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q2 g-Achse des zweiten Systems
r Rotorgréfe im dg-System
rad radiale Richtung
Ring Kurzschlussring des Kifiglaufers der Induktionsmaschine
Stab Stab des Kifigldufers der Induktionsmaschine
Sys Antriebssystem (E-Maschine und Leistungselektronik)
T Transistor
th thermisch
Welle Rotorwelle
Wk Wicklungskopf
WL Wirmeleitung
WR Wechselrichter
Z Zylinder
Zahnl Statorzahn
Zahn2 Rotorzahn
Abklrzungen
BP Betriebspunkt
BDL Temperaturmessgerét
DMW Drehmomentmesswelle

E-Maschine elektrische Maschine

TIAL Institut fiir Antriebssysteme und Leistungselektronik

IGBT Insulated Gate Bipolar Transistor

M Induktionsmaschine

LMG Leistungsmessgerit

NEFZ Neuer Europiischer Fahrzyklus

PMSM permanentmagneterregte Synchronmaschine

PWM Pulsdauermodulation

SMZ Strommesszangen

SoC State of Charge (Ladezustand der Batterie)

WLTP Worldwide Harmonized Light-Duty Vehicles Test
Procedure

BS-Zyklus kundennaher Fahrzyklus der TU Braunschweig
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Kurzfassung XVII

Kurzfassung

Die Herstellungskosten von batterieelektrischen Fahrzeugen sind bis heute im Vergleich zu kon-
ventionellen Fahrzeugen mit Verbrennungsmotor sehr hoch. Konventionelle Fahrzeuge basieren
auf Baukastensystemen, die zu einer Stiickzahlerhohung auf Komponentenbasis und damit zu
einer Kostenreduktion fiihren. Fiir batterieelektrische Fahrzeuge ist zurzeit kein vergleichbares
Konzept verfiigbar.

In dieser Arbeit werden modulare, skalierbare mehrstrangige Antriebssysteme fiir Elektro-
fahrzeuge vorgestellt, welche fiir unterschiedliche Fahrzeugklassen eingesetzt werden konnen.
Fiir das modulare Konzept werden Induktionsmaschinen (IM) und permanentmagneterregte
Synchronmaschinen (PMSM) verwendet. Ziel ist es, eine Leistungsskalierung zu ermogli-
chen, bei der der Strangstrom annédhernd konstant bleibt, um eine Verwendung identischer
Halbleitermodule fiir die unterschiedlichen Antriebssysteme zu erméglichen. Dies wird durch
eine Lingen- und Strangzahlskalierung der E-Maschine erreicht. Dazu werden die Vor- und
Nachteile mehrstringiger E-Maschinen analysiert, um die fiir das Konzept geeigneten Strang-
zahlen zu ermitteln. Hierbei wird speziell die Entstehung von Stromoberschwingungen in
mehrstriangigen Wicklungen untersucht und ein Verfahren erarbeitet, welches eine Kompensa-
tion der Oberschwingungsstrome ermoglicht. Dabei stellt sich heraus, dass fiir das Konzept
drei- und sechsstringige Antriebssysteme am besten geeignet sind. Aus diesem Grund wer-
den die Verluste bei Wechselrichterspeisung in diesen Maschinentypen detailliert untersucht.
Die Grundschwingungsverluste der sechsstriangigen E-Maschinen sind aufgrund des hoheren
Hauptwellenwicklungsfaktors geringer als die der dreistrdngigen Varianten. Die durch die Wech-
selrichterspeisung entstehenden Oberschwingungsverluste sind dagegen in den sechsstringigen
E-Maschinen hoher als in den dreistrdngigen Varianten. Es werden die Wirkungsgradunterschie-
de der beiden Maschinentypen (IM und PMSM) in drei- und in sechsstringiger Ausfiihrung
analysiert. Mithilfe der erarbeiteten Teilmodelle fiir Fahrzeug, E-Maschine, Wechselrichter und
Batterie wird eine Fahrzeugsimulation durchgefiihrt und der Energiebedarf des Antriebssystems
bestimmt. Zusitzlich werden thermische Modelle der E-Maschinen erarbeitet, mit denen das
thermische Verhalten im Fahrzyklus berechnet werden kann. Durch zahlreiche Messungen an
zwei Prototypen (IM und PMSM) konnten die Komponentenmodelle validiert werden.
Anhand der erarbeiteten Kostenmodelle und der Fahrzeugsimulationen wird gezeigt, dass das
modulare, skalierbare mehrstringige Konzept Kostenvorteile gegeniiber nicht modularen Bau-
weisen hat. Das Bauvolumen der modularen Antriebssysteme ist minimal grofler als das der
nicht modularen Systeme. Die Energieeffizienz beider Systeme ist annéihernd gleich.

Schlagworte:

Elektromobilitit, modulare Antriebssysteme, mehrstringige Wicklungen, Oberschwingungs-
strome, Oberschwingungsverluste, thermische Modelle, Fahrzyklussimulation, Energieeffizienz,
Herstellungskosten
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XVIII Abstract

Abstract

The production cost of battery-electric vehicles is still very high compared to conventional
vehicles with internal combustion engines. Conventional vehicles are based on modular systems
that lead to unit increase of their components and to cost reduction. A similar concept for
battery-powered vehicles is currently not available.

In this thesis, modular scalable multiphase drive systems for electric vehicles are developed
which can be used for different vehicle classes. For this modular concept, induction machines
(IM) and permanent magnet synchronous machines (PMSM) are used. The aim is to enable
a power scaling in which the phase current remains approximately constant in order to use
identical semiconductor modules for different drive systems and power ratings. This is achieved
by scaling the length and the number of phases of the electric machine. Thus, the advantages and
disadvantages of multiphase electric machines are analyzed in order to determine the appropriate
phase numbers for this concept. In particular, current harmonics in multiphase windings are
investigated and a method to compensate these current harmonics is developed. Three-phase
and six-phase drive systems proved to be best suited for this concept. Therefore, the power
losses of inverter fed multiphase IM and PMSM are examined in detail. The fundamental losses
of six-phase machines are lower than those of three-phase machines due to the higher winding
factor. On the other hand, harmonic losses of six-phase machines due to the inverter supply
are higher than those of three-phase machines. The efficiency values of the machines (IM and
PMSM) are analyzed for three-phase and six-phase windings.

Component models of the car, the electric machine, the inverter and the battery are developed
in this thesis and are used to simulate the energy efficiency of the drive system. In addition,
thermal models of the electric machines are developed and the thermal behavior in driving
cycles is examined. Measurements on two prototypes (IM and PMSM) were made in order to
validate the component models. Based on cost models and vehicle simulations, the modular
scalable multiphase concept has cost advantages over non-modular concepts. The dimensions
of modular drive systems are minimally larger compared to non-modular systems. However, the
energy efficiency of both systems is almost the same.

Key words:
electric mobility, modular drive systems, multiphase windings, current harmonics, harmonic
losses, thermal models, driving cycle simulations, energy efficiency, manufacturing cost
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