuellen Programmmoduls gehörende Daten, so-
wie der Versuch, auf schreibgeschützte Daten schreibend zuzugreifen, können durch
die ZR-Kennung zuverlässig erkannt werden. Der Versuch, nicht initialisierte Daten
zu lesen, wird anhand des Initialisierungsstatusfelds der Zugriffsrechtekennung ZR
aufgedeckt.

4.3.7 Quelle, Verarbeitungsweg und Ziel

Eine sehr wichtige zu prüfende Eigenschaft eines Datenflusses ist die seines Weges
durch ein System. Die drei Dateneigenschaften Quelle Q, Verarbeitungsweg VW
und Ziel Z beschreiben den genauen Pfad von Daten von ihrer Entstehung bis zu
ihrer endgültigen Nutzung. Üblicherweise ist in Prozessautomatisierungssystemen
bereits zum Zeitpunkt des Systementwurfs klar, welche Daten sich auf welchen
Wegen durch ein System bewegen und dabei verarbeitet werden sollen. Werden diese
Informationen in der Systemspezifikation verankert und dem Übersetzer zugänglich
gemacht, so kann dieser die vorgeschriebenen Verarbeitungswege im System den
Daten in Form einer Verarbeitungswegkennung hinzufügen und die Hardware die
Einhaltung dieser Vorgaben während der Datenverarbeitung prüfen.

4.3.7.1 Realisierung der Verarbeitungswegkennung VW

Die drei erwähnten Dateneigenschaften Quelle Q, Verarbeitungsweg VW und Ziel
Z werden in der Verarbeitungswegkennung VW zusammengefasst, wie in Abbil-
dung 4.31 dargestellt.

Abbildung 4.31: Datenspeicherelement mit Verarbeitungswegkennung VW und Datenwert W

Da zum Zeitpunkt der Spezifikation eines Gesamtsystems meist nur die Subsysteme
feststehen, diese aber unter Umständen von verschiedenen Herstellern entwickelt

184

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

werden und somit keine Interna dieser Subsysteme bekannt sind, ist es vorstell-
bar, die Verarbeitungswegkennung VW in zwei Teile aufzuspalten: einen Systemteil
VWsys und einen Lokalteil VWlok.

Der Systemteil VWsys, dessen Inhalte durch die Systemspezifikation festgelegt wer-
den müssen, beinhaltet die hardwareverständliche Beschreibung, welche Subsyste-
me ein bestimmter Datenfluss auf seinem Weg durchlaufen darf. Er enthält dagegen
keine Beschreibung, wie dieser Verarbeitungsweg innerhalb eines Subsystems aus-
gestaltet sein soll.

Der Lokalteil VWlok, der innerhalb eines Subsystems gesetzt wird, dient der hard-
wareverständlichen Beschreibung des Datenverarbeitungswegs innerhalb eines Sub-
systems.

Damit ergibt sich der in Abbildung 4.32 gezeigte Aufbau der Verarbeitungswegken-
nung VW, bestehend aus

• der Quellkennung Q, die die Quelle bzw. die Quellen eines Datenwerts angibt,

• dem Systemteil VWsys, der – wie bereits beschrieben – spezifiziert, welche Sy-
stemkomponenten das betreffende Datenspeicherelement verarbeiten dürfen,

• dem Lokalteil VWlok, der – wie ebenfalls bereits beschrieben – festlegt, wel-
che Datenverarbeitungseinheiten innerhalb einer Systemkomponente auf das
Datenspeicherelement zugreifen dürfen, und

• die Zielkennung Z, die beschreibt, welche Senken innerhalb des Systems die
Daten nach der Verarbeitung entgegennehmen dürfen.

Abbildung 4.32: Aufbau der Verarbeitungswegkennung VW im Datenspeicherelement

Nimmt ein Subsystem ein Datenspeicherelement entgegen, prüft es anhand der ei-
genen Systemidentifikation, die mit dem Systemteil VWsys der Verarbeitungsweg-
kennung VW abgeglichen wird, ob es die Berechtigung bzw. die Fähigkeit besitzt,
die Daten zu verarbeiten. Wird hierbei kein Fehler festgestellt, so wird der Lokal-
teil VWlok der Verarbeitungswegkennung VW des Datenspeicherelements auf den

185

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

zugehörigen Wert gesetzt und somit eine Prüfung des Wegs des betreffenden Da-
tenspeicherelements innerhalb der Systemkomponente ermöglicht.

Zur Spezifikation der erwarteten Inhalte in den Verarbeitungswegkennungen VW
der Datenspeicherelemente wird den Befehlsspeicherelementen ebenfalls eine Verar-
beitungswegkennung hinzugefügt, wie in Abbildung 4.33 dargestellt.

Abbildung 4.33: Befehlsspeicherelement mit Verarbeitungswegkennung VW

Dabei wird die Kennung – analog zum Aufbau der Verarbeitungswegkennung VW
der Datenspeicherelemente – in die Teilkennungen Quellkennung Operand A QA,
Quellkennung Operand B QB, Systemteil VWsys, Lokalteil VWlok und Zielkennung
Z aufgeteilt, wie in Abbildung 4.34 gezeigt. Die Spezifikation der zwei Quellkennun-
gen QA und QB erlaubt die Prüfung der Quellkennungen von bis zu zwei Operan-
den.

Abbildung 4.34: Aufbau der Verarbeitungswegkennung VW im Befehlsspeicherelement

Da die Inhalte der Verarbeitungswegkennung VW der Befehlsspeicherelemente be-
reits zur Übersetzungszeit bekannt sein müssen, diese aber nicht in jedem Fall zu
diesem Zeitpunkt bekannt sind, wird der Registersatz der Datenspezifikationsar-
chitektur DSA um das in Abbildung 4.35 gezeigte Verarbeitungswegregister VWR
erweitert. Dieses wird gleichberechtigt zur Verarbeitungswegkennung VW der Be-
fehlsspeicherelemente zur Prüfung der Inhalte der Verarbeitungswegkennung VW
der Datenspeicherelemente herangezogen und kann bei Systemstart mit den Inhal-
ten einer Konfigurationsdatei befüllt werden.

Wie in Abbildung 4.36 gezeigt, besteht das Verarbeitungswegregister VWR aus den
zwei Quellregistern QAR und QBR, dem Systemteilregister des Verarbeitungswegs

186

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.35: Verarbeitungswegregister VWR im Registersatz

VWsysR, dem Lokalteilregister des Verarbeitungswegs VWlokR und dem Zielregi-
ster ZR. Die Bedeutung der Teilregister deckt sich mit der der Teilkennungen der
Verarbeitungswegkennung VW der Befehlsspeicherelemente.

Abbildung 4.36: Aufbau des Verarbeitungswegregisters VWR

4.3.7.2 Identifikation der Systemkomponenten innerhalb der
Verarbeitungswegkennung VW

Ein sehr einfacher Ansatz für die Identifikation der Systemkomponenten innerhalb
der Verarbeitungswegkennung VW ist die Zuweisung einer Bitposition für jede Da-
tenquelle des Systems in Q, jeder Datenverarbeitungseinheit in VWsys und jeder
Senke in Z. Ebenso werden den Datenverarbeitungsblöcken innerhalb der Datenver-
arbeitungseinheiten Bitpositionen innerhalb des Lokalteils VWlok zugewiesen. Bei
der Generierung von Daten setzt die Quelle das ihr zugewiesene Bit der Quellken-
nung Q, ebenso die Bits der zugriffsberechtigten Datenverarbeitungseinheiten im
Systemteil VWsys, – sofern bekannt – die Bits der dem Zugriff berechtigten Da-
tenverarbeitungsblöcke innerhalb der ersten Datenverarbeitungseinheit in Lokalteil
VWlok und die Bits aller Senken in der Zielkennung Z, die die Daten nach deren
Verarbeitung entgegennehmen dürfen.

187

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Datenverarbeitungseinheiten, welche selbst neue Daten erzeugen, die nicht durch die
Verarbeitung von Daten aus anderen Quellen entstehen, wird eine eigene Bitposition
in der Quellkennung Q zugewiesen. Analog dazu erhalten Datenverarbeitungsein-
heiten, die bestimmte Daten als Endabnehmer in Empfang nehmen und diese nicht
nach der Verarbeitung weiterleiten, zusätzlich eine Bitposition in der Zielkennung
zugewiesen.

Daher kann eine Datenverarbeitungseinheit jeweils eine Bitposition in den Teilken-
nungen Quellkennung Q, Systemteil des Verarbeitungswegs VWsys und der Zielken-
nung Z aufweisen.

4.3.7.3 Prüfung des Datenflusses anhand der Verarbeitungswegkennung
VW

Wie bei der Realisierung der Verarbeitungswegkennung VW der Datenspeicherele-
mente beschrieben, kann die Prüfung des Verarbeitungswegs unter Nutzung

• der Verarbeitungswegkennung VW der Befehlsspeicherelemente oder

• des Verarbeitungswegregisters VWR im Registersatz der Datenspezifikations-
architektur DSA

erfolgen. In den zwei folgenden Unterkapiteln wird zunächst die Durchführung der
Prüfungen anhand der beiden Angaben vorgestellt, um anschließend zu erläutern,
wie explizit auf die einzelnen Teilprüfungen verzichtet werden kann.

4.3.7.3.1 Durchführung der Prüfungen des Verarbeitungswegs

Bei jedem Datenzugriff in Datenverarbeitungseinheiten wird durch die Hardware
geprüft, ob innerhalb des Systemteils VWsys der Verarbeitungswegkennung VW
das Bit an der der Verarbeitungseinheit zugeordneten Bitposition gesetzt ist, die
Verarbeitung der Daten in der Einheit dadurch also gestattet ist. Dazu wird der In-
halt des Systemteils VWsys mit dem Systemteilregister VWsysR des Verarbeitungs-
wegregisters VWR bzw. dem Systemteil VWsys der Verarbeitungswegkennung des
Befehlsspeicherelements durch eine Konjunktion verknüpft. Das jeweilige Ergebnis
der UND-Verknüpfung muss mit den Inhalten des Teilregisters bzw. der Teilken-
nung identisch sein. Ist dies nicht der Fall, dann waren nicht alle geforderten Bits in
der Systemteilkennung VWsys des Datenspeicherelements gesetzt und die prüfende

188

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Datenverarbeitungseinheit darf nicht auf die Daten zugreifen, woraufhin ein Aus-
nahmefehler generiert wird. Aus Platzgründen wird einigen Pseudocodeauflistungen
die Quelle als Q abgekürzt.

Prüfung_SystemteilVW :=

WENN VW.VWsys([Q]) UND [VWR.VWsysR] �= [VWR.VWsysR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWsys([Q]) UND VW.VWsys([Befehl]) �= VW.VWsys([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Innerhalb der Datenverarbeitungsblöcke der Datenverarbeitungseinheiten des Sy-
stems wird durch die Hardware geprüft, ob der Lokalteil VWlok der Verarbeitungs-
wegkennung VW der Datenspeicherelemente dem jeweiligen Datenverarbeitungs-
block den Zugriff gestattet. Die Prüfung erfolgt analog zum Systemteil VWsys der
Verarbeitungswegkennung der Datenspeicherelemente.

Prüfung_LokalteilVW :=

WENN VW.VWlok([Q]) UND [VWR.VWlokR] �= [VWR.VWlokR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([Q]) UND VW.VWlok([Befehl]) �= VW.VWlok([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

Die Hardware von Verarbeitungseinheiten und Senken kann anhand der Quellken-
nung Q der Verarbeitungswegkennung VW prüfen, ob die empfangenen Daten von
der erwarteten Quelle stammen, bzw. die verarbeiteten Ergebnisse der erwarteten
Quellen enthalten. Dazu wird der Inhalt der Quellkennung Q des Datenspeicherele-
ments mit dem Inhalt eines der beiden Quellregister QAR bzw. QBR und einer der
beiden Quellkennungen QA bzw. QB des Befehlsspeicherelements verglichen, sofern
diese ungleich Null sind. Bei Nichtübereinstimmung wird ein Ausnahmefehler gene-
riert. Auch innerhalb der Datenquellen selbst kann die beschriebene Prüfung sinnvoll

189

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

sein, um fehlerhaft gesetzte Quellkennungen innerhalb der eigenen Datenspeicher-
elemente aufzudecken. Hat ein Befehl nur einen Quelloperanden, so wird dessen
Quellkennung Q mit dem ersten Quellregister QAR und der ersten Quellkennung
QA des Befehls verglichen, wie in der folgenden Pseudocodeauflistung dargestellt.

Prüfung_Quellkennung_ein_Quelloperand :=

WENN [VWR.QAR] �= 0 DANN
WENN VW.Q([Quelle]) �= [VWR.QAR] DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.QA([Befehl]) �= 0 DANN
WENN VW.Q([Quelle]) �= VW.QA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

Bei Befehlen mit zwei Quelloperanden werden die beiden Quellregister QAR und
QBR, sowie die beiden Quellkennungen QA und QB des Befehls zur Prüfung der
Quellkennungen der Quelloperanden herangezogen.

Prüfung_Quellkennung_zwei_Quelloperanden :=

WENN [VWR.QAR] �= 0 DANN
WENN VW.Q([Quelle_1]) �= [VWR.QAR] DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.QA([Befehl]) �= 0 DANN
WENN VW.Q([Quelle_1]) �= VW.QA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

190

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

WENN [VWR.QBR] �= 0 DANN
WENN VW.Q([Quelle_2]) �= [VWR.QBR] DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.QB([Befehl]) �= 0 DANN
WENN VW.Q([Quelle_2]) �= VW.QB([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

In Senken kann die Hardware anhand der Zielkennung Z innerhalb der Verarbei-
tungswegkennung VW sicherstellen, dass die empfangenen Daten wirklich für die
Nutzung durch die betroffene Einheit gedacht sind. Dazu werden die Inhalte mit
dem Zielregister ZR bzw. der Zielkennung Z des Befehlsspeicherelements durch eine
Konjunktion verknüpft. Das Ergebnis der UND-Verknüpfung muss dem Bitmuster
des Registers bzw. der Kennung entsprechen. Ist dies nicht der Fall, so hat die Senke
keine Rechte zur Nutzung der Daten und ein Ausnahmefehler wird generiert.

Prüfung_Zielkennung :=

WENN VW.Z([Quelle]) UND [VWR.ZR] �= [VWR.ZR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.Z([Quelle]) UND VW.Z([Befehl]) �= VW.Z([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.7.3.2 Verzicht auf Teilprüfungen

Wie bei der Realisierung der Verarbeitungswegkennung VW der Datenspeicherele-
mente beschrieben, wird das Verarbeitungswegregister VWR als Alternative zur
Verarbeitungswegkennung VW der Befehlsspeicherelemente bereitgestellt. Dies hat
den Hintergrund, dass die Bitpositionen der Systemkomponenten oder Datenverar-
beitungsblöcke ggf. erst in den detaillierten Spezifikationen der betroffenen Kom-

191

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

ponenten festgelegt werden können und zur Übersetzungszeit zur Einbettung in die
Verarbeitungswegkennungen VW der Befehlsspeicherelemente nicht zur Verfügung
stehen. Auch wenn beide Spezifikationswege – Register und Kennung innerhalb der
Befehlsspeicherelemente – zeitgleich genutzt werden können, so wird nicht jede der
Prüfungen immer erwünscht sein.

Auf die Prüfung der Quellkennung Q der Datenspeicherelemente kann verzichtet
werden, indem die Quellregister QAR und QBR sowie die Quellkennungen QA und
QB der Befehlsspeicherelemente auf Null gesetzt werden. Dies ist den Pseudoco-
deauflistungen im vorhergehenden Unterkapitel bereits zu entnehmen.

Auch die anderen Teilregister bzw. Teilkennungen der Befehlsspeicherelemente er-
lauben durch Setzen auf den Wert Null die Aussetzung der Prüfung der zugehörigen
Teilkennung der Datenspeicherelemente, da die in den Auflistungen beschriebenen
Bedingungen stets zutreffen, da die Gleichung

x UND 0 = 0

für alle Bitmuster in den Teilkennungen – hier stellvertretend durch x symbolisiert
– erfüllt ist.

4.3.7.4 Setzen der Verarbeitungswegkennung VW in Ergebnissen von
Operationen

Die Ergebnisse der Verarbeitung von Operanden durch Operationen erhalten eine
Kombination der Verarbeitungswegkennungen VW der zugrundeliegenden Operan-
den. Dabei werden die Quellenidentifikatoren der Operanden mit einer bitweisen
Disjunktion verknüpft – also unter Anwendung einer ODER-Verknüpfung –, wäh-
rend die Verarbeitungswege VWsys,lok und die Zielidentifikatoren Z jeweils durch
eine bitweise Konjunktion – also einer UND-Verknüpfung – für das Ergebnis ausge-
wählt werden.

Dahinter verbirgt sich die folgende Logik: Werden zwei Operanden verschiedener
Quellen in einer Operation verarbeitet, z. B. die Signale zweier Temperatursensoren
voneinander subtrahiert, so hat die entstehende Differenz beide Sensoren als Quel-
len, realisiert durch Verwendung einer ODER-Verknüpfung. Als Ziel der Differenz
im Datenfluss dürfen nur diejenigen Senken als gültig markiert werden, die in beiden
Operanden der Subtraktion bereits als gültige Senken markiert waren, weshalb eine
UND-Verknüpfung der in den Quelldaten angegebenen Zielen erfolgt. Gleiches gilt

192

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

für die Verarbeitungswegkennung VW der Differenz, die sich dadurch ergibt, dass
die Zwischenstationen, die in beiden Operanden als gültig markiert waren, auch auf
die Differenz durch eine UND-Verknüpfung übertragen werden. Aus Platzgründen
wird in der Pseudocodeauflistung Ergebnis als Erg abgekürzt.

Setzen_VW_in_Ergebnis :=

VW.Q([Erg]) := VW.Q([Quelle_1]) ODER VW.Q([Quelle_2]);
VW.VWsys([Erg]) := VW.VWsys([Quelle_1]) UND VW.VWsys([Quelle_2]);
VW.VWlok([Erg]) := VW.VWlok([Quelle_1]) UND VW.VWlok([Quelle_2]);
VW.Z([Erg]) := VW.Z([Quelle_1]) UND VW.Z([Quelle_2]);

4.3.7.5 Befehle zur Verwaltung der Verarbeitungswegkennung VW

Zur Verwaltung der Verarbeitungswegkennung mit ihren Bestandteilen Quellken-
nung Q, Systemteil VWsys und Lokalteil VWlok des Verarbeitungswegs und Ziel-
kennung Z werden drei Befehle definiert. Bei allen Befehlen wird zunächst sicherge-
stellt, dass die zu setzenden Teilkennungen den Wert Null aufweisen, also noch nicht
gesetzt wurden. Dies dient der Verhinderung unerlaubter „Korrekturen“ der Inhalte
der Verarbeitungswegkennung VW. Enthält eine der Teilkennungen des Zieldaten-
speicherelements bereits gesetzte Bits, so wird ein Ausnahmefehler generiert.

Der erste Befehl Setze Gesamten Verarbeitungsweg SGVW dient dem Setzen aller
vier Bestandteile der Verarbeitungswegkennung VW eines Datenspeicherelements
durch eine Datenquelle. Dies ist nur dann möglich, wenn der Inhalt des Lokalteils
VWlok der Datenquelle bekannt ist, z. B. durch eine entsprechende Konfigurations-
datei. Die Teilkennungen der Verarbeitungswegkennung VW des durch E indizierten
Zieldatenspeicherelements werden auf die durch A, B, C und D indizierten Werte
gesetzt.

SGVW A, B, C, D, E :=

WENN VW.Q([E]) = VW.VWsys([E]) = VW.VWlok([E]) = VW.Z([E]) = 0 DANN
VW.Q([E]) := W([A]);
VW.VWsys([E]) := W([B]);
VW.VWlok([E]) := W([C]);
VW.Z([E]) := W([D]);

193

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Kennt eine Datenquelle den Lokalteil VWlok nicht und kann dieser deshalb durch sie
nicht gesetzt werden, so kann sie den Befehl Setze Verarbeitungsweg SVW nutzen.
Dieser führt dieselben Schritte wie SGVW aus, setzt jedoch keinen neuen Wert für
den Lokalteil VWlok der Verarbeitungswegkennung VW, wodurch dieser – sicherge-
stellt durch die anfängliche Überprüfung – den Wert Null beibehält. Somit können
keine Datenverarbeitungsblöcke innerhalb der Datenverarbeitungseinheiten die Da-
tenwerte verarbeiten, wenn vorab keine entsprechende Kennung gesetzt wird. Die
Teilkennungen der Verarbeitungswegkennung VW des durch D indizierten Zielda-
tenspeicherelements werden analog zum Befehl Setze Gesamten Verarbeitungsweg
SGVW mit den durch A, B und C indizierten Werten gefüllt.

SVW A, B, C, D :=

WENN VW.Q([D]) = VW.VWsys([D]) = VW.VWlok([D]) = VW.Z([D]) = 0 DANN
VW.Q([D]) := W([A]);
VW.VWsys([D]) := W([B]);
VW.Z([D]) := W([C]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Das Setzen des Lokalteils VWlok der Verarbeitungswegkennung VW eines Daten-
speicherelements erfolgt in Datenverarbeitungseinheiten durch Nutzung des Befehls
Setze Verarbeitungsweg Lokal SVWL. Bei dessen Ausführung wird VWlok mit dem
durch A indizierten Bitmuster gefüllt.

SVWL A, B :=

WENN VW.VWlok([B]) = 0 DANN
VW.VWlok([B]) := W([A]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN

194

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Auch für die Verarbeitungswegkennung VW kann der in Kapitel 4.3.3.3 eingeführ-
te Befehl Prüfe Einen Operanden PEO genutzt werden, der die in der folgenden
Auflistung vorgestellten Prüfungen durchführt, ohne eine Änderung des Operan-
den hervorzurufen. Dabei deutet „...“ die Durchführung weiterer Prüfungen an, die
in den zur jeweiligen Kennung gehörenden Kapiteln vorgestellt werden. Bezogen
auf die Verarbeitungswegkennung werden die in der folgenden Auflistung gezeigten,
umfangreichen Prüfungen der Kennungsinhalte durchgeführt.

PEO A :=

...
WENN [VWR.QAR] �= 0 DANN

WENN VW.Q([A]) �= [VWR.QAR] DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

WENN VW.QA([Befehl]) �= 0 DANN
WENN VW.Q([A]) �= VW.QA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.VWsys([A]) UND [VWR.VWsysR] �= [VWR.VWsysR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWsys([A]) UND VW.VWsys([Befehl]) �= VW.VWsys([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([A]) UND [VWR.VWlokR] �= [VWR.VWlokR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([A]) UND VW.VWlok([Befehl]) �= VW.VWlok([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

195

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN VW.Z([A]) UND [VWR.ZR] �= [VWR.ZR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.Z([A]) UND VW.Z([Befehl]) �= VW.Z([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
...

4.3.7.6 Veranschaulichung der Verarbeitungswegkennung

Zur Veranschaulichung der Anwendung der Verarbeitungswegkennung inklusive der
Quell- und Zielkennung soll das einfache Beispiel in Abbildung 4.37 dienen.

Zunächst soll der Datenfluss oberflächlich erläutert werden. In einen technischen
Prozess sind die drei Sensoren A bis C eingebracht, die in der Spezifikationsphase
des Systems eindeutige Identifikatoren in Form von eindeutigen Bitmustern zuge-
wiesen bekommen. Für Sensor A ist dies 001b, für Sensor B 010b und für Sensor C
100b. Die Sensoren erzeugen die Messergebnisse MA bis MC, die an die Datenverar-
beitungseinheit DVE A weitergeleitet werden, die den eindeutigen Identifikator 01b
trägt. Innerhalb der DVE A werden den Messergebnissen lokale Verarbeitungsweg-
kennungen zugewiesen, wodurch die entsprechenden modifizierten Messergebnisse
MA’ bis MC’ entstehen. Diese tragen daher die Information in sich, welche Daten-
verarbeitungsblöcke DV innerhalb von DVE A die Daten verarbeiten sollen. Zwei
dieser Datenverarbeitungsblöcke sind im Beispiel dargestellt, DV A und DV B, mit
den Identifikatoren 001b bzw. 010b. Durch die Verarbeitung entstehen die zwei
Stellgrößen SA und SB, welche an die zwei Aktoren Aktor A bzw. Aktor B gesendet
werden. Die Aktoren tragen dabei die Identifikatoren 001b bzw. 010b.

Der vorgesehene Datenfluss innerhalb des Systems soll nun detailliert in den Ver-
arbeitungswegkennungen beschrieben werden, ebenso die verschiedenen Prüfungen,
die die einzelnen Instanzen des Systems vornehmen.

4.3.7.6.1 Erzeugung der Prozessgrößen in den Sensoren

Die Sensoren versehen jeden der Messwerte MA bis MC mit einer Verarbeitungsweg-
kennung, die auf einer hohen Ebene – ohne Detailwissen über den inneren Aufbau

196

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.37: Einfaches Beispiel zur Veranschaulichung der Verarbeitungswegkennung

197

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

der beteiligten Datenstationen zu benötigen – den Weg der Daten durch das System
bis hin zu den Aktoren festlegt. Die Darstellung dieser Kennung soll hier als Tupel
der Form

VW := (Q, VWsys, VWlok, Z)

erfolgen, wobei Q die Quellkennung des jeweiligen Sensors enthält, VWsys die die
Daten verarbeitenden Einheiten auf hoher Ebene und VWlok die Datenverarbei-
tungsblöcke innerhalb der DVE darstellen und Z das vorhergesehene Ziel durch
dessen Zielkennung identifiziert. Für die Messgröße MA, die durch Sensor A 001b
gebildet wird, die durch die DVE A 01b verarbeitet werden und in die Stellgröße
SB münden und in dieser Form an Aktor B 010b gesendet werden soll, ergibt sich
somit die VW-Kennung

MA := (001b,01b,—,010b),

die vom Sensor entsprechend in MA hinterlegt wird.

Für die beiden weiteren Prozessgrößen MB,C ergeben sich analog dazu

MB := (010b,01b,—,010b),

bzw.

MC := (100b,01b,—,001b).

4.3.7.6.2 Verarbeitung der Sensordaten in den Datenverarbeitungseinheiten

Die Prozessgrößen MA,B,C werden über eine Kommunikationsverbindung – z. B.
einen Feldbus – an die Datenverarbeitungseinheit DVE A gesendet. Diese prüft an-
hand des globalen Teils der Verarbeitungswegkennung VWsys der ankommenden
Daten, ob diese durch sie verarbeitet werden dürfen. Für diese Prüfung kommen
die den Systemteil der Verabreitungswegkennung betreffenden Inhalte des Verar-
beitungswegregisters VWR und die Verarbeitungswegkennungen VW der die Daten
verarbeitenden Befehle zum Einsatz. Es wird sichergestellt, dass die Gleichungen

VWsys(Mx) UND [VWR.VWsysR] = [VWR.VWsysR] und
VWsys(Mx) UND VW.VWsys([Befehl]) = VW.VWsys([Befehl])

erfüllt sind, die Daten somit durch DVE A auch tatsächlich verarbeitet werden
dürfen. Im vorliegenden Beispiel sollen VWR.VWsysR und VW.VWsys([Befehl])
jeweils den Wert 01b aufweisen, wodurch sich für beide Gleichungen

VWsys(Mx) UND 01b = 01b

198

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

ergibt und die Daten somit in der DVE A verarbeitet werden dürfen.

Die DVE fügt den Daten daraufhin den lokalen Teil VWlok der Verarbeitungs-
wegkennung hinzu, um den vorgesehenen Weg der Daten durch die DVE A über
die in ihr enthaltenen Datenverarbeitungsblöcke DV A bzw. DV B zu beschrei-
ben. Die Messwerte MA,B sollen dabei durch den Datenverarbeitungsblock DV A,
der Messwert MC durch DV B verarbeitet werden. So ergeben sich die um VWlok
erweiterten Messgrößen

MA’ := (001b,01b,001b,010b),
MB’ := (010b,01b,001b,010b) und
MC’ := (100b,01b,010b,001b).

Die Daten werden nun innerhalb der DVE A den entsprechenden Datenverarbei-
tungsblöcken DV A bzw. DV B zur Verarbeitung zur Verfügung gestellt. Diese
prüfen nun ihrerseits, ob der lokale Teil VWlok der Verarbeitungswegkennung ei-
ne Verarbeitung im jeweiligen Datenverarbeitungsblock gestattet. Wie auch bei der
Prüfung des Systemteils der Daten werden hier die den Lokalteil der Verarbeitungs-
wegkennung betreffenden Inhalte des Verarbeitungswegregisters VWR und der Ver-
arbeitungswegkennung VW des die Daten verarbeitenden Befehls für die Prüfung
der Erfüllung der Gleichungen

VWlok(Mx’) UND [VWR.VWlokR] = [VWR.VWlokR] und
VWlok(Mx’) UND VW.VWlok([Befehl]) = VW.VWlok([Befehl])

herangezogen. Im gegebenen Beispiel soll kein Lokalteil im Verarbeitungswegregister
VWR spezifiziert sein, weshalb das den Lokalteil betreffende Teilregister VWlokR
den Wert 000b enthält. Die den Lokalteil des Verarbeitungswegs bestimmende Teil-
kennung VWlok in der Verarbeitungswegkennung des die Daten verarbeitenden Be-
fehls enthält für alle zum Datenverarbeitungsblock DV A gehörenden Befehle den
Identifikator 001b und im Datenverarbeitungsblock DV B 010b.

Für MA’ und MB’ werden damit die Prüfungen

VWlok(Mx’) UND 000b = 000b und
VWlok(Mx’) UND 001b = 001b,

für MC’ entsprechend

VWlok(Mx’) UND 000b = 000b und
VWlok(Mx’) UND 010b = 010b

durchgeführt. Sind die Bedingungen erfüllt, so werden die Daten im jeweiligen Da-
tenverarbeitungsblock verarbeitet und die Stellgrößen SA und SB für die Aktoren

199

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Aktor A und Aktor B berechnet. Wird dabei nur eine Eingangsgröße verarbeitet,
wie es bei der Erzeugung von SA in DV B der Fall ist, in diesem Fall MC’, so wer-
den Q, VWsys,lok und Z der Eingangsgröße einfach direkt in die VW-Kennung des
Ergebnisses übertragen. Für die Stellgröße SA ergibt sich somit

SA := (Q(MC’),VWsys(MC’),—,Z(MC’)) = (100b,01b,—,001b).

Werden mehrere Eingangsgrößen zu einem Ergebnis verarbeitet, wie im Fall von
SB, so werden die Quellkennungen Q der Eingangsgrößen ODER-verknüpft, wäh-
rend die Verarbeitungswegkennungen VWsys,lok und die Zielkennungen Z UND-
verknüpft werden. Bei den Quellkennungen trägt das Ergebnis daher die Kennung
aller Quellen, die an der Entstehung der zugrundeliegenden Messgrößen beteiligt
waren. Die beiden anderen Kennungen, VWsys,lok und Z, tragen hingegen nur die
Identifikatoren derjenigen Verarbeitungsinstanzen und Ziele in sich, die in allen Ein-
gangsgrößen als gültig markiert waren. Dies resultiert im gegebenen Beispiel in der
Verarbeitungswegkennung

SB := (Q(MA’) ODER Q(MB’),VWsys(MA’) UND VWsys(MB’),—,
Z(MA’) UND Z(MB’))

= (011b,01b,—,010b)

für die Stellgröße SB.

4.3.7.6.3 Verarbeitung der Stellgrößen in den Aktoren

Die berechneten Stellgrößen werden daraufhin über eine Kommunikationsverbin-
dung an die jeweiligen Aktoren weitergeleitet. Diese stellen bei Erhalt der Daten
anhand der Verarbeitungswegkennung sicher, dass

• die Stellgrößen auch wirklich für den jeweiligen Aktor bestimmt sind und

• die zugrundeliegenden Sensordaten von den erwarteten Quellen stammen.

Auch hier kommen die entsprechenden Inhalte des Verarbeitungswegregisters VWR
und der Verarbeitungswegkennung VW der die Daten verarbeitenden Befehle zum
Tragen. Nach dem Vorbild der bereits beschriebenen Prüfungen wird in den Aktoren
die Einhaltung der Bedingungen

Z(Sx) UND [VWR.ZR] = [VWR.ZR] und
Z(Sx) UND VW.Z([Befehl]) = VW.Z([Befehl]),

und für das konkrete Beispiel

200

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Z(SB) UND 010b = 010b bzw.
Z(SA) UND 001b = 001b

für die Inhalte der Zielteilkennung der Daten sichergestellt. Für die erwarteten In-
halte der Quellteilkennungen ergeben sich analog dazu die durchzuführenden Prü-
fungen

Q(Sx) = VWR.Q{A,B}, wenn VWR.Q{A,B} �= 0 und
Q(Sx) = VW.Q{A,B}([Befehl]), wenn VW.Q{A,B}([Befehl]) �= 0.

Für das hier beschriebene Beispiel sind die zu erfüllenden Bedingungen daher

Q(SA) = 011b und
Q(SB) = 100b.

4.3.7.7 Spezifikation von Verarbeitungswegen in Hochsprachen

Zum Setzen der Verarbeitungswegkennung VW und ihrer Teilkennungen wird für
die Hochsprache C die Einführung der intrinsischen Funktionen

__set_processing_path(<Variablenname>,<Q>,<VWsys>,<Z>),
__set_whole_processing_path(<V.name>,<Q>,<VWsys>,<VWlok>,<Z>) und
__set_local_processing_path(<Variablenname>,<VWlok>)

vorgeschlagen, wobei die Bezeichner der Parameter der drei Funktionen den Namen
der vier Teilkennungen der Verarbeitungswegkennung VW entsprechen.

