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Rth thermischer Widerstand

RZ Innenwiderstand einer Zelle der Traktionsbatterie

rA,1 Außenradius des Statorblechpakets

rA,2 Außenradius des Rotorblechpakets

rD differentieller Widerstand der Diode

rdyn dynamischer Radradius

rI,1 Innenradius des Stators

rI,2 Innenradius des Rotorblechpakets (Wellenradius)

rT differentieller Widerstand des IGBT

s Schlupf

Tdq dq-Transformationsmatrix

t Zeit

U1 Effektivwert der Strangspannung mit Grundfrequenz

U1µ Effektivwert der Strangspannung mit einer Frequenz der

Ordnungszahl µ

UB Batteriespannung

UCE Kollektor- Emitter-Spannung

UDC Zwischenkreisspannung

UZ Zellenspannung

UZ0 Leerlaufspannung einer Zelle

u1 Strangspannung

uD0 Diffusionsspannung der Diode

ud Spannung in der d-Achse
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Formelzeichenverzeichnis XIII

uq Spannung in der q-Achse

uT0 Schleusenspannung des IGBT

ûµ Amplitude der Spannungsoberschwingung der Ordnungszahl µ

ü Getriebeübersetzung

V Volumen

VC Kondensatorvolumen

VEM Bauvolumen der E-Maschine

VLM,m3 Gesamtvolumen eines dreiphasigen Leistungsmoduls

VWR,m3 Gesamtvolumen eines dreiphasigen Wechselrichters

v Durchflussgeschwindigkeit

vF Fahrzeuggeschwindigkeit

w spannungshaltende Windungszahl

wsp Windungszahl einer Spule

X1µ frequenzabhängige Impedanz für die Oberschwingungsordnung µ

xäq1 äquivalente Breite der Isolationsschicht der Ständerwicklung

xGehäuse Gehäusewandstärke

xKont Spalthöhe zwischen zwei Kontaktflächen

Z1µ frequenzabhängige Strangimpedanz

Z1dµ frequenzabhängige Strangimpedanz in der d-Achse für die Oberschwingungsordnung µ

Z1qµ frequenzabhängige Strangimpedanz in der q-Achse für die Oberschwingungsordnung µ

Zd Impedanz in der d-Achse (Längsimpedanz)

Zq Impedanz in der q-Achse (Querimpedanz)

Griechische Buchstaben

α Wärmeübergangskoeffizient

α20 Temperaturkoeffizienten bei 20◦C

αfree Wärmeübergangskoeffizient für freie Konvektion

αKühlkanal Wärmeübergangskoeffizient im Kühlkanal

αS Fahrbahnsteigungswinkel

γ elektrischer Winkel zwischen dem statorfesten α-β -Koordinatensystem

und dem rotorfesten dq-Koordinatensystem

γ ′ Winkelkoordinate

∆ϕd1,d2 Phasendifferenz zwischen den beiden d-Systemen des sechssträngigen

dq-Ersatzschaltbilds
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XIV Formelzeichenverzeichnis

