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A lattice theoretical description of concept hierarchies is de-
veloped using for attributes the terms “given”, “negated”, “open”
and “impossible” as the truth-values of a four-valued logic. Similar
to the theory of B. Ganter and R. Wille (6) so does this framework
permit a precise representation of the usual interdependences in a
field of related concepts — such as superconcept, subconcept, con-
trary concepts etc. —, whenever the concepts under consideration
can be sufficiently described by the presence or absence of certain
attributes. Apart from the author’s opinion that concepts in natural
languages are formed — of course mainly unconsciously — much
along this line, we have here a tool to deal with concepts and their
interrelations ona computer, which may be of importance forsome
applications in artificial intelligence: automatic classification, infor-
mation retrieval, data bases, expert systems, automatic theorem
proving and machine translation. — A program has already been
implemented. (Author)

. . . les géométres veulent traiter géométrique-
ment ces chosesfines, et se rendentridicules. . .

B. Pascal, Pensées, 1, Différence entre Iesprit de
géométrie et 'esprit de finesse.

1. Introduction

Concepts and their handling have been pondered over
for more than two thousand years, at least since Socra-
tes; how intensively, perseveringly and portentously is
shown e.g. by the “Universalienstreit” (“the great de-
bate about universals which was to divide the schools for
four centuries.” (11), p.200) and its modern aftermath
(19). These considerations were recently revitalized by
the fact, among others, that “Artificial Intelligence” —
i.e. the attempt to let a computer imitate non-numerical
performances of intelligence — cannot succeed without
any treatment whatsoever of concepts, cf. say (18), (15),
(21) and (6), e.g. with questions of automatic classifica-
tion, of data bases or expert systems, with problems of
“machine learning”, of automatic theorem proving or
with a computer simulation of conceptual thinking in
general.

Without being able to look into the historical devel-
opments, cf. e.g. (3), (2), (10), (13) and (11), this article
offers a representation of concepts which enables us to
work with them in a computer, of course in a coarser and
simpler manner. Hereby we assume that a concept ¢can
be described precisely enough by attributes in such away
that we can always state whether an attribute, relevant
for ¢, applies to ¢ or does not apply to ¢ or whether it
remains open which of these two cases holds. This leads

almost inevitably to a four-valued logic and to concept
lattices which correspond to, indeed are even iso-
morphic to, those defined by R. Wille as “dichotomic”
(21), 3. They often occur as building stones for more
complex concept lattices (23). — In order not to frighten
non-mathematicians away from this text we have tried to
ban the mathematics used into part 5.

R. Wille’s more general and also differently moti-
vated approach has already led to a vast theory, cf. say
(4)—(6), (14) and (21)—(24), which is by no means
finished and is also eminently suited for the above men-
tioned purposes.

In order to distance ourselves from certain occasion-
ally occurring conceptions let us emphasize that for us a
concept — also a so-called individual concept! — is an
abstract which exists independently whether or not there
happens to be a word in a natural language denoting
exactly this abstract.

Another introductory remark: with the representa-
tion of concepts we are concerned with, of course we are
thinking primarily of uniquely definable concepts, such
as in mathematics, and we do not presume to have found
a tool permitting us to describe and to analyze
adequately very rich — and frequently also vague — con-
cepts, e.g. from the spheres of theology, philosophy or
art.

By IN we denote the set of natural numbers, i.e.
positive integers, thus

IN={1,2,3,...},
and by A, the set of the first m (€ IN), thus
A, = {x€N|x=<m} (mEN).

2. Full concept lattices

To facilitate understanding of the general developments
may we begin with a simple, almost classical, instance:

Example 1:

Considering quadrangles in the Euclidean plane
of our perception let a; denote the attribute “equal
angles” and a, the attribute “equal sides”.

These two attributes are logically independent of
each other, i.e. neither the presence of a; implies that
of a,, nor the applying of a, that of a,. Or, in other
words, there are quadrangles which have equal angles
but unequal sides, and such where the sides are equal
but where the angles are different.