Die Funktion __set_processing_path() wird vom Übersetzer in den Befehl Set-
ze Verarbeitungsweg SVW überführt, um alle Teilkennungen bis auf den Lokalteil
VWlok der Verarbeitungswegkennung VW der Zielvariable zu setzen. Die Funktion
__set_whole_processing_path() dient dem Setzen aller Teilkennungen und wird
dementsprechend in den Befehl Setze Gesamten Verarbeitungsweg SGVW über-
setzt. Die Nutzung der Funktion __set_local_processing_path() ermöglicht es,
nur den Lokalteil VWlok der Verarbeitungswegkennung VW der Zielvariable zu set-
zen und wird durch den Befehl Setze Verarbeitungsweg Lokal SVWL realisiert.

Der Einsatz der drei Funktionen im Quellcode wird in der folgenden Auflistung
gezeigt, wobei BM aus Platzgründen als Bezeichnung für das jeweilige Bitmuster
genutzt wird.

201

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

__set_processing_path(x, Q_BM, VW_SYS_BM, Z_BM);
__set_whole_processing_path(y, Q_BM, VW_SYS_BM, VW_LOK_BM, Z_BM);
__set_local_processing_path(z, VW_LOK_BM);

4.3.7.8 Evaluation der Verarbeitungswegkennung VW

Von den 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten lassen sich die in
Tabelle 4.8 gezeigten Arten erkennen.

Tabelle 4.8: Fehlererkennung durch die VW-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl (ja)
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe begrenzt
Fehlerhafter Datenfluss (falsche Adressaten, . . .) ja
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

Die Verwendung falscher Operanden in einer Operation kann durch die Verarbei-
tungswegkennung dann aufgedeckt werden, wenn in deren Verarbeitungswegken-

202

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

nung VW die aktuelle Datenverarbeitungseinheit oder ein Programmmodul inner-
halb einer solchen Einheit nicht als gültiger Teilnehmer der Verarbeitung der Daten
aufgeführt ist. Auf die gleiche Weise können in begrenztem Maß Pufferunter- und
-überläufe erkannt werden, wenn unter bzw. über die Grenzen eines Puffers hinaus
gelesen wird. Beim entsprechenden fehlerhaften Schreibzugriffen kann der Fehler
frühestens beim nächsten lesenden Zugriff aufgedeckt werden, wenn die genann-
ten Bedingungen erfüllt sind. Fehlerhafter Datenfluss durch Adressierungsfehler,
also z. B. das Versenden von Daten an falsche Adressaten oder das Weiterreichen
von Daten an die falschen Programmmodule kann durch die Verarbeitungswegken-
nung sicher erkannt werden. Die Nutzung nicht initialisierter Daten kann nur dann
erkannt werden, wenn Datenspeicherelementen mit entsprechenden ungültigen In-
halten z. B. eine leere Verarbeitungswegkennung zugewiesen wird, wodurch keine
System- oder Programmeinheit lesend auf die Daten zugreifen kann, ohne einen
Ausnahmefehler zu verursachen.

4.3.8 Zeitschritt

Werden zur Erfassung von Messgrößen eines technischen Prozesses intelligente Sen-
soren eingesetzt, so werden diese die zu messende physikalische Größe in bestimmten
Zeitabständen erfassen, umwandeln und zur Übertragung an eine Datenverarbei-
tungseinheit bereitstellen bzw. selbst übertragen. Bei der Nutzung konventioneller
Sensoren, die eine Messgröße analog an eine Datenverarbeitungseinheit übermitteln,
wird diese Größe ebenfalls zeitdiskret in ein digitales Signal umgewandelt. Es liegt
daher in beiden Fällen nahe, den Daten ihren diskreten Entstehungszeitpunkt als
Dateneigenschaft hinzuzufügen.

Doch nicht nur Messwerte können mit der Eigenschaft ihres diskreten Entstehungs-
zeitpunkts versehen werden. Ebenso sind Variablen in Schleifen Änderungen zu
diskreten Zeitpunkten unterworfen. Bei der Übertragung von Datenfeldern kann
anhand des Zeitschritts aller Feldelemente sichergestellt werden, dass alle Elemente
aktualisiert wurden. Werden Daten nebenläufig verwendet, so besteht die Gefahr
von Inkonsistenzen bei konkurrierendem Zugriff. Auch hier kann eine Zeitschrittan-
gabe helfen, zu erkennen, ob die betroffenen Daten inkonsistente Stände aufweisen.
Es gilt also neben der reinen Angabe von Zeitschritten auch die temporalen Zusam-
menhänge zwischen den Zeitschritten von Operanden zu beschreiben.

203

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.8.1 Formale Notation der Zeitschrittkennung

Um die diskreten Entstehungszeitschritte von Operanden und die temporalen Zu-
sammenhänge zwischen den Zeitschritten von Operanden verständlich darstellen
zu können, ist eine formale Notation beider Merkmale notwendig. Diese wird hier
vorgestellt, wobei die Zeitschrittangabe von Operanden und die Spezifikation der
temporalen Zusammenhänge der Operanden von Operationen getrennt betrachtet
werden.

4.3.8.1.1 Angabe des Zeitschritts von Operanden

Bei Operanden wird der erwartete Zeitschritt des Operanden unterhalb von diesem
angegeben. Doch nicht alle Operanden besitzen einen diskreten Entstehungszeit-
punkt, so z. B. Konstanten. Soll ein Operand keinen Zeitschritt aufweisen, dann
wird dies durch

K
t:∗

angegeben, wodurch klar wird, dass hier explizit auf die Spezifikation eines Zeit-
schritts verzichtet wurde. Würde die Angabe einfach weggelassen, könnte auch ein
Spezifikationsfehler vorliegen, die Angabe also schlicht vergessen worden sein.

Besitzt ein Operand eine Zeitschrittangabe, wird diese durch

x(n)
t:n

beschrieben. Es handelt sich dabei um eine relative Angabe, hier n, die natürlich erst
durch die Relation zu den Zeitschritten weiterer Operanden mit Zeitschrittkennung
an Bedeutung gewinnt. Dies wird anhand eines späteren Beispiels klarer.

4.3.8.1.2 Angabe der zu prüfenden temporalen Beziehung bei Operatoren

Bei Operatoren wird die zu prüfende temporale Beziehung der beteiligten Operan-
den oberhalb der Operanden angegeben. Um auch bei den Operatoren durch eine
explizite Angabe auf die Prüfung der temporalen Beziehung verzichten zu können,
wird

Δt:∗
Op

204

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

definiert, um dies zu verdeutlichen.

Soll die temporale Beziehung der Operanden zueinander jedoch geprüft werden,
wird die Differenz der erwarteten Zeitschritte oberhalb des Operators angegeben.
Dabei wird in dieser Arbeit festgelegt, dass dabei stets der Zeitschritt des rechts des
Operators stehenden Operanden von dem des links stehenden abzuziehen ist. Die
Angabe der Prüfungsbedingung wird also durch

Δt:1
Op

beschrieben. Im angegebenen Beispiel soll die Differenz zwischen den Zeitschritten
des linken und rechten Operanden also 1 sein.

Es kann notwendig sein, den Zeitschritt des Ergebnisses Operation manuell zu erhö-
hen, z. B. falls der zweite Operand eine Konstante ohne eigenen Zeitschritt ist. Dies
ist z. B. bei Zählervariablen der Fall, auf die eine Konstante ohne Zeitschrittangabe
addiert wird. Um hier das Ergebnis mit einem aktualisierten Zeitschritt zu versehen,
wird bei einer solchen Operation zunächst – wie gehabt – der jüngere Zeitschritt der
beiden Operanden ausgewählt, dieser dann jedoch um eins erhöht und dann dem
Ergebnis der Operation zugewiesen. In der formalen Notation wird diese Erhöhung
mit einem + gekennzeichnet. Ein Befehl, der keine Prüfung der temporalen Bezie-
hung der Operanden durchführen, jedoch den Zeitschritt des Ergebnisses um Eins
erhöhen soll, wird damit mit

Δt:∗,+1
Op

und ein Befehl, der eine Differenz zwischen den Zeitschritten beider Operanden
prüfen soll durch

Δt:1,+1
Op

beschrieben.

205

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.8.1.3 Beispiele für die formale Notation der Zeitschrittkennung

Zur Verdeutlichung der vollständigen Notation werden nun zwei Beispiele gezeigt.
Die Addition zweier Datenwerte A und B, die temporal einen Zeitschritt auseinan-
derliegen sollen, wird nach der vorgestellten Notation durch

A
t:n

Δt:1
+ B

t:n−1

beschrieben. Der Wert von B ist also einen diskreten Zeitschritt älter als der Wert
von A und die temporale Beziehung beider Operanden zueinander wird über dem
Operator + angegeben.

Wird das Beispiel um eine Zuweisung des Ergebnisses zu C ergänzt, welches nach
der vorangegangenen und vor der zu erfolgenden Zuweisung im fehlerfreien Fall den
Zeitschritt n − 1 haben muss, vervollständigt sich der Term zu

C
t:n−1

Δt:−1= A
t:n

Δt:1
+ B

t:n−1

um die Angabe des erwarteten Zeitschritts von C und der Angabe der zu prüfenden
temporalen Beziehung zwischen C und dem Ergebnis der Addition.

Ein weiteres Beispiel soll den Einsatz der Erhöhung des Zeitschritts des jüngeren
Operanden zeigen, wie es z. B. bei der Überwachung des Datenflusses von Zähler-
variablen notwendig ist.

A
t:n−1

Δt:−1= A
t:n−1

Δt:∗,+1
+ K

t:∗

Auf die Zählervariable A soll die Konstante K addiert werden, die als Konstante kei-
nen Zeitschritt aufweist und daher die Zeitschrittangabe t : ∗ trägt. Entsprechend
muss bei der Addition keine temporale Beziehung zwischen A und K geprüft werden,
was durch Δt : ∗ spezifiziert wird. Allerdings soll der Zeitschritt des Additionser-
gebnisses um eins erhöht werden, daher trägt die Addition die Angabe Δt : ∗, +1.
Die Variable A hat auf beiden Seiten der Gleichung den Zeitschritt n − 1. Nach der
Addition von A und K wird dem Ergebnis der Zeitschritt n − 1 + 1, also n zuge-
wiesen. Bei der anschließenden Zuweisung des Ergebnisses zu A wird die Differenz
zwischen dem bisherigen Zeitschritt von A und dem Ergebnis der Addition gebildet
und verifiziert, dass diese -1 ist.

206

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.8.2 Realisierung der Zeitschrittkennung ZS

Eine Datenquelle, z. B. ein intelligenter Sensor, versieht die von ihr generierten zeit-
diskreten Datenwerte mit einem aufsteigenden Zeitschritt, der im Datenspeicher-
element in der Zeitschrittkennung ZS abgelegt wird, wie in Abbildung 4.38 darge-
stellt.

Abbildung 4.38: Datenspeicherelement mit Zeitschrittkennung ZS und Datenwert W

Da für die Angabe des Zeitschritts in der Praxis ein Kennungsfeld mit einer festge-
legten Bitbreite verwendet werden wird, ist die Anzahl der darstellbaren Zeitschritt-
werte endlich. Darum werden die Zeitschritte als Restklassenring Z/2nZ dargestellt,
wobei n die Anzahl der für die Zeitschrittkennung vorgesehenen Bits angibt. Nicht
immer werden Operanden einen Zeitschritt besitzen. So werden z. B. Konstanten
keinen Zeitschritt besitzen, aber es kann ebenso vorkommen, dass eine Quelle ei-
nem Datenspeicherelement keinen Zeitschritt zuweist oder zuweisen kann. Daher
wird ein weiteres Bit innerhalb der Zeitschrittkennung benötigt, das als Präsenzbit
P genutzt wird. Dieses zeigt an, ob ein auswertbarer Zeitschritt in der Zeitschritt-
kennung hinterlegt ist, wobei der Wert Null angibt, dass kein Zeitschritt vorhanden
ist, während der Wert Eins das Vorhandensein eines auswertbaren Zeitschritts spe-
zifiziert.

Damit ergibt sich der in Abbildung 4.39 gezeigt Aufbau der Zeitschrittkennung eines
Datenspeicherelements.

Abbildung 4.39: Aufbau der Zeitschrittkennung ZS bei Datenspeicherelementen

Der Befehlssatz der Datenspezifikationsarchitektur wird so angepasst, dass jeder
Befehl ebenfalls eine Zeitschrittkennung erhält. Diese kann eine Vorgabe enthal-

207

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

ten, in welcher temporalen Beziehung die vom Befehl zu verarbeitenden Operanden
zueinander stehen sollen, wie in Abbildung 4.40 gezeigt.

Abbildung 4.40: Befehlsspeicherelement mit Zeitschrittkennung ZS

Werden in einer Datenspezifikationsarchitektur Dreiadressbefehle eingesetzt, wie
dies z. B. bei ISMA [125] der Fall ist, so können innerhalb der Zeitschrittkennung
ZS des Befehls auch zwei temporale Beziehungen zu spezifizieren sein: die zwischen
den Operanden der Operation und die zwischen dem Ergebnis der Operation und
dem Zieldatenspeicherelement, in das das Ergebnis der Operation im Zuge der Aus-
führung der Wertzuweisung gespeichert werden soll. Da es möglich sein soll, explizit
auf die Prüfung der temporalen Beziehungen der Operanden zu verzichten, wer-
den auch in der Zeitschrittkennung ZS der Befehle ein bzw. zwei Präsenzbits P
genutzt, das angibt bzw. die angeben, ob die Zeitschrittkennung zu prüfende tem-
porale Beziehungen enthält. Der Wert Null gibt bei den Präsenzbits P an, dass keine
Zeitschrittdifferenz zu prüfen ist, während der Wert Eins eine Prüfung anfordert.
Weiterhin enthält die Zeitschrittkennung ZS in den Befehlen die Teilkennung +1, die
angibt, ob der Zeitschritt des Ergebnisses der Operation um Eins erhöht werden soll.
Daher ergibt sich der in Abbildung 4.41 dargestellte Aufbau der Zeitschrittkennung
ZS bei Befehlen.

Abbildung 4.41: Aufbau der Zeitschrittkennung ZS bei Befehlsspeicherelementen

4.3.8.3 Prüfung der temporalen Beziehungen von Operanden anhand der
Zeitschrittkennung ZS

Ein Befehl mit zwei Operanden enthält in seiner Zeitschrittkennung ZS eine zu
verifizierende temporale Beziehung Δt der Zeitschritte der beiden Operanden, sowie

208

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

ein Präsenzbit P, welches angibt, ob eine solche Prüfung durchgeführt werden soll.
Die folgende Auflistung zeigt, welche Prüfungen die Hardware bei einem Befehl
mit zwei Operanden anhand der Zeitschrittkennungen ZS durchführt. Wenn das
Präsenzbit P des Befehls eine zu prüfende Zeitschrittdifferenz Δt festlegt, dann wird
die Differenz der Zeitschritte der Operanden gebildet, sofern beide Operanden einen
Zeitschritt besitzen. Andernfalls gilt die Bedingung als erfüllt. Aus Platzgründen
werden in den folgenden Pseudocodeauflistungen Quelle_1 als Q_1, Quelle_2 als
Q_2 und Ziel als Z abgekürzt.

Prüfung_Zeitschrittdifferenz_2_Operanden :=

WENN ZS.P([Befehl]) = 1 DANN
WENN ZS.P([Q_1]) = ZS.P([Q_2]) = 1 DANN

WENN ZS.ZS([Q_1]) - ZS.ZS([Q_2]) �= ZS.Δt([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

ENDEWENN

Bei Befehlen mit drei Operanden werden in der Zeitschrittkennung ZS des Befehls
zwei zu prüfende temporale Beziehungen Δt und zwei Präsenzbits P angegeben.
Die durchgeführten Prüfungen werden in der folgenden Auflistung gezeigt. Dabei
bezeichnet „Ergebnis“ das innerhalb der arithmetisch-logischen Einheit entstandene
Ergebnis der durchgeführten Operation. Die Ermittlung des Zeitschritts des Ergeb-
nisses wird im folgenden Unterkapitel erläutert.

Prüfung_Zeitschrittdifferenz_3_Operanden :=

WENN ZS.POp([Befehl]) = 1 DANN
WENN ZS.P([Q_1]) = ZS.P([Q_2]) = 1 DANN

WENN ZS.ZS([Q_1]) - ZS.ZS([Q_2]) �= ZS.ΔtOp([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

ENDEWENN

209

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN ZS.Pzuw([Befehl]) = 1 DANN
WENN ZS.P([Z]) = ZS.P([Ergebnis]) = 1 DANN

WENN ZS.ZS([Z]) - ZS.ZS([Ergebnis]) �= ZS.Δtzuw([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

ENDEWENN

4.3.8.4 Setzen der Zeitschrittkennung ZS in Ergebnissen von Operationen

Die Hardware bildet bei der Ausführung von Operationen die vorzeichenbehafte-
te Differenz der beiden vorzeichenlosen Zeitschrittangaben der Operanden, wenn
beide Operanden eine Zeitschrittkennung besitzen. Dabei wird der Inhalt der Zeit-
schrittkennung ZS des zweiten Operanden von der des ersten Operanden abgezogen
und bewertet. Ist die Differenz positiv, dann geht die Datenverarbeitungseinheit
davon aus, dass der erste Operand die höhere und damit jüngere Zeitschrittken-
nung aufweist und überträgt diese in die Zeitschrittkennung ZS des Ergebnisses.
Ist die Differenz negativ, wird entsprechend die Zeitschrittkennung ZS des zweiten
Operanden für das Ergebnis ausgewählt.

Diese Vorgehensweise birgt ein Risiko: Überschreitet die Differenz der beiden Zeit-
schrittkennungen ZS der beiden Operanden den Wertebereich der vorzeichenbehaf-
teten Darstellung der Zeitschrittkennungen, so wählt die Hardware fälschlicherweise
die Zeitschrittkennung des älteren Operanden aus und überträgt diese in das Er-
gebnis. Die Auswirkungen eines solchen Fehlers sind – bezogen auf die Sicherheit
des Gesamtsystems – gering, da die fehlerhafte Auswahl des Zeitschritts bei der
nächsten Prüfung der temporalen Beziehungen aufgedeckt wird, frühestens bei ei-
ner nachfolgenden Zuweisung des Ergebnisses. Allerdings hat dieser Fehler natürlich
entsprechend starke Auswirkungen auf die Verfügbarkeit des Systems. Es gilt also,
die Zeitschrittkennung in der Hardware mit genügender Bitbreite zu realisieren,
damit die beschriebenen Überläufe und die damit verbundenen Probleme nicht auf-
treten.

Ist an der Operation ein Operand ohne Zeitschrittkennung beteiligt, so wird dem
Ergebnis der Operation automatisch der Zeitschritt des Operanden mit Zeitschritt-
kennung zugewiesen. Besitzt keiner der beiden Operanden eine Zeitschrittangabe,
so erhält auch das Ergebnis keine Zeitschrittangabe. Ist in der Zeitschrittkennung

210

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

die Vorgabe gesetzt, den Zeitschritt des Ergebnisses um Eins zu erhöhen, darge-
stellt durch die gesetzte Teilkennung +1, dann wird der dem Ergebnis zugewiesene
Zeitschritt um Eins erhöht, sofern das Ergebnis einen Zeitschritt erhält.

Setzen_ZS_in_Ergebnis :=

WENN ZS.P([Quelle_1]) = ZS.P([Quelle_2]) = 1 DANN
WENN ZS.ZS([Quelle_1]) - ZS.ZS([Quelle_2]) ≥ 0 DANN

ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([Quelle_1]);

SONST
ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([Quelle_2]);

ENDEWENN
SONST WENN ZS.P([Quelle_1]) = 1 DANN

ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([Quelle_1]);

SONST WENN ZS.P([Quelle_2]) = 1 DANN
ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([Quelle_2]);

SONST
ZS.P([Ergebnis]) := 0;

ENDEWENN

WENN ZS.P([Ergebnis]) = 1 ∧ ZS.+1([Befehl]) = 1 DANN
ZS.ZS([Ergebnis]) := ZS.ZS([Ergebnis]) + 1;

ENDEWENN

4.3.8.5 Befehle zur Verwaltung der Zeitschrittkennung ZS

Zum Setzen der Inhalte der Zeitschrittkennung ZS eines Datenspeicherelements wird
für die Datenquellen der Befehl Setze Zeitschritt SZS eingeführt, mit dessen Hilfe
der Zeitschritt des durch C indizierten Speicherelements auf den durch A indizierten
Wert gesetzt werden kann, sofern dies gewünscht ist. Mit dem durch B indizierten
Operanden kann bestimmt werden, ob ein Zeitschritt zu setzen ist oder ob das
Präsenzbit P der Zeitschrittkennung ZS auf Null gesetzt werden soll, um das Fehlen
eines Zeitschritts zu markieren.

211

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

SZS A, B, C :=

WENN W([B]) �= 0 DANN
ZS.P([C]) := 1;
ZS.ZS([C]) := W([A]);

SONST
ZS.P([C]) := 0;

ENDEWENN

Um eine ähnliche Funktionalität wie ADI bzw. SSM des Oracle SPARC M7 Prozes-
sors bieten zu können (siehe Kapitel 3.8), wird der Befehl Prüfe Zeitschritt Absolut
PZSA definiert, mit dessen Hilfe der Zeitschritt innerhalb der Zeitschrittkennung des
durch A indizierten Operanden mit dem durch B indizierten absoluten Zeitschritt-
wert verglichen wird. Dabei ist zu beachten, dass der Befehl keinen herkömmlichen
Vergleichsbefehl darstellt, dessen Ergebnis durch eine bedingte Sprunganweisung
ausgewertet werden kann. Stattdessen wird bei Nichtübereinstimmung ein Ausnah-
mefehler generiert, der zum Programmabbruch führt.

PZSA A, B :=

WENN ZS.P([A]) �= 0 DANN
WENN ZS.ZS([A]) �= W([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Zur Prüfung einer relativen temporalen Beziehung zweier Operanden kann der in
Kapitel 4.3.4.5 eingeführte Befehl Prüfe Zwei Operanden PZO genutzt werden. Ne-
ben weiteren Prüfungen – in der folgenden Auflistung durch „...“ angedeutet – prüft
der Befehl die Differenz der Zeitschritte der beiden durch A und B indizierten Ope-
randen anhand der Inhalte der Zeitschrittkennung ZS des Befehls, ohne dabei einen
der Operanden zu verändern.

212

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

PZO A, B :=

...

WENN ZS.P([Befehl]) = 1 DANN
WENN ZS.P([A]) = ZS.P([B]) = 1 DANN

WENN ZS.ZS([A]) - ZS.ZS([B]) �= ZS.Δt([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

ENDEWENN

...

4.3.8.6 Beispiel 1: Digitale Filter

In Abbildung 4.42 wird ein FIR-Filter 1. Ordnung in kanonischer Form dargestellt.
Der aktuelle Abtastwert x(n) wird links oben eingespeist, mit dem Filterkoeffizien-
ten A0 multipliziert. Darauf wird der mit dem Filterkoeffizienten A1 multiplizierte
vorherige Abtastwert x(n−1) addiert, der durch Verwendung des Verzögerungsglieds
z-1 um einen Takt verzögert wurde. In der Praxis wird ein Verzögerungsglied einfach
durch Zwischenspeicherung eines Abtastwerts in einer Variablen für die Verwendung
im darauffolgenden Verarbeitungsschritt des Nachfolgeabtastwerts realisiert.

Abbildung 4.42: FIR-Filter 1. Ordnung in kanonischer Form

213

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Die durchgeführte Berechnung lässt sich auch in Form der in Gleichung 4.1 gezeigten
Differentialgleichung darstellen.

y(n) = A0 · x(n) + A1 · x(n − 1) (4.1)

Ein solches Filter stellt einen typischen von vielen möglichen Anwendungsfällen in
der Verarbeitung von Abtastwerten dar. Da bei der zyklischen Berechnung Abtast-
und Ergebniswerte mit unterschiedlichen Entstehungszeitpunkten vorliegen, lässt
sich das Verfahren der Zeitschrittkennungen zur Datenflussüberwachung hier an-
schaulich einsetzen, wozu Gleichung 4.1 entsprechend mit Zeitschrittkennungen ver-
sehen wird und somit Gleichung 4.2 entsteht.

y(n)
t:n−1

Δt:−1= A0
t:∗

Δt:∗· x(n)
t:n

Δt:1
+ A1

t:∗
Δt:∗· x(n − 1)

t:n−1
(4.2)

Der Abtastwert x(n) soll spezifikationsgemäß immer den Zeitschritt n aufweisen,
während sein Vorgänger, erzeugt durch die Verzögerung durch das Verzögerungs-
glied z-1, den Zeitschritt (n−1) haben soll. Dieser zeitliche Zusammenhang soll durch
die Hardware überwacht werden. Die Filterkoeffizienten A0 und A1 sind Konstan-
ten, die keinen Zeitschritt besitzen und darum in der Gleichung mit t : ∗ versehen
sind. Bei den Multiplikationen des aktuellen Abtastwerts und seines Vorgängers
mit den Filterkoeffizienten können deshalb keine temporalen Beziehungen zwischen
den Operanden der Multiplikationen geprüft werden, was durch die Angabe Δt : ∗
dargestellt wird. Die skalierten Abtastwerte werden dann addiert, wobei die beiden
Teilergebnisse den Zeitschritt des Abtastwerts besitzen und somit einen Zeitschritt
auseinanderliegen sollen. Für die Addition gilt somit Δt : 1. Die abschließende
Zuweisung weist das Ergebnis, das den jüngeren Zeitschritt der beiden skalierten
Abtastwerte erhalten hat, also t : n, der Zielvariablen y(n) zu, die zu diesem Zeit-
punkt noch den Zeitschritt des letzten Berechnungsschritts t : n − 1 aufweist. Bei
der Zuweisung wird also eine Zeitschrittdifferenz von Δt : −1 erwartet.

4.3.8.7 Beispiel 2: Gleitende Summe

Als zweites Beispiel soll die Berechnung einer gleitenden Summe vorgestellt werden,
bei der die Summe von m aufeinanderfolgenden Abtastwerten berechnet werden
soll, wie in Abbildung 4.43 dargestellt.

Der naive Ansatz zur Berechnung ist die komplette Neuberechnung der Summe y(n)
über die entsprechende Anzahl gespeicherter Abtastwerte, gezeigt in Gleichung 4.3,

214

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.43: Gleitende Summe über diskrete Abtastwerte

wobei x(n) den aktuellen Abtastwert und d die Anzahl der in der Summe zu er-
fassenden Abtastwerte darstellen. Die Berechnung lässt sich erheblich effizienter
gestalten, indem von der aktuellen Summe der jeweils letzte Abtastwert x(n − d)
abgezogen und der neueste, also x(n), aufaddiert wird, wodurch sich die Summe
nach Gleichung 4.4 berechnet.

y(n) =
n∑

i=n−d+1
x(i) (4.3)

y(n) = y(n − 1) − x(n − d) + x(n) (4.4)

Unter Verwendung der Zeitschrittkennungen lässt sich die Berechnung der Summe
nach Gleichung 4.4 sehr effizient durch die Hardware überwachen. Dazu werden die
notwendigen temporalen Bedingungen in den arithmetischen Operationen explizit
angegeben. Je nachdem, in welcher Reihenfolge der Übersetzer die Berechnungen
durchführt, sind die temporalen Bedingungen unterschiedlich, wie in den Gleichun-
gen 4.5 und 4.6 zu sehen.

y(n)
t:n−1

Δt:−1= [y(n − 1)
t:n−1

Δt:d−1− x(n − d)
t:n−d

]
Δt:−1

+ x(n)
t:n

(4.5)

y(n)
t:n−1

Δt:−1= y(n − 1)
t:n−1

Δt:−1
+ [− x(n − d)

t:n−d

Δt:−d
+ x(n)

t:n
] (4.6)

Im ersten Fall – siehe Gleichung 4.5 – wird zunächst der älteste Abtastwert x(n−d)
von der Summe abgezogen, wodurch sich eine temporale Distanz von d−1 zwischen

215

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

den beiden Operanden ergibt. Anschließend wird der aktuelle Abtastwert x(n) auf-
addiert, wobei dann die beiden Summanden die temporale Distanz von -1 besitzen.
Die abschließende Zuweisung der neuen Summe auf die vorhergehende hat erwar-
tungsgemäß einen temporalen Abstand von -1.

Etwas anders sehen die zu prüfenden temporalen Beziehungen im zweiten Fall –
siehe Gleichung 4.6 – aus: zunächst wird die Differenz des ältesten Abtastwerts
x(n − d) und des aktuellen Abtastwerts x(n) gebildet, wobei die beiden Operanden
einen zeitlichen Abstand von −d besitzen müssen. Hier ist Vorsicht geboten: die
Differenz kann auch negative Werte annehmen, weshalb Δt vorzeichenbehaftet ist.
Die Differenz beider Abtastwerte wird anschließend auf die bisherige Summe addiert,
wobei diese ein Abtastintervall älter als die Differenz sein soll. Es muss also Δt gleich
-1 gelten. Gleiches gilt für die anschließende Zuweisung des Ergebnisses.

4.3.8.8 Beispiel 3: Regelkreis

Im dritten Beispiel wird der in Abbildung 4.44 gezeigte Regelkreis mit Hilfe von
Zeitschrittkennungen mit der Möglichkeit zur Erkennung von entsprechenden Da-
tenflussfehlern ausgestattet.

Die Variable x bildet nach [124] die zu regelnde Größe ab, z. B. die Temperatur
im Kessel eines chemischen Prozesses. Die Führungsgröße w gibt vor, auf welchen
Wert x geregelt werden soll. Dabei wird die Größe x durch einen Sensor erfasst und
der Regeleinrichtung zur Verfügung gestellt. Durch Subtraktion wird aus x und w
die Regeldifferenz e bestimmt, die durch den Regler verarbeitet und in die Regler-
ausgangsgröße yR überführt wird. Ein Stellglied – ein Aktor, also im Beispiel eine
Heizung bzw. Kühlung – gibt die Stellgröße y aus und beeinflusst damit die Regel-
strecke. Auf die Regelstrecke wirken eine oder mehrere Störgrößen, deren Einfluss
durch die Regeleinrichtung ausgeregelt werden muss.

Abbildung 4.44: Ein typischer Regelkreis (nach [124])

216

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Die Regeldifferenz e(n) wird bestimmt, indem der aktuelle Sensorwert x(n) von der
aktuellen Führungsgröße w(n) abgezogen wird, wie in Gleichung 4.7 gezeigt. Durch
das Einfügen der Zeitschrittkennungen ergibt sich daraus Gleichung 4.8.

e(n) = w(n) − x(n) (4.7)

e(n)
t:n−1

Δt:−1= w(n)
t:n

Δt:0− x(n)
t:n

(4.8)

Der Regler wandelt die Regeldifferenz e(n) über die Übertragungsfunktion R(e(n))
in die Reglerausgangsgröße yr(n) um, die in Gleichung 4.9 mit Zeitschrittkennungen
dargestellt wird.

yR(n)
t:n−1

Δt:−1= R(e(n))
t:n

(4.9)

Innerhalb der Übertragungsfunktion R(e(n)) des Reglers können weitere Zeitschritt-
prüfungen stattfinden, um den Datenfluss innerhalb der Funktion zu überwachen.

4.3.8.9 Spezifikation von Zeitschritten und temporalen Beziehungen in
Hochsprachen

Für gewisse Schleifenkonstrukte kann der Übersetzer einer Hochsprache selbststän-
dig die Zeitschritte von Zählervariablen festlegen und temporale Zusammenhänge
innerhalb der Schleifen überwachen. Für komplexere Terme ist jedoch die manuelle
Spezifikation von Zeitschritten notwendig.

Für die Hochsprache C wird vorgeschlagen, die Syntax

<Variablenname>@<Zeitschrittangabe>

für die Spezifikation der erwarteten Zeitschritte von Operanden zu verwenden. Dies
ermöglicht dem Übersetzer, die zu prüfenden temporalen Beziehungen der Operan-
den eines Terms zu berechnen und in den Zeitschrittkennungen zs der Befehle zu
hinterlegen.

Für die Differentialgleichung

y(n) = A0 · x(n) + A1 · x(n − 1)

217

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

des in Kapitel 4.3.8.6 gezeigten FIR-Filters ergibt sich damit die in der folgenden
Auflistung gezeigte Notation in C.

float FIRFilter(float x)
{

#define A0 = 0.5;
#define A1 = 0.2;

static float x_old = 0.0;
float y;

y@* = A0@* * x@n + A1@* * x_old@(n-1);

return(y);
}

Die Funktion FIRFilter() berechnet y(n) für das als Parameter übergebene x(n).
In der Funktion selbst wird dabei der Wert von x(n-1) in der Variable x_old ge-
speichert, die zwei Filterkoeffizienten A0 und A1 werden in der Funktion definiert.
Der Rückgabewert y wird als lokale Variable definiert, wodurch es nicht möglich ist,
einen Zeitschritt für diese anzugeben, da sie bei jedem Aufruf der Funktion neu im
Speicher angelegt wird. Daher wird die Variable y im Term mit der Zeitschrittanga-
be @* versehen, um dem Übersetzer anzuzeigen, dass die Variable keinen Zeitschritt
besitzt. Die beiden Filterkoeffizienten besitzen – da es sich bei ihnen um Konstanten
handelt – ebenfalls keinen Zeitschritt und erhalten eine entsprechende Angabe im
Term. Die beiden Variablen x und x_old werden mit dem zugehörigen Zeitschritt
@n bzw. @(n-1) gekennzeichnet.