δ Luftspaltlänge

ε ′ Ordnungszahl einer Leitwertdrehwelle

η mittlerer Wirkungsgrad im Fahrzyklus

ϑ Temperatur

ϑB Temperatur der Batterie

ϑF mittlere Kühlmitteltemperatur der Wassermantelkühlung

ϑÖl Öltemperatur der Rotorkühlung

ϑUmgebung Umgebungstemperatur

λ thermische Leitfähigkeit

λBL Wärmeleitfähigkeit des Elektroblechs

λδ0 mittlerer Luftspaltleitwert

λδ s Luftspaltleitwert aufgrund von Eisensättigung

µ Ordungszahl einer Oberschwingung

ν Viskosität

ν ′ Ordungszahl einer Oberwelle

ξgr,ν ′ Zonenwicklungsfaktor der Ordungszahl ν ′

ξν ′ Wicklungsfaktor der Ordungszahl ν ′

ρ Dichte

ρLuft Luftdichte

τNut1 Statornutteilung

τNut2 Rotornutteilung bei der Induktionsmaschine

ϕI Phasenwinkel des Carriersignals

ϕi Phasenwinkel des Strangstroms

ϕs,ε ′ Phasenwinkel der Leitwertdrehwelle

Ψ magnetischer Verkettungsfluss

Ψd resultierender Verkettungsfluss in der d-Achse

Ψ′dr auf den Stator bezogener Rotorverkettungsfluss in der d-Achse

Ψges Gesamtverkettungsfluss

ΨL durch den Statorstrom hervorgerufener Verkettungsfluss

ΨL,d durch den Statorstrom hervorgerufener Verkettungsfluss in der d-Achse

ΨL,q durch den Statorstrom hervorgerufener Verkettungsfluss in der q-Achse

ΨPM resultierender Verkettungsfluss des Permanentmagnetfelds

Ψq resultierender Verkettungsfluss in der q-Achse

Ψ′qr auf den Ständer bezogener Rotorverkettungsfluss in der q-Achse

Ω Winkelgeschwindigkeit

ω Kreisfrequenz
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Formelzeichenverzeichnis XV

Indizes

1 Stator

2 Rotor

A außen

ax axial

äq äquivalent

B1 Rotorbereich 1

B2 Rotorbereich 2

B3 Rotorbereich 3

Cu Kupfer

Ch Chip des Leistungsmoduls

D Diode

d1 d-Achse des ersten Systems

d2 d-Achse des zweiten Systems

F Fluid

Fe Eisen

ges gesamt

I innen

Joch1 Statorjoch

Joch2 Rotorjoch

Kont Kontakt

Konv konvektiv

LM Leistungsmodul

M Mitte

Mag Magnet

m3 dreisträngige Wicklung

m6 sechssträngige Wicklung

max Maximum

min Minimum

Nut1 Statornut

Nut2 Rotornut

Ob Oberschwingungen

PU Vergussmaterial

q1 q-Achse des ersten Systems
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XVI Formelzeichenverzeichnis

q2 q-Achse des zweiten Systems

r Rotorgröße im dq-System

rad radiale Richtung

Ring Kurzschlussring des Käfigläufers der Induktionsmaschine

Stab Stab des Käfigläufers der Induktionsmaschine

Sys Antriebssystem (E-Maschine und Leistungselektronik)

T Transistor

th thermisch

Welle Rotorwelle

Wk Wicklungskopf

WL Wärmeleitung

WR Wechselrichter

Z Zylinder

Zahn1 Statorzahn

Zahn2 Rotorzahn

Abkürzungen

BP Betriebspunkt

BDL Temperaturmessgerät

DMW Drehmomentmesswelle

E-Maschine elektrische Maschine

IAL Institut für Antriebssysteme und Leistungselektronik

IGBT Insulated Gate Bipolar Transistor

IM Induktionsmaschine

LMG Leistungsmessgerät

NEFZ Neuer Europäischer Fahrzyklus

PMSM permanentmagneterregte Synchronmaschine

PWM Pulsdauermodulation

SMZ Strommesszangen

SoC State of Charge (Ladezustand der Batterie)

WLTP Worldwide Harmonized Light-Duty Vehicles Test

Procedure

BS-Zyklus kundennaher Fahrzyklus der TU Braunschweig
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Kurzfassung XVII