With the attributes a, and a, the concepts rectangle,
square and rhombus can be easily described, e.g. by
stating the pairs (g,0), (g,g) and (o,g), where a g or
an o in the j—th place means that the attribute aj is
given or open (j = 1,2), respectively.

equalangles equalsides
rectangle g o
square g g
rhombus o g
proper rectangle g n
proper rhombus n g

Int. Classif. 14 (1987) No. 3 — Lex — Concept representation for computerization 127

- am 21.01.2026, 16:27:27.



https://doi.org/10.5771/0943-7444-1987-3-127
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

However also concepts such as “proper rectangle”
(i.e.arectangle which is no square) or “proper rhom-
bus” (i.e. arhombus which is no square) can easily be
reproduced in our “shorthand”, e.g. by (g,n) or
(n,g), respectively, where n stand for “negated”,
Here we shall describe no further concepts by the two
attributes a, and ay this will be done below, com-
pletely and more generally, cf. e.g. ex.2.

Since when one defines a concept it seems impossible to
predicate and deny one and the same attribute simulta-
neously? but as one wants to have — at least for formal
reasons — a conjunction, “and”-connection, of “given”
and “negated”, we add to g, n and o another “truth-
value” i for “impossible”. — Dually to this we associate a
disjunction, “or”-connection, of g and n with “open”. —
n lends itself as negation, denial, of g and v.v., andi as
negation of o. — This suggests the formal

Definition 1: On the set T of the four truth-values g, n, 0
and i let conjunction (A, and) and disjunction (v ,or)
be meet and join in the lattice T = (T, A, v) charac-
terized by this Hasse-diagram; let the negation (*,
not) be the complement in T.

0

This “four-valued logic” is, incidentally, different to that
developed by D. Scott (17).

For the following we assume first an arbitrary — non-
empty, finite or infinite — sequence of logically indepen-
dent attributes a; (with j out of a suited index set J), the
attribute sequence A = (a;);e;. In order to reach the
concepts belonging to A, we first form lists, i.e. se-
quences, of truth-values corresponding to our ex.1, say

(g,n,0,i,g...),(nggo0,n,...),...
etc. Hereby we intend to interpret a g, n, o or i in the
j—th position so that the attribute a; is given, negated,
open or impossible, respectively (j €J).

Since lists containing one i or several can hardly be
distinguished as far as meaning is concerned we here
unite the i containing lists to a concept i, the impossible
concept, and thus come to the formal

Definition 2: Let A = (aj);e; be an arbitrary — non-
empty, at most denumerably infinite — sequence:

a) The terms a; (j €J) are called attributes and A is
called an attribute sequence.

b) A list belonging to A is a sequence (tj);c; with
t;€ T (s. def. 1) forevery j EJ; we denote the set
of these lists by L 4.

c) Let a concept belonging to A be a list out of L,
whichdoesnotcontain i, or the impossible concept
i where i is an arbitrary element different to every
list not containing i. The set of concepts belonging
to A is denoted by C,.

In part 5 we shall indicate how this definition can be re-
fined. — The restriction of the index setJ — essentially to
A, withn € INorto IN — is purely technical and can also
be dropped with more than countably many attributes.

First we consider

Example 2: For an attribute sequence A = (a;,a;) —
say from ex. 1 — altogether 3% + 1 = 10 concepts
result.

It now appears natural to perform the operations of
conjunction, A, and disjunction, v, as fixed in def. 1
according to the components, i.e. for every attribute
individually. Hereby it would make sense to require
in addition that should an i appear somewhere while
A is being carried out, one should puti as the total re-
sult and besides

CATL=1=1A¢
and
cvi=c=1tive

should hold for every concept ¢ out of C,.