Bei der Übersetzung kann der Übersetzer anhand der angegebenen Zeitschritte fest-
stellen, dass die beiden Multiplikationen der Filterkoeffizienten A0 und A1 mit x und
x_old keine zu überwachende temporale Beziehung aufweisen, wodurch die Ergeb-
nisse jeweils den Zeitschritt von x bzw. x_old erhalten. Bei der Addition dieser
Ergebnisse kann der Übersetzer die temporale Beziehung der beiden Summanden
herleiten und in der Zeitschrittkennung ZS der Addition spezifizieren. Bei der Zu-
weisung des Ergebnisses zur Variablen y erhält diese dadurch den jüngeren der
beiden Zeitschritte {n,n-1}, also n. Bei der Zuweisung ist – wie bereits erwähnt –
die Prüfung einer temporalen Beziehung nicht möglich, da y eine lokale Variable
ohne Vergangenheit ist.

218

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.8.10 Evaluation der Zeitschrittkennung

Die Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten
durch die Zeitschrittkennung ZS wird in Tabelle 4.9 gezeigt.

Tabelle 4.9: Fehlererkennung durch die ZS-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl (ja)
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung ja
Synchronisationsfehler oder unvollständige Datenübertragung ja
Pufferunter- oder -überläufe (ja)
Fehlerhafter Datenfluss (falsche Adressaten, . . .) (ja)
Duplizierte Daten ja
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke begrenzt (mit S)

S: Signaturkennung

Werden für eine Operation die falschen Operanden ausgewählt, was z. B. durch
Adressierungsfehler verursacht werden kann, so kann dies mittels der Zeitschrittken-
nung ZS dann aufgedeckt werden, wenn die Zeitschrittkennung des falschen Operan-
den nicht der vorgegebenen temporalen Beziehung zwischen den beiden Operanden
entspricht. Verlorengegangene Datenaktualisierungen, Synchronisationsfehler und

219

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

unvollständige Datenübertragungen können durch die Prüfung der temporalen Be-
ziehung der an der Operation beteiligten Operanden aufgedeckt werden. Gleiches
gilt für Fehler, durch die Daten dupliziert, also als neue, aktuelle Daten verwen-
det werden sollen. Pufferunter- bzw. -überläufe können nur indirekt erkannt wer-
den, wenn die durch den Fehler überschriebenen Daten verwendet werden und der
Zeitschritt durch das Überschreiben die in der entsprechenden Operation spezifi-
zierte temporale Beziehung nicht mehr erfüllt. Fehlgeleitete Datenspeicherelemente
können bei ihrer Verwendung durch die Zeitschrittkennung dann aufgedeckt wer-
den, wenn der Zeitschritt der betroffenen Datenspeicherelemente nicht die vorge-
gebene temporale Beziehung erfüllt. Duplizierte Daten können zuverlässig aufge-
deckt werden, da hier die Prüfung der temporalen Beziehung den Fehler aufdeckt.
Durch Störungen verfälschte Daten können nur dann unter Zuhilfenahme der Zeit-
schrittkennung erkannt werden, wenn die Störung direkt die Zeitschrittkennung ver-
fälscht. Wiedereinspielungsattacken können zusammen mit einer Signaturkennung
S zumeist erkannt werden, da die Zeitschrittkennung dann durch einen Angreifer
nicht manipuliert werden kann und dem erwarteten Zeitschritt entsprechen muss.
Es ist jedoch vorstellbar, dass der Angreifer die Wiedereinspielungsattacke zum Sy-
stemstart beginnt und auf diese Weise veraltete Daten, die jedoch den erwarteten
Zeitschritt aufweisen, dem System als aktuelle Daten präsentiert. Deshalb kann die
Erkennbarkeit von Wiedereinspielungsattacken unter zusätzlicher Verwendung einer
Signaturkennung S nur als begrenzt gewertet werden.

4.3.9 Frist

Eine Datenquelle, z. B. ein intelligenter Sensor, liefert in Echtzeitsystemen häufig
zyklisch diskrete Werte, die innerhalb einer bestimmten Zeitspanne verarbeitet und
an eine Senke, z. B. einen Aktor, weitergeleitet werden müssen. Werden diese Daten
nicht innerhalb einer vorgesehenen Zeit verarbeitet, werden sie nutzlos und können
im schlimmsten Fall sogar zu gefährlichen Ausgaben führen. Entsprechend bietet es
sich an, die betroffenen Daten mit einer Fristkennung FR zu versehen, die den abso-
luten Zeitpunkt angibt, ab dem die Daten nicht mehr verwendet werden dürfen.

4.3.9.1 Realisierung der Fristkennung FR

Zur Erkennung von Fehlern, die dazu führen, dass veraltete Daten verwendet werden
sollen, versieht eine Quelle alle Datenwerte, die sie erzeugt, mit einer Fristkennung
FR, wie in Abbildung 4.45 dargestellt.

220

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Abbildung 4.45: Datenspeicherelement mit Fristkennung FR und Datenwert W

Diese Fristkennung FR spezifiziert den spätesten Zeitpunkt, zu dem die jeweiligen
Inhalte eines Datenspeicherelements noch verarbeitet werden dürfen.

Um die Frist des Ergebnisses einer Operation neu setzen zu können, werden auch
die Befehle mit einer Fristkennung versehen, wie in Abbildung 4.46 gezeigt. Diese
enthält entweder den Wert Null, wenn die kürzeste der Fristen der Operanden als
Frist des Ergebnisses gesetzt werden soll, oder eine relative Fristangabe tFR, die für
das Ergebnis gesetzt werden soll.

Abbildung 4.46: Befehlsspeicherelement mit Fristkennung FR, Befehl und Operanden

4.3.9.2 Prüfung der Frist von Daten anhand der Fristkennung FR

Alle verarbeitenden Instanzen prüfen die Datenwerte bei jedem Lesezugriff auf die
Einhaltung der Frist. Wird lesend auf einen Datenwert zugegriffen, dessen Frist
bereits abgelaufen ist, so wird ein Ausnahmefehler generiert.

Prüfung_Lesezugriff :=

WENN FR([Quelle]) < Aktuelle_Zeit DANN
Generierung_Ausnahmefehler;

ENDEWENN

Durch die Einführung eines neuen Befehls kann ermittelt werden, ob bestimmte
Daten noch eine zur Verarbeitung ausreichende Restgültigkeitsdauer aufweisen. Ist
dies nicht der Fall, so kann die Verarbeitungseinheit sehr frühzeitig reagieren, indem
sie

221

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

• sofort – und damit weit vor Ablauf der Frist – einen Ausnahmefehler wegen
der erkannten Überlastsituation generiert oder

• im Sinne der allmählichen Leistungsabsenkung [45] eine alternative Bearbei-
tungsroutine auf die Daten anwendet, die ggf. ungenauer ist, dafür aber eine
kürzere Laufzeit aufweist.

Ein entsprechender Befehl wird im folgenden Unterkapitel vorgestellt.

4.3.9.3 Setzen der Fristkennung FR in Ergebnissen von Operationen

Um auch die zeitlichen Bedingungen verarbeiteter Daten überwachen zu können,
werden den Ergebnissen von Operationen Fristen in deren Fristkennung FR zuge-
wiesen, die wie folgt gesetzt werden:

• enthält der Befehl die Angabe einer relativen Zeitspanne tFR, so wird diese
auf die aktuelle Uhrzeit addiert und als neue Frist des Ergebnisses gesetzt,

• ansonsten wird dem Ergebnis die Frist der Operanden zugewiesen, die einen
kürzeren verbleibenden Gültigkeitszeitraum definiert.

Jedem Befehl, der Operanden zu einem Ergebnis verarbeitet, wird daher eine rela-
tive Zeitangabe hinzugefügt, die die zu setzende Frist des Ergebnisses beeinflusst.
Diese Frist wird auf Null gesetzt, wenn die kürzeste Frist der Operanden als Frist
des Ergebnisses übernommen werden soll.

Setzen_FR_in_Ergebnis :=

WENN FR.ΔtFR([Befehl]) �= 0 DANN
FR([Ergebnis]) := Aktuelle_Uhrzeit + FR.ΔtFR([Befehl]);

SONST WENN FR([Quelle_1]) ≤ FR([Quelle_1]) DANN
FR([Ergebnis]) := FR([Quelle_1]);

SONST
FR([Ergebnis]) := FR([Quelle_2]);

ENDEWENN

222

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.9.4 Befehle zur Verwaltung der Fristkennung FR

Zum Setzen einer Frist in Datenquellen dient der Befehl Setze Frist SFR, der die
Gültigkeitsfrist in der Fristkennung FR des durch A indizierten Datenspeicherele-
ments auf den Zeitpunkt setzt, der sich durch die Addition der in der Fristkennung
FR des Befehls angegebenen relativen Frist und der aktuellen Uhrzeit ergibt.

SFR A :=

FR([A]) := Aktuelle_Uhrzeit + FR.ΔtFR([Befehl]);

Zur Ermittlung des verbleibenden Gültigkeitszeitraums wird der Befehl Ermittle
Verbleibenden Gültigkeitszeitraum EVG eingeführt. Dieser stellt zunächst sicher,
dass die Frist des durch A indizierten Datenspeicherelements noch nicht verstrichen
ist. Ist sie bereits verstrichen, wird sofort ein Ausnahmefehler generiert. Sind die
Daten noch gültig, also die Frist noch nicht abgelaufen, dann wird dem durch B
indizierten Zieldatenspeicherelement die Differenz zwischen Frist und aktueller Zeit
zugewiesen. Dieser Befehl kann – wie bereits im vorhergehenden Unterkapitel be-
schrieben – dazu genutzt werden, um Überlastsituationen, die die Einhaltung von
Gültigkeitsfristen der Daten gefährden würden, frühzeitig zu erkennen und entspre-
chend zu reagieren.

EVG A, B :=

WENN Aktuelle_Zeit ≤ FR([A]) DANN
W([B]) := Aktuelle_Zeit - FR([A]);

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Für die Prüfung der in der Fristkennung FR angegebenen Frist kann der in Kapi-
tel 4.3.3.3 eingeführte Befehl Prüfe Einen Operanden PEO genutzt werden, der die
in der folgenden Auflistung vorgestellten Prüfungen durchführt, ohne eine Änderung
des Operanden hervorzurufen. Dabei deutet „...“ die Durchführung weiterer Prüfun-
gen an, die in den zur jeweiligen Kennung gehörenden Kapiteln vorgestellt werden.
Bezogen auf die Fristkennung FR stellt PEO sicher, dass die Frist des Operanden
noch nicht verstrichen ist und die im Datenspeicherelement enthaltenen Daten somit
noch gültig sind.

223

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

PEO A :=

...

WENN FR([A]) < Aktuelle_Zeit DANN
Generierung_Ausnahmefehler;

ENDEWENN

...

4.3.9.5 Spezifikation der Frist von Operanden in Hochsprachen

Zur Spezifikation der Frist einer Variablen könnte in Übersetzern für die Hochspra-
che C das Attribut

__relative_deadline(<relative Zeitangabe>)

definiert werden. Die Definition einer Variable, der bei jeder Zuweisung eine Frist
von 100 ms zugewiesen werden soll, wird exemplarisch in der folgenden Auflistung
gezeigt.

unsigned int __relative_deadline(100ms) variable_t;

Der Übersetzer würde in der Fristkennung FR von Operationen, die der Variablen
neue Werte zuweisen, die relative Frist spezifizieren, die das Ergebnis erhalten soll.
Alternativ kann der Übersetzer explizit den Befehl Setze Frist SFR nutzen, um die
Frist der Variablen zu setzen.

4.3.9.6 Evaluation der Fristkennung FR

Die Erkennbarkeit der einzelnen in Kapitel 2.4 vorgestellten Fehler- und Angriffs-
arten durch die Fristkennung FR ist in Tabelle 4.10 dargestellt.

Fehler bei der Operandenauswahl, z. B. durch Adressierungsfehler, können durch die
Fristkennung FR nur dann aufgedeckt werden, wenn die Frist des falschen Operan-
den bereits abgelaufen ist. Ist die von der Datenquelle gesetzte Gültigkeitsfrist von
Daten abgelaufen, kann diese Fehlerart in jedem Fall durch die Hardware erkannt

224

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Tabelle 4.10: Fehlererkennung durch die FR-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl begrenzt
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung ja
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung (ja)
Synchronisationsfehler oder unvollständige Datenübertragung (ja)
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten begrenzt
Durch Fehler oder Störungen verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke ja (mit S)

S: Signaturkennung

225

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

werden. Ebenso können verlorengegangene Datenaktualisierungen, Synchronisati-
onsfehler und unvollständige Datenübertragungen erkannt werden, allerdings nur,
wenn die Frist der nicht aktualisierten Daten bereits verstrichen ist. Die Verfäl-
schung von Daten durch Störungen kann nur dann durch die Fristkennung aufge-
deckt werden, wenn die Störung die Fristkennung direkt betrifft und die Frist so
verändert, dass sie als verstrichen interpretiert wird. Die Nutzung nicht initialisier-
ter Daten kann erkannt werden, wenn den Datenspeicherelementen bei Systemstart
eine bereits abgelaufene Frist zugewiesen wird. Wiedereinspielungsattacken können
dann zuverlässig erkannt werden, wenn eine Signaturkennung S verwendet wird, die
verhindert, dass die Fristkennung durch den Angreifer verfälscht wird.

4.3.10 Zykluszeit

Die Spezifikation der Zykluszeit erlaubt es einer DSA-Einheit, das Ausbleiben eines
zyklisch erwarteten Datenwerts frühzeitig zu erkennen, also das Überschreiten einer
maximal zulässigen Zykluszeit. Ebenso kann der zu frühe erneute Empfang eines
zyklischen Datenwerts erkannt werden, was auf Fehler innerhalb des Senders oder
der an der Datenübermittlung beteiligten Geräte hindeutet.

4.3.10.1 Realisierung der Zykluszeitkennung ZY

Um einer Datenspezifikationsarchitektur die Überwachung minimaler und maxima-
ler Zykluszeiten einzelner Datenspeicherelemente zu ermöglichen, werden diese mit
einer Zykluszeitkennung ZY versehen, wie in Abbildung 4.47 dargestellt.

Abbildung 4.47: Datenspeicherelement mit Zykluszeitkennung ZY und Datenwert W

Diese besteht aus drei Komponenten,

• einem Identifikator, der entweder allein oder zusammen mit der Quellkennung
Q in der Verarbeitungswegkennung VW der Daten – siehe Kapitel 4.3.7 – eine
eineindeutige Identifikation des jeweiligen Datenspeicherelements erlaubt,

226

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

• der Spezifikation des frühesten zulässigen Zeitpunkts ZYmin, zu dem Daten
mit dem identischen Identifikator erneut empfangen werden dürfen und

• die Angabe des spätesten zulässigen Zeitpunkts ZYmax, zu dem Daten mit
dem identischen Identifikator empfangen werden dürfen,

und hat damit den in Abbildung 4.48 gezeigten Aufbau.

Abbildung 4.48: Aufbau der Zykluszeitkennung ZY in Datenspeicherelementen

Zum automatischen Setzen der Zykluszeitkennung des Ergebnisses einer Operation
werden auch die Befehlsspeicherelemente mit einer Zykluszeitkennung ZY versehen,
wie in Abbildung 4.49 gezeigt.

Abbildung 4.49: Befehlsspeicherelement mit Zykluszeitkennung ZY, Befehl und Operanden

Neben dem für das Ergebnis zu setzenden Identifikator enthält die Zykluszeit-
kennung ZY eines Befehlsspeicherelements zwei relative Zeitangaben ΔZYmin und
ΔZYmax, die das zulässige relative Zeitfenster beschreiben, innerhalb dessen eine
Aktualisierung des Datenwerts mit dem angegebenen Identifikator erfolgen darf.
Der Aufbau der Zykluszeitkennung ZY innerhalb der Befehlsspeicherelemente ist
in Abbildung 4.50 dargestellt. Soll das Ergebnis einer Operation keine Zykluszeit-
kennung erhalten, so wird dem Identifikator und den beiden relativen Zeitangaben
jeweils der Wert Null zugewiesen.

Wird ein Identifikator ungleich Null spezifiziert, so können die beiden relativen
Zeitangaben ΔZYmin und ΔZYmax auch dazu genutzt werden, die Überwachung
der Zykluszeit zu beenden, indem einer Angabe oder beiden Angaben der Wert
Null zugewiesen wird.

227

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.50: Aufbau der Zykluszeitkennung ZY in Befehlsspeicherelementen

4.3.10.2 Prüfung des Aktualisierungszyklus von Daten anhand der
Zykluszeitkennung ZY

Um eine Überwachung der beiden Zeitgrenzen zu erlauben, wird dem Prozessor einer
Datenspezifikationsarchitektur eine Zyklusüberwachungseinheit ZÜE zur Seite ge-
stellt, die sich von dem in [46] vorgestellten Ereignisprozessor für eine GPS-basierte
Zeitsteuereinheit und der Ereignisverwaltungseinheit EVE von ISMA [125] ablei-
tet. Sie übernimmt die Funktion marktüblicher Zeitüberwachungsbausteine. Diese
Zeitüberwachungsbausteine verfügen in der Regel über eine eigene Takterzeugung
und überwachen die Einhaltung einer maximalen, oder bei Bausteinen mit Zeitfen-
ster die Einhaltung einer minimalen und maximalen Zeitgrenze, innerhalb derer der
Baustein ein Lebenszeichen in Form eines Impulses erwartet. Bleibt ein solches Si-
gnal aus, kann z. B. ein Rücksetzsignal oder eine Unterbrechung durch den Baustein
ausgelöst werden. Entsprechende Zeitüberwachungen kommen auch bei sicherheits-
gerichteten Feldbussen wie z. B. dem in Kapitel 3.11.2.1 vorgestellten PROFIsafe
zum Einsatz. Diese bestehenden Lösungen haben den Nachteil, dass jeweils nur ei-
ne für alle Daten geltende Frist oder ein entsprechendes Fristintervall überwacht
werden kann. Die Zyklusüberwachungseinheit einer DSA hingegen kann für jedes
Datenspeicherelement dank des eindeutigen Identifikators eine minimale und ei-
ne maximale Zeitgrenze individuell für eine Vielzahl von Datenspeicherelementen
überwachen. Da verschiedene Datenarten in sehr unterschiedlichen diskreten Zeitin-
tervallen erzeugt und versendet werden können, ist eine entsprechend differenzierte
Betrachtung sinnvoll. Als Beispiele für entsprechend unterschiedliche Aktualisie-
rungsintervalle sind in Tabelle 4.11 verschiedene Messgrößen zusammen mit einem
möglichen Intervall angegeben. So würde z. B. die aktuelle Position des Werkstücks
bzw. des Bearbeitungswerkzeugs einer CNC-Maschine alle 10 μs aktualisiert, wäh-
rend die Abfrage des Status einer an der Maschine angebrachten Bedientaste nur alle
100 ms erfolgen müsste. Als dritte Größe könnte die Temperatur der Motoren der
CNC-Maschine überwacht werden, wobei diese aufgrund der thermischen Trägheit
der Motoren z. B. nur alle 10 s zu erfassen wäre.

Die Zykluszeitkennung ZY aller Datenspeicherelemente, die von einer DSA-Einheit
empfangen werden, wird vom Prozessor der DSA an die Zyklusüberwachungsein-

228

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Tabelle 4.11: Messgrößen und deren Aktualisierungsintervalle

Messgröße Aktualisierungsintervall
Position und Geschwindigkeit in CNC-Maschine 10 μs

Zustand einer Bedientaste 100 ms
Motortemperatur 10 s

heit ZÜE weitergeleitet. Diese ist der Ereignisüberwachungseinheit von ISMA [125]
nachempfunden und wird in Abbildung 4.51 gezeigt.

Die Zyklusüberwachungseinheit ZÜE besteht aus der Zyklussteuereinheit ZSE, die
über eine Datenverbindung mit dem Hauptprozessor der DSA verbunden ist, und
zwei Listen, die von der ZSE verwaltet werden. In diesen Listen werden alle min-
destens einmalig empfangenen Datenwerte, bei denen die frühesten bzw. spätesten
zulässigen Aktualisierungszeitpunkte ZYmin bzw. ZYmax auf Werte ungleich Null
gesetzt sind, abgelegt.

Die erste Liste enthält alle Datenidentifikatoren zusammen mit dem frühesten zu-
lässigen Aktualisierungszeitpunkt in Form des Tupels

(Datenidentifikator, ZYmin),

zu der ein Datenspeicherelement mit dem jeweiligen Datenidentifikator wieder an
die ZÜE übermittelt werden, also von der DSA empfangen werden darf. Sie wird
deshalb als Zyklusüberwachungsliste Minimum ZÜLmin bezeichnet.

Analog zur ersten Liste enthält die zweite die Datenidentifikatoren zusammen mit
der zugehörigen maximalen Zykluszeit ZYmax in Form des Tupels

(Datenidentifikator, ZYmax)

und wird darum als Zyklusüberwachungsliste Maximum ZÜLmax bezeichnet. Die
Einträge in dieser Liste werden nach chronologisch aufsteigenden spätesten zulässi-
gen Aktualisierungszeitpunkten sortiert, wodurch der erste Eintrag der Liste immer
der Eintrag ist, dessen Zeitbedingung als nächstes verletzt werden wird.

Bei einem aktiven Rücksetzsignal löscht die ZSE beide Listen.

Rücksetzen_ZÜE :=

ZÜLmin := ∅;
ZÜLmax := ∅;

229

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.51: Aufbau der Zyklusüberwachungseinheit ZÜE

230

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Wird ein Datenwert durch die DSA-Einheit verarbeitet, meldet diese den Identifi-
kator der Daten zusammen mit ihren frühesten und spätesten zulässigen Aktuali-
sierungszeitpunkten ZYmin,neu bzw. ZYmax,neu an die ZÜE, sofern der Identifikator
nicht Null ist. Die ZSE prüft zunächst, ob der Identifikator gültig ist – dieser darf
nicht Null sein – und sucht daraufhin anhand des Identifikators einen zugehörigen
Eintrag der betreffenden Daten in der ZÜLmin. Falls ein entsprechender Eintrag
gefunden wird, wird geprüft, ob die Bedingung

ZYmin,alt ≤ Aktuelle_Uhrzeit

erfüllt ist. Ist dies nicht der Fall, so wird ein Ausnahmefehler generiert, weil die
Daten vor dem frühesten zulässigen Aktualisierungszeitpunkt empfangen wurden.
Ist die Bedingung jedoch erfüllt, so wird der Eintrag aus der ZÜLmin entfernt.

Im nächsten Schritt sucht die ZSE einen zum Identifikator gehörenden Eintrag in
der ZÜLmax. Ist ein entsprechender Eintrag vorhanden, so wird – der Vollständigkeit
halber – verifiziert, dass der bislang gültige späteste zulässige Aktualisierungszeit-
punkt noch nicht verstrichen ist, also

ZYmax > Aktuelle_Uhrzeit

erfüllt ist. Auch hier wird bei Nichterfüllung der Bedingung ein Ausnahmefehler ge-
neriert, da die Aktualisierung erst nach dem spätesten zulässigen Aktualisierungs-
zeitpunkt erfolgte. Wurde auch diese zweite Zeitbedingung eingehalten, so wird der
zum Identifikator gehörende Eintrag aus der ZÜLmax entfernt.

Abschließend legt die ZSE in den beiden Zyklusüberwachungslisten ZÜLmin und
ZÜLmax neue Einträge an, sofern die zu überwachenden Zeitpunkte ZYmin,neu bzw.
ZYmax,neu nicht auf Null gesetzt wurden, um die jeweilige Überwachung des frühe-
sten bzw. spätesten zulässigen Aktualisierungszeitpunkts zu beenden.

Prüfung_bei_Eintreffen Identifikator, ZYmin,neu, ZYmax,neu :=

WENN Identifikator �= 0 DANN
WENN Identifikator ∈ ZÜLmin DANN

WENN ZYmin,alt(Identifikator) > Aktuelle_Uhrzeit DANN
Generierung_Ausnahmefehler;

ENDEWENN
ZÜLmin := ZÜLmin \ (Identifikator,ZYmin,alt);

ENDEWENN

231

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

SONST
Generierung_Ausnahmefehler;

ENDEWENN

WENN Identifikator ∈ ZÜLmax DANN
WENN ZYmax,alt(Identifikator) < Aktuelle_Uhrzeit DANN

Generierung_Ausnahmefehler;
ENDEWENN
ZÜLmax := ZÜLmax \ (Identifikator,ZYmax,alt);

ENDEWENN

WENN ZYmin,neu > 0 DANN
ZÜLmin := ZÜLmin ∪ (Identifikator,ZYmin,neu);

ENDEWENN

WENN ZYmax,neu > 0 DANN
ZÜLmax := ZÜLmax ∪ (Identifikator,ZYmax,neu);

ENDEWENN

In hinreichend kurzen Zeitabständen prüft die ZSE, ob die spätesten zulässigen Ak-
tualisierungszeitpunkte der in der ZÜLmax gespeicherten Einträge noch nicht über-
schritten wurden. Durch die Sortierung ist es ausreichend, die Zeitbedingung des
ersten Eintrags der Liste mit der aktuellen Uhrzeit zu vergleichen. Ist der angegebe-
ne Zeitpunkt bereits verstrichen, so liegt eine Verletzung der Echtzeitbedingungen
vor und ein Ausnahmefehler wird generiert.

Zyklische_Prüfung :=

WENN ZÜLmax �= ∅ DANN
WENN Aktuelle_Uhrzeit > ZÜLmax[0] DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

Bei einer optimierten Lösung würde sich die ZSE der ZÜE mittels eines Zeitgebers
auf die Notwendigkeit der Überprüfung des ersten Eintrags der ZÜLmax hinweisen
lassen. Dadurch wird eine zyklische Überprüfung unnötig. Bei jeder Aktualisierung

232

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

der ZÜLmax, bei der sich der erste Eintrag ändert, würde der Zeitpunkt der nächsten
Signalisierung durch den Zeitgeber ebenfalls aktualisiert werden.

4.3.10.3 Setzen der Zykluszeitkennung ZY von Ergebnissen von
Operationen

Mittels der Inhalte der Zykluszeitkennung ZY der Befehlsspeicherelemente wird dem
Ergebnis von Operationen automatisch eine Zykluszeitkennung ZY hinzugefügt. Die
Zykluszeitkennung ZY der Befehle besteht aus einem zu setzenden Identifikator und
den zwei relativen Zeitangaben ΔZYmin und ΔZYmax, die das Zeitfenster für eine
Aktualisierung des Datenwerts festlegen. Das Ergebnis einer Operation erhält keine
Zykluszeitkennung, wenn der Identifikator auf Null gesetzt wird, wobei in diesem
Fall auch beide Zeitangaben Null sein müssen, da sonst wird ein Ausnahmefehler
generiert wird. Ist der Identifikator ungleich Null, dann wertet der Befehl die beiden
Zeitangaben ΔZYmin und ΔZYmax aus. Ist eine der Zeitangaben Null, wodurch an-
gezeigt wird, dass die jeweilige Zeitgrenze nicht überwacht oder die Überwachung
eingestellt werden soll, so wird der Wert Null in die zugehörige Teilkennung der
Zykluszeitkennung ZY des Ergebnisses der Operation eingetragen. Zeitangaben un-
gleich Null werden auf die aktuelle Uhrzeit aufaddiert, wodurch sich ein absoluter
Zeitpunkt ergibt, der in die entsprechende Teilkennung eingetragen wird.

Setzen_und_Prüfen_ZY_in_Ergebnis :=

WENN ZY.Identifikator([Befehl]) �= 0 DANN
ZY.Identifikator([Ergebnis]) := ZY.Identifikator([Befehl]);
WENN ZY.ΔZYmin([Befehl]) = 0 DANN

ZY.ZYmin([Ergebnis]) := 0;
SONST

ZY.ZYmin([Ergebnis]) := Aktuelle_Uhrzeit + ZY.ΔZYmin([Befehl]);
ENDEWENN
WENN ZY.ΔZYmax([Befehl]) = 0 DANN

ZY.ZYmax([Ergebnis]) := 0;
SONST

ZY.ZYmax([Ergebnis]) := Aktuelle_Uhrzeit + ZY.ΔZYmax([Befehl]);
ENDEWENN

SONST WENN ZY.ΔZYmin([Befehl]) = ZY.ΔZYmax([Befehl]) = 0 DANN
ZY.Identifikator([Ergebnis]) := 0;
ZY.ZYmin([Ergebnis]) := 0;

233

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

ZY.ZYmax([Ergebnis]) := 0;
SONST

Generierung_Ausnahmefehler;
ENDEWENN

4.3.10.4 Befehle zur Verwaltung der Zykluszeitkennung ZY

Zum Setzen der Komponenten der Zykluszeitkennung ZY kann neben der Zyklus-
zeitkennung ZY in den Befehlsspeicherelementen auch ein dedizierter Befehl verwen-
det werden, der mit Setze Zykluszeitkennung SZY bezeichnet wird. Ist der durch
A indizierte zu setzende Identifikator gleich Null, so soll die Zykluszeitkennung des
durch D indizierten Zieldatenspeicherelements durch Setzen aller Werte auf Null
gelöscht werden, was jedoch nur durchgeführt wird, wenn die beiden durch B und
C indizierten Zeitangaben ebenfalls Null sind. Bei einem Identifikator ungleich Null
wird, falls beide Zeitangaben ungleich Null sind, sichergestellt, dass ein korrektes
Zeitintervall definiert wird, der zweite Wert also nicht kleiner als der erste ist. Bei
Verletzung dieser Bedingung wird ein Ausnahmefehler generiert. Ansonsten wird
der Identifikator innerhalb der Zykluszeitkennung ZY des durch D indizierten Ziel-
datenspeicherelements auf den angegebenen Wert gesetzt. Die beiden Zeitangaben
werden – wenn sie einen Wert ungleich Null besitzen – zur aktuellen Uhrzeit addiert
und in ZYmin bzw. ZYmax eingetragen. Ansonsten wird die jeweilige Teilkennung
auf Null gesetzt, um die Überwachung der jeweiligen Zeitgrenze zu beenden.

SZY A, B, C, D :=

WENN W([A]) �= 0 DANN
WENN W([B]) �= 0 ∧ W([C]) �= 0 DANN

WENN W([B]) > W([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN
ZY.Identifikator([D]) := W([A]);
WENN W([B]) = 0 DANN

ZY.ZYmin([D]) := 0;
SONST

ZY.ZYmin([D]) := Aktuelle_Uhrzeit + W([B]);
ENDEWENN

234

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

WENN W([C]) = 0 DANN
ZY.ZYmax([D]) := 0;

SONST
ZY.ZYmax([D]) := Aktuelle_Uhrzeit + W([C]);

ENDEWENN
SONST WENN W([B]) = W([C]) = 0 DANN

ZY.Identifikator([D]) := 0;
ZY.ZYmin([D]) := 0;
ZY.ZYmax([D]) := 0;

SONST
Generierung_Ausnahmefehler;

ENDEWENN

Der in Kapitel 4.3.3.3 eingeführte Befehl Prüfe Einen Operanden PEO kann auch
zur Prüfung der Zykluszeitbedingungen eines Operanden eingesetzt werden. Dabei
werden – neben weiteren durch „...“ angedeuteten Prüfungen – die in der Zyklus-
zeitkennung ZY des Operanden spezifizierten Daten in Form einer Nachricht an die
Zyklusüberwachungseinheit ZÜE übermittelt. Diese verifiziert anhand ihrer internen
Listen die Einhaltung der Zykluszeitbedingungen des Operanden, aktualisiert diese
und generiert bei Verletzung der gesetzten Bedingungen einen Ausnahmefehler. Aus
Platzgründen wird in der Pseudocodeauflistung Identifikator durch Id abgekürzt.

PEO A :=

...
WENN ZY.Id([A]) �= 0 DANN

ZÜE_Nachricht := (ZY.Id([A]), ZY.ZYmin([A]), ZY.ZYmax([A]));
ENDEWENN
...

4.3.10.5 Eine alternative Realisierung der Zykluszeitüberwachung

Eine weitere Realisierungsmöglichkeit der Überwachung der zyklischen Aktualisie-
rung besteht darin, die Zykluszeitkennung ZY allein durch den bereits vorgestellten
eineindeutigen Datenidentifikator zu realisieren, wie in Abbildung 4.52 dargestellt
wird.

235

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.52: Alternative Realisierung der Zykluszeitkennung ZY

Der Aufbau und die Funktion der Zyklusüberwachungseinheit bleiben bei dieser
Lösung unverändert. Statt jedoch die Daten für die minimale und maximale Zy-
kluszeit in den Datenspeicherelementen in der Zykluszeitkennung ZY zu spezifizie-
ren, würden die Daten bei der alternativen Lösung einer Konfigurationsdatei – die
zur Beschleunigung des Zugriffs in einer Tabelle im Speicher zwischengespeichert
sein sollte – entnommen, in der jedem Datenidentifikator ein entsprechendes Tupel
(Zyklusmin,Zyklusmax) zugeordnet ist.

Während die alternative Lösung den Vorteil einer deutlich kleineren Zykluszeit-
kennung ZY hat, da weder die minimal noch die maximal zulässige Zykluszeit im
Datenspeicherelement selbst hinterlegt werden müssen, so widerspricht die Lösung
jedoch eindeutig dem in Kapitel 4.2 formulierten Entwicklungsparadigma, nach dem
alle Eigenschaften von Daten auch in diesen selbst enthalten sein sollen. Daher ist
die erste Lösung bei der Realisierung einer Datenspezifikationsarchitektur DSA zu
bevorzugen.

