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Kurzfassung

Die stetige Verknappung fossiler Ressourcen sowie der steigende Energiebedarf erfordern

eine Neuausrichtung der chemischen Industrie bezüglich der verwendeten Rohstoffe. Da

die Menge des fossilen Kohlenstoffs begrenzt ist, ist es erforderlich, alternative Quellen zu

erschließen, deren Verfügbarkeit auf lange Zeit gesichert ist. Dieser Wandel wird eine zen-

trale Rolle in der Entwicklung der chemischen Wertschöpfungsketten im Laufe der nächsten

Jahre und Jahrzehnte einnehmen.

In den letzten Jahren hat sich Biomasse als wahrscheinlichster alternativer Kohlenstoff-

lieferant herauskristallisiert. Die bisherigen Wertschöpfungsketten der chemischen Indus-

trie sind aufgrund der Beschaffenheit der Biomasse jedoch nicht oder nur teilweise übertrag-

bar. Daher geht mit der Änderung der Rohstoffquelle sowohl die Identifikation neuer

Chemikalien mit gewünschten Eigenschaften als auch die Entwicklung neuer Prozesse ein-

her.

Da die Verschiebung zu erneuerbaren Rohstoffen auch den größten Abnehmer fossiler

Energieträger, den Verkehrssektor, betrifft, steht die Herstellung von Biokraftstoffen als

essentielle Herausforderung der nächsten Jahre im Fokus wissenschaftlicher Aufmerk-

samkeit. Zum Zweck der systematischen Identifikation von Biokraftstoffen wurde an

der RWTH Aachen der Exzellenzcluster ”Tailor-Made Fuels From Biomass” (zu Deutsch

”Maßgeschneiderte Kraftstoffe aus Biomasse”) ins Leben gerufen. Dieser Forschungsver-

bund hat sich zum Ziel gesetzt, Kraftstoffe der nächsten Generation vorzuschlagen, die

sowohl auf der Anwendungs- als auch auf der Herstellungsseite optimale Eigenschaften

aufweisen. Diese optimalen Eigenschaften umfassen sowohl die wirtschaftliche und nach-

haltige Synthese von Kraftstoffen aus Biomasse als auch eine emissionsarme und effiziente

Verbrennung im Kolbenmotor.

In diesem Kontext fallen der computer-basierten Prozesstechnik zwei Aufgaben zu.

Sie umfassen zum einen die Identifikation von Kraftstoffen, die definierte Eigenschaften

erfüllen; zum anderen müssen dazugehörige Herstellungsprozesse vorgeschlagen und im

Rahmen eines konzeptionellen Prozessentwurfs systematisch ausgearbeitet werden. Die

Identifikation geeigneter Reaktionspfade ist der erste Schritt des konzeptionellen Prozess-

entwurfs. Die Auswahl von Reaktionspfaden erfolgte bisher meist auf der Basis experi-

menteller Untersuchungen und Heuristiken. Systematische Evaluierungkonzepte fußten

auf manuell zusammengetragenen Reaktionsnetzwerken auf Basis von Literaturrecherchen.

XII

https://doi.org/10.51202/9783186950031-I - Generiert durch IP 216.73.216.36, am 18.01.2026, 18:48:17. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186950031-I


Diese Vorgehensweise ist jedoch nicht nur fehleranfällig, sondern auch zeitaufwändig und

begrenzt dadurch die Anzahl der untersuchbaren Fälle. Ganzheitliche, modellbasierte

Ansätze zur Generierung, Identifikation und Evaluierung optimaler Synthesepfade im Rah-

men der Biokraftstoffsynthese sind bisher kaum verfügbar.

Der Schwerpunkt dieser Arbeit liegt daher auf der computer-basierten Generierung

und Auswertung von Reaktionsnetzwerken. Die Basis bildet eine graphentheoretische

Formulierung von Molekülen und Reaktionen, wodurch die Entwicklung von kompak-

ten und effizienten Algorithmen zur Modifikation der betrachteten Substanzen ermöglicht

wird. Dadurch können, ausgehend von benutzerdefinierten Substraten, Reaktionspfade zu

gewünschten Zielsubstanzen generiert werden. Die Formulierung erlaubt es auch, solche

Reaktionen zu erzeugen und als Teil des Syntheseprozesses vorzuschlagen, die bisher noch

nicht in der Literatur bekannt sind.