With these operations A and v for our A with two
elements the set C, becomesa lattice Cp = (Ca, A, V)
with the following Hasse-diagram

(. o

lg.g) (,n) i nvg Pl
LI

This resultimmediately leads to

Definition 3: For concepts ¢, D€ C, \ {i} of an attri-
bute sequence A = (a;);e;, say

= (Cj)jeb b= (dj)jEJWith Cj, dJ eT\ {l} (j EJ):
let A (meet, conjunction) and v (join, disjunction) be
defined by
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(CjAdj)jEJ
CAD =
i
cAd;#*i foralljE]
if
thereisajE€J withcjad; =i
and

<V b = (CJV dJ)JEJ)
moreover, let

CAi=1=1Ax,
cvi=c=1ivec.

For the structure (Ca, A, v) achieved in this way we
write Cy.

The fact that a lattice thus again results also in the
general case — with some here not primarily interesting
algebraic properties —, is the main content of

Theorem 1: Let A be an attribute sequence with index
set J and a = |J|. Then C, is a complete com-
plementary atomistic lattice of order 3*+1 with i
as zero and (0); ¢ as unit; moreover, C, possesses

2% atoms, a2*~! hyperatoms and 2a antiatoms. C,
is in general, i.e. for a > 1, neither semimodular
nor orthocomplementary.

We shall give the proof in part 5 with the tools which are
made available there.

Concerning concepts ¢ and d of an attribute sequence
A one denotes in a natural manner ¢ as subconcept of D
— and correspondingly d as superconcept of ¢ —, if ¢ lies
under d with respect to the order relation, <, induced by
the lattice C,, thus if ¢ < D holds. Further it appears
natural to define for every concept ¢ out of C, an op-
posed concept ¢ interchanging, roughly spoken, g with
n. — These indications give rise to

Definition d: Let A = (a))je; be an attribute se-

quence and ¢, D EC,:

a) C, is called full concept lattice — belonging to A —
and let < be the order it induces, thus

(SV<=>cAD=c

b) cisnamed subconcept of d, and d superconcept of c,
if ¢ = b holds.

c) Because of the completeness of C, for every non-
empty subset C of C, there is a uniquely deter-
mined supremum, VVC, and infimum, AC; this su-
premum or infimum is called smallest superconcept
(genus proximum) or biggest subconcept of C, re-

spectively.
d) The concept cisopposed or contrary to ¢ = (¢j)je;
if
. (éj)]EJ € Ca\{i, 0}
(=11 ifeq =0
0 =i

where g =n,n=g,6=o0and o = (0)jc,.
By th. 1 and def. 4 one immediately gets

Theorem 2:

a) Exactly to the numbers b of the form 3* + 1 with
a€EIN U {|IN|} there is always — up to iso-
morphy — exactly one full concept lattice of
orderb.

b) Every full concept lattice contains — up to iso-
morphy — all full concept lattices of a smaller
order. To be more precise: if C and D are full con-
cept lattices of order c and d, respectively, with
¢ =< d, thenthereis anisomorphism from Cinto D.

Because of the order 3* + 1 of a full concept lattice
the “combinatorial explosion” can also be observed
here. So we give as a further illustration

Example 3: The diagram of a full concept lattice with 3
— independent — attributes, hence with 3* + 1 = 28
elements (s. also (23), fig. 4 — fig. 6), results

.

AN N N
SRR

3. Reduced concept lattices

Until now we have always assumed that the single attri-
butes of an attribute sequence under consideration were
logically independent of each other. However this is in
fact relatively seldom thecase evenin mathematical con-
cept definitions. In most cases the applying of certain at-
tributes implies the presence, or also the absence, of cer-
tain others. This is illustrated by

Example 4: Returning to ex.1 we again treat qua-
drangles in the Euclidean plane with the attribute se-
quence (a;,a,) where now, however, a; no longer
stands for “equal angels”, but for “parallel opposite
sides” and a, means, as before, “equal sides”.
Because a rhombus is always a parallelogram the
combination (n,g) turns out to be contradictory —
therefore forbidden — and the combination (o,g)
superfluous, since its meaning coincides with that of
(g,g), just as (n,0) with (n,n). The following con-
cepts retain their original meaning: o (general qua-
drangle), (g,0) (parallelogram), (g,n) (proper paral-
lelogram, i.e. parallelogram which is no rhombus),
(0,n) (non-rhombus) and i asthe impossible concept.
Thus we come to the following lattice, “emaciated”
compared with that of ex. 2,
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which evidently reflects reality exactly.