4.3.10.6 Spezifikation der Frist von Operanden in Hochsprachen

Zur Definition der relativen Zykluszeiten einer Variablen könnte ein Übersetzer –
hier exemplarisch für die Hochsprache C – das Attribut

__relativecyclicwindow(<frühester relativer Zeitpunkt>,
<spätester relativer Zeitpunkt>)

<Variablenname>

definieren, mit dessen Hilfe die zwei relativen Zeitpunkte für die früheste bzw. spä-
teste zulässige Aktualisierung definiert werden können.

Bei jeder Aktualisierung einer entsprechend deklarierten Variable setzt der Über-
setzer ein neues zulässiges Aktualisierungsfenster in der Zykluszeitkennung ZY der
Variable durch Spezifikation der zu setzenden Daten in der Zykluszeitkennung ZY
des jeweiligen Befehls oder unter Nutzung des dedizierten Befehls Setze Zykluszeit
SZY.

236

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

In der folgenden Auflistung wird die Definition einer Variable gezeigt, die von einem
Empfänger frühestens 100 ms nach der Zuweisung und spätestens 150 ms danach
empfangen werden darf.

unsigned char __relativecyclicwindow(100ms,150ms) variable_j;

4.3.10.7 Evaluation der Zykluszeitkennung

Die Zykluszeitkennung ZY erlaubt die Überwachung eines zyklisch zu aktualisieren-
den Datenwerts auf die Einhaltung eines in den Daten spezifizierten Zeitfensters. Die
Zyklusüberwachungseinheit ZÜE entspricht einer Sammlung von Überwachungs-
zeitgebern mit Zeitfensterüberwachung, bei der jedem empfangenen Datenwert ein
Überwachungszeitgeber zugeordnet ist. Dadurch können Werte mit verschiedensten
zulässigen Empfangszeitfenstern überwacht werden, ohne die Einschränkung typi-
scher Überwachungszeitgeber, dabei nur ein Zeitfenster für alle Werte verwenden
zu können.

Die Implementierung der Zykluszeitkennung ZY zusammen mit der Zyklusüberwa-
chungseinheit ZÜE erlaubt damit die Erkennung der in Tabelle 4.12 gezeigten Arten
der 20 in Kapitel 2.4 identifizierten Fehler- und Angriffsarten.

Fristüberschreitungen lassen sich dann durch die Kombination aus ZY und ZÜE
erkennen, wenn bei der Übertragung der Daten durch Verzögerungen bereits der
späteste zulässige Zeitpunkt für den Empfang der nächsten Aktualisierung des Da-
tenwerts verstrichen ist. Die ZÜE erkennt dies beim Einfügen der Daten in die
ZÜLmax, da die aktuelle Zeit den zulässigen spätesten Empfangszeitpunkt bereits
überschreitet. Allerdings ist die Erkennung dieser Fehlerart über die Fristkennung
FR wahrscheinlicher und zuverlässiger. Zyklusunter- und -überschreitungen können
durch die beschriebenen Merkmale zuverlässig aufgedeckt werden. Verlorengegange-
ne Datenaktualisierungen können – analog zur Fristüberschreitung – dann erkannt
werden, wenn der späteste zulässige Zeitpunkt bei Empfang der Daten bereits ver-
strichen ist. Duplizierte Daten können nur dann erkannt werden, wenn beim Emp-
fang eines Duplikats der früheste zulässige Empfangszeitpunkt einer Aktualisierung
noch nicht verstrichen ist. Wiedereinspielungsattacken können dadurch aufgedeckt
werden, dass die Zykluszeitkennungen ZY der aufgezeichneten und erneut gesende-
ten Datenspeicherelemente bereits verstrichene späteste zulässige Zeitpunkte auf-
weisen.

237

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Tabelle 4.12: Fehlererkennung durch die ZY-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl nein
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung begrenzt
Zyklusunterschreitung ja
Zyklusüberschreitung ja
Verlorengegangene Datenaktualisierung (ja)
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten begrenzt
Durch Störungen oder Fehler verfälschte Daten begrenzt
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke ja (mit S)

S: Signaturkennung

238

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

4.3.11 Integritätsprüfung und Adresse

Zur Integritätsprüfung wird jedes Datenspeicherelement mit einer Fehlererken-
nungskodierung mit hinreichendem minimalem Hamming-Abstand versehen, an-
hand derer die Hardware bei jedem Zugriff auf ein Datenspeicherelement prüfen
kann, ob dessen Inhalte korrekt sind und keine Datenverfälschungen durch Störun-
gen oder Fehler aufgetreten sind. Der Einsatz entsprechender Integritätsprüfungs-
verfahren wird in der IEC 61508 gefordert [51–53].

4.3.11.1 Realisierung der Integritätsprüfung IP

Um der Hardware eine Integritätsprüfung von Datenspeicherelementen zu ermög-
lichen, wird jedes Datenspeicherelement mit einer Integritätsprüfungskennung IP
versehen, wie in Abbildung 4.53 dargestellt.

Abbildung 4.53: Datenspeicherelement mit Integritätsprüfungskennung IP und Datenwert W

In der IEC 61508 wird der Einsatz polynomialer Codes oder eines Hamming-Codes
vorgeschlagen [52, 53]. Bei ISMA kommt nach [125] ein Erweiterter-(128,120)-
Hamming-Code mit einem Hamming-Abstand von 4 zum Einsatz, mit dessen Hilfe
Dreifachbitfehler erkannt werden können. Eine Korrektur von erkannten Fehlern
sollte nach [51, 53] nicht durchgeführt werden, um keine gültigen, jedoch falschen
Daten zu erzeugen. Da die Datenspeicherelemente bei einer Datenspezifikationsar-
chitektur DSA eine wesentlich höhere Bitbreite aufweisen, muss ein Hamming-Code
mit passender Breite zum Einsatz kommen.

4.3.11.2 Prüfung der Datenspeicherelementintegrität anhand der
Integritätsprüfungskennung IP

Bei jedem Zugriff – egal, ob lesend oder schreibend – wird das jeweilige Datenspei-
cherelement gelesen und dessen Integrität anhand der Integritätsprüfungskennung
IP verifiziert. Zu diesem Zweck kommt die Prüfungsfunktion Iprüf zum Einsatz.

239

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Prüfung_Integrität_ohne_Adresse :=

WENN Iprüf([Quelle]) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.11.3 Einbeziehung der Adresse AD in die Integritätsprüfung

Durch die Integration der Adresse AD eines Datenspeicherelements in die Integri-
tätsprüfung können Fehler erkannt werden, die dazu führen, dass ein anderes Daten-
speicherelement zur Verarbeitung herangezogen wird, als eigentlich vorgesehen war.
Eine automatische Prüfung durch die Hardware kann z. B. dadurch realisiert wer-
den, dass die Adresse eines Datenspeicherelements in die Integritätsprüfung IP ein-
bezogen wird. Ein entsprechendes Vorgehen wird in [51, 53] vorgeschlagen. Bei der
Integrationsprüfung eines aus dem Speicher gelesenen Datenspeicherelements wird
dann die Adresse des angeforderten Datenspeicherelements mit den Inhalten des
Datenspeicherelements verknüpft – z. B. durch eine Exklusiv-ODER-Verknüpfung –
und danach die Integrität des Datenspeicherelements mit der implementierten Inte-
gritätsprüfung geprüft. Sollte ein falsches Datenspeicherelement aus dem Speicher
geladen worden sein, so wird der Fehler in diesem Moment erkannt.

Prüfung_Integrität_mit_Adresse :=

WENN Iprüf([Quelle] EXODER Adresse(Quelle)) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.11.4 Setzen der Integritätsprüfungskennung in
Zieldatenspeicherelementen

Beim schreibenden Zugriff auf ein Datenspeicherelement werden die Inhalte der In-
tegritätsprüfungskennung IP durch Anwendung der Generierungsfunktion Igen neu
gebildet und dem Datenspeicherelement hinzugefügt. Je nachdem, ob die Adresse
des Datenspeicherelements in die Integrationsprüfung einbezogen werden soll oder

240

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

nicht, wird die Generierungsfunktion nur auf die Inhalte des Datenspeicherelements
oder deren Verknüpfung mit der Adresse des Datenspeicherelements angewendet.

Setzen_Integritätskennung_ohne_Adresse :=

IP([Ziel]) := Igen([Ziel]);

Setzen_Integritätskennung_mit_Adresse :=

IP([Ziel]) := Igen([Ziel] EXODER Adresse(Ziel));

4.3.11.5 Befehle zur Verwaltung der Integritätsprüfung IP

Die Verwaltung der Integritätsprüfungskennung IP erfolgt automatisch durch die
Hardware der Datenspezifikationsarchitektur DSA. Der in Kapitel 4.3.3.3 einge-
führte Befehl Prüfe Einen Operanden PEO kann dazu genutzt werden, die Integri-
tät eines Operanden sicherzustellen, ohne diesen zu ändern. Dabei deutet „...“ die
Durchführung weiterer Prüfungen an, die in den zur jeweiligen Kennung gehören-
den Kapiteln vorgestellt werden. Bezogen auf die Integritätsprüfung wird geprüft, ob
die in der Integritätsprüfungskennung IP spezifizierte Prüfsumme den Inhalten des
Datenspeicherelements unter Einbeziehung der Adresse des Datenspeicherelements
entspricht.

PEO A :=

...

WENN Iprüf([A] EXODER Adresse(A)) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

...

241

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.11.6 Datenportale zur Behandlung abgehender und ankommender
Daten

Die in Kapitel 4.3.11.3 beschriebene Einbeziehung der Adresse in die Integritäts-
prüfung bringt ein Problem bei der Übertragung von Datenspeicherelementen mit
einer entsprechenden Integritätsprüfungskennung IP zwischen Systemkomponenten
mit sich, da der Empfänger die Adresse des Datenspeicherelements im Speicher des
Senders nicht kennen kann. Zur Lösung des Problems werden sogenannte Daten-
portale DP eingeführt, von denen zwei Varianten existieren: Je nachdem, ob Daten
gesendet oder empfangen werden sollen, werden diese als Datenausgangsportale
DAP oder Dateneingangsportale DEP bezeichnet. Die Funktion der Datenportale
DP wird in Abbildung 4.54 dargestellt.

Abbildung 4.54: Funktionsweise der Datenportale bei der Integritätsprüfungskennung IP

Die Integritätsprüfungskennung IP des Datenspeicherelements Dx, welches von der
Systemkomponente A an die Systemkomponente B übertragen werden soll, wird
nach

IPvor_DAP := Igen ([Dx], Adresse(DxA))

durch die Generierungsfunktion Igen aus den Inhalten des Datenspeicherelements
Dx und dessen Adresse DxA gebildet. Das Datenausgangsportal DAP auf Sender-
seite prüft die Integrität des zu sendenden Datenspeicherelements Dx nochmals und
entfernt dann die Adresse des Datenspeicherelements aus der Integritätsprüfungs-
kennung IP, wodurch diese nach

IPnach_DAP := Igen ([Dx])

242

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

nur noch aus den Inhalten des Datenspeicherelements Dx gebildet wird. Anschlie-
ßend kann das Datenspeicherelement an den Empfänger übertragen werden.

DAP :=

WENN Iprüf([Quelle] EXODER Adresse(Quelle)) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

[Ziel] := [Quelle];
IP([Ziel]) := Igen([Ziel]);

Im Empfänger wird die Integrität des empfangenen Datenspeicherelements Dx im
Dateneingangsportal DEP zunächst nochmals geprüft, bevor es mit einer neuen
Integritätsprüfungskennung IP nach

IPnach_DEP := Igen ([Dx], Adresse(DxB))

mit der neuen Adresse DxB versehen und im Speicher des Empfängers an der ent-
sprechenden Adresse abgelegt wird. Bei allen folgenden Lesezugriffen innerhalb des
Empfängers B kann die Integrität des betreffenden Datenspeicherelements unter
Einbeziehung seiner Adresse erfolgen.

Stellt ein Dateneingangsportal DEP eine Verfälschung eines empfangenen Daten-
speicherelements fest, so kann es einen erneuten Sendungsversuch beim Datenaus-
gangsportal des Senders der Daten anfordern. Ein entsprechendes Vorgehen zur
Behandlung von Übertragungsfehlern wurde in Kapitel 4.1.3.2 statt der sofortigen
Generierung eines Ausnahmefehlers vorgeschlagen, da Übertragungsfehler auf Kom-
munikationsleitungen recht häufig vorkommen können.

DEP :=

WENN Iprüf([Quelle]) �= gültig DANN
Erneutes_Senden_anfordern;

ENDEWENN

[Ziel] := [Quelle];
IP([Ziel]) := Igen([Ziel] EXODER Adresse(Ziel));

243

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.11.7 Evaluation der Integritätsprüfung IP

Die Nutzung einer Integritätsprüfung ist Stand der Technik, sie wurde z. B. bereits
im in Kapitel 3.3.1.1 vorgestellten Telefunken TR 4 in Form der sog. „Dreierprobe“
eingesetzt, um Verfälschungen von Datenworten und Instruktionen zu erkennen.
Auch die Einbeziehung der Adresse eines Datenspeicherelements in die Integritäts-
prüfung ist nicht neu, sie wird durch die IEC 61508 in [51, 53] vorgeschlagen.

Durch die Integritätsprüfung können von den 20 in Kapitel 2.4 vorgestellten Fehler-
und Angriffsarten die in Tabelle 4.13 gezeigten Fehlertypen erkannt werden.

Wird die Adresse AD eines Datenspeicherelements in die Prüfung der Integrität
eines Datenspeicherelements mit einbezogen, so lassen sich falsche Operanden, die
statt der gewünschten Operanden aus dem Speicher gelesen wurden, zuverlässig
erkennen. Innerhalb der durch den minimalen Hammingabstand des eingesetzten
Integritätsprüfungsverfahrens vorgegebenen Grenzen der Fehlererkennbarkeit kön-
nen Verfälschungen der Daten durch Störungen oder Fehler zuverlässig erkannt wer-
den. Die Nutzung nicht initialisierter Daten könnte dann aufgedeckt werden, wenn
Datenspeicherelemente ohne gültige Daten zeitgleich keine gültige IP-Kennung auf-
weisen, mit dem Nachteil, die restlichen Kennungen des betroffenen Datenspeicher-
elements nicht auswerten zu können. Durch Manipulationen eines Angreifers ver-
fälschte Daten können nur dann erkannt werden, wenn es der Angreifer versäumt,
die IP-Kennung nach der Manipulation entsprechend zu korrigieren.

4.3.12 Signatur und Adresse

Die Signatur S ist die am aufwendigsten zu realisierende Dateneigenschaft. Mit ihr
kann, unter Anwendung asymmetrischer Verschlüsselungsverfahren, ein Datenspei-
cherelement durch eine Quelle kryptographisch signiert und damit vor unbefugter
Manipulation geschützt werden. Datensenken können, ohne dass es weiterer Soft-
wareanweisungen bedarf, bei jedem Zugriff die Authentizität eines entsprechend
gesicherten Datenspeicherelements verifizieren.

4.3.12.1 Realisierung der Signaturkennung S

Zur Realisierung der Signaturkennung S wird jede Datenquelle mit einem Schlüs-
selpaar bestehend aus einem geheimen und einem öffentlichen Schlüssel versehen.
Mit Hilfe des geheimen Schlüssels erstellt die Hardware beim schreibenden Zugriff
auf ein Datenspeicherelement eine Signatur von dessen Inhalten und fügt diese dem

244

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Tabelle 4.13: Fehlererkennung durch die IP-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl ja (mit AD)
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Störungen oder Fehler verfälschte Daten ja
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten begrenzt
Angriffsart
Gezielt verfälschte Daten begrenzt
Wiedereinspielungsattacke nein

AD: Einbeziehung der Datenspeicherelementadresse

245

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Datenspeicherelement als Signaturkennung S hinzu, wie in Abbildung 4.55 darge-
stellt.

Abbildung 4.55: Datenspeicherelement mit Signaturkennung S und Datenwert W

Der Signaturprozess folgt dem allgemeinen Schema digitaler Signaturen [83]:

• Mittels einer kryptographischen Hashfunktion wie z. B. SHA-1 wird die Si-
gnatur der Inhalte des Datenspeicherelements ohne die Signaturkennung S
gebildet.

• Die Signatur wird mit dem jeweiligen geheimen Schlüssel z. B. via RSA chif-
friert.

• Die chiffrierte Signatur wird in der Signaturkennung S gespeichert.

Verfahren, bei dem die gesamten oder Teile der zu signierenden Daten gemeinsam
mit der Signatur chiffriert und bei der Prüfung der Signatur wiederhergestellt wer-
den, wie es in der ISO/IEC 9796-2 [62] normiert ist, könnten bei einer Datenspezifi-
kationsarchitektur DSA zwar genutzt werden, haben allerdings einen entscheidenden
Nachteil: Da die Inhalte eines derart signierten Speicherelements ganz oder teilwei-
se chiffriert sind, muss zunächst die Dechiffrierung durchgeführt werden, bevor die
Hardware die Inhalte der einzelnen Kennungen prüfen kann. Es ist daher das oben
beschriebene Verfahren zu bevorzugen.

Während die Integritätsprüfung IP dem primären Ziel dient, Datenverfälschungen
durch verschiedene Fehler- und Störungseinflüsse zu erkennen, kann mittels der Si-
gnaturkennung S effektiv verhindert werden, dass ein Angreifer absichtlich gefälschte
Daten in ein System einbringt und diese Daten dann z. B. zu gefährlichen Systemre-
aktionen führen. Ein entsprechendes Angriffsszenario wäre z. B. der Versuch, einen
chemischen Prozess in einen kritischen Zustand zu überführen, indem der ermittelte
Temperaturwert eines Temperatursensors gefälscht wird.

Zusammen mit den Merkmalen Zeitschritt ZS und Frist FR kann eine weitere An-
griffsart zuverlässig erkannt werden: Wiedereinspielungsattacken. Bei einem solchen
Angriff versucht ein Angreifer, vorab aufgezeichnete, also ältere, gültige Daten dem

246

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

System als aktuelle Daten „anzubieten“, mit dem Ziel, den Prozess seinen Wün-
schen entsprechend zu manipulieren. Da die Signatur sicherstellt, dass ein Angreifer
nicht in der Lage ist, die Zeitschritt- ZS oder Fristkennung FR zu verändern, kann
eine Datensenke die veralteten Daten als solche identifizieren und entsprechend rea-
gieren.

Da bei Nutzung einer Signaturkennung auch Verfälschungen der Inhalte von Daten-
speicherelementen erkannt werden können, die nicht durch Manipulation, sondern
durch Störungen oder Fehler aufgetreten sind, kann in diesem Fall auf die Imple-
mentierung einer Integritätsprüfungskennung IP verzichtet werden.

4.3.12.2 Prüfung der Authentizität anhand der Signaturkennung S

Die zu den geheimen Schlüsseln der Quellen gehörenden öffentlichen Schlüssel wer-
den in der Quelle selbst und in den Datensenken abgelegt und zur Prüfung der
Authentizität von Datenspeicherelementen herangezogen. Diese Authentizitätsprü-
fung führt die Hardware bei jedem Zugriff auf ein entsprechend gesichertes Daten-
speicherelement durch. Kann die Authentizität eines Datenspeicherelements nicht
verifiziert werden, weil das Datenspeicherelement

• durch Störungen oder Fehler verändert oder

• durch einen Angreifer gezielt manipuliert wurde,

so wird ein Ausnahmefehler generiert.

Der Prüfprozess beim Zugriff auf ein Datenspeicherelement folgt dem allgemeinen
Schema zur Prüfung digitaler Signaturen [83]:

• Unter Nutzung des passenden öffentlichen Schlüssels wird die chiffrierte Signa-
tur dechiffriert.

• Unter Anwendung der zur Erstellung der Signatur genutzten kryptographi-
schen Hashfunktion wird eine Vergleichssignatur der vorliegenden Inhalte des
zu prüfenden Datenspeicherelements gebildet.

• Die Vergleichssignatur wird mit der dechiffrierten Signatur verglichen. Im Falle
der Übereinstimmung gilt das Speicherelement als authentifiziert und unver-
ändert.

247

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Die folgende Pseudocodeauflistung zeigt die Prüfung des Signaturkennung S ohne
Einbeziehung der Adresse des Speicherelements, wobei die Prüfungsfunktion Sprüf
die Inhalte des Datenspeicherelements unter Nutzung des öffentlichen Schlüssels öS
verifiziert.

Prüfung_Signatur_ohne_Adresse :=

WENN Sprüf([Quelle], öS) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.12.3 Einbeziehung der Adresse AD in die Signaturkennung

Da sich anhand der Signaturkennung S Integrität und Authentizität eines Daten-
speicherelements verifizieren lassen, wird eine zusätzliche Integritätsprüfung anhand
Integritätsprüfungskennung IP überflüssig. Zur Aufdeckung von Adressierungsfeh-
lern sollte daher analog zur Integritätsprüfungskennung IP die Adresse des Daten-
speicherelements in die Bildung der Signatur einbezogen werden.

Prüfung_Signatur_mit_Adresse :=

WENN Sprüf([Quelle] EXODER Adresse(Quelle), öS) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

4.3.12.4 Setzen der Signaturkennung in Zieldatenspeicherelementen

Wie auch bei Anwendung der Integritätsprüfungskennung IP werden beim schrei-
benden Zugriff auf ein Datenspeicherelement die Inhalte der Signaturkennung S
durch Anwendung der Generierungsfunktion Sgen neu gebildet und dem Datenspei-
cherelement hinzugefügt. Je nachdem, ob die Adresse des Datenspeicherelements in
die Integrationsprüfung einbezogen werden soll oder nicht, wird die Generierungs-
funktion nur auf die Inhalte des Datenspeicherelements oder deren Verknüpfung mit
der Adresse des Datenspeicherelements angewendet.

248

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

Setzen_Signaturkennung_ohne_Adresse :=

S([Ziel]) := Sgen([Ziel]);

Setzen_Signaturkennung_mit_Adresse :=

S([Ziel]) := Sgen([Ziel] EXODER Adresse(Ziel));

4.3.12.5 Befehle zur Verwaltung der Signatur S

Wie auch bei der Integritätsprüfung IP erfolgt die Verwaltung der Signaturkennung
S automatisch durch die Hardware der Datenspezifikationsarchitektur DSA. Der in
Kapitel 4.3.3.3 eingeführte Befehl Prüfe Einen Operanden PEO kann jedoch dazu
genutzt werden, die Integrität eines Operanden anhand seiner Signatur sicherzustel-
len, ohne diesen zu ändern. Dabei deutet „...“ die Durchführung weiterer Prüfungen
an, die in den zur jeweiligen Kennung gehörenden Kapiteln vorgestellt wurden.

Bezogen auf die Signaturkennung S wird geprüft, ob die in der Kennung spezifizierte
Signatur den Inhalten des Datenspeicherelements unter Einbeziehung der Adresse
des Datenspeicherelements entspricht.

PEO A :=

...

WENN Sprüf([A] EXODER Adresse(A), öS) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

...

249

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.3.12.6 Datenportale zur Behandlung abgehender und ankommender
Daten

Die in Kapitel 4.3.12.3 beschriebene Einbeziehung der Adresse in die Signaturken-
nung S führt beim Datenaustausch zwischen Systemkomponenten zum identischen
Problem, welches bereits bei der Beschreibung der Integritätsprüfungskennung IP in
Kapitel 4.3.11.6 erwähnt wurde: Der Empfänger von Daten hat kein Wissen über die
Adresse eines Datenspeicherelements im Speicher des Senders und kann diese des-
halb nicht in die Prüfung der Signaturkennung S einbeziehen. Zudem müssen die Da-
tenspeicherelemente vom Empfänger umsigniert werden, damit die Datenspeicher-
elemente mit dem geheimen Schlüssel des Empfängers statt dem des Senders signiert
sind. Zur Lösung des Problems können die ebenfalls in Kapitel 4.3.11.6 beschrie-
benen Datenportale DP in Form der Datenausgangsportale DAP auf Sender- bzw.
der Dateneingangsportale DEP auf Empfängerseite genutzt werden. Die Funktion
der Datenportale DP in Bezug auf die Signaturkennung S wird in Abbildung 4.56
dargestellt.

Abbildung 4.56: Funktionsweise der Datenportale bei der Signaturkennung S

Die Signaturkennung S des Datenspeicherelements Dx, welches von der Systemkom-
ponente A an die Systemkomponente B übertragen werden soll, wird nach

Svor_DAP := Sgen ([Dx], Adresse(DxA, gSA))

durch die Generierungsfunktion Sgen aus den Inhalten des Datenspeicherelements
Dx, dessen Adresse DxA und dem geheimen Schlüssel gSA gebildet. Das Datenaus-
gangsportal DAP auf Senderseite prüft zunächst die Integrität und Authentizität

250

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

des zu sendenden Datenspeicherelements Dx nochmals und entfernt dann die Adres-
se des Datenspeicherelements aus der Signaturkennung, wodurch diese nach

Snach_DAP := Sgen ([Dx], gSA)

nur noch aus den Inhalten des Datenspeicherelements Dx und dem geheimen Schlüs-
sel gSA der Systemkomponente A gebildet wird. Anschließend kann das Datenspei-
cherelement an den Empfänger übertragen werden.

DAP :=

WENN Sprüf([Quelle] EXODER Adresse(Quelle), öSeigen) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

[Ziel] := [Quelle];
S([Ziel]) := Sgen([Ziel], gSeigen);

Im Empfänger werden Integrität und Authentizität des empfangenen Datenspeicher-
elements Dx im Dateneingangsportal DEP anhand der Signaturkennung S zuerst
unter Zuhilfenahme des öffentlichen Schlüssels öSA der sendenden Systemkompo-
nente geprüft, bevor es mit einer neuen Signaturkennung S nach

Snach_DEP := Sgen ([Dx], Adresse(DxB, gSB))

mit der neuen Adresse DxB unter Nutzung des geheimen Schlüssels gSB des Emp-
fängers B versehen und im Speicher des Empfängers an der entsprechenden Adresse
abgelegt wird. Bei allen weiteren Zugriffen können Integrität und Authentizität
des betreffenden Datenspeicherelements dann unter Einbeziehung des öffentlichen
Schlüssels öSB und der Adresse des Datenspeicherelements verifiziert werden.

Wird ein Datenspeicherelement als verfälscht erkannt, so wird das korrespondieren-
de Datenausgangsportal DAP auf Senderseite zu einem erneuten Sendungsversuch
aufgefordert. Diese Art der Behandlung von Übertragungsfehlern wurde in Kapi-
tel 4.1.3.2 statt der sofortigen Generierung eines Ausnahmefehlers vorgeschlagen,
da Übertragungsfehler auf Kommunikationsleitungen recht häufig vorkommen kön-
nen.

251

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

DEP :=

WENN Sprüf([Quelle], öSfremd) �= gültig DANN
Erneutes_Senden_anfordern;

ENDEWENN

[Ziel] := [Quelle];
S([Ziel]) := Sgen([Ziel] EXODER Adresse(Ziel), gSeigen);

4.3.12.7 Evaluation der Signaturkennung S

Die Sinnhaftigkeit einer Signatur pro einzelnem Datenspeicherelement ist kritisch
zu hinterfragen – schließlich ist der damit verbundene Aufwand immens, da die Ge-
nerierung und Prüfung der Signaturen großen Rechenaufwand mit sich bringt. In
den meisten Fällen wird es ausreichen, die Kommunikationsverbindungen zwischen
Sensoren und Datenverarbeitungseinheiten und zwischen Datenverarbeitungseinhei-
ten und Aktoren mit Signaturen zu versehen und damit deren Authentizität nur auf
den Übertragungswegen sicherzustellen.

Die Nutzung von derart feingranularen und aufwendigen Authentifizierungsmaßnah-
men wird sich nur in Anwendungsfällen rechtfertigen lassen, bei denen mit verschie-
densten Arten von Angriffen auch innerhalb der Datenverarbeitungseinheiten selbst
zu rechnen ist, wie es z. B. bei Chipkarten der Fall ist. Entsprechende Angriffsarten
werden in [73] ausführlich vorgestellt.

Die Ziele solcher Angriffe sind nach [73]

• das Ausspähen von in den Karten gespeicherten, geheim gehaltenen Daten,
wie z. B. kryptographische Schlüssel oder

• die Veränderung von auf der Karte gespeicherten Daten, um z. B. Guthaben
zu erhöhen oder erweiterte Zugangsberechtigungen zu erhalten.

Dabei werden in [73] die folgenden Angriffskategorien identifiziert:

• manipulative Angriffe, bei denen Manipulationen am Chip selbst vorgenom-
men werden,

• observative Angriffe, bei denen der Chip selbst bzw. sein Verhalten untersucht
werden und

252

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

• semi-invasive Angriffe, bei denen versucht wird, über verschiedenste Angriffs-
methoden das Verhalten des Chips im Sinne des Angreifers zu beeinflussen.

Besonders zur Erkennung der letztgenannten Angriffsart, den semi-invasiven Angrif-
fen, bei denen das Verhalten des Chips oder Signale innerhalb des Chips manipuliert
werden sollen, könnte eine Signaturkennung genutzt werden. Es dürfte für einen An-
greifer sehr schwierig sein, neben den gewünschten Manipulationen zeitgleich auch
die Signaturkennungen so zu beeinflussen, dass diese der sich ergebenden Signatur
der manipulierten Daten entspricht. An dieser Stelle sollte – auch wenn es nicht im
Fokus dieser Arbeit liegt – für derartige Anwendungen darüber nachgedacht wer-
den, nicht nur Daten, sondern auch Befehle mit einer Signaturkennung zu versehen,
um auch hier Manipulationsversuche in größerem Umfang aufdecken zu können.

Die Signaturkennung S ermöglicht die Erkennung der in Tabelle 4.14 gezeigten
Fehler- und Angriffsarten.

Wird die Adresse AD eines Datenspeicherelements analog zur Integritätsprüfungs-
kennung IP in die Prüfung der Integrität eines Datenspeicherelements mit einbe-
zogen, so lassen sich falsche Operanden, die statt der gewünschten Operanden aus
dem Speicher gelesen wurden, zuverlässig erkennen.

Fehlgeleitete Daten können dann erkannt werden, wenn der Empfänger bei Anwen-
dung des öffentlichen Schlüssels der Quelle, von der er Daten erwartet, die Signatur
der fehlgeleiteten Daten nicht verifizieren kann. Durch Störungen oder Manipulati-
on verfälschte Daten können durch die Anwendung der Signaturkennung aufgedeckt
werden. Die Nutzung nicht initialisierter Daten kann dann erkannt werden, wenn
diesen keine gültige Signatur zugewiesen ist. Wiedereinspielungsattacken können zu-
sammen mit den Zeitschritt- ZS oder Fristkennungen FR sicher erkannt werden.

4.3.13 Redundante diversitäre arithmetisch-logische Einheit

Eine Fehlerkategorie kann mit den bisher eingeführten Kennungen nur unzureichend
abgedeckt werden: „Fehlerhafte Operationen“. Dazu gehören

• das Heranziehen falscher Operanden,

• die Anwendung eines falschen Operators und

• die Erzeugung fehlerhafter Ergebnisse

253

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Tabelle 4.14: Fehlererkennung durch die S-Kennung

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl ja (mit AD)
Falsche Operatorauswahl nein
Fehlerhaftes Operationsergebnis nein
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) (ja)
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten ja
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten (ja)
Angriffsart
Gezielt verfälschte Daten ja
Wiedereinspielungsattacke ja (mit ZS, FR, ZY)

AD: Einbeziehung der Datenspeicherelementadresse; ZS: Zeitschrittkennung;
FR: Fristkennung; ZY: Zykluszeitkennung

254

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.3 Realisierung der Datenflussüberwachung

bei der Ausführung von Operationen. Während die Verwendung falscher Operan-
den schon großteils durch die Einbeziehung der Datenspeicherelementadresse oder
eines entsprechenden Identifikators in die Integritätsprüfung IP bzw. die Signatur S
aufgedeckt werden kann, können die beiden anderen Fehlerarten mit den bisherigen
Mitteln nur in sehr begrenztem Umfang erkannt werden. Um auch diese Fehlerarten
sicher erkennen zu können, wird die arithmetisch-logische Einheit ALE, engl. „arith-
metic logic unit ALU“, in einer Datenspezifikationsarchitektur DSA redundant und
diversitär aufgebaut.

4.3.13.1 Realisierung der redundanten diversitären arithmetisch-logischen
Einheit

Dem Vorbild der Prozessoren für sicherheitsgerichtete Anwendungen in Kapitel 3.2.1
folgend, soll die Realisierung der redundanten ALE wie folgt geschehen:

• die redundante ALE wird räumlich möglichst weit entfernt und gedreht auf
dem Die des DSA-Prozessors untergebracht, um räumliche Diversität zu errei-
chen,

• die redundante ALE wird zeitlich um zwei Takte versetzt betrieben, um zeit-
liche Diversität zu gewährleisten und

• die Ergebnisse beider ALE werden miteinander verglichen und bei Nichtüber-
einstimmung wird ein Ausnahmefehler generiert.

Zusätzlich wird gefordert, die beiden ALE diversitär aufzubauen, um etwaige
Entwurfs- und Implementierungsfehler innerhalb der ALE aufdecken zu können und
zu verhindern, dass im Falle eines solchen Fehlers beide ALE die identischen falschen
Ergebnisse ausgeben, die dann durch einen Vergleich nicht mehr als fehlerhaft zu
erkennen wären.