Kurzfassung

Die Herstellungskosten von batterieelektrischen Fahrzeugen sind bis heute im Vergleich zu kon-
ventionellen Fahrzeugen mit Verbrennungsmotor sehr hoch. Konventionelle Fahrzeuge basieren
auf Baukastensystemen, die zu einer Stückzahlerhöhung auf Komponentenbasis und damit zu
einer Kostenreduktion führen. Für batterieelektrische Fahrzeuge ist zurzeit kein vergleichbares
Konzept verfügbar.
In dieser Arbeit werden modulare, skalierbare mehrsträngige Antriebssysteme für Elektro-
fahrzeuge vorgestellt, welche für unterschiedliche Fahrzeugklassen eingesetzt werden können.
Für das modulare Konzept werden Induktionsmaschinen (IM) und permanentmagneterregte
Synchronmaschinen (PMSM) verwendet. Ziel ist es, eine Leistungsskalierung zu ermögli-
chen, bei der der Strangstrom annähernd konstant bleibt, um eine Verwendung identischer
Halbleitermodule für die unterschiedlichen Antriebssysteme zu ermöglichen. Dies wird durch
eine Längen- und Strangzahlskalierung der E-Maschine erreicht. Dazu werden die Vor- und
Nachteile mehrsträngiger E-Maschinen analysiert, um die für das Konzept geeigneten Strang-
zahlen zu ermitteln. Hierbei wird speziell die Entstehung von Stromoberschwingungen in
mehrsträngigen Wicklungen untersucht und ein Verfahren erarbeitet, welches eine Kompensa-
tion der Oberschwingungsströme ermöglicht. Dabei stellt sich heraus, dass für das Konzept
drei- und sechssträngige Antriebssysteme am besten geeignet sind. Aus diesem Grund wer-
den die Verluste bei Wechselrichterspeisung in diesen Maschinentypen detailliert untersucht.
Die Grundschwingungsverluste der sechssträngigen E-Maschinen sind aufgrund des höheren
Hauptwellenwicklungsfaktors geringer als die der dreisträngigen Varianten. Die durch die Wech-
selrichterspeisung entstehenden Oberschwingungsverluste sind dagegen in den sechssträngigen
E-Maschinen höher als in den dreisträngigen Varianten. Es werden die Wirkungsgradunterschie-
de der beiden Maschinentypen (IM und PMSM) in drei- und in sechssträngiger Ausführung
analysiert. Mithilfe der erarbeiteten Teilmodelle für Fahrzeug, E-Maschine, Wechselrichter und
Batterie wird eine Fahrzeugsimulation durchgeführt und der Energiebedarf des Antriebssystems
bestimmt. Zusätzlich werden thermische Modelle der E-Maschinen erarbeitet, mit denen das
thermische Verhalten im Fahrzyklus berechnet werden kann. Durch zahlreiche Messungen an
zwei Prototypen (IM und PMSM) konnten die Komponentenmodelle validiert werden.
Anhand der erarbeiteten Kostenmodelle und der Fahrzeugsimulationen wird gezeigt, dass das
modulare, skalierbare mehrsträngige Konzept Kostenvorteile gegenüber nicht modularen Bau-
weisen hat. Das Bauvolumen der modularen Antriebssysteme ist minimal größer als das der
nicht modularen Systeme. Die Energieeffizienz beider Systeme ist annähernd gleich.

Schlagworte:
Elektromobilität, modulare Antriebssysteme, mehrsträngige Wicklungen, Oberschwingungs-
ströme, Oberschwingungsverluste, thermische Modelle, Fahrzyklussimulation, Energieeffizienz,
Herstellungskosten
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XVIII Abstract

Abstract

The production cost of battery-electric vehicles is still very high compared to conventional
vehicles with internal combustion engines. Conventional vehicles are based on modular systems
that lead to unit increase of their components and to cost reduction. A similar concept for
battery-powered vehicles is currently not available.
In this thesis, modular scalable multiphase drive systems for electric vehicles are developed
which can be used for different vehicle classes. For this modular concept, induction machines
(IM) and permanent magnet synchronous machines (PMSM) are used. The aim is to enable
a power scaling in which the phase current remains approximately constant in order to use
identical semiconductor modules for different drive systems and power ratings. This is achieved
by scaling the length and the number of phases of the electric machine. Thus, the advantages and
disadvantages of multiphase electric machines are analyzed in order to determine the appropriate
phase numbers for this concept. In particular, current harmonics in multiphase windings are
investigated and a method to compensate these current harmonics is developed. Three-phase
and six-phase drive systems proved to be best suited for this concept. Therefore, the power
losses of inverter fed multiphase IM and PMSM are examined in detail. The fundamental losses
of six-phase machines are lower than those of three-phase machines due to the higher winding
factor. On the other hand, harmonic losses of six-phase machines due to the inverter supply
are higher than those of three-phase machines. The efficiency values of the machines (IM and
PMSM) are analyzed for three-phase and six-phase windings.
Component models of the car, the electric machine, the inverter and the battery are developed
in this thesis and are used to simulate the energy efficiency of the drive system. In addition,
thermal models of the electric machines are developed and the thermal behavior in driving
cycles is examined. Measurements on two prototypes (IM and PMSM) were made in order to
validate the component models. Based on cost models and vehicle simulations, the modular
scalable multiphase concept has cost advantages over non-modular concepts. The dimensions
of modular drive systems are minimally larger compared to non-modular systems. However, the
energy efficiency of both systems is almost the same.

Key words:
electric mobility, modular drive systems, multiphase windings, current harmonics, harmonic
losses, thermal models, driving cycle simulations, energy efficiency, manufacturing cost
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