More generally, dependences of attributes can obvi-
ously be described in such way that, starting from a full
concept lattice, one eliminates certain atoms — i.e. con-
cepts different to i, which contain no o — and one then
carries out the reduction explained in ex. 4 systemati-
cally and repeats it “towards the top” if necessary. Evi-
dently in this way again a lattice results which we want to
call reduced concept lattice.

This process has been well and accurately described
by T. Schmottlach (16) after developping the necessary
algebraic tools. However the problem of a “pleasing”
characterization of the resulting lattices seems to be still
unsolved.

4. Applications

First it should be emphasized that in my opinion the for-
mation of concepts does indeed occur within the
framework indicated, not only in arts and science but
also in our everyday language. For in the formation of
concepts it seems to be essential that, on one hand,
whether or not an attribute appliescan be left open, but
that on the other hand one has to explicitly forbid, to
negate, the applying of an attribute. We exemplify this
by

Example 5: An adult who is neither divorced nor
widowed can be a husband, bachelor, wife or spins-
ter, corresponding to the atoms of ex. 2 in the given
order if the first attribute is “male” and the second
“married”.

In English there are also words for the missing con-
cepts in this hierarchy except for i, e.g. the “genus
proximum” to “husband” and “wife” is “married”;
normally, however, even in mathematics, there are
no single words for all concepts of a certain attribute
sequence, but nevertheless the concepts exist of
course as abstracts.

According to our def. 4 the opposed concept to “hus-
band” is “spinster” and v.v., to “bachelor” “wife” and
v.v., which I think one could agrec with.

Incidentally, scientific concepts seem to be formed more
along the ascending and descending lines of the concept

lattice in question, while everyday language appears to
work more along the horizontal.

The obvious trend to increasingly “intelligent” infor-
mation systems and to even more efficient expert sys-
tems is a hard challenge to artificial intelligence, espe-
cially in the field of concept analysis and processing (cf.
say (15), esp. 3., p. 22—24, and (18)). Hercby one has to
pay special attention to the not yet fixed or defined, i.e.
to the “open” in our nomenclature, as is shown by the
problem of null values in data bases, which still remains
without a satisfying solution in spite of arduous at-
tempts. It is naturally a help in information retrieval to
be able to “compute” quickly sub- and superconcepts or
contrary concepts and “neighbouring” or “related” con-
cepts within the proposed lattices, e.g. with automatic
library search using key words and taking into account
adjacent concepts. — Machine translation from one
natural language into another seems to me to be a
further field for a successful application of our “seman-
tic” efforts.

Within her “Softwarepraktikum” at the Institute for
Computer Science of the Technical University Clausthal
in winter 1984/85 S. Bierwirth wrote a UCSD-PASCAL-
program “Begriffe” and implemented it on a SIRIUS 1
(1). Theprogram s based on the ideas developed here; it
permits one to construct concept lattices by means of at-
tributes, to give names to the individual concepts, to
compute super- and subconcepts or contrary concepts,
as well as all concepts of a fixed distance to a given con-
cept, not only for full but also for reduced concept lat-
tices. — Meanwhile R. Wille’s Darmstadt group has de-
veloped far more efficient and faster programs for differ-
ent aspects of concept analysis, s. (4) or (6).

5. Mathematics

As already stated the mathematical conceptions and
connections behind the developments of the former
chapters, esp. part 2, will be described in this section as
shortly as possible.

Let P(S) stand for the powerset of aset S and let

1s= {(s,s) |s€S}.

As far as lattice theoretical nomenclature and notation
are concerned we refer largely to (7).