4.3.13.2 Evaluation der redundanten diversitären arithmetisch-logischen
Einheit

Die redundante diversitäre Ausführung der ALE erlaubt es, Fehlfunktionen der ALE
aufzudecken, was eine durch die bisher vorgestellten Fehlererkennungsmerkmale nur
unzureichend abgedeckte Fehlerkategorie ist. Die Erkennbarkeit der 20 in Kapitel 2.4
vorgestellten Fehler- und Angriffsarten wird in Tabelle 4.15 dargestellt.

255

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Die Verarbeitung falscher Operanden kann durch eine redundant diversitäre ALE
nur dann aufgedeckt werden, wenn der Fehler, der zur falschen Auswahl der Ope-
randen führte, innerhalb einer der beiden ALE aufgetreten ist, da sich dann – sofern
die Operanden verschiedene Datenwerte beinhalten – unterschiedliche Ausgaben er-
geben, die durch den Vergleicher aufgedeckt werden. Ist ein Adressierungsfehler auf
dem gemeinsamen Datenbus die Ursache der Falschauswahl, so werden beide ALE
die geforderte Operation auf den identischen falschen Operatoren ausführen und
entsprechend identische falsche Ergebnisse ausgeben, weshalb der Vergleicher den
Fehler in diesem Fall nicht entdecken kann.

Tabelle 4.15: Fehlererkennung durch die redundante diversitäre ALE

Fehlerart Erkennbarkeit
Inkompatible Datentypen nein
Inkompatible Einheiten nein
Wertebereichsunter- bzw. -überschreitung nein
Genauigkeitsproblem nein
Falsche Operandenauswahl (ja)
Falsche Operatorauswahl ja
Fehlerhaftes Operationsergebnis ja
Fristüberschreitung nein
Zyklusunterschreitung nein
Zyklusüberschreitung nein
Verlorengegangene Datenaktualisierung nein
Synchronisationsfehler oder unvollständige Datenübertragung nein
Pufferunter- oder -überläufe nein
Fehlerhafter Datenfluss (falsche Adressaten, . . .) nein
Duplizierte Daten nein
Durch Fehler oder Störungen verfälschte Daten nein
Fehlerhafter Datenzugriff (fehlende Zugriffsrechte) nein
Nutzung nicht initialisierter Daten nein
Angriffsart
Gezielt verfälschte Daten nein
Wiedereinspielungsattacke nein

Die Durchführung einer falschen Operation, also zum Beispiel die Anwendung einer
Addition statt einer Subtraktion auf die Operanden kann eine redundante diver-

256

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.4 Übersicht der Kennungen in Daten- und Befehlsspeicherelementen

sitäre ALE zuverlässig aufdecken. Gleiches gilt für Fehler innerhalb der ALE, die
dazu führen, dass das Ergebnis einer Operation fehlerhaft ist. Beide Fehlerarten
können durch den Vergleich der Ergebnisse beider ALE erkannt werden.

4.4 Übersicht der Kennungen in Daten- und
Befehlsspeicherelementen

Werden alle vorgestellten Arten von Kennungen zur Erkennung von Fehlern bei der
Realisierung einer Datenspezifikationsarchitektur genutzt, so ergeben sich die in den
Abbildungen 4.57 und 4.58 gezeigten Aufbauten von Daten- und Befehlsspeicher-
elementen, die systemweit einheitlich sind. Die angedeuteten Größen der einzelnen
Kennungen sind dabei nicht exakt maßstäblich, sondern nur grob der Größe der
jeweiligen Kennung nachempfunden.

Die Datenspeicherelemente, gezeigt in Abbildung 4.57, bestehen aus

• dem Datenwert W, der bei Messwertdatentypen aus den beiden Intervallgren-
zen Wmin und Wmax und bei allen anderen Datentypen nur aus dem Datenwert
W im unteren Teil des Wertefelds besteht,

• der Wertebereichskennung WB, bestehend aus den Teilkennungen Wunten und
Woben,

• der Datentypkennung DT, bestehend aus den Teilkennungen Basisdatentyp
DT, Subdatentyp SDT und der Typberechtigungen TB,

• der Einheitenkennung EI,

• der Zugriffsrechtekennung ZR, bestehend aus den Teilkennungen Modul- und
Funktionsnummer MN und FN, Schreibrechte SR und Initialisierungstatus IS,

• der Verarbeitungswegkennung VW, bestehend aus den Teilkennungen Quell-
Q, Verarbeitungsweg- VW und Zielkennung Z,

• der Zeitschrittkennung ZS, bestehend aus den Teilkennungen Präsenzbit P und
Zeitschrittangabe ZS,

• der Fristkennung FR,

• der Zykluszeitkennung ZY, bestehend aus Identifikator, frühestem und späte-
stem zulässigen Aktualisierungszeitpunkt ZYmin und ZYmax, und

• der Integritätsprüfungskennung IP bzw. der Signaturkennung S.

257

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Abbildung 4.57: Aufbau der Datenspeicherelemente einer DSA

258

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.4 Übersicht der Kennungen in Daten- und Befehlsspeicherelementen

Abbildung 4.58: Aufbau der Befehlsspeicherelemente einer DSA

259

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Die Befehlsspeicherelemente, deren Aufbau in Abbildung 4.58 dargestellt ist, bein-
halten die Instruktion und die Angabe von Operanden bzw. Operandenadressen,
sowie

• die Datentypkennung DT, die das Speicherelement explizit als Befehl ausweist,

• die Einheitenkennung EI, bestehend aus dem Präsenzbit P und den zu verfi-
zierenden Einheitenkennungen EIA und EIB für bis zu zwei Quelloperanden
der Instruktion,

• die Zugriffsrechte ZR mit den Teilkennungen Modul- und Funktionsnummer
MN und FN, Schreibrechte SR (muss Null sein, d. h. nur lesbar), Initialisie-
rungsstatus IS (muss stets Eins sein, um anzudeuten, dass die Inhalte verwend-
und damit ausführbar sind),

• die Verarbeitungswegkennung VW, bestehend aus den Teilkennungen Quell-
kennungen QA und QB für bis zu zwei Quelloperanden, System- und Lokalteil
der Verarbeitungswegkennung VWsys bzw. VWlok und der Zielkennung Z, die
die zu prüfenden Bitmuster spezifizieren,

• die Zeitschrittkennung ZS, bestehend aus den Teilkennungen Präsenzbit der
Zeitschrittdifferenz der Operanden POp, Zeitschrittdifferenz der Operanden
ΔtOp, Präsenzbit der Zeitschrittdifferenz der Zuweisung Pzuw und Zeitschritt-
differenz der Zuweisung Δtzuw,

• die Fristkennung FR, welche die neu zu setzende relative Frist ΔtFR oder den
Wert Null enthält,

• die Zykluszeitkennung, die den im Ergebnis der Operation zu setzenden Iden-
tifikator, sowie die zwei relativen Zeitangaben enthält, die das Zeitfenster defi-
nieren, innerhalb dessen eine Aktualisierung des Datenwerts erfolgen soll, und

• die Integritätsprüfungskennung IP bzw. die Signaturkennung S.

Die Signatur von Befehlsspeicherelementen wurde im die Signaturkennung S be-
schreibenden Kapitel 4.3.12 nicht erwähnt, da der Fokus dieser Arbeit auf der Über-
wachung von Daten, ihren Eigenschaften und ihrem Weg innerhalb eines Systems
liegt. Die Authentifizierung jedes einzelnen Befehls könnte jedoch in entsprechend
anspruchsvollen Anwendungen zum Einsatz kommen. Sie ist – analog zur Authen-
tizitätsprüfung jedes einzelnen Datenspeicherelements bei jedem Zugriff – mit er-
heblichen Laufzeitaufwänden zur Prüfung der jeweiligen Signaturen verbunden.

260

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.5 Übersicht der speziellen Register

Weitere Bereiche innerhalb der Befehlsspeicherelemente können für befehlsspezi-
fische Kennungen wie die in ISMA genutzten Sprungzielmarkierungen verwendet
werden.

4.5 Übersicht der speziellen Register

Zusätzlich zu den im vorangegangenen Unterkapitel zusammengefassten Kennun-
gen in Daten und Befehlsspeicherelementen wird der Registersatz einer Datenspe-
zifikationsarchitektur DSA um die zwei in Abbildung 4.59 dargestellten speziellen
Register

• das Zugriffsrechteregister ZRR, bestehend aus den Teilregistern Aktuelle Mo-
dulnummer AMN und Aktuelle Funktionsnummer AFN, und

• das Verarbeitungswegregister VWR, welches aus den Teilregistern Quellenre-
gister für bis zu zwei Operanden QAR und QBR, den System- und Lokalteil-
registern des Verarbeitungswegs VWsysR und VWlokR und dem Zielregister
ZR.

zur Prüfung von Kennungsinhalten der zu verarbeitenden Daten erweitert.

Abbildung 4.59: Spezielle Register im Registersatz der DSA

4.6 Pseudocode einer Instruktion

Zur Veranschaulichung des Funktionsprinzips einer Datenspezifikationsarchitektur
und des Umfangs der durch die Hardware parallel zur eigentlichen Ausführung einer
Operation durchgeführten Prüfungen, wird in der folgenden Auflistung der Pseudo-
code der Addition

261

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

C = A + B

gezeigt. Auch wenn die einzelnen Prüfungen im Pseudocode sequentiell dargestellt
sind, finden sie – soweit möglich – zeitgleich, also parallelisiert statt. Diese Paral-
lelisierung stellt auch im Fehlerfall kein Problem dar: Selbst wenn eine Operation
z. B. mit fehlerhaften Operanden durchgeführt wird und dieser Umstand erst eini-
ge Takte versetzt durch eine parallel durchgeführte Prüfung festgestellt wird, wird
dennoch ein Ausnahmefehler generiert, der zum Programmabbruch führt, wodurch
das fehlerhafte Ergebnis nicht mehr zu gefährlichen Ausgaben der Datenverarbei-
tungseinheit führen kann.

Der Additionsbefehl ADD besitzt drei Operanden in Form der Speicheradressen A
und B der beiden Summanden, sowie der Speicheradresse C des Zieldatenspeicher-
elements, in welches das Ergebnis gespeichert werden soll.

Die Darstellung des Pseudocodes der Addition und der mit ihr verbundenen Prüfun-
gen erfolgt in dem in Kapitel 4.3.1.3 erläuterten Format. Obwohl die Integritätsprü-
fungskennung IP überflüssig ist, wenn eine Signaturkennung S zum Einsatz kommt,
werden im Pseudocode der Vollständigkeit halber beide Kennungen eingesetzt.

Aus Platzgründen wird in der Pseudocodeauflistung Identifikator als Id abgekürzt.

;=== Pseudocode der Additionsinstruktion ADD ===
ADD A, B, C :=

;=== Prüfung der Wertebereiche ===
;=== (Kapitel 4.3.3) ===
WENN DT.DT([A]) ∈ Messwertdatentypen DANN

WENN [Wmin([A]);Wmax([A])] � WB([A]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
SONST

WENN W([A]) /∈ WB([A]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

262

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.6 Pseudocode einer Instruktion

WENN DT.DT([B]) ∈ Messwertdatentypen DANN
WENN [Wmin([B]);Wmax([B])] � WB([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

SONST
WENN W([B]) /∈ WB([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN WB([A]) � DT.DT([A]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN WB([B]) � DT.DT([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN WB([C]) � DT.DT([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

;=== Prüfung der Kompatibilität der Datentypen ===
;=== (Kapitel 4.3.4) ===
WENN DT.DT([A]) �= DT.DT([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN DT.SDT([A]) �= DT.SDT([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.TB([A]) �= DT.TB([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.DT([A]) �= DT.DT([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

263

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN DT.SDT([A]) �= DT.SDT([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN DT.TB([A]) �= DT.TB([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

;=== Prüfung der Durchführbarkeit der Operation ADD ===
;=== (Kapitel 4.3.4) ===
WENN DT.TB([A]) UND Bitmaske(ADD) �= Bitmaske(ADD) DANN

Generierung_Ausnahmefehler;
ENDEWENN

;=== Prüfung der Kompatibilität der Einheiten ===
;=== (Kapitel 4.3.5) ===
WENN EI([A]) �= EI([B]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN EI([A]) �= EI([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

;=== Verifikation der Einheiten ===
;=== (Kapitel 4.3.5) ===
WENN EI.P([Befehl]) = 1 DANN

WENN EI([A]) �= EI.EIA([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
WENN EI([B]) �= EI.EIB([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

264

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.6 Pseudocode einer Instruktion

;=== Prüfung der Zugriffsrechte ===
;=== (Kapitel 4.3.6) ===
WENN ZR.MN([A]) �= [ZRR.AMN] DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN ZR.FN([A]) �= [ZRR.AFN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.MN([B]) �= [ZRR.AMN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.FN([B]) �= [ZRR.AFN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.MN([C]) �= [ZRR.AMN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.FN([C]) �= [ZRR.AFN] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.IS([A]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.IS([B]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN ZR.SR([C]) �= 1 DANN
Generierung_Ausnahmefehler;

ENDEWENN

265

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

;=== Prüfung und Setzen der Verarbeitungswege VW ===
;=== (Kapitel 4.3.7) ===
WENN [VWR.QAR] �= 0 DANN

WENN VW.Q([A]) �= [VWR.QAR] DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

WENN VW.QA([Befehl]) �= 0 DANN
WENN VW.Q([A]) �= VW.QA([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.VWsys([A]) UND [VWR.VWsysR] �= [VWR.VWsysR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWsys([A]) UND VW.VWsys([Befehl]) �= VW.VWsys([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([A]) UND [VWR.VWlokR] �= [VWR.VWlokR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([A]) UND VW.VWlok([Befehl]) �= VW.VWlok([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN [VWR.QBR] �= 0 DANN
WENN VW.Q([B]) �= [VWR.QBR] DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

266

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.6 Pseudocode einer Instruktion

WENN VW.QB([Befehl]) �= 0 DANN
WENN VW.Q([B]) �= VW.QB([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN

WENN VW.VWsys([B]) UND [VWR.VWsysR] �= [VWR.VWsysR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWsys([B]) UND VW.VWsys([Befehl]) �= VW.VWsys([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([B]) UND [VWR.VWlokR] �= [VWR.VWlokR] DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN VW.VWlok([B]) UND VW.VWlok([Befehl]) �= VW.VWlok([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

VW.Q([C]) := VW.Q([A]) ODER VW.Q([B]);
VW.VWsys([C]) := VW.VWsys([A]) UND VW.VWsys([B]);
VW.VWlok([C]) := VW.VWlok([A]) UND VW.VWlok([B]);
VW.Z([C]) := VW.Z([A]) UND VW.Z([B]);

;=== Prüfung und Setzen der Zeitschrittkennungen ZS ===
;=== (Kapitel 4.3.8) ===
WENN ZS.POp([Befehl]) = 1 DANN

WENN ZS.P([A]) = ZS.P([B]) = 1 DANN
WENN ZS.ZS([A]) - ZS.ZS([B]) �= ZS.ΔtOp([Befehl]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

ENDEWENN
ENDEWENN

267

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

WENN ZS.P([A]) = ZS.P([B]) = 1 DANN
WENN ZS.ZS([A]) - ZS.ZS([B]) ≥ 0 DANN

ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([A]);

SONST
ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([B]);

ENDEWENN
SONST WENN ZS.P([A]) = 1 DANN

ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([A]);

SONST WENN ZS.P([B]) = 1 DANN
ZS.P([Ergebnis]) := 1;
ZS.ZS([Ergebnis]) := ZS.ZS([B]);

SONST
ZS.P([Ergebnis]) := 0;

ENDEWENN

WENN ZS.P([Ergebnis]) = 1 ∧ ZS.+1([Befehl]) = 1 DANN
ZS.ZS([Ergebnis]) := ZS.ZS([Ergebnis]) + 1;

ENDEWENN

WENN ZS.Pzuw([Befehl]) = 1 DANN
WENN ZS.P([C]) = ZS.P([Ergebnis]) = 1 DANN

WENN ZS.ZS([C]) - ZS.ZS([Ergebnis]) �= ZS.Δtzuw([Befehl]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

ENDEWENN

;=== Prüfung und Setzen der Fristen ===
;=== (Kapitel 4.3.9) ===
WENN Aktuelle_Zeit > FR([A]) DANN

Generierung_Ausnahmefehler;
ENDEWENN

268

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.6 Pseudocode einer Instruktion

WENN Aktuelle_Zeit > FR([B]) DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN FR.ΔtFR([Befehl]) = 0 DANN
WENN FR([A]) < FR([B]) DANN

FR([C]) := FR([A]);
SONST

FR([C]) := FR([B]);
ENDEWENN

SONST
FR([C]) := Aktuelle_Uhrzeit + FR.ΔtFR([Befehl]);

ENDEWENN

;=== Senden der Zykluszeitkennungsdaten an die ZÜE ===
;=== (Kapitel 4.3.10) ===
WENN ZY.Id([A]) �= 0 DANN

ZÜE_Nachricht := (ZY.Id([A]), ZY.ZYmin([A]), ZY.ZYmax([A]));
ENDEWENN

WENN ZY.Id([B]) �= 0 DANN
ZÜE_Nachricht := (ZY.Id([B]), ZY.ZYmin([B]), ZY.ZYmax([B]));

ENDEWENN

;=== Setzen der Zykluszeitkennung ZY des Ergebnisses ===
;=== (Kapitel 4.3.10) ===
WENN ZY.Id([Befehl]) �= 0 DANN

ZY.Id([C]) := ZY.Id([Befehl]);
WENN ZY.ΔZYmin([Befehl]) = 0 DANN

ZY.ZYmin([C]) := 0;
SONST

ZY.ZYmin([C]) := Aktuelle_Uhrzeit + ZY.ΔZYmin([Befehl]);
ENDEWENN
WENN ZY.ΔZYmax([Befehl]) = 0 DANN

ZY.ZYmax([C]) := 0;
SONST

ZY.ZYmax([C]) := Aktuelle_Uhrzeit + ZY.ΔZYmax([Befehl]);
ENDEWENN

269

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

SONST WENN ZY.ΔZYmin([Befehl]) = ZY.ΔZYmax([Befehl]) = 0 DANN
ZY.Id([C]) := 0;
ZY.ZYmin([C]) := 0;
ZY.ZYmax([C]) := 0;

SONST
Generierung_Ausnahmefehler;

ENDEWENN

;=== Prüfung der Datenintegrität anhand IP ===
;=== (Kapitel 4.3.11) ===
WENN Iprüf([A] EXODER Adresse(A)) �= gültig DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN Iprüf([B] EXODER Adresse(B)) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN Iprüf([C] EXODER Adresse(C)) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

;=== Prüfung der Datenintegrität anhand Signatur S ===
;=== (Kapitel 4.3.12) ===
WENN Sprüf([A] EXODER Adresse(A), öS) �= gültig DANN

Generierung_Ausnahmefehler;
ENDEWENN

WENN Sprüf([B] EXODER Adresse(B), öS) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

WENN Sprüf([C] EXODER Adresse(C), öS) �= gültig DANN
Generierung_Ausnahmefehler;

ENDEWENN

270

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.6 Pseudocode einer Instruktion

;=== Ausführung der Addition ===
;=== (Intervallarithmetik Kapitel 4.3.2) ===
WENN DT.DT([A]) ∈ Messwertdatentypen ∧

DT.DT([B]) ∈ Messwertdatentypen DANN
Wmin([C]) := Wmin([A]) + Wmin([B]);
Wmax([C]) := Wmax([A]) + Wmax([B]);

SONST WENN DT.DT([A]) ∈ Messwertdatentypen DANN
Wmin([C]) := Wmin([A]) + W([B]);
Wmax([C]) := Wmax([A]) + W([B]);

SONST WENN DT.DT([B]) ∈ Messwertdatentypen DANN
Wmin([C]) := W([A]) + Wmin([B]);
Wmax([C]) := W([A]) + Wmax([B]);

SONST
W([C]) := W([A]) + W([B]);

ENDEWENN

;=== Setzen des Initialisierungsstatus ===
;=== (Kapitel 4.3.6) ===
ZR.IS([C]) := 1;

;=== Prüfung, ob Ergebnis innerhalb Zielwertebereich liegt ===
;=== (Kapitel 4.3.3) ===
WENN DT.DT([C]) ∈ Messwertdatentypen DANN

WENN [Wmin([C]);Wmax([C])] � WB([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
SONST

WENN W([C]) /∈ WB([C]) DANN
Generierung_Ausnahmefehler;

ENDEWENN
ENDEWENN

;=== Übertragung des Zeitschritts in das Zielspeicherelement ===
;=== (Kap. 4.3.8) ===
ZS.P([C]) := ZS.P([Ergebnis]);
ZS.ZS([C]) := ZS.ZS([Ergebnis]);

271

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

;=== Setzen der Integritätsprüfung des Ergebnisses ===
;=== (Kapitel 4.3.11) ===
IP([C]) := Igen([C] EXODER Adresse(C));

;=== Abschließende Signatur der Ergebnisses ===
;=== (Kapitel 4.3.12) ===
S([C]) := Sgen([C] EXODER Adresse(C), gS);

4.7 Anforderungen an die Systemkomponenten

In den folgenden Unterkapiteln wird beschrieben, welche speziellen Anforderungen
an nach dem Vorbild einer Datenspezifikationsarchitektur entwickelte Systemkom-
ponenten zu stellen sind. Dabei werden

• die Schnittstellen zu konventionellen Systemkomponenten und

• die Nutzung hochpräziser synchronisierter Uhren

vorgestellt und näher erläutert.

4.7.1 Schnittstellen zu konventionellen Systemkomponenten

Es ist anzunehmen, dass in Systemen, die Systemkomponenten mit den vorgestell-
ten Merkmalen einer Datenspezifikationsarchitektur DSA nutzen, auch konventio-
nelle Komponenten eingebracht werden, auch wenn diese tunlichst auf ein Mini-
mum zu reduzieren sind und keine oder nur wenig sicherheitskritische Funktionen
übernehmen sollten. Diese konventionellen Gerätschaften werden Daten generieren
und kommunizieren, ohne deren Eigenschaften dabei in den geforderten explizi-
ten Kennungen bekanntzugeben. Es ist daher zu fordern, dass die Daten von allen
DSA-Systemkomponenten vor der Verwendung mit allen bekannten Eigenschaften
zu markieren sind, um bei der nachfolgenden Verwendung so viele Fehler- und An-
griffsarten wie möglich aufdecken zu können. Die zu setzenden Dateneigenschaften
könnten den Systemkomponenten z. B. im Zuge einer Konfiguration bekanntgeben
werden.

272

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.8 Konfiguration der Systemkomponenten

4.7.2 Hochpräzise synchronisierte Uhren

Zur Bewertung der in den Datenspeicherelementen der Datenspezifikationsarchitek-
tur angegebenen Fristen, also

• der Fristkennung FR und

• der Zykluszeitkennung ZY,

ist es notwendig, dass alle Systemkomponenten hochpräzise und synchronisierte
Uhren aufweisen. Als Zeitbasis können z. B. satellitenbasierte Systeme wie GPS,
GLONASS oder Galileo dienen, wobei zu beachten ist, dass

• die entsprechenden Signale nicht immer mit hinreichender Signalstärke zu emp-
fangen sind, z. B. innerhalb von Gebäuden, und dass

• zumindest die Betreiber des GPS immer wieder damit drohen, im Konfliktfall
die Systeme – zumindest teilweise – abzuschalten.

Es ist davon auszugehen, dass es nicht wirtschaftlich ist, sämtliche Quellen, Daten-
verarbeitungseinheiten und Senken jeweils mit einem entsprechenden Empfänger zu
versehen. Daher müssen Zeitsynchronisationsmechanismen zum Einsatz kommen,
wie z. B. die in [35] vorgeschlagene Zeitsynchronisation in einem Doppelringbussy-
stem.

4.8 Konfiguration der Systemkomponenten

Aufgrund der detaillierten Spezifikation der in Kapitel 4.2 identifizierten Daten-
eigenschaften ist es notwendig, das Wissen über diese Eigenschaften an alle Sy-
stemkomponenten zu verteilen. Damit nun nicht für jede Anwendung neue Softwa-
repakete für die eingesetzten Sensoren, Datenverarbeitungseinheiten und Aktoren
übersetzt und getestet werden müssen, wird für ein auf einer Datenspezifikationsar-
chitektur basierendes System ein Konfigurationsmechanismus ähnlich der Konfigu-
ration der sicherheitsgerichteten Feldbusprotokolle PROFIsafe [56] und CIP Safety
[55] vorgeschlagen. Dabei werden die notwendigen Dateneigenschaften den System-
komponenten in Form von Konfigurationsdateien zur Verfügung gestellt. Für die
einzelnen Systemkomponenten werden dabei unterschiedliche Informationen benö-
tigt, die in den folgenden Unterkapiteln identifiziert werden.

273

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.8.1 Konfiguration der Datenquellen

Für die Konfiguration der Datenquellen – also z. B. von Sensoren – werden die
folgenden Dateneigenschaften benötigt, die dem Gerät durch eine entsprechende
Konfigurationsdatei zur Verfügung gestellt werden müssen:

• die Quellkennung Q der Quelle, die in die Verarbeitungswegkennung VW aller
erzeugten Daten der Quelle eingeht,

• für alle zu generierenden Daten:

– die vorbestimmten Verarbeitungswege durch das System, die in die Ver-
arbeitungswegkennung VW in Form der Komponenten VWsys, – sofern
möglich –VWlok und Zielkennung Z eingehen,

– die zu setzende relative Frist, mit der die Daten bei ihrer Erzeugung ver-
sehen werden, die auf die aktuelle Zeit addiert wird, um in den generierten
Daten die absolute Zeitangabe in Form der Fristkennung FR zu setzen,

– falls notwendig, die Spezifikation des einzusetzenden Datentyps DT zur
Darstellung des Datenwerts W, des Subdatentyps SDT, der Typberechti-
gungen TB und des Wertebereichs WB,

– den in den Daten zu vermerkenden gültigen Wertebereich, der in der Wer-
tebereichskennung WB hinterlegt wird und eine Plausibilitätsprüfung auf
Empfängerseite gestattet,

• im Falle des Einsatzes der Signaturkennung S ein Schlüsselpaar bestehend aus

– einem geheimen Schlüssel zur Generierung der kryptographischen Signa-
turen der erzeugten Daten und

– einem öffentlichen Schlüssel zur Prüfung der Signaturen eigener Daten.

Sollten Datenquellen auch Daten von anderen Systemkomponenten erwarten, so
müssen ggf. weitere Vorgaben durch die Konfigurationsdatei erfolgen, die der Be-
schreibung der Konfiguration von Datensenken zu entnehmen sind.

4.8.2 Konfiguration der Datenverarbeitungseinheiten

Die Datenverarbeitungseinheiten benötigen ebenfalls einen umfangreichen Satz an
Informationen, um die entsprechenden Prüfungen zu gestatten:

274

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.8 Konfiguration der Systemkomponenten

• die Verarbeitungswegkennung VWsys, die die Datenverarbeitungseinheit iden-
tifiziert und die in der Verarbeitungswegkennung VW der Daten erwartet wird,

• für alle zu empfangenden Daten:

– die Quellkennung Q der Quelle, die in der Verarbeitungswegkennung VW
erwartet wird,

– die minimale und maximale Zykluszeit, falls es sich um zyklisch übermit-
telte Daten handelt; diese Zeiten werden von der Zyklusüberwachungsein-
heit ZÜE genutzt,

– falls notwendig, die Datentypen DT, Subdatentypen SDT und Typberech-
tigungen TB,

• im Falle des Einsatzes einer Signaturkennung S

– die öffentlichen Schlüssel aller Quellen, deren Daten verarbeitet werden
sollen,

– einen eigenen geheimen Schlüssel, mit dem die erzeugten Verarbeitungs-
ergebnisse signiert werden sollen und

– einen eigenen öffentlichen Schlüssel zur Prüfung der erzeugten Daten.

• das gewünschte Verhalten im Falle der Generierung eines Ausnahmefehlers,
also beispielsweise wie ein sicherer Zustand eingenommen und gehalten werden
kann.

Die lokalen Anteile der Verarbeitungswegkennung VW, VWlok, werden innerhalb
des Softwareprojekts der Datenverarbeitungseinheit definiert und werden nicht
durch die Konfigurationsdatei vorgegeben. Sollten diese jedoch bereits durch die
Quellen in der VW-Kennung der Daten vorgegeben werden, so ist es notwendig,
die entsprechenden Kennungen zu exportieren und in die Konfigurationsdateien der
Quellen einzubetten.

Sollte eine Datenverarbeitungseinheit zusätzlich zur reinen Verarbeitung von Daten
auch eigene Daten, wie z. B. Diagnosedaten, erzeugen, so ist die Konfigurationsdatei
um die benötigten Vorgaben, die bei der Konfiguration von Datenquellen spezifiziert
wurden, zu ergänzen.

In Kapitel 4.7.1 wird beschrieben, dass die von konventionellen Sensoren oder Kom-
ponenten übermittelten Daten möglicherweise nicht alle von einer Datenspezifika-
tionsarchitektur vorgeschlagenen Dateneigenschaften in Kennungen abbilden oder
sogar analoge Signale übermitteln. Ist dies der Fall, so muss die Konfigurationsdatei

275

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

das notwendige Wissen bereitstellen, um die Daten innerhalb der Datenverarbei-
tungseinheiten mit allen notwendigen Kennungen ausstatten zu können.

4.8.3 Konfiguration der Datensenken

Schlussendlich werden auch alle Datensenken innerhalb eines Systems mit einer
Konfigurationsdatei parametriert, die die folgenden Parameter spezifizieren muss:

• die Zielkennung Z der Senke, die in der Verarbeitungswegkennung der emp-
fangenen Daten erwartet wird,

• für alle zu empfangenden Daten:

– die Quellkennung Q der Quelle, die in der Verarbeitungswegkennung VW
erwartet wird,

– ggf. die erwarteten Komponenten VWsys,lok in der Verarbeitungswegken-
nung der Daten,

– die minimale und maximale Zykluszeit, falls es sich um zyklisch übermit-
telte Daten handelt; diese Zeiten werden von der Zyklusüberwachungsein-
heit ZÜE genutzt,

– falls notwendig, die Datentypen DT, Subdatentypen SDT und Typberech-
tigungen TB,

• im Falle des Einsatzes einer Signaturkennung S die öffentlichen Schlüssel aller
Quellen, deren Daten verarbeitet werden sollen.

– die öffentlichen Schlüssel aller Datenverarbeitungseinheiten, deren Steu-
ersignale verarbeitet werden sollen,

– einen eigenen geheimen Schlüssel, mit dem interne Daten signiert werden
und

– einen eigenen öffentlichen Schlüssel zur Prüfung der erzeugten internen
Daten,

• das gewünschte Verhalten im Falle der Generierung eines Ausnahmefehlers,
also beispielsweise wie ein sicherer Zustand eingenommen und gehalten werden
kann.

276

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.8 Konfiguration der Systemkomponenten

Falls die Datensenken auch Daten generieren können, z. B. wenn Stellgrößen durch
die Datenverarbeitungseinheiten zurückgelesen oder Diagnoseinformationen gene-
riert werden, so sind der Konfigurationsdatei entsprechende weitere Vorgaben hin-
zuzufügen, die der Beschreibung der Konfiguration von Datenquellen zu entnehmen
sind.

4.8.4 Konfiguration der Systemüberwachungseinheit

Auch die in Kapitel 4.1.2 beschriebene Systemüberwachungseinheit SÜE wird über
eine entsprechende Konfigurationsdatei parametriert. Diese spezifiziert:

• im Falle des Einsatzes einer Signaturkennung S die öffentlichen Schlüssel aller
Datenverarbeitungseinheiten,

• das gewünschte Verhalten im Falle eines Ausfalls von Sensoren, Datenverar-
beitungseinheiten oder Aktoren, ebenso wie bei Nichtübereinstimmung von
durch die Datenverarbeitungseinheiten generierten Steuersignalen, beispiels-
weise, wie ein sicherer Zustand eingenommen und gehalten werden kann.

Neben diesen minimal notwendigen Informationen können weitere Festlegungen wie
beispielsweise

• die erwarteten Quellkennungen und

• die erwarteten Zielkennungen

der Steuersignale vorgenommen werden. Dies ermöglicht der Systemüberwachungs-
einheit SÜE eine erweiterte Prüfung der von den Datenverarbeitungseinheiten ge-
lieferten Steuersignale.

4.8.5 Erkennung konfigurationsbezogener Inkonsistenzen

Um sicherzustellen, dass alle Systemkomponenten zueinander passende Konfigurati-
onsdateien verwenden, kann ein im sicherheitsgerichteten Feldbusprotokoll PROFI-
safe [56] eingesetztes Verfahren angewandt werden, bei dem verschiedene Konfigura-
tionsinformationen in die Prüfsummenberechnung eingehen. Es ist also vorstellbar,
die Konfigurationsdaten mit einer Versionsnummer zu versehen, die von den System-
komponenten in die Berechnung und Prüfung der Integritätsprüfung IP einbezogen
werden. Dadurch können etwaige Abweichungen der Stände der Konfigurationsda-
teien aufgedeckt werden.

277

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.9 Anforderungen an Begutachtungen und Audits

In den verschiedenen Entwicklungsphasen innerhalb von Projekten werden Begut-
achtungen und Audits dazu genutzt, die Einhaltung von Vorgaben, die u. a. der Nor-
mengebung entstammen, sicherzustellen. Weitere Vorgaben, wie z. B. Programmier-
richtlinien oder Einschränkungen der zulässigen Sprachmittel können dabei ebenfalls
geprüft werden.

Bezogen auf die Fehlererkennungsmerkmale der Datenspezifikationsarchitektur soll-
ten die folgenden Fragen in die entsprechenden Prüfungen eingehen:

• Werden alle Daten und deren Eigenschaften in der jeweiligen Phase des Ent-
wicklungszyklus korrekt und in hinreichender Tiefe beschrieben?