Zur Identifikation der einzelnen Reaktionspfade werden kombinatorische Methoden zur

Analyse biologischer Netzwerke adaptiert. Ein mehrstufiger Ansatz aus Kombinatorik

und Optimierung wird vorgeschlagen, der nicht nur eine ökonomische und ökologische

Bewertung der Reaktionspfade ermöglicht, sondern auch die Topologie des Netzwerks er-

schließt und Aussagen über die Robustheit einer Syntheseentscheidung erlaubt. Aus einer

Datenbank organischer Reaktionen werden experimentelle Daten abgerufen und in die

Evaluierung integriert. Eingebettet in ein modellbasiertes Produkt-Prozess-Design können

so Synthesepfade zu maßgeschneiderten Kraftstoffkandidaten systematisch identifiziert und

für weiterführende Untersuchungen vorgeschlagen werden. In einem nachfolgenden Schritt

wird geprüft, bis zu welchem Grad die Ausnutzung des Ausgangsmaterials erhöht werden

kann, wenn auftretende Abfallströme in den Produktstrom integriert werden. Vorrausset-

zung ist hierbei, dass die resultierende Mischung ebenfalls die gewünschten Eigenschaften

besitzt.

Generierung und Evaluierung von Reaktionsnetzwerken werden abschließend für zwei

Fälle exemplarisch durchgeführt. Betrachtet wird dabei die Synthese von alternativen

biobasierten Dieselkraftstoffen. Der erste Fall analysiert die Synthese von 3-MTHF ausge-

hend von Itakonsäure. Dieser Prozess wurde im Exzellenzcluster TMFB bereits detailliert

untersucht. Es zeigt sich, dass das automatisch generierte Netzwerk eine Vielzahl bisher

nicht betrachteter Reaktionen beinhaltet. Die angewendete Lösungsstrategie offenbart

eine Vielzahl an Synthesepfaden und weist die wichtigsten Reaktionen des Netzwerks aus.

Die Synthese von 3-MTHF leidet jedoch an den hohen Kosten des Substrats Itakonsäure,

die auch durch die Integration der Abfallströme nicht wettgemacht werden können. Da-

her werden in einer zweiten Studie die strukturell ähnlichen Moleküle 2-BF und 2-BTHF

vorgeschlagen und untersucht, die ausgehend vom aktuell günstigeren Furfural produziert

werden können. Die durchgeführte Analyse zeigt, dass diese Substanzen effizient hergestellt

werden können. Insbesondere dann, wenn Abfallströme in den Produktstrom integriert
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Kurzfassung

werden, erscheint eine Synthese von 2-BTHF zu gegenwärtigen Marktpreisen von Furfural

wirtschaftlich möglich.

Die präsentierten Methoden sind in einem Softwarepaket vereint. Dieser rein compu-

terbasierte Ansatz beschleunigt und unterstützt den wissenschaftlichen Prozess der Iden-

tifikation neuer Kraftstoffe, indem detaillierte Netzwerke mit hohem Informationsgehalt

in kurzer Zeit bereitgestellt werden. Darauf aufbauende Experimente können zielgerichtet

geplant und ausgeführt werden, da vielversprechende Reaktionspfade schon vor Beginn der

Versuche bekannt sind.
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Abstract

The combination of continuously depleting fossil resources and the steadily increasing

demand for energy pose upcoming challenges to the utilization of feedstock in chemical

industry. Since the availability of fossil resources is limited by quantity, exploitation of

alternative, long-term available sources is necessary. This transition will be a dominant

center piece in the design of value chains in chemical industry within in the next years and

decades.

More and more, biomass takes the stage as most promising alternative carbon source.

However, current value chains are not or only to a limited extend transferrable due to

the chemical and structural composition of biomass. Thus, a change in the carbon source

will come hand in hand with the identification of novel chemical compounds with desired

properties as well as with the development of corresponding production processes.