A simple generalization of the concept of an idealin a
lattice is needed: let us remember here (cf. say (8), L. 7),
that every ideal 1 of a semigroup S = (S,), in short
19S5, ie 1€P(S)\{@} with SI, IS C I, induces the
Rees congruence

=5 (IxDUls

and thus the Rees quotient S/1 < S/= which still makes
senseforI=@ too: S/D =~ S. — We give

Definition 5: Let L = (L, A, v)bealatticeandK C L:
ifK=0@orK = (L, A), then Kiscalled contractable
(with respectto L).

For every lattice L = (L, A, V), trivially, L itself is con-
tractable and also @, but every ideal of L too; further
examples will be mentioned immediately after def. 6. —
The following statement justifies our nomenclature.
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Lemma: In alattice (L, A, v) let K be contractable and
let the class belonging to x EK of the equivalence re-
lation (K x K) U 1; be denoted by %. Furthermore let
(C,A)= (L, A)K and

ftvK=%x=Kvzx (x€L)
if K = @, moreover let

Vv x,YEL\K: &vy = SVvy.
Then C = (C, A, v) is a lattice which has K as zero if
K+ 0.

Proof: These different assertions can easily be verified
by a simple computation taking several special cases into
account.

This lemma gives rise to
Definition 6: Let the lattice C constructed according to

the lemma be called contract of L withrespectto K, in
short C = Cy(L).

For every lattice L = (L, A, v) holds trivially
CL(L) €y 1)

C.(L) is thus a trivial lattice, i.e. a singleton. (Let G,
in general denote the isomorphy class of a chain with n
elements (7), p. 16.) In addition is

Co(L)=L (2
and if L hasazero zalso Cy,) (L) = L. Further
Example 6:

a) With K = {@, (1}, {2}, {3}} is Cx (P(A3),n,V)

out of M, where W denotes the isomorphy class

of the diamond, hence of the lattice of this diagram
(7), p- 59.

@

o

b) For lattices L; = (L;, A, v) withzero z; (E L) for
JEJ let P be the direct product of the L;, say
P=(P,A,v)= _%J L;, and Z the set of elements

J

of P, which contain a zero, thus
Z: {(XJ)] E]EP |Hk€]. Xk = Zk};
then Z =2 (P, A) and C,(P)is a well-defined con-
tract.
c) ForK = {@, {1} } one has Cx (P (A;),N,U) EE;.

This last example shows that the complementariness of a
lattice can get lost?, just as the distributivity — as evident

by ex. 6a —; even modularity and semimodularity do not
remain (s. e.g. 2., th. 1). If, however, a lattice is com-
plete or algebraic so is every one of its contracts.

By means of the now available tools we have to show th.
lof2.:

Proof of th. 1: Using the notationsof def. 1 and def. 2b
we form the lattice of lists for A

LA_»'(LA9 A, V)‘ﬂ ngT’

and the set I of the i containing lists, thus
15 {(t);e; ELLITKE Jity = i}
Byex. 6b
K= (K,A,v)=Ci(La)

is a contract. From def. 3 it follows that K = C, and
therefore it suffices to prove the assertion for K:

L, isas adirect power of acomplete Boolean lattice T
also a complete Boolean lattice, and hence K, as a con-
tract of L,, is complete according to the above remark.

With the notations of def. 4d

VEK: cAC=i,cvi=0
holds, which can be immediately verified by distinction
of the various cases; this shows K as a lattice.
Let J be the index set belonging to A and U the set of
atoms in K. Since it is evident that
— .

one has |U| = 2*and K is atomistic, i.e. every non-
zero element of Kis a joinofatoms (s. (7),p. 179). -
The other statements about cardinalities are just as
casily verified.

Semimodularity (s. (7), p. 172) means the validity of

V,d,e€Ki ¢ —<d => ive=<DdvVe,

where “x —< y” is the abbreviation for “x is the lower
neighbour of y”. As is obvious from the definition of K
we have

i —< 85 (8jes,
but, since

(n)jes=n=ivn
andg v n = o, not

ivin=—=<gvn

fora > 1, whereby K isshown to be not semimodular in
this case.