• Werden alle für das Projekt relevanten Kennungsarten der Datenspezifikati-
onsarchitektur genutzt?

• Werden die Kennungen in der vorgesehenen Art und in vollem Umfang ge-
nutzt?

– Werden alle Messwerte durch Messwertdatentypen abgebildet und wird
deren Genauigkeit korrekt abgebildet?

– Werden Wertebereichseinschränkungen vorgenommen, die fehlerhafte Pa-
rameter und Rückgabewerte aufdecken können?

– Werden alle Datentypen, die auf dem selben Basisdatentyp beruhen, aber
eine andere semantische Bedeutung haben, durch Subdatentypen vonein-
ander isoliert? Werden die zugelassenen Operationen auf eine sinnvolle
Untermenge eingeschränkt?

– Werden alle Werte mit korrekten Einheiten in der Einheitenkennung EI
versehen? Wurde sichergestellt, dass die für die Potenz der jeweiligen SI-
Basiseinheit zur Verfügung stehende Bitbreite in den Einheitenteilken-
nungen für die Anwendung ausreicht?

– Werden die Zugriffsrechte in vollem Umfang inklusive der Schreibrechte
SR und des Intialisierungsstatus IS genutzt?

– Werden alle Daten mit einer gültigen Verarbeitungswegkennung VW aus-
gestattet, ohne pauschal alle Datenverarbeitungseinheiten und Senken als
gültige Stationen zu markieren?

278

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchitektur

– Werden diskrete Messwerte mit einer Zeitschrittangabe versehen und wer-
den die temporalen Zusammenhänge von Operanden bei der Verarbeitung
geprüft? Wurde sichergestellt, dass die maximale zu prüfende Zeitschritt-
differenz durch die Zeitschrittkennung ZS dargestellt werden kann?

– Werden alle Daten mit begrenzter Gültigkeit mit sinnvollen Fristen ausge-
stattet, die Gültigkeitszeiträume also nicht länger als notwendig gestaltet?

– Wird die Einhaltung der zeitlichen Grenzen aller zyklisch erfassten und
übermittelten Daten mit Hilfe der Zykluszeitkennung ZY geprüft? Werden
dabei sinnvolle Zeitfenster definiert?

– Wurde die korrekte Entscheidung bzgl. der Nutzung der Integritätsprü-
fungskennung IP oder der Signaturkennung S basierend auf den individu-
ellen Schutzanforderungen der Anwendung getroffen?

• Werden Redundanz- und Diversitätsarten richtig und in hinreichendem Um-
fang eingesetzt?

• Wird – sofern vorhanden – der sichere Zustand des Systems bzw. der einzelnen
Systemkomponenten korrekt in den Konfigurationsdateien beschrieben?

• Sind die Konfigurationsdateien für die verschiedenen Systemkomponenten zu-
einander konsistent?

Die Nutzung der Kennungen auf die vorgesehene Art und in hinreichendem Umfang
wird deshalb so betont, da es teilweise möglich ist, die Sicherheitsmechanismen der
Datenspezifikationsarchitektur trotz Anwendung der Kennungen zu umgehen. Ein
Beispiel für eine solche Umgehungsmaßnahme wäre, allen Datenwerten die Einheit
1 zuzuweisen, d. h. alle Potenzen der sieben SI-Basiseinheiten auf Null zu setzen.
Eine weitere Art der Umgehung wichtiger Fehlererkennungsmaßnahmen könnte das
Setzen der Gültigkeit der Daten auf extrem hohe Werte sein, um die Notwendigkeit
der Berechnung sinnvoller Zeitgrenzen zu vermeiden.

4.10 Realisierung der Datenspezifikationsarchitektur
als Datenflussarchitektur

Während der Betrachtung des Stands von Wissenschaft und Technik wurde in Ka-
pitel 3.6 das Funktionsprinzip statischer und dynamischer Datenflussarchitekturen
vorgestellt. Dabei wurde kritisiert, dass diese keine Merkmale zur Erkennung der

279

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten aufweisen. Da Datenflus-
sarchitekturen einen am Datenfluss orientierten Aufbau besitzen und einen hohen
Grad an Parallelisierung ermöglichen, soll in diesem Kapitel eine Erweiterung der
Funktionsblöcke der Datenflussarchitekturen vorgestellt werden, die die Erkennung
der genannten Fehler- und Angriffsarten weitmöglichst erlauben soll.

4.10.1 Erweiterung der Funktionsblöcke um Lebenszeichen und
Diagnose

Zunächst werden die zur Verarbeitung der Daten genutzten Funktionsblöcke bzw.
Verarbeitungseinheiten um einen Lebenszeichen- und einen Diagnoseausgang LZ
bzw. D erweitert, wodurch sich der in Abbildung 4.60 dargestellt Aufbau ergibt.

Abbildung 4.60: Erweiterung der Funktionsblöcke um Lebenszeichen und Diagnose

Im fehlerfreien Betrieb generiert jeder Funktionsblock ein alternierendes Lebenszei-
chensignal LZ. Diese Lebenszeichensignale LZ werden zu einem globalen Lebenszei-
chensignal zusammengefasst, wie in Abbildung 4.61 gezeigt. Nur, wenn keiner der
Funktionsblöcke einen Fehler meldet, gibt auch die gesamte Datenverarbeitungsein-
heit ein entsprechendes Lebenszeichen aus, das durch eine Systemüberwachungsein-
heit ausgewertet werden kann.

Nun soll betrachtet werden, inwieweit die Inhalte der Kennungen der Datenspei-
cherelemente in den gemäß Abbildung 4.60 gestalteten Funktionsblöcken geprüft
werden können. Dabei können die folgenden Prüfungen der Operanden ohne zu-
sätzliche Erweiterungen der Funktionsblöcke durchgeführt werden:

280

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchitektur

Abbildung 4.61: Zusammenfassung von Lebenszeichen LZ und Diagnose D

• die in den Datenwertfeldern W abgelegten Datenwerte der Operanden – bei
Messbereichsdatentypen auch deren Werteintervalle – können anhand der Wer-
tebereichskennung WB auf ihre Plausibilität hin geprüft werden,

• die Datentypkompatibilität der Operanden zueinander kann anhand Daten-
typkennung überprüft werden, wobei

– die Datentypen DT,

– die Subdatentypen SDT und

– die Typberechtigungen TB der Operanden identisch und die im Funk-
tionsblock durchzuführende Operation durch die Typberechtigungen TB
gestattet sein müssen,

• bei Additionen, Subtraktionen und Vergleichen kann anhand der Einheiten-
kennung EI die Gleichheit der Einheiten aller Operanden verifiziert werden,

• die Initialisierungsstatusbeschreiber IS innerhalb der Zugriffsrechtekennungen
ZR müssen bei allen Operanden den Wert Eins aufweisen, da sie les- und damit
verarbeitbare Daten enthalten müssen,

• die Integrität der Operanden kann anhand der Integritätsprüfung IP verifiziert
werden.

281

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

Die Kennungen des Ergebnisses der im Funktionsblock ausgeführten Operation wer-
den wie folgt gesetzt:

• der Datenwert W – bei Messwertdatentypen das Datenwertintervall – ergibt
sich als Ergebnis der durchgeführten Operation,

• die Datentypkennung DT wird auf die Inhalte der Operanden gesetzt,

• die Einheitenkennung EI wird bei Additionen und Subtraktionen auf die Ein-
heit der Operanden, bei Multiplikationen und Divisionen auf die sich nach
Anwendung der Potenzgesetze auf die Einheiten der Quelloperanden ergeben-
de Einheit gesetzt,

• der Initialisierungsstatusbeschreiber IS innerhalb der Zugriffsrechtekennung
ZR wird auf den Wert Eins gesetzt, da das Ergebnis einer Operation ja immer
verwendbare Daten enthält,

• die Verarbeitungswegkennung VW des Ergebnisses ergibt sich aus den in Ka-
pitel 4.3.7 vorgestellten Verknüpfungen der Teilkennungen der Verarbeitungs-
wegkennungen VW der Operanden,

• die Zeitschrittkennung ZS wird auf den jüngsten Zeitschritt der Operanden
gesetzt,

• der Fristkennung FR des Ergebnisses wird die kürzeste verbleibende Frist der
Operanden zugewiesen und

• die Integritätsprüfung IP wird entsprechend der Inhalte des Ergebnisses ge-
setzt.

Eine Übersicht über die Kennungen, deren Inhalte bei Quelloperanden durch die
nach Abbildung 4.60 gestalteten Funktionsblöcke geprüft bzw. bei den Ergebnis-
sen gesetzt werden können, gibt Tabelle 4.16. Wie der Tabelle zu entnehmen ist,
bestehen bei den folgenden Kennungen Einschränkungen:

• Bei der Wertebereichkennung WB können nur die Wertebereiche der Quellope-
randen gegen den vorgegebenen Wertebereich geprüft werden, beim Ergebnis
kann jedoch keine derartige Prüfung erfolgen, da kein Zieldatenspeicherele-
ment im Speicher existiert, welches einen entsprechenden Wertebereich defi-
nieren kann.

• Der Zeitschritt in der Zeitschrittkennung ZS des Ergebnisses kann nur auf den
jüngsten der Zeitschritte der Operanden gesetzt werden, ein automatisches

282

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchitektur

Inkrementieren des Zeitschritts – wie von der +1-Teilkennung bekannt – kann
nicht erfolgen.

• Die Frist des Ergebnisses in dessen Fristkennung FR kann nur auf die kürzere
der Fristen der beiden Quelloperanden gesetzt werden. Eine neue Frist kann
mangels entsprechender Information nicht gesetzt werden.

Zur Beseitigung dieser Einschränkungen und der Prüfung bzw. dem Setzen der bis-
lang nicht prüf- bzw. setzbaren Kennungen sollen die Funktionsblöcke im folgenden
Unterkapitel nochmals erweitert werden.

Tabelle 4.16: Prüfung der Kennungsinhalte durch erweiterte Funktionsblöcke

Kennung Teilkennung Prüfen Setzen
Wertebereich WB (alle) (X) -

Datentyp DT (alle) X X
Einheit EI (alle) X X

Zugriffsrechte ZR

Modulnummer MN - -
Funktionsnummer FN - -

Schreibrechte SR - -
Initialisierungsstatus IS X X

Verarbeitungsweg VW (alle) - X
Zeitschritt ZS (alle) - (X)

Frist FR (alle) - (X)
Zykluszeit ZY (alle) - -
Integrität IP (alle) X X
Signatur S (alle) - -

X: prüf- bzw. setzbar, (X): mit Einschränkungen prüf- bzw. setzbar,
-: nicht prüf- bzw. setzbar

4.10.2 Verbesserung der Fehlererkennung durch zusätzliche
Erweiterungen

Sollen innerhalb der Funktionsblöcke weitere Prüfungen durchgeführt werden, so
werden zusätzliche Erweiterungen der Funktionsblöcke notwendig:

283

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

• durch das Hinzufügen der Verfügbarkeit einer Zeitquelle kann die Gültigkeit
der Operanden anhand deren Fristkennung FR verifiziert werden, ebenso wird
dadurch die lokale Prüfung der Zykluszeitkennung ZY ermöglicht,

• die Festlegung des zulässigen Wertebereichs des Verarbeitungsergebnisses er-
laubt dessen entsprechende Prüfung,

• das Bereitstellen von Verarbeitungsweginformationen erlaubt die Prüfung der
Inhalte der Verarbeitungswegkennung VW,

• die Spezifikation der zu prüfenden temporalen Beziehung der Operanden er-
laubt deren Prüfung anhand der Zeitschrittkennungen ZS und

• die Bereitstellung des öffentlichen Schlüssels erlaubt die Prüfung der Authen-
tizität und Integrität der Operanden anhand der Signaturkennungen S.

Auch das Setzen der Kennungen des Ergebnisses von Funktionsblöcken kann durch
zusätzliche Erweiterungen unterstützt werden:

• die Bereitstellung des geheimen Schlüssels erlaubt die Signierung der Inhalte
des Ergebnisses in der Signaturkennung S,

• die oben bereits erwähnte Festlegung des zulässigen Wertebereichs des Ver-
arbeitungsergebnisses kann in dessen Wertebereichskennung WB eingetragen
werden,

• die Spezifikation einer relativen Frist ΔtFR erlaubt das Setzen einer von den
Fristen der Quelloperanden unabhängigen neuen Frist FR für das Ergebnis
und

• die Angabe eines Identifikators und jeweils eines frühesten und spätesten re-
lativen Zeitpunkts zur Aktualisierung des betreffenden Datums erlaubt das
Setzen der Zykluszeitkennung ZY des Ergebnisses.

Damit ergibt sich der in Abbildung 4.62 dargestellte Aufbau der Funktionsblöcke
unter Einbeziehung der beschriebenen Erweiterungen.

Auch für die in Abbildung 4.62 gezeigten nochmals erweiterten Funktionsblöcke
wird in Tabelle 4.17 übersichtlich zusammengefasst, welche der Kennungen der Da-
tenspeicherelemente der Quelloperanden geprüft bzw. beim Ergebnis gesetzt werden
können.

Bis auf drei Teilkennungen der Zugriffsrechtekennung ZR sind mit den genannten
Erweiterungen der Funktionsblöcke nun alle Kennungen in vollem Umfang prüf-
bzw. setzbar.

284

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchitektur

Abbildung 4.62: Funktionsblock mit Zusatzeingängen

Tabelle 4.17: Prüfung der Kennungsinhalte durch erneut erweiterte Funktionsblöcke

Kennung Teilkennung Prüfen Setzen
Wertebereich WB (alle) X X

Datentyp DT (alle) X X
Einheit EI (alle) X X

Zugriffsrechte ZR

Modulnummer MN - -
Funktionsnummer FN - -

Schreibrechte SR - -
Initialisierungsstatus IS X X

Verarbeitungsweg VW (alle) X X
Zeitschritt ZS (alle) X X

Frist FR (alle) X X
Zykluszeit ZY (alle) X X
Integrität IP (alle) X X
Signatur S (alle) X X

X: prüf- bzw. setzbar, -: nicht prüf- bzw. setzbar

285

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

4 Eine Datenspezifikationsarchitektur

4.10.3 Weiterhin bestehende Einschränkungen

Trotz der vorgestellten Erweiterungen der Funktionsblöcke für die Realisierung der
Datenspezifikationsarchitekturmerkmale auf Basis einer Datenflussarchitektur blei-
ben Teile der Zugriffsrechtekennung ZR unprüfbar. Die Zieldatenspeicherelemente
existieren nicht als Variablen in einem Speicher, sondern nur als Nachrichten zwi-
schen Funktionsblöcken und können daher auch nicht formatiert sein. Dies betrifft
vor allem die Zugriffsrechte, da keine Aufteilung des Programms in Module existiert,
wodurch weder Modul- noch Funktionsnummern MN bzw. FN in der Zugriffsrechte-
kennung ZR überprüft werden können. Weiterhin ist es nicht möglich, den Schreib-
rechtebeschreiber SR in der Zugriffsrechtekennung zu prüfen. Da die beschriebenen
Teilkennungen der Zugriffsrechtekennung ZR – bis auf den Initialisierungsstatusbe-
schreiber IS – bei der Realisierung einer Datenspezifikationsarchitektur auf Basis
einer Datenflussarchitektur weder setz- noch prüfbar sind, können diese ignoriert
werden. Ein Weglassen der betroffenen Teilkennungen Modul- und Funktionsnum-
mer MN bzw. FN und des Schreibrechtebeschreibers SR aus Platzspargründen sollte
unterbleiben, da sich ansonsten Inkompatibilitäten mit anderen Systemkomponen-
ten ergeben könnten.

286

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der
Datenspezifikationsarchitektur

Die in dieser Arbeit vorgestellte Datenspezifikationsarchitektur DSA soll nun an-
hand verschiedener Gesichtspunkte evaluiert werden. Zuerst wird die Art der Da-
tenabbildung in einer DSA mit der des Stands der Technik verglichen und die
Architektur anschließend im Zusammenhang mit Datentyp-, Datenstruktur- und
Befähigungsarchitekturen eingeordnet. Es folgen die Evaluation der Erkennbarkeit
der 20 in Kapitel 2.4 vorgestellten datenflussbezogenen Fehler- und Angriffsarten
und eine Betrachtung, wie die in Kapitel 1.1 vorgestellten Fehlerfälle aus der Praxis
durch eine DSA frühzeitig erkannt und wie ihre Auswirkungen reduziert oder sogar
vermieden hätten werden können. Den Abschluss der Evaluation der DSA bildet die
Analyse der Speicherausnutzung der Architektur, auch wenn der Speicherverbrauch
bei den heutzutage verfügbaren Speichergrößen kein an eine moderne Architektur
anzulegendes Bewertungskriterium sein darf, der Vollständigkeit halber aber trotz-
dem betrachtet werden soll.

5.1 Evaluation der Datenabbildung der DSA

Die verschiedenen Abbildungen von Daten inklusive aller Eigenschaften, die von der
jeweiligen Architektur oder dem jeweiligen Verfahren explizit in einem Datenspei-
cherelement D spezifiziert werden, werden hier nochmals anhand der in Kapitel 4.2
vorgestellten Dateneigenschaften übersichtlich dargestellt, inklusive der in dieser
Arbeit vorgestellten Datenspezifikationsarchitektur DSA.

In konventionellen Architekturen bilden die Datenspeicherelemente D einzig
einen Datenwert W in einem nur implizit bekannten und spezifizierten Datenformat
in der Form

D := W

287

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

ab. Alle weiteren Eigenschaften der Daten werden durch die Art des Zugriffs und
die anschließende Verwendung der Daten implizit festgelegt. Entsprechend wenige
Möglichkeiten gibt es für die Hardware, fehlerhaften Umgang mit den Datenwerten
oder auch fehlerhafte Daten zu erkennen. Dabei gab es in der Vergangenheit sehr
leistungsfähige und vor allem sehr einfache Ansätze, mehr Eigenschaften von Da-
tenspeicherelementen in einer für die Hardware verständlichen Form darzustellen.

In Datentyparchitekturen werden die Datenspeicherelemente um Datentypken-
nungen DT ergänzt, die in Form zusätzlicher Bits den Datentyp der im Datenspei-
cherelement enthaltenen Datenwerte beschreiben und für die Hardware auswertbar
machen [1, 36, 39].

D := (W, DT)

Auf diese Weise kann die Hardware die Kompatibilität der Datentypen der Daten-
werte vor deren Nutzung prüfen, um z. B. sicherzustellen, dass nur Datenwerte mit
kompatiblen Datentypen bei arithmetischen Operationen verwendet werden.

Zur hardwareverständlichen Beschreibung komplexerer, über atomare Datentypen
hinausgehender Datenstrukturen werden in Datenstruktur- bzw. Deskriptorar-
chitekturen entsprechende Datentypidentifikatoren vorgesehen, z. B. in Form von
Deskriptoren [39, 78].

Des Weiteren kann man Zugriffrechte ZR in den Datenspeicherelementen verankern,
wie es in Befähigungsarchitekturen vorgesehen ist [39, 78]. Diese Beschreibung
der Zugriffrechte gestattet es der Hardware, diese Rechte bei Zugriffen zu prüfen.
Dadurch erweitert sich das Tupel, welches ein Datenspeicherelement beschreibt,
zu:

D := (W, DT, ZR)

Zugriffsrechte können dabei Lese-, Schreib- und für Code auch Ausführungsrechte,
ggf. auch die Zuordnung von Code und Daten zu bestimmten Programmeinheiten
sein.

In einigen Datentyp-, Datenstruktur- und Befähigungsarchitekturen wer-
den die Datenspeicherelemente zusätzlich mit einem Merkmal zur Integritätsprü-
fung IP, also zur Erkennung von Verfälschungen der Datenworte versehen [1, 39],
wodurch sich das Datenabbildungstupel für Datentyp- und Datenstrukturarchitek-
turen zu

D := (W, DT, IP)

und für Befähigungsarchitekturen

288

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.1 Evaluation der Datenabbildung der DSA

D := (W, DT, ZR, IP)

ergänzt.

Die inhärent sichere Mikroprozessorarchitektur ISMA [125] fügt den Datenspei-
cherelementen neben den bereits erwähnten Kennungen einen Initialisierungssta-
tusbeschreiber hinzu, die es erlaubt, die Verwendung nicht initialisierter Datenspei-
cherelemente als Fehler zu erkennen, also den Versuch, lesend auf ein Datenspei-
cherelement zuzugreifen, dem vorher kein gültiger Datenwert zugewiesen wurde.
Diese Kennung wird als Initialisierungsstatus IS ebenfalls im Datenspeicherelement
abgelegt. Damit werden Datenspeicherelemente in ISMA wie folgt dargestellt:

D := (W, DT, ZR, IP, IS)

ISMA verwendet Datenspeicherelemente mit einer einheitlichen Breite von 128 Bit,
wobei nur 64 Bit für die Speicherung der eigentlichen Datenwerte W und die restli-
chen 64 Bit für Sicherungs- und Verwaltungsdaten, also zur Definition von DT, ZR,
IP und IS verwendet werden.

Bei der ANBD-Kodierung kommen keine Kennungen zum Einsatz. Die Daten-
werte werden stattdessen kodiert, indem die Fehlererkennungsmerkmale durch arith-
metische Operationen mit dem eigentlichen Datenwert verbunden werden, wodurch
sich die Datenabbildung

D := (W · IP + ZS + AD)

ergibt.

Die in dieser Arbeit vorgestellte Datenspezifikationsarchitektur DSA verwen-
det – bei Nutzung aller vorgestellten Kennungen – das Tupel

D := (W, WB, DT, EI, ZR, VW, ZS, FR, ZY, IP, S)

mit

VW := (Q, VWsys, VWlok, Z),

ZR := (MN, FN, SR, IS)

und der Einbeziehung der Adresse AD in die Integritätsprüfung IP bzw. die Signatur
S zur Abbildung das Datenwerts und seiner Eigenschaften in einem Datenspeicher-
element. Zur Abbildung der Genauigkeit von Messwerten und der Fehlerfortpflan-
zung werden die Datenwerte W bei speziellen Messwertdatentypen in der Form

W := (Wmin, Wmax)

289

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

dargestellt. Damit übertrifft sie alle bisherigen Datenabbildungen in Hinsicht auf
den Umfang der Beschreibung der Dateneigenschaften deutlich.

5.2 Einordnung der entstandenen Architektur

In Abbildung 5.1 wird veranschaulicht, wie die entstandene Datenspezifikationsar-
chitektur bezogen auf die bislang bekannten Architekturarten einzuordnen ist.

Abbildung 5.1: Einordnung der Datenspezifikationsarchitekturen

Den Anfang bilden die Datentyparchitekturen mit der expliziten hardwareverständ-
lichen Angabe des Datentyps der in einem Datenspeicherelement enthaltenen Daten.
Datenstrukturarchitekturen bieten zusätzliche Merkmale zur hardwareverständli-
chen Definition komplexer Datenstrukturen und bilden somit eine Übermenge der
Datentyparchitekturen. Durch die Zurverfügungstellung von Merkmalen zur Spezi-
fikation von Zugriffsrechten bilden Befähigungsarchitekturen wiederum eine Über-
menge der Datenstrukturarchitekturen.

Die in dieser Arbeit vorgestellte Datenspezifikationsarchitektur DSA erweitert die
Datenabbildung gegenüber den Befähigungsarchitekturen nochmals deutlich, indem
den Datenspeicherelementen weitere Dateneigenschaften in einer hardwareverständ-
lichen Form hinzugefügt werden. Durch diese zusätzlichen Merkmale bildet die

290

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.3 Evaluation anhand der Fehlererkennungsmöglichkeiten

DSA eine Übermenge der Befähigungsarchitekturen. Damit kann man die entstan-
dene DSA auch als neue Architekturgattung oberhalb der bekannten Gattungen
Datentyp-, -struktur- und Befähigungsarchitekturen betrachten.

5.3 Evaluation anhand der
Fehlererkennungsmöglichkeiten

Die in dieser Arbeit vorgestellte Datenspezifikationsarchitektur soll nun anhand der
Erkennbarkeit der 20 in Kapitel 2.4 vorgestellten Fehler- und Angriffsarten bewer-
tet werden. Dazu wird die Erkennbarkeit der einzelnen Fehler- bzw. Angriffsarten
in Tabelle 5.1 zusammen mit der Kennung oder dem Verfahren gezeigt, welches die
Erkennung der jeweiligen Fehlerart erlaubt. Dabei werden – aus Gründen der Über-
sichtlichkeit – diejenigen Kennungen oder Merkmale der Architektur nicht erwähnt,
die nur eine begrenzte oder bedingte Erkennbarkeit der einzelnen Fehler- bzw. An-
griffsarten erlauben. Diese eingeschränkten Fehlererkennungsmöglichkeiten können
in der Einzelevaluation des jeweiligen Merkmals nachgeschlagen werden.

Die Datentypkennung DT ermöglicht die Erkennung der Verwendung von Operan-
den mit inkompatiblen Datentypen. Über die EI-Kennung kann die Inkompatibilität
der Einheiten der Operanden aufgedeckt werden, also z. B. der sprichwörtliche Ver-
gleich von Äpfeln mit Birnen.

Mit Hilfe der Wertebereichskennung können Datenwerte eines Datenspeicherele-
ments beim Lesen auf ihre Plausibilität geprüft werden. Beim Schreiben in ein
Datenspeicherelement mit vordefiniertem Wertebereich kann die Hardware prüfen,
ob der zu schreibende Wert innerhalb des definierten Wertebereichs liegt. Die Ver-
wendung von Messwertdatentypen mit Angabe eines Werteintervalls ermöglicht das
Aufdecken genauigkeitsbezogener Fehler.

Die Auswahl falscher Operanden kann die DSA durch Einbeziehung der Adresse
oder des Identifikators eines adressierten Operanden in dessen Integritätsprüfung
IP bzw. Signaturkennung S erkennen. Eine redundante diversitäre arithmetisch-
logische Einheit ALE erlaubt es, eine durch Fehler verursachte Falschauswahl von
Operatoren und Berechnungsfehler innerhalb der ALE zu erkennen.

Eine Fristüberschreitung in Form der Nutzung von Daten außerhalb ihres Gül-
tigkeitszeitraums kann die Hardware anhand der FR-Kennung erkennen. Verlet-
zungen der vorgesehenen frühesten und spätesten zulässigen Zeitpunkte zur Ak-
tualisierung eines Datenspeicherelements, also Zyklusunter- und -überschreitungen,

291

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

Tabelle 5.1: Fehlererkennung durch die Datenspezifikationsarchitektur DSA

Fehlerart Erkennbarkeit Merkmal Kapitel
Inkompatible Datentypen ja DT-Kennung 4.3.4
Inkompatible Einheiten ja EI-Kennung 4.3.5
Wertebereichsunter- bzw.
-überschreitung ja WB-Kennung 4.3.3

Genauigkeitsproblem ja
Messwertdaten-

typen mit
Werteintervall

4.3.2

Falsche Operandenauswahl ja
AD in IP- bzw.

S-Kennung
4.3.11,
4.3.12

Falsche Operatorauswahl ja Diversitäre ALE 4.3.13
Fehlerhaftes Operationsergebnis ja Diversitäre ALE 4.3.13
Fristüberschreitung ja FR-Kennung 4.3.9

Zyklusunterschreitung ja
ZY-Kennung

mit ZÜE 4.3.10

Zyklusüberschreitung ja
ZY-Kennung

mit ZÜE 4.3.10

Verlorengegangene Datenaktuali-
sierung ja ZS-Kennung 4.3.8

Synchronisationsfehler oder un-
vollständige Datenübertragung ja ZS-Kennung 4.3.8

Pufferunter- oder -überläufe ja
Sichere Felder,
DT-Kennung 4.3.4

Fehlerhafter Datenfluss (falsche
Adressaten, . . .) ja VW-Kennung 4.3.7

Duplizierte Daten ja ZS-Kennung 4.3.8
Durch Fehler oder Störungen
verfälschte Daten ja

IP-Kennung,
S-Kennung

4.3.11,
4.3.12

Fehlerhafter Datenzugriff (fehlen-
de Zugriffsrechte) ja ZR-Kennung 4.3.6

Nutzung nicht initialisierter Da-
ten ja ZR-Kennung 4.3.6

Angriffsart
Gezielt verfälschte Daten ja S-Kennung 4.3.12

Wiedereinspielungsattacke ja
S-Kennung mit
ZS-, FR- und
ZY-Kennung

4.3.12,
4.3.8,
4.3.9,
4.3.10

292

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.3 Evaluation anhand der Fehlererkennungsmöglichkeiten

können durch die Kombination der Zykluszeitkennung ZY und der Zyklusüberwa-
chungseinheit ZÜE aufgedeckt werden, die dazu für alle zu überwachenden Daten
entsprechende Listeneinträge verwaltet.

Verlorengegangene Datenaktualisierungen, Synchronisationsfehler und unvollstän-
dige Datenübertragungen sowie duplizierte Daten können durch die Nutzung der
Zeitschrittkennung erkannt werden. Datenzugriffe außerhalb von Feldern oder Puf-
fern können durch die von Datenstrukturarchitekturen bekannten sicheren Feldzu-
griffsmechanismen unter Nutzung von Felddatentypen und dedizierten Feldzugriffs-
befehlen als Fehler erkannt werden. Fehlerhafter Datenfluss kann dadurch erkannt
werden, dass die Daten nicht dem in der VW-Kennung festgelegten Weg durch das
System folgen.

Werden Daten durch Störungen oder Fehler verfälscht, kann dies – im Rahmen des
minimalen Hammingabstands des eingesetzten Verfahrens zur Integritätsprüfung –
im Zuge der Integritätsprüfung unter Nutzung der IP-Kennung bzw. – bei Nut-
zung einer kryptographischen Signatur pro Datenspeicherelement – der S-Kennung
erkannt werden.

Fehlerhafte Datenzugriffe durch falsche Programmteile oder auf fehlerhafte Weise,
sowie die Nutzung nicht initialisierter Daten werden durch die Zugriffsrechtekennung
ZR aufgedeckt.

Durch einen Angreifer gezielt verfälschte Daten können durch die Signaturkennung
S aufgedeckt werden, da der Angreifer zwar die Daten manipulieren, aber ohne den
geheimen Schlüssel der Quelle die Daten anschließend nicht mit einer gültigen Si-
gnatur versehen kann. Auch den Versuch, aufgezeichnete – und damit an sich gültige
und unverfälschte Daten – zu einem für den Angreifer günstigen Zeitpunkt durch ei-
ne Wiedereinspielungsattacke dem System als aktuelle Daten zu präsentieren, kann
eine DSA erkennen, da die FR-, ZS- und ZY-Kennungen die veralteten Daten als
solche identifizieren. Die Verwendung der Signaturkennung S sorgt dafür, dass der
Angreifer die beiden Kennungen nicht in seinem Sinne ändern kann.

In Tabelle 5.2 wird die entstandene Datenspezifikationsarchitektur DSA nochmals
dem Stand von Wissenschaft und Technik gegenübergestellt, wobei deren Leistungs-
fähigkeit in Bezug auf die Erkennbarkeit der verschiedenen Fehler- und Angriffsarten
besonders deutlich wird. Details zur Bewertung des Stands von Wissenschaft und
Technik können der Zusammenfassung in Kapitel 3.12 bzw. den detaillierten Be-
trachtungen der einzelnen Verfahren und Architekturen in den Kapiteln 3.1 bis 3.11
entnommen werden.

293

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur
Ta

be
lle

5.
2:

Ve
rg

lei
ch

de
rD

SA
m

it
de

m
St

an
d

vo
n

W
iss

en
sc

ha
ft

un
d

Te
ch

ni
k

bz
gl

.d
er

Fe
hl

er
er

ke
nn

ba
rk

eit

Fe
hl

er
-

bz
w

.
A

ng
ri

ffs
ar

t
x8

6,
A

R
M

SG
P

D
T

,
D

S,
B

A
D

FA
IS

M
A

A
D

I
SS

M
A

N
B

D
D

D
F

V
T

C
P

/
IP

P
S, C
S

D
SA

In
ko

m
pa

tib
le

D
at

en
ty

pe
n

-
-

+
-

+
-

-
-

-
-

+
In

ko
m

pa
tib

le
Ei

nh
ei

te
n

-
-

-
-

-
-

-
-

-
-

+
W

er
te

be
re

ich
sv

er
le

tz
un

g
©

x8
6

-
-

-
-

-
-

-
-

-
+

G
en

au
ig

ke
its

pr
ob

le
m

-
-

-
-

-
-

-
-

-
-

+
Fa

lsc
he

O
pe

ra
nd

en
-

+
-

-
-

-
(+

)
B

D
©

-
-

+
Fa

lsc
he

O
pe

ra
to

re
n

-
+

-
-

-
-

(+
)

B
D

+
-

-
+

Fe
hl

er
ha

fte
O

pe
ra

tio
n

-
+

-
-

-
-

(+
)

B
D

-
-

-
+

Fr
ist

üb
er

sc
hr

ei
tu

ng
-

©
-

-
©

-
-

-
-

(+
)

+
Zy

kl
us

un
te

rs
ch

re
itu

ng
-

-
-

-
-

-
-

-
-

-
+

Zy
kl

us
üb

er
sc

hr
ei

tu
ng

-
-

-
-

-
-

-
-

-
(+

)
+

Ve
rlo

re
ng

eg
.A

kt
ua

lis
ie

r.
-

-
-

-
-

(+
)

(+
)

D
-

(+
)

(+
)

+
Sy

nc
hr

on
isa

tio
ns

fe
hl

er
un

d
un

vo
lls

t.
Ü

be
rt

ra
gu

ng
-

-
-

-
-

(+
)

(+
)

D
-

(+
)

(+
)

+

Pu
ffe

ru
nt

er
-o

de
r

-ü
be

rla
uf

(+
)

x8
6

-
+

D
S

-
+

(+
)

(+
)

D
-

-
-

+
Fe

hl
er

h.
D

at
en

flu
ss

-
©

©
B

A
-

©
-

-
©

(+
)

(+
)

+
D

up
liz

ie
rt

e
D

at
en

-
-

-
-

-
(+

)
-

-
(+

)
(+

)
+

D
ur

ch
St

ör
un

ge
n

od
er

Fe
h-

le
r

ve
rfä

lsc
ht

e
D

at
en

©
(+

)
+

-
+

-
(+

)
A

N
-

+
+

+

Fe
hl

er
h.