This shift towards biomass feedstock will affect all consumers of fossil energy carries, also

the transportation sector as single largest consumer. This development positions biofuel

production in the focus of academic research in the next years, both as challenge and also as

opportunity. At RWTH Aachen University, the Cluster of Excellence ”Tailor-Made Fuels

from Biomass” was established to systematically identify and propose biofuels. Its overall

objective is to propose next generation biofuels that exhibit optimal performance from

an overall perspective, considering the production process as well as the thermo-physical

properties. Thus, optimal performance takes into account the economic and sustainable

synthesis of fuels from biomass and their efficient combustion in internal combustion en-

gines at low emissions.

In this context, the task of computer-aided process systems engineering is twofold. It

comprises on the one hand the identification of fuels that exhibit defined properties and

on the other hand the identification and design of the corresponding production processes

in a systematic conceptual process design approach. The first task to address here is to

propose and evaluate suited reaction pathways from feedstock to desired product. Most

often, the choice of reaction pathways was made based on experimental investigations and

empirical knowledge. Systematic concepts for evaluating reaction pathway alternatives

founded on manually assembled reaction networks, derived from exhaustive literature re-

search. However, this approach is susceptible for incompleteness and time intense, thus

posing methodological limits to the number investigatable scenarios. Holistic, model-based
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Abstract

approaches for generating, identifying and evaluating optimal synthesis pathways in the

context of biofuel value chain design are only rarely available.

The contribution of this work is the computer-based generation and evaluation of reac-

tion networks. It founds on formalisms of graph theory to abstract molecules and reac-

tions, leading to compact and efficient algorithms for altering chemical substances. In this

manner, reaction pathways are established from a user-defined feedstock to defined target

substances, summing up to reaction networks. This way of abstracting the principles of

chemical synthesis also allows for generating and proposing such reactions as part of the

synthesis process that are not reported in literature so far.

Combinatorial methods from systems biology are employed to identify individual reaction

pathway alternatives in the generated networks. A multi-stage approach of combinatorial

and optimization-based methods is proposed to assess not only economic and ecological,

but also topological aspects of the reaction pathways to allow for statements on the ro-

bustness of a design task. Experimental data, if available, is retrieved from a data base

of organic reactions and included into the evaluation process. Embedded into a model-

based product-process design, synthesis pathways towards tailored biofuel candidates can

be systematically identified and proposed for further experimental investigations. In a

subsequent step, the potential of blending unconverted intermediates and desired product

while maintaining imposed property constraints is elucidated for the sake of increasing

feedstock utilization.

Concluding this contribution, generation and evaluation of reaction networks is demon-

strated by the example of two case studies, targeting the synthesis of bio-based diesel fuel

surrogates. The synthesis of 3-MTHF starting from itaconic acid is topic of the first case

study. This process was already investigated in detail in the Cluster of Excellence. It

is shown that the computer-generated reaction network comprises a plethora of reactions

that are so far not reported in literature. Likewise, the number of pathways identified by

applying the evaluation routine distinctly increases in comparison to the results derived

from manually assembled networks. Economic evaluation leads to the statement that this

combination of feedstock and product suffers applicability due to the currently high prices

of itaconic acid, which also cannot be compensated by integrating unconverted interme-

diates. Thus, the investigation of structurally similar compounds 2-BF and 2-BTHF is

proposed and performed. Despite structural similarity, these substances can be derived

from furfural, which is currently traded at lower market prices than itaconic acid. The

analysis reveals that these substances can be produced sustainable from the provided feed-

stock, especially by integrating unconverted intermediates and final product. Under the

presumed assumptions, the synthesis of 2-BTHF from furfural is economically viable under

today’s market conditions.

The presented methods are provided in a single software package. This computer-based
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approach accelerates and supports the scientific process of biofuel identification by pro-

viding detailed reaction networks with a high information density in a short time span.

With the information of promising reaction pathways at hand at already very early stage

of the assessment, experimental investigation campaigns can be supported or even guided

to achieve highest information gain with least effort.
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