We assume that K is orthocomplementary, i.e. to every
c€ K there is a complement ¢’ (EK) with ¢" = ¢ and

(<o (¢, bEK). 3)

n is the only possible complement for g and v.v.; for
/\

=> bl..<_('

— —_— T~
(o0,g, ...)" one can choose between (0, n, ..), (g n,...)

and n. Because g < (0, g, ...) and (3) one has (o, g, ...)’
= nin contradiction to
—— —_——
(o,g,...)=(0,g,...)"'=n"=q.
Thus K is proven to be non-orthocomplementary for
a>1.
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In the descriptions and analyses so far according to def.
2c we have for simplicity’s sake always identified a con-
cept with a list or with the impossible concept. In fact,
however, the lists do not depend on the attribute se-
quence A itself, but only on the corresponding index set
J. When interpreting the contents, however, one needs
the attributes themselves. In order to remedy this defi-
ciency it is enough to consider the pairs (¢, A) with
¢ € C, as “refined concepts”. Of course our structural
statements remain essentially unchanged since there is a
bijective correspondence between both definitions of
concepts as soon as we have fixed a certain attribute se-
quence.

We have here used attribute sequences instead of at-
tribute sets for purely technical reasons and this does not
mean any restriction because every set can be well-
ordered; on the contrary, there is a certain advantage in
using sequences since equal elements may occur as terms
of a sequence, a situation which, where sets are con-
cerned, can be mastered by moving from the attributes
to possibly different names.

Notes

1 Thisis basicly an English version of the article (12); editorsand
author are greatly indebted to the editors of the above men-
tioned volume and to the BI-Wissenschaftsverlag for their kind
permission to publish. — The author sincerely thanks B.
Ganter, I. Kupka, G. Pickert and R. Wille for helpful and
stimulating discussions, Miss S. Bierwirth (now Mrs. Behnke)
for good programming and Miss M. Soéding for careful proof-
reading.

2 We omit here the Cusanic “coincidentia oppositorum”, of im-
portance in the history of philosophy, cf. e.g. {9] or [20],
p. 250.

3 This important hint — and hence the correction of a former
mistake — was given by T. Schmottlach (16), to whom the
author is greatly indebted.
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Address:
Prof. Dr. Wilfried Lex, TU Clausthal, Institut fiir Informatik,
Postfach 230, D-3392 Clausthal-Zellerfeld, FRG.

FRG: Call for Papers 12th Annual Conference

From 17-19 March 1988, the German Society for
Classification will hold its 12th Annual Meeting on the
topic “Classification and Order” at the Technical Univer-
sity of Darmstadt. There will be plenary lectures and
Workshops. Papers are invited for the latter on the
following topics:
1) Conceptual Order, 2) Order in Languages, 3) Library
Classification, 4) Information Retrieval and Databases,
5) Commodity Classification and Product Description,
6) Decision Supporting Systems, 7) Recognition of
Structures in Data Analysis and Statistics, 8) Numerical
Classification, 9) Order Structures in the Natural
Sciences.
The plenary lectures will be delivered by HH.BOCK,
Aachen, (Statistics and Data Analysis); W.GAUL,
Karlsruhe, (Decision Theory and Operations Research);
H.GOEBL, Salzburg, (Dialect Research); E.HOLEN-
STEIN, Bochum, (Philosophy of Language); R.FUG-
MANN, Idstein, (Order and Information); G.LUSTIG,
Darmstadt, (Information Retrieval); IRIVAL, Ottawa,
(Mathematical Order Theory), F.WINGERT, Mister,
(Medical informatics and biomathematics). The deadline
for abstracts was set for Nov.15, 1987.
Registration, including the conference proceedings: DM
50.- for members and DM 100.- for non-members;
students have free entrance to the lectures. The program
will be available at the beginning of February 1988. For
further information or registration contact: Prof.Dr.
R.Wille, FB Mathematik, Technische Hochschule,
D-6100 Darmstadt.
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