D
at

en
zu

gr
iff

(fe
h-

le
nd

e
Zu

gr
iff

sr
ec

ht
e)

©
©

+
B

A
-

+
-

-
-

-
-

+

N
ich

t
in

iti
al

isi
er

te
D

at
en

-
-

©
-

+
(+

)
(+

)
B

D
-

-
-

+
G

ez
ie

lte
Ve

rfä
lsc

hu
ng

-
-

-
-

-
-

-
-

-
©

+
W

ie
de

re
in

sp
ie

lu
ng

sa
tt

ac
ke

-
-

-
-

-
-

-
-

-
©

+
Fe

hl
er

er
ke

nn
un

g:
-n

ic
ht

m
ög

l.,
©

be
gr

en
zt

m
ög

l.,
(+

)
m

it
Ei

ns
ch

rä
nk

un
ge

n
m

ög
l.,

+
m

ög
l.;

SG
P:

Pr
oz

.f
ür

sic
he

rh
ei

ts
ge

r.
A

nw
en

du
ng

en
,

D
T

,D
S,

B
A

:D
at

en
ty

p-
,-

st
ru

kt
ur

-,
B

ef
äh

ig
un

gs
ar

ch
.,

D
FA

:D
at

en
flu

ss
ar

ch
.,

PS
:P

R
O

FI
sa

fe
,C

S:
C

IP
Sa

fe
ty

,D
SA

:D
at

en
sp

ez
ifi

ka
tio

ns
ar

ch
.

294

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.4 Evaluation anhand der Fehlerbeispiele

5.4 Evaluation anhand der Fehlerbeispiele

Die Leistungsfähigkeit der vorgestellten Datenspezifikationsarchitektur DSA soll
nun anhand der in Kapitel 1.1 dieser Arbeit vorgestellten Beispiele evaluiert wer-
den, wobei die Leistungsfähigkeit der Fehlererkennungsmerkmale der DSA deutlich
zu Tage tritt.

5.4.1 Selbstzerstörung der Ariane 5

Die Rakete Ariane 5 zerstörte sich nach [79], da es bei Berechnungen zu Überläufen
kam. Diese wurden zwar erkannt, allerdings wurden die generierten Diagnosedaten,
die dies kenntlich machen sollten, zusammen mit einem Datenblock mit gültigen
Flugdaten an den Bordrechner übermittelt, der die Diagnosedaten fehlerhafterweise
als Flugdaten interpretierte. In der Folge neigte sich die Rakete zu stark, worauf die
Selbstzerstörung ausgelöst wurde.

Die Hardware einer Datenspezifikationsarchitektur wäre zwar nicht in der Lage ge-
wesen, die Berechnungsüberläufe zu vermeiden, sie hätte aber die fehlerhafte Inter-
pretation der Diagnosedaten als Flugdaten aufdecken können. Zum einen ist es un-
wahrscheinlich, dass alle Diagnosedaten enthaltenden Datenspeicherelemente die zu
den Flugdaten enthaltenden Datenspeicherelementen identischen Datentypen aufge-
wiesen haben, d. h. die aus Datentyparchitekturen bekannte Datentypkennung DT
hätte an dieser Stelle die Fehler aufdecken können. Gleiches dürfte für die Einheiten
gelten: auch hier wäre mit Abweichungen der Diagnosedaten gegenüber realen Flug-
daten zu rechnen gewesen, hätte sich also durch die Einheitenkennung EI aufdecken
lassen. Weiterhin dürften Verarbeitungsweg und Zieldatensenke der Diagnosedaten
deutlich von jenen der Flugdaten abweichen – was in einer in dieser Arbeit vorgestell-
ten Datenspezifikationsarchitektur in den Diagnosedaten explizit in den Kennungen
Verarbeitungsweg VW und Ziel Z angegeben worden wäre. Die Hardware hätte also
bei der ersten Verwendung der Diagnosedaten in einem Flugdatenauswertungsmo-
dul erkannt, dass hier Daten fehlgeleitet wurden.

Der Absturz hätte jedoch auch bei Anwendung der in dieser Arbeit vorgestellten
Fehlererkennungsmethoden nicht vermieden werden können, da ein weiterer, schwer-
wiegender Entwicklungsfehler begangen wurde [79]: die beiden Navigationssysteme
waren nicht diversitär entwickelt worden und wiesen beide den identischen Fehler
auf und fielen somit zeitgleich aus. Die Rakete wäre daher also auch bei erfolgreicher
und frühzeitiger Fehlererkennung nicht zu retten gewesen.

295

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

5.4.2 Verlust der NASA-Sonde Mars Climate Orbiter

Der Mars Climate Orbiter MCO ging verloren, da verschiedene Entwicklungsgrup-
pen mit verschiedenen Maßeinheiten – die eine in SI-, die andere in englischen –
entwickelt hatten [81]. Bei einer auf Basis dieser Arbeit entwickelten Datenspezifika-
tionsarchitektur werden die Einheiten jedes Operanden in der EI-Kennung explizit
und hardwareverständlich festgelegt. Dabei können nur SI-Einheiten zum Einsatz
kommen, wodurch ein solcher Fehler von vornherein vermieden wird. Sollte auf die
Angabe der Einheiten absichtlich oder unabsichtlich verzichtet werden, ist dies im
Rahmen einer Entwurfs- oder Codebegutachtung einfach aufzudecken und sollte
zur Ablehnung einer Zertifizierung der betroffenen Software führen. Spätestens in
Testläufen würde die Hardware einer Datenspezifikationsarchitektur die Inkompa-
tibilität der Einheiten feststellen und verbliebene derartige Fehler aufdecken, selbst
wenn die verursachten Abweichungen innerhalb von Testtoleranzen liegen würden.

5.4.3 Bestrahlungsgerät Therac 25

Neben weiteren Fehlern führten Inkonsistenzen in den Behandlungsparametern, ver-
ursacht durch fehlerhafte Synchronisierungsmechanismen, beim Therac 25 in min-
destens sechs Fällen zu massiven Strahlungsüberdosen, die teilweise zum Tod des
Patienten führten.

Durch den Einsatz der in dieser Arbeit vorgestellten Zeitschrittkennungen ZS wä-
re mit hoher Wahrscheinlichkeit die Vermischung aktualisierter und veralteter Pa-
rameterwerte bei deren Auswertung anhand der Ungleichheit der Zeitschritte der
einzelnen Operanden aufzudecken gewesen.

Auch die Nutzung der Fristkennung FR hätte bei der Verhinderung der Unfälle hel-
fen können. Ein Setzen der Fristkennung der Behandlungsparameter auf das Ende
einer ersten Behandlung hätte alle veralteten Parameter bei der folgenden Behand-
lung aufgedeckt, da die Frist dieser Parameter abgelaufen wäre.

5.4.4 Sicherheitslücke Heartbleed

Die Auswirkung des Heartbleed-Fehlers [22] – die fehlerhafte Herausgabe von Daten,
die nicht zur aktuellen Kommunikationsverbindung zwischen Angreifer und Opfer
gehörten – hätte bei Verwendung der in dieser Arbeit beschriebenen Merkmale

296

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.4 Evaluation anhand der Fehlerbeispiele

einer Datenspezifikationsarchitektur auf die folgenden Weisen aufgedeckt werden
können:

• durch die Nutzung der aus Befähigungsarchitekturen bekannten Zugriffsrech-
tekennungen ZR,

• durch Anwendung der in ISMA [125] vorgestellten Initialisierungsstatusbe-
schreibers IS oder

• bei Verwendung der in dieser Arbeit vorgestellten Zeitschritt- ZS und Frist-
kennungen FR.

Die Zugriffsrechtekennungen ZR hätten den Fehler dann aufdecken können, wenn
den Speicherinhalten des Opfers verschiedene Befähigungen zugewiesen worden wä-
ren. Der fehlerhafte Zugriff einer Verbindungsinstanz auf die Daten einer anderen
wäre damit zu erkennen gewesen.

Es ist anzunehmen, dass nicht alle Dateninhalte, die wegen des Heartbleed-Fehlers
aus dem Speicher des Opfers gelesen werden konnten, aktuell genutzte und somit
gültige Daten enthalten haben. Hier hätte die Markierung des freien Speichers, der
keine für die Verwendung gültigen Daten mehr enthält, als nicht-initialisiert mit
Hilfe der Initialisierungsstatusbeschreibers IS dafür gesorgt, dass die Hardware den
Versuch, diese Daten zu lesen, als Fehler erkannt hätte.

Eine weitere Möglichkeit, den genannten Fehler aufzudecken, hätte die Zeitschritt-
kennung ZS einer Datenspezifikationsarchitektur geboten. Die übertragenen Daten
innerhalb einer Verbindung hätten von der DSA mit Zeitschrittkennungen versehen
werden können. Beim Erzeugen der Antwort auf die Nachricht des Angreifers hätte
die Hardware der DSA sicherstellen können, dass alle in der Antwort enthaltenen
Datenworte dieselbe Zeitschrittkennung aufweisen. Auch die Fristkennung FR hät-
te zur Erkennung des Fehlers genutzt werden können. Veraltete Daten außerhalb
des der Kommunikationsverbindung zugewiesenen Puffers, deren in der Fristken-
nung angegebene Frist abgelaufen war, hätten beim Lesen zur Generierung eines
Ausnahmefehlers geführt.

Eine Datenverbindung, bei der die genannten Prüfungen einen Fehler aufgedeckt
hätten, hätte durch entsprechende Fehlerbehandlungsmaßnahmen z. B. einfach be-
endet werden können, ohne dass der Angreifer Daten hätte abgreifen können.

297

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

5.5 Evaluation der Speicherausnutzung

Ein Nachteil der Datenspezifikationsarchitektur DSA ist der immense Speicherbe-
darf für die verschiedenen Kennungen bezogen auf die Größe des eigentlichen Da-
tenwerts. Während die inhärent sichere Mikroprozessorarchitektur ISMA maximal
50 % des Speichers für Datenwerte nutzen kann [125], ist dies bei einer DSA noch
weitaus weniger. Die Speicherausnutzung wird nun für Daten- und Befehlsspeicher-
elemente getrennt anhand vorgeschlagener Bitbreiten für die einzelnen Kennungen
betrachtet.

5.5.1 Speicherausnutzung der Datenspeicherelemente

Die Breite der Bitfelder, die für die einzelnen Kennungen einer Datenspezifikations-
architektur DSA benötigt werden, wird in dieser Arbeit nicht festgelegt, da sie un-
ter anderem vom Einsatzgebiet abhängt. Zur Evaluation der Speicherplatznutzung
sollen nun für die einzelnen Bereiche eines DSA-Datenspeicherelements sinnvolle
Bitbreiten exemplarisch in Tabelle 5.3 angenommen werden, um die effektive Spei-
cherplatznutzung für Datentypen verschiedener Bitbreiten berechnen zu können.

5.5.1.1 Datenspeicherelementbreite bei Nutzung der Integritätsprüfung IP

Bei Verzicht auf die Signaturkennung S und der Nutzung der Integritätsprüfungs-
kennung IP berechnet sich die Breite ω(DIP) des Datenspeicherelements D nach
Gleichung 5.1, wobei die Funktion ω die Bitbreite der einzelnen Datenspeicherele-
mentbestandteile bzw. des gesamten Datenspeicherelements zurückliefert.

ω(DIP) =
∑

ω(i) ∀i ∈ {W, WB, DT, EI, ZR, VW, ZS, FR, ZY, IP} (5.1)

Damit ergibt sich für die in Tabelle 5.3 angegebenen Bitbreiten der einzelnen Ken-
nungen eine Datenwortbreite ω(DIP) von 640 Bit nach Gleichung 5.2.

ω(DIP) = (128 + 128 + 24 + 35 + 18 + 32 + 9 + 64 + 140 + 11) Bit = 640 Bit (5.2)

Sollen Datenspeicherelemente in einem Lese- bzw. Schreibzyklus komplett übertra-
gen werden können, so könnte dies durch den parallelen Anschluss von 10 Speicher-
bausteinen mit einer Datenbusbreite von 64 Bit realisiert werden.

298

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.5 Evaluation der Speicherausnutzung

Tabelle 5.3: Vorgeschlagene Bitbreiten der Kennungen in Datenspeicherelementen

Kennung Vorgeschl.
Bitbreite

Anmerkung

Datenwert W 128

Verschiedene Datentypen mit einer
Breite von 1 bis 64 Bit, Messwertda-
tentypen als Intervall mit zwei Inter-
vallgrenzen je 64 Bit

Wertebereich WB 128 Unter- und Obergrenze mit je 64 Bit

Datentyp DT 24
Basisdatentyp DT 8 Bit, Subdatentyp
SDT 8 Bit, Typberechtigungen TB
8 Bit

Einheit EI 56 Potenzen der sieben SI-Basiseinheiten
mit je 8 Bit

Zugriffsrechte ZR 22
Modul- MN und Funktionsnummer
FN je 10 Bit, Schreibrechte SR 1 Bit,
Initialisierungsstatus 1 Bit

Verarbeitungsweg VW 38 Quelle Q 10 Bit, Verarbeitungswe-
ge VW{sys,lok} je 9 Bit, Ziel Z 10 Bit

Zeitschritt ZS 17 Präsenzbit 1 Bit, Zeitschritt 16 Bit
Frist FR 64 absoluter Zeitpunkt 64 Bit

Zykluszeit ZY 152 Identifikator 24 Bit, ZY{min,max} je
64 Bit

Integritätsprüfung IP 11 (640,629)-Erweiterter-Hamming-Code

Signatur S 1024 kryptographische Signatur für
RSA-Schlüssel mit einer Länge von
1024 Bit

5.5.1.2 Datenspeicherelementbreite bei Nutzung der Signaturkennung S

Soll aus Sicherheitsgründen eine Signaturkennung S zum Einsatz kommen, so wird
die Integritätsprüfungskennung IP überflüssig und die Breite ω(DS) berechnet sich
nach Gleichung 5.3.

ω(DS) =
∑

ω(i) ∀i ∈ {W, WB, DT, EI, ZR, VW, ZS, FR, ZY, S} (5.3)

Dadurch ergibt sich für die in Tabelle 5.3 vorgeschlagenen Bitbreiten der einzelnen
Kennungen eine Datenwortbreite ω(DS) von 1653 Bit nach Gleichung 5.4.

299

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

ω(DS) = (128 + 128 + 24 + 35 + 18 + 32 + 9 + 64 + 140 +1024) Bit = 1653 Bit (5.4)

Bei Einsatz der Signaturkennung S müssten daher 25 Speicherbausteine mit einer
Datenbusbreite von 64 Bit zum Einsatz kommen, um ein Datenspeicherelement in
einem Lese- bzw. Schreibzyklus transferieren zu können. Dabei bleiben 11 Bits un-
genutzt, die auf die verschiedenen Kennungen aufgeteilt werden können. Um eine
realistische Speicherausnutzung zu berechnen, wird daher die auf die nächste 64-Bit-
Grenze aufgerundete Breite ω(DS)∗ der Datenspeicherelemente nach Gleichung 5.5
verwendet.

ω(DS)∗ = ω(DS) + 11 Bit = 1664 Bit (5.5)

5.5.1.3 Berechnung der Speicherausnutzung der Datenspeicherelemente

Die Speicherausnutzung η wird berechnet, indem die Breite der Datenwerte ver-
schiedener Datentypen ins Verhältnis zur Gesamtbreite eines Datenspeicherelements
gestellt wird. Bei Einsatz der Integritätsprüfungskennung IP berechnet sich die Spei-
cherausnutzung ηD,IP nach Gleichung 5.6.

ηD,IP =
ω(WDatentyp)

ω(DIP) (5.6)

Wird hingegen die Signaturkennung S verwendet, so berechnet sich ηD,S nach Glei-
chung 5.7.

ηD,S = ω(W)
ω(DS)∗ (5.7)

Auf Basis der in Tabelle 5.3 vorgeschlagenen Bitbreiten der einzelnen Kennungen
ergeben sich für verschiedene Datentypbitbreiten die in Tabelle 5.4 dargestellten
Speicherausnutzungswerte.

300

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.5 Evaluation der Speicherausnutzung

Tabelle 5.4: Speicherausnutzung für verschiedene Datenwertbitbreiten

Bitbreite
Datenwert W

Speicherausnutzung
ηD,IP

Speicherausnutzung
ηD,S

128 20,00 % 7,69 %
64 10,00 % 3,85 %
32 5,00 % 1,92 %
16 2,50 % 0,96 %
8 1,25 % 0,48 %
1 0,16 % 0,06 %

5.5.2 Speicherausnutzung der Befehlsspeicherelemente

Die Breite der Kennungen innerhalb der Befehlsspeicherelemente B hängt von der
Breite der Kennungen innerhalb der Datenspeicherelemente D ab. Basierend auf
den in Tabelle 5.3 vorgeschlagenen Bitbreiten der Kennungen in den Datenspei-
cherelementen ergeben sich die in Tabelle 5.5 angegebenen Bitbreiten der Kennun-
gen innerhalb der Befehlsspeicherelemente. Wie bei den Daten- gilt es auch bei den
Befehlsspeicherelementen zu unterschieden, ob eine Integritätsprüfungskennung IP
oder eine Signaturkennung S zum Einsatz kommen soll, basierend auf den jeweiligen
Sicherheitsanforderungen der jeweiligen Applikation.

5.5.2.1 Befehlsspeicherelementbreite bei Nutzung der
Integritätsprüfung IP

Bei Einsatz der Integritätsprüfungskennung IP berechnet sich die Breite des Befehls-
speicherelements ω(BIP) nach Gleichung 5.8. Dabei wird die Abkürzung „InstOp“
für den für die Instruktion und die Operanden reservierten Bereich im Befehlsspei-
cherelement verwendet.

ω(BIP) =
∑

ω(i) ∀i ∈ {InstOp, DT, EI, ZR, VW, ZS, FR, ZY, IP} (5.8)

Für die in Tabelle 5.5 genannten Breiten der verschiedenen Kennungen ergibt sich
somit nach Gleichung 5.9 für ω(BIP) ein Wert von 596 Bit.

ω(BIP) = (128 + 24 + 113 + 22 + 48 + 34 + 64 + 152 + 11) Bit = 596 Bit (5.9)

301

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

Tabelle 5.5: Bitbreiten der Kennungen in Befehlsspeicherelementen

Kennung Bitbreite Anmerkung
Instruktion und Ope-
randen 128

Datentyp DT 24 Basisdatentyp DT 8 Bit := Befehl, 16
Bit ungenutzt

Einheit EI 113
Präsenzbit und Potenzen der sieben
SI-Basiseinheiten mit je 8 Bit für zwei
Operanden

Zugriffsrechte ZR 22
Modul- MN und Funktionsnummer
FN je 10 Bit, Schreibrechte SR 1 Bit
:= 0, Initialisierungsstatus 1 Bit := 1

Verarbeitungsweg VW 48
Quellen Q{A,B} je 10 Bit, Verarbei-
tungswege VW{sys,lok} je 9 Bit, Ziel Z
10 Bit

Zeitschritt ZS 34 Zwei Präsenzbits je 1 Bit, zwei Zeit-
schritte je 16 Bit

Frist FR 64 absoluter Zeitpunkt 64 Bit

Zykluszeit ZY 152 Identifikator 24 Bit, ZY{min,max} je
64 Bit

Integritätsprüfung IP 11 (640,629)-Erweiterter-Hamming-Code

Signatur S 1024
kryptographische Signatur für
RSA-Schlüssel mit einer Länge von
1024 Bit

Damit lässt sich eine einheitliche Bitbreite für Daten- und Befehlsspeicherelemente
von 640 Bit festlegen.

Die nicht genutzten 44 Bit können für weitere kontrollflussbezogene Kennungen ge-
nutzt werden. Entsprechende Vorschläge für derartige Kennungen werden in den
Weiterführungsmöglichkeiten in Kapitel 6 genannt.

Die ungenutzen Bits werden im Zuge der Aufrundung der Bitbreite auf die nächste
64-Bit-Grenze in ω(BIP)∗ nach Gleichung 5.10 einbezogen.

ω(BIP)∗ = (128+24+113+22+48+34+64+152+11+44) Bit = 640 Bit (5.10)

302

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.5 Evaluation der Speicherausnutzung

5.5.2.2 Befehlsspeicherelementbreite bei Nutzung der Signaturkennung S

Wird statt der Integritätsprüfungskennung IP die Signaturkennung S zur Prüfung
von Integrität und Authentizität der Befehlsspeicherelemente eingesetzt, so berech-
net sich die Breite der Befehlsspeicherelemente ω(BS) nach Gleichung 5.11.

ω(BS) =
∑

ω(i) ∀i ∈ {InstOp, DT, EI, ZR, VW, ZS, FR, ZY, S} (5.11)

Setzt man auch wieder die in Tabelle 5.5 angegebenen Breiten der einzelnen Ken-
nungen ein, so ergibt sich nach Gleichung 5.12 für ω(BS) ein Wert von 1609 Bit.

ω(BS) = (128 + 24 + 113 + 22 + 48 + 34 + 64 + 152 + 1024) Bit = 1609 Bit (5.12)

Damit lässt sich auch bei Nutzung der Signaturkennung S eine mit der Breite der
Datenspeicherelemente identische Breite der Befehlsspeicherelemente von 1664 Bit
definieren, wobei 55 Bit ungenutzt bleiben. Zur korrekten Berechnung der effektiven
Speicherausnutzung werden diese ungenutzen Bits nach Gleichung 5.13 in ω(BS)∗
einbezogen.

ω(BS)∗ = (128+24+113+22+48+34+64+152+1024+55) Bit = 1664 Bit (5.13)

5.5.2.3 Berechnung der Speicherausnutzung der Befehlsspeicherelemente

Wie bei den Datenspeicherelementen soll nun auch für die Befehlsspeicherelemente
die Speicherausnutzung η berechnet werden. Dazu wird die Bitbreite des für die
Instruktionen und Operanden reservierten Bereichs der Befehlsspeicherelemente ins
Verhältnis zu dessen gesamter Breite gesetzt. Bei Einsatz der Integritätsprüfungs-
kennung IP berechnet sich die Speicherausnutzung ηB,IP nach Gleichung 5.14.

ηB,IP = ω(InstOp)
ω(BIP)∗ (5.14)

Bei Einsatz der Signaturkennung S berechnet sich ηB,S nach Gleichung 5.15.

ηB,S = ω(InstOp)
ω(BS)∗ (5.15)

303

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5 Evaluation der Datenspezifikationsarchitektur

Die sich so ergebenden Speicherausnutzungen ηB,IP und ηB,S werden in Tabelle 5.6
gezeigt.

Tabelle 5.6: Speicherausnutzung der Befehlsspeicherelemente

Speicherausnutzung ηB,IP Speicherausnutzung ηB,S
20,00 % 7,69 %

5.5.3 Evaluation der Speicherausnutzung

Die geringe Speicherausnutzung von 0,16 bis 20,00 % bei Einsatz der Integritäts-
prüfungskennung IP bzw. 0,06 bis 7,69 % bei Einsatz der Signaturkennung S mag
verschwenderisch wirken und gegen den Einsatz der Merkmale einer Datenspezifi-
kationsarchitektur DSA sprechen. Aber die heute verfügbaren Speichergrößen und
deren niedrige Preise rechtfertigen keine Ablehnung der Vorzüge in Form der umfas-
senden Fehlererkennung einer DSA aufgrund der geringen Speicherausnutzung.

Die angesprochenen Datenbusbreiten sind in der Praxis durchaus gebräuchlich. So
nutzt z. B. die AMD-Grafikkarte W8100 einen 512 Bit breiten Datenbus zwischen
der Zentraleinheit der Grafikkarte und dem auf ihr untergebrachten Speicher [5].
Neuere Modelle bieten sogar bis zu 4096 Bit breite Datenbusse als Schnittstelle zum
Grafikspeicher [6].

Die große Anzahl an Bits, die zur Darstellung eines einzelnen Datenwerts innerhalb
einer DSA benötigt werden, hat neben der geringen Speicherausnutzung weitere
Nachteile:

• Werden die Daten aus einem angebundenen Speicher gelesen, dessen Daten-
busbreite unterhalb der Datenspeicherelementbreite der Datenspezifikations-
architektur liegt, so wird die Übertragung des gesamten Datenspeicherelements
signifikant länger dauern, als es für den alleinigen Datenwert W in einer kon-
ventionellen Architektur notwendig ist. Damit hat ein Datenspeicherelement
in einer DSA bei der Übertragung gegenüber einer konventionellen Architektur
eine größere zeitliche Ausdehnung.

• Wird ein Speicher mit einer Datenbusbreite verwendet, die der Bitbreite eines
Datenspeicherelements entspricht, so hat dieser Datenbus ggf. eine größere
räumliche Ausdehnung gegenüber jenen von konventionellen Architekturen.

304

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

5.5 Evaluation der Speicherausnutzung

In beiden Fällen kann dies dazu führen, dass mehr Bitfehler bei der Übertragung
der Datenspeicherelemente bei Störungen durch Umgebungseinflüsse auftreten kön-
nen,

• bei serieller Übertragung von Teilen der Datenspeicherelemente durch die län-
gere Übertragungsdauer und

• bei einer entsprechend hohen Datenbusbreite durch die größere räumliche An-
griffsfläche.

Unter Verwendung der heute möglichen Fertigungsprozesse von integrierten Schal-
tungen können die beschriebenen Nachteile bzgl. erhöhter Bitfehlerraten relativiert
werden, da man heutzutage verhältnismäßig große Mengen an Speicher direkt auf
dem Die des Prozessors oder zumindest im gleichen Gehäuse unterbringen kann, so
z. B. 128 MiB in manchen Intel x86-Prozessoren der Haswell-Generation [71]. Damit
lassen dich die Leitungslängen zwischen Speicher und Prozessor minimieren und die
Störsicherheit deutlich erhöhen.

305

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

6 Zusammenfassung und
Weiterführungsmöglichkeiten

Zum Abschluss dieser Arbeit werden deren Beiträge zum Stand von Wissenschaft
und Technik nochmals aufgelistet und anschließend Möglichkeiten der Weiterfüh-
rung aufgezeigt.

6.1 Zusammenfassung der Ergebnisse der Arbeit

Die vorliegende Arbeit leistet die folgenden Beiträge zum Stand von Wissenschaft
und Technik:

• die Identifikation von 20 datenflussbezogenen Fehler- und Angriffsarten,

• die Zusammenstellung einer umfassenden Sammlung der Eigenschaften von
Daten in sicherheitsgerichteten Echtzeitsystemen und

• die Vorstellung der Datenspezifikationsarchitektur DSA, die unter Verwen-
dung von umfangreichen Kennungen die identifizierten Eigenschaften von Da-
ten hardwareverständlich beschreibt und es der Hardware dadurch ermöglicht,
anhand dieser Eigenschaften den Datenfluss zu überwachen und die identifi-
zierten Fehler- und Angriffsarten zu erkennen.

Die gegenüber dem Stand von Wissenschaft und Technik neuen Merkmale der Da-
tenspezifikationsarchitektur DSA sind:

• die Definition von Messwertdatentypen in Form eines Werteintervalls zur Dar-
stellung fehlerbehaftete Werte, um die Fortpflanzung dieser Fehler bei der
Werteverarbeitung durch Intervallarithmetik verfolgen und eventuelle Genau-
igkeitsprobleme zu erkennen, zusammen mit speziellen Befehlen zur Prüfung
der Genauigkeit,

306

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

6.1 Zusammenfassung der Ergebnisse der Arbeit

• eine Wertebereichskennung [131], die es auf Hardwareebene erlaubt, einerseits
die Plausibilität der in Datenworten enthaltenen Datenwerte zu prüfen, ande-
rerseits beim Ablegen eines Datenwerts in ein Datenwort eventuell auftretende
Wertebereichsunter- bzw. -überschreitungen sofort aufzudecken,

• die Erweiterung der von Datentyparchitekturen bekannten Datentypkennung-
en [127] um abgeleitete Datentypen, bei denen die zulässigen Operationen
eingeschränkt werden können, was eine verbesserte Isolation und damit eine
erweiterte Prüfung der Kompatibilität der Datentypen von Operanden erlaubt,

• eine Einheitenkennung [126], die die Einheit des in einem Datenspeicher-
element gespeicherten Datenwertes in Form von Potenzen der sieben SI-
Basiseinheiten in hardwareverständlicher Weise beschreibt und es der Hard-
ware somit gestattet, die Kompatibilität der Einheiten von Operanden bei
Operationen sicherzustellen,

• eine Verarbeitungswegkennung [130], die den Weg der Daten von den sie er-
zeugenden Quellen über die Datenverarbeitungseinheiten bis hin zu den Da-
tensenken beschreibt und der Hardware die Prüfung ermöglicht, ob alle Daten
dem für sie vorgesehenen Weg durch das System folgen,

• eine Zeitschrittkennung [132], die den diskreten Entstehungszeitpunkt der Da-
ten beschreibt, sowie eine Erweiterung der Befehle um Angaben der relati-
ven temporalen Beziehungen der Operanden zueinander, mit deren Hilfe sich
Synchronisations-, Aktualisierungs- und Zugriffsfehler aufdecken lassen,

• eine Fristkennung [128], die die hardwaregestützte Überwachung des Gültig-
keitszeitraums von Daten erlaubt, die Echtzeitbedingungen unterworfen sind,

• eine Zykluszeitkennung [133], die es der Hardware ermöglicht, Unter- und
Überschreitungen des Zyklus von zyklisch erwarteten Daten schnellstmöglich
als Fehler zu erkennen,

• eine Signaturkennung [129], mit deren Hilfe sich alle Daten innerhalb eines
Systems authentifizieren lassen, um bestimmte Angriffsszenarien auf die Da-
tensicherheit zu erkennen, z. B. Wiedereinspielungsattacken,

• Datenportale in Form von Dateneingangs- und -ausgangsportalen, die es er-
möglichen, Daten mit Einbeziehung der Adresse in die Integritätsprüfung bzw.
Signatur zwischen Systemkomponenten zu übertragen; bei Nutzung einer kryp-
tographischen Signatur der Daten übernehmen die Dateneingangsportale zu-
sätzlich die Aufgabe der Prüfung der Signatur des Absenders und der Umsi-
gnierung mit dem eigenen geheimen Schlüssel und

307

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

6 Zusammenfassung und Weiterführungsmöglichkeiten

• die Vorstellung einer Realisierungsmöglichkeit der Merkmale einer Datenspe-
zifikationsarchitektur DSA in Datenflussarchitekturen durch Erweiterung der
Verarbeitungseinheiten.

Dank dieser neuen und einigen weiteren dem Stand von Wissenschaft und Technik
zuzurechnenden Merkmalen ist die vorgestellte Datenspezifikationsarchitektur in
der Lage, alle 20 vorgestellten Fehler- und Angriffsarten zu erkennen.

6.2 Weiterführungsmöglichkeiten

Die in dieser Arbeit vorgestellte Datenspezifikationsarchitektur DSA konzentriert
sich auf die detaillierte Spezifikation von Dateneigenschaften zur Fehlervermeidung
und Erkennung von trotzdem verbleibenden oder auftretenden Datenflussfehlern.

Zusätzlich sollte die Erkennung von Kontrollflussfehlern durch Verfahren, wie sie
durch Gollub in [41] vorgestellt wurden, bei der Realisierung einer DSA berücksich-
tigt werden. Ebenso sollten die ergänzenden Merkmale, die in der inhärent sicheren
Mikroprozessorarchitektur ISMA in [125] beschrieben wurden, Eingang in die Rea-
lisierung einer DSA finden. Als Beispiele für entsprechende Merkmale sind dabei
Ansprungbefehle, der nicht für die Software zugängliche Stapelspeicher und der
Verzicht auf Unterbrechungen zu nennen. Auf arithmetische Register sollte bei der
Realisierung ebenfalls verzichtet werden, wie es in [115] vorgeschlagen und bei ISMA
entsprechend umgesetzt wurde.

Diese Arbeit könnte daher wie folgt fortgeführt werden:

• Entwurf und Realisierung einer DSA auf einem FPGA, idealerweise unter Ein-
beziehung der folgenden Erweiterungen:

– der oben erwähnten kontrollflussbezogenen Fehlervermeidungs- und -er-
kennungsmerkmale von Gollub [41], wobei die Merkmale in Form weiterer
Kennungen innerhalb der Befehlsspeicherelemente realisiert werden könn-
ten,

– der ebenfalls oben erwähnten zusätzlichen Sicherheitsmerkmale von ISMA
[125],

– der Erweiterung der Einheitenkennung auf Basis der Vorschläge in [110],
z. B. durch Einführung einer weiteren Einheit für mr und Skalierungsfak-
toren,

308

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

6.2 Weiterführungsmöglichkeiten

– der Einführung einer Färbungskennung – engl. „taint“ –, die es erlaubt,
ungeprüfte Benutzereingaben oder Kommunikationsnachrichten also sol-
che zu kennzeichnen und die Nutzung dieser Daten durch die Hardware
zu überwachen, wie z. B. in HDFI [114] oder PUMP [31, 33] vorgestellt,

• Erweiterung bestehender bzw. Entwicklung neuer Entwicklungswerkzeuge wie
Übersetzer und Binder, um Software für eine DSA erstellen zu können, un-
ter Berücksichtigung und Erweiterung der Vorschläge zur Spezifikation der
Dateneigenschaften in dieser Arbeit,

• Test der Fehlererkennungsraten einer DSA unter Nutzung von Fehlerinjekti-
onsverfahren,

• Evaluation des zusätzlichen Laufzeitbedarfs durch Prüfungen, die parallel zu
den eigentlichen Operationen ausgeführt werden, jedoch einen höheren Lauf-
zeitbedarf als diese aufweisen, sowie Prüfungen, die nicht parallel zu den ei-
gentlichen Operationen ausgeführt werden können, und schlussendlich ggf.

• Entwicklung eines auf der FPGA-Realisierung der DSA aufsetzenden ASICs.

Datentyp- und -strukturarchitekturen und die in ihnen genutzten einfachen und
leistungsfähigen Fehlererkennungsmerkmale sind weitgehend in Vergessenheit ge-
raten. Literatur über diese Architekturarten ist meist nur noch in Antiquariaten
aufzufinden. Entsprechend wäre die Fortführung und Weiterentwicklung der Ergeb-
nisse dieser Arbeit sehr zu begrüßen, um diesen dasselbe Schicksal zu ersparen.

309

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[1] AEG Datenverarbeitung: TR 4 Bedienungshandbuch

[2] AIRBUS: Fly-by-wire; http://www.airbus.com/innovation/proven-
concepts/in-design/fly-by-wire/

[3] J. Åkerberg, M. Björkman: Exploring Network Security in PROFIsafe; Com-
puter Safety, Reliability, and Security; Vol. 5775 of the series Lecture Notes
in Computer Science; S. 67–80; 2009

[4] AMD: AMD64 Architecture Programmer’s Manual Vol. 2: System Program-
ming; http://developer.amd.com/wordpress/media/2012/10/24593_
APM_v2.pdf

[5] AMD: AMD FirePro W8100 Professional Graphics; http://www.amd.com/
en-us/products/graphics/workstation/firepro-3d/8100

[6] AMD: Radeon Pro Duo; http://www.amd.com/en-us/products/graphics/
desktop/radeon-pro-duo

[7] ARM Limited: Migrating from IA-32 to ARM; Application Note 274; ARM
DAI 0274; 2011

[8] R. C. Baumann, E. B. Smith: Neutron-Induced Boron Fission as a Major
Source of Soft Errors in Deep Submicron SRAM Devices; Reliability Physics
Symposium, 2000. Proceedings, 38th Annual 2000 IEEE International; S.
152–157; 2000

[9] T. Beierlein, O. Hagenbruch: Taschenbuch Mikroprozessortechnik; 4. Auflage,
2011; Carl Hanser Verlag; ISBN 978-3-446-42331-2

[10] D. Bovet, M. Cesati: Understanding the Linux Kernel; 1. Auflage, 2000;
O’Reilly Verlag; ISBN 0-596-00002-2

[11] A. Bradbury, G. Ferris, R. Mullins: Tagged memory and minion cores in the
lowRISC SoC; 2014; http://www.lowrisc.org/docs/

310

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[12] U. Brinkschulte, T. Ungerer: Mikrocontroller und Mikroprozessoren; 3. Auf-
lage, 2010; Springer Verlag; ISBN 978-3-642-05397

[13] D. T. Brown: Error Detecting and Correcting Binary Codes for Arithmetic
Operations; IRE Transactions on Electronic Computers; Vol. EC-9, Issue 3;
1960

[14] M. Broy: Challenges in Automotive Software Engineering; ICSE ’06 Procee-
dings of the 28th international conference on Software engineering, S. 33–42;
2006

[15] B. Buckwalter: The dimensional package; Haskell; https://hackage.
haskell.org/package/dimensional

[16] S. Chandra, T. Reps: Physical Type Checking for C; PASTE ’99 Proceedings
of the 1999 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering; S. 66–75; 1999

[17] R. N. Charette: This Car Runs on Code; http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code; 2009

[18] B. Chelf: Measuring software quality - A Study of Open Source Software; Co-
verity; https://www.coverity.com/library/pdf/open_source_quality_
report.pdf

[19] H.-C. Chi: ARM Processor Architecture; CSIE34600 Introduction to Em-
bedded System Design; http://soc.csie.ndhu.edu.tw/source/introemb-
13/unit2.ppt

[20] H.-C. Chi: ARM Instructions; CSIE34600 Introduction to Embedded System
Design; http://soc.csie.ndhu.edu.tw/source/introemb-13/unit1.ppt

[21] S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger, G. Morrisett, B.
C. Pierce, H. Reubenstein, J. M. Smith, G. T. Sullivan, A. Thomas, J. Tov,
C. M. White, D. Wittenberg: SAFE: A Clean-Slate Architecture for Secure
Systems; http://www.crash-safe.org/docs/HST2013-SAFE.html; 2013

[22] CODENOMICON: The Heartbleed Bug; http://heartbleed.com/; 2014

[23] R. P. Colwell, E. F. Gehringer, E. D. Jensen: Performance effects of architec-
tural complexity in the Intel 432; ACM Transactions on Computer Systems
(TOCS), Vol. 6, Issue 3; S. 296–339; 1988

[24] Coverity Scan: 2013 Open Source Report

311

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[25] I. F. Currie: NewSpeak: a reliable programming language; High-Integrity Soft-
ware, Part of the series Software Science and Engineering; S. 122–158; 1989

[26] I. F. Currie: NewSpeak: an unexceptional language; Software Engineering
Journal; Vol. 1, Issue 4; S. 170–176; 1986

[27] B. Dasarathy: Timing Constraints of Real-Time Systems: Constructs for Ex-
pressing Them, Methods of Validating Them; IEEE Transactions on Software
Engineering, Vol.11, Issue 1; 80–86; 1985

[28] A. DeHon, T. F. Knight, Jr., B. Krikeles, B. Loyall, G. Morrisett, B. C.
Pierce, J. M. Smith, H. Reubenstein, J. Rosenberg, O. Shivers, G. Sullivan, C.
White: SAFE: A Semantically Aware Foundation Environment for CRASH;
http://www.crash-safe.org/assets/BAE-SAFE-CRASH-pub.pdf; 2010

[29] A. v. Delft: A Java Extension With Support for Dimensions; Software-
Practice & Experience; Vol. 29, Issue 7; S. 605–616; 1999

[30] D. Delimarsky: Units of Measure (F#); Microsoft MSDN;
https://msdn.microsoft.com/visualfsharpdocs/conceptual/units-
of-measure-[fsharp]

[31] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight, B. C. Pierce, A. DeHon: Architectural Support for Software-
Defined Metadata Processing; http://www.crash-safe.org/docs/PUMP-
ASPLOS2015.html; 2015

[32] U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C. Pierce, J. M. Smith, G.
Malecha, G. Morrisett, T. F. Knight, Jr., A. Sutherland, T. Hawkins, A.
Zyxnfryx, D. Wittenberg, P. Trei, S. Ray, G. Sullivan, A. DeHon: Hardware
Support for Safety Interlocks and Introspection; http://www.crash-safe.
org/docs/HWInterlocks-SASO-AHANS2012.html; 2012

[33] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight,
Jr., B. C. Pierce, A. DeHon: PUMP: A Programmable Unit for Metadata Pro-
cessing; http://www.crash-safe.org/docs/PUMP-HASP-2014.html; 2014

[34] R. Eisenberg: The Units package; Haskell; https://hackage.haskell.org/
package/units

[35] T. Erdner, W. A. Halang, J. K.-Y. Ng, S. K. Chun Chan: Synchronisati-
on der lokalen Uhren an ringförmigen Übertragungsmedien angeschlossener
Einheiten; Patent DE10253534B4; 2002

312

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[36] E. Feustel: On the Advantages of Tagged Architectures; IEEE Transactions
on Computers, Volume C-22, Number 7, S. 644–656; 1973

[37] E. Feustel: The Rice research computer: a tagged architecture; AFIPS ’72
(Spring) Proceedings of the May 16-18, 1972, spring joint computer confe-
rence, S. 369–377; 1972

[38] P. Forin: Vital Coded Microprocessor Principles and Application for Various
Transit Systems; 1989; IFAC Control, Computers, Communications; S. 79–84;
Paris

[39] W. Giloi: Rechnerarchitektur; 2. Auflage, 1993; Springer-Verlag;
ISBN 3-540-56355-5

[40] GNU Pascal: 6.2.11.1 Subrange Types;
http://www.gnu-pascal.de/gpc/Subrange-Types.html

[41] L. Gollub: Verfahren zur Kontrollflussüberwachung in sicherheitsgerichteten
Rechensystemen; 2014, VDI Verlag; ISBN 978-3-18-383210-1

[42] Google: Say Hello to Waymo; https://storage.googleapis.com/sdc-
prod/v1/press/Waymo_One-Pager_Introduction.pdf

[43] D. Gove, R. Prakash: Detecting memory access errors; 2015; https://blogs.
oracle.com/raj/resource/Silicon-Secured-Memory-Application.pdf

[44] W. A. Halang, R. M. Konakovsky: Sicherheitsgerichtete Echtzeitsysteme; 1.
Auflage, 1999; Springer-Verlag; ISBN 3-486-24036-6

[45] W. A. Halang, R. J. Lauber: Echtzeitsysteme I, Kurs 21311; Version 1.0.1;
Stand Februar 2007

[46] W. A. Halang, Z. Li: Echtzeitsysteme II, Kurs 21312; Version 1.0.1; Stand
Dezember 2009

[47] D. Hansen: Intel Memory Protection Extensions (Intel MPX) for Linux; 2016;
https://01.org/blogs/2016/intel-mpx-linux

[48] C. Houben: Integration of Physical Units into the Real-time Programming
Language PEARL; IFAC-PapersOnLine, Volume 48, Ausgabe 4; S. 123–128;
2015

[49] IBM: IBM System/360 System Summary; IBM Systems Reference Library;
File Number S360-00; Order No. GA22-6810-12

313

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[50] IC Insights: Qualcomm and Samsung Pass AMD in MPU Ranking;
http://www.icinsights.com/news/bulletins/Qualcomm-And-Samsung-
Pass-AMD-In-MPU-Ranking/; abgerufen am 03.03.2014

[51] IEC 61508-2:2010: Functional safety of electrical / electronic / programmable
electronic safety-related systems - Requirements for electrical / electronic /
programmable electronic safety-related systems (Edition 2.0, 2010-04)

[52] IEC 61508-3:2010: Functional safety of electrical / electronic / programmable
electronic safety-related systems - Part 3: Software requirements (Edition 2.0,
2010-04)

[53] IEC 61508-7:2010: Functional safety of electrical / electronic / programma-
ble electronic safety-related systems - Overview of techniques and measures
(Edition 2.0, 2010-04)

[54] IEC 61784-3:2016: Industrial communication networks - Profiles - Part 3:
Functional safety fieldbuses – General rules and profile definitions (Edition
3.0, 2016-05)

[55] IEC 61784-3-2:2010: Industrial communication networks - Profiles - Part 3-2:
Functional safety fieldbuses - Additional specifications for CPF 2 (Edition
2.0, 2010-06)

[56] IEC 61784-3-3:2010: Industrial communication networks - Profiles - Part 3-3:
Functional safety fieldbuses - Additional specifications for CPF 3 (Edition
2.0, 2010-06)

[57] IEEE Computer Society: IEEE Standard for Interval Arithmetic; IEEE Std
1788-2015; 2015

[58] Infineon: Infineon AURIX powered by TriCore, Highly integra-
ted and performance optimized, 32-bit microcontrollers for auto-
motive and industrial applications; 2016; http://www.infineon.
com/dgdl/Infineon-New+Tricore+Family+Brochure-BC-v01_00-
EN.pdf?fileId=db3a30431f848401011fc664882a7648

[59] Intel: 80386 System Software Writer’s Guide; 1991; ISBN 1-55512-023-7

[60] Intel: Control-flow Enforcement Technology Preview; Revision 1.0;
2016; https://software.intel.com/sites/default/files/managed/4d/
2a/control-flow-enforcement-technology-preview.pdf

314

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[61] ISO: IEC 80000-13:2008, Quantities and units Part 13: Information science
and technology

[62] ISO/IEC 9796-2:2002, Information technology - Security techniques - Digi-
tal signature schemes giving message recovery - Part 2: Integer factorization
based mechanisms

[63] ITU-T: X.200, Information Technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model; (07/1994); 1994

[64] F. Kaderali: Kommunikationsnetze und -protokolle; http://www.kaderali.
de/fileadmin/vorlesungsskripte/Buch%20KP%20(A4).pdf; 2005

[65] R. Kirchner, U. W. Kulisch: Hardware Support for Interval Arithmetic; Re-
liable Computing, June 2006, Volume 12, Issue 3, S. 225–237; 2006

[66] M. Kompf: Die 12 häufigsten Programmierfehler;
http://cplus.kompf.de/artikel/errc.html; abgerufen am 18.01.2014

[67] R. Konakovsky: Definition und Berechnung der Sicherheit von Autmatisie-
rungssystemen; 1. Auflage, 1977; Vieweg Verlag; ISBN 3-528-03327-4

[68] I. Koren, C. Krishna: Fault-Tolerant Systems; 1. Auflage, 2007; Morgan Kauf-
mann Verlag; ISBN 978-0-12-088525-1

[69] KOSMOS: Computer-Praxis CP1; 1983; Franckh’sche Verlagshandlung

[70] H. Krebs, U. Haspel: Ein Verfahren zur Software-Verifikation; Regelungstech-
nische Praxis rtp, 26; S. 73–78; 1984

[71] N. Kurd, M. Chowdhury, E. Burton, T. P. Thomas, C. Mozak, B. Boswell, P.
Mosalikanti, M. Neidengard, A. Deval, A. Khanna, N. Chowdhury, R. Rajwar,
T. M. Wilson, R. Kumar: Haswell: A Family of IA 22 nm Processors; IEEE
Journal of Solid-State Circuits, Vol. 50, Issue 1; S. 49–58; 2014

[72] D. Kushner: The Real Story of Stuxnet; http://spectrum.ieee.org/
telecom/security/the-real-story-of-stuxnet

[73] P. Laackmann, M. Janke: 25 Jahre Chipkarten-Angriffe; https://events.
ccc.de/congress/2013/Fahrplan/system/attachments/2227/original/
25_Jahre_Chipkartenangriffe-Marcus_Janke_Peter_Laackmann.pdf;
2013

[74] M. Larabel: GCC Soars Past 14.5 Million Lines Of Code & I’m Real Excited
For GCC 5; 2015

315

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ

[75] R. Lauber, P. Göhner: Prozessautomatisierung 1; 3. Auflage, 1999; Springer-
Verlag; ISBN 3-540-65318-X

[76] B. Łent: A Contribution To The Design Of A Disjunctive Computer Architec-
ture For Real Time Control Systems; Dissertation; FernUniversität in Hagen;
1995

[77] N. G. Leveson, C. S. Turner: An Investigation of the Therac-25 Accidents;
Computer, Vol. 26, Issue 7; S. 18–41; 1993

[78] H. Levy: Capability-Based Computer Systems; 1984; Digital Equipment Cor-
poration; ISBN 9-9323376-22-3

[79] J.-L. Lions et al.: Ariane 501 Inquiry Board report; 1996;
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[80] R. Männer: Strong Typing and Physical Units; ACM SIGPLAN Notices, Vol.
21, Issue 3; S. 11–20; 1986

[81] Mars Climate Orbiter Mishap Investigation Board Phase I Report; No-
vember 10, 1999; ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_
report.pdf

[82] A. Mayr: The Architecture of the Burroughs B5000 - 20 Years Later and Still
Ahead of the Times?; 1982; http://www.smecc.org/The%20Architecture%
20%20of%20the%20Burroughs%20B-5000.htm

[83] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone: Handbook of Applied
Cryptography; 1996; CRC Press; ISBN 0-8493-8523-7

[84] H.-P. Messmer: PC-Hardwarebuch; 6. Auflage, 2000; Addison-Weslay Verlag;
ISBN 3-8273-1461-5

[85] A. Meixner, D. J. Sorin: Error Detection Using Dynamic Dataflow Verificati-
on; 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007); S. 104–118; 2007

[86] MITRE Corporation: 2011 CWE/SANS Top 25 Most Dangerous Soft-
ware Errors; https://cwe.mitre.org/top25/archive/2011/2011_cwe_
sans_top25.pdf; abgerufen am 18.01.2014

[87] G. Myers: Advances in Computer Architecture; 2. Auflage, 1978; John Wiley
& Sons; ISBN 0-471-07878-6

316

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[88] National Highway Traffic Safety Administration (NHTSA): RECALL Sub-
ject: Software may Disable Steering in Cold Temperatures; NHTSA Cam-
paign Number: 13V588000; 2013

[89] NISSAN: Nissan Pivo Concept Press Kit: Overview; http:
//nissannews.com/en-US/nissan/usa/releases/435dd488-658e-433a-
a57a-cd0184e4b51c

[90] E. Normand: Single Event Upset at Ground Level; IEEE Transactions on
Nuclear Science, Vol. 43, Issue 6; S. 2742–2750; 1996

[91] NXP: Safety Manual for MPC5744P; Dokumentennummer MPC5744PSM;
Rev. 3; 2014

[92] A. Opler: Das IBM-System/360 und seine Programmiertechniken; 1968; R.
Oldenbourg Verlag

[93] Oracle: Introduction to SPARC M7 and Application Data Integrity (ADI);
https://swisdev.oracle.com/_files/What-Is-ADI.html

[94] Organisation Intergouvernementale de la Convention du Mètre: The Interna-
tional System of Units (SI); 8e edition; 2006

[95] S. Phillips: M7: Next Generation SPARC; Hotchips 26; 2014;
http://www.hotchips.org/wp-content/uploads/hc_archives/hc26/
HC26-12-day2-epub/HC26.12-8-Big-Iron-Servers-epub/HC26.12.820-
Next_Gen_SPARC_Phillips-Oracle-FinalPub.pdf

[96] S. Ramesh: Software’s Significant Impact on the Automotive Industry; Frost
& Sullivan Market Insight; 2008

[97] J. A. Rawlinson: Report on the Therac-25, OCTRF/OCI Physicists Meeting,
Kingston, Ontario, Canada; 1987

[98] RFC 791: Internet Protocol, DARPA Internet Program, Protocol Specifica-
tion; September 1981; http://www.rfc-base.org/rfc-791.html

[99] RFC 792: Internet Control Message Protocol, DARPA Internet Program,
Protocol Specification; September 1981; http://www.rfc-base.org/rfc-
792.html

[100] RFC 793: Transmission Control Protocol, DARPA Internet Program, Pro-
tocol Specification; September 1981; http://www.rfc-base.org/rfc-793.
html

317

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[101] RFC 1700: Assigned Numbers; Oktober 1994; http://www.rfc-base.org/
rfc-1700.html

[102] RFC 2460: Internet Protocol, Version 6 (IPv6), Specification; Dezember 1998;
http://www.rfc-base.org/rfc-2460.html

[103] SAFECode, S. Simpson et al.: Fundamental Practices for Secure Software
Development; 2. Auflage, 2011; http://www.safecode.org/publications/
SAFECode_Dev_Practices0211.pdf

[104] G. Sapper: Rechenanlage TELEFUNKEN TR4;
http://www.qslnet.de/member/dj4kw/tr4.htm

[105] J. Sauerer: Smart Sensors; AMA Fachverband für Sensorik e.V., Wunstorf;
Forschungsverbund Erneuerbare Energien -FVEE-, Berlin: Sensorik für er-
neuerbare Energien und Energieeffizienz: Beiträge zum Workshop vom AMA
Fachverband für Sensorik e.V. und vom ForschungsVerbund Erneuerbare
Energien am 12. und 13. März 2013 in Berlin-Adlershof; S. 18–24; 2013

[106] SAFE: A secure computing platform; http://www.crash-safe.org/

[107] SEMI: Why Moore Matters; http://semi.org/en/node/55026; 2015

[108] U. Schiffel: Hardware Error Detection Using AN-Codes; Dissertation; Tech-
nische Universität Dresden; 2011

[109] L. Schleupner: Perfekt sichere Kommunikation in der Automatisierungstech-
nik; Dissertation; FernUniversität in Hagen; 2012

[110] R. Schlick, W. Herzner, T. Le Sergent: Checking SCADE Models for Correct
Usage of Physical Units; Computer Safety, Reliability, and Security; Volume
4166 of the series Lecture Notes in Computer Science; S. 358–371; 2006

[111] B. Schneier: Heartbleed; http://www.schneier.com/blog/archives/2014/
04/heartbleed.html

[112] D. P. Siewiorek, R. S. Swarz: Reliable computer systems: design and evalua-
tion; 3. Auflage, 1998; A K Peters, Ltd.; ISBN 1-56881-092-X

[113] N. Shimizu: Nissan Puts Steer-by-Wire on the Road: An In-Depth Look at
the Technology; Nikkei BP Japan Technology Report / A1403-058-005

[114] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, Y. Paek: HDFI:
Hardware-Assisted Data-Flow Isolation; IEEE Symposium on Security and
Privacy; 2016

318

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

[115] H. Stieger, W. A. Halang: Eine hochsprachenorientierte Rechnerarchitek-
tur ohne arithmetische Register; 1. Auflage, 2003; IFB Verlag Paderborn;
ISBN 3-931263-39-8

[116] P. Taidi: SAS and Oracle SPARC M7 Silicon Secured Memory; 2016;
https://blogs.oracle.com/partnertech/entry/sas_and_oracle_
sparc_m7

[117] J. R. Taylor: Fehleranalyse; 1. Auflage, 1988; VCH Verlagsgesellschaft mbH;
ISBN 3-527-26878-2

[118] J. Teller: Problematik der Datenflussfehler; Angewandte Informatik, Ausgabe
29, Nr. 6; S. 240–247; 1987

[119] Tesla: All Tesla Cars Being Produced Now Have Full Self-Driving Hard-
ware; https://www.tesla.com/blog/all-tesla-cars-being-produced-
now-have-full-self-driving-hardware

[120] Texas Instruments: Safety Manual for RM48x Hercules ARM-Based Safe-
ty Critical Microcontrollers, User’s Guide; Dokumentennummer SPNU577D;
2015

[121] S. Tucker Taft, R. A. Duff: Ada 95 reference manual: language and standard li-
braries; international standard ISO/IEC 8652:1995(E); 1997; Springer-Verlag;
ISBN 3-540-63144-5

[122] P. M. Ulbrich: Ganzheitliche Fehlertoleranz in eingebetteten Softwaresyste-
men; Dissertation; Friedrich-Alexander-Universität Erlangen-Nürnberg; 2014

[123] University of Cambridge: Capability Hardware Enhanced RISC Instruc-
tions (CHERI); https://www.cl.cam.ac.uk/research/security/ctsrd/
cheri.html

[124] L. Wendt: Taschenbuch der Regelungstechnik mit MATLAB und Simulink;
10. Auflage, 2014; Europa-Lehrmittel; ISBN 978-3-80-855679-5

[125] S. Widmann: Eine inhärent sichere Mikroprozessorarchitektur; 2015; VDI
Verlag; ISBN 978-3-18-384310-7

[126] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechnischen
Erkennung inkompatibler Operandeneinheiten in Datenverarbeitungseinhei-
ten; Patentanmeldung beim Deutschen Patent- und Markenamt

[127] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechnischen
Einschränkung der zulässigen Operationen auf Daten in Datenverarbeitungs-

319

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Literaturverzeichnis

einheiten; Patentanmeldung beim Deutschen Patent- und Markenamt

[128] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechni-
schen Erkennung der Datennutzung außerhalb ihres Gültigkeitszeitraums in
Datenverarbeitungseinheiten; Patentanmeldung beim Deutschen Patent- und
Markenamt

[129] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechni-
schen Erkennung von absichtlichen oder durch Störungen und / oder Fehler
verursachten Datenverfälschungen in Datenverarbeitungseinheiten; Patentan-
meldung beim Deutschen Patent- und Markenamt

[130] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechni-
schen Erkennung von Datenflussfehlern in Datenverarbeitungseinheiten und
-systemen; Patentanmeldung beim Deutschen Patent- und Markenamt

[131] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechnischen
Erkennung von Wertebereichsverletzungen von Datenwerten in Datenverar-
beitungseinheiten; Patentanmeldung beim Deutschen Patent- und Marken-
amt

[132] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechni-
schen Erkennung von Synchronisations- und Datenaktualisierungsfehlern in
Datenverarbeitungseinheiten; Patentanmeldung beim Deutschen Patent- und
Markenamt

[133] S. Widmann, W. A. Halang: Vorrichtung und Verfahren zur gerätetechni-
schen Erkennung von Verletzungen von zyklischen Echtzeitbedingungen in
Datenverarbeitungseinheiten und -systemen; Patentanmeldung beim Deut-
schen Patent- und Markenamt

[134] xkcd: Heartbleed Explanation; http://xkcd.com/1354/

[135] N. Zeldovich, H. Kannan, M. Dalton, C. Kozyrakis: Hardware Enforcement
of Application Security Policies Using Tagged Memory; Stanford Universi-
ty; 2008; http://www.scs.stanford.edu/~nickolai/papers/zeldovich-
loki.pdf

320

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-385610-7

https://doi.org/10.51202/9783186856104 - Generiert durch IP 216.73.216.60, am 24.01.2026, 01:36:05. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186856104

	Cover
	1 Einleitung
	1.1 Beispiele für Auswirkungen von Fehlern
	1.1.1 Selbstzerstörung der Ariane 5
	1.1.2 Verlust der NASA-Sonde Mars Climate Orbiter
	1.1.3 Bestrahlungsgerät Therac-25
	1.1.4 Sicherheitslücke Heartbleed

	1.2 Der Stand von Wissenschaft und Technik und dessen Nachteile
	1.2.1 Stand von Wissenschaft und Technik
	1.2.2 Nachteile des Stands von Wissenschaft und Technik

	1.3 Ziel der Arbeit
	1.4 Ergebnisse der Arbeit
	1.5 Aufbau der Arbeit
	1.6 Darstellung von Zahlen und Speichergrößen in der Arbeit

	2 Fehlerarten, -ursachen, -auswirkungen und -behandlung
	2.1 Fehlerkategorien
	2.2 Fehlerquellen in Soft- und Hardware
	2.3 Fehlerdichte in Software
	2.4 Datenflussbezogene Fehler- und Angriffsarten
	2.4.1 Inkompatibilität von Operanden
	2.4.2 Wertebereichsverletzungen und Genauigkeitsprobleme
	2.4.3 Fehlerhafte Operationen
	2.4.4 Verletzung von Echtzeitbedingungen
	2.4.5 Allgemeine Datenflussfehler
	2.4.6 Datenverfälschung durch Fehler oder Störungen
	2.4.7 Fehlerhafter Zugriff auf Daten
	2.4.8 Hackerangriffe
	2.4.9 Zusammenfassung der identifizierten datenflussbezogenen Fehler- und Angriffsarten

	2.5 Auswirkungen von Fehlern
	2.6 Fehlererkennung und -behandlung
	2.6.1 Einnehmen und Halten eines sicheren Zustands
	2.6.2 Anwendung von Redundanzmaßnahmen
	2.6.3 Allmähliche Leistungsabsenkung

	3 Stand von Wissenschaft und Technik
	3.1 Konventionelle Architekturen
	3.1.1 Die x86-Architektur
	3.1.2 Die ARM-Architektur
	3.1.3 Integritätsprüfung durch ECC
	3.1.4 Evaluation konventioneller Architekturen

	3.2 Prozessoren für sicherheitsgerichtete Anwendungen
	3.2.1 Aufbau der Prozessoren für sicherheitsgerichtete Anwendungen
	3.2.2 Evaluation der Prozessoren für sicherheitsgerichtete Anwendungen

	3.3 Datentyparchitekturen
	3.3.1 Beispiele von Datentyparchitekturen
	3.3.2 Evaluation der Datentyparchitekturen

	3.4 Datenstruktur- bzw. Deskriptorarchitekturen
	3.4.1 Beispiele von Datenstruktur- bzw. Deskriptorarchitekturen
	3.4.2 Evaluation der Datenstrukturarchitekturen

	3.5 Befähigungsarchitekturen
	3.5.1 Beispiele historischer Befähigungsarchitekturen
	3.5.2 Beispiele moderner Befähigungsarchitekturen
	3.5.3 Evaluation der Befähigungsarchitekturen

	3.6 Datenflussarchitekturen
	3.6.1 Funktionsweise von Datenflussarchitekturen
	3.6.2 Evaluation von Datenflussarchitekturen

	3.7 Die inhärent sichere Mikroprozessorarchitektur ISMA
	3.7.1 Aufbau der Datenspeicherelemente in ISMA
	3.7.2 Evaluation von ISMA

	3.8 Application Data Integrity ADI bzw. Silicon Secured Memory SSM
	3.8.1 Funktion von ADI bzw. SSM
	3.8.2 Evaluation von ADI bzw. SSM

	3.9 Dynamic Dataflow Verification DDFV
	3.9.1 Funktion der dynamischen Datenflussprüfung
	3.9.2 Evaluation der dynamischen Datenflussprüfung

	3.10 Fehlererkennung durch AN(BD)-Kodierung
	3.10.1 AN-Kodierung zur Integritätsprüfung von Datenspeicherelementen und arithmetischen Operationen
	3.10.2 ANB-Kodierung: Hinzufügen der Adressprüfung B
	3.10.3 ANBD-Kodierung: Hinzufügen der Aktualitätsprüfung D
	3.10.4 Realisierung der AN(BD)-Kodierung
	3.10.5 Evaluation der AN(BD)-Kodierung

	3.11 Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen
	3.11.1 Netzwerkprotokolle TCP/IP
	3.11.2 Sicherheitsgerichtete Feldbusprotokolle
	3.11.3 Evaluation der Datenflussüberwachung in Netzwerken und sicherheitsgerichteten Feldbussen

	3.12 Zusammenfassung des Stands von Wissenschaft und Technik
	3.12.1 Zusammenfassung der Fehlererkennungsmöglichkeiten
	3.12.2 Zusammenfassende Kritik am Stand von Wissenschaft und Technik

	4 Eine Datenspezifikationsarchitektur
	4.1 Systemaufbau und Fehlerbehandlung
	4.1.1 Grundlegender Systemaufbau technischer Prozesse
	4.1.2 Aufbau eines auf einer Datenspezifikationsarchitektur basierenden Systems
	4.1.3 Fehlerbehandlung in einer Datenspezifikationsarchitektur

	4.2 Sammlung relevanter Dateneigenschaften
	4.3 Realisierung der Datenflussüberwachung
	4.3.1 Einleitende Erläuterungen
	4.3.2 Datenwert und dessen Genauigkeit
	4.3.3 Wertebereich
	4.3.4 Datentyp
	4.3.5 Einheit
	4.3.6 Zugriffsrechte und Initialisierungsstatus
	4.3.7 Quelle, Verarbeitungsweg und Ziel
	4.3.8 Zeitschritt
	4.3.9 Frist
	4.3.10 Zykluszeit
	4.3.11 Integritätsprüfung und Adresse
	4.3.12 Signatur und Adresse
	4.3.13 Redundante diversitäre arithmetisch-logische Einheit

	4.4 Übersicht der Kennungen in Daten- und Befehlsspeicherelementen
	4.5 Übersicht der speziellen Register
	4.6 Pseudocode einer Instruktion
	4.7 Anforderungen an die Systemkomponenten
	4.7.1 Schnittstellen zu konventionellen Systemkomponenten
	4.7.2 Hochpräzise synchronisierte Uhren

	4.8 Konfiguration der Systemkomponenten
	4.8.1 Konfiguration der Datenquellen
	4.8.2 Konfiguration der Datenverarbeitungseinheiten
	4.8.3 Konfiguration der Datensenken
	4.8.4 Konfiguration der Systemüberwachungseinheit
	4.8.5 Erkennung konfigurationsbezogener Inkonsistenzen

	4.9 Anforderungen an Begutachtungen und Audits
	4.10 Realisierung der Datenspezifikationsarchitektur als Datenflussarchitektur
	4.10.1 Erweiterung der Funktionsblöcke um Lebenszeichen und Diagnose
	4.10.2 Verbesserung der Fehlererkennung durch zusätzliche Erweiterungen
	4.10.3 Weiterhin bestehende Einschränkungen

	5 Evaluation der Datenspezifikationsarchitektur
	5.1 Evaluation der Datenabbildung der DSA
	5.2 Einordnung der entstandenen Architektur
	5.3 Evaluation anhand der Fehlererkennungsmöglichkeiten
	5.4 Evaluation anhand der Fehlerbeispiele
	5.4.1 Selbstzerstörung der Ariane 5
	5.4.2 Verlust der NASA-Sonde Mars Climate Orbiter
	5.4.3 Bestrahlungsgerät Therac 25
	5.4.4 Sicherheitslücke Heartbleed

	5.5 Evaluation der Speicherausnutzung
	5.5.1 Speicherausnutzung der Datenspeicherelemente
	5.5.2 Speicherausnutzung der Befehlsspeicherelemente
	5.5.3 Evaluation der Speicherausnutzung

	6 Zusammenfassung und Weiterführungsmöglichkeiten
	6.1 Zusammenfassung der Ergebnisse der Arbeit
	6.2 Weiterführungsmöglichkeiten

	Literaturverzeichnis

